WO2014129034A1 - 磁気特性に優れるセミプロセス無方向性電磁鋼板の製造方法 - Google Patents

磁気特性に優れるセミプロセス無方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2014129034A1
WO2014129034A1 PCT/JP2013/081384 JP2013081384W WO2014129034A1 WO 2014129034 A1 WO2014129034 A1 WO 2014129034A1 JP 2013081384 W JP2013081384 W JP 2013081384W WO 2014129034 A1 WO2014129034 A1 WO 2014129034A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
steel sheet
semi
annealing
Prior art date
Application number
PCT/JP2013/081384
Other languages
English (en)
French (fr)
Inventor
善彰 財前
尾田 善彦
広朗 戸田
花澤 和浩
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020157018407A priority Critical patent/KR20150093807A/ko
Priority to CN201380071240.4A priority patent/CN104937118A/zh
Priority to US14/761,538 priority patent/US9978488B2/en
Priority to EP13875382.7A priority patent/EP2960345B1/en
Priority to RU2015139800A priority patent/RU2617304C2/ru
Priority to JP2015501273A priority patent/JP6008157B2/ja
Publication of WO2014129034A1 publication Critical patent/WO2014129034A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention relates to a method for manufacturing a semi-processed non-oriented electrical steel sheet, and specifically to a method for manufacturing a semi-processed non-oriented electrical steel sheet having excellent magnetic properties.
  • Non-oriented electrical steel sheets are widely used as core materials for electrical equipment.
  • high magnetic flux density and low iron loss of non-oriented electrical steel sheets are indispensable. is there.
  • the non-oriented electrical steel sheet mainly by adding elements that increase the specific resistance such as Si and Al, or by reducing the plate thickness, the reduction of iron loss,
  • efforts have been made to increase the magnetic flux density by increasing the grain size before cold rolling and optimizing the cold rolling reduction ratio.
  • a full-process material that is used without being annealed after being punched into a predetermined iron core shape and a semi-process material that is used after being subjected to stress relief annealing after punching to improve magnetic properties.
  • the latter semi-process material can obtain good iron loss characteristics by reducing the crystal grains before punching and coarsening the crystal grains by subsequent strain relief annealing.
  • Patent Document 1 contains 0.75 to 1.5 mass% of Mn, coexists with a large amount of C with respect to the Mn, and cold rolling under the coexistence of Mn and C. It is disclosed that a semi-process material having excellent magnetic properties after strain relief annealing can be obtained by performing subsequent annealing and setting the C content to 0.005% or less.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to provide a semi-processed non-oriented electrical steel sheet having high magnetic flux density and low iron loss at low cost after strain relief annealing. It is in.
  • the inventors have intensively studied to solve the above problems. As a result, Se contained as impurities is reduced as much as possible, and the heating rate in recrystallization annealing after cold rolling is heated more rapidly than before, so that the magnetic flux density and iron loss characteristics after strain relief annealing are remarkably excellent.
  • the inventors have found that a grain-oriented electrical steel sheet can be obtained, and have developed the present invention.
  • the present invention is C: 0.005 mass% or less, Si: 4 mass% or less, Mn: 0.03 to 2 mass%, P: 0.2 mass% or less, S: 0.004 mass% or less, Al: 2 mass% or less , N: 0.004 mass% or less and Se: 0.0010 mass% or less, the steel slab having a composition composed of Fe and unavoidable impurities in the balance is hot-rolled, cold-rolled, and then subjected to recrystallization annealing.
  • the semi-processed non-oriented electrical steel sheet is heated by setting the average temperature rising rate up to 740 ° C. in the recrystallization annealing as 100 ° C./s or more. .
  • the steel slab used in the present invention is characterized by further containing 0.003 to 0.5 mass% of one or two selected from Sn and Sb in addition to the above component composition.
  • the steel slab used in the present invention is characterized by further containing 0.0010 to 0.005 mass% of Ca in addition to the above component composition.
  • the non-oriented electrical steel sheet which has the outstanding magnetic characteristic which contributes to high efficiency of electrical equipment, such as a rotary machine and a small transformer, can be provided at low cost, without adding a special element. .
  • the steel sheet was heated by varying the average rate of temperature increase up to 740 ° C. in the range of 30 to 300 ° C./s, held at 740 ° C. for 10 seconds, and then cooled to form a cold-rolled annealed plate.
  • the magnetic properties can be greatly improved by setting the average temperature elevation rate in the recrystallization annealing to 100 ° C./s or more. This is because, by increasing the rate of temperature increase during recrystallization annealing, recrystallization of ⁇ 111 ⁇ grains is suppressed, and recrystallization of ⁇ 110 ⁇ grains and ⁇ 100 ⁇ grains is promoted. , ⁇ 110 ⁇ grains and ⁇ 100 ⁇ grains phagocytose ⁇ 111 ⁇ grains and preferentially grow grains, which is considered to improve the magnetic properties.
  • C: 0.0021 mass%, Si: 1.8 mass%, Mn: 0.50 mass%, P: 0.03 mass%, S: 0.0019 mass%, Al: 0.3 mass% and N: 0.0025 mass% are the basic components, and Se is added to Tr.
  • Steel added with various changes in a range of up to 0.0050 mass% was melted in a laboratory, made into a steel ingot, and then hot-rolled to form a hot-rolled sheet having a thickness of 2.0 mm.
  • the magnetic properties are improved by reducing the Se content to 0.0010 mass% or less, in other words, when Se is added in excess of 0.0010 mass%, MnSe precipitates at the grain boundaries, It became clear that the grain growth at the time of strain relief annealing was inhibited and the magnetic properties were deteriorated.
  • the present invention has been made on the basis of the above novel findings.
  • C 0.005 mass% or less If C is contained in the product steel plate in an amount exceeding 0.005 mass%, magnetic aging is caused to deteriorate the iron loss characteristics, so the upper limit is made 0.005 mass%. Preferably it is 0.003 mass% or less.
  • Si 4 mass% or less Si is an element effective for increasing the specific resistance of steel and reducing iron loss. In order to obtain such an effect, addition of 1 mass% or more is preferable. On the other hand, if added over 4 mass%, the magnetic flux density is lowered or it is difficult to roll and manufacture, so the upper limit is made 4 mass%.
  • the range is preferably 1 to 4 mass%, more preferably 1.5 to 3 mass%.
  • Mn 0.03 to 2 mass%
  • Mn is an element effective for improving the hot workability, but if it is less than 0.03 mass%, a sufficient effect cannot be obtained. On the other hand, addition of more than 2 mass% leads to an increase in raw material cost.
  • the range is 0.03 to 2 mass%.
  • the range is preferably 0.05 to 2 mass%, more preferably 0.1 to 1.6 mass%.
  • P 0.2 mass% or less P is an element effective for increasing the specific resistance of steel and reducing iron loss. However, addition of 0.2 mass% or more hardens the steel and lowers the rollability. Therefore, the upper limit is set to 0.2 mass%. Preferably, it is in the range of 0.01 to 0.1 mass%.
  • S 0.004 mass% or less
  • S is an impurity element that is inevitably mixed in. If it exceeds 0.004 mass%, it forms a sulfide-based precipitate and inhibits grain growth during strain relief annealing. However, since the magnetic properties are deteriorated, the upper limit is set to 0.004 mass% in the present invention. Preferably it is 0.003 mass% or less.
  • Al 2 mass% or less
  • Al, like Si, is an element effective for increasing the specific resistance of steel and reducing iron loss. However, if it is added in excess of 2 mass%, it becomes difficult to produce by rolling. Therefore, the upper limit is 2 mass%.
  • the lower limit is not particularly limited, and may be 0 mass%. The range is preferably 0.001 to 2 mass%, more preferably 0.1 to 1 mass%.
  • N 0.004 mass% or less
  • N is an impurity element that is inevitably mixed.
  • the upper limit is set to 0.004 mass%. Preferably it is 0.003 mass% or less.
  • Se 0.0010 mass% or less
  • Se is a harmful element that degrades the magnetic properties after strain relief annealing, as can be seen from the experimental results described above. Therefore, in the present invention, Se is limited to 0.0010 mass% or less. Preferably it is 0.0005 mass% or less.
  • the non-oriented electrical steel sheet of the present invention can appropriately contain the following components in addition to the essential components.
  • Sn, Sb 0.003 to 0.5 mass% each Sn and Sb not only improve the texture and improve the magnetic flux density, but also prevent the deterioration of the magnetic properties by suppressing the oxidation and nitridation of the steel sheet surface layer and the generation of the surface layer fine grains associated therewith. It is an element that has an effect. In order to obtain such an effect, it is preferable to add 0.003 mass% or more of one or two of Sn and Sb. On the other hand, if added over 0.5 mass%, on the contrary, the growth of crystal grains is hindered and there is a possibility that the magnetic properties are lowered. Therefore, Sn and Sb are preferably added in the range of 0.003 to 0.5 mass%, respectively.
  • Ca 0.0010 to 0.005 mass% Ca is compounded with the Se compound to form coarse precipitates, and therefore has an effect of promoting grain growth during strain relief annealing and improving magnetic properties. In order to exhibit such an effect, it is preferable to add 0.0010 mass% or more. On the other hand, if added over 0.005 mass%, the amount of precipitated CaS increases and the iron loss increases on the contrary, so the upper limit is preferably made 0.005 mass%.
  • the balance other than the above components is Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, the inclusion of other elements is not rejected.
  • the method for producing a non-oriented electrical steel sheet according to the present invention first involves melting a steel having the above-mentioned composition suitable for the present invention in a normal refining process using a converter, an electric furnace, a vacuum degassing apparatus, etc. Steel slabs are produced by continuous casting or ingot-bundling.
  • the steel slab is hot-rolled by a normal method to form a hot-rolled sheet, and then subjected to hot-rolled sheet annealing as necessary.
  • this hot-rolled sheet annealing is not an essential step in the present invention, it is preferably employed as appropriate because it is effective in improving magnetic properties.
  • the annealing temperature is preferably in the range of 750 to 1050 ° C. If the annealing temperature is less than 750 ° C., an unrecrystallized structure may remain and the effect of hot-rolled sheet annealing may not be obtained. On the other hand, if it exceeds 1050 ° C., a great load is applied to the annealing equipment. More preferably, it is in the range of 800 to 1000 ° C.
  • the steel sheet subjected to hot-rolled sheet annealing is then pickled and then cold-rolled twice or more times with one or more cold-rolling and intermediate annealing. It is a cold-rolled sheet with the final thickness.
  • the rolling conditions such as the rolling reduction at this time may be the same as the manufacturing conditions for a normal non-oriented electrical steel sheet.
  • the heating condition is rapid heating up to the recrystallization temperature range.
  • the average temperature increase rate from room temperature to 740 ° C is set to 100 ° C. It is necessary to carry out rapid heating to at least / s.
  • the end point temperature for rapid heating may be at least 740 ° C., which is the temperature at which recrystallization is completed, or may be a temperature exceeding 740 ° C.
  • the higher the end point temperature the higher the equipment cost and power cost required for heating.
  • the rate of temperature increase from the recrystallization temperature to the soaking temperature, the soaking temperature, and the soaking time may be performed in accordance with the conditions used in ordinary non-oriented electrical steel sheets, but are not particularly limited.
  • the rate of temperature increase from 740 ° C. to the soaking temperature is preferably 1 to 50 ° C./s
  • the soaking temperature is preferably 740 to 950 ° C.
  • the soaking time is preferably 5 to 60 seconds.
  • a more preferable soaking temperature is in the range of 740 to 900 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

C:0.005mass%以下、Si:4mass%以下、Mn:0.03~2mass%、P:0.2mass%以下、S:0.004mass%以下、Al:2mass%以下、N:0.004mass%以下およびSe:0.0010mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成の鋼スラブを熱間圧延し、冷間圧延した後、740℃までの平均昇温速度を100℃/s以上とする再結晶焼鈍を行うことで、歪取焼鈍後に高磁束密度かつ低鉄損となるセミプロセス無方向性電磁鋼板を得る。

Description

磁気特性に優れるセミプロセス無方向性電磁鋼板の製造方法
 本発明は、セミプロセス無方向性電磁鋼板の製造方法に関し、具体的には、磁気特性に優れたセミプロセス無方向性電磁鋼板の製造方法に関するものである。
 近年の省エネルギー化という世界的な流れの中で、電気機器には、高効率化が強く望まれるようになってきている。無方向性電磁鋼板は、電気機器の鉄心材料として広く使用されており、電気機器の高効率化を達成するためには、無方向性電磁鋼板の高磁束密度化、低鉄損化が不可欠である。このような要求に対応して、無方向性電磁鋼板においては、主に、SiやAl等の固有抵抗を高める元素を添加したり、板厚を低減したりすることで低鉄損化を、また、冷延前の結晶粒径の粗大化や、冷延圧下率の最適化などによって高磁束密度化を図る努力がなされてきている。
 ところで、無方向性電磁鋼板には、所定の鉄心形状に打ち抜いた後、焼鈍を施さないで使用するフルプロセス材と、打ち抜き後に歪取焼鈍を施し、磁気特性を改善して使用するセミプロセス材がある。後者のセミプロセス材は、打ち抜き性を向上させるために、打ち抜き前の結晶粒を小さくしておき、その後の歪取焼鈍で結晶粒を粗大化させることによって、良好な鉄損特性を得ることができるという利点がある。しかし、結晶粒の成長にともなって、{111}粒が発達するため、磁束密度が低下するという問題がある。
 この問題に対しては、例えば、特許文献1には、Mnを0.75~1.5mass%含有させ、そのMnに対し多い目のCを共存させ、このMn,C共存の下で冷延後の焼鈍を実施し、C量を0.005%以下とすることで、歪取焼鈍後に優れた磁気特性を有するセミプロセス材が得られることが開示されている。
特公平06-043614号公報
 しかしながら、上記特許文献1の方法では、Cを添加しているため、最終製品板とする前に脱炭焼鈍を施す必要があり、製造コストが大きくなるという問題がある。
 本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、歪取焼鈍後において高磁束密度かつ低鉄損のセミプロセス無方向性電磁鋼板を安価に提供することにある。
 発明者らは、上記課題を解決するべく鋭意検討を重ねた。その結果、不純物として含まれるSeを極力低減するとともに、冷延後の再結晶焼鈍における昇温速度を従来よりも急速加熱することで、歪取焼鈍後の磁束密度と鉄損特性が著しく優れる無方向性電磁鋼板が得られることを見出し、本発明を開発するに至った。
 すなわち、本発明は、C:0.005mass%以下、Si:4mass%以下、Mn:0.03~2mass%、P:0.2mass%以下、S:0.004mass%以下、Al:2mass%以下、N:0.004mass%以下およびSe:0.0010mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成の鋼スラブを熱間圧延し、冷間圧延した後、再結晶焼鈍を施す無方向性電磁鋼板の製造方法において、上記再結晶焼鈍における740℃までの平均昇温速度を100℃/s以上として加熱することを特徴とするセミプロセス無方向性電磁鋼板の製造方法である。
 本発明に用いる上記鋼スラブは、上記成分組成に加えてさらに、SnおよびSbのうちから選ばれる1種または2種をそれぞれ0.003~0.5mass%含有することを特徴とする。
 また、本発明に用いる上記鋼スラブは、上記成分組成に加えてさらに、Caを0.0010~0.005mass%含有することを特徴とする。
 本発明によれば、回転機や小型トランスなど電気機器の高効率化に寄与する優れた磁気特性を有する無方向性電磁鋼板を、特別な元素を添加することなく、安価に提供することができる。
歪取焼鈍後の磁束密度に及ぼす再結晶焼鈍における昇温速度の影響を示すグラフである。 歪取焼鈍後の鉄損に及ぼす再結晶焼鈍における昇温速度の影響を示すグラフである。 歪取焼鈍後の磁束密度に及ぼすSe含有量の影響を示すグラフである。 歪取焼鈍後の鉄損に及ぼすSe含有量の影響を示すグラフである。
 まず、本発明を開発する契機となった実験について説明する。
 歪取焼鈍後の磁気特性に及ぼす再結晶焼鈍における昇温速度の影響について調査するため、C:0.0025mass%、Si:2.0mass%、Mn:0.10mass%、P:0.01mass%、Al:0.001mass%、N:0.0019mass%、S:0.0020mass%およびSe:0.0002mass%を含有する鋼スラブを1100℃×30分の再加熱後、熱間圧延して板厚2.0mmの熱延板とし、980℃×30秒の熱延板焼鈍を施した後、1回の冷間圧延で板厚0.35mmの冷延板とし、その後、直接通電加熱炉で、740℃までの平均昇温速度を30~300℃/sの範囲で種々に変化させて加熱し、740℃で10秒間保持した後、冷却して冷延焼鈍板とした。
 斯くして得た冷延焼鈍板から、L:180mm×C:30mmのL方向試験片およびL:30mm×C:180mmのC方向試験片を切り出し、750℃×2時間の歪取焼鈍を施した後、エプスタイン法で磁気特性(磁束密度B50、鉄損W15/50)を測定し、その結果を図1および図2に示した。
 これらの図から、再結晶焼鈍における平均昇温速度を100℃/s以上とすることによって、磁気特性を大きく向上することができることがわかる。これは、再結晶焼鈍時の昇温速度を高めることで、{111}粒の再結晶が抑制されて、{110}粒や{100}粒の再結晶が促進される結果、歪取焼鈍時に、{110}粒や{100}粒が{111}粒を蚕食して優先的に粒成長するため、磁気特性が向上したものと考えられる。
 次いで、上記の知見に基いて、上記実験に用いた鋼に類似した成分組成の鋼を数チャージ出鋼して無方向性電磁鋼板を製造し、その鋼板から上記と同じ要領でエプスタイン試験片を切り出し、歪取焼鈍を施した後、磁気特性を測定したところ、大きなバラつきが認められた。この原因を調査するため、特性が良好な試験片と劣位な試験片について比較調査したところ、磁気特性の劣位な試験片では、粒界にMnSeが多く析出しており、歪取焼鈍後の粒径も小さくなっていることが明らかになった。
 そこで、歪取焼鈍時の粒成長性におよぼすSe含有量の影響について調査するため、C:0.0021mass%、Si:1.8mass%、Mn:0.50mass%、P:0.03mass%、S:0.0019mass%、Al:0.3mass%およびN:0.0025mass%を基本成分とし、これにSeをTr.~0.0050mass%の範囲で種々に変化させて添加した鋼を実験室にて溶解し、鋼塊とした後、熱間圧延して板厚2.0mmの熱延板とし、その後、板厚0.35mmまで冷間圧延して、直接通電加熱炉で、平均昇温速度200℃/sで740℃まで加熱し、740℃から800℃まで30℃/sで加熱し、その温度で10秒間保持した後、冷却して冷延焼鈍板とした。
 斯くして得た冷延焼鈍板から、L:180mm×C:30mmのL方向試験片およびL:30mm×C:180mmのC方向試験片を切り出し、750℃×2時間の歪取焼鈍を施した後、エプスタイン法で磁気特性(磁束密度B50、鉄損W15/50)を測定し、その結果を図3および図4に示した。
 これらの図から、Seの含有量を0.0010mass%以下に低減することによって、磁気特性が向上すること、言い換えれば、Seを0.0010mass%超え添加すると、粒界にMnSeが析出して、歪取焼鈍時の粒成長を阻害するようになり、磁気特性を劣化させることが明らかとなった。本発明は、上記の新規な知見に基いてなされたものである。
 次に、本発明の無方向性電磁鋼板(製品板)の成分組成について説明する。
C:0.005mass%以下
 Cは、製品鋼板中に0.005mass%を超えて含有していると、磁気時効を起こして鉄損特性を劣化させるので、上限は0.005mass%とする。好ましくは0.003mass%以下である。
Si:4mass%以下
 Siは、鋼の固有抵抗を高め、鉄損を低減するのに有効な元素であり、斯かる効果を得るためには1mass%以上の添加が好ましい。一方、4mass%を超えて添加すると、磁束密度が低下したり、圧延して製造することを困難としたりするので、上限は4mass%とする。好ましくは1~4mass%、より好ましくは1.5~3mass%の範囲である。
Mn:0.03~2mass%
 Mnは、熱間加工性を改善するのに有効な元素であるが、0.03mass%未満では十分な効果が得られず、一方、2mass%を超える添加は、原料コストの上昇を招くので、0.03~2mass%の範囲とする。好ましくは0.05~2mass%、より好ましくは0.1~1.6mass%の範囲である。
P:0.2mass%以下
 Pは、鋼の固有抵抗を高め、鉄損を低減するのに有効な元素であるが、0.2mass%以上の添加は、鋼を硬質化し、圧延性を低下させるため、上限は0.2mass%とする。好ましくは0.01~0.1mass%の範囲である。
S:0.004mass%以下
 Sは、不可避的に混入してくる不純物元素であり、0.004mass%を超えて含有すると、硫化物系析出物を形成して歪取焼鈍時の粒成長を阻害し、磁気特性を劣化させるので、本発明においては、上限を0.004mass%とする。好ましくは0.003mass%以下である。
Al:2mass%以下
 Alは、Siと同様、鋼の固有抵抗を高め、鉄損を低減するのに有効な元素であるが、2mass%を超えて添加すると、圧延して製造することが難しくなるので、上限は2mass%とする。下限値は、特に制限はなく、0mass%であってもよい。好ましくは0.001~2mass%、より好ましくは0.1~1mass%の範囲である。
N:0.004mass%以下
 Nは、不可避的に混入してくる不純物元素であり、0.004mass%を超えて含有すると、窒化物系析出物を形成し、歪取焼鈍時の粒成長を阻害して磁気特性を劣化させるので、本発明においては、上限を0.004mass%とする。好ましくは0.003mass%以下である。
Se:0.0010mass%以下
 Seは、上述した実験結果からわかるように、歪取焼鈍後の磁気特性を劣化させる有害な元素である。そこで、本発明においては、Seを0.0010mass%以下に制限する。好ましくは0.0005mass%以下である。
 本発明の無方向性電磁鋼板は、上記必須とする成分の他に、以下の成分を適宜含有することができる。
Sn,Sb:それぞれ0.003~0.5mass%
 SnおよびSbは、集合組織を改善して磁束密度を向上させるだけでなく、鋼板表層の酸化や窒化、それに伴う表層微細粒の生成を抑制することによって、磁気特性の劣化を防止する等の作用効果を有する元素である。斯かる効果を得るためには、SnおよびSbのうちの1種または2種を0.003mass%以上添加するのが好ましい。一方、0.5mass%を超えて添加すると、逆に、結晶粒の成長が阻害され、磁気特性の低下を招くおそれがある。よって、SnおよびSbは、それぞれ0.003~0.5mass%の範囲で添加するのが好ましい。
Ca:0.0010~0.005mass%
 Caは、Se化合物と複合化して粗大な析出物を形成するため、歪取焼鈍時の粒成長を促進し、磁気特性を改善する効果がある。このような効果を発現させるためには、0.0010mass%以上添加するのが好ましい。一方、0.005mass%を超えて添加すると、CaSの析出量が多くなり、却って鉄損が上昇するため、上限は0.005mass%とするのが好ましい。
 なお、本発明の無方向性電磁鋼板は、上記成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の作用効果を害しない範囲内であれば、他の元素の含有を拒むものではない。
 次に、本発明のセミプロセス無方向性電磁鋼板の製造方法について説明する。
 本発明の無方向性電磁鋼板の製造方法は、先ず、本発明に適合する上記成分組成を有する鋼を転炉や電気炉、真空脱ガス装置などを用いた通常の精錬プロセスで溶製し、連続鋳造法あるいは造塊-分塊圧延法で鋼スラブとする。
 次いで、上記鋼スラブを通常の方法で熱間圧延して、熱延板とした後、必要に応じて熱延板焼鈍を施す。この熱延板焼鈍は、本発明においては必須の工程ではないが、磁気特性の向上に有効であるため、適宜採用するのが好ましい。熱延板焼鈍を施す場合には、焼鈍温度は750~1050℃の範囲とするのが好ましい。焼鈍温度が750℃未満では、未再結晶組織が残存し、熱延板焼鈍の効果が得られないおそれがあり、一方、1050℃を超えると、焼鈍設備に多大な負荷がかかるためである。より好ましくは800~1000℃の範囲である。
 上記熱間圧延後、あるいは、上記熱間圧延後、熱延板焼鈍を施した鋼板は、その後、酸洗した後、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とする。この際の圧下率等の圧延条件は、通常の無方向性電磁鋼板の製造条件と同様で構わない。
 次いで、上記冷間圧延後の鋼板は、再結晶焼鈍を施す。この再結晶焼鈍は、本発明において、最も重要な工程であり、加熱条件として、再結晶温度域までを急速加熱する、具体的には、室温~740℃まで間の平均昇温速度を100℃/s以上とする急速加熱を行うことが必要である。なお、急速加熱する終点温度は少なくとも再結晶が完了する温度である740℃であればよく、740℃を超える温度としてもよい。しかし、終点温度が高温になるほど、加熱に要する設備コストや電力コストが増大するため、安価に製造する上では好ましくない。なお、100℃/s以上で急速加熱する方法についても、特に制限はなく、例えば、通電加熱法あるいは誘導加熱法などの方法を好適に用いることができる。
 急速加熱して再結晶させた鋼板は、その後、均熱焼鈍を適宜施した後、冷却して、製品板とする。なお、上記再結晶温度から均熱温度までの昇温速度や、均熱温度、均熱時間は、通常の無方向性電磁鋼板で行われている条件に従って行えばよく、特に制限はないが、例えば、740℃から均熱温度までの昇温速度は1~50℃/s、均熱温度は740~950℃、均熱時間は5~60秒の範囲とすることが好ましい。より好ましい均熱温度は740~900℃の範囲である。また、均熱焼鈍後の冷却条件についても特に制限はない。
 表1に示した各種成分組成を有する鋼を溶製して鋼スラブとした後、該鋼スラブを1080℃×30分の再加熱後、熱間圧延して板厚2.0mmの熱延板とし、同じく表1に示した各種条件で熱延板焼鈍を施した後、1回の冷間圧延で、同じく表1に示した各種板厚の冷延板とした。その後、上記冷延板を、直接通電加熱炉で、同じく表1に示した条件で急速加熱終点温度まで急速加熱した後、均熱温度まで20℃/sで加熱し、10秒間保持した後、冷却して冷延焼鈍板(無方向性電磁鋼板)とした。
 斯くして得た冷延焼鈍板から、L:180mm×C:30mmのL方向サンプルおよび、C:180mm×L:30mmのC方向サンプルを切り出し、750℃×2時間の歪取焼鈍を施した後、エプスタイン法で磁気特性(磁束密度B50、鉄損W15/50)を測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記測定の結果を、鋼成分、再結晶焼鈍条件とともに表1に示した。表1から、本発明の成分組成を満たす無方向性電磁鋼板は、いずれも歪取焼鈍後に優れた磁気特性を有していることがわかる。
 
 

Claims (3)

  1. C:0.005mass%以下、Si:4mass%以下、Mn:0.03~2mass%、P:0.2mass%以下、S:0.004mass%以下、Al:2mass%以下、N:0.004mass%以下およびSe:0.0010mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成の鋼スラブを熱間圧延し、冷間圧延した後、再結晶焼鈍を施す無方向性電磁鋼板の製造方法において、上記再結晶焼鈍における740℃までの平均昇温速度を100℃/s以上として加熱することを特徴とするセミプロセス無方向性電磁鋼板の製造方法。
  2. 上記成分組成に加えてさらに、SnおよびSbのうちから選ばれる1種または2種をそれぞれ0.003~0.5mass%含有することを特徴とする請求項1に記載のセミプロセス無方向性電磁鋼板の製造方法。
  3. 上記成分組成に加えてさらに、Caを0.0010~0.005mass%含有することを特徴とする請求項1または2に記載のセミプロセス無方向性電磁鋼板の製造方法。
     
     
PCT/JP2013/081384 2013-02-21 2013-11-21 磁気特性に優れるセミプロセス無方向性電磁鋼板の製造方法 WO2014129034A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020157018407A KR20150093807A (ko) 2013-02-21 2013-11-21 자기 특성이 우수한 세미프로세스 무방향성 전기 강판의 제조 방법
CN201380071240.4A CN104937118A (zh) 2013-02-21 2013-11-21 磁特性优异的半工艺无取向性电磁钢板的制造方法
US14/761,538 US9978488B2 (en) 2013-02-21 2013-11-21 Method for producing semi-processed non-oriented electrical steel sheet having excellent magnetic properties
EP13875382.7A EP2960345B1 (en) 2013-02-21 2013-11-21 Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
RU2015139800A RU2617304C2 (ru) 2013-02-21 2013-11-21 Способ изготовления полуфабриката листа из нетекстурированной электротехнической стали с превосходными магнитными свойствами
JP2015501273A JP6008157B2 (ja) 2013-02-21 2013-11-21 磁気特性に優れるセミプロセス無方向性電磁鋼板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013031607 2013-02-21
JP2013-031607 2013-02-21

Publications (1)

Publication Number Publication Date
WO2014129034A1 true WO2014129034A1 (ja) 2014-08-28

Family

ID=51390849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081384 WO2014129034A1 (ja) 2013-02-21 2013-11-21 磁気特性に優れるセミプロセス無方向性電磁鋼板の製造方法

Country Status (8)

Country Link
US (1) US9978488B2 (ja)
EP (1) EP2960345B1 (ja)
JP (1) JP6008157B2 (ja)
KR (1) KR20150093807A (ja)
CN (1) CN104937118A (ja)
RU (1) RU2617304C2 (ja)
TW (1) TWI555853B (ja)
WO (1) WO2014129034A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104805261A (zh) * 2015-04-02 2015-07-29 苏州市鑫渭阀门有限公司 高精度阀体的去应力方法
WO2017086036A1 (ja) * 2015-11-20 2017-05-26 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP2017101315A (ja) * 2015-11-20 2017-06-08 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
EP3333271A4 (en) * 2015-08-04 2018-07-04 JFE Steel Corporation Method for manufacturing non-oriented electromagnetic steel sheet with excellent magnetic properties
JP2018145492A (ja) * 2017-03-07 2018-09-20 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法、並びにモータコアおよびその製造方法
WO2019182022A1 (ja) 2018-03-23 2019-09-26 日本製鉄株式会社 無方向性電磁鋼板
US10941458B2 (en) 2015-02-18 2021-03-09 Jfe Steel Corporation Non-oriented electrical steel sheet, production method therefor, and motor core

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892327B2 (ja) * 2012-03-15 2016-03-23 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
KR20150093807A (ko) 2013-02-21 2015-08-18 제이에프이 스틸 가부시키가이샤 자기 특성이 우수한 세미프로세스 무방향성 전기 강판의 제조 방법
JP6748375B2 (ja) 2016-10-19 2020-09-02 Jfeスチール株式会社 Si含有熱延鋼板の脱スケール方法
PL3594371T3 (pl) * 2017-03-07 2021-11-08 Nippon Steel Corporation Blacha cienka z niezorientowanej stali elektrotechnicznej i sposób wytwarzania blachy cienkiej z niezorientowanej stali elektrotechnicznej
CN108660295A (zh) * 2017-03-27 2018-10-16 宝山钢铁股份有限公司 一种低铁损取向硅钢及其制造方法
KR102566590B1 (ko) * 2019-04-22 2023-08-11 제이에프이 스틸 가부시키가이샤 무방향성 전자 강판의 제조 방법
WO2020262063A1 (ja) 2019-06-28 2020-12-30 Jfeスチール株式会社 無方向性電磁鋼板の製造方法とモータコアの製造方法およびモータコア
KR102325011B1 (ko) * 2019-12-20 2021-11-11 주식회사 포스코 무방향성 전기강판 및 그 제조방법
US20240102122A1 (en) * 2020-12-15 2024-03-28 Lg Electronics Inc. Non-oriented electrical steel sheet, and method for manufacturing same
KR102515028B1 (ko) * 2021-02-10 2023-03-27 엘지전자 주식회사 무방향성 전기강판의 제조방법 및 이에 의해 제조된 무방향성 전기강판
BR112023019779A2 (pt) * 2021-04-02 2023-10-31 Nippon Steel Corp Chapa de aço elétrico não orientada, e, método para fabricar a chapa de aço elétrico não orientada

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211728A (ja) * 1988-03-25 1990-01-16 Armco Advanced Materials Corp 無配向性電気鉄板の超高速焼なまし
JPH03223424A (ja) * 1990-01-29 1991-10-02 Nkk Corp 磁気特性の優れたセミプロセス無方向性電磁鋼板の製造方法
JPH0643614B2 (ja) 1986-11-22 1994-06-08 住友金属工業株式会社 セミプロセス電磁鋼板の製造方法
JPH06228645A (ja) * 1993-02-02 1994-08-16 Sumitomo Metal Ind Ltd 小型静止器用電磁鋼板の製造方法
JP2001323344A (ja) * 2000-05-15 2001-11-22 Kawasaki Steel Corp 加工性およびリサイクル性に優れた無方向性電磁鋼板
JP2008231504A (ja) * 2007-03-20 2008-10-02 Jfe Steel Kk 無方向性電磁鋼板
WO2012029621A1 (ja) * 2010-08-30 2012-03-08 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP2013010982A (ja) * 2011-06-28 2013-01-17 Jfe Steel Corp 無方向性電磁鋼板の製造方法
WO2013137092A1 (ja) * 2012-03-15 2013-09-19 Jfeスチール株式会社 無方向性電磁鋼板の製造方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948691A (en) 1970-09-26 1976-04-06 Nippon Steel Corporation Method for manufacturing cold rolled, non-directional electrical steel sheets and strips having a high magnetic flux density
US3935038A (en) 1971-10-28 1976-01-27 Nippon Steel Corporation Method for manufacturing non-oriented electrical steel sheet and strip having no ridging
JPS583027B2 (ja) 1979-05-30 1983-01-19 川崎製鉄株式会社 鉄損の低い冷間圧延無方向性電磁鋼板
JPS58151453A (ja) * 1982-01-27 1983-09-08 Nippon Steel Corp 鉄損が低くかつ磁束密度のすぐれた無方向性電磁鋼板およびその製造法
JPS61102104A (ja) 1984-09-28 1986-05-20 Fujitsu Ltd 物品搬送システムのイニシャライズ処理方法
JPS62180014A (ja) 1986-02-04 1987-08-07 Nippon Steel Corp 鉄損が低くかつ磁束密度の優れた無方向性電磁鋼板およびその製造方法
JPS644455A (en) 1987-06-25 1989-01-09 Sumitomo Metal Ind Isotropic electromagnetic steel plate having high magnetic flux density
JP2971080B2 (ja) 1989-10-13 1999-11-02 新日本製鐵株式会社 磁気特性の優れた無方向性電磁鋼板
RU2092605C1 (ru) 1991-10-22 1997-10-10 Поханг Айрон энд Стил Ко., Лтд. Листы изотропной электротехнической стали и способы их изготовления
JPH05214444A (ja) 1992-01-31 1993-08-24 Sumitomo Metal Ind Ltd 磁気特性面内異方性の小さい無方向性電磁鋼板の製造法
JP3087435B2 (ja) 1992-04-22 2000-09-11 日本電気株式会社 遠隔操作用キーボード付きコンピュータシステム
JPH06228644A (ja) 1993-02-02 1994-08-16 Sumitomo Metal Ind Ltd 小型静止器用電磁鋼板の製造方法
US6139650A (en) * 1997-03-18 2000-10-31 Nkk Corporation Non-oriented electromagnetic steel sheet and method for manufacturing the same
JP4264987B2 (ja) 1997-06-27 2009-05-20 Jfeスチール株式会社 無方向性電磁鋼板
US5955201A (en) 1997-12-19 1999-09-21 Armco Inc. Inorganic/organic insulating coating for nonoriented electrical steel
US6045571A (en) 1999-04-14 2000-04-04 Ethicon, Inc. Multifilament surgical cord
JP4019577B2 (ja) 1999-12-01 2007-12-12 Jfeスチール株式会社 電動パワーステアリングモータコア
JP4126479B2 (ja) 2000-04-28 2008-07-30 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
KR20100072376A (ko) 2002-05-08 2010-06-30 에이케이 스틸 프로퍼티즈 인코포레이티드 무방향성 전기 강판의 연속 주조방법
JP4358550B2 (ja) 2003-05-07 2009-11-04 新日本製鐵株式会社 圧延方向とその板面内垂直方向磁気特性の優れた無方向性電磁鋼板の製造方法
JP5000136B2 (ja) * 2003-10-06 2012-08-15 新日本製鐵株式会社 高強度電磁鋼板およびその形状加工部品とそれらの製造方法
JP4599843B2 (ja) 2004-01-19 2010-12-15 住友金属工業株式会社 無方向性電磁鋼板の製造方法
JP4329550B2 (ja) 2004-01-23 2009-09-09 住友金属工業株式会社 無方向性電磁鋼板の製造方法
JP5009514B2 (ja) 2005-08-10 2012-08-22 Jfeスチール株式会社 無方向性電磁鋼板
JP4586741B2 (ja) 2006-02-16 2010-11-24 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
RU2398894C1 (ru) * 2006-06-16 2010-09-10 Ниппон Стил Корпорейшн Лист высокопрочной электротехнической стали и способ его производства
JP4855220B2 (ja) 2006-11-17 2012-01-18 新日本製鐵株式会社 分割コア用無方向性電磁鋼板
JP2008150697A (ja) 2006-12-20 2008-07-03 Jfe Steel Kk 電磁鋼板の製造方法
JP5668460B2 (ja) * 2010-12-22 2015-02-12 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP5884153B2 (ja) 2010-12-28 2016-03-15 Jfeスチール株式会社 高強度電磁鋼板およびその製造方法
KR20150093807A (ko) 2013-02-21 2015-08-18 제이에프이 스틸 가부시키가이샤 자기 특성이 우수한 세미프로세스 무방향성 전기 강판의 제조 방법
WO2014168136A1 (ja) * 2013-04-09 2014-10-16 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643614B2 (ja) 1986-11-22 1994-06-08 住友金属工業株式会社 セミプロセス電磁鋼板の製造方法
JPH0211728A (ja) * 1988-03-25 1990-01-16 Armco Advanced Materials Corp 無配向性電気鉄板の超高速焼なまし
JPH03223424A (ja) * 1990-01-29 1991-10-02 Nkk Corp 磁気特性の優れたセミプロセス無方向性電磁鋼板の製造方法
JPH06228645A (ja) * 1993-02-02 1994-08-16 Sumitomo Metal Ind Ltd 小型静止器用電磁鋼板の製造方法
JP2001323344A (ja) * 2000-05-15 2001-11-22 Kawasaki Steel Corp 加工性およびリサイクル性に優れた無方向性電磁鋼板
JP2008231504A (ja) * 2007-03-20 2008-10-02 Jfe Steel Kk 無方向性電磁鋼板
WO2012029621A1 (ja) * 2010-08-30 2012-03-08 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP2013010982A (ja) * 2011-06-28 2013-01-17 Jfe Steel Corp 無方向性電磁鋼板の製造方法
WO2013137092A1 (ja) * 2012-03-15 2013-09-19 Jfeスチール株式会社 無方向性電磁鋼板の製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10941458B2 (en) 2015-02-18 2021-03-09 Jfe Steel Corporation Non-oriented electrical steel sheet, production method therefor, and motor core
CN104805261A (zh) * 2015-04-02 2015-07-29 苏州市鑫渭阀门有限公司 高精度阀体的去应力方法
EP3333271A4 (en) * 2015-08-04 2018-07-04 JFE Steel Corporation Method for manufacturing non-oriented electromagnetic steel sheet with excellent magnetic properties
US10975451B2 (en) 2015-08-04 2021-04-13 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet having excellent magnetic properties
WO2017086036A1 (ja) * 2015-11-20 2017-05-26 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP2017101315A (ja) * 2015-11-20 2017-06-08 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
EP3378959A4 (en) * 2015-11-20 2018-11-07 JFE Steel Corporation Process for producing non-oriented electromagnetic steel sheet
US11225699B2 (en) 2015-11-20 2022-01-18 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet
JP2018145492A (ja) * 2017-03-07 2018-09-20 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法、並びにモータコアおよびその製造方法
WO2019182022A1 (ja) 2018-03-23 2019-09-26 日本製鉄株式会社 無方向性電磁鋼板
KR20200116990A (ko) 2018-03-23 2020-10-13 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판
US11421297B2 (en) 2018-03-23 2022-08-23 Nippon Steel Corporation Non-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPWO2014129034A1 (ja) 2017-02-02
CN104937118A (zh) 2015-09-23
EP2960345A1 (en) 2015-12-30
TW201435090A (zh) 2014-09-16
EP2960345A4 (en) 2016-06-08
KR20150093807A (ko) 2015-08-18
US9978488B2 (en) 2018-05-22
US20150357101A1 (en) 2015-12-10
JP6008157B2 (ja) 2016-10-19
EP2960345B1 (en) 2020-01-01
RU2617304C2 (ru) 2017-04-24
RU2015139800A (ru) 2017-03-27
TWI555853B (zh) 2016-11-01

Similar Documents

Publication Publication Date Title
JP6008157B2 (ja) 磁気特性に優れるセミプロセス無方向性電磁鋼板の製造方法
JP5892327B2 (ja) 無方向性電磁鋼板の製造方法
JP5668460B2 (ja) 無方向性電磁鋼板の製造方法
JP5854182B2 (ja) 無方向性電磁鋼板の製造方法
JP5533958B2 (ja) 打抜加工による鉄損劣化の小さい無方向性電磁鋼板
JP6236470B2 (ja) 磁気特性に優れる無方向性電磁鋼板
JP5273235B2 (ja) 無方向性電磁鋼板の製造方法
WO2013058239A1 (ja) 方向性電磁鋼板およびその製造方法
TWI532854B (zh) 磁特性優良的無方向性電磁鋼板
JP5573147B2 (ja) 無方向性電磁鋼板の製造方法
JP6270305B2 (ja) モータコアの製造方法
JP6623795B2 (ja) 電磁鋼板、および電磁鋼板の製造方法
JP5287615B2 (ja) 方向性電磁鋼板の製造方法
JPS6316446B2 (ja)
JP2001140046A (ja) 高磁場特性に優れた無方向性電磁鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501273

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157018407

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013875382

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14761538

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015139800

Country of ref document: RU

Kind code of ref document: A