WO2014104737A1 - Low-viscosity metal ink composition, and printed circuit board using same - Google Patents

Low-viscosity metal ink composition, and printed circuit board using same Download PDF

Info

Publication number
WO2014104737A1
WO2014104737A1 PCT/KR2013/012164 KR2013012164W WO2014104737A1 WO 2014104737 A1 WO2014104737 A1 WO 2014104737A1 KR 2013012164 W KR2013012164 W KR 2013012164W WO 2014104737 A1 WO2014104737 A1 WO 2014104737A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
ink composition
low viscosity
metal ink
nanoparticles
Prior art date
Application number
PCT/KR2013/012164
Other languages
French (fr)
Korean (ko)
Inventor
박한성
이현진
유의덕
김우정
유정섭
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Publication of WO2014104737A1 publication Critical patent/WO2014104737A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1157Using means for chemical reduction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • H05K3/125Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing

Definitions

  • the present invention relates to a low-viscosity metal ink composition capable of forming a thin film circuit pattern having high conductivity while having excellent adhesion to a substrate without a surface treatment process of the substrate, and a printed white substrate using the same.
  • PCBs printed circuit boards
  • FPCBs flexible printed circuit boards
  • etching processes on copper clad laminates, CCDs, or flexible copper clad laminates (FCCL). It is manufactured by forming a pattern through.
  • the metal wiring layer is formed in a board
  • the conventional conductive paste it is applied to a specific printing process such as screen printing requiring high viscosity by adding an epoxy resin-based binder resin that can secure the adhesive force, there is a limit in the implementation of a fine circuit pattern.
  • Low-viscosity conductive In the case of ink, a metal thin film coating is performed using a process such as inkjet or microgravure. In addition, the low viscosity of the ink is required due to the characteristics of the metal thin film implementation process by the direct printing method. Since the epoxy resin-based binder resin has a high viscosity, the physical properties of the ink such as low viscosity can be secured while ensuring reliability such as adhesive strength.
  • the surface energy or surface roughness of the substrate by using a chemical treatment method such as physical treatment such as plasma treatment, corona discharge, or etching with an alkaline solution, etc.
  • a chemical treatment method such as physical treatment such as plasma treatment, corona discharge, or etching with an alkaline solution, etc.
  • the surface treatment process of such a substrate has a limit in improving the interlayer adhesion between the metal wiring layer and the substrate, so that a separate adhesive layer is required, and there is a limitation in applying it to products requiring high reliability thermally and chemically. .
  • Korean Patent Laid-Open No. 1 2011 ⁇ 0002917 discloses a surface treatment method of a substrate using a hydrocarbon-based pressure-sensitive adhesive composition.
  • the surface of the substrate is modified by the hydrocarbon-based pressure-sensitive adhesive composition, thereby improving the interlayer adhesion between the metal wiring layer and the substrate.
  • the present invention provides a low viscosity metal ink composition capable of forming a thin-film circuit pattern having excellent adhesion properties to a substrate without heat treatment, surface resistance, corrosion resistance, adhesion reliability, and flexibility, and a printed circuit using the same. To provide a substrate.
  • the invention (a) (: ⁇ (: carboxylate-based ligand and a C 5 ⁇ the metal nanoparticles capped by a primary amine-based ligands of the C 20 of 20; (b) non-polar organic solvent; (c) an epoxy resin It provides a low viscosity metal ink composition comprising (d) a curing agent, (e) a mixed ether solvent containing an aromatic ether solvent and an aliphatic ether solvent, and (f) a dispersant.
  • the present invention also provides a printed circuit board comprising a circuit layer formed of the low viscosity metal ink composition described above.
  • the low viscosity metal ink composition according to the present invention has excellent dispersion stability and adhesion characteristics, it is possible to implement a fine thin film circuit pattern having excellent adhesion characteristics without a surface treatment process of a substrate.
  • the circuit layer of the printed circuit board formed of the low viscosity metal ink composition of the present invention is not only excellent in heat resistance, corrosion resistance and bendability, but also excellent in adhesion to the substrate.
  • Figure 2 is a transmission electron microscope (Transmission Electron Microscope, TEM) of the silver nanoparticles prepared in Preparation Example 6.
  • Figure 3 is a photograph of the metal ink composition of Example 1 before and after the heat treatment, and before and after repeating five cross-cut (cross-cut) test according to ASTM D 3359.
  • the present invention is a low-viscosity metal ink composition which forms a conductive circuit through a direct printing method, which is capped by (a) ( ⁇ ⁇ (: 20 carboxylate ligand and C 5 ⁇ C 20 primary amine ligand Metal nanoparticles; (b) apolar organic solvents; (c) epoxy resins; (d) curing agents; (e) mixed ether solvents containing aromatic ether solvents and aliphatic ether solvents; and (f) dispersants.
  • the low-viscosity metal ink composition has excellent dispersion stability and can realize a uniform thin film circuit pattern, and has excellent adhesive strength with the substrate even without surface treatment of the substrate, and has excellent heat resistance, corrosion resistance, and bone staining property.
  • a thin film circuit pattern can be formed.
  • the metal nanoparticles are nano-sized metal particles that are capped by a C: 20 carboxylate ligand and a C 5 to C 20 primary amine ligand.
  • both the carboxylate ligand and the primary amine ligand are bound or adsorbed to the particle surface during the preparation of the metal nanoparticles, thereby preventing the aggregation between particles due to surface instability (capping Hgand) to increase the dispersibility )to be.
  • capping Hgand surface instability
  • the primary amine ligand of the capping ligand may cure the epoxy resin.
  • the metal nanoparticles capped by the primary amine ligand may self-disperse in a nonpolar organic solvent because of the primary amine ligand.
  • the primary amine ligand is excellent in compatibility with a mixed ether solvent containing an aromatic ether solvent and an aliphatic ether solvent.
  • the mixed ether solvent may be well mixed with the alcohol solvent, and may be uniformly dispersed by dissolving the added epoxy resin for imparting adhesion. Therefore, the metal nanoparticles to which the primary amine ligand is bound or adsorbed may be dispersed by a nonpolar organic solvent, thereby improving compatibility with the epoxy resin by the mixed ether solvent.
  • the metal nanoparticles may be bonded to the surface of the substrate through an epoxy resin, thereby improving adhesion between the substrate and the circuit pattern.
  • the metal nanoparticles decrease in size as the carbon number of the carboxylate ligands and the primary amine ligands bonded or adsorbed on the surface decreases in size, and thus has a property of a nonpolar material. It can be uniformly dispersed, thus improving compatibility with the epoxy resin and improving the double dispersion stability, thereby forming a uniform thin film circuit pattern on the substrate.
  • dispersibility of the epoxy resin may be lowered when using a hydrocarbon solvent such as roluene or xylene as the nonpolar organic solvent.
  • the present invention includes a mixed ether solvent containing an aromatic ether solvent and an aliphatic ether solvent to disperse the metal nanoparticles and at the same time to disperse the epoxy resin, and to further improve their dispersion stability It includes.
  • a metal ink composition to form a surface-treated thin film circuit pattern having excellent adhesion properties to the substrate without the step of the substrate, while maintaining the dispersion stability (a) (: ⁇ ( : 20-carboxylic Metal nanoparticles capped by a carboxylate ligand and a C 5 to C 20 primary amine ligand; (b) apolar organic solvent; (c) epoxy resin; (d) curing agent; (e) aromatic ether solvent and A mixed ether solvent containing an aliphatic ether solvent, and (f) a dispersant.
  • the low viscosity metal ink composition of the present invention comprises metal nanoparticles.
  • the metal nanoparticles are capped by a carboxylate ligand of C ⁇ C 20 and a primary amine ligand of C 5 to C 20 .
  • the metal nanoparticles include a metal core, (: ⁇ (: 20 carboxylate ligand, and C 5 ⁇ C 20 primary amine ligand, the carboxylate ligand and primary amine
  • the ligands are bound to or adsorbed to the surface of the metal core, respectively.Since these metal nanoparticles are nano-sized, the ratio of surface atoms to total atoms is greatly increased compared to bulk metals, which results in unstable nanoparticles.
  • the melting point is lowered, and thus, even in low-temperature firing, secondary recombination between metals forms particles to form grains and grain boundaries.
  • the contact area with the substrate is increased to form a thin film circuit pattern having excellent conductivity and adhesion to the polymer substrate.
  • the metal nanoparticle may be an aromatic ether solvent and an aliphatic ether. Since it is excellent in compatibility with an epoxy resin by heunhap ether-based solvent containing a solvent, it is possible to implement a thin film circuit pattern excellent in adhesion to a substrate by an epoxy resin.
  • metal nanoparticles are not particularly limited, and for example, nanoparticles of a metal selected from the group consisting of Groups 1 to 14 on the periodic table, preferably gold, silver, copper, nickel, platinum, cobalt, and paralysis.
  • nanoparticles such as aluminum, tin, zinc, iron, indium, magnesium, and more preferably silver nanoparticles. These may be used alone or in combination of two or more thereof.
  • Such metal nanoparticles are capped by a carboxylate ligand of (: ⁇ (: 20) and a primary amine ligand of C 5 -C 20 .
  • the carboxylate ligand of C ⁇ C 20 is a capping ligand having a structure of R-C00— (wherein R is a saturated or unsaturated aliphatic hydrocarbon group of (: ⁇ (: 20 , preferably C 8 ⁇ C 15). Saturated or unsaturated aliphatic hydrocarbon group), it is possible to improve the dispersion stability of the metal nanoparticles by preventing puncture between the particles, and the size of the metal nanoparticles are adjusted according to the type of the carboxylate-based ligand thin film In particular, as the carbon number of the carboxylate ligand increases, the particle size is controlled to be smaller, so that the firing can be performed at a low temperature of about 200 to 250 ° C.
  • a thin film circuit pattern having high adhesion and conductivity to a polymer substrate may be implemented.
  • Oxtanonate ligand, nonanoate ligand, decanoate ligand, dodecanoate ligand, oleate ligand, and the like but are not limited thereto.
  • the primary amine ligand is a capping ligand having a structure of C n H 2n + 1 N3 ⁇ 4 (wherein n is from 5 to 20, preferably from 10 to 18), preventing coarsening between particles, and increasing solubility of the metal.
  • compatibility between the metal nanoparticles and the epoxy resin may be improved.
  • the amine-based ligand may promote curing of the epoxy resin, which may later affect the heat treatment temperature of the metal ink composition coated on the substrate.
  • Examples of such primary amine ligands include, but are not particularly limited to, octylamine ligand, decylamine ligand, dodecylamine ligand, oleylamine ligand, and the like.
  • the average particle diameter of the metal nanoparticles capped by these ligands is not particularly limited.
  • the size of the metal nanoparticles is about 20 nm or less, preferably about 2 to 20 kPa, the melting silver becomes low due to the size effect of the nanoparticles, so that the particles melt even at a low temperature of about 200 ° C.
  • secondary recombination between metals is induced, thereby realizing high conductivity and simultaneously increasing contact area with the substrate through recombination of metals connected between particles, thereby achieving high adhesion.
  • the content of the metal nanoparticles is not particularly limited, and adjusted in consideration of the thickness of the thin film circuit pattern to be formed. However, in the present invention, as the content of the metal nanoparticles increases, the content of the epoxy resin also increases to increase the> viscosity of the metal ink composition. Thus, when the content of the metal nanoparticles is about 30 to 80% by weight, preferably about 40 to 60% by weight, based on the total weight of the metal ink composition, the viscosity of the metal ink composition may be as low as about 5 to 500 cps.
  • Such metal nanoparticles can be prepared by various methods.
  • the metal nanoparticles produced in the step S300 may further include a step of immersing and washing with alcohol in alcohol.
  • a compound having the structure of carboxylic acid of CrCzo be used in the present invention is R-C00H (where R is (: ⁇ (: waiting for a saturated or unsaturated aliphatic hydrocarbon group of 20), for example, caprylic acid (capryl ic acid), Pella Pelargonic acid, capric acid, lauric acid, oleic acid, and the like, but are not limited thereto.
  • the carboxylic acid of d to C 20 may be a carboxylic acid solution obtained by dissolving in a first solvent (: ⁇ (: 20.
  • the first solvent usable may be It will not restrict
  • Non-limiting examples of the first solvent is water, methanol, ethanol, propane, 'isopropanol, butanol, pentane, hexane, dimethylsulfoxide (dimethyl sulphoxide, DMS0), ⁇ , ⁇ - is methyl formamide (N , N-dimethyHormamide (DMF), ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, propylene glycol, propylene glycol propyl ether, propylene glycol methyl ether acetate, N- N-methyl pyrrol idone, methyl isobutyl ketone, methyl ethyl ketone, acetonitrile, tetrahydrofuran (THF), hexadecane ), Pentadecane, tetradecane, tridecane, dodecane, undecane, decane, decane, nonane, oct
  • the carboxylate of d-o is not particularly limited as long as it is obtained by reacting the carboxylic acid of (: ⁇ (: 20 ) with a base or reacting the carboxylic acid with a solution obtained by dissolving the carboxylic acid in a second solvent.
  • the base can easily bind metal ions of a metal salt to hydrogen sites of the carboxylic acid, thereby easily obtaining a metal carboxylate, for example, when decanoic acid is reacted with sodium hydroxide as a base, decanoic acid.
  • Examples of the base are not particularly limited, and for example, NaOH, NH 4 0H, There are like NaHCOs, Na 2 C0 3, KOH , Ga (0H) 2, Ba (0H) 2, Mg (0H) 2, K 2 C0 3, KHC0 3, CaC0 3, not limited to this.
  • decanoic acid can be reacted with sodium hydroxide.
  • sodium hydroxide may be added to decanoic acid in the same molar ratio because the carboxyl group of decanoic acid and sodium ions of sodium hydroxide react with 1: 1.
  • An example of the second solvent for dissolving the base is not particularly limited as long as it is a solvent commonly used in the art, and is the same as the example of the first solvent described above, preferably water.
  • Metal salts that can be used in the present invention is not particularly limited, for example, inorganic salts of metals selected from the group consisting of Groups 1 to 14 on the periodic table, preferably gold, silver, copper, nickel, platinum, cobalt, palladium, Inorganic salts such as aluminum, tin, zinc, iron, indium, magnesium, and the like, and more preferably, inorganic salts of silver and the like, which are used alone or in combination of two or more thereof.
  • the inorganic salts are nitrates, sulfates, acetates, phosphates, silicates, hydrochlorides and the like.
  • This metal salt may be in a solution state obtained by dissolving in a third solvent.
  • examples of the three solvents that can be used are not particularly limited as long as they are commonly used in the art, and are the same as the examples of the first solvent described above, and preferably water.
  • the metal salt and the ( ⁇ ⁇ (:. A carboxylic acid or salt heunhap the ratio of the 20 may be heunhap in various amounts depending on the type of carboxylic acid or its salt type or a metal salt is used, however, the ( ⁇ (20 carboxylic acid or In salt When the metal salt is added, a slurry is generated. At this time, when the molar concentration of the carboxylic acid is higher than the amount of the organic solvent or water used, the amount of metal carboxylate produced is increased and the viscosity is increased, so that the reaction does not occur smoothly.
  • step S100 in order to remove uncoated water or water from the selectively produced Cr ⁇ C 20 metal carboxylate, after the reaction is finished, the metal carboxylate of d-Co produced in step S100 after washing with water, alcohol (eg , Methanol) can be filtered and washed, and then dried in a vacuum oven at about 40-50 ° C.
  • alcohol eg , Methanol
  • step S200 is a step of reacting the metal carboxylate of d-Cso generated in step S100 with the primary amine of C 5 to C 20.
  • oleylamine when Ag-carboxylate [C3 ⁇ 4 (CH 2 ) 8 -C00—Ag + ] reacts with oleylaraine, oleylamine is used as a ligand to form Ag-carboxylate. As shown in the following formula (1) by coordinating with silver ions, it is possible to obtain an Ag-carboxylate complex to which oleylamine is bound.
  • the primary amine of C 5 ⁇ C 20 serves as a solvent to increase the dissociation degree of the metal carboxylate of the d-Co, and is coordinated to the metal ions of the metal carboxylate, and subsequently metal nanoparticles in the conductive ink composition It serves to improve the compatibility between the particles and the epoxy resin.
  • the primary amine may later affect the heat treatment temperature of the metal ink composition.
  • the primary amine that can be used is not particularly limited as long as it can react with dissociating metal carboxylate of (: ⁇ (: 20) , but a compound having a structure of C n 3 ⁇ 4 n + 1 N3 ⁇ 4 (wherein n is 5 to 20, In the case of 10 to 18, the dispersion stability of the metal nanoparticles in the metal ink composition and the adhesion property of the thin film circuit pattern are improved, and the printed ink composition is heat-treated at low silver so as to obtain a uniform fine thin film circuit pattern.
  • Specific examples include, but are not limited to octylamine, decylamine, dodecylamine, and oleylamine.
  • the aforementioned - (: Primary heunhap ratio of the amines of 20 metal of the carboxylic acid salt and a C 5 ⁇ C 20 is not particularly limited, one or two: If a molar ratio of 1.8 to 3, by increasing the metal carboxylate yeomkkoe dissociation The binding of the metal carboxylate and the primary amine can be promoted.
  • step S300 the primary amine of C 5 to C 20 obtained in step S200 is A reducing agent is added to the combined metal carboxylate complex of ⁇ (: 20 to form metal nanoparticles.
  • the reducing agent is added to the metal carboxylate complex of d-o to which the primary amine of C 5 to C 20 is bonded,
  • the metal ions of the metal carboxylate complex are reduced to -metal atoms to form metal particles, except that the formed metal particles are condensed with each other due to surface instability to form a globule, but are bonded to the metal ions of the complex.
  • the primary amines of C 5 to C 20 and the carboxylates of C ⁇ c 20 are bonded or adsorbed on the surface of the metal particles to block aggregation between the metal particles, thereby dispersing the metal particles to form nano-sized metal particles.
  • the reducing agent usable in the present invention is not particularly limited, and non-limiting examples include hydrogen compounds such as hydrogen, hydrogen iodide, hydrogen sulfide and aluminum hydride; Lower oxides such as carbon monoxide and sulfur dioxide; Lower oxygen acid salts such as sulfite and sodium sulfide; The electrically-positive large cations such as alkali metals, magnesium and zinc.
  • Prone metal Organic compounds having a low degree of oxidation such as aldehyde, sugar oil, formic acid, oxalic acid, amine compounds such as hydrazine, phenylhydrazine and 1-amino-4-methyl piperazine, and the like, preferably hydrazine, phenylhydrazine and 1-amino Amine compounds such as 4-methyl piperazine. These may be used alone or in combination of two or more thereof.
  • the content of such a reducing agent is not particularly limited, and is adjusted in consideration of the size and yield of the metal nanoparticles. However, when the content of the reducing agent is about 1 to 1.2 equivalent ratio based on the metal in the metal carboxylate complex, while the yield of the metal nanoparticles is improved, the size of the metal nanoparticles can be adjusted to about 2 to 8 ran. have.
  • optionally immersed in alcohol to wash the metal nanoparticles produced in step S300, and may further comprise the step of filtering. When the metal nanoparticles of step S300 are immersed in alcohol, the metal nanoparticles may be precipitated while the remaining amine compound, carboxylic acid, and reducing agent are removed. Thereafter, the precipitated metal nanoparticles may be obtained through a filtration process such as centrifugation.
  • the metal nanoparticles prepared as described above are mixed with the components of the ink composition below and not dried. If the dried metal nanoparticles are mixed with the following components, spacing between the metal nanoparticles may occur, which may lower dispersion stability of the ink composition, and thus, it may be difficult to obtain a high concentration of conductive ink.
  • the low viscosity metal ink composition of the present invention comprises a nonpolar organic solvent.
  • the nonpolar organic solvent may improve the dispersion stability of the ink composition when the metal nanoparticles are dispersed, and may further control the viscosity of the ink composition.
  • nonpolar organic solvents include hydrocarbon solvents having 5 to 20 carbon atoms, or high boiling alcohol solvents having boiling points of 6 to 15 carbon atoms (boiling points of about 150 ° C. or more), but are not limited thereto.
  • the high-boiling alcohol-based solvent has a molecular weight increases as the carbon number is 6 to 15, so that the solubility in water is lowered to exhibit a nonpolar nature.
  • non-limiting examples of the hydrocarbon solvent having 5 to 20 carbon atoms include toluene, xylene, nucleic acid, tetradecane, octadecene and the like, and the high boiling point alcohol solvent having 6 to 15 carbon atoms.
  • Non-limiting examples include heptane, octane, 2-ethyl-1-nucleic acid, decane, dodecanol, and the like, with octane or 2-ethyl-1-nucleic acid being preferred. More than one species may be used in combination.
  • the content of the nonpolar organic solvent is not particularly limited, and is a residual amount adjusted so that the total amount of the ink composition is 100 weight 3 ⁇ 4.
  • the low viscosity metal ink composition of the present invention has the following aromatic ether solvents and aliphatic ether solvents capable of dispersing the epoxy resin together with a nonpolar organic solvent. It includes a mixed ether solvent containing.
  • the dispersion stability of the metal nanoparticles and the epoxy resin is improved, since the viscosity of the metal ink composition is adjusted to 5 to 500 cps, the low viscosity metal ink composition of the present invention is ink-jet printing or ink-jet printing. Can be applied to rolI-to-roU printing.
  • the low viscosity metal ink composition of the present invention comprises an epoxy resin.
  • the epoxy resin is a binder resin, excellent compatibility with the metal nanoparticles serves to improve the adhesion between the thin film circuit pattern and the engine.
  • Examples of the epoxy resin can be used without limitation as long as it is a conventional epoxy resin known in the art, it is preferable that two or more epoxy groups are present in one molecule.
  • Non-limiting examples of usable epoxy resins include bisphenol A epoxy resins, bisphenol F epoxy resins, bisphenol S epoxy resins, novolac epoxy resins, flame retardant epoxy resins, flame retardant epoxy resins and cycloaliphatic epoxy resins. , Rubber modified epoxy resin, alkylphenol novolak type epoxy resin, biphenyl type epoxy resin, aralkyl type epoxy resin, naphthol type epoxy resin, dicyclopentadiene type epoxy resin, etc. It may be used alone or in combination of two or more.
  • More specific examples include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, naphthalene type epoxy resins, anthracene type epoxy resins, biphenyl type epoxy resins, tetramethyl biphenyl type epoxy resins, and phenol furnaces.
  • the above-mentioned epoxy resins may be used alone or in combination of two or more thereof.
  • the epoxy equivalent of the said epoxy resin is not specifically limited, In order to further improve the adhesive characteristic of a board
  • the content of the epoxy resin is not particularly limited, and a low viscosity when from about 40 to 80% by weight, based on the total weight of the metallic ink composition, as well as improving the adhesive property of the thin film circuit pattern and the substrate, from about 5 to about 3.2E- It is desirable to realize thin film circuit patterns with specific resistance as low as 5.2E— 5 ⁇ -cm.
  • the low viscosity metal ink composition according to the present invention comprises a curing agent.
  • the curing agent may be used without limitation as long as it is a conventional curing agent known in the art that the epoxy resin and the curing reaction can proceed, and may be appropriately selected according to the type of epoxy resin to be used.
  • the curing agent examples include amines, aliphatic amines, modified aliphatic amines, amine-based curing agents such as aromatic amines, acid anhydride curing agents, and polyamides.
  • Resins Polyamide
  • Polysulfide resin Polysulfide
  • amine complex Amin Com lex
  • phenol resin Phenol
  • dicyyanamide Dicyanamide
  • the content of such a curing agent is not particularly limited and may be appropriately adjusted according to the content of the epoxy resin.
  • the content of the curing agent may be about 0.1 to 3% by weight based on the total weight of the metal ink composition.
  • the low viscosity metal ink composition according to the present invention includes an ether solvent (hereinafter, 'a mixed ether solvent') in which an aromatic ether solvent and an aliphatic ether solvent are mixed.
  • the mixed ether solvent may disperse the metal nanoparticles and at the same time disperse the epoxy resin to improve dispersion stability of the ink composition and further control the viscosity of the ink composition.
  • Non-limiting examples of the aromatic ether solvent include an aromatic ether solvent containing an alkoxy group of d-Cs, and specific examples thereof include methoxybenzene (Anisole), but are not limited thereto.
  • non-limiting examples of the aliphatic ether solvent include an aliphatic ether solvent containing an alkoxy group of d ⁇ C 6 , specific examples are diethylene glycol monobutyl ether acetate (BCA), dimethyl Ether, diethyl ether, dibutyl ether, dipropyl ether, diisopropyl ether, di-n-propyl ether, di-n-butyl ether, and the like, but are not limited thereto.
  • the content of the mixed ether solvent is not particularly limited, when the content is about 20 to 25% by weight based on the total weight of the metal ink composition, the dispersibility of the epoxy resin is further improved, and the viscosity of the ink composition is about 5 to 500. cps can be adjusted.
  • the mixing ratio of the aromatic ether solvent and the aliphatic ether solvent is not particularly limited, but in the case of 6 to 8: 4 to 2 weight ratio, both dispersibility of the metal nanoparticles and the epoxy resin is further improved to Dispersion stability can be further improved.
  • the low viscosity metal ink composition according to the present invention comprises a dispersant.
  • the dispersant By including the dispersant, the dispersion stability of the metal nanoparticles and the epoxy resin may be improved to form a uniform thin film circuit pattern. Further, the dispersant may enhance the ink composition of / storage stability by preventing the agglomeration among the metal nanoparticles during storage of the metallic ink composition.
  • Examples of the dispersant may be any conventional dispersant known in the art without limitation, and examples thereof include a polymer or low molecular weight wet dispersant, and include fatty acid or phosphate ester compounds, and specifically, DISPERBYK-110 and DISPERBYK-111. And phosphate ester compounds such as DISPERBYK-102.
  • the content of the dispersant is not particularly limited, but when the metal ink composition is about 1 to 5 weight 3 ⁇ 4, dispersion stability and storage stability of the metal nanoparticles may be further improved.
  • the low viscosity metal ink composition of the present invention may optionally further comprise a curing accelerator.
  • the curing accelerator is not particularly limited as long as it is a substance capable of appropriately controlling the curing rate of the epoxy resin or a substance capable of controlling the rate of the curing agent.
  • curing accelerators may include imidazole-based curing accelerators and derivatives thereof.
  • Non-limiting examples of the above imidazole series curing accelerators include 1-methyl imidazole, 2-methyl imidazole, 2-ethyl imidazole, 2-decylimidazole, 2 ′ nucleotylimidazole and 2-iso.
  • the content of the curing accelerator is not particularly limited, but may be included in the range of about 0.01 to 10% by weight based on the total weight of the metal ink composition, preferably may be included in the range of about 0.01 to 5 weight 3 ⁇ 4, more preferably Preferably in the range of about 0.01 to 0.5% by weight.
  • curing of the ink composition can be performed at a low temperature for a short time, and the integrity of the ink composition is good.
  • the low viscosity metal ink composition of the present invention can be prepared through various methods.
  • metal nanoparticles capped by a carboxylate ligand of ⁇ (: 20) and a primary amine ligand of C 5 ⁇ C 20 , an apolar organic solvent, an epoxy resin, a curing agent, an ether organic solvent It may be prepared by mixing and dispersing the dispersing agent, but when the metal nanoparticles are in a dried state, agglomeration between particles may occur and the dispersion stability may be lowered, resulting in high concentration of the metal nanoparticles. Because of the difficulty, the metal nanoparticles are preferably mixed in a non-dried state.
  • the metal ink composition of the present invention described above is heat-treated after being printed on a substrate without a surface treatment process of the substrate, thereby realizing a fine thin film circuit pattern having excellent adhesive properties and high conductivity with the substrate.
  • the metal ink composition printed on the substrate may improve the adhesion between the substrate and the thin film circuit pattern formed on the substrate due to the curing of the epoxy resin and at the same time the melt and secondary recombination between the metal nanoparticles during heat treatment.
  • the temperature during the heat treatment is adjusted in consideration of the thermal decomposition temperature of the primary amine capping the metal nanoparticles and the curing conditions of the epoxy resin, it is preferable to adjust the temperature range to the melting and secondary recombination of the metal nanoparticles. Do.
  • the heat treatment temperature is about 200 to 250 ° C
  • the size of crystal grains generated due to melting and secondary recombination of the metal nanoparticles is increased to increase the contact area with the substrate, thereby curing the epoxy resin substrate
  • the adhesive property between the thin film circuit pattern can be further improved.
  • the adhesion of the circuit pattern to the substrate may be 5B or more in the cross-cut test according to ASTM D 3359.
  • the low viscosity metal ink composition of the present invention may be fired at a low temperature.
  • the metal ink composition can be applied to organs of various materials.
  • substrates that can be used include glass substrates and polymer substrates, but are not limited thereto.
  • the metal ink composition can be applied to a polyimide (PI) substrate material.
  • PI polyimide
  • the viscosity of the metal ink composition may be adjusted according to the type of epoxy resin, the amount of the nonpolar organic solvent and the ether solvent, and may be, for example, about 5 to 500 cps. According to an example of the present invention, when the metal ink composition is used for inkjet printing, the viscosity of the composition may be adjusted to about 5 to 15 cps.
  • the metal ink composition may be formed through a roll-to-roll process such as micro gravure, a slot die, or a coating process such as inkjet, and then subjected to a heat treatment of about 200 to 250 ° C. While maintaining adhesion to polyimide substrates of at least 5B in cross-cut tests according to ASTM D 3359 A thin film circuit pattern having a specific resistance of about 3.2E— 5 to 5.2E 5 ⁇ ⁇ cm may be formed.
  • the present invention provides a printed circuit board manufactured using the low viscosity metal ink composition described above. In this case, the low-viscosity metal ink composition forms a circuit layer on the substrate, the circuit layer is excellent in adhesion to the substrate, and has high electrical conductivity.
  • the method of forming a circuit layer with the said metal ink composition is not specifically limited.
  • a roll-to-roll process such as micro gravure and slot die, a screen method, inkjet printing, spray coating, and the like, but are not limited thereto.
  • the forming initial condition is adjusted according to the conditions known in the art.
  • the low-viscosity ink composition may be formed on the polyimide substrate through a microgravure coating or finely coated on the polyimide substrate, and then heat-treated at about 200 to 250 ° C. to form a circuit layer on the substrate. have.
  • the substrate usable in the present invention is not particularly limited as long as it is a substrate known in the art, and as described above, the low-viscosity metal ink composition can be fired at a low temperature, so that not only a glass substrate but also a polyimide (PI) and a PEN film Polymer substrates such as these may also be used.
  • PI polyimide
  • PEN film Polymer substrates such as these may also be used.
  • the present invention will be described in more detail with reference to Examples, Comparative Examples and Experimental Examples. However, the following Examples, Comparative Examples and Experimental Examples are for illustrating the present invention, and the scope of the present invention is not limited thereto.
  • the third solution was slowly added dropwise to the formed sodium octanoate to obtain a suspension in which silver octanoate as a white precipitate was produced. Subsequently, the suspension was filtered under reduced pressure and filtered with primary washing with purified water, and the resulting solution was filtered under reduced pressure and filtered with secondary washing with methane, and dried in a convention oven at 40 to 50 ° C. to obtain white silver octanoic acid.
  • a metal nanoparticle was obtained in the same manner as in Preparation Example 1, except that dodecylamine was used instead of octylamine used in preparing the metal nanoparticle of Preparation Example 1.
  • the metal nanoparticles obtained at the time are silver nanoparticles (hereinafter, 'silver nanoparticles B') capped by octanoate ligands and dodecylamine ligands. Its size (particle diameter) was about 5-15 nm.
  • the obtained metal nanoparticles were silver nanoparticles (hereinafter referred to as 'silver nanoparticles C') capped by octanoate ligands and oleylamine ligands, and their size (particle diameter) was about 3 to 8 nm. .
  • Preparation Example 1 is set as follows: Preparation Example 1, except that the octanoic acid used in place of the metal precursor prepared using the acid 139.6g (0.5mol), to obtain the metal nanoparticles.
  • the metal nanoparticles obtained at this time were silver nanoparticles (hereinafter, 'silver nanoparticles D') capped by decanoate ligand and octylamine ligand, and their size (particle diameter) was about 3 to 10 run.
  • Example 1 (0.5 mol) was used, except that dodecylamine was used instead of octylamine used in preparing the metal nanoparticles of Preparation Example 1, the metal nanoparticles were obtained in the same manner as in Example 1.
  • nanoparticles are decanoate ligand and dodecylamine
  • nanoparticle is E '
  • its size was about 3 ⁇ 7 nm.
  • the obtained metal nanoparticle ' is a silver nanoparticle (hereinafter,' silver nanoparticle F ') capped by a decanoate ligand and an oleylamine ligand, and its size (particle size) was about 3 to 3.5 nm. -
  • Example 2 A low viscosity metal ink composition was obtained in the same manner as in Example 1 except for using the silver nanoparticles E prepared in Preparation Example 5 instead of the silver nanoparticles C used in Example 1.
  • Silver Nanoparticle C Used in Example 1 Mass Production A low-viscosity metal ink composition was obtained in the same manner as in Example except that silver nanoparticle F prepared in Preparation Example 6 was used. ⁇ Example 4>
  • a low viscosity metal ink composition was obtained in the same manner as in Example 1 except that the silver nanoparticles A prepared in Preparation Example 1 were used instead of the silver nanoparticles C used in Example 1.
  • a low viscosity metal ink composition was obtained in the same manner as in Example 1 except that the silver nanoparticles B prepared in Preparation Example 2 were used instead of the silver nanoparticles C used in Example 1. -
  • a low viscosity metal ink composition was obtained in the same manner as in Example 1 except for using the silver nanoparticles D prepared in Preparation Example 4 instead of the silver nanoparticles C used in Example 1. Comparative Example 1
  • Each of the low viscosity metal ink compositions of Examples 1 to 6 were subjected to a pattern or front coating on the plyimide film through microgravure coating, respectively, under the following coating conditions, and then heat-treated at 200 to 25 CTC.
  • the low-viscosity metal ink composition according to the present invention easily formed a fine thin film circuit pattern on the polyimide film, and was also easily coated with a uniform thickness upon front coating on the polyimide film.
  • Each metal ink composition was left for 4 weeks in phase silver to check the occurrence of precipitates such as metal nanoparticles and epoxy binders to evaluate dispersion stability. At this time, it was evaluated as follows according to the generation time of the precipitate. ⁇ : more than 4 weeks ,
  • Adhesion was evaluated by repeating the cross-cut tape test five times in accordance with ASTM D 3359. Here, when measuring the adhesion, it was measured after coating each ink composition on a polyimide film as in the coating experiment.
  • the specific resistance ( ⁇ ⁇ ⁇ ) was calculated according to the following equation (1).
  • the specific resistance as measured in the coating property test as described below after coating each ink composition on a polyimide film.
  • Comparative Example 1 containing no epoxy resin and a dispersing agent, the dispersion stability was excellent, but the adhesive strength was very low because a binder that could impart adhesion to the substrate was not included.
  • Comparative Example 2 which does not contain a mixed ether solvent, the dispersion of the epoxy resin was not secured and precipitated immediately, and thus the adhesive force and the specific resistance could not be measured.
  • Comparative Example 3 containing no dispersant, although the adhesive strength was high and the specific resistance was low, dispersion stability was not secured during long time storage.
  • Comparative Example 4 containing silver particles, the specific resistance was low, but the adhesive force was very low because a binder that could impart adhesion to the substrate was not included.
  • the silver nanoparticles when included together with the epoxy resin according to the present invention, when the silver nanoparticles include a mixed ether-based solvent capable of dispersing the silver nanoparticles and the epoxy resin and a dispersant which may improve storage stability, As dispersion stability is improved, a thin film circuit pattern with high adhesion and electrical conductivity to a substrate can be realized. I knew you could.
  • the metal ink composition of Example 2 includes silver nanoparticles capped by the decanoate ligand, and more than the metal ink composition of Example 5 (including silver nanoparticles capped by the octanoate ligand). Dispersion stability was excellent. However, in Example 6, silver nanoparticles were capped by the decanoate ligand as in Examples 2 and 3, but dispersion stability was somewhat lower than in Examples 1 to 3 as in Example 4. From these results, it can be seen that not only the carbon number of the carboxylate ligand capping the metal nanoparticles, but also the coarsening of the metal nanoparticles in the metal ink composition can be controlled according to the carbon number of the primary amine.
  • a carbolate ligand : 20
  • a primary amine ligand of C 5 -C 20 preferably a carbock of C 8 — C 15
  • the type and content of silver nanoparticles (Ag nano particles, Ag NP), the content of 2-ethyl-1-nucleic acid, the content of the epoxy resin, the content of the curing agent, except for adjusting the content of the curing accelerator, the content of the BCA, and the content of the dispersant, it was carried out in the same manner as in Example 1 to obtain a low viscosity metal ink composition of Examples 7 to 12.

Abstract

The present invention relates to a metal ink composition and to a printed circuit board using same, wherein the metal ink composition can form a thin film circuit pattern having an excellent property of adhering to a substrate and high conductivity without performing a surface treating process on the substrate.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
저점도 금속 잉크 조성물 및 이를 이용하는 인쇄회로기판  Low Viscosity Metal Ink Composition And Printed Circuit Board Using The Same
【기술분야】  Technical Field
본 발명은 기판의 표면 처리 공정 없이 기판과의 접착력이 우수하면서, 전도도가 높은 박막 회로 패턴을 형성할 수 있는 저점도 금속 잉크 조성물 및 이를 이용하는 인쇄희로기판에 관한 것이다.  The present invention relates to a low-viscosity metal ink composition capable of forming a thin film circuit pattern having high conductivity while having excellent adhesion to a substrate without a surface treatment process of the substrate, and a printed white substrate using the same.
[배경기술]  [Background]
일반적으로 소형 무선기기 및 전자제품에 사용되는 인쇄회로기판 (PCB)이나 연성인쇄회로기판 (FPCB)은 동박 적층판 (copper clad laminate, CCD 또는 연성동박적층판 (flexible copper clad laminate, FCCL)에 에칭 공정을 통해 패턴을 형성하여 제조된다.  In general, printed circuit boards (PCBs) and flexible printed circuit boards (FPCBs) used in small wireless devices and electronic products are subjected to etching processes on copper clad laminates, CCDs, or flexible copper clad laminates (FCCL). It is manufactured by forming a pattern through.
최근 공정의 간편성과 저비용, 대량생산의 가능성, 환경 친화적이라는 장점 때문에, 전자부품 회로 형성에 잉크젯 방식 둥의 직접 인쇄 방식이 주목을 받고 있다. 이에, 직접 인쇄 방식을 통해 기판의 전부 또는 일부분에 배선을 형성하기 위해 다양한 재료가 개발되고 있다.  In recent years, due to the advantages of simplicity, low cost, the possibility of mass production, and environmental friendliness, the direct-printing method of the inkjet method in the formation of electronic component circuits has attracted attention. Accordingly, various materials have been developed to form wiring on all or part of the substrate through a direct printing method.
그러나, 종래 전도성 페이스트나 저점도 전도성 잉크로 유리, 종이, 폴리머 등과 같은 특정 기판에 금속 배선층을 직접 형성할 경우, 금속 배선층과 기판 간의 층간 접착력이 낮은 문제가 있다. 그래서, 종래에는 금속 배선층과 기판 사이의 접착력을 향상시킬 수 있는 재료를 이용하거나 추가적인 공정을 행하여 기판에 금속 배선층을 형성하고 있다.  However, when a metal wiring layer is directly formed on a specific substrate such as glass, paper, polymer, etc. using a conventional conductive paste or low viscosity conductive ink, there is a problem in that the interlayer adhesion between the metal wiring layer and the substrate is low. Therefore, conventionally, the metal wiring layer is formed in a board | substrate using the material which can improve the adhesive force between a metal wiring layer and a board | substrate, or performing an additional process.
이에, 종래 전도성 페이스트의 경우, 접착력을 확보할 수 있는 에폭시 수지 계열의 바인더 수지를 첨가하여 고점도가 요구되는 스크린 프린팅 등 특정 인쇄공정에 적용되나, 미세 회로 패턴 구현에 한계가 있다. · 저점도 전도성 잉크의 경우, 잉크젯, 마이크로 그라비어 등의 공정을 이용하여 금속 박막 코팅을 한다. 또, 직접인쇄 공법에 의한 금속 박막 구현 공정의 특성상, 잉크의 저점도가 요구되고 있는데, 에폭시 수지 계열의 바인더 수지는 자체 점도가 높기 때문에, 접착력 등의 신뢰성을 확보하면서 저점도와 같은 잉크의 물성을 확보하는데 어려움이 따른다. 특히, 잉크젯 프린팅 공정의 경우 약 5 ~ 15 cps 정도의 점도가 요구되고, 더불어 접착력을 확보되어야 하는데, 바인더 수지의 양이 증가함에 따라 점도가 상승하여 박막의 금속층을 구현하기 어렵다. 또한, 인쇄성을 고려하여 점도에 대한 잉크의 물성을 만족시키기 위해서 첨가되는 바인더 수지의 양을 줄일 경우, 접착력에 대한 신뢰성을 확보하는데 어려움이 있다. Thus, in the case of the conventional conductive paste, it is applied to a specific printing process such as screen printing requiring high viscosity by adding an epoxy resin-based binder resin that can secure the adhesive force, there is a limit in the implementation of a fine circuit pattern. , Low-viscosity conductive In the case of ink, a metal thin film coating is performed using a process such as inkjet or microgravure. In addition, the low viscosity of the ink is required due to the characteristics of the metal thin film implementation process by the direct printing method. Since the epoxy resin-based binder resin has a high viscosity, the physical properties of the ink such as low viscosity can be secured while ensuring reliability such as adhesive strength. Difficulty in securing In particular, in the inkjet printing process, a viscosity of about 5 to 15 cps is required, and adhesive strength must be secured. As the amount of the binder resin increases, the viscosity increases, making it difficult to implement a metal layer of a thin film. In addition, when the amount of the binder resin added to satisfy the ink properties with respect to the viscosity in consideration of printability, it is difficult to ensure the reliability of the adhesive force.
또한, 종래에는 연성인쇄회로기판 (FPCB)의 제조시, 플라즈마 처리, 코로나 방전 등과 같은 물리적인 처리 방식이나 알칼리 용액 등으로 에칭하는 방법과 같은 화학적 처리 방식을 이용하여 기판의 표면 에너지나 표면 거칠기를 조절하거나 표면을 변형시킴으로써, 금속 배선층과 기판 사이의 층간 접착력을 향상시켜왔다. 다만, 이러한 기판의 표면 처리 공정은 금속 배선층과 기판 사이의 층간 접착력을 향상시키는 데 한계가 있어 별도의 접착층이 요구되고 있으며, 또 열적 및 화학적으로 고신뢰성이 요구되는 제품에 적용하는 데 한계가 있다.  In addition, conventionally, when manufacturing a flexible printed circuit board (FPCB), the surface energy or surface roughness of the substrate by using a chemical treatment method such as physical treatment such as plasma treatment, corona discharge, or etching with an alkaline solution, etc. By adjusting or modifying the surface, the interlayer adhesion between the metal wiring layer and the substrate has been improved. However, the surface treatment process of such a substrate has a limit in improving the interlayer adhesion between the metal wiring layer and the substrate, so that a separate adhesive layer is required, and there is a limitation in applying it to products requiring high reliability thermally and chemically. .
대한민국 공개특허 제 1으2011ᅳ0002917호에는 탄화수소계 점착제 조성물을 이용하는 기판의 표면처리방법에 대하여 개시되어 있다. 이 경우, 탄화수소계 점착제 조성물에 의해 기판의 표면이 개질됨으로써, 금속 배선층과 기판 간의 층간 접착력이 향상될 수 있다. 그러나, 기관의 표면처리 공정 수의 증가로 인해 공정 비용의 상승과 더불어 생산성 저하가 초래되는 문체가 있다.  Korean Patent Laid-Open No. 1 2011 ᅳ 0002917 discloses a surface treatment method of a substrate using a hydrocarbon-based pressure-sensitive adhesive composition. In this case, the surface of the substrate is modified by the hydrocarbon-based pressure-sensitive adhesive composition, thereby improving the interlayer adhesion between the metal wiring layer and the substrate. However, there are styles in which the increase in the number of surface treatment processes in an engine leads to an increase in process costs and a decrease in productivity.
따라서, 기판의 표면처리 공정 등과 같이 추가적인 공정 없이 단순하면서도 생산성 및 경제성이 향상되고, 기판과의 접착력이 높은 전도성 잉크의 개발이 요구되고 있다. Therefore, there is no additional process such as the surface treatment process of the substrate There is a demand for the development of a conductive ink that is simple and has improved productivity and economy, and has high adhesion to a substrate.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】 본 발명은 기판의 표면 처리 공정 없이도 기판과의 접착 특성이 우수하면서, 내열성, 내식성, 접착 신뢰성, 굴곡성이 우수한 박막 회로 패턴을 형성할 수 있는 저점도 금속 잉크 조성물 및 이를 이용하는 인쇄회로기판을 제공하고자 한다.  [Technical Problems] The present invention provides a low viscosity metal ink composition capable of forming a thin-film circuit pattern having excellent adhesion properties to a substrate without heat treatment, surface resistance, corrosion resistance, adhesion reliability, and flexibility, and a printed circuit using the same. To provide a substrate.
【기술적 해결방법】  Technical Solution
본 발명은 (a) (:广(:20의 카르복실레이트계 리간드 및 C5~C20의 1차 아민계 리간드에 의해 캡핑된 금속 나노 입자; (b) 무극성 유기 용매; (c) 에폭시 수지; (d) 경화제; (e) 방향족 에테르계 용매 및 지방족 에테르계 용매를 함유하는 흔합 에테르계 용매; 및 (f) 분산제를 포함하는 저점도 금속 잉크 조성물을 제공한다. The invention (a) (:广(: carboxylate-based ligand and a C 5 ~ the metal nanoparticles capped by a primary amine-based ligands of the C 20 of 20; (b) non-polar organic solvent; (c) an epoxy resin It provides a low viscosity metal ink composition comprising (d) a curing agent, (e) a mixed ether solvent containing an aromatic ether solvent and an aliphatic ether solvent, and (f) a dispersant.
또, 본 발명은 전술한 저점도 금속 잉크 조성물로 형성된 회로층을 포함하는 인쇄회로기판을 제공한다.  The present invention also provides a printed circuit board comprising a circuit layer formed of the low viscosity metal ink composition described above.
【유리한 효과】 、 본 발명에 따른 저점도 금속 잉크 조성물은 분산 안정성 및 접착 특성이 우수하기 때문에, 기판의 표면 처리 공정 없이도 접착 특성이 우수한 미세 박막 회로 패턴을 구현할 수 있다.  Advantageous Effects Since the low viscosity metal ink composition according to the present invention has excellent dispersion stability and adhesion characteristics, it is possible to implement a fine thin film circuit pattern having excellent adhesion characteristics without a surface treatment process of a substrate.
따라서, 본 발명의 저점도 금속 잉크 조성물로 형성된 인쇄회로기판의 회로층은 내열성, 내식성, 굴곡성이 우수할 뿐만 아니라, 기판과의 접착성이 우수하다. 【도면의 간단한 설명】 Therefore, the circuit layer of the printed circuit board formed of the low viscosity metal ink composition of the present invention is not only excellent in heat resistance, corrosion resistance and bendability, but also excellent in adhesion to the substrate. [Brief Description of Drawings]
도 1은 준비예 6에서 제조된 은 나노 입자의 적외선 분광 스펙트럼을 나타낸 그래프이다.  1 is a graph showing an infrared spectral spectrum of silver nanoparticles prepared in Preparation Example 6.
도 2는 준비예 6에서 ᅳ 제조된 은 나노 입자의 투과전자현미경 (Transmission Electron Microscope, TEM) 사진이다.  Figure 2 is a transmission electron microscope (Transmission Electron Microscope, TEM) of the silver nanoparticles prepared in Preparation Example 6.
도 3은 실시예 1의 금속 잉크 조성물을 기판에 인쇄한 후 열처리한 다음, ASTM D 3359에 따라 크로스컷 (cross-cut) 테스트를 5회 반복하기 전과 후의 사진이다.  Figure 3 is a photograph of the metal ink composition of Example 1 before and after the heat treatment, and before and after repeating five cross-cut (cross-cut) test according to ASTM D 3359.
【발명의 실시를 위한 형태】  [Form for implementation of invention]
이하, 본 발명에 대하여 상세히 설명한다/  Hereinafter, the present invention will be described in detail.
본 발명은 직접 인쇄 방식을 통해 도전성 회로를 형성하는 저점도 금속 잉크 조성물로서, (a) (^~(:20의 카르복실레이트계 리간드 및 C5~C20의 1차 아민계 리간드에 의해 캡핑된 금속 나노 입자; (b) 무극성 유기 용매; (c) 에폭시 수지; (d) 경화제; (e) 방향족 에테르계 용매 및 지방족 에테르계 용매를 함유하는 흔합 에테르계 용매; 및 (f) 분산제를 포함하는 것을 특징으로 한다. 상기 저점도 금속 잉크 조성물은 분산 안정성이 우수하여 균일한 박막 회로 패턴을 구현할 수 있으면서, 기판의 표면 처리 공정 없이도 기판과의 접착력이 우수하고, 내열성, 내식성, 골국성이 우수한 박막 회로 패턴을 형성할 수 있다. The present invention is a low-viscosity metal ink composition which forms a conductive circuit through a direct printing method, which is capped by (a) (^ ~ (: 20 carboxylate ligand and C 5 ~ C 20 primary amine ligand Metal nanoparticles; (b) apolar organic solvents; (c) epoxy resins; (d) curing agents; (e) mixed ether solvents containing aromatic ether solvents and aliphatic ether solvents; and (f) dispersants. The low-viscosity metal ink composition has excellent dispersion stability and can realize a uniform thin film circuit pattern, and has excellent adhesive strength with the substrate even without surface treatment of the substrate, and has excellent heat resistance, corrosion resistance, and bone staining property. A thin film circuit pattern can be formed.
상기 금속 나노 입자는 C :20의 카르복실레이트계 리간드 및 C5~C20의 1차 아민계 리간드에 의해 캡핑되어 있는 나노 사이즈의 금속 입자이다. 여기서, 상기 카르복실레이트계 리간드 및 1차 아민계 리간드는 모두 금속 나노 입자의 제조시 입자 표면에 결합 또는 흡착되어 표면의 불안정으로 인한 입자 간의 응집을 방지하여 분산성을 증가시키는 캡핑 리간드 (capping Hgand)이다. 이러한 리간드에 의해 금속 나노 입자가 캡핑됨으로써, 금속 나노 입자는 안정적으로 자가 분산될 수 있다 . The metal nanoparticles are nano-sized metal particles that are capped by a C: 20 carboxylate ligand and a C 5 to C 20 primary amine ligand. Here, both the carboxylate ligand and the primary amine ligand are bound or adsorbed to the particle surface during the preparation of the metal nanoparticles, thereby preventing the aggregation between particles due to surface instability (capping Hgand) to increase the dispersibility )to be. By capturing the metal nanoparticles by these ligands, the metal nanoparticles It can reliably self-disperse.
또한, 상기 캡핑 리간드 중 1차 아민계 리간드는 에폭시ᅳ 수지를 경화시킬 수 있다. 이러한 1차 아민계 리간드에 의해서 캡핑된 금속 나노 입자는 1차 아민계 리간드 때문에 무극성 유기 용매에서 자가분산을 할 수 있다. 또한, 상기 1차 아민계 리간드는 방향족 에테르계 용매 및 지방족 에테르계 용매를 함유하는 흔합 에테르계 용매와의 상용성이 우수하다. 여기서, 상기 흔합 에테르계 용매는 알코올계 용매와 잘 흔합될 수 있으면서, .접착력 부여를 위해 첨가된 에폭시 수지를 용해시켜 균일하게 분산시킬 수 있다. 따라서, 1차 아민계 리간드가 결합 또는 흡착되어 있는 금속 나노 입자는 무극성 유기 용매에 의해 분산되면서, 상기 흔합 에테르계 용매에 의해 에폭시 수지와의 상용성이 향상될 수 있다. 이에, 본 발명은 박막 회로 패턴을 형성시 상기 금속 나노 입자가 에폭시 수지를 통해 기판 표면에 결합될 수 있고, 이로 인해 기판과 회로 패턴 사이의 접착력이 향상될 수 있다.  In addition, the primary amine ligand of the capping ligand may cure the epoxy resin. The metal nanoparticles capped by the primary amine ligand may self-disperse in a nonpolar organic solvent because of the primary amine ligand. In addition, the primary amine ligand is excellent in compatibility with a mixed ether solvent containing an aromatic ether solvent and an aliphatic ether solvent. Here, the mixed ether solvent may be well mixed with the alcohol solvent, and may be uniformly dispersed by dissolving the added epoxy resin for imparting adhesion. Therefore, the metal nanoparticles to which the primary amine ligand is bound or adsorbed may be dispersed by a nonpolar organic solvent, thereby improving compatibility with the epoxy resin by the mixed ether solvent. Thus, in the present invention, when the thin film circuit pattern is formed, the metal nanoparticles may be bonded to the surface of the substrate through an epoxy resin, thereby improving adhesion between the substrate and the circuit pattern.
게다가, 상기 금속 나노 입자는 표면에 결합 또는 흡착된 카르복실레이트계 리간드 및 1차 아민계 리간드의 탄소수가 증가될수록 금속 나노 입자의 크기가 작아지면서, 무극성 물질의 성질올 가지기 때문에, 무극성 용매에 의해서 균일하게 분산될 수 있고, 따라서 에폭시 수지와의 상용성 향상과 더블어 분산 안정성이 향상되어 균일한 박막 회로 패턴을 기판에 형성할 수 있다. 다만, 상기 에폭시 수지의 경우, 무극성 유기 용매로 롤루엔, 자일렌 등의 탄화수소계 용매를 사용시 에폭시 수지의 분산성이 저하될 수 있다. 이에, 본 발명에서는 금속 나노 입자를 분산시킴과 동시에 에폭시 수지를 분산시키기 위해 방향족 에테르계 용매 및 지방족 에테르계 용매를 함유하는 흔합 에테르계 용매를 포함하 서, 이들의 분산 안정성을 더 향상시키기 위해 분산제를 포함한다. 이와 같이, 본 발명의 저점도 금속 잉크 조성물은 분산 안정성을 유지하면서, 기판의 표면 처리 공정 없이 기판과의 접착 특성이 우수한 박막 회로 패턴을 형성하기 위해, (a) (:广(:20의 카르복실레이트계 리간드 및 C5~C20의 1차 아민계 리간드에 의해 캡핑된 금속 나노 입자; (b) 무극성 유기 용매; (c) 에폭시 수지; (d) 경화제; (e) 방향족 에테르계 용매 및 지방족 에테르계 용매를 함유하는 흔합 에테르계 용매; 및 (f) 분산제를 포함한다. In addition, the metal nanoparticles decrease in size as the carbon number of the carboxylate ligands and the primary amine ligands bonded or adsorbed on the surface decreases in size, and thus has a property of a nonpolar material. It can be uniformly dispersed, thus improving compatibility with the epoxy resin and improving the double dispersion stability, thereby forming a uniform thin film circuit pattern on the substrate. However, in the case of the epoxy resin, dispersibility of the epoxy resin may be lowered when using a hydrocarbon solvent such as roluene or xylene as the nonpolar organic solvent. Accordingly, the present invention includes a mixed ether solvent containing an aromatic ether solvent and an aliphatic ether solvent to disperse the metal nanoparticles and at the same time to disperse the epoxy resin, and to further improve their dispersion stability It includes. Thus, to even a low viscosity of the present invention a metal ink composition to form a surface-treated thin film circuit pattern having excellent adhesion properties to the substrate without the step of the substrate, while maintaining the dispersion stability, (a) (:广( : 20-carboxylic Metal nanoparticles capped by a carboxylate ligand and a C 5 to C 20 primary amine ligand; (b) apolar organic solvent; (c) epoxy resin; (d) curing agent; (e) aromatic ether solvent and A mixed ether solvent containing an aliphatic ether solvent, and (f) a dispersant.
이하, 본 발명에 따론 저점도 금속 잉크 조성물의 각 성분에 대하여 설명한다.  Hereinafter, each component of the low viscosity metal ink composition according to the present invention will be described.
(a) 금속 나노 입자  (a) metal nanoparticles
본 발명의 저점도 금속 잉크 조성물은 금속 나노 입자를 포함한다. 상기 금속 나노 입자는 C广 C20의 카르복실레이트계 리간드 및 C5~C20의 1차 아민계 리간드에 의해 캡핑되어 있다. 구체적으로, 상기 금속 나노 입자는 금속 코어, (:广(:20의 카르복실레이트계 리간드, 및 C5~C20의 1차 아민계 리간드를 포함하고, 상기 카르복실레이트계 리간드 및 1차 아민계 리간드는 각각 상기 금속 코어의 표면에 결합 또는 흡착되어 있다. 이러한 금속 나노 입자는 크기가 나노 사이즈이기 때문에, 벌크 금속에 비해 전체 원자에 대한 표면 원자의 비가 크게 증가하고, 이로 인해 나노 입자가 불안정한 상태가 되어 융점이 낮아지고, 따라서 저온 소성에서도 입자 형태로 금속간 2차 재결합하여 결정립 및 결정립계가 형성되기 때문에, 기판과의 접촉면적이 증가되어 고분자 기판에 전도도 및 접착력이 우수한 박막 회로 패턴을 형성할 수 있다. 또한, 상기 금속 나노 입자는 전술한 바와 같이 방향족 에테르계 용매 및 지방족 에테르계 용매를 함유하는 흔합 에테르계 용매에 의해서 에폭시 수지와의 상용성이 우수하기 때문에, 에폭시 수지에 의해 기판과의 접착성이 우수한 박막 회로 패턴을 구현할 수 있다. 상기 금속 나노 입자의 예로는 특별히 한정되지 않으며, 예를 들어 주기율표상의 1족 내지 14족으로 이루어진 군에서 선택되는 금속의 나노 입자, 바람직하게는 금, 은, 동, 니켈, 백금, 코발트, 팔라듬, 알루미늄, 주석, 아연, 철, 인듐, 마그네슴 등의 나노 입자가 있고, 더 바람직하게는 은 나노 입자 등이 있다. 이들은 단독으로 또는 2종 이상이 흔합되어 사용될 수 있다. The low viscosity metal ink composition of the present invention comprises metal nanoparticles. The metal nanoparticles are capped by a carboxylate ligand of C 广 C 20 and a primary amine ligand of C 5 to C 20 . Specifically, the metal nanoparticles include a metal core, (: 广 (: 20 carboxylate ligand, and C 5 ~ C 20 primary amine ligand, the carboxylate ligand and primary amine The ligands are bound to or adsorbed to the surface of the metal core, respectively.Since these metal nanoparticles are nano-sized, the ratio of surface atoms to total atoms is greatly increased compared to bulk metals, which results in unstable nanoparticles. As a result, the melting point is lowered, and thus, even in low-temperature firing, secondary recombination between metals forms particles to form grains and grain boundaries. Thus, the contact area with the substrate is increased to form a thin film circuit pattern having excellent conductivity and adhesion to the polymer substrate. In addition, as described above, the metal nanoparticle may be an aromatic ether solvent and an aliphatic ether. Since it is excellent in compatibility with an epoxy resin by heunhap ether-based solvent containing a solvent, it is possible to implement a thin film circuit pattern excellent in adhesion to a substrate by an epoxy resin. Examples of the metal nanoparticles are not particularly limited, and for example, nanoparticles of a metal selected from the group consisting of Groups 1 to 14 on the periodic table, preferably gold, silver, copper, nickel, platinum, cobalt, and paralysis. There are nanoparticles such as aluminum, tin, zinc, iron, indium, magnesium, and more preferably silver nanoparticles. These may be used alone or in combination of two or more thereof.
이와 같은 금속 나노 입자는 (:广(:20의 카르복실레이트계 리간드 및 C5-C20의 1차 아민계 리간드에 의해 캡핑되고 있다. Such metal nanoparticles are capped by a carboxylate ligand of (: 广 (: 20) and a primary amine ligand of C 5 -C 20 .
. 상기 C广 C20의 카르복실레이트계 리간드는 R-C00—의 구조를 갖는 캡핑 리간드로서 (상기 R은 (:广(:20의 포화 또는 블포화 지방족 탄화수소기, 바람직하게는 C8~C15의 포화 또는 불포화 지방족 탄화수소기이다), 입자 간의 웅집을 방지하여 금속 나노 입자의 분산 안정성을 향상시킬 수 있다. 뿐만 아니라, 상기 카르복실레이트계 리간드의 종류에 따라 금속 나노 입자의 크기가 조절되어 박막 회로 패턴의 접착 특성 및 전도도에 영향이 미칠 수 있다. 특히, 상기 카르복실레이트계 리간드의 탄소수가 .증가할수록 입자 크기를 작게 조절되어 약 200 내지 250 °C 이하의 낮은 온도에서도 소성이 가능하기 때문에, 고분자 기판에 높은 접착력 및 전도도를 갖는 박막 회로 패턴이 구현될 수 있다. 이러한 카르복실레이트계 리간드의 예로는 옥타노에이트 리간드 (oxtanonate ligand), 노나노에이트 리간드 (nonanoate ligand), 데카노에이트 리간드 (decanoate ligand), 도데카노에이트 리간드 (dodecanoate ligand), 올리에이트 리간드 (oleate ligand) 등이 있는데, 이에 한정되지 않는다. 상기 1차 아민계 리간드는 CnH2n+1N¾의 구조를 갖는 캡핑 리간드로서 (상기 n은 5 내지 20, 바람직하게는 10 내지 18이다), 입자 간의 웅집을 방지하고, 용해도를 증가시켜 금속 나노 입자의 분산 안정성을 향상시킬 뿐만 아니라, 금속 나노 입자와 에폭시 수지 간의 상용성을 향상시킬 수 있다. 또한, 상기 1차 아민계 리간드는 에폭시 수지의 경화를 촉진시킬 수 있어, 추후 기판에 코팅된 금속 잉크 조성물의 열처리 온도에 영향을 미칠 수 있다. 이러한 1차 아민계 리간드의 예로는 특별히 한정되지 않으나, 옥틸아민 리간드, 데실아민 리간드, 도데실아민 리간드, 및 올레일아민 리간드 등이 있다. . The carboxylate ligand of C 广 C 20 is a capping ligand having a structure of R-C00— (wherein R is a saturated or unsaturated aliphatic hydrocarbon group of (: 广 (: 20 , preferably C 8 ~ C 15). Saturated or unsaturated aliphatic hydrocarbon group), it is possible to improve the dispersion stability of the metal nanoparticles by preventing puncture between the particles, and the size of the metal nanoparticles are adjusted according to the type of the carboxylate-based ligand thin film In particular, as the carbon number of the carboxylate ligand increases, the particle size is controlled to be smaller, so that the firing can be performed at a low temperature of about 200 to 250 ° C. , A thin film circuit pattern having high adhesion and conductivity to a polymer substrate may be implemented. Oxtanonate ligand, nonanoate ligand, decanoate ligand, dodecanoate ligand, oleate ligand, and the like, but are not limited thereto. The primary amine ligand is a capping ligand having a structure of C n H 2n + 1 N¾ (wherein n is from 5 to 20, preferably from 10 to 18), preventing coarsening between particles, and increasing solubility of the metal. In addition to improving dispersion stability of the nanoparticles, compatibility between the metal nanoparticles and the epoxy resin may be improved. The amine-based ligand may promote curing of the epoxy resin, which may later affect the heat treatment temperature of the metal ink composition coated on the substrate. Examples of such primary amine ligands include, but are not particularly limited to, octylamine ligand, decylamine ligand, dodecylamine ligand, oleylamine ligand, and the like.
이러한 리간드들에 의해서 캡핑되어 있는 금속 나노 입자의 평균 입경은 특별히 제한되지 않는다. 다만, 금속 나노 입자의 크기가 약 20 nm 이하, 바람직하게는 약 2 내지 20 讓일 경우, 나노 입자의 크기 효과로 인해 용융 은도가 낮아지게 되고, 따라서 약 200 °C의 낮은 온도에서도 입자가 용융되어 금속간 2차 재결합이 유도됨으로써, 높은 전도도를 구현함과 동시에 입자간 연결되어 있는 금속의 재결합을 통해 기판과의 접촉면적이 증가될 수 있어 높은 접착력을 구현할 수 있다. The average particle diameter of the metal nanoparticles capped by these ligands is not particularly limited. However, when the size of the metal nanoparticles is about 20 nm or less, preferably about 2 to 20 kPa, the melting silver becomes low due to the size effect of the nanoparticles, so that the particles melt even at a low temperature of about 200 ° C. Thus, secondary recombination between metals is induced, thereby realizing high conductivity and simultaneously increasing contact area with the substrate through recombination of metals connected between particles, thereby achieving high adhesion.
상기 금속 나노 입자의 함량은 특별히 제한되지 않으며, 형성하고자 하는 박막 회로 패턴의 두께를 고려하여 조절한다. 다만, 본 발명의 경우, 금속 나노 입자의 함량아 증가할수록 에폭시 수지의 함량도 증가되어 금속 잉크 조성물의 > 점도를 증가된다. 따라서, 상기 금속 나노 입자의 함량이—금속 잉크 조성물의 전제 중량을 기준으로 약 30 내지 80 중량 %, 바람직하게 약 40 내지 60중량 ¾일 경우, 금속 잉크 조성물의 점도를 약 5 내지 500 cps 정도로 낮게 조절할 수 있으며, 나아가 금속 나노 입자가 용융되어 재결합시 재결합 전, 후의 표면적 변화가 적어 패턴을 형성하는 금속 부분에 공극이 덜 형성되기 때문에, 우수한 전도도 및 접착력을 가진 박막 회로 패턴이 형성될 수 있다. 1 The content of the metal nanoparticles is not particularly limited, and adjusted in consideration of the thickness of the thin film circuit pattern to be formed. However, in the present invention, as the content of the metal nanoparticles increases, the content of the epoxy resin also increases to increase the> viscosity of the metal ink composition. Thus, when the content of the metal nanoparticles is about 30 to 80% by weight, preferably about 40 to 60% by weight, based on the total weight of the metal ink composition, the viscosity of the metal ink composition may be as low as about 5 to 500 cps. In addition, since the metal nanoparticles are melted and recombine, the surface area change before and after recombination is small, so that less voids are formed in the metal part forming the pattern, thereby forming a thin film circuit pattern having excellent conductivity and adhesion. One
이와 같은 금속 나노 입자는 다양한 방법에 의해 제조될 수 있다.  Such metal nanoparticles can be prepared by various methods.
본 발명의 일례에 따르면, 상기 금속 나노 입자는 (:广(:20의 카르복시산 또는 이의 염을 금속염과 반응시켜 (:广(:20의 금속 카르복시산염을 형성하는 단계 (S100); 상기 d~C20의 금속 카르복시산염을, C5~C20의 1차 아민과 반웅시켜 C5~C20의 1차 아민이 결합된 d-Cso의 금속 카르복시산염 착물을 형성하는 단계 (S200); 및 상기 C5~C20의 1차 아민이 결합된 (:广(:20의 금속 카르복시산염 착물에 환원제를 첨가하여 금속 나노 입자를 형성하는 단계 (S300)를 통해 제조될 수 있는데, 이에 한정되지 않는다. According to one embodiment of the invention, the metal nanoparticles (:广(: is reacted with a carboxylic acid or a salt thereof in the 20 metal salt (:广(: step (S100) of forming a metal carboxylate of 20; the d ~ C 20 metal carboxylates, reacted with a primary amine of C 5 to C 20 Forming a metal carboxylate complex of d-Cso to which a primary amine of C 5 to C 20 is bonded (S200); And wherein the C 5 ~ a combined primary amine of the C 20 (:广(: may be prepared through the step (S300) of forming the metal nanoparticles by adding a reducing agent to the metal carboxylate complexes of 20, are not limited to Do not.
상기 금속 나노 입자의 제조시, 선택적으로 상기 S300 단계에서 생성된 금속 나노 입자를 알코올에 담금 세척한 다음 여과하는 단계를 더 포함할 수 있다.  In the preparation of the metal nanoparticles, optionally, the metal nanoparticles produced in the step S300 may further include a step of immersing and washing with alcohol in alcohol.
먼저, 상기 S100 단계는 (:广(:20의 카르복시산 또는 이의 염을 금속염과 반웅시켜 ( C20의 금속 카르복시산염을 형성하는 단계이다. 구체적으로, 상기 CrCzo의 카르복시산 또는 이의 염이 금속염과 반응하면, 상기 d-Cso의 카르복시산 또는 이의 염의 산 음이온 (R-C00—, R = (:广(:20의 포화 또는 불포화 지방족 탄화수소기, 바람직하게 ¾~(:15의 포화 또는 불포화 지방즉 탄화수소기)과 금속염의 금속 양이온이 반응하여 d—Cso의 금속 카르복시산염을 생성한다. First, the S100 step is (:广(:. To 20 banung and a metal salt of carboxylic acid or a salt thereof of (a step of forming a metal carboxylate of C20 Specifically, when the carboxylic acid or salt thereof of the CrCzo metal salts and reaction, The acid anion of the carboxylic acid of d-Cso or a salt thereof (R-C00—, R = (: 广 (: 20 saturated or unsaturated aliphatic hydrocarbon group, preferably ¾ ~ (: 15 saturated or unsaturated fatty or hydrocarbon group)) and The metal cations of the metal salts react to form metal carboxylates of d—Cso.
본 발명의 일례에 따르면, 데칸산 (decanoic acid)을 수산화나트륨 (NaOH)과 반웅시키면 데칸산나트륨이 생성되고, 상기 데칸산나트륨을 질산은 (AgN03)과 반응시키면, 흰색의 침전물인 Ag- 카르복시산염 [C¾(CH2)8-C00— Ag+]이 생성된다. According to an example of the present invention, when decanoic acid is reacted with sodium hydroxide (NaOH) to produce sodium decanoate, and when the decanoate is reacted with silver nitrate (AgN0 3 ), a white precipitate of Ag-carboxylic acid is used. A salt [C¾ (CH 2 ) 8 -C00— Ag + ] is produced.
본 발명에서 사용 가능한 CrCzo의 카르복시산은 R-C00H의 구조를 갖는 화합물로서 (상기 R은 (:广(:20의 포화 또는 불포화 지방족 탄화수소기다), 예를 들어 카프릴산 (capryl ic acid) , 펠라르곤산 (pelargonic acid) , 카프르산 (capric acid), 라우르산 (lauric acid), 을레인산 (oleic acid) 등이 있는데, 이에 한정되지 않는다. A compound having the structure of carboxylic acid of CrCzo be used in the present invention is R-C00H (where R is (:广(: waiting for a saturated or unsaturated aliphatic hydrocarbon group of 20), for example, caprylic acid (capryl ic acid), Pella Pelargonic acid, capric acid, lauric acid, oleic acid, and the like, but are not limited thereto.
상기 d~C20의 카르복시산은 제 1 용매에 용해시켜 얻은 (:广(:20의 카르복시산 용액일 수 있다. 이때, 사용 가능한 제 1 용매는 당 업계에서 통상적으로 사용하고 있는 용매이면 특별히 제한하지 않는다. 상기 제 1 용매의 비제한적인 예로는 물, 메탄올, 에탄올, 프로판을,' 이소프로판올, 부탄올, 펜탄을, 헥산을, 디메틸 설폭사이드 (dimethyl sulphoxide, DMS0) , Ν,Ν- 다메틸포름아미드 (N,N-dimethyHormamide, DMF), 에틸렌글리콜, 에틸렌글리콜 모노메틸에테르 (ethylene glycol monomethl ether), 에틸렌글리콜 디메틸에테르 (ethylene glycol diethyl ether), 프로필렌글리콜, 프로필렌글리콜 프로필에테르, 프로필렌글리콜 메틸에테르 아세테이트, N-메틸피를리돈 (N-methyl pyrrol idone), 메틸이소부틸케톤 (methyl isobutyl ketone), 메틸에틸케톤 (methyl ethyl ketone), 아세토니트릴 (acetonitrile), 테트라하이드로퓨란 (tetrahydrofuran, THF), 핵사데칸 (hexadecane), 펜타데칸 (pentadecane), 테트라데칸 (tetradecane), 트리데칸 (tridecane), 도데칸 (dodecane) , 운데칸 (undecane), 데칸 (decane), 노난, 옥탄, 헵탄, 핵산, 자일렌, 를루엔, 벤젠,. 2,6-루티딘, 디클로로메탄 등이 있고, 바람직하게는 메탄올이다. 이들 용매는 단독으로 또는 2종 이상을 흔합하여 사용할 수 있다. 또, 상기 d- o의 카르복시산염은 상기 (:广(:20의 카르복시산을 염기와 반응시키거나, 또는 상기 카르복시산을 염기를 제 2 용매에 용해시켜 얻은 용액과 반웅시켜 수득된 것이라면 특별히 제한되지 않는다. 상기 염기에 의해서 상기 카르복시산의 수소 자리에 추후 금속염의 금속이온이 용이하게 결합할 수 있어 금속 카르복시산염을 용이하게 얻을 수 있다. 예를 들어, 데칸산을 염기인 수산화나트륨과 반웅시키면, 데칸산의 수소 자리에 나트륨 이온이 결합되면서, 데칸산에서 해리된 수소와 수산화나트륨의 0Γ이 결합하여 물이 생성된다. 이후, 여기에 질산은을 첨가하면, 상기 나트륨 자리에 질산은에서 해리된 은 이온이 결합하여 최종 금속 카르복시산염을 얻을 수 았다. The carboxylic acid of d to C 20 may be a carboxylic acid solution obtained by dissolving in a first solvent (: 广 (: 20. In this case, the first solvent usable may be It will not restrict | limit especially if it is a solvent normally used. Non-limiting examples of the first solvent is water, methanol, ethanol, propane, 'isopropanol, butanol, pentane, hexane, dimethylsulfoxide (dimethyl sulphoxide, DMS0), Ν, Ν- is methyl formamide (N , N-dimethyHormamide (DMF), ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, propylene glycol, propylene glycol propyl ether, propylene glycol methyl ether acetate, N- N-methyl pyrrol idone, methyl isobutyl ketone, methyl ethyl ketone, acetonitrile, tetrahydrofuran (THF), hexadecane ), Pentadecane, tetradecane, tridecane, dodecane, undecane, decane, decane, nonane, octane Heptane, hexane, xylene and the toluene, benzene,. 2,6-lutidine, dichloromethane and the like, preferably methanol. These solvent can be used individually or in mixture of 2 or more types. The carboxylate of d-o is not particularly limited as long as it is obtained by reacting the carboxylic acid of (: 广 (: 20 ) with a base or reacting the carboxylic acid with a solution obtained by dissolving the carboxylic acid in a second solvent. The base can easily bind metal ions of a metal salt to hydrogen sites of the carboxylic acid, thereby easily obtaining a metal carboxylate, for example, when decanoic acid is reacted with sodium hydroxide as a base, decanoic acid. As sodium ions are bonded to the hydrogen site of, hydrogen dissociated from decanoic acid and 0Γ of sodium hydroxide combine to form water. Then, when silver nitrate is added thereto, silver ions dissociated from silver nitrate are bonded to the sodium site. The final metal carboxylate was obtained.
상기 염기의 예로는 특별히 제한되지 않고, 예를 들어 NaOH, NH40H, NaHCOs, Na2C03, KOH, Ga(0H)2, Ba(0H)2, Mg(0H)2, K2C03, KHC03, CaC03 등이 있는데, 이에 한정되지 않는다. Examples of the base are not particularly limited, and for example, NaOH, NH 4 0H, There are like NaHCOs, Na 2 C0 3, KOH , Ga (0H) 2, Ba (0H) 2, Mg (0H) 2, K 2 C0 3, KHC0 3, CaC0 3, not limited to this.
이때, 상기 (:广(:20의 카르복시산과 염기는 카르복시산의 카르복시기 : 염기의 금속이온 = 0.5 ~ 1.5 : 0.5 ~ 1.5의 몰비로 흔합되어 반웅할 수 있다. 예를 들어, 데칸산을 수산화나트륨과 반웅시켜 데칸산염을 얻을 경우, 데칸산의 카르복시기와 수산화나트륨의 나트륨 이온이 1 : 1로 반웅하기 때문에, 데칸산에 수산화나트륨이 동일 몰비로 첨가될 수 있다. At this time, the carboxylic acid and the base of (: 广 (: 20) can be mixed and mixed in a molar ratio of the metal ions of the carboxyl group of the carboxylic acid: base = 0.5 to 1.5: 0.5 to 1.5. For example, decanoic acid can be reacted with sodium hydroxide. When reacting to obtain a decanoate, sodium hydroxide may be added to decanoic acid in the same molar ratio because the carboxyl group of decanoic acid and sodium ions of sodium hydroxide react with 1: 1.
상기 염기를 용해시키는 제 2 용매의 예는 당 업계에서 통상적으로 사용하고 있는 용매라면 특별히 제한하지 않으며, 전술한 제 1 용매의 예와 동일하며, 바람직하게는 물일 수 있다.  An example of the second solvent for dissolving the base is not particularly limited as long as it is a solvent commonly used in the art, and is the same as the example of the first solvent described above, preferably water.
본 발명에서 사용 가능한 금속염은 특별히 제한되지 않으며, 예를 들어 주기율표상의 1족 내지 14족으로 이루어진 군에서 선택되는 금속의 무기염, 바람직하게는 금, 은, 동, 니켈, 백금, 코발트, 팔라듐, 알루미늄, 주석, 아연, 철, 인듐, 마그네슘 등의 무기염이 있고, 더 바람직하게는 은의 무기염 등이 있는데, 이들은 단독으로 또는 2종 이상이 흔합되어 사용될 있다. 상기 무기염의 비제한적인 예로는 질산염, 황산염, 아세트산염, 인산염, 규산염, 염산염 등이 있다.  Metal salts that can be used in the present invention is not particularly limited, for example, inorganic salts of metals selected from the group consisting of Groups 1 to 14 on the periodic table, preferably gold, silver, copper, nickel, platinum, cobalt, palladium, Inorganic salts such as aluminum, tin, zinc, iron, indium, magnesium, and the like, and more preferably, inorganic salts of silver and the like, which are used alone or in combination of two or more thereof. Non-limiting examples of the inorganic salts are nitrates, sulfates, acetates, phosphates, silicates, hydrochlorides and the like.
이러한 금속염은 제 3 용매에 용해시켜 얻은 용액 상태일 수 있다. 이때, 사용 가능한 게 3 용매의 예로는 당 업계에서 통상적으로 사용하고 있는 용매라면 특별히 제한하지 않으며, 전술한 제 1 용매의 예와 동일하고, 바람직하게는 물일 수 있다.  This metal salt may be in a solution state obtained by dissolving in a third solvent. In this case, examples of the three solvents that can be used are not particularly limited as long as they are commonly used in the art, and are the same as the examples of the first solvent described above, and preferably water.
이러한 금속염과, 상기 (λ~(:20의 카르복시산 또는 이의 염의 흔합 비율은 사용되는 카르복시산 또는 이의 염의 종류나 금속염의 종류에 따라 다양한 비율로 흔합될 수 있다. 다만, 상기 (广(20의 카르복시산 또는 이의 염에 금속염을 첨가할 경우, 슬러리가 발생하는데, 이때 사용되는 유기용매나 물의 양에 비해 카르복시산의 몰농도가 높을 경우, 생성돠는 금속 카르복시산염의 양이 많아지면서 점도가 상승되어 반응이 원활하게 일어나기 어렵다. 따라서, 사용되는 용매의 함량을 고려하여 상기 (:广(:20의 카르복시산 또는 이의 염의 흔합 비율을 d-Cso의 카르복시산 또는 이의 염 : 금속염 = 0.5 ~ 1.5 : 0.5 - 1.5 몰 비율로 조절할 경우, 상기 (:广(:20의 카르복시산 또는 이의 염과 금속염 간에 원활한 반웅이 유도되어 금속 카르복시산염의 수득을을 높일 수 있다. The metal salt and the (λ ~ (:. A carboxylic acid or salt heunhap the ratio of the 20 may be heunhap in various amounts depending on the type of carboxylic acid or its salt type or a metal salt is used, however, the (广(20 carboxylic acid or In salt When the metal salt is added, a slurry is generated. At this time, when the molar concentration of the carboxylic acid is higher than the amount of the organic solvent or water used, the amount of metal carboxylate produced is increased and the viscosity is increased, so that the reaction does not occur smoothly. Therefore, in consideration of the content of the solvent used, when the mixing ratio of the carboxylic acid or salt thereof (: 广 (: 20 ) or the salt thereof is adjusted to the carboxylic acid or salt thereof: metal salt = 0.5 to 1.5: 0.5 to 1.5 mole ratio of d-Cso, A smooth reaction is induced between the carboxylic acid or salts of (: 广 (: 20) and the metal salt thereof to increase the yield of the metal carboxylate.
한편, 선택적으로 생성된 Cr~C20의 금속 카르복시산염에서 미반웅물이나 수분을 제거하기 위해서, 반응 종료 후 상기 S100 단계에서 생성된 d-Co의 금속 카르복시산염을 물로 세척한 후, 알코올 (예컨대, 메탄올)로 필터링하고 세척한 다음, 약 40 ~ 50 °C의 진공 오븐에서 건조할 수 있다. 이와 같이 금속 카르복시산염을 건조함으로써, 하기 1차 아민이 첨가되면 전구체가 용이하게 해리되어 금속 카르복시산염과 1차 아민간의 결합이 원활하게 이루어질 수 있다. 이후, S200 단계는 상기 S100 단계에서 생성된 d-Cso의 금속 카르복시산염을 C5~C20의 1차 아민과 반웅시키는 단계로서, 반응 결과 상기 CrCo의 금속 카르복시산염의 금속 이온 부위에 C5~C20의 1차 아민이 리간드로 배위 결합됨으로써, C5~C20의 1차 아민이 결합된 CrC20의 금속 카르복시산염 착물이 생성된다. 생성된 금속 카르복시산염 착물의 d~C20의 카르복시산 부위 및 C5~C20의 1차 아민 부위는 추후 금속 잉크 조성물에서 금속 나노 입자의 분산 안정성을 향상시킬 수 있으면서, 금속 잉크 조성물 내 흔합 에테르계 용매에 의해 에폭시 수지와의 상용성이 우수하여 박막 회로 패턴의 접착 특성을 향상시킬 수 있다. On the other hand, in order to remove uncoated water or water from the selectively produced Cr ~ C 20 metal carboxylate, after the reaction is finished, the metal carboxylate of d-Co produced in step S100 after washing with water, alcohol (eg , Methanol) can be filtered and washed, and then dried in a vacuum oven at about 40-50 ° C. As such, by drying the metal carboxylate, when the following primary amine is added, the precursor is easily dissociated, thereby facilitating the bond between the metal carboxylate and the primary amine. Subsequently, step S200 is a step of reacting the metal carboxylate of d-Cso generated in step S100 with the primary amine of C 5 to C 20. As a result of the reaction, C 5 to C at the metal ion site of the metal carboxylate of CrCo. Coordination of the primary amine of 20 to the ligand results in the formation of a metal carboxylate complex of CrC 20 in which the primary amine of C 5 to C 20 is bonded. The carboxylic acid moiety of d to C 20 and the primary amine moiety of C 5 to C 20 of the resulting metal carboxylate complex may improve the dispersion stability of the metal nanoparticles in the metal ink composition in the future, while the mixed ether system in the metal ink composition is improved. The solvent can be excellent in compatibility with the epoxy resin to improve the adhesion characteristics of the thin film circuit pattern.
본 발명의 일례에 따르면, Ag-카르복시산염 [C¾(CH2)8-C00— Ag+]이 올레일아민 (oleylaraine)과 반웅하면, 을레일아민이 리간드로 Ag-카르복시산염의 은 이온에 배위결합되어 하기 화학식 1에 표시된 바 같이, 올레일아민이 결합된 Ag-카르복시산염 착물을 얻을 수 있다. According to an example of the present invention, when Ag-carboxylate [C¾ (CH 2 ) 8 -C00—Ag + ] reacts with oleylaraine, oleylamine is used as a ligand to form Ag-carboxylate. As shown in the following formula (1) by coordinating with silver ions, it is possible to obtain an Ag-carboxylate complex to which oleylamine is bound.
[화학식 1] [Formula 1]
Figure imgf000015_0001
본 발명에서 C5~C20의 1차 아민은 상기 d-Co의 금속 카르복시산염의 해리도를 상승시키는 용매의 역할을 하면서, 상기 금속 카르복시산염의 금속 이온에 배위결합되어 추후 도전성 잉크 조성물 내에서의 금속 나노 입자와 에폭시 수지 간의 상용성을 향상시키는 역할을 한다. 또한, 상기 1차 아민은 추후 금속 잉크 조성물의 열처리 온도에 영향을 미칠 수 있다.
Figure imgf000015_0001
In the present invention, the primary amine of C 5 ~ C 20 serves as a solvent to increase the dissociation degree of the metal carboxylate of the d-Co, and is coordinated to the metal ions of the metal carboxylate, and subsequently metal nanoparticles in the conductive ink composition It serves to improve the compatibility between the particles and the epoxy resin. In addition, the primary amine may later affect the heat treatment temperature of the metal ink composition.
사용 가능한 1차 아민은 (:~(:20의 금속 카르복시산염을 해리시키면서 이와 반웅할 수 있는 것이라면 특별히 제한되지 않으나, Cn¾n+1N¾의 구조를 갖는 화합물 (상기 n은 5 내지 20, 바람직하게는 10 내지 18이다)일 경우, 추후 금속 잉크 조성물 내에서의 금속 나노 입자의 분산 안정성 및 박막 회로 패턴의 접착 특성이 향상되면서, 인쇄된 잉크 조성물이 저은에서 열처리되어 균일한 미세 박막 회로 패턴이 구현될 수 있다. 구체적인 예로는 옥틸아민, 데실아민, 도떼실아민, 및 을레일아민 등이 있는데, 이에 제한되지 않는다. The primary amine that can be used is not particularly limited as long as it can react with dissociating metal carboxylate of (: ~ (: 20) , but a compound having a structure of C n ¾ n + 1 N¾ (wherein n is 5 to 20, In the case of 10 to 18, the dispersion stability of the metal nanoparticles in the metal ink composition and the adhesion property of the thin film circuit pattern are improved, and the printed ink composition is heat-treated at low silver so as to obtain a uniform fine thin film circuit pattern. Specific examples include, but are not limited to octylamine, decylamine, dodecylamine, and oleylamine.
전술한 ~(:20의 금속 카르복시산염 및 C5~C20의 1차 아민의 흔합 비율은 특별히 한정되지 않으나, 1 ~ 2 : 1.8 ~ 3의 몰 비율일 경우,. 금속 카르복시산염꾀 해리도를 증가시켜 금속 카르복시산염과 1차 아민의 결합이 촉진될 수 있다. The aforementioned - (: Primary heunhap ratio of the amines of 20 metal of the carboxylic acid salt and a C 5 ~ C 20 is not particularly limited, one or two: If a molar ratio of 1.8 to 3, by increasing the metal carboxylate yeomkkoe dissociation The binding of the metal carboxylate and the primary amine can be promoted.
이어서, S300 단계에서는 상기 S200 단계에서 얻은 C5~C20의 1차 아민이 결합된 ~(:20의 금속 카르복시산염 착물에 환원제를 첨가하여 금속 나노 입자를 형성한다. 상기 환원제를 C5~C20의 1차 아민이 결합된 d- o의 금속 카르복시산염 착물에 첨가하면, 상기 금속 카르복시산염 착물의 금속 이온이 -금속 원자로 환원되어 금속 입자가 형성된다. 다만, 형성되는 금속 입자는 표면의 불안정으로 인해 서로 웅집되어 웅집체를 형성하려고 하나, 상기 착물의 금속 이온에 결합되어 있던 C5~C20의 1차 아민 및 C广 c20의 카르복실레이트가 금속 입자의 표면에 결합 또는 흡착되어 금속 입자 간의 응집이 차단되면서 금속 입자가 분산되어 나노 사이즈의 금속 입자가 형성된다. 이때, 상기 C5~C20의 1차 아민 및 (:广(20의 카르복실레이트는 각각 금속 코어의 표면에 결합 또는 흡착되는 리간드로 작용하여, 금속 나노 입자를 캡핑한다. Subsequently, in step S300, the primary amine of C 5 to C 20 obtained in step S200 is A reducing agent is added to the combined metal carboxylate complex of ˜ (: 20 to form metal nanoparticles. When the reducing agent is added to the metal carboxylate complex of d-o to which the primary amine of C 5 to C 20 is bonded, The metal ions of the metal carboxylate complex are reduced to -metal atoms to form metal particles, except that the formed metal particles are condensed with each other due to surface instability to form a globule, but are bonded to the metal ions of the complex. The primary amines of C 5 to C 20 and the carboxylates of C 广 c 20 are bonded or adsorbed on the surface of the metal particles to block aggregation between the metal particles, thereby dispersing the metal particles to form nano-sized metal particles. At this time, the primary amine of C 5 ~ C 20 and (: carboxylate of 20 (carboxylate of 20 each acts as a ligand that is bonded or adsorbed on the surface of the metal core, the metal nanoparticles Capping
본 발명에서 사용 가능한 환원제로는 특별히 한정되지 않으며, 비제한적인 예로는 수소, 요오드화수소, 황화수소, 수소화알루미늄 등의 수소 화합물; 일산화탄소, 이산화항 등의 저급 산화물; 아황산염, 황화나트륨 등의 저급 산소산 염; 알칼리 금속, 마그네슘, 아연 등과 같이 전기적 양성이 큰 양이온이.되기 쉬운 금속; 알데히드, 당유, 포름산, 옥살산 등의 산화 정도가 낮은 유기 화합물, 히드라진, 페닐히드라진, 1-아미노 -4-메틸 피페라진 등의 아민계 화합물 등이 있고, 바람직하게는 히드라진, 페닐히드라진, 1-아미노 -4- 메틸 피페라진 등의 아민계 화합물이 있다. 이들은 단독으로 또는 2종 이상이 혼합되어 사용될 수 있다. The reducing agent usable in the present invention is not particularly limited, and non-limiting examples include hydrogen compounds such as hydrogen, hydrogen iodide, hydrogen sulfide and aluminum hydride; Lower oxides such as carbon monoxide and sulfur dioxide; Lower oxygen acid salts such as sulfite and sodium sulfide; The electrically-positive large cations such as alkali metals, magnesium and zinc. Prone metal; Organic compounds having a low degree of oxidation such as aldehyde, sugar oil, formic acid, oxalic acid, amine compounds such as hydrazine, phenylhydrazine and 1-amino-4-methyl piperazine, and the like, preferably hydrazine, phenylhydrazine and 1-amino Amine compounds such as 4-methyl piperazine. These may be used alone or in combination of two or more thereof.
이러한 환원제의 함량은 특별히 한정되지 않으며, 금속 나노 입자의 크기와 수율을 고려하여 조절한다. 다만, 상기 환원제의 함량이 상기 금속 카르복시산염 착물 내 금속을 기준으로 약 1 내지 1.2 당량비일 경우, 금속 나노 입자의 수득량이 향상되면서, 금속 나노 입자의 크기가 약 2 내지 8 ran로 조절될 수 있다. 한편, 선택적으로 상기 S300 단계에서 생성된 금속 나노 입자를 알코을에 담금 세척한 다음, 여과하는 단계를 더 포함할 수 있다. 상기 S300 단계의 금속 나노 입자를 알코올에 담금 세척하면, 잔류하는 아민계 화합물, 카르복시산, 환원제가 제거되면서 금속 나노 입자가 침전될 수 있다. 이후, 침전된 금속 나노 입자는 원심 분리 과정과 같은 여과 과정을 통해 수득될 수 있다. The content of such a reducing agent is not particularly limited, and is adjusted in consideration of the size and yield of the metal nanoparticles. However, when the content of the reducing agent is about 1 to 1.2 equivalent ratio based on the metal in the metal carboxylate complex, while the yield of the metal nanoparticles is improved, the size of the metal nanoparticles can be adjusted to about 2 to 8 ran. have. On the other hand, optionally immersed in alcohol to wash the metal nanoparticles produced in step S300, and may further comprise the step of filtering. When the metal nanoparticles of step S300 are immersed in alcohol, the metal nanoparticles may be precipitated while the remaining amine compound, carboxylic acid, and reducing agent are removed. Thereafter, the precipitated metal nanoparticles may be obtained through a filtration process such as centrifugation.
전술한 바와 같이 제조된 금속 나노 입자는 하기 잉크 조성물의 성분들과 흔합시, 건조되지 않은 상태로 흔합되는 것이 바람직하다. 만약, 건조된 금속 나노 입자를 하기 성분들과 흔합하게 되면, 금소 나노 입자들간의 웅집이 일어나 잉크 조성물의 분산 안정성이 저하될 수 있으며, 고농도의 전도성 잉크를 수득하는데 어려움이 따른다.  It is preferable that the metal nanoparticles prepared as described above are mixed with the components of the ink composition below and not dried. If the dried metal nanoparticles are mixed with the following components, spacing between the metal nanoparticles may occur, which may lower dispersion stability of the ink composition, and thus, it may be difficult to obtain a high concentration of conductive ink.
(b) 무극성 유기 용매  (b) nonpolar organic solvent
본 발명의 저점도 금속 잉크 조성물은 무극성 유기 용매를 포함한다. 상기 무극성 유기 용매는 금속 나노 입자를 분산시 잉크 조성물의 분산 안정성을 향상시킬 수 있으며, 나아가 잉크 조성물의 점도를 조절할 수 있다. 이러한 무극성 유기 용매의 예로는 탄소수가 5 내지 20인 탄화수소계 용매, 또는 탄수소가 6 내지 15인 고비점 알코올계 용매 (비점이 약 150 °C 이상)가 있는데, 이에 한정되지 않는다. 여기서, 고비점 알코올계 용매는 탄소수가 6 내지 15로 큼에 따라 분자량이 커져 물에 대한 용해도가 떨어져 무극성이 가까운 성질을 나타낸다. 구체적으로, 상기 탄소수가 5 내지 20인 탄화수소계 용매의 비제한적인 예로는 를루엔, 자일렌, 핵산, 테트라데칸, 옥타데센 등이 있고, 상기 탄수소가 6 내지 15인 고비점 알코올계 용매의 비제한적인 예로는 헵탄을, 옥탄을, 2-에틸 -1-핵산을, 데칸을, 도데칸올 등이 있는데, 옥탄을, 또는 2-에틸 -1-핵산을이 바람직하며, 이들은 단독으로 또는 2종 이상이 흔합되어 사용될 수 있다. 상기 무극성 유기 용매의 함량은 특별히 제한되지 않으며, 잉크 조성물의 총량이 100 중량¾가 되도록 조절하는 잔량이다. The low viscosity metal ink composition of the present invention comprises a nonpolar organic solvent. The nonpolar organic solvent may improve the dispersion stability of the ink composition when the metal nanoparticles are dispersed, and may further control the viscosity of the ink composition. Examples of such nonpolar organic solvents include hydrocarbon solvents having 5 to 20 carbon atoms, or high boiling alcohol solvents having boiling points of 6 to 15 carbon atoms (boiling points of about 150 ° C. or more), but are not limited thereto. Here, the high-boiling alcohol-based solvent has a molecular weight increases as the carbon number is 6 to 15, so that the solubility in water is lowered to exhibit a nonpolar nature. Specifically, non-limiting examples of the hydrocarbon solvent having 5 to 20 carbon atoms include toluene, xylene, nucleic acid, tetradecane, octadecene and the like, and the high boiling point alcohol solvent having 6 to 15 carbon atoms. Non-limiting examples include heptane, octane, 2-ethyl-1-nucleic acid, decane, dodecanol, and the like, with octane or 2-ethyl-1-nucleic acid being preferred. More than one species may be used in combination. The content of the nonpolar organic solvent is not particularly limited, and is a residual amount adjusted so that the total amount of the ink composition is 100 weight ¾.
다만, 상기 무극성 유기 용매로 를루엔, 자일렌 등의 탄화수소계 용매를 사용할 경우, 잉크 조성물 내 에폭시 수지의 분산성이 저하될 수 있다. 따라서, 금속 나노 입자를 분산시킴과 동시에 에폭시 수지를 안정적으로 분산시키기 위해서, 본 발명의 저점도 금속 잉크 조성물은 무극성 유기 용매와 함께 에폭시 수지를 분산시킬 수 있는 하기 방향족 에테르계 용매 및 지방족 에테르계 용매를 함유하는 흔합 에테르계 용매를 포함한다. 이때, 나노입자를 분산시키기 위한 무극성 유기 용매와 에폭시 수지를 분산시키기 위한 흔합 에테르계 용매의 흔합 비율은 특별히 한정되지 않으나, 무극성 유기 용매 : 흔합 에테르계 용매 = 30 ~ 70 : 70 ~ 30 중량 비율일 경우, 금속 나노 입자와 에폭시 수지의 분산 안정성이 향상되면서, 금속 잉크 조성물의 점도가 5 내지 500 cps로 조절되기 때문에, 본 발명의 저점도 금속 잉크 조성물은 잉크젯 프린팅 (ink-jet printing)이나 를-투- 를 프린팅 (rolI-to-roU printing)에 적용될 수 있다.  However, when a hydrocarbon-based solvent such as toluene and xylene is used as the nonpolar organic solvent, dispersibility of the epoxy resin in the ink composition may be reduced. Therefore, in order to disperse the metal nanoparticles and to stably disperse the epoxy resin, the low viscosity metal ink composition of the present invention has the following aromatic ether solvents and aliphatic ether solvents capable of dispersing the epoxy resin together with a nonpolar organic solvent. It includes a mixed ether solvent containing. At this time, the mixing ratio of the nonpolar organic solvent for dispersing the nanoparticles and the mixed ether solvent for dispersing the epoxy resin is not particularly limited, but the nonpolar organic solvent: The mixed ether solvent = 30 to 70: 70 to 30 weight ratio In this case, while the dispersion stability of the metal nanoparticles and the epoxy resin is improved, since the viscosity of the metal ink composition is adjusted to 5 to 500 cps, the low viscosity metal ink composition of the present invention is ink-jet printing or ink-jet printing. Can be applied to rolI-to-roU printing.
(c) 에폭시 수지  (c) epoxy resin
본 발명의 저점도 금속 잉크 조성물은 에폭시 수지를 포함한다. 상기 에폭시 수지는 바인더 수지로서, 상기 금속 나노 입자와의 상용성이 우수하여 박막 회로 패턴과 기관과의 접착력을 향상시키는 역할을 한다.  The low viscosity metal ink composition of the present invention comprises an epoxy resin. The epoxy resin is a binder resin, excellent compatibility with the metal nanoparticles serves to improve the adhesion between the thin film circuit pattern and the engine.
― 상기 에폭시 수지의 예로는 당 업계에 알려진 통상적인 에폭시 수지라면 제한 없이 사용할 수 있으며, 1분자 내에 에폭시기가 2개 이상 존재하는 것이 바람직하다. Examples of the epoxy resin can be used without limitation as long as it is a conventional epoxy resin known in the art, it is preferable that two or more epoxy groups are present in one molecule.
사용 가능한 에폭시 수지의 비제한적인 예를 들면, 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지., 비스페놀 S형 에폭시 수지, 노볼락형 에폭시 수지, 난연성 에폭시 수지, 난연성 에폭시 수지 , 사이클로알리파틱 에폭시 수지, 고무 변성 에폭시 수지, 알킬페놀 노볼락형 에폭시 수지, 바이페닐형 에폭시 수지, 아랄킬 (Aralkyl)형 에폭시 수지, 나프를 (Naphthol )형 에폭시 수지, 디시클로펜타디엔형 에폭시 수지 등이 있는데, 아들은 단독으로 또는 2종 이상 혼합되어 사용될 수 있다. Non-limiting examples of usable epoxy resins include bisphenol A epoxy resins, bisphenol F epoxy resins, bisphenol S epoxy resins, novolac epoxy resins, flame retardant epoxy resins, flame retardant epoxy resins and cycloaliphatic epoxy resins. , Rubber modified epoxy resin, alkylphenol novolak type epoxy resin, biphenyl type epoxy resin, aralkyl type epoxy resin, naphthol type epoxy resin, dicyclopentadiene type epoxy resin, etc. It may be used alone or in combination of two or more.
보다 구체적인 예를 들면, 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지, 나프탈렌형 에폭시 수지, 안트라센ᅳ 에폭시 수지, 비페닐형 에폭시 수지, 테트라메틸 비페닐형 에폭시 수지, 페놀 노볼락형 에폭시 수지, 크레졸 노볼락형 에폭시 수지, 비스페놀 A 노볼락형 에폭시 수지, 비스페놀 S 노블탁형 에폭시 수지, 비페닐 노볼락형 에폭시 수지, 나프를 노볼락형 에폭시 수지, 나프를 페놀 공축 노볼락형 에폭시 수지, 나프를 코레졸 공축 노블락형 에폭시 수지 , 방향족 탄화수소 포름알데히드 수지 변성 페놀 수지형 에폭시 수지, 트리페닐 메탄형 에폭시 수지, 테트라 페닐에탄형 에폭시 수지, 디시클로펜타디엔 페놀 부가반웅형 에폭시 수지, 페놀 아랄킬형 에폭시 수지, 다관능성 페놀 수지, 나프를 아랄킬형 에폭시 수지 등이 있다. 이때 전술한 에폭시 수지를 단독 사용하거나 또는 2종 이상 흔용할 수도 있다. 상기 에폭시 수지의 에폭시 당량은 특별히 한정되지 않으나, 기판과 회로 패턴과의 접착 특성을 보다 더 향상시키기 위해서, 약 1,000 내지 3,000 g/eq인 것이 바람직하다. 이때, 에폭시 당량이 상이한 2종 이상의 에폭시 수지를 흔용하여 사용할 수 있다.  More specific examples include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, naphthalene type epoxy resins, anthracene type epoxy resins, biphenyl type epoxy resins, tetramethyl biphenyl type epoxy resins, and phenol furnaces. Vololac epoxy resin, cresol novolac epoxy resin, bisphenol A novolac epoxy resin, bisphenol S nobletack epoxy resin, biphenyl novolac epoxy resin, nap to novolac epoxy resin, nap to phenol coaxial novolac Epoxy Resin, Naphre Corresol Coaxial Noblock Epoxy Resin, Aromatic Hydrocarbon Formaldehyde Resin Modified Phenolic Resin Epoxy Resin, Triphenyl Methane Epoxy Resin, Tetraphenylethane Epoxy Resin, Dicyclopentadiene Phenolic Addition Semi-Epoxy Resin , Phenol aralkyl type epoxy resin, polyfunctional phenolic resin, The nap includes an aralkyl type epoxy resin. In this case, the above-mentioned epoxy resins may be used alone or in combination of two or more thereof. Although the epoxy equivalent of the said epoxy resin is not specifically limited, In order to further improve the adhesive characteristic of a board | substrate and a circuit pattern, it is preferable that it is about 1,000-3,000 g / eq. At this time, two or more types of epoxy resins having different epoxy equivalents can be commonly used.
이러한 에폭시 수지의 함량은 특별히 제한되지 않으나, 저점도 금속 잉크 조성물의 전체 중량을 기준으로 약 40 내지 80 중량 %일 경우, 박막 회로 패턴과 기판과의 접착 특성이 향상되면서 , 약 3.2E— 5 내지 5.2E— 5 Ω - cm 정도로 낮은 비저항을 갖는 박막 회로 패턴을 구현할 수 있어 바람직하다. But this is not the content of the epoxy resin is not particularly limited, and a low viscosity when from about 40 to 80% by weight, based on the total weight of the metallic ink composition, as well as improving the adhesive property of the thin film circuit pattern and the substrate, from about 5 to about 3.2E- It is desirable to realize thin film circuit patterns with specific resistance as low as 5.2E— 5 Ω-cm.
(d) 경화제 본 발명에 따른 저점도 금속 잉크 조성물은 경화제를 포함한다. 상기 경화제는 에폭시 수지와 경화반웅이 진행될 수 있는 당 업계에 알려진 통상적인 경화제라면 제한 없이 사용할 수 있으며, 사용하고자 하는 에폭시 수지의 종류에 따라 적절하게 선택하여 사용할 수 있다 . (d) curing agent The low viscosity metal ink composition according to the present invention comprises a curing agent. The curing agent may be used without limitation as long as it is a conventional curing agent known in the art that the epoxy resin and the curing reaction can proceed, and may be appropriately selected according to the type of epoxy resin to be used.
상기 경화제의 예로는 아민 (amine), 지방족 아민 (Aliphatic amine), 변성 지방족 아민 (Modi fide Aliphatic amine), 방향족 아민 (Aromatic amine)과 같은 아민계 경화제, 산무수물계 (Phthalic Anhydride) 경화제, 폴리아미드 수지 (Polyamide) , 다황화물 수지 (Polysulf ide), 아민 착체 (Amine Com lex), 페놀수지 (Phenol), 다이시아나미드 (Dicyanamide) 등이 있다.  Examples of the curing agent include amines, aliphatic amines, modified aliphatic amines, amine-based curing agents such as aromatic amines, acid anhydride curing agents, and polyamides. Resins (Polyamide), polysulfide resin (Polysulfide), amine complex (Amine Com lex), phenol resin (Phenol), dicyyanamide (Dicyanamide) and the like.
이러한 경화제의 함량은 특별히 한정되지 않으며, 에폭시 수지의 함량에 따라 적절하게 조절될 수 있다. 예를 들어, 경화제의 함량은 금속 잉크 조성물의 전체 중량을 기준으로 약 0.1 내지 3 중량 %일 수 있다. 다만, 박막 회로 패턴의 내열성 및 접착강도를 더 향상시키기 위해, 경화제와 에폭시 수지를 1 : 1000 내지 3000 의 당량 비율로 흔합하여 사용하는 것이 바람직하다.  The content of such a curing agent is not particularly limited and may be appropriately adjusted according to the content of the epoxy resin. For example, the content of the curing agent may be about 0.1 to 3% by weight based on the total weight of the metal ink composition. However, in order to further improve the heat resistance and adhesive strength of the thin film circuit pattern, it is preferable to mix and use a curing agent and an epoxy resin in an equivalent ratio of 1: 1000 to 3000.
(e) 방향족 에테르계 용매 및 지방족 에테르계 용매를 함유하는 흔합 에테르계 용매  (e) a mixed ether solvent containing an aromatic ether solvent and an aliphatic ether solvent
본 발명에 따른 저점도 금속 잉크 조성물은 방향족 에테르계 용매 및 지방족 에테르계 용매가 흔합되어 있는 에테르계 용매 (이하, '흔합 에테르계 용매' )를 포함한다. 상기 흔합 에테르계 용매는 금속 나노 입자를 분산시킴과 동시에 에폭시 수지를 분산시켜 잉크 조성물의 분산 안정성을 향상시킬 수 있으며, 나아가 잉크 조성물의 점도를 조절할 수 있다.  The low viscosity metal ink composition according to the present invention includes an ether solvent (hereinafter, 'a mixed ether solvent') in which an aromatic ether solvent and an aliphatic ether solvent are mixed. The mixed ether solvent may disperse the metal nanoparticles and at the same time disperse the epoxy resin to improve dispersion stability of the ink composition and further control the viscosity of the ink composition.
상기 방향족 에테르계 용매의 비제한적인 예로는 d-Cs의 알콕시기를 함유하는 방향족 에테르계 용매 등이 있고, 구체적인 예로는 메록시벤젠 (Anisole) 등이 있는데, 이에 한정되지 않는다. 또, 상기 지방족 에테르계 용매의 비제한적인 예로는 d~C6의 알콕시기를 함유하는 지방족 에테르계 용매가 있고, 구체적인 예로는 디에틸렌 글리콜 모노부틸 에테르 아세테이트 (diethylene glycol monobutyl ether acetate, BCA), 디메틸에테르, 디에틸에테르, 디부틸에테르, 디프로필에테르, 디이소프로필 에테르, 디 -n-프로필 에테르, 디 -n-부틸 에테르 등이 있는데, 이께 한정되지 않는다. Non-limiting examples of the aromatic ether solvent include an aromatic ether solvent containing an alkoxy group of d-Cs, and specific examples thereof include methoxybenzene (Anisole), but are not limited thereto. In addition, non-limiting examples of the aliphatic ether solvent include an aliphatic ether solvent containing an alkoxy group of d ~ C 6 , specific examples are diethylene glycol monobutyl ether acetate (BCA), dimethyl Ether, diethyl ether, dibutyl ether, dipropyl ether, diisopropyl ether, di-n-propyl ether, di-n-butyl ether, and the like, but are not limited thereto.
상기 흔합 에테르계 용매의 함량은 특별히 한정되지 않으나, 금속 잉크 조성물의 전체 중량을 기준으로 약 20 내지 25 중량 %일 경우, 에폭시 수지의 분산성이 더 향상되면서, 잉크 조성물의 점도가 약 5 내지 500 cps로 조절될 수 있다.  Although the content of the mixed ether solvent is not particularly limited, when the content is about 20 to 25% by weight based on the total weight of the metal ink composition, the dispersibility of the epoxy resin is further improved, and the viscosity of the ink composition is about 5 to 500. cps can be adjusted.
이때, 상기 방향족 에테르계 용매와 지방족 에테르계 용매의 흔합 비율은 특별히 제한되지 않으나, 6 ~ 8 : 4 ~ 2 중량 비율일 경우, 금속 나노 입자 및 에폭시 수지의 분산성이 모두 더 향상되어 잉크 조성물의 분산 안정성이 더 향상될 수 있다.  At this time, the mixing ratio of the aromatic ether solvent and the aliphatic ether solvent is not particularly limited, but in the case of 6 to 8: 4 to 2 weight ratio, both dispersibility of the metal nanoparticles and the epoxy resin is further improved to Dispersion stability can be further improved.
(f) 분산제  (f) dispersants
본 발명에 따른 저점도 금속 잉크 조성물은 분산제를 포함한다. 상기 분산제가 포함됨으로써, 금속 나노 입자와 에폭시 수지의 분산 안정성이 향상되어 균일한 박막 회로 패턴을 형성할 수 있다. 또한, 분산제는 금속 잉크 조성물의 보관시 금속 나노 입자끼리 응집되는 것을 방지하여 잉크 조성물의 /저장 안정성을 향상시킬 수 있다. The low viscosity metal ink composition according to the present invention comprises a dispersant. By including the dispersant, the dispersion stability of the metal nanoparticles and the epoxy resin may be improved to form a uniform thin film circuit pattern. Further, the dispersant may enhance the ink composition of / storage stability by preventing the agglomeration among the metal nanoparticles during storage of the metallic ink composition.
상기 분산제의 예로는 당 업계에 알려진 통상적인 분산제를 제한없이 사용할 수 있으며, 일례로 고분자형 혹은 저분자형 습윤 분산제로서, 지방산계 또는 인산 에스테르계 화합물 등이 있으며, 구체적으로 DISPERBYK-110, DISPERBYK-111, DISPERBYK-102등의 인산 에스테르계 화합물이 있다. 이러한 분산제의 함량은 특별히 한정되지 않으나, 금속 잉크 조성물에 약 1 내지 5 중량 ¾일 경우, 금속 나노 입자의 분산 안정성 및 저장 안정성이 더 향상될 수 있다, Examples of the dispersant may be any conventional dispersant known in the art without limitation, and examples thereof include a polymer or low molecular weight wet dispersant, and include fatty acid or phosphate ester compounds, and specifically, DISPERBYK-110 and DISPERBYK-111. And phosphate ester compounds such as DISPERBYK-102. The content of the dispersant is not particularly limited, but when the metal ink composition is about 1 to 5 weight ¾, dispersion stability and storage stability of the metal nanoparticles may be further improved.
(g) 경화 촉진제  (g) curing accelerator
본 발명의 저점도 금속 잉크 조성물은 선택적으로 경화 촉진제를 더 포함할 수 있다. 상기 경화 촉진제는 에폭시 수지의 경화 속도를 적절히 제어할 수 있는 물질이나, 경화제의 속도를 제어할 수 있는 물질이라면 특별히 한정되지 않는다.  The low viscosity metal ink composition of the present invention may optionally further comprise a curing accelerator. The curing accelerator is not particularly limited as long as it is a substance capable of appropriately controlling the curing rate of the epoxy resin or a substance capable of controlling the rate of the curing agent.
상기 경화촉진제의 예로는 이미다졸계 경화촉진제 및 이들의 유도체를 사용할 수 있다.  Examples of the curing accelerators may include imidazole-based curing accelerators and derivatives thereof.
상기 이미다졸계 경화촉진제의 비제한적인 예를 들면, 1-메틸 이미다졸, 2-메틸 이미다졸, 2-에틸이미다졸, 2-데실이미다졸, 2ᅳ핵틸이미다졸, 2- 이소프로필이미다졸 2-운데실 이미다졸, 2-헵탄데실 이미다졸, 2ᅳ에틸 -4-메틸 이미다졸, 2-페닐이미다졸, 2-페닐— 4-메틸 이미다졸, 1-벤질 -2-메틸 이미다졸, 1-벤질 -2-페닐 이미다졸, 1-시아노에틸 -2-메틸이미다졸, 1-시아노에틸 -2-에틸 -4- 메틸이미다졸, 1-시아노에틸 -2-운데실이미다졸, 1-시아노에틸 -2-페닐이미다졸, 1-시아노에틸 -2-운데실-이미다졸 트리멜리테이트, 1-시아노에틸 -2-페닐 이미다졸 트리멜리테이트, 2,4-디아미노 -6-(2'-메틸이미다졸 에틸 -S-트리아진, 2,4- 디아미노 -6-(2'에틸 -4-메틸이미다졸 -(1'))_에틸 -S-트리아진, 2, 4ᅳ디아미노ᅳ 6- (2'-운데실이미다졸 -(1'))-에틸ᅳ s-트리아진, 2-페실 -4,5- 디하이드톡시메틸이미다졸, 2-페실 -4-메틸 -5-하이드록시메틸이미다졸, 2-페실 -4- 벤질ᅳ 5-하이드톡시메틸이미다졸, 4,4'-메틸렌 -비스 -(2-에틸 -5-메틸이미다졸), 2- 아미노에틸 2-메틸 이口ᅵ다졸, 1-시아노에틸 -2-페닐 -4, 5-디 (시아노에록시 메틸)이미다졸, 1-도데실 -2-메틸 -3-벤질이미다졸리늄클로라이드, 이미다졸 함유 폴리아미드, 또는 이들의 흔합물 등이 있다. 그 외, 제 3급 아민, 유기금속화합물, 유기인화합물, 붕소화합물 등을 추가로 사용할 수 있다. Non-limiting examples of the above imidazole series curing accelerators include 1-methyl imidazole, 2-methyl imidazole, 2-ethyl imidazole, 2-decylimidazole, 2 ′ nucleotylimidazole and 2-iso. Propylimidazole 2-Undecyl imidazole, 2-heptanedyl imidazole, 2 ᅳ ethyl-4-methyl imidazole, 2-phenylimidazole, 2-phenyl- 4-methyl imidazole, 1-benzyl-2 -Methyl imidazole, 1-benzyl-2-phenyl imidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl 2-Undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecyl-imidazole trimellitate, 1-cyanoethyl-2-phenyl imidazole Trimellitate, 2,4-diamino-6- (2'-methylimidazole ethyl-S-triazine, 2,4-diamino-6- (2'ethyl-4-methylimidazole- ( 1 ')) _ Ethyl-S-triazine, 2,4'diamino ᅳ 6- (2'-undecylimidazole- (1'))-ethyl ᅳ s- Triazine, 2-Pesyl-4,5-dihydroxymethylimidazole, 2-Pesyl-4-methyl-5-hydroxymethylimidazole, 2-Pesyl-4-benzyl ᅳ 5-hydroxymethyl Midazole, 4,4'-methylene-bis- (2-ethyl-5-methylimidazole), 2-aminoethyl 2-methyl imideazole, 1-cyanoethyl-2-phenyl-4,5 -Di (cyanoethoxy methyl) imidazole, containing 1-dodecyl-2-methyl-3-benzylimidazolinium chloride, imidazole Polyamides, or combinations thereof. In addition, tertiary amines, organometallic compounds, organophosphorus compounds, boron compounds and the like can be further used.
상기 경화촉진제의 함량은 특별히 한정되지 않으나, 금속 잉크 조성물의 전체 중량을 기준으로 약 0.01 ~ 10 중량 % 범위로 포함될 、수 있으며, 바람직하게는 약 0.01 내지 5 중량 ¾ 범위로 포함될 수 있고, 보다 바람직하게는 약 0.01 내지 0.5 중량 % 범위로 포함될 수 있다. 상기 경화촉진제의 함량이 전술한 범위에 해당되는 경우, 잉크 조성물의 경화가 저온에서 단시간에 이루어질 수 있으며, 또한 잉크 조성물의 보전 안전성이 양호하다.  The content of the curing accelerator is not particularly limited, but may be included in the range of about 0.01 to 10% by weight based on the total weight of the metal ink composition, preferably may be included in the range of about 0.01 to 5 weight ¾, more preferably Preferably in the range of about 0.01 to 0.5% by weight. When the content of the curing accelerator falls within the above-mentioned range, curing of the ink composition can be performed at a low temperature for a short time, and the integrity of the ink composition is good.
, 한편, 본 발명의 저점도 금속 잉크 조성물은 다양한 방법을 통해 제조될 수 있다.  On the other hand, the low viscosity metal ink composition of the present invention can be prepared through various methods.
본 발명의 일례에 따르면, ~(:20의 카르복실레이트계 리간드 및 C5~C20의 1차 아민계 리간드에 의해 캡핑된 금속 나노 입자, 무극성 유기 용매, 에폭시 수지, 경화제, 에테르계 유기 용매, 및 분산제를 흔합한 다음 분산시켜 제조될 수 있다. 다만 상기 조성물의 제조시, 상기 금속 나노 입자가 건조된 상태일 경우, 입자간의 응집이 일어나 분산 안정성이 저하될 수 있어 금속 나노입자의 고농도화가 어렵기 때문에, 상기 금속 나노 입자는 비 (非) -건조된 상태로 흔합되는 것이 바람직하다. According to one embodiment of the present invention, metal nanoparticles capped by a carboxylate ligand of ~ (: 20) and a primary amine ligand of C 5 ~ C 20 , an apolar organic solvent, an epoxy resin, a curing agent, an ether organic solvent It may be prepared by mixing and dispersing the dispersing agent, but when the metal nanoparticles are in a dried state, agglomeration between particles may occur and the dispersion stability may be lowered, resulting in high concentration of the metal nanoparticles. Because of the difficulty, the metal nanoparticles are preferably mixed in a non-dried state.
전술한 본 발명의 금속 잉크 조성물은 기판의 표면 처리 공정 없이 기판에 인쇄된 후 열처리됨으로써, 기판과의 접착 특성이 우수하고 전도도가 높은 미세 박막 회로 패턴을 구현할 수 있다.  The metal ink composition of the present invention described above is heat-treated after being printed on a substrate without a surface treatment process of the substrate, thereby realizing a fine thin film circuit pattern having excellent adhesive properties and high conductivity with the substrate.
구체적으로, 기판에 인쇄된 금속 잉크 조성물은 열처리시 금속 나노 입자간의 용융 및 2차 재결합됨과 동시에 에폭시 수지의 경화로 인해서 기판과 기판에 형성되는 박막 회로 패턴과의 접착력이 향상될 수 있다. 다만, 상기 열처리시 금속 나노 입자간의 2차 재결합이 일어나지 않을 경우, 나노 입자의 높은 비표면적으로 인해 기판과의 접촉 면적이 작아지기 때문에, 박막 회로 패턴이 제대로 형성되지 못할 수 있다. 따라서, 상기 열처리시 온도는 금속 나노 입자를 캡핑하고 있는 1차 아민의 열분해 온도 및 에폭시 수지의 경화 조건을 고려하여 조절하되, 금속 나노 입자의 용융 및 2차 재결합이 일어나는 온도 범위로 조절하는 것이 바람직하다. 예를 들어, 상기 열처리 온도가 약 200 내지 250 °C일 경우, 금속 나노 입자의 용융 및 2차 재결합으로 인해 생성되는 결정립의 크기가 커져 기판과의 접촉 면적이 증가되면서, 에폭시 수지가 경화되어 기판과 박막 회로 패턴 간의 접착 특성이 더 향상될 수 있다. 이때, 기판 (예컨대, PI 기판)에 대한 회로 패턴의 접착력은 ASTM D 3359에 따른 Cross- Cut 테스트에서 5B 이상 일 수 있다. Specifically, the metal ink composition printed on the substrate may improve the adhesion between the substrate and the thin film circuit pattern formed on the substrate due to the curing of the epoxy resin and at the same time the melt and secondary recombination between the metal nanoparticles during heat treatment. However, if the secondary recombination between the metal nanoparticles does not occur during the heat treatment, Because of the high specific surface area, the contact area with the substrate is reduced, so that the thin film circuit pattern may not be formed properly. Therefore, the temperature during the heat treatment is adjusted in consideration of the thermal decomposition temperature of the primary amine capping the metal nanoparticles and the curing conditions of the epoxy resin, it is preferable to adjust the temperature range to the melting and secondary recombination of the metal nanoparticles. Do. For example, when the heat treatment temperature is about 200 to 250 ° C, the size of crystal grains generated due to melting and secondary recombination of the metal nanoparticles is increased to increase the contact area with the substrate, thereby curing the epoxy resin substrate And the adhesive property between the thin film circuit pattern can be further improved. At this time, the adhesion of the circuit pattern to the substrate (eg, PI substrate) may be 5B or more in the cross-cut test according to ASTM D 3359.
상기와 같이 본 발명의 저점도 금속 잉크 조성물은 저온에서 소성될 수 있다. 따라서, 상기 금속 잉크 조성물은 다양한 소재의 기관에 적용될 수 있다. 사용 가능한 기판의 예로는 유리 기판, 고분자 기판 등이 있는데, 이에 한정되지 않는다. 바람직하게는 상기 금속 잉크 조성물은 폴리이미드 (PI) 기판 소재에 적용될 수 있다.  As described above, the low viscosity metal ink composition of the present invention may be fired at a low temperature. Thus, the metal ink composition can be applied to organs of various materials. Examples of substrates that can be used include glass substrates and polymer substrates, but are not limited thereto. Preferably the metal ink composition can be applied to a polyimide (PI) substrate material.
또, 상기 금속 잉크 조성물의 점도는 에폭시 수지의 종류, 무극성 유기 용매와 에테르계 용매의 사용량에 따라 조절될 수 있으며, 예를 들어 약 5 내지 500 cps일 수 있다. 본 발명의 일례에 따르면, 상기 금속 잉크 조성물이 잉크젯 프린팅에 사용될 경우, 상기 조성물의 점도는 약 5 내지 15 cps로 조절될 수 있다.  In addition, the viscosity of the metal ink composition may be adjusted according to the type of epoxy resin, the amount of the nonpolar organic solvent and the ether solvent, and may be, for example, about 5 to 500 cps. According to an example of the present invention, when the metal ink composition is used for inkjet printing, the viscosity of the composition may be adjusted to about 5 to 15 cps.
또한, 상기 금속 잉크 조성물은 마이크로 그라비어, 슬롯다이 등의 를투를 공정 (roll-to-roll process)이나 잉크젯 등의 코팅 공정을 통해 패턴을 형성한 다음, 약 200 내지 250 °C의 열처리 공정을 거치면, 폴리이미드 기판과의 접착력이 ASTM D 3359에 따른 Cross-Cut 테스트에서 5B 이상을 유지하면서, 비저항이 약 3.2E— 5 내지 5.2E5 Ω · cm 정도인 박막 회로 패턴을 형성할 수 있다. 한편, 본 발명은 전술한 저점도 금속 잉크 조성물을 이용하여 제조된 인쇄회로기판을 제공한다. 이때, 상기 저점도 금속 잉크 조성물은 기판 상에 회로층을 형성하는데, 상기 회로층은 기판과의 접착력이 우수하면서, 전기 전도성이 높다. In addition, the metal ink composition may be formed through a roll-to-roll process such as micro gravure, a slot die, or a coating process such as inkjet, and then subjected to a heat treatment of about 200 to 250 ° C. While maintaining adhesion to polyimide substrates of at least 5B in cross-cut tests according to ASTM D 3359 A thin film circuit pattern having a specific resistance of about 3.2E— 5 to 5.2E 5 Ω · cm may be formed. On the other hand, the present invention provides a printed circuit board manufactured using the low viscosity metal ink composition described above. In this case, the low-viscosity metal ink composition forms a circuit layer on the substrate, the circuit layer is excellent in adhesion to the substrate, and has high electrical conductivity.
상기 금속 잉크 조성물로 회로층을 형성하는 방법은 특별히 제한되지 않는다. 예를 들면, 마이크로 그라비어, 슬롯다이 등의 롤투롤 공정 (roll-to- roll process), 스크린 방식, 잉크곗 프린팅, 스프레이 코팅 등이 있는데, 이에 한정되지 않는다. 이러한 방법에 의해 회로층 형성시, 형성 초건은 당 업계에 알려진 조건에 따라 조절한다. 본 발명의 일례에 따르면, 상기 저점도 잉크 조성물을 마이크로 그라비어 코팅을 통해 폴리이미드 기판에 미세 패턴을 형성하거나 또는 전면 코팅한 다음, 약 200 내지 250 °C에서 열처리하여 기판에 회로층을 형성할 수 있다. The method of forming a circuit layer with the said metal ink composition is not specifically limited. For example, there are a roll-to-roll process such as micro gravure and slot die, a screen method, inkjet printing, spray coating, and the like, but are not limited thereto. In forming the circuit layer by this method, the forming initial condition is adjusted according to the conditions known in the art. According to an example of the present invention, the low-viscosity ink composition may be formed on the polyimide substrate through a microgravure coating or finely coated on the polyimide substrate, and then heat-treated at about 200 to 250 ° C. to form a circuit layer on the substrate. have.
본 발명에서 사용 가능한 기판은 당 업계에 알려진 기판이라면 특별히 한정되지 않으며, 전술한 바와 같이 상기 저점도 금속 잉크 조성물은 저온에서 소성될 수 있기 때문에, 유리 기판뿐만 아니라, 폴리이미드 (PI), PEN 필름 등과 같은 고분자 기판도사용될 수 있다. 이하, 실시예, 비교예 및 실험예를 통하여 본 발명을 더욱 상세히 설명한다. 다만, 하기 실시예, 비교예 및 실험예는 본 발명을 예시하기 위한 것이며, 이들에 의하여 본 발명의 범위가 한정되는 것은 아니다.  The substrate usable in the present invention is not particularly limited as long as it is a substrate known in the art, and as described above, the low-viscosity metal ink composition can be fired at a low temperature, so that not only a glass substrate but also a polyimide (PI) and a PEN film Polymer substrates such as these may also be used. Hereinafter, the present invention will be described in more detail with reference to Examples, Comparative Examples and Experimental Examples. However, the following Examples, Comparative Examples and Experimental Examples are for illustrating the present invention, and the scope of the present invention is not limited thereto.
<준비예 1> -금속나노 입자의 제조  Preparation Example 1 Preparation of Metal Nanoparticles
교반기가 부착된 1000 mL 비이커에 옥탄산 125.5g (0.5mol)을 메탄을 500ml에 해리시켜 게 1 용액을 제조한 후, 수산화나트륨 20g(0.5mol)을 500ml 정제수에 해리시켜 제 2 용액을 제조하였다. 한편, 교반기가 부착된 2000ml 비이커에 질산은 84.9g(0.5mol)을 정제수 500ml에 해리시켜 제 3 용액을 제조하였다. 이후, 제조된 제 1 용액에 제 2 용액을 흔합한 후 30분간 교반하여 옥탄산나트륨을 형성하였다. 형성된 옥탄산나트륨에 제 3 용액을 천천히 적하하여 흰색 침전물인 옥탄산 은이 생성된 현탄액을 얻었다. 이후, 상기 현탄액을 정제수로 1차 세정하면서 감압 및 여과한 다음, 메탄을로 2차 세정하면서 감압 및 여과한 후 40 ~ 50 °C의 컨벤션 오븐에서 건조하여 흰색의 옥탄산 은을 얻었다 In a 1000 mL beaker with a stirrer, 125.5 g (0.5 mol) of octanoic acid was dissociated in 500 ml to prepare a crab 1 solution, followed by 500 ml of 20 g (0.5 mol) of sodium hydroxide. Dissociated in purified water to prepare a second solution. Meanwhile, a third solution was prepared by dissociating 84.9 g (0.5 mol) of silver nitrate into 500 ml of purified water in a 2000 ml beaker with a stirrer. Thereafter, the second solution was mixed with the prepared first solution, followed by stirring for 30 minutes to form sodium octanoate. The third solution was slowly added dropwise to the formed sodium octanoate to obtain a suspension in which silver octanoate as a white precipitate was produced. Subsequently, the suspension was filtered under reduced pressure and filtered with primary washing with purified water, and the resulting solution was filtered under reduced pressure and filtered with secondary washing with methane, and dried in a convention oven at 40 to 50 ° C. to obtain white silver octanoic acid.
이후, 55 °C로 유지되는 이중자켓 반웅조에서, 상기에서 수득된 옥탄산 은 15g (59.74 mmol)에 옥틸아민 10.05g (77.76 mmol)을 첨가하여 1~2시간 동안 교반하여 옥탄산 은을 해리시켰다. 해리된 용액에 환원제인 1-아미노 -4-메틸 피페라진을 5.15g (44.74 譲 ol)을 천천히 적하하면서 3시간 동안 교반한 다음, 메탄을 50 중량부 이상 (나노입자 조성물 100 증량부 기준)을 첨가한 후 원심분리하여 금속 나노입자를 얻었다. Subsequently, in a double-jacket semi-double bath maintained at 55 ° C, 10.05 g (77.76 mmol) of octylamine was added to 15 g (59.74 mmol) of silver octanoate obtained above, followed by stirring for 1 to 2 hours to dissociate silver octanoate. I was. To the dissociated solution, 5.15 g (44.74 譲 ol) of 1-amino-4-methyl piperazine as a reducing agent was slowly added dropwise and stirred for 3 hours, and then 50 parts by weight or more of methane (based on 100 parts by weight of nanoparticle composition) was added. After addition, centrifugation gave metal nanoparticles.
이때 수득된 금속 나노 입자는 옥타노에이트 (octanoate) 리간드 및 옥틸아민 리간드에 의해 캡핑된 은 나노 입자 (이'하, '은 나노 입자 A' )로서, 이의 크기 (입경 )는 약 10-20 nm이었다. At this time, the obtained metal nanoparticles as octanoate (octanoate), and the ligand-octylamine-capped by a ligand nanoparticles (the "ha" are nanoparticles A '), its size (diameter) of about 10-20 nm It was.
<준비예 2> Preparation Example 2
준비예 1의 금속 나노입자 제조시 사용된 옥틸아민 대신 도데실아민을 사용하는 것을 제외하고는, 준비예 1과 동일하게 수행하여 금속 나노입자를 얻었다  A metal nanoparticle was obtained in the same manner as in Preparation Example 1, except that dodecylamine was used instead of octylamine used in preparing the metal nanoparticle of Preparation Example 1.
미때 수득된 금속 나노입자는 옥타노에이트 (octanoate) 리간드 및 도데실아민 리간드에 의해 캡핑된 은 나노 입자 (이하, '은 나노 입자 B' )로서, 이의 크기 (입경 )는 약 5~15 nm 이었다. The metal nanoparticles obtained at the time are silver nanoparticles (hereinafter, 'silver nanoparticles B') capped by octanoate ligands and dodecylamine ligands. Its size (particle diameter) was about 5-15 nm.
<준비예 3> Preparation Example 3
준비예 1의 금속 나노입자 제조시 사용된 옥틸아민 대신 올레일아민을 사용하는 것을 제외하고는, ,준비예 1과 동일하게 수행하여 금속 나노입자를 얻었다. Preparation Example 1, except for using the octylamine instead of oleyl amine used in manufacturing metal nanoparticles, the same way as in the Preparation Example 1 to obtain the metal nanoparticles.
이때 수득된 금속 나노입자는 옥타노에이트 (octanoate) 리간드 및 을레일아민 리간드에 의해 캡핑된 은 나노 입자 (이하, '은 나노 입자 C' )로서, 이의 크기 (입경 )는 약 3~8 nm 이었다.  The obtained metal nanoparticles were silver nanoparticles (hereinafter referred to as 'silver nanoparticles C') capped by octanoate ligands and oleylamine ligands, and their size (particle diameter) was about 3 to 8 nm. .
<준비예 4> Preparation Example 4
준비예 ' 1의 금속 전구체 제조시 사용된 옥탄산 대신 데칸산 139.6g (0.5mol)을 사용하는 것을 제외하고는, 준비예 1과 동일하게 수행하여 금속 나노입자를 얻었다. Preparation Example "and is set as follows: Preparation Example 1, except that the octanoic acid used in place of the metal precursor prepared using the acid 139.6g (0.5mol), to obtain the metal nanoparticles.
이때 수득된 금속 나노입자는 데카노에이트 리간드 및 옥틸아민 리간드에 의해 캡핑된 은 나노 입자 (이하, '은 나노 입자 D' )로서, 이의 크기 (입경)는 약 3~10 run 이었다.  The metal nanoparticles obtained at this time were silver nanoparticles (hereinafter, 'silver nanoparticles D') capped by decanoate ligand and octylamine ligand, and their size (particle diameter) was about 3 to 10 run.
<준비예 5> Preparation Example 5
준비예 1의 금속 전구체 제조시 사용된 옥탄산 대신 데칸산 139.6g 139.6 g of decanoic acid instead of octanoic acid used in preparing the metal precursor of Preparation Example 1
(0.5mol)을 사용하고, 준비예 1의 금속 나노입자 제조시 사용된 옥틸아민 대신 도데실아민을 사용하는 것 제외하고는, 춘비예 1과 동일하게 수행하여 금속 나노입자를 얻었다. (0.5 mol) was used, except that dodecylamine was used instead of octylamine used in preparing the metal nanoparticles of Preparation Example 1, the metal nanoparticles were obtained in the same manner as in Example 1.
이때 수득된 금속 나노입자는 데카노에이트 리간드 및 도데실아민 리간드에 의해 캡핑된 은 나노입자 (이하, '은 나노 입자 E' )로서, 이의 크기 (입경 )는 약 3~7 nm 이었다. The obtained metal nanoparticles are decanoate ligand and dodecylamine As the silver nanoparticles (hereinafter, nanoparticle is E ') capped by a ligand, and its size (diameter) was about 3 ~ 7 nm.
<준비예 6> Preparation Example 6
준비예 1의 금속 전구체 제조시 사용된 옥탄산 대신 데칸산 139.6g 139.6 g of decanoic acid instead of octanoic acid used in preparing the metal precursor of Preparation Example 1
(0.5mol)을 사용하고, 준비예 1의 금속 나노입자 제조시 사용된 옥틸아민 대신 올레일아민를 사용하는 것 제외하고는, 준비예 1과 동일하게 수행하여 금속 나노입자를 얻었다. (0.5 mol) was used, except that oleylamine was used instead of octylamine used in preparing the metal nanoparticles of Preparation Example 1, metal nanoparticles were obtained in the same manner as in Preparation Example 1.
이때 수득된 금속 나노입 '자는 데카노에이트 리간드 및 올레일아민 리간드에 의해 캡핑된 은 나노입자 (이하, '은 나노 입자 F' )로서, 이의 크기 (입경)는 약 3~3.5 nm이었다. - The obtained metal nanoparticle ' is a silver nanoparticle (hereinafter,' silver nanoparticle F ') capped by a decanoate ligand and an oleylamine ligand, and its size (particle size) was about 3 to 3.5 nm. -
<:실시예 1> <Example 1>
준비예 3에서 제조된 은 나노 입자 C 40 중량 %, 무극성 유기 용매로 2- 에틸ᅳ 1ᅳ핵산올 30.5 중량 %, 비스페놀 A계 에폭시 수지 (핵시은社의 EPIK0TE1009, 당량: 1000) 2중량 ¾, 경화제로 산무수물계 화합물 (신일본이화학의 HNA-100) 0.8 중량 ¾, 경화 촉진제로 이미다졸계 화합물 (2pz, 10% in MCS) 0.2 중량 ¾>, 흔합 에테르계 용매 (메록시 벤젠 및 디에틸렌 글리콜 모노부틸 에테르 아세테이트가 7:3의 중량 비율로 흔합된 용매 23.5 중량 ¾, 및 분산제로 인산 에스테르계 화합물 (BYK의 BYK-111)을 3 중량 %을 호모 믹서를 이용하여 1차 흔합한 다음, 볼밀링 (ball-mil ling)을 통해 2차 흔합 및 분산하여 저점도 금속 잉크 조성물을 얻었다.  40 weight% of silver nanoparticles C prepared in Preparation Example 3, 30.5 weight% of 2-ethylenium 1 ᅳ nucleic acid as a nonpolar organic solvent, bisphenol A-based epoxy resin (EPIK0TE1009, equivalent: 1000) 2 weight ¾, 0.8 weight ¾ of acid anhydride compound (HNA-100 of Shin-Kyo Chemical Co., Ltd.) as a curing agent, 0.2 weight ¾> of imidazole compound (2pz, 10% in MCS) as a curing accelerator, mixed ether solvents (methoxy benzene and di 23.5 weight ¾ of solvent, in which the ethylene glycol monobutyl ether acetate was mixed at a weight ratio of 7: 3, and 3 weight% of the phosphate ester compound (BYK BY111 of BYK) as a dispersant, were first mixed using a homo mixer. , Secondary mixing and dispersion through ball-mil ling to obtain a low viscosity metal ink composition.
<실시예 2> 실시예 1에서 사용된 은 나노 입자 C 대신 준비예 5에서 제조된 은 나노 입자 E를 사용하는 것을 제외하고는, 실시예 1과 동일하게 수행하여 저점도 금속 잉크 조성물을 얻었다. <Example 2> A low viscosity metal ink composition was obtained in the same manner as in Example 1 except for using the silver nanoparticles E prepared in Preparation Example 5 instead of the silver nanoparticles C used in Example 1.
<실시예 3> . <Example 3>.
실시예 1에서 사용된 은 나노 입자 C 대산 준비예 6에서 제조된 은 나노 입자 F를 사용하는 것을 제외하고는, 실시예 工과 동일하게 수행하여 저점도 금속 잉크 조성물을 얻었다. <실시예 4>  Silver Nanoparticle C Used in Example 1 Mass Production A low-viscosity metal ink composition was obtained in the same manner as in Example except that silver nanoparticle F prepared in Preparation Example 6 was used. <Example 4>
실시예 1에서 사용된 은 나노 입자 C 대신 준비예 1에서 제조된 은 나노 입자 A를 사용하는 것을 제외하고는, 실시예 1과 동일하게 수행하여 저점도 금속 잉크 조성물을 얻었다.  A low viscosity metal ink composition was obtained in the same manner as in Example 1 except that the silver nanoparticles A prepared in Preparation Example 1 were used instead of the silver nanoparticles C used in Example 1.
<실시예 5> Example 5
실시예 1에서 사용된 은 나노 입자 C대신 준비예 2에서 제조된 은 나노 입자 B를 사용하는 것을 제외하고는, 실시예 1과 동일하게 수행하여 저점도 금속 잉크 조성물을 얻었다. -  A low viscosity metal ink composition was obtained in the same manner as in Example 1 except that the silver nanoparticles B prepared in Preparation Example 2 were used instead of the silver nanoparticles C used in Example 1. -
<실시예 6> <Example 6>
실시예 1에서 사용된 은 나노 입자 C 대신 준비예 4에서 제조된 은 나노 입자 D를 사용하는 것을 제외하고는, 실시예 1과 동일하게 수행하여 저점도 금속 잉크 조성물을 얻었다. <비교예 1> A low viscosity metal ink composition was obtained in the same manner as in Example 1 except for using the silver nanoparticles D prepared in Preparation Example 4 instead of the silver nanoparticles C used in Example 1. Comparative Example 1
준비예 6에서 제조된 은 나노 입자 F 40 중량 %, 및 2-에틸 -1—핵산올 60 중량 %를 호모 믹서를 이용하여 1차 흔합한 다음, 볼밀링 (ball-mil ling)을 통해 2차 흔합 및 분산하여 저점도 금속 잉크 조성물을 얻었다.  40% by weight of the silver nanoparticles F prepared in Preparation Example 6 and 60% by weight of 2-ethyl-1—nucleic acid were firstly mixed using a homomixer, and then, secondly, through ball-mil ling. Mixing and dispersion resulted in a low viscosity metal ink composition.
<비교예 2> Comparative Example 2
준비예 6에서 제조된 은 나노 입자 40 중량 %, 2-에틸 -1-핵산올 55.5 중량 %, 비스페놀 A계 에폭시 수지 (핵시온社의 EPIKOTE1009, 당량: 1000) 1 증량 %, 경화제로 산무수물계 화합물 (신일본이화학의 HNA-100) 0.4 중량 ¾, 경화 촉진제로 이미다졸계 화합물 (2pz, 10% in MCS) 0.1 중량 %, 및 분산제로 인산 에스테르계 화합물 (BYK의 BYK-111) 3 중량 ¾>를 호모 믹서를 이용하여 1차 흔합한 다음, 볼밀링 (ball-mi l ling)을 통해 2차 흔합 및 분산하여 저점도 금속 잉크 조성물을 얻었다. <비교예 3>  40% by weight of the silver nanoparticles prepared in Preparation Example 6, 55.5% by weight of 2-ethyl-1-nucleic acid, bisphenol A-based epoxy resin (EPIKOTE1009, equivalent: 1000) 1% by weight, acid anhydride-based as a curing agent Compound (HNA-100 by Shin-Kai Chemical Co., Ltd.) 0.4 weight ¾, 0.1 weight% of imidazole compound (2pz, 10% in MCS) as a curing accelerator, and 3 weight of phosphate ester compound (BYK-111 by BYK) as a dispersant ¾> was firstly mixed using a homo mixer, and then secondly mixed and dispersed through a ball milling to obtain a low viscosity metal ink composition. Comparative Example 3
- 준비예 6에서 제조된 은 나노 입자 40 증량 %, 무극성 유기 용매로 2- 에틸 -1-핵산올 34.5 중량 ¾, 비스페놀 A계 에폭시 수지 (핵시온社의 EPIK0TE1009, 당량: 1000) 1 중량 %, 경화제로 산무수물계 화합물 (신일본이화학의 HNA-100) 0.4 중량 %, 경화 촉진제로 이미다졸계 화합물 (2pz, 10% in MCS) 0.1 중량 ¾, 및 흔합 에테르계 용매 (메록시 벤젠 및 디에틸렌 글리콜 모노부틸 에테르 아세테이트가 7 :3의 중량 비율로 흔합된 용매) 24 중량 %를 호모 믹서를 이용하여 1차 흔합한 다음, 볼밀링 (ball-mil ling)을 통해 2차 흔합 및 분산하여 저점도 금속 잉크 조성물을 얻었다. <비교예 4> -40% by weight of silver nanoparticles prepared in Preparation Example 6, 34.5 weight ¾ of 2-ethyl-1-nucleic acid as a non-polar organic solvent, 1% by weight of bisphenol A-based epoxy resin (EPIK0TE1009, equivalent: 1000), 0.4 weight% of acid anhydride compound (HNA-100 of Shin-Kyo Chemical Co., Ltd.) as a curing agent, 0.1 weight ¾ of imidazole compound (2pz, 10% in MCS) as a curing accelerator, and a mixed ether solvent (methoxy benzene and di 24 wt% of ethylene glycol monobutyl ether acetate in a weight ratio of 7: 3 was firstly mixed using a homo mixer, and then secondly mixed and dispersed through ball-milling to a low point. A metal ink composition was obtained. <Comparative Example 4>
나노실버 저점도 잉크 [(주 )나노신소재 사 (社)의 DGP 40LT-15C]를 비교예 4로 사용하였다. <실험예 1> -금속 잉크조성물의 물성 평가  Nano silver low viscosity ink [DGP 40LT-15C of Nano New Material Co., Ltd.] was used as Comparative Example 4. Experimental Example 1 Evaluation of Physical Properties of Metal Ink Composition
실시예 1 ~ 6 및 비교예 1 ~ 3의 저점도 금속 잉크 조성물와 비교예 4의 저점도 전도성 잉크에 대하여 하기와 같이 코팅성, 분산 안정성, 접착력 및 비저항을 측정하였고, 결과를 하기 표 1 및 2에 나타내었다.  The coating properties, dispersion stability, adhesion and specific resistance of the low viscosity metal ink compositions of Examples 1 to 6 and Comparative Examples 1 to 3 and the low viscosity conductive ink of Comparative Example 4 were measured as follows, and the results are shown in Tables 1 and 2 below. Shown in
(a) 코팅성  (a) coating property
실시예 1 ~ 6의 저점도 금속 잉크 조성물 각각을, 하기 코팅 조건하에서 마이크로 그라비어 코팅을 통해 플리이미드 필름 상에 패턴 또는 전면 코팅을 각각 한후 200내지 25CTC에서 열처리하였다.  Each of the low viscosity metal ink compositions of Examples 1 to 6 were subjected to a pattern or front coating on the plyimide film through microgravure coating, respectively, under the following coating conditions, and then heat-treated at 200 to 25 CTC.
** 코팅 조건 **  ** Coating Conditions **
- Coater: Micro一 Gravure  -Coater: Micro 一 Gravure
- Gravure Roll No.: H07  -Gravure Roll No .: H07
- Line Speed: 0.5 m/min  Line Speed: 0.5 m / min
- Roll Speed: 80%  Roll Speed: 80%
실험 결과, 본 발명에 따른 저점도 금속 잉크 조성물은 폴리이미드 필름 상에 미세 박막 회로 패턴을 용이하게 형성하였으며, 또한 폴리이미드 필름에 전면 코팅시 균일한 두께로 용이하게 코팅되었다.  As a result of the experiment, the low-viscosity metal ink composition according to the present invention easily formed a fine thin film circuit pattern on the polyimide film, and was also easily coated with a uniform thickness upon front coating on the polyimide film.
(b) 분산 안정성  (b) dispersion stability
각 금속 잉크 조성물을 상은에서 4주간 방치하면서 금속 나노입자 및 에폭시 바인더 등의 침전물 발생 여부를 확인하여 분산 안정성을 평가하였다. 이때, 침전물 발생 시기에 따라 다음과 같이 평가하였다. ©: 4주 이상, Each metal ink composition was left for 4 weeks in phase silver to check the occurrence of precipitates such as metal nanoparticles and epoxy binders to evaluate dispersion stability. At this time, it was evaluated as follows according to the generation time of the precipitate. ©: more than 4 weeks ,
ᄋ: 1주 〜 4주 미만,  ᄋ : 1 week ~ less than 4 weeks
X: 1주 미만또는 에폭시 수지 사용성 없는 경우  X : Less than 1 week or without epoxy resin usability
(c) 접착력  (c) adhesion
ASTM D 3359에 따라 크로스컷 (cross-cut) 테이프 테스트를 5회 반복하여 접착력을 평가하였다. 여기서, 접착력 측정시, 상기 코팅성 실험에서와 같이 각 잉크 조성물을 폴리이미드 필름에 코팅한 후 측정하였다.  Adhesion was evaluated by repeating the cross-cut tape test five times in accordance with ASTM D 3359. Here, when measuring the adhesion, it was measured after coating each ink composition on a polyimide film as in the coating experiment.
(d) 비저항  (d) resistivity
코팅 및 경화된 금속박막을 4-point probe 방식의 표면 저항 측정기를 이용하여 면저항 (Ω /cm2) 을 측정한 다음, SEM 및 FIB 분석을 통하여 금속 박막의 두께 (cm)¾:t확인 후, 하기 수학식 1에 따라 비저항 (Ω · αη)을 계산하였다. 여기서, 비저항 측정시, 하기 코팅성 실험에서와 같이 각 잉크 조성물을 폴리이미드 필름에 코팅한 후 측정하였다. After measuring the sheet resistance (Ω / cm 2 ) of the coated and cured metal thin film using a 4-point probe surface resistance meter, and after confirming the thickness of the metal thin film ( cm ) ¾: t through SEM and FIB analysis, The specific resistance (Ω · αη) was calculated according to the following equation (1). Here, when measuring the specific resistance, as measured in the coating property test as described below after coating each ink composition on a polyimide film.
【수학식 1】  [Equation 1]
비저항 =면저항 X두께  Specific resistance = sheet resistance X thickness
【표 1]  [Table 1]
Figure imgf000032_0001
【표 2】
Figure imgf000032_0001
Table 2
Figure imgf000033_0001
Figure imgf000033_0001
1) 실험 결과, 실시예 1 내지 6의 경우, 장시간 보관하더라도 분산 안정성이 우수하면서, 접착력은높고 비저항은 낮았다. 1) As a result of the experiment, in Examples 1 to 6, even if stored for a long time, excellent dispersion stability, high adhesion and low specific resistance.
이에 반해, 에폭시 수지 및 분산제를 포함하지 않는 비교예 1의 경우, 분산 안정성은 우수하였으나, 기판과의 접착력을 부여할 수 있는 바인더가 포함되지 않아 접착력이 매우 낮았다. 한편, 흔합 에테르계 용매를 포함하지 않는 비교예 2의 경우, 에폭시 수지의 분산성이 확보되지 않아 바로 침전되었고, 이에 따라 접착력 및 비저항을 측정하지 못하였다. 또, 분산제를 포함하지 않는 비교예 3의 경우, 접착력이 높고 비저항이 낮았으나, 장시간 보관시 분산 안정성이 확보되지 않았다. 게다가, 은 입자를 포함하는 비교예 4의 경우, 비저항은 낮았으나, 기판과의 접착력을 부여할 수 있는 바인더가 포함되지 않아 접착력이 매우 낮았다.  On the contrary, in Comparative Example 1 containing no epoxy resin and a dispersing agent, the dispersion stability was excellent, but the adhesive strength was very low because a binder that could impart adhesion to the substrate was not included. On the other hand, in Comparative Example 2, which does not contain a mixed ether solvent, the dispersion of the epoxy resin was not secured and precipitated immediately, and thus the adhesive force and the specific resistance could not be measured. In addition, in Comparative Example 3 containing no dispersant, although the adhesive strength was high and the specific resistance was low, dispersion stability was not secured during long time storage. In addition, in the case of Comparative Example 4 containing silver particles, the specific resistance was low, but the adhesive force was very low because a binder that could impart adhesion to the substrate was not included.
이와 같이, 본 발명에 따라 은 나노 입자를 에폭시 수지와 함께 포함하되 , 은 나노 입자와 에폭시 수지를 분산시킬 수 있는 흔합 에테르계 용매 및 저장 안정성을 향상시킬 수 있는 분산제도 포함할 경우, 장시간 보관시 분산 안정성이 향상되면서, 기판과의 접착성 및 전기 전도성이 높은 박막 회로 패턴을 구현할 수 있다는 것을 알았다. As such, when the silver nanoparticles are included together with the epoxy resin according to the present invention, when the silver nanoparticles include a mixed ether-based solvent capable of dispersing the silver nanoparticles and the epoxy resin and a dispersant which may improve storage stability, As dispersion stability is improved, a thin film circuit pattern with high adhesion and electrical conductivity to a substrate can be realized. I knew you could.
2) 한편, 표 1에서 알 수 있는 바와 같이, 실시예 1 ~ 3의 경우, 실시예 4 ~ 6보다 분산 안정성이 우수하였다. 이로부터 금속 잉크 조성물 내 은 나노 입자를 캡핑하는 카르복실레이트계 리간드의 탄소수나 1차 아민계 리간드의 탄소수가 증가할수록 장시간 보관시 분산성이 확보될 수 있다는 것을 알 수 있었다.  2) On the other hand, as can be seen from Table 1, in Examples 1 to 3, dispersion stability was superior to Examples 4 to 6. From this, it can be seen that dispersibility can be ensured when stored for a long time as the carbon number of the carboxylate ligand or the primary amine ligand that caps the silver nanoparticles in the metal ink composition increases.
또, 실시예 2의 금속 잉크 조성물은 데카노에이트 리간드에 의해 캡핑된 은 나노 입자를 포함하는 것으로서 실시예 5의 금속 잉크 조성물 (옥타노에이트 리간드에 의해 캡핑된 은 나노 입자 포함)에 비해 더. 분산 안정성이 우수하였다. 다만, 실시예 6의 경우, 실시예 2나 3과 같이 은 나노 입자가 데카노에이트 리간드에 의해 캡핑되었으나, 실시예 4와 마찬가지로 분산 안정성이 실시예 1 ~ 3에 비해 다소 낮았다. 이러한 결과로부터 금속 나노 입자를 캡핑하는 카르복실레이트 리간드의 탄소수뿐만 아니라 , 1차 아민의 탄소수에 따라 금속 잉크 조성물 내 금속 나노 입자의 웅집 여부가 조절될 수 있다는 것을 알 수 있었다.  In addition, the metal ink composition of Example 2 includes silver nanoparticles capped by the decanoate ligand, and more than the metal ink composition of Example 5 (including silver nanoparticles capped by the octanoate ligand). Dispersion stability was excellent. However, in Example 6, silver nanoparticles were capped by the decanoate ligand as in Examples 2 and 3, but dispersion stability was somewhat lower than in Examples 1 to 3 as in Example 4. From these results, it can be seen that not only the carbon number of the carboxylate ligand capping the metal nanoparticles, but also the coarsening of the metal nanoparticles in the metal ink composition can be controlled according to the carbon number of the primary amine.
따라서, 본 발명에 따라 (:广(:20의 카브록실레이트계 리간드 및 C5-C20의 1차 아민계 리간드에 의해서 캡핑된 금속 나노 입자, 바람직하게는 C8— C15의 카브록실레이트계 리간드 및 C10~C18의 1차 아민계 리간드에 의해서 캡핑된 금속 나노 입자를 금속 잉크 조성물의 일 성분으로 포함할 경우, 장시간 보관하더라도 분산 안정성이 우수하다는 것을 알 수 있었다. Therefore, according to the present invention, the metal nanoparticles capped by a carbolate ligand (: 20) and a primary amine ligand of C 5 -C 20 , preferably a carbock of C 8 — C 15 When the metal nanoparticles capped by the sillate ligand and the C 10 to C 18 primary amine ligand are included as one component of the metal ink composition, it was found that the dispersion stability is excellent even if stored for a long time.
<실시예 7> ~ <실시예 12> <Example 7>-<Example 12>
하기 표 3와 조성에 따라 은 나노 입자 (Ag nano particles, Ag NP)의 종류 및 함량, 2-에틸 -1-핵산을의 함량, 에폭시 수지의 함량, 경화제의 함량, 경화촉진제의 함량, BCA의 함량, 및 분산제의 함량을 조절하는 것을 제외하고는, 실시예 1과 동일하게 수행하여 실시예 7 ~ 12의 저점도 금속 잉크 조성물을 얻었다. According to the following Table 3 and composition, the type and content of silver nanoparticles (Ag nano particles, Ag NP), the content of 2-ethyl-1-nucleic acid, the content of the epoxy resin, the content of the curing agent, Except for adjusting the content of the curing accelerator, the content of the BCA, and the content of the dispersant, it was carried out in the same manner as in Example 1 to obtain a low viscosity metal ink composition of Examples 7 to 12.
【표 3】  Table 3
Figure imgf000035_0001
Figure imgf000035_0001
<실험예 2> Experimental Example 2
실시예 1 ~ 3, 7 ~ 12의 저점도 금속 잉크 조성물에 대하여 실험예 Experimental Examples for Low Viscosity Metal Ink Compositions of Examples 1 to 3 and 7 to 12
1에서와 같이 특정 온도에서의 접착력 및 비저항을.측정하였고, 결과를 표 4에 나타내었다. 특히, 실시예 1의 금속 잉크 조성물에 대한 접착력 실험 전과 후의 사진을 도 3에 나타내었다. Adhesion and resistivity at specific temperatures were measured as in 1, and the results are shown in Table 4. In particular, the photograph before and after the adhesion test with respect to the metal ink composition of Example 1 is shown in FIG.
【표 4]  [Table 4]
Figure imgf000035_0002
Figure imgf000036_0001
상기 표 4에서 알 수 있는 바와 같이, 금속 잉크 조성물 내 에폭시 수지의 함량이 증가할수록 박막 회로 패턴의 접착력이 증가되면서, 비저항이 증가되었다. 다만, 잉크 조성물와 열처리 온도가 증가될수록 박막 회로 패턴의 접착력이 증가되면서, 비저항이 낮아졌다. 또한, 금속나노 입자를 캡핑하고 있는 카르복실레이트계 리간드나 1차 아민계 리간드의 탄소수가 증가할수록, 박막 회로 패턴의 접착력이 증가하면서, 비저항이 낮아졌다.
Figure imgf000035_0002
Figure imgf000036_0001
As can be seen in Table 4, as the content of the epoxy resin in the metal ink composition increases, the adhesion of the thin film circuit pattern is increased, the specific resistance is increased. However, as the ink composition and the heat treatment temperature are increased, the adhesion of the thin film circuit pattern is increased, and the specific resistance is lowered. In addition, as the carbon number of the carboxylate ligand or the primary amine ligand that capped the metal nanoparticles increases, the adhesion of the thin film circuit pattern increases, and the specific resistance decreases.
이로부터, 금속 나노 입자를 캡핑하고 있는 카르복실레이트계 리간드 및 /또는 1차 아민계 리간드의 탄소수 및 잉크 조성물 내 에폭시 수지의 함량을 조절하면서, 특정 온도에서 금속 잉크 조성물을 열처리할 경우, 접착력이 높으면서, 비저항이 낮은 박막 회로 패턴을 구현할 수 있다는 것을 알 수 있었다.  From this, when the heat treatment of the metal ink composition at a specific temperature while controlling the carbon number of the carboxylate ligand and / or primary amine ligand and the content of the epoxy resin in the ink composition capping the metal nanoparticles, the adhesion strength It was found that a thin film circuit pattern with high and low resistivity can be realized.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
(a) (:广(:20의 카르복실레이트계 리간드 및 C5~C20의 1차 아민계 리간드에 의해 캡핑된 금속 나노 입자; (a) metal nanoparticles capped by (carboxy (: 20 carboxylate ligand and C 5 to C 20 primary amine ligand);
(b) 무극성 유기 용매 ;  (b) nonpolar organic solvents;
(c) 에폭시 수지 ;  (c) epoxy resins;
(d) 경화제;  (d) curing agents;
(e) 방향족 에테르계 용매 및 지방족 에테르계 용매를 함유하는 흔합 에테르계 용매; 및  (e) a mixed ether solvent containing an aromatic ether solvent and an aliphatic ether solvent; And
' , (f) 분산쩨  ', (f) variance
를 포함하는 저점도 금속 잉크 조성물.  Low viscosity metal ink composition comprising a.
【청구항 2]  [Claim 2]
제 1항에 있어서, 상기 금속 나노 입자 (a)는  The method of claim 1, wherein the metal nanoparticle (a) is
금속 코어, d~C20의 카르복실레이트계 리간드, 및 C5~C20의 1차 아민계 리간드를 포함하고, A metal core, d-C 20 carboxylate ligand, and C 5 -C 20 primary amine ligand,
상기 ~(:20의 카르복실레이트계 리간드 및 C5~C20의 1차 아민계 리간드는 각각 상기 금속 코어의 표면에 결합 또는 흡착되어 있는 것이 특징인 저점도 금속 잉크 조성물. The carboxylate ligand of ~ (: 20) and the primary amine ligand of C 5 ~ C 20 are each bonded or adsorbed on the surface of the metal core, low viscosity metal ink composition.
【청구항 3】  [Claim 3]
제 1항에 있어서  The method of claim 1
상기 금속 나노 입자 (a)는 금, 은, 동, 니켈, 백금, 코발트, 팔라듐 및 이들의 합금으로 이루어진 군에서 선택된 금속의 나노 입자인 것이 특징인 저점도 금속 잉크 조성물.  The metal nanoparticle (a) is a low viscosity metal ink composition, characterized in that the metal nanoparticles selected from the group consisting of gold, silver, copper, nickel, platinum, cobalt, palladium and alloys thereof.
【청구항 4】 제 1항에 있어서, [Claim 4] The method of claim 1,
상기 금속 나노 입자 (a)의 평균 입경은 2 내지 20 nm인 것이 특징인 저점도 금속 잉크 조성물. The low viscosity metal ink composition, characterized in that the average particle diameter of the metal nanoparticle ( a ) is 2 to 20 nm.
【청구항 5】  [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 금속 나노 입자 (a)의 함량은 금속' 잉크 조성물의 전체 중량을 기준으로 30 내지 80중량 %인 것이 특징인 저점도 금속 잉크 조성물. The content of the metal nanoparticles ( a ) is a low viscosity metal ink composition, characterized in that 30 to 80% by weight based on the total weight of the metal 'ink composition.
【청구항 6】  [Claim 6]
제 1항에 있어서, 상기 ^속 나노 입자 (a)는  According to claim 1, wherein ^ ^ nanoparticles (a) is
d-Cso의 카르복시산 또는 이의 염을 금속염과 반웅시켜 (:广(:20의 금속 카르복시산염을 형성하는 단계; reacting the carboxylic acid of d-Cso or a salt thereof with a metal salt to form a metal carboxylate of (: 广 (: 20) ;
상기 Cr o의 금속 카르복시산염을, C5~C20의 1차 아민과 반웅시켜 rC20의 1차 아민이 결합된 (:广(:20의 금속 카르복시산염 착물을 형성하는 단계; 상기 C5-C20의 1차 아민이 결합된 0(:20의 금속 카르복시산염 착물에 환원제를 첨가하여 금속 나노 입자 * 형성하는 단계 A metal carboxylate of the Cr o, C 5 ~ to C 20 banung with a primary amine in the primary amine of rC 20 combination (:广(: forming a metal carboxylate complex of 20; the C 5 - Forming metal nanoparticles * by adding a reducing agent to a metal carboxylate complex of 0 (: 20) bonded to a primary amine of C 20
를 통해 제조된 것이 특징인 저점도 금속 잉크 조성물.  Low viscosity metal ink composition characterized in that it is prepared through.
【청구항 7】  [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 에폭시 수지 (c)의 함량은 금속 잉크 조성물의 전체 중량을 기준으로 40내지 80중량 ¾>인 것이 특징인 저점도 금속 잉크 조성물.  The content of the epoxy resin (c) is a low viscosity metal ink composition, characterized in that 40 to 80% by weight based on the total weight of the metal ink composition.
【청구항 8】  [Claim 8]
제 1항에 있어서,  The method of claim 1,
상기 에폭시 수지 (c)와 경화제 (d)는 1000 내지 3000 : 1의 당량비 (Equivalent ratio)로 포함되는 것이 특징인 저점도 금속 잉크 조성물. The said epoxy resin (c) and hardening | curing agent (d) are 1000-3000: 1 A low viscosity metal ink composition characterized by being included in an equivalent ratio.
【청구항 9】 [Claim 9]
제 1항에 있어서,  The method of claim 1,
상기 무극성 유기 용매 (b)는 C5-C20의 탄화수소계 용매 및 (:6~(;15의 고비점 알코올로 이루어진 군에서 선택된 1종 이상인 것이 특징인 저점도 금속 잉크 조성물. The nonpolar organic solvent (b) is a low viscosity metal ink composition, characterized in that at least one member selected from the group consisting of C 5 -C 20 hydrocarbon solvents and (: 6 ~ (; 15 high boiling alcohols).
【청구항 10】  [Claim 10]
제 1항에 있어서,  The method of claim 1,
상기 무극성 유기 용매 (b)와 흔합 에테르계 용매 (e)는 30 ~ 70 : 70 ~ 30의 중량비율로 포함되는 것이 특징인 저점도 금속 잉크 조성물.  A low viscosity metal ink composition, wherein the nonpolar organic solvent (b) and the mixed ether solvent (e) are included in a weight ratio of 30 to 70:70 to 30.
【청구항 11】  [Claim 11]
제 1항에 있어서,  The method of claim 1,
상기 방향족 에테르계 용매는 (:广(:6의 알콕시기를 함유하는 방향족 에테르계 용매이고, The aromatic ether solvent is an aromatic ether solvent containing an alkoxy group of (: 广 (: 6 ,
상기 지방족 에테르계 용매는 ~(:6의 알콕시기를 함유하는 지방족 에테르계 용매인 것이 특징인 저점도 금속 잉크 조성물. The aliphatic ether solvent is a low viscosity metal ink composition characterized in that the aliphatic ether solvent containing an alkoxy group of ~ (: 6) .
[청구항 12】.  [Claim 12].
제 1항에 있어서, 유리 기판, 고분자 기판으로 이루어진 군에서 선택된 기판에 적용될 수 있는 저점도 금속 잉크 조성물.  The low viscosity metal ink composition of claim 1, which can be applied to a substrate selected from the group consisting of a glass substrate and a polymer substrate.
【청구항 13】  [Claim 13]
제 1항에 있어서, PI 기판에 대한 접착력이 5B 이상인 것이 특징인 저점도 금속 잉크 조성물.  The low viscosity metal ink composition according to claim 1, wherein the adhesion to the PI substrate is 5 B or more.
【청구항 14】  [Claim 14]
제 1항에 있어서 , 비저항이 3.2E— 5 내지 5.2E— 5 Ω · era인 회로 패턴을 형성할 수 있는 저점도 금속 잉크 조성물. The method of claim 1, wherein the specific resistance is 3.2E- 5 to 5.2E- to 5 Ω · era of circuit patterns A low viscosity metal ink composition that can be formed.
【청구항 15】  [Claim 15]
거 U항에 있어서, 점도가 5 내지 500 cps인 저점도 금속 잉크 조성물.  The low viscosity metal ink composition of claim U, wherein the viscosity is from 5 to 500 cps.
【청구항 16】 [Claim 16]
제 1항 내지 제 15항 중 어느 한 항에 있어서, 잉크젯 프린팅 또는 롤투를 프린팅 (roll-to-roll printing)에 사용되는 저점도 금속 잉크 조성물.  The low viscosity metal ink composition according to any one of claims 1 to 15, which is used for ink jet printing or roll-to-roll printing.
【청구항 17】  [Claim 17]
제 1항 내지 제 15항 중 어느 한 항에 기재된 저점도 금속 잉크 조성물로 형성된 회로층을 포함하는 인쇄회로기판..  A printed circuit board comprising a circuit layer formed of the low viscosity metal ink composition according to any one of claims 1 to 15.
PCT/KR2013/012164 2012-12-26 2013-12-26 Low-viscosity metal ink composition, and printed circuit board using same WO2014104737A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120153780A KR101547622B1 (en) 2012-12-26 2012-12-26 Metal ink composition having low viscosity and printed circuit board using the same
KR10-2012-0153780 2012-12-26

Publications (1)

Publication Number Publication Date
WO2014104737A1 true WO2014104737A1 (en) 2014-07-03

Family

ID=51021699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/012164 WO2014104737A1 (en) 2012-12-26 2013-12-26 Low-viscosity metal ink composition, and printed circuit board using same

Country Status (2)

Country Link
KR (1) KR101547622B1 (en)
WO (1) WO2014104737A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102493082B1 (en) * 2017-11-28 2023-02-01 삼성디스플레이 주식회사 Ink composition, fabrication method of the same, and fabrication method of window member using the same
KR102266732B1 (en) * 2020-03-05 2021-06-21 엔젯 주식회사 Conductive ink composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138281A (en) * 2008-12-11 2010-06-24 Kansai Paint Co Ltd Cationic electrodeposition paint and coated article
KR20110021681A (en) * 2009-08-26 2011-03-04 주식회사 엘지화학 Conductive metal ink composition and preparation method for conductive pattern
KR20120096499A (en) * 2009-11-09 2012-08-30 카네기 멜론 유니버시티 Metal ink compositions, conductive patterns, methods, and devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138281A (en) * 2008-12-11 2010-06-24 Kansai Paint Co Ltd Cationic electrodeposition paint and coated article
KR20110021681A (en) * 2009-08-26 2011-03-04 주식회사 엘지화학 Conductive metal ink composition and preparation method for conductive pattern
KR20120096499A (en) * 2009-11-09 2012-08-30 카네기 멜론 유니버시티 Metal ink compositions, conductive patterns, methods, and devices

Also Published As

Publication number Publication date
KR20140087098A (en) 2014-07-09
KR101547622B1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
CA2663688C (en) Solvent systems for metals and inks
US10462908B2 (en) Conductive patterns and methods of using them
KR100967371B1 (en) Copper fine particle dispersion liquid and method for producing same
KR101951452B1 (en) Coated metal microparticle and manufacturing method thereof
JP5556176B2 (en) Particles and inks and films using them
KR101856802B1 (en) Conductive paste and base with conductive film
US20060261316A1 (en) Conductive ink, preparation method thereof and conductive board
KR20130139270A (en) Fine coated copper particles and method for producing same
US20110315436A1 (en) Metal ink composition and method for forming the metal line using the same, and conductive pattern formed by using the metal ink composition
JP6327612B2 (en) Method for manufacturing a conductor pattern
WO2014104737A1 (en) Low-viscosity metal ink composition, and printed circuit board using same
WO2013141172A1 (en) Conductive ink and production method for base material including conductor
KR101582407B1 (en) Metal ink composition having low viscosity and laminate sheet, flexible metal-clad laminate and printed circuit board using the same
KR20080030794A (en) Conducting metal nano particle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.10.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13866567

Country of ref document: EP

Kind code of ref document: A1