WO2014104224A1 - PGC-1β蛋白質の機能調整剤,ミトコンドリア機能の調節剤,抗肥満剤及びそれらスクリーニング方法 - Google Patents

PGC-1β蛋白質の機能調整剤,ミトコンドリア機能の調節剤,抗肥満剤及びそれらスクリーニング方法 Download PDF

Info

Publication number
WO2014104224A1
WO2014104224A1 PCT/JP2013/084960 JP2013084960W WO2014104224A1 WO 2014104224 A1 WO2014104224 A1 WO 2014104224A1 JP 2013084960 W JP2013084960 W JP 2013084960W WO 2014104224 A1 WO2014104224 A1 WO 2014104224A1
Authority
WO
WIPO (PCT)
Prior art keywords
synoviolin
pgc
protein
expression
activity
Prior art date
Application number
PCT/JP2013/084960
Other languages
English (en)
French (fr)
Inventor
中島 利博
英俊 藤田
聡子 荒谷
尚子 八木下
Original Assignee
Nakajima Toshihiro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakajima Toshihiro filed Critical Nakajima Toshihiro
Priority to JP2014554561A priority Critical patent/JP6208689B2/ja
Priority to CN201380073873.9A priority patent/CN105007943B/zh
Priority to US14/655,744 priority patent/US9766241B2/en
Priority to EP13868860.1A priority patent/EP2954905B1/en
Publication of WO2014104224A1 publication Critical patent/WO2014104224A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6875Nucleoproteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70567Nuclear receptors, e.g. retinoic acid receptor [RAR], RXR, nuclear orphan receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/9015Ligases (6)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2440/00Post-translational modifications [PTMs] in chemical analysis of biological material
    • G01N2440/36Post-translational modifications [PTMs] in chemical analysis of biological material addition of addition of other proteins or peptides, e.g. SUMOylation, ubiquitination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/04Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells

Definitions

  • the present invention relates to a PGC-1 ⁇ protein function regulator, a mitochondrial function regulator, an anti-obesity agent, and a screening method thereof.
  • PPARs Peroxisome proliferator-activated receptors
  • PGC-1 ⁇ PGC-1 ⁇
  • PGC-1-related coactivators PRC
  • PGC-1 ⁇ is known to be involved in brown fat determination and / or differentiation, cell metabolism, fatty acid oxidation, mitochondrial function and / or respiration (see Patent Document 1).
  • PGC-1 ⁇ is known to be involved in the regulation of lipid biosynthesis and lipid transport (see Patent Document 2).
  • Pgc-1-related coactivator a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells, Mol Cell Biol. 21, 3738-3749. Kressler, D. et al., (2002).
  • the PGC-1-related protein PERC is aselective coactivator of estrogen receptor alpha. J Biol Chem 277, 13918-13925. Lin, J. (2001).
  • PGC-1beta Peroxisome Proliferator-activated Receptor gammaCoactivator 1beta
  • PGC-1beta Peroxisome Proliferator-activated Receptor gammaCoactivator 1beta
  • PGC-1alphaand PGC-1beta Bioenergetic analysis of peroxisomeproliferator-activated receptor gamma coactivators 1alpha and 1beta
  • PPARgamma coactivator 1beta / ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditureand antagonizes obesity.
  • PPAR coactivator 1 (PGC-1) ⁇ has various functions. Therefore, it is desired to provide a substance that enhances the activity of PGC-1 ⁇ and a method for screening such a substance.
  • An object of the present invention is to provide a substance that enhances the activity of PGC-1 ⁇ and a method for screening such a substance.
  • An object of the present invention is to provide a modulator of mitochondrial function that is effective in the treatment or prevention of obesity and a screening method thereof.
  • the inventors of the present invention have found that a conditional knockout mouse for Synoviolin significantly upregulates a gene group involved in ⁇ -oxidation and / or mitochondrial biogenesis, and that the number of mitochondria is markedly increased in white adipocytes.
  • the present inventors found for the first time that the coactivator PGC-1 ⁇ , which regulates the transcription of RNA, is negatively regulated by Synoviolin.
  • the first aspect of the present invention relates to a function regulator of PGC-1 ⁇ protein (the agent of the present invention).
  • This function regulator of PGC-1 ⁇ protein contains a synoviolin expression inhibitor or a synoviolin activity inhibitor as an active ingredient.
  • the function regulator of PGC-1 ⁇ protein promotes fatty acid ⁇ oxidation and promotes mitochondrial expression or activity by adjusting the activity of PGC-1 ⁇ protein, for example.
  • the function regulator of the PGC-1 ⁇ protein of the present invention is effective for the treatment and prevention of symptoms such as obesity involving the PGC-1 ⁇ protein.
  • the agent of the present invention can increase the activity of the PGC-1 ⁇ protein by inhibiting synoviolin, thereby increasing the activity of mitochondria, and thus is useful for the prevention or treatment of obesity.
  • a preferred embodiment of the function regulator of PGC-1 ⁇ protein according to the first aspect of the present invention is used for promoting fatty acid ⁇ oxidation by PGC-1 ⁇ protein and / or promoting or promoting mitochondrial expression or activity It is.
  • the PGC-1 ⁇ protein function regulator of the present invention is preferably used for mitochondrial activation. Therefore, the present invention also provides a mitochondrial activator. This mitochondrial activator is used, for example, to cause either or both of increased mitochondrial expression and increased mitochondrial size.
  • the second aspect of the present invention relates to a method of screening for a PGC-1 ⁇ protein function regulator.
  • a test substance is allowed to act on cells of an adipose tissue or an animal individual.
  • at least one of the expression level of synoviolin in cells of adipose tissue, the binding between synoviolin and PGC-1 ⁇ protein, and the ubiquitination of PGC-1 ⁇ protein by synoviolin is measured or detected.
  • the present invention is based on the finding that inhibiting the activity of Synoviolin leads to an increase in the activity of PGC-1 ⁇ protein. Therefore, by evaluating the expression and activity of Synoviolin, it is possible to screen for a function regulator of PGC-1 ⁇ protein (a substance having an action of regulating the function of PGC-1 ⁇ protein).
  • An embodiment of the second aspect of the present invention relates to a method for detecting (screening) a mitochondrial activator using the above-described method for screening a function regulator of PGC-1 ⁇ protein.
  • An embodiment of the second aspect of the present invention relates to a method for detecting (screening) a therapeutic or prophylactic agent for obesity using the method for screening a function regulator of PGC-1 ⁇ protein described above.
  • the present invention can provide, for example, a PGC-1 ⁇ protein function regulator and a screening method thereof, a mitochondrial function regulator effective in the treatment or prevention of obesity, and a screening method thereof.
  • FIG. 1 is a graph showing ⁇ -oxidation and transcription levels of mitochondria-related genes in white adipocytes derived from Synoviolin knockout mice.
  • FIG. 2 is an electron micrograph of mitochondria in white adipocytes derived from Synoviolin knockout mice. The left-hand photo is a wild-type mouse (syno WT) as a control, and the right-hand side is a synoviolin knockout mouse (synocKO). The magnification of the electron microscope is 5,000 times.
  • FIG. 3 is a Western blot showing the binding of PGC-1 ⁇ and Synoviolin in vitro.
  • FIG. 4 is a conceptual diagram of PGC-1 ⁇ and fragmented PGC-1 ⁇ and a Western blot showing the binding of fragmented PGC-1 ⁇ and Synoviolin in vitro.
  • the abbreviations in Fig. 4 are as follows. AD: activation domain, LXXLL: LXXLL motif, E: glutamate rich domain, SR: serine-arginine rich domain, RRM: RNA recognition motif.
  • FIG. 5 is a conceptual diagram of Synoviolin and fragmented Synoviolin and a Western blot showing the binding between PGC-1 ⁇ and fragmented Synoviolin in vitro. The abbreviations in FIG.
  • FIG. 6A is a Western blot showing the binding of PGC-1 ⁇ and Synoviolin in vivo.
  • FIG. 6B is another western blot showing binding of PGC-1 ⁇ and Synoviolin in vivo.
  • FIG. 7 is a fluorescence micrograph showing the localization of PGC-1 ⁇ and Synoviolin.
  • FIG. 8A is a Western blot showing ubiquitination of PGC-1 ⁇ by Synoviolin in vitro.
  • FIG. 8B is a Western blot showing ubiquitination of PGC-1 ⁇ by Synoviolin in vivo.
  • FIG. 8A is a Western blot showing ubiquitination of PGC-1 ⁇ by Synoviolin in vitro.
  • FIG. 8B is a Western blot showing ubiquitination of PGC-1 ⁇ by Synoviolin in vivo.
  • FIG. 8C is a Western blot showing the effect of in vivo synoviolin knockout on the protein level of PGC-1 ⁇ .
  • FIG. 8D is a Western blot showing the effect of Synoviolin knockout in vivo on PGC-1 ⁇ proteolysis.
  • FIG. 9A is a Western blot showing the effect of Synoviolin siRNA on PGC-1 ⁇ protein expression.
  • FIG. 9B is a Western blot showing the effect of Synoviolin siRNA on functional expression of PGC-1 ⁇ .
  • FIG. 9C is a graph showing the influence of overexpression of Synoviolin on the functional expression of PGC-1 ⁇ .
  • FIG. 9D is an electron micrograph showing changes in mitochondria morphology caused by Synoviolin siRNA.
  • FIG. 9A is a Western blot showing the effect of Synoviolin siRNA on PGC-1 ⁇ protein expression.
  • FIG. 9B is a Western blot showing the effect of Synoviolin siRNA on functional expression of PGC-1 ⁇ .
  • FIG. 9C is
  • FIG. 10 is a Western blot showing the inhibitory effect of synoviolin binding to synoviolin and PGC-1 ⁇ by an E3 ubiquitin ligase activity inhibitor.
  • FIG. 11-1 is a Western blot showing the binding inhibitory effect between Synoviolin and PGC-1 ⁇ by the test substances 349 and 348 (upper figure), and a graph evaluating the binding ability of the test substances 349 and 348 (lower figure).
  • FIG. 11-2 is a Western blot showing the binding inhibitory effect between Synoviolin and PGC-1 ⁇ by the test substances quercetin and 351 (upper figure), and a graph evaluating the binding ability of the test substances quercetin and 351 (lower figure left and right) It is.
  • FIG. 11-1 is a Western blot showing the binding inhibitory effect between Synoviolin and PGC-1 ⁇ by the test substances 349 and 348 (upper figure), and a graph evaluating the binding ability of the test substances 349 and 348 (lower figure left and right) It is.
  • FIG. 11-3 is a Western blot showing the binding inhibitory effect of each test substance.
  • FIG. 11-4 is another Western blot showing the inhibitory effect on the binding between Synoviolin and PGC-1 ⁇ by the test substance. The degree of binding was expressed in a graph as intensity after analyzing the image of a Western blot subjected to the binding assay.
  • FIG. 12 is a graph showing the effect of the test substance on the PGC-1 ⁇ function.
  • FIG. 13 is an electron micrograph showing changes in mitochondrial morphology caused by the test substance.
  • FIG. 14 is a graph showing oxygen consumption of adipocytes in Synoviolin knockout mice.
  • FIG. 15 is a graph showing the amount of basal metabolism in Synoviolin knockout mice.
  • FIG. 16 is a photograph replacing a drawing showing Western blotting of adiponectin and synoviolin in each tissue of wild type WT and synoviolin KO.
  • FIG. 17 shows a Western blot for measuring the half-life of PGC-1 ⁇ .
  • FIG. 18 is an electron micrograph showing the mitochondrial morphology change in adipose tissue by LS-102.
  • FIG. 19 is a Western blotting showing the half-life of PGC-1 ⁇ .
  • FIG. 20 shows the results of an in vitro ubiquitination assay.
  • FIG. 21 is a western blot showing the concentration dependency of the ubiquitination inhibitory activity of PGC-1 ⁇ by the test substances 348 and 349.
  • FIG. 22 is the amino acid sequence of the SyU domain in multiple species.
  • FIG. 23 is a Western blot of SYVN1 SyU mutant.
  • FIG. 24 is a Western blot of mutants of SYVN 1266-270aa.
  • the first aspect of the present invention relates to a function regulator of PGC-1 ⁇ protein (the agent of the present invention).
  • PGC-1 ⁇ means PPAR coactivator 1 ⁇ .
  • the function regulator for PGC-1 ⁇ protein is, for example, a drug for regulating various functions of PGC-1 ⁇ protein described above.
  • PGC-1 ⁇ protein has various functions. Therefore, adjusting the function of the PGC-1 ⁇ protein is useful for analysis of various biological functions involving the PGC-1 ⁇ protein.
  • This PGC-1 ⁇ protein function regulator contains a synoviolin expression inhibitor or a synoviolin activity inhibitor as an active ingredient. Synoviolin expression inhibitors and synoviolin activity inhibitors are known. On the other hand, synoviolin expression inhibitor or synoviolin activity inhibitor can be obtained by obtaining a candidate compound using the screening method described below and examining whether it has synoviolin expression inhibitory activity or synoviolin activity inhibitory activity. You may obtain the inhibitor or the activity inhibitor of Synoviolin.
  • the PGC-1 ⁇ protein function regulator of the present invention promotes fatty acid ⁇ oxidation and promotes mitochondrial expression or activity by adjusting the activity of the PGC-1 ⁇ protein. Thus, the function regulator of the PGC-1 ⁇ protein of the present invention is effective for the treatment and prevention of symptoms such as obesity involving the PGC-1 ⁇ protein.
  • accession number in the public gene database Genbank of human synoviolin gene is AB024690 (SEQ ID NO: 1).
  • the nucleotide sequence of a gene encoding Synoviolin in human is shown in SEQ ID NO: 1. Even proteins other than the protein encoded by the nucleotide sequence have high homology (usually 70% or more, preferably 80% or more, more preferably 90% or more, most preferably 95% or more). And the protein which has the function which Synoviolin protein has is contained in Synoviolin of this invention.
  • “Synoviolin gene” in the present invention includes, for example, an endogenous gene (such as a human synoviolin gene homolog) in other organisms corresponding to the DNA having the nucleotide sequence set forth in SEQ ID NO: 1.
  • the endogenous DNA of other organisms corresponding to the DNA consisting of the base sequence described in SEQ ID NO: 1 generally has high homology with the DNA described in SEQ ID NO: 1.
  • High homology means 50% or more, preferably 70% or more, more preferably 80% or more, more preferably 90% or more (for example, 95% or more, or 96%, 97%, 98% or 99% or more).
  • mBLAST algorithm Altschul et al. (1990) Proc. Natl. Acad. Sci. USA 87: 2264-8; Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-7 ) Can be determined.
  • stringent conditions for example, “2 ⁇ SSC, 0.1% SDS, 50 ° C.”, “2 ⁇ SSC, 0.1% SDS, 42 ° C.”, “1 ⁇ SSC, 0.1% SDS, 37 ° C.” More stringent conditions include “2 ⁇ SSC, 0.1% SDS, 65 ° C.”, “0.5 ⁇ SSC, 0.1% SDS, 42 ° C.” and “0.2 ⁇ SSC, 0.1% SDS, 65 ° C.” Can do.
  • synoviolin protein (gene)
  • the “Synoviolin” of the present invention can be prepared not only as a natural protein but also as a recombinant protein using a gene recombination technique.
  • the natural protein can be prepared by, for example, a method using affinity chromatography using an antibody against synoviolin protein against an extract of a cell (tissue) considered to express synoviolin protein.
  • the recombinant protein can be prepared by culturing cells transformed with DNA encoding synoviolin protein.
  • the “Synoviolin protein” of the present invention is suitably used, for example, in the screening method described below.
  • “expression” includes “transcription” from a gene or “translation” into a polypeptide and “degradation inhibition” of a protein. “Expression of Synoviolin protein” means that transcription and translation of a gene encoding Synoviolin protein occurs or Synoviolin protein is generated by transcription and translation of these genes.
  • Synoviolin expression inhibitor or Synoviolin activity inhibitor refers to reducing or eliminating the amount, function or activity of a wild-type Synoviolin gene or protein as compared to the amount, function or activity.
  • the “inhibition” includes both inhibition of both function and expression, and inhibition of either one.
  • ubiquitination is achieved by repeating a cascade reaction of enzymes such as ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3), so that the ubiquitin molecule is transferred to the substrate protein.
  • enzymes such as ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3), so that the ubiquitin molecule is transferred to the substrate protein.
  • a method for confirming the influence of the test substance on the expression of the synoviolin gene or the influence of the activity of the synoviolin protein for example, a method disclosed in International Publication WO 2006-137514 may be used as appropriate.
  • JP 2008-74753 A Patent No. 5008932 discloses plumbagin (2-methyl-5-hydroxy-1,4-naphthoquinone) and quercetin (2- (3 , 4-dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyrano-4-one) is disclosed to inhibit the self-ubiquitination of synoviolin protein.
  • Synoviolin self-ubiquitination means ubiquitination of a protein caused by interaction between synoviolins, as disclosed in Japanese Patent Application Laid-Open No. 2008-74753. Protein ubiquitination occurs by synoviolin binding to the protein.
  • MBP-Syno ⁇ TM-His means synoviolin deficient in the transmembrane region in which maltose binding protein (MBP) is fused on the N-terminal side and His tag is fused on the C-terminal side.
  • Synoviolin expression inhibitor or Synoviolin activity inhibitor examples are plumbagins (2-methyl-5-hydroxy-1,4-naphthoquinone) disclosed in Japanese Patent No. 5008932 And quercetin (2- (3,4-dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyrano-4-one), a pharmaceutically acceptable salt thereof, or a hydrate thereof.
  • synoviolin expression inhibitors or synoviolin activity inhibitors are synoviolin proteins comprising a naphthalene derivative represented by the general formula (I), a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable solvate thereof It is a ubiquitination activity inhibitor.
  • the compound represented by the general formula (I) can be synthesized using a known method.
  • Synoviolin protein ubiquitination inhibitor means an agent for inhibiting synoviolin's self-ubiquitination activity. Whether or not to inhibit the ubiquitination activity can be evaluated by measuring the amount of ubiquitinated protein in vitro, for example, as shown in the Examples. As described later, the inhibitor of synoviolin protein ubiquitination activity is effective, for example, as a therapeutic or prophylactic agent for rheumatism and also as a therapeutic or prophylactic agent for obesity.
  • the pharmaceutically acceptable salt means a pharmaceutically acceptable salt of the naphthalene derivative represented by the general formula (I).
  • the pharmaceutically acceptable solvate means a pharmaceutically acceptable solvate of the naphthalene derivative represented by the general formula (I).
  • Examples of pharmaceutically acceptable salts are inorganic acid salts, organic acid salts, inorganic base salts, organic base salts, acidic or basic amino acid salts.
  • Examples of inorganic acid salts are hydrochloride, hydrobromide, sulfate, nitrate and phosphate.
  • organic acid salts are acetate, succinate, fumarate, maleate, tartrate, citrate, lactate, stearate, benzoate, methanesulfonate, and p-toluenesulfone Acid salt.
  • examples of the inorganic base salt are alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt and magnesium salt, aluminum salt, and ammonium salt.
  • Examples of organic base salts are diethylamine salt, diethanolamine salt, meglumine salt, and N, N'-dibenzylethylenediamine salt.
  • acidic amino acid salts are aspartate and glutamate.
  • basic amino acid salts are arginine salts, lysine salts, and ornithine salts.
  • An example of a solvate is a hydrate.
  • the compound of the present invention can be isolated and purified using known methods by applying ordinary chemical operations such as extraction, concentration, distillation, crystallization, filtration, recrystallization, and various chromatography.
  • R 1 to R 4 may be the same or different and each represents a hydrogen atom, a hydroxyl group, a C 1-3 alkyl group, a C 1-3 alkoxy group, or a halogen atom. As demonstrated by the examples described later, at least one of R 1 to R 4 is a hydroxyl group.
  • R 5 and R 6 may be the same or different and each represents a hydrogen atom, a C 1-3 alkyl group, or a halogen atom.
  • X 1 and X 2 may be the same or different and each represents an oxygen atom or a sulfur atom.
  • a 1 -A 2 represents C—C (single bond) or C ⁇ C (double bond). When A 1 -A 2 is C ⁇ C (double bond), formula (I) is represented as formula (II).
  • the C 1-3 alkyl group means an alkyl group having 1 to 3 carbon atoms.
  • Examples of C 1-3 alkyl groups are methyl, ethyl, n-propyl, and isopropyl.
  • a preferred example of the C 1-3 alkyl group is a methyl group.
  • C 1-3 alkoxy group means an alkoxy group having 1 to 3 carbon atoms.
  • Examples of the C 1-3 alkoxy group are a methoxy group, an ethoxy group, an n-propoxy group, and an isopropoxy group.
  • a preferred example of the C 1-3 alkoxy group is a methoxy group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a preferred example of the halogen atom is a chlorine atom.
  • a preferred embodiment of the present invention relates to an inhibitor of synoviolin protein ubiquitination activity, wherein at least one of R 1 and R 4 is a hydroxyl group.
  • a preferred embodiment of the present invention relates to an inhibitor of synoviolin protein ubiquitination activity in which A 1 -A 2 represents C ⁇ C in the general formula (I).
  • This naphthalene derivative is a naphthalene derivative represented by the following general formula (II).
  • a preferred embodiment of the present invention relates to a synoviolin protein ubiquitination activity inhibitor in which X 1 and X 2 both represent an oxygen atom and A 1 -A 2 represents C ⁇ C in general formula (I).
  • This naphthalene derivative is a naphthoquinone derivative represented by the following general formula (III).
  • a preferred embodiment of the present invention is a compound represented by the general formula (I):
  • R 1 to R 4 may be the same or different and each represents a hydrogen atom, a hydroxyl group, a methyl group, a methoxy group, or a chlorine atom, wherein at least one of R 1 to R 4 is a hydroxyl group;
  • R 5 and R 6 may be the same or different and each represents a hydrogen atom or a methyl group;
  • X 1 and X 2 both represent an oxygen atom,
  • a preferred embodiment of the present invention is a compound represented by the general formula (I):
  • R 1 and R 4 may be the same or different and each represents a hydrogen atom, a hydroxyl group, a methyl group, a methoxy group, or a chlorine atom, wherein at least one of R 1 to R 4 is a hydroxyl group;
  • R 2 and R 3 represent a hydrogen atom,
  • R 5 and R 6 both represent a hydrogen atom,
  • X 1 and X 2 both represent an oxygen atom,
  • Preferred embodiments of the present invention include:
  • the naphthalene derivative represented by the general formula (I) is 5,8-dihydroxy-4a, 8a-dihydro- [1,4] naphthoquinone, 5-hydroxy-4a, 8a-dihydro- [1,4] naphthoquinone, 5-hydroxy-2,3,4a, 8a-tetrahydro- [1,4] naphthoquinone, 5-hydroxy-7-methoxy-4a, 8a-dihydro- [1,4] naphthoquinone, Any one or more of 5-hydroxy-8-methoxy-4a, 8a-dihydro- [1,4] naphthoquinone and 5-chloro-8-hydroxy-4a, 8a-dihydro- [1,4] naphthoquinone is there, Synoviolin protein ubiquitination inhibitor.
  • RNAi is a short double-stranded RNA (hereinafter abbreviated as “dsRNA”) consisting of a sense RNA consisting of a sequence homologous to the mRNA of the target gene and an antisense RNA consisting of a complementary sequence to the cells. This is a phenomenon that induces destruction by specifically and selectively binding to the target gene mRNA, and efficiently inhibiting (suppressing) the expression of the target gene by cleaving the target gene.
  • dsRNA short double-stranded RNA
  • RNAi when dsRNA is introduced into a cell, expression of a gene having a sequence homologous to that RNA is suppressed (knocked down). Since RNAi can suppress the expression of target genes in this way, it can be used as a simple gene knockout method instead of the conventional complicated and low-efficiency gene disruption method using homologous recombination, or a method applicable to gene therapy. It is attracting attention as.
  • the RNA used for RNAi is not necessarily completely identical to the Synoviolin gene or a partial region of the gene, but preferably has perfect homology.
  • siRNA can be designed as follows.
  • (a) There is no particular limitation as long as it is a gene encoding Synoviolin, and any region can be a target candidate.
  • an arbitrary region of GenBank accession number AB024690 (SEQ ID NO: 1) can be a candidate.
  • (b) A sequence beginning with AA is selected from the selected region, and the length of the sequence is 19 to 25 bases, preferably 19 to 21 bases.
  • the GC content of the sequence should be selected, for example, 40-60%.
  • Synoviolin siRNA are one base sequence selected from SEQ ID NO: 2 to 6, base sequence complementary to these base sequences, or substitution or insertion of one or two bases from any of these base sequences , RNA having a deleted or added base sequence.
  • the RNA having the nucleotide sequences shown in SEQ ID NOs: 2 to 4 is a Synoviolin siRNA that Izumi T, et al., Arthritis Rheum. 2009; 60 (1): 63-72., EMBO, Yamasaki S, et al., EMBO J. 2007; 26 (1): 113-22.
  • RNA having the base sequences shown in SEQ ID NOs: 5 and 6 is Synoviolin siRNA, as disclosed in WO 2005/074988 using experiments.
  • RNA having a base sequence in which one or two bases have been substituted, inserted, deleted or added from any of these base sequences refers to one base sequence selected from SEQ ID NOs: 2 to 6 and these bases RNA having a base sequence in which one or two bases are substituted, inserted, deleted or added from any base sequence of the base sequence complementary to the sequence. Any one kind of substitution, insertion, deletion or addition may occur, or two or more may occur.
  • WO2005-018675 and WO2005 / 074988 disclose siRNAs for genes encoding synoviolin and siRNA screening and evaluation methods for genes encoding synoviolin. Also in the present invention, siRNA against a gene encoding synoviolin can be evaluated by appropriately using the method disclosed in this publication.
  • the active ingredient is a base sequence represented by SEQ ID NO: 7 or a base sequence represented by SEQ ID NO: 7, wherein one or two bases are substituted, inserted or deleted Synoviolin decoy nucleic acid having a missing or added nucleotide sequence.
  • the nucleic acid having the base sequence represented by SEQ ID NO: 7 is a Synoviolin decoy nucleic acid, for example, using Examples in Tsuchimochi K, et al., Mol Cell Biol. 2005; 25 (16): 7344-56. (SEQ ID NO: 7: 5′-AUGGUGACUGUGUCAUAGA-3 ′).
  • Synoviolin decoy nucleic acids and methods for confirming them are known as disclosed in, for example, International Publication WO 2005-093067 and International Publication WO 2005-074988.
  • the active ingredient is Synoviolin antisense nucleic acid.
  • Methods for screening for Synoviolin antisense nucleic acid and Synoviolin antisense nucleic acid are disclosed in, for example, Japanese Patent Application Laid-Open No. 2009-155204, Table No. 2006-137514, and Table No. 2005-074988.
  • Synoviolin antisense nucleic acid means a nucleic acid having a sequence complementary to the synoviolin gene and capable of inhibiting the expression of the synoviolin gene by hybridizing to the gene.
  • An antisense nucleic acid can be prepared by a synthetic chemical method or the like by a nucleic acid compound complementary to a partial base sequence of a gene encoding synoviolin.
  • a screening test using the gene expression level as an index may be performed.
  • said antisense nucleic acid compound for example, the expression of Synoviolin can be suppressed to at least 50% or less as compared with the control.
  • antisense nucleic acids inhibit the expression of target genes by inhibiting various processes such as transcription, splicing or translation (Hirashima and Inoue, Shinsei Kagaku Kenkyu 2 Lecture and Expression of Nucleic Acid IV Genes, Japan Biochemicals) Society, Tokyo Chemistry, 1993, 319-347.).
  • the antisense nucleic acid used in the present invention may inhibit the expression and / or function of the synoviolin gene by any of the actions described above.
  • an antisense sequence complementary to the untranslated region near the 5 ′ end of the Synoviolin gene mRNA is designed, it is considered effective in inhibiting gene translation.
  • a sequence complementary to the coding region or the 3 ′ untranslated region can also be used.
  • the nucleic acid containing the antisense sequence of the sequence of the untranslated region is included in the antisense nucleic acid used in the present invention.
  • the antisense nucleic acid used is linked downstream of a suitable promoter, and preferably a sequence containing a transcription termination signal is linked on the 3 ′ side.
  • the nucleic acid thus prepared can be transformed into a desired animal (cell) by using a known method.
  • the sequence of the antisense nucleic acid is preferably a sequence complementary to the endogenous synoviolin gene or a part thereof possessed by the animal (cell) to be transformed. However, as long as the gene expression can be effectively suppressed, May not be complementary.
  • the transcribed RNA preferably has a complementarity of 90% or more, most preferably 95% or more, to the transcript of the target gene.
  • the length of the antisense nucleic acid is preferably at least 15 bases and less than 25 bases. It is not necessarily limited to this length, and may be, for example, 100 bases or more, or 500 bases or more.
  • ribozymes refers to an RNA molecule having catalytic activity. Although ribozymes have various activities, research focusing on ribozymes as enzymes that cleave RNA has made it possible to design ribozymes that cleave RNA in a site-specific manner. Ribozymes include group I introns and M1 contained in RNase P.
  • RNA Some have a size of 400 nucleotides or more, such as RNA, but some have an active domain of about 40 nucleotides called hammerhead type or hairpin type (Makoto Koizumi and Eiko Otsuka, Protein Nucleic Acid Enzyme, 1990, 35, 2191.).
  • the self-cleaving domain of the hammerhead ribozyme cleaves 3 ′ of C15 in the sequence G13U14C15, and base pairing between U14 and A9 is important for its activity.
  • C15, A15 or U15 it has been shown that it can be cleaved (Koizumi, M. et al., FEBS Lett, 1988, 228, 228.).
  • a ribozyme whose substrate binding site is complementary to the RNA sequence in the vicinity of the target site, it is possible to create a restriction enzyme-like RNA-cleaving ribozyme that recognizes the sequence UC, UU or UA in the target RNA (Koizumi, M.
  • Hairpin ribozymes are also useful for the purposes of the present invention.
  • This ribozyme is found, for example, in the minus strand of tobacco ring spot virus satellite RNA (Buzayan, JM., Nature, 1986, 323, 349.). It has been shown that target-specific RNA-cleaving ribozymes can also be produced from hairpin ribozymes (Kikuchi, Y. & Sasaki, N., Nucl Acids Res, 1991, 19, 6751., Hiroshi Kikuchi, Chemistry and Biology, 1992, 30, 112.). Thus, the expression of the gene can be inhibited by specifically cleaving the synoviolin gene transcript in the present invention using a ribozyme.
  • RNA interference (hereinafter also referred to as “RNAi”) using double-stranded RNA having the same or similar sequence as the target gene sequence.
  • the therapeutic agent of the present invention can be administered either orally or parenterally.
  • parenteral administration pulmonary dosage forms (for example, those using a nephriser etc.), nasal dosage forms, transdermal dosage forms (for example, ointments, creams), injection dosage forms and the like can be mentioned.
  • an injection type it can be administered systemically or locally by intravenous injection such as infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection, or the like.
  • the administration method is appropriately selected according to the patient's age and symptoms.
  • the effective dose is 0.1 ⁇ g to 100 mg, preferably 1 to 10 ⁇ g per kg body weight at a time.
  • the therapeutic agent is not limited to these doses.
  • an example of the dosage of the nucleic acid is 0.01 to 10 ⁇ g / ml, preferably 0.1 to 1 ⁇ g / ml.
  • the therapeutic agent of the present invention can be formulated according to a conventional method and may contain a pharmaceutically acceptable carrier or additive.
  • Such carriers and additives include water, pharmaceutically acceptable organic solvents, collagen, polyvinyl alcohol, polyvinyl pyrrolidone, carboxyvinyl polymer, sodium carboxymethylcellulose, sodium polyacrylate, sodium alginate, water-soluble dextran, carboxymethyl.
  • acceptable surfactants include additives.
  • a purified ER stress inducer is dissolved in a solvent (eg, physiological saline, buffer solution, glucose solution, etc.), and Tween 80, Tween 20, gelatin, human serum albumin, etc. are added thereto.
  • a solvent eg, physiological saline, buffer solution, glucose solution, etc.
  • Tween 80, Tween 20, gelatin, human serum albumin, etc. are added thereto.
  • it may be lyophilized to obtain a dosage form that dissolves before use.
  • sugar alcohols and saccharides such as mannitol and glucose can be used.
  • the second aspect of the present invention relates to a method of screening for a PGC-1 ⁇ protein function regulator. Those that improve the function of the PGC-1 ⁇ protein are preferred. Those that improve the function of PGC-1 ⁇ protein are preferably those that act on anti-obesity.
  • a test substance is allowed to act on cells of adipose tissue or individual animals. Thereafter, at least one of the expression level of synoviolin in cells of adipose tissue, the binding between synoviolin and PGC-1 ⁇ protein, and the ubiquitination of PGC-1 ⁇ protein by synoviolin is measured or detected.
  • the present invention is based on the finding that inhibiting the activity of Synoviolin leads to an increase in the activity of PGC-1 ⁇ protein.
  • Synoviolin a function regulator of PGC-1 ⁇ protein (a substance having an action of regulating the function of PGC-1 ⁇ protein). That is, as a method for screening for a PGC-1 ⁇ protein function regulator, a substance that inhibits the expression and activity of Synoviolin may be screened. Methods for screening for substances that inhibit the expression and function of Synoviolin are described in the present specification and examples, for example, Tokushu 2006/137514, Tokushu 2006/135109, Tokushu 2005/118841. The methods disclosed in Japanese Patent Publication No. 2005, No. 2005/019472, and No. 02/052007 may be used as appropriate.
  • An embodiment of the second aspect of the present invention relates to a method for detecting (screening) a mitochondrial activator using the above-described method for screening a function regulator of PGC-1 ⁇ protein.
  • An embodiment of the second aspect of the present invention relates to a method for detecting (screening) a therapeutic or prophylactic agent for obesity using the method for screening a function regulator of PGC-1 ⁇ protein described above.
  • ⁇ Material Plasmid and antibody> Coding sequences corresponding to full-length mPPAR ⁇ , mPPAR ⁇ , mPGC-1 ⁇ and mPGC-1 ⁇ genes were obtained by PCR amplification from cDNA derived from mouse 3T3-L1 cells. Fragments of PGC-1 ⁇ deletion mutant series were obtained by PCR amplification. The full length PGC-1 ⁇ and each deletion mutant of PGC-1 ⁇ were inserted into pcDNA3 HA vector (modified from Invitrogen) and used for GST pull-down assay and transfection assay. The base sequences of all the plasmids prepared were confirmed by sequence analysis. PPRE ⁇ 3-TK-luc was purchased from addgene Inc.
  • Synoviolin conditional knockout mice Synoviolin conditional knockout mice (syno cKO) were prepared by the following method.
  • the gene region of 14.8 kb which is the region downstream of exon 16 from the upstream of exon 1 of the mouse synoviolin gene, was used for the construction of the targeting vector.
  • a neomycin resistance gene flanked by FRT sequences was inserted between exon 1 and exon 2.
  • a loxP sequence was introduced upstream of exon 2 and downstream of exon 14.
  • the targeting vector was introduced into ES cells. Clones having the allele in which the desired homologous recombination occurred were selected by confirming the removal of the loxP-exon-loxP sequence by Cre treatment and the removal of FRT-neomycin-FRT by FLP treatment by the length of the PCR product. .
  • a clone of the ES cell in which homologous recombination occurred was introduced into a mouse embryo according to a known method (for example, EMBO J 16: 1850-1857) to obtain a chimeric mouse. Furthermore, this chimeric mouse was crossed with a wild type C57BL / 6 mouse to obtain a mouse from which the neomycin sequence was removed. Moreover, since the loxP sequence between the exon and the Long arm incorporated in the targeting vector may be deleted during homologous recombination, its presence was confirmed by PCR.
  • mice The obtained neomycin-removed mice were crossed with CAG-Cre mice, and CAG-Cre; syno flox / flox mice (Synoviolin allele and lo-P introduced under control of CMV enhancer and chicken ⁇ -actin promoter and Cre-ER transgene) (Hayashi, S., and McMahon, AP (2002). Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation / inactivation in the mouse. Dev Biol 244, 305-318.) In homozygous form. The mice can induce synoviolin knockout with tamoxifen (Tam).
  • Tam tamoxifen
  • Tamoxifen was administered 7-8 weeks after CAG-Cre; syno flox / flox mice (syno cKO) and homozygous syno flox / flox mice (syno WT) were born.
  • the tamoxifen to be administered was dissolved in corn oil (WAKO) to 20 mg / ml. Tamoxifen was administered at a daily dose of 125 mg / kg tamoxifen intraperitoneally for 5 consecutive days. It was confirmed that synoviolin was knocked out by tamoxifen administration by methods such as PCR of genomic synoviolin, real-time PCR of synoviolin mRNA, and Western blotting of synoviolin protein.
  • Various primers shown in Table 1 below were used as primers used for real-time PCR.
  • Step One Plus (Applied Biosystems) was used as a real-time PCR apparatus.
  • Example 2 Observation of mitochondria in Synoviolin knockout mice
  • Mitochondria were observed in a conventional manner using an electron microscope in white adipocytes derived from Synoviolin knockout mice (syno cKO) used in Example 1.
  • white adipocytes derived from Synoviolin wild type mice (syno WT) were also observed in the same manner.
  • the results are shown on the left side of FIG.
  • synoviolin knockout mice (syno Adipose) KO) -derived white adipocytes were also observed in the same manner.
  • the results are shown on the right side of FIG.
  • a fat-specific synoviolin knockout mouse was prepared by first mating a Syvn1 flox / flox mouse and a fatty acid binding protein 4 (aP2) -Cre mouse (Jackson Immunoresearch Laboratories) to aP2-Cre-ER; Syvn1 flox / + mouse. Next, aP2-Cre; Syvn1 flox / + mice were crossed with Syvn1 flox / flox mice as a second mating to obtain aP2-Cre; Syvn1 flox / flox mice. Control mice are mice that have the Syvn1 flox / flox genotype and lack the Cre transgene. 2A and B, the number of mitochondria was remarkably increased in white adipocytes derived from Synoviolin knockout mice, and the size of mitochondria was remarkably increased as compared with white adipocytes derived from Synoviolin wild type mice.
  • GST-fused synoviolin lacking the transmembrane domain was incubated with glutathione sepharose 4B.
  • the GST fusion protein was incubated with each whole cell extract derived from HEK-293T expressing HA PPAR ⁇ , HA PPAR ⁇ , HA PGC-1 ⁇ or HA PGC-1 ⁇ .
  • the bound protein was eluted, separated by SDS-PAGE, and Western blotting using an anti-HA antibody was performed.
  • GST not fused with protein was used as a control. The result is shown in FIG.
  • Example 4 Binding of Synoviolin and fragmentation mutant PGC-1 ⁇ in vitro
  • a GST pull-down assay was performed using a series of PGC-1 ⁇ fragmentation mutations (see FIG. 4). Specifically, a published paper (Aratani, S. st al., (2001). Dual roles of RNA helicase A in (CREB-dependent transcription. Mol Cell Biol 21, 4460-4469.) PGC-1 ⁇ was fragmented by the PCR method. A conceptual diagram of each fragmented PGC-1 ⁇ mutant is shown in FIG.
  • FIG. 4 shows that Synoviolin binds to the PGC-1 ⁇ region (195 to 367 amino acid region) containing the LXXLL motif unique to PGC-1 ⁇ .
  • the 195 to 367 amino acid region of PGC-1 ⁇ is also a unique sequence that does not exist in PGC-1 ⁇ and PRC.
  • Example 5 Binding of fragmented mutant Synoviolin and PGC-1 ⁇ in vitro
  • a GST pull-down assay was performed using a series of Synoviolin fragmentation mutations (see FIG. 5 and Yamasaki et al., 2007).
  • HA PGC-1 ⁇ prepared by transcription / translation in vitro and Synoviolin fragmented mutant fused to GST or GST were incubated in the same manner as in Example 4, and Western blotting was performed with an anti-HA antibody. The results are shown in FIG.
  • FIG. 5 indicates that PGC-1 ⁇ binds to the central part of Synoviolin including a domain unique to and conserved in Synoviolin (236th to 270th amino acid sequence, hereinafter referred to as “SyU domain”). It was also found that only the SyU domain is sufficient for binding to PGC-1 ⁇ , and that a mutant lacking the SyU domain from SynoSyn ⁇ TM (SynoU ⁇ TM ⁇ SyU) cannot bind to PGC-1 ⁇ . From this, it was found that the SyU domain is a minimal domain for binding to PGC-1 ⁇ .
  • the protein bound to the anti-FLAG antibody was eluted, separated by SDS-PAGE, and Western blotted with anti-HA antibody and anti-FLAG antibody.
  • FIG. 6A From FIG. 6A, HA PGC-1 ⁇ co-immunoprecipitated with SYVN1 / FLAG but not with SYVN1 ⁇ SyU / FLAG. This indicates that synoviolin (SYVN1) is bound to PGC-1 ⁇ via the SyU region in vivo.
  • Synoviolin is an ER-resident protein, and PGC-1 ⁇ is known to translocate into the nucleus, so the intracellular localization of synoviolin and PGC-1 ⁇ was examined.
  • HEK-293T cells were transfected with HA PGC-1 ⁇ and / or syno / FLAG, synoviolin 3S / FLAG or Synoviolin ⁇ SyU / FLAG expression plasmid, and 24 hours later, synoviolin by immunofluorescence staining using anti-HA antibody and anti-FLAG antibody And the intracellular localization of PGC-1 ⁇ was examined. The results are shown in FIG.
  • Synoviolin is known to be an E3 ubiquitinase (Amano, T., et al. (2003). Synoviolin / Hrd1, an E3 ubiquitin ligase, as a novel pathogenic factor for arthropathy. Genes Dev 17, 2436 Therefore, it was verified whether PGC-1 ⁇ was a substrate for synoviolin as an E3 ubiquitination enzyme.
  • PGC-1 ⁇ FLAG-PGC
  • E1-His ubiquitin activating enzyme
  • UBE2G2-His ubiquitin-conjugating enzyme
  • PK-His-HA-Ub ubiquitin activating enzyme
  • FIG. 8A polyubiquitinated PGC-1 ⁇ was detected under conditions where all of ATP, PK-His-HA-Ub, E1-His, UBE2G2-His and Syno (236-338) were present. From this, in It was confirmed that PGC-1 ⁇ is a substrate for Synoviolin in vitro.
  • ubiquitination of PGC-1 ⁇ in vivo was examined.
  • ubiquitin / FLAG, HA PGC-1, and Synoviolin or Synoviolin 3S expression plasmid were transfected into HEK-293T cells.
  • the whole cell extract of HEK-293T cells was immunoprecipitated with anti-HA antibody.
  • the bound protein was eluted, separated by SDS-PAGE, and Western blotted with anti-FLAG antibody.
  • FIG. 8B From FIG. 8B, HA PGC-1 ⁇ was ubiquitinated in cells expressing Synoviolin WT, but not ubiquitinated in cells expressing Synoviolin 3S.
  • MG-132 actually up-regulated the protein content of PGC-1 ⁇ (1.6 times) in dermal fibroblasts treated with solvent (DMSO) as well as tamoxifen-treated cells. In addition, no additive effect was observed between tamoxifen treatment and MG-132 addition (1.1 times).
  • siRNA against Synoviolin (Syno) The effect of siRNA was confirmed by the following test.
  • Synoviolin knockdown with siRNA was performed in HEK 293 cells.
  • SiRNA against Synoviolin has been reported in a published paper (Yamasaki, S., et al. (2007). Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase 'Synoviolin'. See EMBO J 26, 113-122.).
  • Transfection of siRNA into cells is performed using Lipofectamine 2000 (Invitrogen) was used according to the protocol. The results are shown in FIG. 9A.
  • FIG. 9A confirmed that the synoviolin expression almost completely disappeared in the SynoSyn siRNA-treated cells.
  • PGC-1 ⁇ protein level increased 2.5-fold in Syno siRNA-treated cells.
  • the expression of PGC-1 ⁇ mRNA was not changed by syno siRNA treatment.
  • PGC-1 ⁇ functions as a transcriptional coactivator of several transcription factors such as PPAR ⁇ and PPAR ⁇ , and is known to be involved in various biological events including mitochondrial biogenesis, ⁇ -oxidation and body weight regulation. (Scarpulla, RC (2008). Transcriptional paradigms in mammalian mitochondrial biogenesis and function.Physiol Rev 88, 611-638.) Therefore, PGC-1 ⁇ is syno It was thought to be the causative factor of events observed in cKO mice. To verify this idea, two representative cellular events mediated by PGC-1 ⁇ inhibited in syno cKO were analyzed. One is PGC-1 ⁇ coactivator activity, and the other is mitochondrial biosynthesis.
  • HEK-293 cells were treated with control siRNA or Syno.
  • siRNA was transiently transfected.
  • a reporter plasmid PPRE ⁇ 3-TK-luc
  • a CMV- ⁇ -gal expression construct or siRNA was transiently transfected into HEK-293 cells. 16 hours later DMSO
  • luciferase assay was performed by treatment with Wy-14643 for 6 hours (FIG. 9B).
  • PPAR-luciferase (PPRE ⁇ 3-TK-luc) contains a 3 ⁇ PPAR binding site and is known to be strictly regulated by PPAR, its ligand, and coactivator (Kim, JB, et al. (1998). ADD1 / SREBP1 activates PPARgamma through the production of inherent ligand.Proc Natl Acad Sci U SA 95, 4333-4337.).
  • a test was performed in which the amount of Synoviolin expression vector was increased stepwise and simultaneously transfected (FIG. 9C). Sixteen hours after transfection, the cells were treated with solvent (DMSO) or Wy-14643 for 6 hours, and luciferase assay was performed.
  • FIG. 9D the number and volume density of mitochondria increased in Syno siRNA-treated cells compared to control siRNA-treated cells, as in the case of syno cKO-derived white adipocytes (FIG. 2).
  • Example 10 Inhibition of Synoviolin and PGC-1 ⁇ Binding by Inhibitor of Synoviolin E3 Ubiquitin Ligase Activity
  • the inhibitory effect of Synoviolin and PGC-1 ⁇ binding was examined.
  • LS-102 PARMACOPIEA
  • SDS-PAGE SDS-PAGE with a gel concentration of 12% was added.
  • LS-102 is a compound represented by the following structural formula and is a selective inhibitory chemical substance for synoviolin's E3 ubiquitin ligase activity.
  • FIG. 10 shows that LS-102 has an inhibitory effect on the binding between Synoviolin and PGC-1 ⁇ .
  • Example 11 Screening of a substance that inhibits the binding between Synoviolin and PGC-1 ⁇
  • the substances shown in Table 2 below from the screening library related to E3 ubiquitin ligase In as in Examples 3-6 In vitro binding assays were performed. The results are shown in FIGS. 11-1, 11-2, 11-3 and 11-4. Note that 2 ⁇ g of PGC-1 ⁇ B (see FIG. 4) and 2 ⁇ g of GST-Syno ⁇ TM (see FIG. 6) were used as proteins in this example.
  • FIG. 11-1 is a Western blot showing the binding inhibitory effect between Synoviolin and PGC-1 ⁇ by the test substances 348 and 349 (upper figure) and a graph evaluating the binding ability of the test substances 348 and 349 (lower figure).
  • FIG. 11-2 is a Western blot showing the binding inhibitory effect between Synoviolin and PGC-1 ⁇ by the test substances quercetin and 351 (upper figure), and a graph evaluating the binding ability of the test substances quercetin and 351 (lower figure left and right) It is.
  • FIG. 11-3 is a Western blot showing the binding inhibitory effect of each test substance.
  • Example 12 Effect of Synoviolin on PGC-1 ⁇ Function of E3 Ubiquitin Ligase Activity Inhibitor and Substance that Inhibits Binding of Synoviolin to PGC-1 ⁇
  • Example 9 Example 9 except that 5 ⁇ M LS-102, 0.1 ⁇ M and 0.5 ⁇ M 348, 0.1 ⁇ M and 5 ⁇ M 349, and 5 ⁇ M 351 and 355 were used instead of transfection with Syno siRNA.
  • the luciferase assay was performed in the same manner as in 9. As a control, only the same volume of DMSO as a solvent for each compound was added. The results are shown in FIG. From FIG. 12, the luciferase activity decreased only when treated with 351 when treated with the compound.
  • Example 13 Effect of a substance that inhibits the binding of Synoviolin and PGC-1 ⁇ on mitochondrial function
  • Syno Mitochondria were observed in the same manner as in Example 9 except that 1 ⁇ M 348, 349, 351 and 355 were added to the cells instead of siRNA transfection and observed 72 hours later.
  • a photograph is shown in FIG. From FIG. 13, mitochondrial proliferation (increase in number) or increase in mitochondrial size was observed in 348, 349, and 355. From the above, it was suggested that the inhibition of Synoviolin increases the activity of the transcription coactivator PGC-1 ⁇ and activates mitochondria, that is, becomes a completely new molecular target for drug discovery as an agonist.
  • 3T3-L1 cells which are mouse fat precursor cells, were cultured for 3 days after reaching confluent in DMEM (Dulbecco's Modified Eagle Medium; High Glucose) containing 10% FBS (fetal bovine serum). Differentiation was induced by adding 500 ⁇ M IBMX (isobutyl-methylxanthine), 1 ⁇ M dexamethasone, and 5 ⁇ g / mL Insulin. Simultaneously, 10 ⁇ M LS-102 (inhibitor of synoviolin ubiquitination activity) or DMSO was added.
  • IBMX isobutyl-methylxanthine
  • 1 ⁇ M dexamethasone 1 ⁇ M dexamethasone
  • siRNA Syno770 sense strand consisting of the sequence of SEQ ID NO: 2 was introduced by Lipofectamine 2000 2 days before differentiation induction.
  • the cultured 3T3-L1 cells were washed with PBS ( ⁇ ) (Phosphate Buffered Saline solution excluding magnesium and calcium) and then fixed with 10% formalin. The plate was washed with PBS ( ⁇ ) and replaced with 60% Isopropanol. The cells were stained with 18 mg / mL Oil Red O (solvent: Isopropanol) for 20 minutes, washed with 60% Isopropanol and PBS ( ⁇ ), and observed with a microscope.
  • PBS Phosphate Buffered Saline solution excluding magnesium and calcium
  • Example 15 Adipocyte Oxygen Consumption in Synoviolin Knockout Mice To examine whether mitochondrial function is activated in CAG-Cre-ER; Syvn1 flox / flox mice, the oxygen consumption of one fat cell was measured.
  • FIG. 14 is a graph showing oxygen consumption of adipocytes in Synoviolin knockout mice. Primary mouse adipocytes were isolated and the oxygen consumption of 1 adipocyte was measured. Statistical processing was performed by an independent t-test.
  • FIG. 14 shows that the oxygen consumption of fat cells derived from CAG-Cre-ER; Syvn1 flox / flox mice was significantly higher than the oxygen consumption of fat cells derived from control mice.
  • Example 16 Basal metabolic rate in Synoviolin knockout mice
  • CAG-Cre-ER Basal metabolic rate in Synoviolin knockout mice
  • Syvn1 flox / flox mouse To determine whether mitochondrial function is activated, CAG-Cre-ER; was measured basal metabolism of Syvn1 flox / flox mouse (Figure 15).
  • FIG. 16 is a photograph replacing a drawing showing Western blotting of adiponectin and synoviolin in each tissue of wild type WT and synoviolin KO.
  • alpha-tubulin is an internal standard. From FIG. 16, it is considered that knocking out synoviolin increases the amount of adiponectin and promotes fatty acid combustion.
  • Example 18 Measurement of half-life of PGC-1 ⁇
  • the half-life of PGC-1 ⁇ was measured. The test is performed by a conventionally known method (Yamasaki, S., et al. EMBO J. 26, 113-122 (2007) and Bernasconi, R., et al. J. Cell Biol. 188, 223-235 (2010)) was modified as follows.
  • Mouse embryonic fibroblasts derived from Synoviolin knockout mice (MEF Syno-/-) with 1 ⁇ g pcDNA3 Synoviolin / FLAG, empty vector, or 1.5 ⁇ g pcDNA3 Synoviolin de ⁇ SyU / FLAG, 0.75 ⁇ g pcDNA3 HAPGC-1 ⁇ was transfected. 48 hours after transfection, cells were treated with 40 ⁇ M cycloheximide.
  • FIG. 17 shows that wild-type Synoviolin (SYVN1 WT) greatly shortened the half-life of PGC-1 ⁇ , but SYVN1 ⁇ SyU did not significantly promote the degradation of PGC-1 ⁇ . This indicates that the protein level of PGC-1 ⁇ is negatively controlled through binding to Synoviolin in the post-transcriptional process. It was also strongly suggested that Synoviolin is the main E3 ligase of PGC-1 ⁇ .
  • Example 19 Effect of Synoviolin Ubiquitination Activity Inhibitor LS-102 on Mitochondrial Function 7 to 8 week-old C57BL / 6J mice were given 50 mg / kg body weight of LS-102 per day or vehicle (DMSO) as a control intraperitoneally, and adipose tissue sections of 57-day mice were observed with an electron microscope. Observed at. The result is shown in FIG. FIG. 18 is an electron micrograph showing the mitochondrial morphology change in adipose tissue by LS-102. The magnification of the electron microscope is 2,500 times and 10,000 times, and the white bars indicate scale bars (2 ⁇ m for 2,500 times and 500 nm for 10,000 times). FIG.
  • Example 20 PGC-1 ⁇ half-life MEF (mouse embryoinic) established from Synoviolin KO mice fibriblasts) and an empty vector (control: CONT), synoviolin wild type (SYVN1 WT), and synoviolin unique domain (SYVN1 ⁇ SyU) lacking the binding region with ⁇ according to the standard method.
  • CONT synoviolin wild type
  • SYVN1 WT synoviolin wild type
  • SYVN1 ⁇ SyU synoviolin unique domain
  • the cell extract was subjected to Western blotting, and the results are shown in Fig. 19.
  • Fig. 19 is a Western blotting showing the half-life of PGC-1 ⁇ , as shown in Fig. 19. The half-life of 4.8 hours, 1.6 hours, and 3.6 hours, respectively. It was.
  • the binding assay used the following assay system. 2 ⁇ g MBP-PGC-1 ⁇ His (1-367aa), 2 ⁇ g GST Synoviolin mutant buffered (20 mM Tris-HCl pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.1% NP-40, 5% Glucol 1, protease Inhibitor) for 12 hours, and PGC-1 ⁇ was detected with an anti-PGC-1 ⁇ antibody.
  • the following assay system was used for the ubiquitin assay. E1-His 125 ng, UbcH5C 150 ng, MBP-SYVN1 ⁇ TM-His 150 ng, GST-PGC-1 ⁇ (1-367 aa; GST-P5), HA-ubiquitin (HA-Ub) 750 ng buffer (50 mM Tris-HCL pH7. (5,5 mM MgCl 2 , 0.6 mM DTT, 2 mM ATP) was reacted at 30 ° C. for 2 hours for ubiquitination.
  • FIG. 20 is a diagram showing the results of an in vitro ubiquitination assay.
  • FIG. 20 shows that Synoviolin (SYVN1) directly ubiquitinates PGC-1 ⁇ .
  • Example 22 Inhibition of ubiquitination of test substance
  • SYVN1 Synoviolin
  • FIG. 21 is a western blot showing the concentration dependency of the ubiquitination inhibitory activity of PGC-1 ⁇ by the test substances 348 and 349. From FIG. 21, it can be seen that any of the test substances has a higher activity of inhibiting the ubiquitination of PGC-1 ⁇ at 10 ⁇ M than at 1 ⁇ M. That is, the ubiquitination-inhibiting activity of the test substance was shown to be concentration-dependent.
  • Example 23 Binding of fragmented mutant Synoviolin and PGC-1 ⁇
  • Synoviolin (SYVN1) was shown to have a high possibility of binding to PGC-1 ⁇ in the 236th to 270th region (SyU domain).
  • the following experiment was performed in order to find a site having a high possibility of binding to PGC-1 ⁇ in the SyU domain.
  • FIG. 22 is the amino acid sequence of the SyU domain in multiple species. SYVN1 SyU mutant in which 5 amino acids corresponding to sites of synoviolin (SYVN1) 236-240, 241-245, 246-250, 251-255, 256-260, 261-265, 266-270 are substituted with alanine, PGC-1 ⁇ was bound.
  • FIG. 23 is a Western blot of SYVN1 SyU mutant.
  • FIG. 23 shows that the 256-260 and 266-270aa sites are important for binding to PGC-1 ⁇ .
  • Example 24 Binding of fragmented mutant Synoviolin and PGC-1 ⁇
  • the amino acid sequence at the 266-270aa site is RRAIR.
  • Amino acid sequence AAAAA control
  • FIG. 24 is a Western blot of mutants of SYVN 1266-270aa.
  • FIG. 24 shows that at least two arginine residues are desirable for binding to PGC-1 ⁇ via SYVN 1266-270aa.
  • the regulator of mitochondrial function of the present invention can increase the number and size of mitochondria, enhance fatty acid ⁇ oxidation and mitochondrial biogenesis, and can be applied to the treatment or prevention of obesity. Therefore, it can be used in the present invention and the pharmaceutical industry.
  • SEQ ID NO: 2 Synthetic RNA Sequence number 3: Synthetic RNA Sequence number 4: Synthetic RNA Sequence number 5: Synthetic RNA Sequence number 6: Synthetic RNA Sequence number 7: Synthetic RNA Sequence number 8: Primer Sequence number 9: Primer Sequence number 10: Primer Sequence number 11: Primer Sequence number 12: Primer Sequence number 13: Primer Sequence number 14: Primer Sequence number 15: Primer Sequence number 16: Primer Sequence number 17: Primer Sequence number 18: Primer Sequence number 19: Primer Sequence number 20: Primer Sequence number 21: Primer Sequence number 22: Primer Sequence number 23: Primer Sequence number 24: Primer Sequence number 25: Primer Sequence number 26: Primer Sequence number 27: Primer Sequence number 28: Primer Sequence number 29: Primer Sequence number 30: Primer Sequence number 31: Primer Sequence number 32: Primer Sequence number 33: Primer Sequence number 34: Primer sequence Issue 35: Primer SEQ ID NO

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Child & Adolescent Psychology (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)

Abstract

【課題】肥満症の治療又は予防に有効なミトコンドリア機能の調節剤及びそのスクリーニング方法の提供。 【解決手段】本発明のミトコンドリア機能の調節剤は,シノビオリンを標的としたPGC-1β蛋白質の機能調整剤を有効成分として含有する。また,本発明のスクリーニング方法は,脂肪組織の細胞又は動物個体に被験物質を作用させ,脂肪組織の細胞における(1)シノビオリンの発現量,(2)シノビオリンとPGC-1β蛋白質との結合,及び(3)シノビオリンによるPGC-1β蛋白質のユビキチン化,の少なくともいずれかを測定又は検出する工程を含む。

Description

PGC-1β蛋白質の機能調整剤,ミトコンドリア機能の調節剤,抗肥満剤及びそれらスクリーニング方法
 本発明は,PGC-1β蛋白質の機能調整剤,ミトコンドリア機能の調節剤,抗肥満剤及びそれらスクリーニング方法に関する。
 細胞の呼吸や脂肪酸のβ酸化を含むエネルギー代謝やミトコンドリア生合成において,核内レセプターやそれらのコアクチベーターが中心的な役割を果たしていると考えられている。ペルオキシソーム増殖因子活性化レセプター(Peroxisome proliferator-activated receptors (PPARs))は,核内レセプタースーパーファミリーを形成し,PPARα,PARβ/δ及びPPARγの3つのアイソフォームが存在する(非特許文献1参照)。PPARに対するコアクチベーターとして,PGC-1α,PGC-1β及びPGC-1関連コアクチベーター(PRC)の3つが知られている(非特許文献2~4参照)。
 PGC-1βが過剰発現すると,培養細胞においてミトコンドリアの数と呼吸機能が向上する(非特許文献5参照)。また,PGC-1βトランスジェニックマウスは,高いエネルギー消費と肥満症に対する耐性を有することが報告されている(非特許文献6参照)。
 PGC-1βは,褐色脂肪決定及び/又は分化,細胞代謝,脂肪酸酸化,ミトコンドリアの機能及び/又は呼吸などの制御に関わっていることが知られている(特許文献1参照)。また,PGC-1βは,脂質生合成および脂質輸送の制御に関わっていることが知られている(特許文献2参照)。
特表2008-517931号公報 特表2005-514921号公報
Viana Abranches, et al. (2011). Peroxisome proliferator-activatedreceptor: effects on nutritional homeostasis, obesity and diabetes mellitus.Nutr Hosp 26, 271-279. AnderssonU. and Scarpulla RC., (2001) Pgc-1-related coactivator, a novel,serum-inducible coactivator of nuclear respiratory factor 1-dependenttranscription in mammalian cells. Mol Cell Biol. 21,3738-3749. Kressler, D. et al., (2002). The PGC-1-related protein PERC is aselective coactivator of estrogen receptor alpha. J Biol Chem 277,13918-13925. Lin, J. (2001). Peroxisome Proliferator-activated Receptor gammaCoactivator 1beta (PGC-1beta), A Novel PGC-1-related Transcription CoactivatorAssociated with Host Cell Factor. J Biol Chem 277, 1645-1648. St-Pierre, J.,et al., (2003). Bioenergetic analysis of peroxisomeproliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alphaand PGC-1beta) in muscle cells. J Biol Chem 278, 26597-26603. Kamei, Y., et al., (2003). PPARgamma coactivator 1beta/ERR ligand 1is an ERR protein ligand, whose expression induces a high-energy expenditureand antagonizes obesity. Proc Natl Acad Sci U S A 100, 12378-12383.
 上記のとおりPPARコアクチベーター1(PGC-1)βは,様々な機能を有する。このため,PGC-1βの活性を高める物質やそのような物質をスクリーニングする方法を提供することが望まれる。
 本発明は,PGC-1βの活性を高める物質やそのような物質をスクリーニングする方法を提供することを目的とする。
 本発明は,肥満症の治療又は予防に有効なミトコンドリア機能の調節剤及びそのスクリーニング方法を提供することを目的とする。
 本発明者らは,シノビオリンのコンディショナルノックアウトマウスがβ酸化及び/又はミトコンドリア生合成に関わる遺伝子群を顕著に上方制御し,白色脂肪細胞においてミトコンドリアの数が顕著に増加すること,並びに前記遺伝子群の転写を制御するコアクチベーターPGC-1βがシノビオリンによって負に制御されていることを初めて見出し,本発明の完成に至った。
 本発明の第1の側面は,PGC-1β蛋白質の機能調整剤(本発明の剤)に関する。このPGC-1β蛋白質の機能調整剤は,シノビオリンの発現阻害剤又はシノビオリンの活性阻害剤を有効成分として含有する。そして,PGC-1β蛋白質の機能調整剤は,例えば,PGC-1β蛋白質の活性を高めるように調整することで,脂肪酸β酸化を促進し,ミトコンドリアの発現又は活性を促進する。これにより,本発明のPGC-1β蛋白質の機能調整剤は,例えば,PGC-1β蛋白質が関与する肥満等の症状の治療や予防に有効である。
 すなわち本発明の剤は,シノビオリンを阻害することで,PGC-1β蛋白質の活性を高めることができ,それによりミトコンドリアの活性を高めることができるため,肥満症の予防又は治療に有益である。
 本発明の第1の側面に関するPGC-1β蛋白質の機能調整剤の好ましい態様は,PGC-1β蛋白質による脂肪酸β酸化の促進,及びミトコンドリアの発現又は活性促進のいずれか又は両方のために用いられるものである。
 特に,本発明のPGC-1β蛋白質の機能調整剤は,ミトコンドリアの活性化に好ましく用いられる。このため,本発明は,ミトコンドリアの活性化剤をも提供する。このミトコンドリアの活性化剤は,例えば,ミトコンドリアの発現数の増加及びミトコンドリアのサイズの増大のいずれか又は両方を惹き起こすために用いられる。
 本発明の第2の側面は,PGC-1β蛋白質の機能調整剤をスクリーニングする方法に関する。この方法は,まず脂肪組織の細胞又は動物個体に被験物質を作用させる。その後,脂肪組織の細胞におけるシノビオリンの発現量,シノビオリンとPGC-1β蛋白質との結合,及びシノビオリンによるPGC-1β蛋白質のユビキチン化の少なくともいずれかを測定又は検出する。先に説明したとおり,本発明は,シノビオリンの活性を阻害することがPGC-1β蛋白質の活性を高めることにつながるという知見に基づく。このため,シノビオリンの発現や活性を評価することで,PGC-1β蛋白質の機能調整剤(PGC-1β蛋白質の機能を調整する作用を有する物質)をスクリーニングすることができる。
 本発明の第2の側面のある態様は,先に説明したPGC-1β蛋白質の機能調整剤をスクリーニングする方法を用いた,ミトコンドリアの活性化剤の検出(スクリーニング)方法に関する。
 本発明の第2の側面のある態様は,先に説明したPGC-1β蛋白質の機能調整剤をスクリーニングする方法を用いた,肥満症の治療剤又は予防剤の検出(スクリーニング)方法に関する。
 本発明は,例えば,PGC-1β蛋白質の機能調整剤及びそのスクリーニング方法,肥満症の治療又は予防に有効なミトコンドリア機能の調節剤及びそのスクリーニング方法を提供することができる。
図1は,シノビオリンノックアウトマウス由来の白色脂肪細胞におけるβ酸化及びミトコンドリア関連遺伝子の転写レベルを示すグラフである。 図2は,シノビオリンノックアウトマウス由来の白色脂肪細胞におけるミトコンドリアの電子顕微鏡写真である。左側の写真が対照となる野生型マウス(syno WT)で,右側がシノビオリンノックアウトマウス(synocKO)である。電子顕微鏡の倍率は5,000倍。 図3は,in vitroにおけるPGC-1βとシノビオリンとの結合を示すウェスタンブロットである。 図4は,PGC-1β及び断片化PGC-1βの概念図及びin vitroにおける断片化PGC-1βとシノビオリンとの結合を示すウェスタンブロットである。図4中の略号は次の通り。AD:活性化ドメイン,LXXLL:LXXLLモチーフ,E:グルタミン酸リッチドメイン,SR:セリン-アルギニンリッチドメイン,RRM:RNA認識モチーフ。 図5は,シノビオリン及び断片化シノビオリンの概念図及びin vitroにおけるPGC-1βと断片化シノビオリンとの結合を示すウェスタンブロットである。図5中の略号は次の通り。SP:シグナルペプチド,TM:膜貫通ドメイン,SyU:シノビオリンにユニークなドメイン,RING:RINGフィンガードメイン,PR:プロリンリッチドメイン。 図6Aは,in vivoにおけるPGC-1βとシノビオリンとの結合を示すウェスタンブロットである。 図6Bは,in vivoにおけるPGC-1βとシノビオリンとの結合を示す他のウェスタンブロットである。 図7は,PGC-1β及びシノビオリンの局在を示す蛍光顕微鏡写真である。 図8Aは,in vitroでのシノビオリンによるPGC-1βのユビキチン化を示すウェスタンブロットである。 図8Bは,in vivoでのシノビオリンによるPGC-1βのユビキチン化を示すウェスタンブロットである。 図8Cは,in vivoでのシノビオリンノックアウトによるPGC-1βの蛋白質レベルへの影響を示すウェスタンブロットである。 図8Dは,in vivoでのシノビオリンノックアウトによるPGC-1β蛋白質分解への影響を示すウェスタンブロットである。 図9Aは,シノビオリンsiRNAによるPGC-1β蛋白質発現への影響を示すウェスタンブロットである。 図9Bは,シノビオリンsiRNAによるPGC-1βの機能発現への影響を示すウェスタンブロットである。 図9Cは,シノビオリンの過剰発現によるPGC-1βの機能発現への影響を示すグラフである。 図9Dは,シノビオリンsiRNAによるミトコンドリアの形態変化を示す電子顕微鏡写真である。 図10は,シノビオリンのE3ユビキチンリガーゼ活性阻害剤によるシノビオリンとPGC-1βとの結合阻害効果を示すウェスタンブロットである。 図11-1は,被験物質349及び348によるシノビオリンとPGC-1βとの結合阻害効果を示すウェスタンブロット(上図),及び被験物質349及び348の結合能を評価したグラフ(下図)である。 図11-2は,被験物質ケルセチン及び351によるシノビオリンとPGC-1βとの結合阻害効果を示すウェスタンブロット(上図),及び被験物質ケルセチン及び351の結合能を評価したグラフ(下図左及び右)である。 図11-3は,それぞれの被験物質の結合阻害効果を示すウェスタンブロットである。 図11-4は,被験物質によるシノビオリンとPGC-1βとの結合阻害効果を示す他のウェスタンブロットである。結合の度合いは,結合アッセイを行ったウェスタンブロットを画像解析し,intensityとしてグラフで表わした。 図12は,被験物質によるPGC-1β機能への効果を示すグラフである。 図13は,被験物質によるミトコンドリアの形態変化を示す電子顕微鏡写真である。 図14は,シノビオリンノックアウトマウスにおける脂肪細胞の酸素消費量を示すグラフである。 図15は,シノビオリンノックアウトマウスにおける基礎代謝量を示すグラフである。 図16は,野生型WTとシノビオリンKOの各組織におけるアディポネクチンとシノビオリンのウエスタンブロッティングを示す図面に替わる写真である。 図17はPGC-1βの半減期の測定するためのウェスタンブロットを示す図である。 図18は,LS-102による脂肪組織のミトコンドリアの形態変化を示す電子顕微鏡写真である。 図19は,PGC-1βの半減期を示すウエスタンブロッテングである。 図20は,インビトロユビキチン化アッセイの結果を示す図である。 図21は,被検物質348,349によるPGC-1βのユビキチン化阻害活性の濃度依存性を示すウェスタンブロットである。 図22は,複数の種におけるSyUドメインのアミノ酸配列である。 図23は,SYVN1 SyU変異体のウェスタンブロットである。 図24は,SYVN1266-270aaの変異体のウェスタンブロットである。
 本発明の第1の側面は,PGC-1β蛋白質の機能調整剤(本発明の剤)に関する。PGC-1βは,PPARコアクチベーター1βを意味する。PGC-1β蛋白質の機能調整剤は,例えば先に説明したPGC-1β蛋白質の様々な機能を調整するための薬剤である。PGC-1β蛋白質は,様々な機能を有する。このためPGC-1β蛋白質の機能を調整することは,PGC-1β蛋白質が関与する様々な生体機能の解析に有益である。
 このPGC-1β蛋白質の機能調整剤は,シノビオリンの発現阻害剤又はシノビオリンの活性阻害剤を有効成分として含有する。シノビオリンの発現阻害剤及びシノビオリンの活性阻害剤は公知である。一方,シノビオリンの発現阻害剤又はシノビオリンの活性阻害剤は,後述するスクリーニング方法を用いて候補化合物を得て,シノビオリンの発現阻害活性又はシノビオリンの活性阻害能を有するか検討することで,シノビオリンの発現阻害剤又はシノビオリンの活性阻害剤を得ても良い。本発明のPGC-1β蛋白質の機能調整剤は,PGC-1β蛋白質の活性を高めるように調整することで,脂肪酸β酸化を促進し,ミトコンドリアの発現又は活性を促進する。これにより,本発明のPGC-1β蛋白質の機能調整剤は,例えば,PGC-1β蛋白質が関与する肥満等の症状の治療や予防に有効である。
 ヒトのシノビオリン遺伝子の公共遺伝子データベースGenbankにおけるアクセッション番号は,AB024690(配列番号:1)である。
 ヒトにおけるシノビオリンをコードする遺伝子の塩基配列を配列番号:1に示す。また該塩基配列によってコードされるタンパク質以外のタンパク質であっても,これと高い相同性(通常70%以上,好ましくは80%以上,より好ましくは90%以上,最も好ましくは95%以上)を有し,かつ,シノビオリンタンパク質が有する機能を持つタンパク質は,本発明のシノビオリンに含まれる。
 本発明における「シノビオリン遺伝子」には,例えば,配列番号:1に記載の塩基配列からなるDNAに対応する他の生物における内在性の遺伝子(ヒトのシノビオリン遺伝子のホモログ等)が含まれる。
 また,配列番号:1に記載の塩基配列からなるDNAに対応する他の生物の内在性のDNAは,一般的に,配列番号:1に記載のDNAと高い相同性を有する。高い相同性とは,50%以上,好ましくは70%以上,さらに好ましくは80%以上,より好ましくは90%以上(例えば,95%以上,さらには96%,97%,98%または99%以上)の相同性を意味する。この相同性は,mBLASTアルゴリズム(Altschul et al.(1990) Proc. Natl. Acad. Sci. USA 87: 2264-8;Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-7)によって決定することができる。また,該DNAは,生体内から単離した場合,配列番号:1に記載のDNAとストリンジェントな条件下でハイブリダイズすると考えられる。ここで「ストリンジェントな条件」としては,例えば「2×SSC,0.1%SDS,50℃」,「2×SSC,0.1%SDS,42℃」,「1×SSC,0.1%SDS,37℃」,よりストリンジェントな条件として「2×SSC,0.1%SDS,65℃」,「0.5×SSC,0.1%SDS,42℃」および「0.2×SSC,0.1%SDS,65℃」の条件を挙げることができる。当業者においては,他の生物におけるシノビオリン遺伝子に相当する内在性の遺伝子を,シノビオリン遺伝子の塩基配列を基に適宜取得することが可能である。なお,本明細書においては,ヒト以外の生物におけるシノビオリンタンパク質(遺伝子)に相当するタンパク質(遺伝子),あるいは,上述のシノビオリンと機能的に同等なタンパク質(遺伝子)を,単に「シノビオリンタンパク質(遺伝子)」と記載する場合がある。
 本発明の「シノビオリン」は,天然のタンパク質のほか,遺伝子組み換え技術を利用した組換えタンパク質として調製することができる。天然のタンパク質は,例えばシノビオリンタンパク質が発現していると考えられる細胞(組織)の抽出液に対し,シノビオリンタンパク質に対する抗体を用いたアフィニティークロマトグラフィーを用いる方法により調製することが可能である。一方,組換えタンパク質は,シノビオリンタンパク質をコードするDNAで形質転換した細胞を培養することにより調製することが可能である。本発明の「シノビオリンタンパク質」は,例えば,後述のスクリーニング方法において好適に用いられる。
 本発明において「発現」とは遺伝子からの「転写」あるいはポリペプチドへの「翻訳」及びタンパク質の「分解抑制」によるものが含まれる。「シノビオリンタンパク質の発現」とは,シノビオリンタンパク質をコードする遺伝子の転写および翻訳が生じること,またはこれらの転写・翻訳によりシノビオリンタンパク質が生成されることを意味する
 上述の各種機能は,当業者においては,一般的な技術を用いて,適宜,評価(測定)することが可能である。具体的には,後述の実施例に記載の方法,あるいは該方法を適宜改変して実施することができる。
 従って,「シノビオリンの発現阻害剤又はシノビオリンの活性阻害剤」とは,野生型シノビオリン遺伝子またはタンパク質の量,機能または活性と比較して,その量,機能または活性を低下または消失させることをいう。上記「阻害」には,機能と発現の両者を阻害すること,およびどちらか一方を阻害することのいずれもが含まれる。
 ユビキチン化は,具体的には,ユビキチン活性化酵素(E1),ユビキチン結合酵素(E2)およびユビキチンリガーゼ(E3)などの酵素が協同したカスケード反応を繰り返すことにより,基質となるタンパク質にユビキチン分子を枝状に結合させてポリユビキチン鎖を形成する過程をいう。このポリユビキチン鎖は,ユビキチン分子内の48番目のリシン残基のε‐アミノ基を介して形成され,26Sプロテアソームへの分解シグナルとなり,標的タンパク質を分解に導く。
 被験物質によるシノビオリン遺伝子の発現への影響又はシノビオリン蛋白質の活性への影響を確認する方法は,例えば国際公開WO2006-137514号パンフレットに開示されている方法を適宜用いればよい。
 シノビオリン蛋白質の自己ユビキチン化への影響
 例えば,特開2008-74753号公報(特許第5008932号)には,プルムバギン(2-メチル-5-ヒドロキシ-1,4-ナフトキノン)及びケルセチン(2-(3,4-ジヒドロキシフェニル)-3,5,7-トリヒドロキシ-4H-1-ベンゾピラノ-4-オン)がシノビオリン蛋白質の自己ユビキチン化を阻害することが開示されている。シノビオリンの自己ユビキチン化とは,特開2008-74753号公報に開示されるように,シノビオリン同士の相互作用により生じるタンパク質のユビキチン化を意味する。タンパク質のユビキチン化は,タンパク質にシノビオリンが結合することにより生じる。
 シノビオリン蛋白質の自己ユビキチン化への影響は,特開2008-74753号公報(特許第5008932号)に開示された方法を用いて確認すればよい。例えば,披験物質をMBP-Syno ΔTM-Hisのin vitro自己ユビキチン化反応液に添加し,37℃で30分間反応を行う。反応後,抗HA抗体を用いたウェスタンブロット法によりユビキチン化タンパク質を検出する。MBP-Syno ΔTM-Hisは,N末端側にマルトース結合タンパク質(MBP),C末端側にHisタグを融合させた膜貫通領域欠損させたシノビオリンを意味する。
 シノビオリンの発現阻害剤又はシノビオリンの活性阻害剤
 シノビオリンの発現阻害剤又はシノビオリンの活性阻害剤の例は,特許第5008932号に開示されるプルムバギン(2-メチル-5-ヒドロキシ-1,4-ナフトキノン)及びケルセチン(2-(3,4-ジヒドロキシフェニル)-3,5,7-トリヒドロキシ-4H-1-ベンゾピラノ-4-オン),その製薬上許容可能な塩又はこれらの水和物である。
 シノビオリンの発現阻害剤又はシノビオリンの活性阻害剤の例は,一般式(I)で示されるナフタレン誘導体,その医薬的に許容しうる塩,又はその医薬的に許容しうる溶媒和物を含むシノビオリン蛋白質のユビキチン化活性阻害剤である。一般式(I)で示される化合物は,公知の方法を用いて合成できる。
 シノビオリン蛋白質のユビキチン化活性阻害剤は,シノビオリンの自己ユビキチン化活性を阻害するための剤を意味する。ユビキチン化活性を阻害するか否かは,実施例により示されたとおり,例えば,インビトロにおいてユビキチン化されたタンパク質量を測定することにより評価できる。シノビオリン蛋白質のユビキチン化活性阻害剤は,後述するように,例えば,リウマチの治療剤又は予防剤として有効であるほか,肥満症の治療剤又は予防剤としても有効である。
 その医薬的に許容しうる塩とは,一般式(I)で示されるナフタレン誘導体の医薬的に許容しうる塩を意味する。また,その医薬的に許容しうる溶媒和物とは,一般式(I)で示されるナフタレン誘導体の医薬的に許容しうる溶媒和物を意味する。医薬的に許容しうる塩の例は,無機酸塩,有機酸塩,無機塩基塩,有機塩基塩,酸性または塩基性アミノ酸塩である。無機酸塩の例は,塩酸塩,臭化水素酸塩,硫酸塩,硝酸塩,リン酸塩である。有機酸塩の例は,酢酸塩,コハク酸塩,フマル酸塩,マレイン酸塩,酒石酸塩,クエン酸塩,乳酸塩,ステアリン酸塩,安息香酸塩,メタンスルホン酸塩,及びp-トルエンスルホン酸塩である。無機塩基塩の例は,ナトリウム塩,カリウム塩などのアルカリ金属塩,カルシウム塩,マグネシウム塩などのアルカリ土類金属塩,アルミニウム塩,及びアンモニウム塩である。有機塩基塩の例は,ジエチルアミン塩,ジエタノールアミン塩,メグルミン塩,及びN,N’-ジベンジルエチレンジアミン塩である。酸性アミノ酸塩の例は,アスパラギン酸塩,及びグルタミン酸塩である。塩基性アミノ酸塩の例は,アルギニン塩,リジン塩,及びオルニチン塩である。溶媒和物の例は,水和物である。
 本発明の化合物は,抽出,濃縮,留去,結晶化,ろ過,再結晶,各種クロマトグラフィーなどの通常の化学操作を適用し,公知の方法を用いて単離し精製することができる。
Figure JPOXMLDOC01-appb-C000001
 式(I)中,
  R~Rは,同一でも異なってもよく,水素原子,水酸基,C1-3アルキル基,C1-3アルコキシ基,及びハロゲン原子のいずれかを表わす。後述する実施例により実証されたとおり,R~Rの少なくともひとつは水酸基である。
  R及びRは,同一でも異なってもよく,水素原子,C1-3アルキル基,及びハロゲン原子のいずれかを表わす。
  X及びXは,同一でも異なってもよく,酸素原子又は硫黄原子を表す。
  A-Aは,C-C(単結合),又はC=C(二重結合)を表す。A-Aが,C=C(二重結合)の場合,式(I)は,式(II)のように表される。
 C1-3アルキル基は,炭素数が1~3個のアルキル基を意味する。C1-3アルキル基の例は,メチル基,エチル基,n-プロピル基,及びイソプロピル基である。C1-3アルキル基の好ましい例は,メチル基である。
 C1-3アルコキシ基,炭素数が1~3個のアルコシキ基を意味する。C1-3アルコシキ基の例は,メトキシ基,エトキシ基,n-プロポキシ基,及びイソプロポキシ基である。C1-3アルコキシ基の好ましい例は,メトキシ基である。
 ハロゲン原子の例は,フッ素原子,塩素原子,臭素原子,及びヨウ素原子である。ハロゲン原子の好ましい例は塩素原子である。
 本発明の好ましい態様は,R及びRの少なくともひとつは水酸基であるシノビオリン蛋白質のユビキチン化活性阻害剤に関する。
 本発明の好ましい態様は,一般式(I)において,A-Aは,C=Cを表すシノビオリン蛋白質のユビキチン化活性阻害剤に関する。このナフタレン誘導体は,以下の一般式(II)で示されるナフタレン誘導体である。
Figure JPOXMLDOC01-appb-C000002
 
 
 本発明の好ましい態様は,一般式(I)において,X及びXは,ともに酸素原子を表し,A-Aは,C=Cを表すシノビオリン蛋白質のユビキチン化活性阻害剤に関する。このナフタレン誘導体は,以下の一般式(III)で示されるナフトキノン誘導体である。
Figure JPOXMLDOC01-appb-C000003
 本発明の好ましい態様は,一般式(I)において,
  R~Rは,同一でも異なってもよく,水素原子,水酸基,メチル基,メトキシ基,又は塩素原子を示し,ここで,R~Rの少なくともひとつは水酸基であり,
  R及びRは,同一でも異なってもよく,水素原子,又はメチル基を表し,
  X及びXは,ともに酸素原子を表し,
  A-Aは,C=Cを表す,
 シノビオリン蛋白質のユビキチン化活性阻害剤である。
 本発明の好ましい態様は,一般式(I)において,
  R及びRは,同一でも異なってもよく,水素原子,水酸基,メチル基,メトキシ基,又は塩素原子を表し,ここで,R~Rの少なくともひとつは水酸基であり,
  R及びRは,水素原子を表し,
  R及びRは,ともに水素原子を表し,
  X及びXは,ともに酸素原子を表し,
  A-Aは,C=Cを表す,
 シノビオリン蛋白質のユビキチン化活性阻害剤である。
 本発明の好ましい態様は,
 一般式(I)で示されるナフタレン誘導体が,
  5,8-ジヒドロキシ-4a,8a-ジヒドロ-[1,4]ナフトキノン,
  5-ヒドロキシ-4a,8a-ジヒドロ-[1,4]ナフトキノン,
  5-ヒドロキシ-2,3,4a,8a-テトラヒドロ-[1,4]ナフトキノン,
  5-ヒドロキシ-7-メトキシ-4a,8a-ジヒドロ-[1,4]ナフトキノン,
  5-ヒドロキシ-8-メトキシ-4a,8a-ジヒドロ-[1,4]ナフトキノン,及び
  5-クロロ-8-ヒドロキシ-4a,8a-ジヒドロ-[1,4]ナフトキノンのいずれか又は2つ以上である,
 シノビオリン蛋白質のユビキチン化活性阻害剤である。
 シノビオリンの発現阻害剤又はシノビオリンの活性阻害剤のある態様は,有効成分がシノビオリンのsiRNAのものである。RNAi効果による阻害作用を有する核酸は,一般的にsiRNAもしくはshRNAとも呼ばれる。RNAiは,標的遺伝子のmRNAと相同な配列からなるセンスRNAとこれと相補的な配列からなるアンチセンスRNAとからなる短鎖二本鎖RNA(以下,「dsRNA」と略称する)を細胞等に導入することにより,標的遺伝子mRNAに特異的かつ選択的に結合して破壊を誘導し,当該標的遺伝子を切断することにより標的遺伝子の発現を効率よく阻害する(抑制する)現象である。例えば,dsRNAを細胞内に導入すると,そのRNAと相同配列の遺伝子の発現が抑制(ノックダウン)される。このようにRNAiは,標的遺伝子の発現を抑制し得ることから,従来の煩雑で効率の低い相同組換えによる遺伝子破壊方法に代わる簡易な遺伝子ノックアウト方法として,または,遺伝子治療への応用可能な方法として注目されている。RNAiに用いるRNAは,シノビオリン遺伝子もしくは該遺伝子の部分領域と必ずしも完全に同一である必要はないが,完全な相同性を有することが好ましい。
 siRNAの設計は,以下の通り行うことができる。
(a) シノビオリンをコードする遺伝子であれば特に限定されるものではなく,任意の領域を全てターゲット候補とすることが可能である。例えば,ヒトの場合では,GenBank アクセッション番号 AB024690(配列番号:1)の任意の領域を候補にすることができる。
(b) 選択した領域から,AAで始まる配列を選択し,その配列の長さは19~25塩基,好ましくは19~21塩基である。その配列のGC含量は,例えば40~60%となるものを選択するとよい。
(a)シノビオリン遺伝子を発現する細胞に,被験化合物を接触させる工程
(b)前記細胞におけるシノビオリン遺伝子の発現量を測定する工程
(c)被験化合物の非存在下において測定した場合と比較して,発現量を低下させる化合物を選択する工程
 シノビオリンのsiRNAの例は,配列番号2~6から選択される一の塩基配列,これらの塩基配列と相補の塩基配列,又はこれらのいずれかの塩基配列から1又は2個の塩基が置換,挿入,欠失又は付加した塩基配列を有するRNAである。配列番号2~4に示される塩基配列を有するRNAがシノビオリンのsiRNAであることは,Izumi T, et al., Arthritis Rheum. 2009;60(1):63-72., EMBO,Yamasaki S, et al., EMBO J. 2007; 26(1):113-22.に実験を用いて開示されるとおり公知である。配列番号5及び6に示される塩基配列を有するRNAがシノビオリンのsiRNAであることは,WO2005/074988号パンフレットに実験を用いて開示されるとおり公知である。
 配列番号2:5’-GCUGUGACAGAUGCCAUCA-3’   
 配列番号3:5’-GGUGUUCUUUGGGCAACUG-3’
 配列番号4:5’-GGUUCUGCUGUACAUGGCC-3’
 配列番号5:5’-CGUUCCUGGUACGCCGUCA-3’ 
 配列番号6:5’-GUUUTGGUGACUGGUGCUA-3’ 
 「これらのいずれかの塩基配列から1又は2個の塩基が置換,挿入,欠失又は付加した塩基配列を有するRNA」は,配列番号2~6から選択される一の塩基配列及びこれらの塩基配列と相補の塩基配列のいずれかの塩基配列から,1又は2個の塩基が置換,挿入,欠失又は付加した塩基配列を有するRNAである。置換,挿入,欠失又は付加は,いずれか1種類が生じていても良いし,2つ以上が生じていても良い。
 例えば,国際公開WO2005-018675号パンフレット,WO2005/074988号パンフレットには,シノビオリンをコードする遺伝子に対するsiRNA及び,シノビオリンをコードする遺伝子に対するsiRNAのスクリーニング方法及び評価方法が開示されている。本発明においても,この公報に開示された方法を適宜用いて,シノビオリンをコードする遺伝子に対するsiRNAを評価することができる。
 シノビオリンの発現阻害剤又はシノビオリンの活性阻害剤のある態様は,有効成分が,配列番号7で示される塩基配列又は配列番号7で示される塩基配列から1又は2個の塩基が置換,挿入,欠失又は付加した塩基配列を有するシノビオリンのデコイ核酸である。配列番号7で示される塩基配列を有する核酸がシノビオリンのデコイ核酸であることは,例えば,Tsuchimochi K, et al., Mol Cell Biol.2005;25(16):7344-56.に実施例を用いて示されているとおり公知である(配列番号7:5’-AUGGUGACUGGUGCUAAGA-3’)。
 また,シノビオリンのデコイ核酸及びその確認方法は,例えば国際公開WO2005-093067号パンフレット,及び国際公開WO2005-074988号パンフレットに開示されるとおり公知である。
 シノビオリンの発現阻害剤又はシノビオリンの活性阻害剤のある態様は,有効成分が,シノビオリンのアンチセンス核酸である。シノビオリンのアンチセンス核酸及びシノビオリンのアンチセンス核酸をスクリーニングする方法は,例えば,特開2009-155204号公報,再表2006-137514号及び再表2005-074988号に開示されている。シノビオリンのアンチセンス核酸とは,シノビオリン遺伝子に相補的な配列を有し,当該遺伝子にハイブリダイズすることにより,シノビオリン遺伝子の発現を阻害することができる核酸を意味する。アンチセンス核酸は,シノビオリンをコードする遺伝子の部分塩基配列に対して相補的な核酸化合物を合成化学的手法などにより調製することができる。当該核酸化合物がシノビオリンの産生を効率的に阻害するかどうかを評価するためには,遺伝子の発現量を指標としたスクリーニング試験を行えばよい。上記アンチセンス核酸化合物としては,例えばシノビオリンの発現を,コントロールと比較して少なくとも50%以下に抑えることができるものである。
 特定の内在性遺伝子の発現を阻害する方法としては,アンチセンス技術を利用する方法が当業者によく知られている。アンチセンス核酸が標的遺伝子の発現を阻害する作用としては,以下のような複数の要因が存在する。即ち,三重鎖形成による転写開始阻害,RNAポリメラーゼによって局部的に開状ループ構造が作られた部位とのハイブリッド形成による転写阻害,合成の進みつつあるRNAとのハイブリッド形成による転写阻害,イントロンとエクソンとの接合点におけるハイブリッド形成によるスプライシング阻害,スプライソソーム形成部位とのハイブリッド形成によるスプライシング阻害,mRNAとのハイブリッド形成による核から細胞質への移行阻害,キャッピング部位やポリ(A)付加部位とのハイブリッド形成によるスプライシング阻害,翻訳開始因子結合部位とのハイブリッド形成による翻訳開始阻害,開始コドン近傍のリボソーム結合部位とのハイブリッド形成による翻訳阻害,mRNAの翻訳領域やポリソーム結合部位とのハイブリッド形成によるペプチド鎖の伸長阻害,および核酸とタンパク質との相互作用部位とのハイブリッド形成による遺伝子発現阻害などである。このようにアンチセンス核酸は,転写,スプライシングまたは翻訳など様々な過程を阻害することで,標的遺伝子の発現を阻害する(平島および井上, 新生化学実験講座2 核酸IV遺伝子の複製と発現, 日本生化学会編, 東京化学同人,
1993, 319-347.)。
 本発明で用いられるアンチセンス核酸は,上記のいずれの作用によりシノビオリン遺伝子の発現および/または機能を阻害してもよい。一つの態様としては,シノビオリン遺伝子のmRNAの5'端近傍の非翻訳領域に相補的なアンチセンス配列を設計すれば,遺伝子の翻訳阻害に効果的と考えられる。また,コード領域もしくは3'側の非翻訳領域に相補的な配列も使用することができる。このように,シノビオリン遺伝子の翻訳領域だけでなく,非翻訳領域の配列のアンチセンス配列を含む核酸も,本発明で利用されるアンチセンス核酸に含まれる。使用されるアンチセンス核酸は,適当なプロモーターの下流に連結され,好ましくは3'側に転写終結シグナルを含む配列が連結される。このようにして調製された核酸は,公知の方法を用いることで所望の動物(細胞)に形質転換することができる。アンチセンス核酸の配列は,形質転換される動物(細胞)が有する内在性のシノビオリン遺伝子またはその一部と相補的な配列であることが好ましいが,遺伝子の発現を有効に抑制できる限りにおいて,完全に相補的でなくてもよい。転写されたRNAは標的遺伝子の転写産物に対して好ましくは90%以上,最も好ましくは95%以上の相補性を有する。アンチセンス核酸を用いて標的遺伝子(シノビオリン)の発現を効果的に阻害するには,アンチセンス核酸の長さは少なくとも15塩基以上25塩基未満であることが好ましいが,本発明のアンチセンス核酸は必ずしもこの長さに限定されず,例えば100塩基以上,または500塩基以上であってもよい。
 また,シノビオリン遺伝子の発現の阻害は,リボザイム,またはリボザイムをコードするDNAを利用して行うことも可能である。リボザイムとは触媒活性を有するRNA分子を指す。リボザイムには種々の活性を有するものが存在するが,中でもRNAを切断する酵素としてのリボザイムに焦点を当てた研究により,RNAを部位特異的に切断するリボザイムの設計が可能となった。リボザイムには,グループIイントロン型やRNase Pに含まれるM1
RNAのように400ヌクレオチド以上の大きさのものもあるが,ハンマーヘッド型やヘアピン型と呼ばれる40ヌクレオチド程度の活性ドメインを有するものもある(小泉誠および大塚栄子, タンパク質核酸酵素, 1990, 35, 2191.)。
 例えば,ハンマーヘッド型リボザイムの自己切断ドメインは,G13U14C15という配列のC15の3'側を切断するが,その活性にはU14とA9との塩基対形成が重要とされ,C15の代わりにA15またはU15でも切断され得ることが示されている(Koizumi, M. et al., FEBS Lett, 1988, 228, 228.)。基質結合部位が標的部位近傍のRNA配列と相補的なリボザイムを設計すれば,標的RNA中のUC,UUまたはUAという配列を認識する制限酵素的なRNA切断リボザイムを作出することができる(Koizumi, M. et al.,
FEBS Lett, 1988, 239, 285.,小泉誠および大塚栄子, タンパク質核酸酵素, 1990, 35, 2191.,Koizumi, M. et al., Nucl
Acids Res, 1989, 17, 7059.)。
 また,ヘアピン型リボザイムも本発明の目的に有用である。このリボザイムは,例えばタバコリングスポットウイルスのサテライトRNAのマイナス鎖に見出される(Buzayan, JM., Nature, 1986,
323, 349.)。ヘアピン型リボザイムからも,標的特異的なRNA切断リボザイムを作出できることが示されている(Kikuchi, Y.& Sasaki, N., Nucl Acids Res, 1991, 19, 6751.,菊池洋, 化学と生物, 1992, 30, 112.)。このように,リボザイムを用いて本発明におけるシノビオリン遺伝子の転写産物を特異的に切断することで,該遺伝子の発現を阻害することができる。
 内在性遺伝子の発現の抑制は,さらに,標的遺伝子配列と同一もしくは類似した配列を有する二本鎖RNAを用いたRNA干渉(以下「RNAi」とも称する)によっても行うことができる。
 本発明の治療剤は,経口,非経口投与のいずれでも可能である。非経口投与の場合は,経肺剤型(例えばネフライザーなどを用いたもの),経鼻投与剤型,経皮投与剤型(例えば軟膏,クリーム剤),注射剤型等が挙げられる。注射剤型の場合は,例えば点滴等の静脈内注射,筋肉内注射,腹腔内注射,皮下注射等により全身又は局部的に投与することができる。
 投与方法は,患者の年齢,症状により適宜選択する。有効投与量は,一回につき体重1kgあたり0.1μg~100mg,好ましくは1~10μgである。但し,上記治療剤はこれらの投与量に制限されるものではない。siRNA等の核酸を混合する場合,当該核酸の用量の例は,0.01~10μg/ml,好ましくは0.1~1μg/mlである
 本発明の治療剤は,常法にしたがって製剤化することができ,医薬的に許容される担体や添加物を含むものであってもよい。このような担体及び添加物として,水,医薬的に許容される有機溶剤,コラーゲン,ポリビニルアルコール,ポリビニルピロリドン,カルボキシビニルポリマー,カルボキシメチルセルロースナトリウム,ポリアクリル酸ナトリウム,アルギン酸ナトリウム,水溶性デキストラン,カルボキシメチルスターチナトリウム,ペクチン,メチルセルロース,エチルセルロース,キサンタンガム,アラビアゴム,カゼイン,寒天,ポリエチレングリコール,ジグリセリン,グリセリン,プロピレングリコール,ワセリン,パラフィン,ステアリルアルコール,ステアリン酸,ヒト血清アルブミン,マンニトール,ソルビトール,ラクトース,医薬添加物として許容される界面活性剤等が挙げられる。
 上記添加物は,本発明の治療剤の剤型に応じて上記の中から単独で又は適宜組み合わせて選ばれる。例えば,注射用製剤として使用する場合,精製されたERストレス誘導物質を溶剤(例えば生理食塩水,緩衝液,ブドウ糖溶液等)に溶解し,これにTween80,Tween20,ゼラチン,ヒト血清アルブミン等を加えたものを使用することができる。あるいは,使用前に溶解する剤形とするために凍結乾燥したものであってもよい。凍結乾燥用賦形剤としては,例えば,マンニトール,ブドウ糖等の糖アルコールや糖類を使用することができる。
 本発明の第2の側面は,PGC-1β蛋白質の機能調整剤をスクリーニングする方法に関する。PGC-1β蛋白質の機能を向上させるものが好ましい。PGC-1β蛋白質の機能を向上させるものは,抗肥満に作用するものが好ましい。この方法は,まず脂肪組織の細胞又は動物個体に被験物質を作用させる。その後,脂肪組織の細胞におけるシノビオリンの発現量,シノビオリンとPGC-1β蛋白質との結合,及びシノビオリンによるPGC-1β蛋白質のユビキチン化の少なくともいずれかを測定又は検出する。先に説明したとおり,本発明は,シノビオリンの活性を阻害することがPGC-1β蛋白質の活性を高めることにつながるという知見に基づく。このため,シノビオリンの発現や活性を評価することで,PGC-1β蛋白質の機能調整剤(PGC-1β蛋白質の機能を調整する作用を有する物質)をスクリーニングすることができる。すなわち,PGC-1β蛋白質の機能調整剤をスクリーニングする方法は,シノビオリンの発現や活性を阻害する物質をスクリーニングすればよい。シノビオリンの発現や機能を阻害する物質のスクリーニング方法は,本明細書及び実施例の記載のほか,例えば特再表2006/137514号公報,特再表2006/135109号公報,特再表2005/118841号公報,特再表2005/019472号公報,及び特再表02/052007号公報に開示された方法を適宜用いればよい。
 本発明の第2の側面のある態様は,先に説明したPGC-1β蛋白質の機能調整剤をスクリーニングする方法を用いた,ミトコンドリアの活性化剤の検出(スクリーニング)方法に関する。
 本発明の第2の側面のある態様は,先に説明したPGC-1β蛋白質の機能調整剤をスクリーニングする方法を用いた,肥満症の治療剤又は予防剤の検出(スクリーニング)方法に関する。
 以下,実施例を挙げて本発明をより詳細に説明するが,本発明はこれらの実施例に何ら限定されるものではない。
 <材料:プラスミド及び抗体>
 完全長のmPPARα,mPPARγ,mPGC-1α及びmPGC-1β遺伝子に対応するコード配列を,マウス3T3-L1細胞由来のcDNAからPCRで増幅することによって得た。PGC-1βの欠損変異体シリーズの断片を,PCRで増幅することによって得た。全長のPGC-1βとPGC-1βの各欠損変異体を,pcDNA3 HAベクター(invitrogen社製を改良)に挿入し,GSTプルダウンアッセイやトランスフェクトアッセイに用いた。なお,作製されたすべてのプラスミドの塩基配列は,配列解析によって確認した。PPRE ×3-TK-lucは,addgene Inc.から購入した。シノビオリンプラスミドのシリーズは,既報論文(Amano, T. et al. (2003).
Synoviolin/Hrd1, an E3 ubiquitin ligase, as a novel pathogenic factor for
arthropathy. Genes Dev 17, 2436-2449.及びYamasaki, S. et al. (2007). Cytoplasmic destruction of p53 by
the endoplasmic reticulum-resident ubiquitin ligase 'Synoviolin'. EMBO J 26,
113-122.)のものを用いた。
 抗体として,抗FLAG抗体(M2)及び抗tublin抗体はいずれもSigma
Chemical Co製,抗HA-tag抗体(12CA5及び3F10)はRoche製,抗PGC-1β抗体はSant cruze bio製のものを使用した。抗シノビオリンウサギポリクローナル抗体は,既報論文(Yamasaki, S. et al. 2007)に記載されたものを使用した。
 <作製例1:シノビオリンコンディショナルノックアウトマウス>
 シノビオリンコンディショナルノックアウトマウス(syno cKO)を以下の方法で作製した。
 マウスシノビオリン遺伝子のエクソン1の上流からエクソン16の下流の領域である14.8kbの遺伝子領域をターゲッティングベクター構築のために使用した。FRT配列で挟んだネオマイシン耐性遺伝子をエクソン1とエクソン2との間に挿入した。また,エクソン2の上流及びエクソン14の下流にloxP配列を導入した。前記ターゲッティングベクターを,ES細胞に導入した。目的の相同組換えが起こったアレルを有するクローンを,Cre処理によるloxP-エクソン-loxP配列の除去及びFLP処理によるFRT-ネオマイシン-FRTの除去をPCR産物の長さで確認することによって,選抜した。相同組換えが起こった前記ES細胞のクローンを,公知の方法(例えば,EMBO J 16:1850-1857)の通りに,マウス胚に導入することにより,キメラマウスを得た。さらに,このキメラマウスを野生型C57BL/6マウスと交配させ,ネオマイシン配列が除去されたマウスを獲得した。また,ターゲッティングベクターに組み込まれているエクソン-Long arm間のloxP配列は,相同組換え時に欠損している可能性があるため,その存在をPCRで確認した。
 得られたネオマイシン除去マウスをCAG-Creマウスと掛け合わせ,CAG-Cre;synoflox/floxマウス(CMVエンハンサーと鶏β-actinプロモーターの制御下にloxPが導入されたシノビオリンアリルとCre-ER導入遺伝子(Hayashi, S., and McMahon, A.P. (2002).
Efficient recombination in diverse tissues by a tamoxifen-inducible form of
Cre: a tool for temporally regulated gene activation/inactivation in the mouse.
Dev Biol 244, 305-318.参照)をホモ接合型で有する)を得た。
 前記マウスは,シノビオリンノックアウトをタモキシフェン(Tam)によって誘導することができる。
 タモキシフェンは,CAG-Cre;synoflox/floxマウス(syno cKO)及びホモ接合型synoflox/floxマウス(syno WT)が生まれた後,7~8週間後に投与した。投与するタモキシフェンを 20 mg/ml になるようにコーンオイル (WAKO) に溶解したものを用いた。タモキシフェンの投与量としては,一日当たり125mg/kgのタモキシフェン溶液を腹腔内に5日間連続して投与した。
 なお,タモキシフェン投与によってシノビオリンがノックアウトされたことは,ゲノム上のシノビオリンをPCRする方法,シノビオリンmRNAをリアルタイムPCRする方法,シノビオリン蛋白質をウエスタンブロッティングする方法などで確認した。
 (実施例1:β酸化及びミトコンドリア生合成に関連する因子の転写)
 シノビオリンが末梢性のエネルギー消費を変化させる可能性を検討するため,シノビオリンノックアウトマウス由来の白色脂肪細胞においてマイクロアレイを用いた網羅的遺伝子発現解析を行った。
 その結果,シノビオリンWTマウスに比べてシノビオリンノックアウトマウスでは,Pparα,Cpt1b,Cpt,Acox2,Ehhadh,Acsl1,Acat2などのβ酸化に関わる多くの遺伝子,及びPgc-1α,UCP3,cidea,cox8bなどのミトコンドリア生合成に関連する遺伝子が顕著に発現が増大していることが分かった。
 そこで,リアルタイムRCRを用いてこれらの遺伝子の発現を確認した。具体的には,シノビオリンノックアウトマウス(syno cKO)由来の白色脂肪細胞から常法により総RNAを抽出し,リアルタイムPCRを行った。リアルタイムPCRに使用するプライマーとしては,下記表1に示す各種プライマーを使用した。
Figure JPOXMLDOC01-appb-T000004
 
 また,対照としてシノビオリン野生型マウス(syno WT)由来の白色脂肪細胞を用いて同様にリアルタイムPCRを行った。
 なお,リアルタイムPCRの反応条件は,以下の通りとした。
Stage1(ポリメラーゼ活性化): 95℃ 10min
Stage2(熱変性): 95℃ 1sec
(アニーリング/伸長反応) 60℃ 20sec
Stage3:Stage2を40cycle
 また,リアルタイムPCR装置としては,Step One Plus(Applied Biosystems社製)を使用した。
 なお,各測定値は,内在性コントロールとしての18s ribosomal
RNAを用いて標準化し,syno WTの平均値(n=3)を1として比で表わした。結果を図1に示す。
 図1から,β酸化及びミトコンドリア生合成に関与する遺伝子群の転写が増加していることが分かった。したがって,白色脂肪細胞内のミトコンドリアがシノビオリンノックアウトマウスのターゲットとなっていることが示唆された。
(実施例2:シノビオリンノックアウトマウスにおけるミトコンドリアの観察)
 実施例1で用いたシノビオリンノックアウトマウス(syno cKO)由来の白色脂肪細胞において電子顕微鏡を用いて常法によりミトコンドリアを観察した。対照としてシノビオリン野生型マウス(syno WT)由来の白色脂肪細胞も同様にして観察した。結果を図2左に示す。
 また、脂肪細胞特異的にシノビオリンをノックアウトしたマウス(syno Adipose
KO)由来の白色脂肪細胞についても同様に観察した。結果を図2右に示す。なお、脂肪特異的シノビオリンノックアウトマウスの作製は,まずはSyvn1flox/floxマウスと脂肪酸結合蛋白質4(aP2)-Creマウス(Jackson Immunoresearch Laboratories)とを交配させてaP2-Cre-ER;Syvn1flox/+マウスなどを含む複合ヘテロ接合体を得、次に二次交配としてaP2-Cre;Syvn1flox/+マウスをSyvn1flox/floxマウスと交配させ,aP2-Cre;Syvn1flox/floxマウスを得た。なお,Syvn1flox/floxの遺伝子型を持つ,Creトランスジーンを欠いたマウスを対照マウスとする。
 図2A及びBから,シノビオリン野生型マウス由来の白色脂肪細胞に比べ,シノビオリンノックアウトマウス由来の白色脂肪細胞においてミトコンドリアの数が顕著に増加しており,更にミトコンドリアのサイズが顕著に増大していた。
 (実施例3:シノビオリンとPGC-1βとのin vitroにおける結合)
 これまで,β酸化とミトコンドリアの複製の両者を制御する活性を有する因子としては脂肪細胞の分化と活性に深くかかわる転写因子ファミリーPPAR(PPARα,PPARγ)とそれに対する転写コアクチベーターPGCファミリー(PGC-1α,PGC-1β,PRC)が知られていた。そこで,前記各因子とシノビオリン蛋白質との結合を確認した。
 まず,膜貫通ドメインを欠失したGST融合シノビオリン(GST syno ΔTM)をグルタチオンセファロース4Bとインキュベートした。前記GST融合蛋白質は,HA PPARγ,HA PPARα,HA PGC-1α又はHA PGC-1βを発現しているHEK-293T由来のそれぞれの全細胞抽出液と共にインキュベートした。結合した蛋白質を溶出し,SDS-PAGEによって分離し,抗HA抗体を用いたウエスタンブロッティングを行った。対照としては,蛋白質と融合していないGSTを用いた。その結果を図3に示す。
 図3から,対照のGSTはいずれの蛋白質とも結合しなかった。一方,GST
syno ΔTMは,HA PGC-1βと結合したが,HA PGC-1α,HA PPARγ及びHA PPARαとは結合しなかった。したがって,PGC-1βがシノビオリン蛋白質と選択的に結合することが示された。
 (実施例4:シノビオリンと断片化変異PGC-1βとのin vitroにおける結合)
 シノビオリンと結合するPGC-1βの結合部位を特定するため,PGC-1βの断片化変異のシリーズ(図4参照)を用いてGSTプルダウンアッセイを行った。
 具体的には,既報の論文(Aratani, S. st al., (2001). Dual roles of RNA helicase A in
CREB-dependent transcription. Mol Cell Biol 21, 4460-4469.)に準じた方法でPGC-1βの断片化をPCR法にて行った。各断片化PGC-1β変異体の概念図を図4に示す。in vitroで転写/翻訳されたHAタグ付きのPGC-1β断片化変異体とGST又はGST-synoviolin ΔTMとを用いてIn vitro結合アッセイを行った。これらの蛋白質を溶出し,SDS-PAGEで分離し,抗HA抗体でウエスタンブロッティングを行った。結果を図4に示す。
 図4から,シノビオリンはPGC-1βにユニークなLXXLLモチーフを含むPGC-1β領域(195~367アミノ酸領域)と結合することが分かった。PGC-1βの195~367アミノ酸領域に関しても,PGC-1α,PRCには存在しないユニークな配列である。
 (実施例5:断片化変異シノビオリンとPGC-1βとのin vitroにおける結合)
 PGC-1βと結合するシノビオリンの領域を特定するため,シノビオリンの断片化変異のシリーズ(図5及び既報論文Yamasaki et al., 2007参照)を用いてGSTプルダウンアッセイを行った。In vitroで転写/翻訳させて作製したHA PGC-1βとGST又はGSTに融合させたシノビオリン断片化変異体とを実施例4と同様にインキュベートし,抗HA抗体でウェスタンブロットを行った。結果を図5に示す。
 図5から,PGC-1βは,シノビオリンにユニークかつ保存されているドメイン(236番目~270番目のアミノ酸配列,以下「SyUドメイン」と呼ぶ)を含むシノビオリンの中央部分に結合することが分かった。また,PGC-1βとの結合にはSyUドメインのみで十分であること,及びsyno ΔTMからSyUドメインを欠損した変異体(Syno ΔTMΔSyU)がPGC-1βと結合できないことが分かった。このことから,SyUドメインは,PGC-1βと結合するための最小ドメインであることが分かった。
(実施例6:シノビオリンとPGC-1βとのin vivoにおける結合)
 シノビオリンとPGC-1βとがin vivoで実際に複合体を形成しているか否かを検証した。具体的には,まず,HAタグを付けたPGC-1β(HA
PGC-1β)を発現するプラスミドとFLAGタグを付けたシノビオリン(SYVN1/FLAG)又はシノビオリン変異体(SYVN1ΔSyU/FLAG)を発現するプラスミドとをHEK-293T細胞にトランスフェクトした。前記発現プラスミドをトランスフェクトしたHEK-293T細胞からの全細胞抽出液を準備し,抗FLAG抗体で免疫沈降した。抗FLAG抗体と結合した蛋白質を溶出し,SDS-PAGEで分離し,抗HA抗体及び抗FLAG抗体でウェスタンブロッティングを行った。結果を図6Aに示す。
 図6Aから,HA PGC-1βは,SYVN1/FLAGと共免疫沈降したが,SYVN1ΔSyU/FLAGとは共免疫沈降しなかった。このことは,in vivoでシノビオリン(SYVN1)がSyU領域を介してPGC-1βと結合していることを示している。
 シノビオリンとPGC-1βとの物理的な結合を更に調べるため,シノビオリンとPGC-1βを発現しているHEK-293の全細胞溶解液を抗シノビオリン抗体で沈降し,抗PGC-1β抗体で免疫ブロッティングを行った。結果を図6Bに示す。
 図6Bから,内在性のPGC-1βは抗シノビオリン抗体と沈殿し,検出された。一方,非免疫マウスIgGでは検出されなかった。このことから,シノビオリンがPGC-1βとin vivoで物理的に結合することが示された。
 (実施例7:シノビオリン及びPGC-1βの細胞内局在)
 シノビオリンはER常在性の蛋白質であること,PGC-1βは核内に移行することが知られているため,シノビオリン及びPGC-1βの細胞内局在を調べた。HEK-293T細胞にHA PGC-1β及び/又はsyno/FLAG,synoviolin 3S/FLAG若しくはSynoviolin ΔSyU/FLAG発現プラスミドをトランスフェクトし,24時間後に抗HA抗体及び抗FLAG抗体を用いて免疫蛍光染色によりシノビオリン及びPGC-1βの細胞内局在を調べた。結果を図7に示す。
 図7から,HA PGC-1βのみを過剰発現させた場合には,これまでに報告(Kelly
et al., 2009)されているように,HA PGC-1βは主に核に局在することが分かった。一方,HA
PGC-1βがsyno/FLAGと共発現された場合には,HA PGC-1βは核内ではなく,主に核周辺領域にsyno/FLAGと共局在することが分かった。更に,HA
PGC-1βとSynoviolin ΔSyU/FLAGとを共発現させた場合には,HA PGC-1βは核に局在した。したがって,これらの結果は,シノビオリンがPGC-1βを核周辺領域で捕捉していること,及びin vivoにおけるこの隔離には,SyUドメインが必要であることが示唆された。
(実施例8:シノビオリンによるPGC-1βのユビキチン化)
 シノビオリンは,E3ユビキチン化酵素であることが知られている(Amano, T., et al. (2003). Synoviolin/Hrd1, an E3 ubiquitin ligase, as a novel pathogenic factor for arthropathy. Genes Dev 17, 2436-2449.参照)ため,PGC-1βがE3ユビキチン化酵素としてのシノビオリンの基質になっていないかを検証した。in vitroで転写及び翻訳させたPGC-1β(FLAG‐PGC),ユビキチン活性化酵素E1(E1-His),ユビキチン結合酵素E2(UBE2G2-His),及びユビキチン(PK-His-HA-Ub)とGST結合シノビオリン変異体(Syno(236-338))とを用いてin vitroユビキチン化アッセイを行った。結果を図8Aに示す。
 図8Aから,ATP,PK-His-HA-Ub,E1-His,UBE2G2-His及びSyno(236-338)のすべてが存在する条件下ではポリユビキチン化されたPGC-1βが検出された。このことから、in
vitroにおいてPGC-1βがシノビオリンの基質になっていることが確認された。
 次に,in vivoにおけるPGC-1βのユビキチン化を調べた。ubiquitin/FLAG,HA PGC-1,及びシノビオリン又はシノビオリン3S発現プラスミドをHEK-293T細胞にトランスフェクトした。前記HEK-293T細胞の全細胞抽出液を抗HA抗体で免疫沈降した。結合した蛋白質を溶出し,SDS-PAGEで分離し,抗FLAG抗体でウエスタンブロッティングを行った。結果を図8Bに示す。
 図8Bから,シノビオリンWTを発現させた細胞ではHA PGC-1βがユビキチン化されたが,シノビオリン3Sを発現させた細胞ではユビキチン化されなかった。
 これらの結果から,PGC-1βはin vitro及びin vivoにおけるシノビオリンの推定上の基質であることが示唆された。
 ユビキチン化された蛋白質はプロテアソームで分解されることがよく知られている。そこで,PGC-1βの蛋白質レベルがシノビオリンによって制御されていることを確認するため,次の試験を行った。
 新生後にシノビオリンをノックアウトしたマウス(syno cKO)において,精巣上体及び腸間膜におけるシノビオリン及びPGC-1βの蛋白質レベルをウェスタンブロッティングにより調べた。
 図8Cから,シノビオリンノックアウトマウス由来の白色脂肪細胞におけるPGC-1βの蛋白質レベルは,野生型マウス由来のものに比べ,劇的に上昇していた。なお,PGC-1βの転写レベルはシノビオリンノックアウトマウスと野生型マウスとでほとんど差がなかった。
 次に,新生後のマウス皮膚線維芽細胞におけるPGC-1βのmRNA及び蛋白質レベルを調べた。
 syno CKOマウス由来の皮膚線維芽細胞をDMEM培地で培養し,タモキシフェン(Tam)又は溶媒(DMSO)で48時間処理した。細胞収抽出液又は総RNAを収集し,ウェスタンブロッティング及びリアルタイムPCRをそれぞれ行った。結果を図8Dに示す。
 シノビオリンコンディショナルノックアウトマウス由来の皮膚線維芽細胞においてTam処理をした場合PGC-1βの蛋白質レベルは顕著(1.4倍)に上がった。なお,PGC-1βのmRNAレベルは予想通り変化が見られなかった。
 更に,細胞におけるPGC-1βのシノビオリンを介した分解の関与を調べるため,前記試験においてタモキシフェン又は溶媒処理後にプロテアソーム阻害剤であるMG-132を10μM添加して2時間処理し,同様の試験を行った。
 図8Dから,MG-132は,タモキシフェン処理した細胞と同様に,溶媒(DMSO)処理した皮膚線維芽細胞においてもPGC-1βの蛋白質量を実際に上方制御した(1.6倍)。また,タモキシフェン処理とMG-132の添加との間には相加効果は見られなかった(1.1倍)。
 これらの結果は,PGC-1βの蛋白質レベルは,転写後のプロセスにおいてシノビオリンによって負に制御されていることを示唆している。また,シノビオリンが細胞内でPGC-1βに対する主なE3であることを強く示唆している。
 (実施例9:シノビオリンsiRNAによるPGC-1β機能への効果)
 これまでの遺伝子欠失の効果に加えて,シノビオリンに対するsiRNA(Syno
siRNA)の効果を次の試験により確認した。
 まず,HEK 293細胞においてsiRNAによるシノビオリンノックダウンを行った。シノビオリンに対するsiRNAは,既報の論文(Yamasaki, S., et al.
(2007). Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident
ubiquitin ligase 'Synoviolin'. EMBO J 26, 113-122.参照)に従って行った。siRNAの細胞へのトランスフェクトは,Lipofectamine 2000
(Invitrogen社製)を用いてプロトコルに従って行った。結果を図9Aに示す。
 図9Aから,Syno siRNA処理細胞においてシノビオリンの発現がほぼ完全に消失することを確認した。また,Syno siRNA処理細胞においてPGC-1β蛋白質レベルが2.5倍に上がった。一方,syno siRNA処理によってPGC-1βmRNAの発現は変化しなかった。
 PGC-1βは,PPARαやPPARγなどいくつかの転写因子の転写コアクチベーターとして機能しており,ミトコンドリア生合成,β酸化及び体重調節を含む様々な生物学的事象に関与していることが知られている(Scarpulla, R.C. (2008). Transcriptional
paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88,
611-638.参照)。そこで,PGC-1βがsyno
cKOマウスで観察された事象の原因因子であると考えられた。この考えを検証するため,syno cKOにおいて阻害されたPGC-1βを介した2つの代表的な細胞事象を解析した。一つはPGC-1βのコアクチベーター活性であり,もう一つはミトコンドリアの生合成である。
 具体的には,HEK-293細胞に対照のsiRNA又はSyno
siRNAを一時的にトランスフェクトした。また,PPAR結合部位を含むレポータープラスミド(PPRE ×3-TK-luc),CMV-β-gal発現コンストラクト又はsiRNAをHEK-293細胞に一時的にトランスフェクトした。16時間後 DMSO
または Wy-14643 で 6時間処理しルシフェラーゼアッセイを行った(図9B)。
 なお,PPAR-ルシフェラーゼ(PPRE ×3-TK-luc)は,3×PPAR結合部位を含み,PPAR,そのリガンド及びコアクチベーターによって厳格に制御されていることが知られている(Kim, J.B., et al. (1998). ADD1/SREBP1
activates PPARgamma through the production of endogenous ligand. Proc Natl Acad
Sci U S A 95, 4333-4337.参照)。
 また,シノビオリンを過剰発現させた効果を調べるため,シノビオリン発現ベクターの量を段階的に増やして同時にトランスフェクトする試験も行った(図9C)。
 トランスフェクトした16時間後,細胞を溶媒(DMSO)又はWy-14643で6時間処理し,ルシフェラーゼアッセイを行った。
 図9Bから,既報(Lin,
J., et al. (2003). PGC-1beta in the regulation of hepatic glucose and energy
metabolism. J Biol Chem 278, 30843-30848.参照)の通り,PPARαのアゴニストの一つであるWy-14643は,PPRE ×3-TK-lucレポーター活性を誘導した。Wy-14643誘導条件下において,形質移入されたSyno siRNAは,前記レポーター活性を非常に亢進したが,対照のsiRNAは亢進しなかった。Syno siRNAと同時形質移入されたPGC-1βは,前記レポーター活性を更に亢進した。
 図9Cから,シノビオリン過剰発現によってPGC-1βを介したコアクチベーター機能が阻害されることが分かった。
 これらの結果から,シノビオリンのノックダウンがPGC-1βに依存した経路を通してPPARαを介した転写を亢進することが示唆された。
 更に,シノビオリンノックダウンが細胞におけるミトコンドリア生合成を制御するか否かを検証するため,上記と同様にシノビオリンsiRNA処理した細胞を電子顕微鏡で観察した。その写真を図9Dに示す。
 図9Dから,syno cKO由来の白色脂肪細胞の場合(図2)と同様に,対照のsiRNA処理細胞に比べてSyno siRNA処理細胞においてミトコンドリアの数及び体積密度が増加した。
 (実施例10:シノビオリンのE3ユビキチンリガーゼ活性阻害剤による,シノビオリンとPGC-1βとの結合阻害)
 シノビオリンのE3ユビキチンリガーゼ活性阻害剤によるPGC-1β機能への影響を調べるため,まずはシノビオリンとPGC-1βとの結合阻害効果を調べた。具体的には,
MBP-PGC―1β-His蛋白質とGST-Syno ΔTM蛋白質とを用いた常法の結合アッセイにおいて,LS-102(PARMACOPIEA社)を添加して12時間結合させ,ゲル濃度12%のSDS-PAGEを行い,次いでウェスタンブロットを行った。一次抗体としては,2500倍希釈した抗GST抗体,二次抗体としては,10000倍希釈した抗ラットHRPを用いた。結果を図10に示す。
 なお,LS-102は下記構造式で示される化合物であり,シノビオリンのE3ユビキチンリガーゼ活性に対する選択的阻害化学物質である。
Figure JPOXMLDOC01-appb-C000005
 図10から,LS-102において,シノビオリンとPGC-1βとの結合阻害効果がみられた。
 (実施例11:シノビオリンとPGC-1βとの結合を阻害する物質のスクリーニング)
 シノビオリンとPGC-1βとの結合を阻害する物質を得るため,E3ユビキチンリガーゼ関連のスクリーニング用ライブラリの中から下記表2に示す物質について,シノビオリンとPGC-1βとの結合への影響を調べるため,実施例3~6と同様のin
vitroでの結合アッセイを行った。結果を図11-1,図11-2,図11-3及び図11-4に示す。なお,本実施例における蛋白質としては,2μgのPGC-1βB(図4参照),及び2μgのGST-Syno ΔTM(図6参照)を用いた。
 図11-1は,被験物質348及び349によるシノビオリンとPGC-1βとの結合阻害効果を示すウェスタンブロット(上図),及び被験物質348及び349の結合能を評価したグラフ(下図)である。図11-2は,被験物質ケルセチン及び351によるシノビオリンとPGC-1βとの結合阻害効果を示すウェスタンブロット(上図),及び被験物質ケルセチン及び351の結合能を評価したグラフ(下図左及び右)である。図11-3は,それぞれの被験物質の結合阻害効果を示すウェスタンブロットである。
Figure JPOXMLDOC01-appb-T000006
 図11-1~図11-4から,348,349,355,358,及びケルセチンにおいて,シノビオリンとPGC-1βとの結合阻害効果がみられた。351は結合を増強させることがわかった。また,図11-4から,対照群(DMSO)と比べ,348及び349を用いた場合にはPGC-1βのポリユビキチン化が抑制された。
 (実施例12:シノビオリンのE3ユビキチンリガーゼ活性阻害剤及びシノビオリンとPGC-1βとの結合を阻害する物質のPGC-1β機能への影響)
実施例9において,Syno siRNAをトランスフェクトする代わりに5μMのLS-102,0.1μM及び0.5μMの348,0.1μM及び5μMの349,並びに5μMの351及び355を用いた以外は実施例9と同様にして,ルシフェラーゼアッセイを行った。対照としては,各化合物の溶媒であるDMSOのみを同体積添加した。結果を図12に示す。
 図12から,前記化合物で処理した場合において351で処理した場合のみルシフェラーゼ活性が低下した。これらの結果から,シノビオリンとPGC-1βとの結合を阻害することで,PGC-1βの機能を亢進する物質が得られたことが示された。
 また,確認としてPGC-1β蛋白質レベルを調べたところ,LS-102処理細胞においてPGC-1βの蛋白質レベルは約2倍に上がった。一方,LS-102処理によってPGC-1βmRNAの発現は変化しなかった。
 (実施例13:シノビオリンとPGC-1βとの結合を阻害する物質のミトコンドリア機能への影響)
 実施例9において,Syno
siRNAをトランスフェクトする代わりに1μMの348,349,351及び355を細胞に添加し72時間後に観察した以外は,実施例9と同様にしてミトコンドリアを観察した。写真を図13に示す。 図13から,348,349,355においてミトコンドリアの増殖(数の増加)またはミトコンドリアのサイズの増大が観察された。以上から,シノビオリンを抑制することは,転写コアクチベーターPGC-1βの活性をあげ,ミトコンドリアを活性化する,すなわちアゴニストという全く新しい創薬の分子標的となることが示唆された。
 (実施例14:シノビオリンの発現抑制及びユビキチン化活性阻害の効果)
 マウスの脂肪前駆細胞である3T3-L1細胞を,10%FBS(ウシ胎児血清)含有DMEM(ダルベッコ変法イーグル培地;High Glucose)でconfluentに達した後3日間培養した。500μM IBMX(isobutyl-methylxanthine),1μM Dexamethasone,5 μg/mL Insulinを添加し分化を誘導した。同時に10μM LS-102(シノビオリンのユビキチン化活性阻害剤)もしくはDMSOを添加した。3日間培養後,4μg/mL Insulinを含む培地に置換し10μM LS-102もしくはDMSOを添加した。3日間培養後,10%FBS含有DMEM(High Glucose)に置換し3日間培養した。siRNAに関しては,分化誘導2日前に200pmolのsiRNA Syno770(センス鎖が下記配列番号2の配列からなる)をLipofectamine2000により導入した。
 配列番号2:5’-GCUGUGACAGAUGCCAUCA-3’
 培養後の3T3-L1細胞をPBS(-)(Phosphate Buffered Saline溶液からマグネシウムとカルシウムを除いたもの)で洗ったのち,10%formalinで固定した。PBS(-)で洗浄し60%Isopropanolに置換した。18mg/mL Oil Red O(溶媒はIsopropanol)で20分間染色し,60%Isopropanol及びPBS(-)で洗浄し顕微鏡で観察した。
 siRNAでシノビオリン遺伝子の活性を阻害した細胞では,対照と比較して,分化した脂肪細胞が少なく,分化が抑制されていた。また,輪環状の正常な脂肪細胞ではない脂肪滴が認められた。以上の結果から,シノビオリン遺伝子の発現抑制及びシノビオリン蛋白質の自己ユビキチン化が抑制されたことが示された。
 (実施例15:シノビオリンノックアウトマウスにおける脂肪細胞の酸素消費量)
 CAG-Cre-ER;Syvn1flox/flox マウスにおいてミトコンドリアの機能が活性化されているか否かを調べるため,脂肪細胞1細胞の酸素消費量を測定した。
 <酸素消費量の測定方法> 
 酸素消費量の測定方法は,以下のとおりであった。CAG-Cre-ER;Syvn1flox/flox
マウス及び対照マウスより皮下脂肪を採取し,0.1% (w/v)コラーゲナーゼを用いて37°Cで1時間処理することでシングル細胞化した。得られたシングル細胞の懸濁液について,MitoXpress(登録商標)-Xtra-HS (Luxcel Biosciences Ltd. Ireland)を用い,キットに付属の説明書に従い,酸素消費量を測定した。その結果を図14に示す。図14は,シノビオリンノックアウトマウスにおける脂肪細胞の酸素消費量を示すグラフである。初代マウス脂肪細胞を単離し,脂肪細胞1細胞の酸素消費量を測定した。統計処理は,独立t-検定で行った。
 図14から,CAG-Cre-ER;Syvn1flox/flox マウス由来の脂肪細胞の酸素消費量は,対照マウス由来の脂肪細胞の酸素消費量に比べ,有意に多かったことがわかる。
 (実施例16:シノビオリンノックアウトマウスにおける基礎代謝量) 
 CAG-Cre-ER;Syvn1flox/flox マウスにおいてミトコンドリアの機能が活性化されているか否かを調べるため,CAG-Cre-ER;Syvn1flox/floxマウスの基礎代謝量を測定した(図15)。
 <基礎代謝量の測定方法> 
 基礎代謝量の測定方法は以下のとおりであった。Tam投与後7日目のマウスを用い,4時間絶食させ安静にさせた場合の酸素消費量(VO2)
及び二酸化炭素産生量 (VCO2)を,Oxymax
Equal Flow System (Columbus Instruments, 950 N. Hague Ave; Columbus, OH USA)を用いて測定した。更に,運動活性(運動の数)も一緒にDAS system
(Neuro Science, Inc., Japan)を用いて測定した。図15は,シノビオリンノックアウトマウスにおける基礎代謝量を示すグラフである。統計処理は,独立t-検定で行った。
 図15に示されるようにCAG-Cre-ER;Syvn1flox/floxマウスの基礎代謝量は,対照マウスの基礎代謝量に比べ,有意に多かった。
この結果は, SYVN1が in vivoでミトコンドリア活性を亢進することを示唆している。
 (実施例17:シノビオリンと脂肪燃焼との関係)
 野生型WTマウスとシノビオリンKOマウスの各組織におけるアディポネクチンとシノビオリンのウエスタンブロッティングを行った。図16は,野生型WTとシノビオリンKOの各組織におけるアディポネクチンとシノビオリンのウエスタンブロッティングを示す図面に替わる写真である。図中アルファ-チューブリンは,内部標準である。図16から,シノビオリンをノックアウトすることによりアディポネクチンの量が増加し,脂肪酸燃焼が促進されていると考えられる。
 (実施例18:PGC-1βの半減期の測定) 
 SYVN1とPGC-1βとの相互作用がSYVN1を介したPGC-1βの分解に重要であるか否かを確かめるため,PGC-1βの半減期を測定した。 
 試験は,従来公知の方法(Yamasaki,
S., et al. EMBO J. 26, 113-122 (2007) 及びBernasconi,
R., et al. J. Cell Biol. 188, 223-235 (2010) )を次のように修正して行った。シノビオリンノックアウトマウス由来のマウス胚性線維芽細胞(MEF Syno-/-) に1μg のpcDNA3 Synoviolin/FLAG,空のベクター,又は1.5 μgのpcDNA3 Synoviolin デΔSyU/FLAGと,0.75 μg
pcDNA3 HAPGC-1βとをトランスフェクションした。トランスフェクションから48時間後 ,細胞を40 μM Cycloheximideで
0.5,1,2,又は4時間処理し,細胞をバッファ(10 mM Tris-HCl pH8.0, 150 mM
NaCl, 1mM EDTA, 1 % NP-40, 1 mM DTT, protease inhibitors)で溶解し,抗PGC-1β,抗-SYVN1,又は抗 アルファ-チューブリン抗体で免疫ブロット解析を行った。各試験は少なくとも3回行った。結果を図17に示す。図17から,野生型のシノビオリン(SYVN1 WT)は,PGC-1βの半減期を非常に短縮したが,SYVN1
ΔSyUはPGC-1βの分解をあまり促進していなかった。このことから,PGC-1βの蛋白レベルは転写後のプロセスにおいてシノビオリンとの結合を介した負の制御を受けることが示された。また,シノビオリンがPGC-1βの主要なE3リガーゼであることが強く示唆された。
 (実施例19:シノビオリンのユビキチン化活性阻害剤LS-102のミトコンドリア機能への影響) 
 7~8週齢のC57BL/6Jマウスに,1日当たり50 mg/kg体重のLS-102又は対照としての溶媒(DMSO)を腹腔内に投与し,57日目のマウスの脂肪組織切片を電子顕微鏡で観察した。その結果を図18に示す。図18は,LS-102による脂肪組織のミトコンドリアの形態変化を示す電子顕微鏡写真である。電子顕微鏡の倍率は2,500倍及び10,000倍であり,白抜きのバーはスケールバー(2,500倍の方は2μm,10,000倍の方は500nm)を示す。
 図18から,LS-102処理により,脂肪組織細胞におけるミトコンドリアの数と体積密度の増加が起きていることが分かった。このことは,LS-102によりシノビオリンのE3リガーゼ活性が阻害されるとPGC-1βの超活性化が引き起こされミトコンドリアの生合成が促進されることを示唆している。
 (実施例20:PGC-1βの半減期)
 シノビオリンのKOマウスより樹立したMEF(mouse embryoinic
fibriblasts)にPGC-1βの発現ベクターとともに空ベクター(コントロール:CONT),シノビオリン野生型(SYVN1 WT),シノビオリンユニークドメイン(βとの結合領域を欠失した変異型シノビオリン(SYVN1 ΔSyU)をそれぞれ定法に従い,トランスフェクションした。48時間経過した後に,代表的なタンパク質翻訳阻害剤であるサイクロヘキサミド(40μM)を図に示す時間(0.5時間,1時間,2時間及び4時間)処理し,各細胞抽出液についてウェスタンブロッテングを行った。その結果を図19に示す。図19は,PGC-1βの半減期を示すウエスタンブロッテングである。図19に示されるように,PGC-1βの細胞内での半減期がそれぞれ4.8時間,1.6時間,3.6時間となることが証明された。
 この結果から,シノビオリンの存在によりPGC-1βの半減期、つまり分解が制御されていること,並びに SyUドメインがその制御に必須であることが示された。
 (実施例21:ユビキチン化の評価)
 結合アッセイは,以下のアッセイ系を用いた。2μgMBP-PGC-1β His(1-367aa),2μgGSTシノビオリン変異体をバッファ(20 mM Tris-HCl pH8.0,100 mM NaCl、1 mM EDTA、0.1 % NP-40、5% グルコールl、プロテアーゼ阻害剤) 内で 12 時間結合させ,抗PGC-1β抗体でPGC-1βを検出した。
 ユビキチンアッセイは,以下のアッセイ系を用いた。E1-His 125ng、UbcH5C 150ng、MBP-SYVN1 ΔTM-His 150ng、GST-PGC-1β (1-367 aa;GST-P5)、HA-ユビキチン(HA-Ub)750ngをバッファ(50mM Tris-HCL pH7.5,5mM MgCl,0.6mM DTT,2mM ATP)中で30℃にて2時間反応させユビキチン化した。その後,GST洗浄バッファ(50mM Tris-HCl pH7.5,0.5M NaCl,1%トリトンX,1mM EDTA,1mM DTT,プロテアーゼ阻害剤)中でグルタチオンセファロース(Glutathione Sepharose)と結合させた。GST洗浄バッファで洗浄後,抗 PGC-1β抗体および抗HA抗体を用いたウェスタンブロッティングによりPGC-1βのユビキチン化を検出した。図20は,インビトロユビキチン化アッセイの結果を示す図である。
 図20から,シノビオリン(SYVN1)は,PGC-1βを直接ユビキチン化することが示された。
 (実施例22:被検物質のユビキチン化抑制)
 被検物質348,349による,シノビオリン(SYVN1)によるPGC-1βのユビキチン化阻害活性の濃度依存性を検討するため,実施例11と同様のインビトロでの結合アッセイを行った。図21は,被検物質348,349によるPGC-1βのユビキチン化阻害活性の濃度依存性を示すウェスタンブロットである。図21から,いずれの被検物質も1μMに比べて10μMにおいてPGC-1βのユビキチン化阻害活性が高いことがわかる。すなわち,被検物質のユビキチン化抑制活性は,濃度依存性があることが示された。
 (実施例23:断片化変異シノビオリンとPGC-1βとの結合)
 実施例5においてシノビオリン(SYVN1)は236~270番目の領域(SyUドメイン)においてPGC-1βと結合する可能性が高いことが示された。本実施例では,SyUドメインのうちPGC-1βと結合する可能性が高い部位を見出すため,以下の実験を行った。
 図22は,複数の種におけるSyUドメインのアミノ酸配列である。シノビオリン(SYVN1)の236-240,241-245,246-250,251-255,256-260,261-265,266-270の部位に相当する5アミノ酸ずつをアラニンに置換したSYVN1 SyU変異体とPGC-1βの結合をおこなった。その結果を図23に示す。図23は,SYVN1 SyU変異体のウェスタンブロットである。図23から,256-260,266-270aaの部位が,PGC-1βとの結合に重要であることが示された。
 (実施例24:断片化変異シノビオリンとPGC-1βとの結合)
 266-270aaの部位のアミノ酸配列は,RRAIRである。アミノ酸配列がAAAAAであるもの(対照),266番目のRをAに置換したもの(R266A),267番目のRをAに置換したもの(R267A),270番目のRをAに置換したもの(R270A),266番目及び267のRをAに置換したもの(R266,267A),266番目及び270番目のRをAに置換したもの(R266,270A),267番目及び270のRをAに置換したもの(R267,270A),3つのRを全てAに置換したもの(3A)からなるペプチドを用意し,実施例5と同様にしてウェスタンブロットを行った。その結果を図24に示す。図24は,SYVN1266-270aaの変異体のウェスタンブロットである。図24からSYVN1266-270aaを介したPGC-1βとの結合には,少なくとも2つのアルギニン残基が望ましいことがわかる。
 本発明のミトコンドリア機能の調節剤は,ミトコンドリアの数及びサイズを増大させ,脂肪酸β酸化及びミトコンドリア生合成を亢進させることができ,肥満症の治療又は予防に適用することができる。よって,本発明や製薬業において利用されうる。
 配列番号2:合成RNA
 配列番号3:合成RNA
 配列番号4:合成RNA
 配列番号5:合成RNA
 配列番号6:合成RNA
 配列番号7:合成RNA
 配列番号8:プライマー
 配列番号9:プライマー
 配列番号10:プライマー
 配列番号11:プライマー
 配列番号12:プライマー
 配列番号13:プライマー
 配列番号14:プライマー
 配列番号15:プライマー
 配列番号16:プライマー
 配列番号17:プライマー
 配列番号18:プライマー
 配列番号19:プライマー
 配列番号20:プライマー
 配列番号21:プライマー
 配列番号22:プライマー
 配列番号23:プライマー
 配列番号24:プライマー
 配列番号25:プライマー
 配列番号26:プライマー
 配列番号27:プライマー
 配列番号28:プライマー
 配列番号29:プライマー
 配列番号30:プライマー
 配列番号31:プライマー
 配列番号32:プライマー
 配列番号33:プライマー
 配列番号34:プライマー
 配列番号35:プライマー
 配列番号36:プライマー
 配列番号37:プライマー
 配列番号38:プライマー
 配列番号39:プライマー
 配列番号40:プライマー
 配列番号41:プライマー
 配列番号42:プライマー
 配列番号43:プライマー
 配列番号44:プライマー

Claims (7)

  1.  シノビオリンの発現阻害剤又はシノビオリンの活性阻害剤を有効成分として含有するPGC-1β蛋白質の機能を調整するPGC-1β蛋白質の機能調整剤。
  2.  請求項1に記載のPGC-1β蛋白質の機能調整剤であって,
     PGC-1β蛋白質による脂肪酸β酸化の促進,及びミトコンドリアの発現又は活性促進のいずれか又は両方のために用いられる,
     PGC-1β蛋白質の機能調整剤。
  3.  請求項1に記載のPGC-1β蛋白質の機能調整剤を含む,
     ミトコンドリアの活性化剤。
  4.  請求項3に記載のミトコンドリアの活性化剤であって,
     ミトコンドリアの発現数の増加及びミトコンドリアのサイズの増大のいずれか又は両方を惹き起こすために用いられる,
     ミトコンドリアの活性化剤。
  5.  脂肪組織の細胞又は動物個体に被験物質を作用させ,脂肪組織の細胞における
      シノビオリンの発現量,
      シノビオリンとPGC-1β蛋白質との結合,及び
      シノビオリンによるPGC-1β蛋白質のユビキチン化,
    の少なくともいずれかを測定又は検出する工程を含む,
     PGC-1β蛋白質の機能調整剤をスクリーニングする方法。
  6.  請求項5に記載のスクリーニング方法を用いた,ミトコンドリアの活性化剤の検出方法。
  7.  請求項5に記載のスクリーニング方法を用いた,肥満症の治療剤又は予防剤の検出方法。
PCT/JP2013/084960 2012-12-26 2013-12-26 PGC-1β蛋白質の機能調整剤,ミトコンドリア機能の調節剤,抗肥満剤及びそれらスクリーニング方法 WO2014104224A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014554561A JP6208689B2 (ja) 2012-12-26 2013-12-26 PGC−1β蛋白質の機能調整剤,ミトコンドリア機能の調節剤,抗肥満剤及びそれらスクリーニング方法
CN201380073873.9A CN105007943B (zh) 2012-12-26 2013-12-26 PGC‑1β蛋白的功能调整剂、线粒体功能的调节剂、抗肥胖剂及其筛检方法
US14/655,744 US9766241B2 (en) 2012-12-26 2013-12-26 PGC-1beta-protein-function regulator, mitochondria-function regulator, anti-obesity agent, and screening method therefor
EP13868860.1A EP2954905B1 (en) 2012-12-26 2013-12-26 Screening method for pgc-1beta-protein-function regulator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012283766 2012-12-26
JP2012-283766 2012-12-26
JP2013-152094 2013-07-22
JP2013152094 2013-07-22

Publications (1)

Publication Number Publication Date
WO2014104224A1 true WO2014104224A1 (ja) 2014-07-03

Family

ID=51021298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084960 WO2014104224A1 (ja) 2012-12-26 2013-12-26 PGC-1β蛋白質の機能調整剤,ミトコンドリア機能の調節剤,抗肥満剤及びそれらスクリーニング方法

Country Status (5)

Country Link
US (1) US9766241B2 (ja)
EP (1) EP2954905B1 (ja)
JP (1) JP6208689B2 (ja)
CN (1) CN105007943B (ja)
WO (1) WO2014104224A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2940132A4 (en) * 2012-12-26 2016-08-17 Nakajima Toshihiro SCREENING METHOD FOR A CONNECTION WITH EFFECT TO PREVENT OR TREAT ADIPOSITAS
JP2019156798A (ja) * 2018-03-16 2019-09-19 株式会社 バイオミメティクスシンパシーズ 多発性骨髄腫の治療剤
WO2020138219A1 (ja) * 2018-12-27 2020-07-02 株式会社nana 哺乳動物の寿命を延長するための剤

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252007A (ja) 1988-08-12 1990-02-21 Asahi Glass Co Ltd フルオロシリコーン系消泡剤
JPH058932B2 (ja) 1987-10-27 1993-02-03 Asahi Chemical Ind
JP2002080362A (ja) * 2000-06-21 2002-03-19 Kao Corp Ppar依存的遺伝子転写活性化剤
JP2005019472A (ja) 2003-06-23 2005-01-20 Hamamatsu Photonics Kk 半導体装置、テラヘルツ波発生装置、及びそれらの製造方法
WO2005018675A1 (ja) 2003-08-21 2005-03-03 Locomogene, Inc. 自己免疫疾患治療剤
JP2005074988A (ja) 2003-08-29 2005-03-24 Cmet Inc 光造形装置
JP2005118841A (ja) 2003-10-17 2005-05-12 Nippon Steel Corp 板形状制御方法および板圧延機
JP2005514921A (ja) 2001-11-09 2005-05-26 ダナ−ファーバー キャンサー インスティチュート インク PGC−1β、新規PGC−1相同体およびその用途
WO2005074988A1 (ja) 2004-02-06 2005-08-18 Locomogene, Inc. 神経細胞分化誘導剤
WO2005093067A1 (ja) 2004-03-26 2005-10-06 Locomogene, Inc. シノビオリン遺伝子のプロモーターに対するデコイ核酸
JP2006135109A (ja) 2004-11-05 2006-05-25 Seiko Epson Corp 電子デバイス、電子デバイスの製造方法および電子機器
JP2006137514A (ja) 2004-11-11 2006-06-01 Hitachi Ltd 分割機器群式エレベータ
WO2006137514A1 (ja) 2005-06-23 2006-12-28 Locomogene, Inc. シノビオリンの発現もしくは機能阻害物質を有効成分とする癌治療剤、および癌治療剤のスクリーニング方法
JP2008074753A (ja) 2006-09-20 2008-04-03 Locomogene Inc タンパク質のユビキチン化抑制剤
JP2008517931A (ja) 2004-10-22 2008-05-29 ダナ−ファーバー キャンサー インスティチュート,インコーポレイテッド 脂質関連疾患および障害を処置するための、PGC−1βを調節するための方法および組成物
WO2009031842A1 (en) * 2007-09-04 2009-03-12 Korea University Industrial & Academic Collaborative Foundation Use of trim72 as a target for muscle and heart enhancer
JP2009155204A (ja) 2005-12-20 2009-07-16 Locomogene Inc アレルギー性疾患用医薬組成物
JP2011001311A (ja) * 2009-06-19 2011-01-06 Pola Chemical Industries Inc 熱産生タンパク質発現促進剤
JP2012524033A (ja) * 2009-04-17 2012-10-11 ディーエスエム アイピー アセッツ ビー.ブイ. ミトコンドリアの機能およびエネルギー生産を高めるためのヒドロキシチロソールの組合せ
WO2012176860A1 (ja) * 2011-06-22 2012-12-27 Nakajima Toshihiro 体重調節作用を有する物質をスクリーニングするための方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101257897A (zh) * 2005-07-07 2008-09-03 西特里斯药业公司 用于治疗或预防肥胖、胰岛素抵抗障碍和线粒体相关障碍的方法和相关组合物

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058932B2 (ja) 1987-10-27 1993-02-03 Asahi Chemical Ind
JPH0252007A (ja) 1988-08-12 1990-02-21 Asahi Glass Co Ltd フルオロシリコーン系消泡剤
JP2002080362A (ja) * 2000-06-21 2002-03-19 Kao Corp Ppar依存的遺伝子転写活性化剤
JP2005514921A (ja) 2001-11-09 2005-05-26 ダナ−ファーバー キャンサー インスティチュート インク PGC−1β、新規PGC−1相同体およびその用途
JP2005019472A (ja) 2003-06-23 2005-01-20 Hamamatsu Photonics Kk 半導体装置、テラヘルツ波発生装置、及びそれらの製造方法
WO2005018675A1 (ja) 2003-08-21 2005-03-03 Locomogene, Inc. 自己免疫疾患治療剤
JP2005074988A (ja) 2003-08-29 2005-03-24 Cmet Inc 光造形装置
JP2005118841A (ja) 2003-10-17 2005-05-12 Nippon Steel Corp 板形状制御方法および板圧延機
WO2005074988A1 (ja) 2004-02-06 2005-08-18 Locomogene, Inc. 神経細胞分化誘導剤
WO2005093067A1 (ja) 2004-03-26 2005-10-06 Locomogene, Inc. シノビオリン遺伝子のプロモーターに対するデコイ核酸
JP2008517931A (ja) 2004-10-22 2008-05-29 ダナ−ファーバー キャンサー インスティチュート,インコーポレイテッド 脂質関連疾患および障害を処置するための、PGC−1βを調節するための方法および組成物
JP2006135109A (ja) 2004-11-05 2006-05-25 Seiko Epson Corp 電子デバイス、電子デバイスの製造方法および電子機器
JP2006137514A (ja) 2004-11-11 2006-06-01 Hitachi Ltd 分割機器群式エレベータ
WO2006137514A1 (ja) 2005-06-23 2006-12-28 Locomogene, Inc. シノビオリンの発現もしくは機能阻害物質を有効成分とする癌治療剤、および癌治療剤のスクリーニング方法
JP2009155204A (ja) 2005-12-20 2009-07-16 Locomogene Inc アレルギー性疾患用医薬組成物
JP2008074753A (ja) 2006-09-20 2008-04-03 Locomogene Inc タンパク質のユビキチン化抑制剤
WO2009031842A1 (en) * 2007-09-04 2009-03-12 Korea University Industrial & Academic Collaborative Foundation Use of trim72 as a target for muscle and heart enhancer
JP2012524033A (ja) * 2009-04-17 2012-10-11 ディーエスエム アイピー アセッツ ビー.ブイ. ミトコンドリアの機能およびエネルギー生産を高めるためのヒドロキシチロソールの組合せ
JP2011001311A (ja) * 2009-06-19 2011-01-06 Pola Chemical Industries Inc 熱産生タンパク質発現促進剤
WO2012176860A1 (ja) * 2011-06-22 2012-12-27 Nakajima Toshihiro 体重調節作用を有する物質をスクリーニングするための方法

Non-Patent Citations (35)

* Cited by examiner, † Cited by third party
Title
AHN J ET AL.: "The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways", BIOCHEM BIOPHYS RES COMMUN, vol. 373, no. 4, 2008, pages 545 - 9, XP026932667 *
ALTSCHUL ET AL., PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 2264 - 8
AMANO ET AL.: "Synoviolin/Hrdl, an E3 ubiquitin ligase, as a novel pathogenic factor for arthropathy", GENES DEV, vol. 17, 2003, pages 2436 - 2449
AMANO, T. ET AL.: "Synoviolin/Hrdl, an E3 ubiquitin ligase, as a novel pathogenic factor for arthropathy", GENES DEV., vol. 17, 2003, pages 2436 - 2449
ANDERSSON U; SCARPULLA RC.: "Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells", MOL CELL BIOL., vol. 21, 2001, pages 3738 - 3749
ARATANI, S. ET AL.: "Dual roles of RNA helicase A in CREB-department transcription", MOL. CELL BIOL., vol. 21, 2001, pages 4460 - 4469
BERNASCONI, R. ET AL., J. CELL BIOL., vol. 188, 2010, pages 223 - 235
BUZAYAN, J. M., NATURE, vol. 323, 1986, pages 349
EMBO J, vol. 16, pages 1850 - 1857
HAYASHI, S.; MCMAHON, A.P.: "Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse", DEV. BIOL., vol. 244, 2002, pages 305 - 318
HIRASHIMA; INOUE: "Kakusan (Nucleic Acids) IV; Idenshi No Fukusei To Hatsugen", 1993, TOKYO KAGAKU DOZIN, article "Shin Seikagaku Jikken Koza", pages: 319 - 347
IZUMI T ET AL., ARTHRITIS RHEUM, vol. 60, no. 1, 2009, pages 63 - 72
KAMEI Y ET AL.: "PPARgamma coactivator lbeta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity", PROC NATL ACAD SCI U S A, vol. 100, no. 21, 2003, pages 12378 - 83, XP002401026 *
KAMEI, Y. ET AL.: "PPARgamma coactivator lbeta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity", PROC NATL ACAD SCI U S A, vol. 100, 2003, pages 12378 - 12383
KARLIN; ALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873 - 7
KIKUCHI, Y.; SASAKI, N., NUCLEIC ACIDS RES., vol. 19, 1991, pages 6751
KIM, J.B. ET AL.: "ADD1/SREBP1 activates PPAR gamma through the production of endogenous ligand", PROC. NATL. ACAD. SCI. USA, vol. 95, 1998, pages 4333 - 4337
KOIZUMI, M. ET AL., FEBS LETT, vol. 239, 1988, pages 285
KOIZUMI, M. ET AL., NUCL. ACIDS RES., vol. 17, 1989, pages 7059
KRESSLER, D. ET AL.: "The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha", J BIOL CHEM, vol. 277, 2002, pages 13918 - 13925
LIN, J. ET AL.: "PGC-1beta in the regulation of hepatic glucose and energy metabolism", J BIOL. CHEM., vol. 278, 2003, pages 30843 - 30848
LIN, J.: "Peroxisome Proliferator-activated Receptor gamma Coactivator 1beta (PGC-lbeta), A Novel PGC-1-related Transcription Coactivator Associated with Host Cell Factor", J BIOL CHEM, vol. 277, 2001, pages 1645 - 1648
M. KOIZUMI ET AL., FEBS LETT., vol. 228, 1988, pages 228
M. KOIZUMI; E. OHTSUKA, TANPAKUSHITSU KAKUSAN KOHSO, vol. 35, 1990, pages 2191
NIEMAN D C ET AL.: "Quercetin's influence on exercise performance and muscle mitochondrial biogenesis", MED SCI SPORTS EXERC, vol. 42, no. 2, 2010, pages 338 - 45, XP055276479 *
SCARPULLA, R.C.: "Transcriptional paradigms in mammalian mitochondrial biogenesis and function", PHYSIOL. REV., vol. 88, 2008, pages 611 - 638
ST-PIERRE J ET AL.: "Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators lalpha and 1beta (PGC-lalpha and PGC-lbeta) in muscle cells", J BIOL CHEM, vol. 278, no. 29, 2003, pages 26597 - 603, XP055276484 *
ST-PIERRE, J.: "Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators lalpha and 1beta (PGC-lalpha and PGC-lbeta) in muscle cells", J BIOL CHEM, vol. 278, 2003, pages 26597 - 26603
TSUCHIMOCHI K ET AL., MOL CELL BIOL., vol. 25, no. 16, 2005, pages 7344 - 56
VIANA ABRANCHES ET AL.: "Peroxisome proliferator-activated receptor: effects on nutritional homeostasis, obesity and diabetes mellitus", NUTR HOSP, vol. 26, 2011, pages 271 - 279
YAMASAKI ET AL.: "Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase 'Synoviolin", EMBO J, vol. 26, 2007, pages 113 - 122
YAMASAKI S ET AL., EMBO J., vol. 26, no. 1, 2007, pages 113 - 22
YAMASAKI, S. ET AL., EMBO J., vol. 26, 2007, pages 113 - 122
YAMASAKI, S. ET AL.: "Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase 'Synoviolin", EMBO J, vol. 26, 2007, pages 113 - 122
YO KIKUCHI, KAGAKU TO SEIBUTSU, vol. 30, 1992, pages 112

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2940132A4 (en) * 2012-12-26 2016-08-17 Nakajima Toshihiro SCREENING METHOD FOR A CONNECTION WITH EFFECT TO PREVENT OR TREAT ADIPOSITAS
JP2019156798A (ja) * 2018-03-16 2019-09-19 株式会社 バイオミメティクスシンパシーズ 多発性骨髄腫の治療剤
WO2020138219A1 (ja) * 2018-12-27 2020-07-02 株式会社nana 哺乳動物の寿命を延長するための剤

Also Published As

Publication number Publication date
CN105007943B (zh) 2017-07-14
JPWO2014104224A1 (ja) 2017-01-19
JP6208689B2 (ja) 2017-10-04
US20150330981A1 (en) 2015-11-19
US9766241B2 (en) 2017-09-19
EP2954905A1 (en) 2015-12-16
EP2954905B1 (en) 2018-05-02
CN105007943A (zh) 2015-10-28
EP2954905A4 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
Gao et al. Inhibition of mitochondrial calcium overload by SIRT3 prevents obesity-or age-related whitening of brown adipose tissue
Wang et al. DHHC4 and DHHC5 facilitate fatty acid uptake by palmitoylating and targeting CD36 to the plasma membrane
Mercado et al. Nortriptyline reverses corticosteroid insensitivity by inhibition of phosphoinositide-3-kinase-δ
Gong et al. Gpnmb secreted from liver promotes lipogenesis in white adipose tissue and aggravates obesity and insulin resistance
Shi et al. Catecholamine up-regulates MMP-7 expression by activating AP-1 and STAT3 in gastric cancer
Na et al. Endogenous prostaglandin E2 potentiates anti‐inflammatory phenotype of macrophage through the CREB‐C/EBP‐β cascade
Zhao et al. Hepatic F-box protein FBXW7 maintains glucose homeostasis through degradation of fetuin-A
Zhang et al. Sorting nexin 10 acts as a tumor suppressor in tumorigenesis and progression of colorectal cancer through regulating chaperone mediated autophagy degradation of p21Cip1/WAF1
Sengupta et al. Morphine increases brain levels of ferritin heavy chain leading to inhibition of CXCR4-mediated survival signaling in neurons
Ng et al. Regulator of G protein signaling 12 enhances osteoclastogenesis by suppressing Nrf2-dependent antioxidant proteins to promote the generation of reactive oxygen species
Zeng et al. The E3 ubiquitin ligase TRIM31 is involved in cerebral ischemic injury by promoting degradation of TIGAR
Zhang et al. Depletion of the triggering receptor expressed on myeloid cells 2 inhibits progression of renal cell carcinoma via regulating related protein expression and PTEN-PI3K/Akt pathway
Hu et al. Role of exchange protein directly activated by cyclic AMP isoform 1 in energy homeostasis: regulation of leptin expression and secretion in white adipose tissue
Xie et al. LanCL1 attenuates ischemia-induced oxidative stress by Sirt3-mediated preservation of mitochondrial function
JP6208689B2 (ja) PGC−1β蛋白質の機能調整剤,ミトコンドリア機能の調節剤,抗肥満剤及びそれらスクリーニング方法
Tobin et al. Regulation of Hspb7 by MEF2 and AP-1: implications for Hspb7 in muscle atrophy
Mou et al. Dopamine receptor agonists ameliorate bleomycin-induced pulmonary fibrosis by repressing fibroblast differentiation and proliferation
US20070265350A1 (en) Method of identifying compounds useful to treat neuronal degenerative diseases
Nakajima et al. Synoviolin inhibitor LS-102 reduces endoplasmic reticulum stress-induced collagen secretion in an in vitro model of stress-related interstitial pneumonia
Liu et al. POLR2A blocks osteoclastic bone resorption and protects against osteoporosis by interacting with CREB1
Prabhakaran et al. Up-regulation of uncoupling protein 2 by cyanide is linked with cytotoxicity in mesencephalic cells
Zhang et al. RNF130 protects against pulmonary fibrosis through suppressing aerobic glycolysis by mediating c-myc ubiquitination
KR102072075B1 (ko) TRIM25을 유효성분으로 함유하는 PPARγ 분해용 조성물
Zheng et al. Inhibition of PKHD1 may cause S-phase entry via mTOR signaling pathway
RU2776477C2 (ru) Применение производных 1-фенил-2-пиридинилалкилового спирта при лечении муковисцидоза

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554561

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013868860

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14655744

Country of ref document: US