WO2014091622A1 - 蓄電装置及びその充電方法 - Google Patents

蓄電装置及びその充電方法 Download PDF

Info

Publication number
WO2014091622A1
WO2014091622A1 PCT/JP2012/082508 JP2012082508W WO2014091622A1 WO 2014091622 A1 WO2014091622 A1 WO 2014091622A1 JP 2012082508 W JP2012082508 W JP 2012082508W WO 2014091622 A1 WO2014091622 A1 WO 2014091622A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery
charging
storage battery
charge
Prior art date
Application number
PCT/JP2012/082508
Other languages
English (en)
French (fr)
Inventor
晋 山内
耕平 本蔵
高橋 宏文
貴嗣 上城
岸見 光浩
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/082508 priority Critical patent/WO2014091622A1/ja
Priority to CN201280077654.3A priority patent/CN104854772B/zh
Priority to US14/651,327 priority patent/US9787119B2/en
Priority to JP2014551819A priority patent/JP6088543B2/ja
Publication of WO2014091622A1 publication Critical patent/WO2014091622A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage device including a storage battery and a charging method thereof.
  • Patent Document 1 discloses a negative electrode closing potential calculation unit that calculates a closing potential of a negative electrode using an open circuit voltage acquired by an open circuit voltage acquisition unit, and whether or not the calculated negative electrode closing potential is less than a predetermined threshold value.
  • a charge control device including a closed circuit potential determination unit that determines whether or not and a charge current control unit that reduces the value of the charge current when the negative electrode closed circuit potential is less than the threshold value.
  • Patent Document 1 The technique described in Patent Document 1 is effective for a system that can instantaneously control a charging current, such as a hybrid vehicle or an electric vehicle.
  • a charging current such as a hybrid vehicle or an electric vehicle.
  • the generated power of wind power generation is proportional to the wind receiving area of the blade of the windmill. Therefore, it is necessary to adjust the wind receiving area by controlling the mounting angle (pitch angle) of the blade in accordance with the state of charge (SOC) of the storage battery.
  • SOC state of charge
  • an object of the present invention is to provide a power storage device and a charging method with improved reliability when charging a storage battery.
  • the present invention provides a charging rate calculation means for calculating a charging rate of the lithium ion storage battery when the battery voltage of the lithium ion storage battery during charging reaches a predetermined value; Voltage difference calculation for calculating a difference in battery voltage corresponding to a difference between a charging rate calculated by the charging rate calculation means and a preset charging rate during lithium deposition based on the no-load characteristic of the lithium ion storage battery. And the difference between the battery voltages calculated by the voltage difference calculation means is added to the battery voltage at the time of arrival to calculate a charge end voltage that is a criterion for determining whether to end the charge. When the battery voltage of the lithium ion storage battery reaches the charging end voltage, the charge control for terminating the charging of the lithium ion storage battery is performed. Characterized in that it comprises a means. Details will be described in an embodiment for carrying out the invention.
  • FIG. It is a flowchart which shows the flow of the process which a control apparatus performs.
  • A is a characteristic diagram showing the SOC-CCV characteristic and no-load characteristic of the storage battery
  • (b) is a characteristic chart showing the SOC-negative voltage characteristic of the storage battery
  • (c) shows the SOC-charging current characteristic.
  • FIG. It is a characteristic view concerning a comparative example, (a) is a characteristic view showing the SOC-CCV characteristic and no-load characteristic of the storage battery, (b) is a characteristic view showing the SOC-negative electrode voltage characteristic of the storage battery, (c ) Is a characteristic diagram showing SOC-charging current characteristics.
  • FIG. 1 is an overall configuration diagram illustrating an overview of a power system including a power storage device according to the present embodiment.
  • the power system S includes a power generation device 1, a power storage device 2, and a bidirectional inverter 3.
  • the power generation device 1 is, for example, a wind power generation device or a solar power generation device, and has a function of generating generated power using natural energy and supplying the generated power to the power system 4 (and the power storage device 2) via the wiring a1. is doing.
  • the power generator 1 includes a power conversion means (inverter: not shown) that converts the generated power into three-phase AC power having a predetermined frequency, and a control means that controls the generated power in accordance with power flow fluctuations of the power system 4 ( (Not shown).
  • the power storage device 2 has a function of charging / discharging according to the driving of the bidirectional inverter 3, and has a plurality of battery packs 230 (see FIG. 2) having battery cells 242 (see FIG. 2) connected in series and parallel.
  • the above-described battery cell 242 is, for example, a lithium ion storage battery.
  • a battery in which a plurality of battery cells 242 are connected in series, a battery in which a plurality of battery cells 242 are connected in parallel, or a battery in which a plurality of battery cells 242 are connected in any combination of series and parallel is simply referred to as “storage battery”. ". Details of the power storage device 2 will be described later.
  • the bidirectional inverter 3 is a three-phase bidirectional inverter using, for example, an IGBT (Insulated Gate Bipolar Transistor) which is a switching element (not shown), and is connected to the power generator 1 and the power system 4 via wirings a3 and a1. It is connected.
  • the bidirectional inverter 3 incorporates control means (not shown) for controlling on / off of the switching element by PWM control (PulseulWidth Modulation).
  • the bidirectional inverter 3 When charging the storage battery of the power storage device 2, the bidirectional inverter 3 converts the three-phase AC power input from the power generation device 1 via the wirings a1 and a3 into DC power, and the power storage device 2 via the wiring a2. Output to. In this case, the bidirectional inverter 3 functions as a converter. On the other hand, when the storage battery of the power storage device 2 is discharged, the bidirectional inverter 3 converts the DC power discharged from the storage battery via the wiring a2 into three-phase AC power, and the power system 4 via the wirings a3 and a1. Output to. In this case, the bidirectional inverter 3 functions as an inverter.
  • the power storage device 2 provided in the power generation device 1 charges the storage battery with a surplus of the generated power supplied from the power generation device 1, while discharging a shortage of power from the storage battery (that is, Buffer function). As a result, it is possible to suppress (absorb) frequency fluctuations and voltage fluctuations of power generated by the power generation device 1 and to stably supply power to the power system 4.
  • FIG. 2 is a configuration diagram illustrating a hierarchical structure of the power storage device.
  • the power storage device 2 includes a battery block 220 that is controlled by a system control device 210 (BSCU).
  • BSCU system control device
  • Each battery block 220 is connected in parallel to each other and stored in a battery block storage device (not shown) which is a cabinet-type housing.
  • the battery block 220 includes a plurality of battery packs 230 connected in parallel and an integrated control device 221 (IBCU) that controls the operation of each battery pack 230.
  • IBCU integrated control device
  • the battery pack 230 includes a plurality of battery modules 240 connected in parallel and a battery control device 231 (BCU) that controls the operation of each battery module 240.
  • the battery module 240 includes a plurality of battery cells 242 connected in series and parallel, and a battery cell monitoring unit 241 (CCU) that monitors the state of each battery cell 242.
  • Each battery cell 242 is, for example, a secondary battery such as a lithium ion storage battery or a lead storage battery, and is charged and discharged according to the driving of the bidirectional inverter 3.
  • the connection of the battery cells 242 is illustrated in a simplified manner.
  • the “storage battery” included in the battery module 240 includes a plurality of battery cells 242 connected in series and a plurality of battery cells 242 in parallel. What connected is what included what connected the some battery cell 242 in arbitrary combination of series and parallel.
  • the battery cell monitoring unit 241 has a function of measuring the voltage between terminals, the temperature, and the current for each battery cell 242, and generating information on the state of charge (charging rate, SOC: State Of Charge). Further, the battery cell monitoring unit 241 has a function of monitoring and controlling the state of each battery cell 242 connected to the battery cell 242 and outputting charge state information and the like to the upper battery control device 231 via the wiring b1. ing.
  • the battery control device 231 has a function of outputting the charge state information of the battery cell 242 and the management information of each battery pack 230 input from the battery cell monitoring unit 241 to the upper integrated control device 221 via the wiring b2. ing.
  • the integrated control device 221 has a function of outputting information input from the battery control device 231 and management information of each battery block 220 to the host system control device 210 via the wiring b3.
  • the system control device 210 has a function of comprehensively managing the operations of the plurality of battery blocks 220. As described above, the power storage device 2 hierarchically manages the state of the large number of battery cells 242, thereby improving the efficiency of the processing of each control device and reducing the processing load.
  • FIG. 3 is a characteristic diagram showing an SOC usage range and a no-load characteristic used in this embodiment among CCV (ClosedCloseCircuit Voltage) characteristics of the power storage device.
  • the horizontal axis of the characteristic diagram shown in FIG. 3 shows the state of charge (SOC) of the storage battery, and the vertical axis shows the battery voltage of the storage battery.
  • the no-load characteristic indicated by the broken line in FIG. 3 is the SOC-battery voltage characteristic when no load is applied between the positive electrode and the negative electrode of the storage battery (the battery voltage profile when charging with a minute current near zero) ). Also, the full charge voltage corresponding V ful, the charging rate of the storage battery in the no-load characteristic (SOC) is a voltage indicating that 100%.
  • the storage battery is charged by, for example, constant current-constant voltage (CCCV) charging.
  • the battery voltage which is the voltage between the positive electrode and the negative electrode of the storage battery, increases as charging progresses (the SOC value increases).
  • the full charge equivalent voltage V ful shown in FIG. 3 is a battery voltage at which the charge amount of the storage battery is maximum (SOC: 100%) in the no-load characteristic.
  • the characteristic indicated by the solid line in FIG. 3 is the SOC-CCV characteristic when charging is performed with a load applied between the positive electrode and the negative electrode of the storage battery.
  • a storage battery has a predetermined internal resistance. Therefore, when charging a lithium ion storage battery, the battery voltage CCV is obtained by adding an IR component corresponding to the product of the current value I (not shown) and the battery internal resistance R (not shown) to the no-load characteristic.
  • the characteristics are shown (see FIG. 3: solid line).
  • the electric power generating apparatus 1 (refer FIG. 1) is a wind power generator, it is calculated
  • the values of the lower limit threshold value S1 and the upper limit threshold value S2 described above are appropriately set according to the type of the power generation device 1 and the like.
  • FIG. 4A is a characteristic diagram showing CCV characteristics and no-load characteristics of the power storage device.
  • the CCV characteristics (solid line) and no-load characteristics (broken line) shown in FIG. 4A are the same as the characteristics described in FIG.
  • the vertical axis in FIG. 4A shows the full charge equivalent voltage V ful and the maximum allowable voltage V fin .
  • the maximum allowable voltage V fin is an upper limit voltage that is allowed for the storage battery to function normally, and is set in advance according to the specification of the storage battery. Further, the full charge equivalent voltage V ful of the storage battery is set based on a prior experiment or the like, and is stored in advance in the storage means 22 (see FIG. 5).
  • the control device 20 (see FIG. 5) performs charge / discharge control so that the SOC of the storage battery is within the range of the lower limit threshold S1 and the upper limit threshold S2.
  • FIG. 4B is a characteristic diagram showing negative electrode voltage characteristics and no-load characteristics of the storage battery.
  • the horizontal axis of the characteristic diagram shown in FIG. 4B represents the SOC of the storage battery, and the vertical axis represents the negative voltage of the storage battery.
  • the negative electrode voltage was based on the voltage (0 V) at which lithium metal began to precipitate from the negative electrode.
  • the negative electrode voltage (solid line) of the storage battery gradually decreases as charging proceeds.
  • the no-load characteristic (broken line) of the storage battery By the way, when the negative electrode voltage of the storage battery is lower than the lithium deposition voltage, lithium metal begins to precipitate, leading to performance deterioration of the storage battery. Therefore, the negative electrode voltage of the storage battery must always be kept higher than the lithium deposition voltage (0 V).
  • the negative voltage characteristic (solid line) shown in FIG. 4B is a characteristic obtained when the charging current of the storage battery is fixed at a predetermined value, and changes depending on the charging current of the storage battery.
  • the upper limit threshold S2 of the SOC use range is set so that the negative electrode voltage corresponds to 0 V (lithium deposition voltage).
  • the charging end voltage V2 fin , the voltage difference ⁇ V1, the negative voltage Va1, the change amount ⁇ S, and the like shown in FIG. 4A will be described later together with the flowcharts shown in FIGS. .
  • FIG. 5 is a configuration diagram of a control device included in the power storage device.
  • the control device 20 corresponds to, for example, the battery cell monitoring unit 241, the battery control device 231, the integrated control device 221 and the like illustrated in FIG.
  • the control device 20 includes a charge end voltage calculation unit 21, a storage unit 22, and a charge control unit 23.
  • the charging end voltage calculating unit 21 calculates the charging end voltage based on the battery voltage CCV, the charging current I, and the negative electrode voltage Va.
  • the charging end voltage is a battery voltage that is a criterion for determining whether or not to end the charging of the storage battery.
  • the control device 20 is set so as to treat the value of the charging current I during the predetermined time as being constant (for example, an average value) by performing preprocessing such as filtering processing and averaging processing executed every predetermined time. Has been.
  • the charge end voltage calculation means 21 includes an SOC calculation unit 21a, a voltage difference calculation unit 21b, and an adder 21c.
  • the SOC calculation unit 21a charge rate calculation means calculates the SOC of the storage battery at the time of the arrival.
  • the SOC calculator 21a receives a battery voltage CCV that is a detected value of a voltage sensor (not shown) installed in the storage battery and a charging current I that is a detected value of a current sensor (not shown). Is done.
  • the SOC calculation unit 21a calculates the SOC of the storage battery based on the charging current average value that is a value obtained by averaging the charging current I of the storage battery every predetermined time and the battery voltage CCV of the storage battery.
  • various known methods can be used to calculate the SOC.
  • the voltage difference calculation unit 21b calculates the voltage difference ⁇ V1 based on the battery voltage CCV, the charging current I, the negative voltage Va, and the SOC calculated by the SOC calculation unit 21a. Note that the value of the voltage difference ⁇ V1 is used when the adder 21c calculates the charge end voltage V2fin . Incidentally, when the voltage difference ⁇ V1 is calculated, the voltage difference calculation unit 21b is configured to store the no-load characteristics of the storage battery stored in the storage unit 22 (FIG. 4 (a) broken line: battery voltage and FIG. 4 (b) wavy line: negative electrode voltage. ), Information such as the full charge equivalent voltage V ful and the maximum allowable voltage V fin is also used.
  • the adder 21c adds the voltage difference ⁇ V1 input from the voltage difference calculation unit 21b and the full charge equivalent voltage V ful and outputs the result to the charge control unit 23 as the charge end voltage V2 fin .
  • the charging control means 23 controls charging of the storage battery based on the battery voltage CCV, the charging current I, the SOC input from the SOC calculating unit 21a, and the charging end voltage V2 fin input from the adder 21c. . 5 is a signal output from the charge control means 23 when the charging of the storage battery is terminated.
  • the charging control means 23 outputs a charging end command Q1 to switch a switch (not shown) that electrically connects the storage battery and the bidirectional inverter 3 (see FIG. 1) from on to off, thereby storing the storage battery. End charging.
  • FIG. 6 is a flowchart showing a flow of processing executed by the control device.
  • the control device 20 starts charging.
  • the SOC (charge rate) of the storage battery is assumed to be within the SOC usage range not less than the lower limit threshold S1 and not more than the upper limit threshold S2 (see FIG. 4A).
  • the control device 20 reads the values of the battery voltage CCV, the charging current I, and the negative electrode voltage Va of the storage battery.
  • step S102 the control device 20 calculates the SOC of the storage battery based on the battery voltage CCV read in step S101 and the charging current I (charging rate calculation process).
  • control device 20 determines whether or not the SOC calculated in step S102 is equal to or higher than upper limit threshold S2 (that is, the charging rate during lithium deposition) corresponding to the lithium deposition voltage.
  • upper limit threshold S2 that is, the charging rate during lithium deposition
  • the control device 20 cuts off the electrical connection between the power system 4 (see FIG. 1) and the storage battery and ends the charging (END). As a result, the negative electrode voltage of the storage battery can be prevented from falling below the lithium deposition voltage, and deterioration of the storage battery can be suppressed.
  • the SOC is less than the upper limit threshold S2 (S103 ⁇ No)
  • the process of the control device 20 proceeds to step S104.
  • step S104 control device 20 determines whether or not battery voltage CCV is equal to or higher than full charge equivalent voltage V ful .
  • the value of the full charge equivalent voltage V ful is also set in advance and stored in the storage means 22 (see FIG. 5).
  • the process of the control device 20 proceeds to step S105.
  • the battery voltage CCV is less than the maximum allowable voltage V fin (> V ful : see FIG. 4A), there is room for further charging within a range where lithium metal does not precipitate.
  • step S104 the processing of the control unit 20 returns to step S101.
  • the control device 20 monitors whether the battery voltage CCV has reached the full charge equivalent voltage V ful ( ⁇ V fin ) during charging of the storage battery at every predetermined cycle time, and the battery voltage CCV is full. If it does not reach the charging voltage corresponding V ful, to continue charging.
  • step S105 the control device 20 reads the negative voltage Va when the battery voltage CCV being charged has reached the full charge equivalent voltage Vful .
  • the negative voltage Va corresponds to the negative voltage Va1 shown in FIG.
  • step S106 the control device 20 calculates the SOC change ⁇ S (see FIG. 4B) until the negative electrode voltage Va of the storage battery decreases from the current time by the voltage Va1 to reach the lithium deposition voltage (0V).
  • the change amount ⁇ S is obtained by subtracting the SOC value (S3: see FIG. 4B) calculated immediately before the process of step S105 from the upper limit threshold S2 corresponding to the lithium deposition voltage (0 V). It is done.
  • control device 20 calculates the SOC of the storage battery when the battery voltage CCV reaches the full charge equivalent voltage V ful (that is, S3: see FIG. 4B), and the SOC and the preset upper limit.
  • a difference ⁇ S between the threshold value S2 (charge rate during lithium deposition) and the threshold value S2 is calculated.
  • step S107 the control device 20 calculates an increase width ⁇ V1 (see FIG. 4A) of the battery voltage CCV when the SOC of the storage battery increases from the predetermined value S3 to the upper limit threshold S2 based on the no-load characteristic ( Voltage difference calculation processing).
  • the aforementioned no-load characteristics are the SOC-battery voltage characteristics (broken line) shown in FIG. 4A and the SOC-negative voltage characteristics (broken line) shown in FIG. 4B. ).
  • the load characteristic (solid line) is obtained by translating the no-load characteristic (broken line) of the storage battery by a voltage drop due to the internal resistance. Therefore, the voltage increase width ⁇ V1 calculated using the no-load characteristic is substantially the same as the voltage increase width ⁇ V1 when charging is actually performed (see FIG. 4A).
  • the control device 20 determines the difference ⁇ S between the SOC (S3) when the battery voltage CCV reaches the full charge equivalent voltage V ful and the preset upper threshold value S2 (lithium deposition charging rate). The corresponding battery voltage difference ⁇ V1 is calculated based on the no-load characteristic of the storage battery.
  • step S108 the control device 20 calculates the charge end voltage V2fin (charge end voltage calculation process).
  • the charge end voltage V2 fin is calculated by adding the increase width ⁇ V1 calculated in step S107 to the full charge equivalent voltage V ful stored in the storage unit 22 (see FIG. 5).
  • step S109 the control device 20 determines whether or not the charging end voltage V2fin is equal to or higher than the maximum allowable voltage Vfin . When the charge end voltage V2fin is equal to or higher than the maximum allowable voltage Vfin (S109 ⁇ Yes), the process of the control device 20 proceeds to step S110.
  • control device 20 replaces charging end voltage V2fin with the value of maximum allowable voltage Vfin . That is, the control device 20 resets the maximum allowable voltage V fin set in advance according to the specifications of the storage battery as a new charge end voltage V2 fin . On the other hand, when the charge end voltage V2 fin is less than the maximum allowable voltage V fin (S109 ⁇ No), the process of the control device 20 proceeds to step S111.
  • control device 20 resets the smaller one of the charging end voltage V2 fin and the maximum allowable voltage V fin as a new charging end voltage V2 fin .
  • control device 20 reads values of the battery voltage CCV, the charging current I, and the negative electrode voltage Va of the storage battery.
  • control device 20 calculates the SOC of the storage battery based on the battery voltage CCV read in step S111 and the charging current I.
  • step S113 the control device 20 determines whether or not the SOC calculated in step S112 is equal to or higher than the upper limit threshold S2 corresponding to the lithium deposition voltage.
  • the control device 20 ends the charging (END).
  • the process of the control device 20 proceeds to step S114.
  • step S114 control device 20 determines whether or not battery voltage CCV is equal to or higher than charging end voltage V2fin .
  • the control device 20 uses the value of the charge end voltage V2fin reset in the processes in steps S109 and S110 when performing the comparison process in step S112.
  • the control device 20 ends the charging of the storage battery (charging control process: END).
  • the process of the control device 20 returns to Step S111.
  • the control device 20 stops charging the storage battery at the earlier of the timing at which the battery voltage CCV reaches the maximum allowable voltage V fin and the timing at which the negative voltage of the storage battery reaches the lithium deposition voltage (0 V). .
  • the control device 20 stops charging the storage battery at the earlier of the timing at which the battery voltage CCV reaches the maximum allowable voltage V fin and the timing at which the negative voltage of the storage battery reaches the lithium deposition voltage (0 V). .
  • FIG. 8A is an explanatory diagram showing SOC-CCV characteristics and no-load characteristics of the storage battery
  • FIG. 8B is an explanatory diagram showing SOC-negative voltage characteristics of the storage battery
  • FIG. 8C is an SOC-charge current characteristic.
  • the battery voltage CCV1 shown in FIG. 8A, the negative voltage Va1 shown in FIG. 8B, and the charging current I1 shown in FIG. 8C correspond to each other. The same applies to other battery voltages, negative electrode voltages, and charging currents.
  • the SOC usage range of the storage battery a range that is not less than the lower limit threshold S1 and not more than the upper limit threshold S2 is set, and each current of the charging currents I1, I2, I3 (I1 ⁇ I2 ⁇ I3) as shown in FIG. The value was CCCV charged.
  • the voltage drop due to the internal resistance increases as the charging current value increases. Therefore, when the charging current I1 is relatively small, the battery voltage CCV1 (see FIG. 8A) is lower than the other battery voltages CCV2 and CCV3, and the negative voltage Va1 (see FIG. 8B) is the other. It becomes higher than the negative voltage Va2, Va3.
  • the charging current I1 see FIG. 8C
  • the charging proceeds without the battery voltage CCV1 reaching the full charge equivalent voltage V ful in the SOC usage range as shown in FIG. 8A (S104). (See No: FIG. 6).
  • the value of the negative electrode voltage Va1 has a predetermined margin with respect to the lithium deposition voltage (0 V).
  • the control unit 20 When performing charging with charging current I2 (see FIG. 8 (c)), the control unit 20 at the time the battery voltage CCV2 reaches the full charge voltage corresponding V ful as shown in FIG. 8 (a) charging end voltage V2 Fin is calculated (S108, S110), and the battery voltage CCV is monitored at every predetermined cycle time (S114). Then, the control device 20 ends the charging when the battery voltage CCV reaches the charging end voltage V2fin (S114 ⁇ Yes, END). At this time, as shown in FIG. 8B, the charging is completed in a state where the negative electrode voltage Va2 is equal to the lithium deposition voltage (0V).
  • the control device 20 sets the charging end voltage V2. Fin is calculated (S108, S110). Since the value of the charging current I3 is relatively large, the battery voltage CCV reaches the charging end voltage V2 fin before the SOC of the storage battery reaches the upper limit threshold value S2, and the charging ends (S114 ⁇ Yes, END). At this time, as shown in FIG. 8B, the negative electrode voltage Va2 is equal to the lithium deposition voltage (0V), and the SOC of the storage battery is a value S3 lower than the upper limit threshold S2.
  • control device 20 charges the storage battery within the SOC use range (see FIG. 8A) regardless of the value of the charging current (see FIG. 8C), and the negative voltage Va. Charge is terminated before the voltage drops below the lithium deposition voltage (0 V) (see FIG. 8B).
  • the control device 20 monitors the SOC of the storage battery during charging, and the SOC is equal to or higher than the upper limit threshold S2 corresponding to the lithium deposition voltage (0 V) (S103 ⁇ Yes). Immediately terminate the charging of the storage battery (END). Therefore, it is possible to prevent the negative electrode voltage Va of the storage battery from being lower than the lithium deposition voltage, and avoid performance deterioration of the storage battery due to the deposition of lithium metal.
  • the control unit 20 calculates a charge termination voltage V2 fin battery (S108). At this time, the negative electrode voltage Va of the storage battery never falls below the lithium deposition voltage. As shown in FIGS. 4A and 4B, SOC: S3 corresponding to the state in which the battery voltage CCV becomes the full charge equivalent voltage V ful corresponds to the lithium deposition voltage (0 V). This is because the SOC is less than S2. Therefore, the control device 20 can appropriately set the timing for calculating the charge end voltage V2fin .
  • the control device 20 calculates the charge end voltage V2fin before the negative electrode voltage Va of the storage battery falls below the lithium deposition voltage in the charged state. Furthermore, when the battery voltage CCV reaches the charging end voltage V2 fin (S114 ⁇ Yes: see FIG. 7), the control device 20 cuts off the electrical connection between the storage battery and the power system 4 and ends the charging (END). ). Therefore, even if a response delay occurs after the signal from the control device 20 is input and reflected in the control of the power generation device 1 (for example, stop of the windmill), the negative voltage of the storage battery is less than the lithium deposition voltage. It can be surely prevented.
  • the control device 20 sets the value of the charge end voltage V2 fin to the maximum allowable value. Replace with the voltage V fin (S110). Accordingly, it is possible to reliably prevent the negative electrode voltage Va from being lower than the lithium deposition voltage while preventing the battery voltage CCV from exceeding the maximum allowable voltage Vfin and causing a problem in the storage battery.
  • control unit 20 reads the anode voltage Va at the time when the battery voltage CCV reaches a full charge equivalent voltage V ful (S101), the no-load characteristic (FIG. 4 (a), the broken line in FIG. 4 (b)) Etc. is used to calculate the value of the charge end voltage V2fin . Thereby, the charge end voltage V2 fin corresponding to the lithium deposition voltage can be accurately calculated.
  • the negative electrode voltage is estimated, and if the negative electrode voltage does not fall below 0V, the battery voltage CCV is the full charge equivalent voltage V ful (see FIG. 9A). ), Charging continued.
  • 0 V shown in FIG. 9B is based on the lithium deposition voltage.
  • the current is not limited in the section where the negative electrode voltage is larger than the lithium deposition voltage (SOC: S5 to S6 in FIG. 9C), so CCCV charging is performed.
  • the current limiting section is shorter than that in the system (SOC in FIG. 9C: S6 to 100%).
  • the negative electrode voltage Va is lower than the lithium deposition voltage (0 V). It is possible to control such that For example, in a hybrid vehicle or an electric vehicle, a motor is operated as a generator at the time of deceleration, and regenerative energy is converted into electric power and collected to charge a storage battery. Further, when the SOC of the storage battery is high and it is necessary to suppress the current value, switching to deceleration by the brake pedal (foot brake) is performed without performing regeneration.
  • hybrid vehicles and electric vehicles can control energy distribution using regeneration and foot brakes during deceleration by charging and discharging the storage battery, and the current can be reduced in a short time so that the negative voltage does not fall below a predetermined value. Can be controlled.
  • the generated power is proportional to the wind receiving area of the blade of the wind turbine. Therefore, in this case, it is necessary to adjust the wind receiving area by controlling the attachment angle (pitch angle) of the blade according to the SOC of the storage battery. However, at present, it takes several seconds to several tens of seconds to change the pitch angle. If it does so, when the method of patent document 1 is applied in order to absorb the surplus electric power of a wind power generator, control of charging current may not be in time, and a negative electrode voltage may fall below lithium voltage. In this case, lithium metal may be deposited on the negative electrode side of the storage battery, leading to performance deterioration of the storage battery.
  • the power storage device 2 calculates the charging end voltage V2 fin before the negative electrode voltage Va falls below the lithium deposition voltage, and the battery voltage CCV becomes equal to or higher than the charging end voltage V2 fin. Then, the storage battery and the electric power system 4 are electrically disconnected, and the charging is finished. Therefore, for example, when the storage battery absorbs surplus power generated by wind power generation, the generated power generated from when the stop command is input until the rotation of the windmill is actually stopped against the inertial force is It can prevent flowing into a storage battery.
  • lithium metal can be reliably prevented from being deposited on the negative electrode side of the storage battery regardless of the responsiveness on the power generation device 1 side, and the reliability of the power storage device 2 can be improved.
  • the above-described surplus power is charged to the one that is electrically connected to the power system 4 among other storage batteries (battery cells 242) included in the power storage device 2.
  • the power storage device 2 has been described in detail with reference to the drawings.
  • the present invention is not limited to the above-described embodiment, and may be changed as appropriate without departing from the spirit of the present invention. Is possible.
  • the SOC calculation unit 21a has described the case where the SOC of the storage battery is calculated based on the battery voltage CCV and the charging current I.
  • the present invention is not limited to this.
  • other methods such as sequentially integrating the charge flow I may be used.
  • the said embodiment demonstrated the case where the electric power generating apparatus 1 was an electric power generating apparatus using natural energy, such as a wind power generator and a solar power generation device, not only this but another kind of electric power generating apparatus may be used.
  • a load that consumes power may be connected to the power system 4 and power may be supplied from the power storage device 2 to the load. In this case, it is desirable to level the power load by charging the storage battery at night when the demand side load is light and discharging from the storage battery during the day when the demand side load is heavy.
  • the upper limit threshold value S2 of the SOC is set as the SOC corresponding to the lithium deposition voltage (0 V).
  • the present invention is not limited to this. That is, the upper threshold value S2 may be set to a value smaller than the SOC corresponding to the lithium deposition voltage so as to have a predetermined margin.
  • SOC corresponds to the fully charged voltage corresponding V ful:
  • S3 calculates the amount of change ⁇ S by subtracting
  • the present invention is not limited to this.
  • the amount of change ⁇ S described above is multiplied by a predetermined coefficient k (0 ⁇ k ⁇ 1) and [Delta] S2, may calculate the charging end voltage V2 fin on the basis of the [Delta] S2.
  • the control device 20 has described the case of calculating the charge end voltage V2 fin with SOC at the time when the battery voltage CCV of the battery reaches the full charge voltage corresponding V ful, thereto Not exclusively. That is, the charging end voltage V2fin may be calculated using the SOC at the time when the predetermined value set in advance is reached. The predetermined value is set within the SOC usage range.
  • control device 20 preferably includes “charge end voltage correcting means” that reduces the charge end voltage V2 fin when the average charge current value increases by a predetermined amount or more within a predetermined time (first correction process).
  • the predetermined amount and the predetermined time value are set in advance and stored in the storage means.
  • the charging end voltage correcting means may increase the charging end voltage V2 fin when the charging current average value decreases by a predetermined amount or more within a predetermined time (second correction process).
  • the charging end voltage correction unit may execute both the first correction process and the second correction process described above, or may execute either one of them.
  • the value of the charging end voltage V2 fin can be appropriately set in consideration of the voltage drop (voltage drop due to the internal resistance R) in the storage battery accompanying the increase in the charging current I.
  • steps S109 and S110 shown in FIG. 7 may be omitted. Even in this case, it is possible to prevent lithium metal from being deposited on the negative electrode side of the storage battery by terminating the charging when the battery voltage CCV of the storage battery reaches the charging end voltage V2 fin .
  • SYMBOLS Electric power system 1 Electric power generating apparatus 2 Electric power storage apparatus 20 Control apparatus 21 Charge end voltage calculation means 21a SOC calculation part (charge rate calculation means) 21b Voltage difference calculation unit (voltage difference calculation means) 21c Adder 22 Storage means 23 Charge control means 210 System control device 220 Battery block (power storage device) 221 Integrated control device 230 Battery pack (power storage device) 231 Battery control device 240 Battery module (power storage device) 241 Battery cell monitoring unit 242 Battery cell (lithium ion storage battery) 3 Bidirectional inverter 4 Power system

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】蓄電池に充電する際の信頼性を高めた蓄電装置及び充電方法を提供する。リチウムイオン蓄電池の充電中における電池電圧が所定値に到達した場合、当該到達時における充電率を算出するSOC算出部(21a)と、前記充電率とリチウム析出時充電率との差分に対応する電池電圧の差分を算出する電圧差分算出部(21b)と、当該電圧差分を前記到達時における電池電圧に加算して充電終了電圧を算出する充電終了電圧算出手段(21)と、電池電圧が充電終了電圧に達した場合、リチウムイオン蓄電池の充電を終了させる充電制御手段(23)と、を備える。

Description

蓄電装置及びその充電方法
 本発明は、蓄電池を備える蓄電装置及びその充電方法に関する。
 近年、世界中で環境維持や環境保護の取組みが活発化しており、風力発電や太陽光発電等、自然エネルギを利用した自然エネルギ発電装置が導入されつつある。自然エネルギ発電装置によって生成される発電電力は天候等によって周波数変動や電圧変動が生じやすく、電力系統に不具合を及ぼすことが懸念される。
 その対策の一つとして、自然エネルギ発電装置に蓄電装置を併設することによって前記した電圧変動等を抑制(吸収)し、電力系統に対して安定的に電力供給する技術が提案されている。なお、前記した蓄電装置として、高容量かつ高出力特性を有するリチウムイオン蓄電池(二次電池)を搭載したものが知られている。
 ところで、リチウムイオン蓄電池は、低温環境下で充電したり、大電流で充電したりすると、負極にリチウム金属が析出して性能劣化を招くおそれがある。このため、従来、リチウム金属の析出を抑制し、安全に充電を行うための充電制御技術が知られている。
 例えば、特許文献1には、開路電圧取得部によって取得された開路電圧を用いて負極の閉路電位を算出する負極閉路電位算出部と、算出された負極閉路電位が所定の閾値未満であるか否かを判断する閉路電位判断部と、負極閉路電位が前記閾値未満である場合に充電電流の値を低減させる充電電流制御部と、を備える充電制御装置について開示されている。
特開2012-49040号公報
 特許文献1に記載の技術は、ハイブリッド自動車や電気自動車等、充電電流を瞬時に制御可能なシステムに関しては有効である。
 一方、例えば風力発電の発電電力は、風車のブレードの受風面積に比例する。したがって、蓄電池の充電状態(SOC:State of Charge)に応じてブレードの取り付け角(ピッチ角)を制御し、受風面積を調整する必要がある。
 なお、当該ブレードのピッチ角を変化させるには、数sec~数十secの時間を要する。すなわち、ブレードのピッチ角を変化させる指令が制御部から出力された時刻から、実際にブレードのピッチ角を変化させるまでに所定のタイムラグが生じる。したがって、巨大な風車を用いた風力発電を行う場合には、回転する風車の慣性力によって充電電流を瞬時に制御することが困難となる。
 前記した特許文献1に記載の技術を風力発電に適用した場合、充電電流の制御が間に合わず、負極電圧がリチウム電圧を下回ってリチウム金属が析出し、蓄電池の性能劣化を招く可能性がある。
 そこで、本発明は、蓄電池に充電する際の信頼性を高めた蓄電装置及び充電方法を提供することを課題する。
 前記課題を解決するために、本発明は、充電中におけるリチウムイオン蓄電池の電池電圧が所定値に到達した場合、当該到達時における前記リチウムイオン蓄電池の充電率を算出する充電率算出手段と、前記充電率算出手段によって算出される充電率と、予め設定されるリチウム析出時充電率と、の差分に対応する電池電圧の差分を、前記リチウムイオン蓄電池の無負荷特性に基づいて算出する電圧差分算出手段と、前記電圧差分算出手段によって算出される前記電池電圧の差分を、前記到達時における電池電圧に加算し、充電終了を行うか否かの判定基準である充電終了電圧を算出する充電終了電圧算出手段と、前記リチウムイオン蓄電池の電池電圧が前記充電終了電圧に達した場合、前記リチウムイオン蓄電池の充電を終了させる充電制御手段と、を備えることを特徴とする。
 なお、詳細については、発明を実施するための形態において説明する。
 本発明によれば、蓄電池に充電する際の信頼性を高めた蓄電装置及び蓄電方法を提供できる。
本発明の実施形態に係る蓄電装置を含む電力システムの概要を示す全体構成図である。 蓄電装置の階層構造を示す構成図である。 蓄電装置のCCV特性のうち本実施形態において使用するSOC使用範囲と、無負荷特性とを示す特性図である。 (a)は蓄電装置のSOC-CCV特性と、無負荷特性と、を示す特性図であり、(b)は蓄電池の負極電圧特性と、無負荷特性と、を示す特性図である。 蓄電装置が備える制御装置の構成図である。 制御装置が実行する処理の流れを示すフローチャートである。 制御装置が実行する処理の流れを示すフローチャートである。 (a)は蓄電池のSOC-CCV特性及び無負荷特性を示す特性図であり、(b)は蓄電池のSOC-負極電圧特性を示す特性図であり、(c)はSOC-充電電流特性を示す特性図である。 比較例に係る特性図であり、(a)は蓄電池のSOC-CCV特性及び無負荷特性を示す特性図であり、(b)は蓄電池のSOC-負極電圧特性を示す特性図であり、(c)はSOC-充電電流特性を示す特性図である。
 本発明を実施するための形態(以下、実施形態という)について、適宜図面を参照しながら詳細に説明する。
≪第1実施形態≫
 図1は、本実施形態に係る蓄電装置を含む電力システムの概要を示す全体構成図である。電力システムSは、発電装置1と、蓄電装置2と、双方向インバータ3と、を備えている。
 発電装置1は、例えば、風力発電装置や太陽光発電装置であり、自然エネルギを利用して発電電力を生成し、配線a1を介して電力系統4(及び蓄電装置2)に供給する機能を有している。なお、発電装置1は、発電電力を所定周波数の三相交流電力に変換する電力変換手段(インバータ:図示せず)と、電力系統4の潮流変動等に応じて発電電力を制御する制御手段(図示せず)と、を有している。
 蓄電装置2は、双方向インバータ3の駆動に応じて充放電する機能を有し、直並列接続された電池セル242(図2参照)を有する複数の電池パック230(図2参照)を有している。ここで、前記した電池セル242とは、例えばリチウムイオン蓄電池である。
 以下では、複数の電池セル242が直列接続されたもの、複数の電池セル242が並列接続されたもの、又は、複数の電池セル242を直列・並列の任意の組み合わせにより接続したものを単に「蓄電池」と記すことがあるものとする。なお、蓄電装置2の詳細については後記する。
 双方向インバータ3は、例えば、スイッチング素子(図示せず)であるIGBT(Insulated Gate Bipolar Transistor)を用いた三相双方向インバータであり、配線a3,a1を介して発電装置1及び電力系統4に接続されている。なお、双方向インバータ3には、PWM制御(Pulse Width Modulation)により前記したスイッチング素子のオン・オフを制御する制御手段(図示せず)が内蔵されている。
 蓄電装置2が有する蓄電池を充電する場合、双方向インバータ3は、配線a1,a3を介して発電装置1から入力される三相交流電力を直流電力に変換し、配線a2を介して蓄電装置2に出力する。この場合、双方向インバータ3はコンバータとして機能する。
 一方、蓄電装置2が有する蓄電池を放電させる場合、双方向インバータ3は、配線a2を介して蓄電池から放電される直流電力を三相交流電力に変換し、配線a3,a1を介して電力系統4に出力する。この場合、双方向インバータ3はインバータとして機能する。
 前記したように、風力発電や太陽光発電では自然エネルギを用いるため、自然環境(風向・風力や太陽光の強さ)が変化すると、これに伴って発電電力が経時的に変動する。図1に示すように、発電装置1に併設される蓄電装置2は、発電装置1から供給される発電電力の余剰分を蓄電池に充電する一方、電力の不足分を蓄電池から放電する機能(つまり、バッファ機能)を有している。これによって、発電装置1による発電電力の周波数変動や電圧変動を抑制(吸収)し、電力系統4に対して安定した電力供給を行うことができる。
 図2は、蓄電装置の階層構造を示す構成図である。図2に示すように、蓄電装置2は、システム制御装置210(BSCU)によって制御される電池ブロック220を有している。
 なお、それぞれの電池ブロック220は互いに並列接続され、キャビネット型の筐体である電池ブロック収納装置(図示せず)に収納されている。電池ブロック220は、並列接続された複数の電池パック230と、各電池パック230の動作を制御する統合制御装置221(IBCU)と、を有している。
 電池パック230は、並列接続された複数の電池モジュール240と、各電池モジュール240の動作を制御する電池制御装置231(BCU)と、を有している。電池モジュール240は、直並列接続された複数の電池セル242と、各電池セル242の状態を監視する電池セル監視部241(CCU)と、を有している。それぞれ電池セル242は、例えば、リチウムイオン蓄電池や鉛蓄電池等の二次電池であり、双方向インバータ3の駆動に応じて充放電する。
 なお、図2では、各電池セル242の接続を簡略化して記載しているが、電池モジュール240が有する「蓄電池」は、複数の電池セル242を直列接続したもの、複数の電池セル242を並列接続したもの、及び、複数の電池セル242を直列・並列の任意の組み合わせで接続したものを含んでいる。
 電池セル監視部241は、電池セル242毎の端子間電圧、温度、電流を計測し、充電状態(充電率、SOC:State Of Charge)に関する情報を生成する機能を有している。また、電池セル監視部241は、自身に接続される各電池セル242の状態を監視・制御するとともに、配線b1を介して充電状態情報等を上位の電池制御装置231に出力する機能を有している。
 電池制御装置231は、電池セル監視部241から入力される電池セル242の充電状態情報や各電池パック230の管理情報を、配線b2を介して上位の統合制御装置221に出力する機能を有している。統合制御装置221は、電池制御装置231から入力される情報や各電池ブロック220の管理情報を、配線b3を介して上位のシステム制御装置210に出力する機能を有している。システム制御装置210は、複数の電池ブロック220の動作を統括管理する機能を有している。
 このように、蓄電装置2は、多数の電池セル242の状態を階層的に管理することで、各制御装置の処理を効率化するとともに、その処理負荷を軽減している。
<蓄電装置による充電制御>
 ところで、リチウムイオン蓄電池は充電が進むにつれて負極電圧が低下し、さらに所定のリチウム析出電圧を下回ると、リチウム金属が析出して蓄電池の性能劣化を招くおそれがある。以下では、このような蓄電池の性能劣化(つまり、負極におけるリチウム金属の析出)を防止するための充電制御について説明する。なお、蓄電池から放電させる際の処理については説明を省略する。
 図3は、蓄電装置のCCV(Closed Circuit Voltage)特性のうち本実施形態において使用するSOC使用範囲と、無負荷特性とを示す特性図である。図3に示す特性図の横軸は蓄電池の充電状態(SOC)を示し、縦軸は蓄電池の電池電圧を示している。
 図3の破線で示す無負荷特性とは、蓄電池の正極と負極との間に負荷をかけていない状態におけるSOC-電池電圧特性(ゼロ近傍の微小な電流で充電する際の、電池電圧のプロフィール)を意味している。また、満充電相当電圧Vfulは、無負荷特性において蓄電池の充電率(SOC)が100%となったことを示す電圧である。なお、蓄電池の充電には、例えば、定電流定電圧(CCCV:Constant Current-Constant Voltage)充電を行う。
 無負荷特性(破線)において、充電率(SOC)0%の状態から蓄電池を充電していくと、充電が進むにつれて正極電位は上昇し、負極電位は低下していく。したがって、蓄電池の正極・負極間電圧である電池電圧は、充電が進む(SOCの値が大きくなる)につれて上昇する。
 なお、図3に示す満充電相当電圧Vfulは、無負荷特性において蓄電池の充電量が最大(SOC:100%)となる電池電圧である。
 図3において実線で示す特性は、蓄電池の正極と負極との間に負荷をかけて充電を行った場合でのSOC-CCV特性である。一般に、蓄電池は所定の内部抵抗を有している。したがって、リチウムイオン蓄電池を充電する場合、電池電圧CCVは、無負荷特性に電流値I(図示せず)と電池の内部抵抗R(図示せず)との積に相当するIR分が加算された特性を示す(図3:実線を参照)。
 なお、発電装置1(図1参照)が風力発電装置である場合、蓄電池の寿命を長くすることによって、その運用を長期間継続することが求められる。したがって、図3に示すように、SOCとして下限閾値S1(>0%)以上かつ上限閾値S2(<100%)以下の範囲(SOC使用範囲)内で蓄電池を充放電させる。ちなみに、|S2-S1|の値を小さくするほど、蓄電池の寿命を長くすることができる。
 前記した下限閾値S1及び上限閾値S2の値は、発電装置1の種類等に応じて適宜設定する。
 図4(a)は、蓄電装置のCCV特性と、無負荷特性と、を示す特性図である。
 図4(a)に示すCCV特性(実線)及び無負荷特性(破線)は、図3で説明した各特性と同様である。なお、図4(a)の縦軸には、前記した満充電相当電圧Vfulと、最大許容電圧Vfinと、を示した。なお、最大許容電圧Vfinとは、蓄電池を正常に機能させるために許容される上限電圧であり、蓄電池の仕様に応じて予め設定されている。また、蓄電池の満充電相当電圧Vfulは事前の実験等に基づいて設定され、予め記憶手段22(図5参照)に格納されている。
 前記したように、本実施形態では、制御装置20(図5参照)が、蓄電池のSOCが下限閾値S1以上かつ上限閾値S2以下の範囲内に収まるように充放電制御する。
 図4(b)は、蓄電池の負極電圧特性と、無負荷特性と、を示す特性図である。
 図4(b)に示す特性図の横軸は蓄電池のSOCを示し、縦軸は蓄電池の負極電圧を示している。なお、負極電圧は、負極からリチウム金属が析出し始める電圧を基準(0V)とした。図4(b)に示すように、充電が進むにつれて蓄電池の負極電圧(実線)は徐々に低下する。当該性質は、蓄電池の無負荷特性(破線)についても同様である。
 ちなみに、蓄電池の負極電圧がリチウム析出電圧を下回ると、リチウム金属が析出し始めて蓄電池の性能劣化を招く。したがって、蓄電池の負極電圧は、常にリチウム析出電圧(0V)よりも高い状態に保つ必要がある。
 なお、図4(b)に示す負極電圧特性(実線)は、蓄電池の充電電流を所定値で固定した場合に得られる特性であり、蓄電池の充電電流によって変化する。
 図4(b)に示すように、本実施形態では一例として、SOC使用範囲の上限閾値S2を、負極電圧が0V(リチウム析出電圧)に対応するように設定する場合を示している。
 その他、図4(a)に示す充電終了電圧V2fin、電圧差分ΔV1、図4(b)に示す負極電圧Va1、変化量ΔS等については、図6、図7に示すフローチャートと併せて後記する。
 図5は、蓄電装置が備える制御装置の構成図である。なお、制御装置20とは、例えば図2に示す電池セル監視部241、電池制御装置231、統合制御装置221等に相当する。図5に示すように、制御装置20は、充電終了電圧算出手段21と、記憶手段22と、充電制御手段23と、を有している。
 充電終了電圧算出手段21は、電池電圧CCVと、充電電流Iと、負極電圧Vaと、に基づいて、充電終了電圧を算出する。ここで、充電終了電圧とは、蓄電池の充電を終了するか否かの判定基準となる電池電圧である。
 ちなみに、風力発電では、充電電流Iの値が風力に応じて時々刻々と変動する。したがって、制御装置20は、フィルタ処理や所定時間毎に実行する平均化処理等の前処理を行うことで、前記所定時間における充電電流Iの値を一定(例えば、平均値)として扱うように設定されている。
 充電終了電圧算出手段21は、SOC算出部21aと、電圧差分算出部21bと、加算器21cと、を有している。
 SOC算出部21a(充電率算出手段)は、蓄電池の充電中における電池電圧CCVが満充電電圧Vfulに到達した場合、当該到達時における蓄電池のSOCを算出する。なお、SOC算出部21aには、蓄電池に設置される電圧センサ(図示せず)の検出値である電池電圧CCVと、電流センサ(図示せず)の検出値である充電電流Iと、が入力される。
 例えば、SOC算出部21aは、蓄電池の充電電流Iを所定時間毎に平均した値である充電電流平均値と、蓄電池の電池電圧CCVとに基づいて、蓄電池のSOCを算出する。その他、SOCの算出には、公知の様々な方法を用いることができる。
 電圧差分算出部21b(充電差分算出手段)は、電池電圧CCVと、充電電流Iと、負極電圧Vaと、SOC算出部21aによって算出されるSOCと、に基づいて電圧差分ΔV1を算出する。なお、電圧差分ΔV1の値は、加算器21cが充電終了電圧V2finを算出する際に用いられる。
 ちなみに、電圧差分ΔV1を算出する際、電圧差分算出部21bは記憶手段22に格納されている蓄電池の無負荷特性(図4(a)破線:電池電圧、及び図4(b)波線:負極電圧)、満充電相当電圧Vful、最大許容電圧Vfin等の情報も用いる。電圧差分ΔV1の算出処理については、後記する。
 加算器21cは、電圧差分算出部21bから入力される電圧差分ΔV1と満充電相当電圧Vfulとを加算し、充電終了電圧V2finとして充電制御手段23に出力する。
 充電制御手段23は、電池電圧CCVと、充電電流Iと、SOC算出部21aから入力されるSOCと、加算器21cから入力される充電終了電圧V2finと、に基づいて蓄電池の充電を制御する。なお、図5に示す充電終了指令Q1は、蓄電池の充電を終了する際に充電制御手段23から出力される信号である。充電制御手段23は、充電終了指令Q1を出力することによって、蓄電池と双方向インバータ3(図1参照)とを電気的に接続しているスイッチ(図示せず)をオンからオフに切り換え、蓄電池の充電を終了させる。
 図6は、制御装置が実行する処理の流れを示すフローチャートである。
 図6に示す「START」において制御装置20は、充電を開始する。なお、この時点において蓄電池のSOC(充電率)は、下限閾値S1以上かつ上限閾値S2以下のSOC使用範囲内にあるものとする(図4(a)参照)。
 ステップS101において制御装置20は、前記した蓄電池の電池電圧CCV、充電電流I、及び負極電圧Vaの値を読み込む。
 ステップS102において制御装置20は、ステップS101で読み込んだ電池電圧CCVと、充電電流Iとに基づいて、蓄電池のSOCを算出する(充電率算出処理)。
 ステップS103において制御装置20は、ステップS102で算出したSOCが、リチウム析出電圧に対応する上限閾値S2(つまり、リチウム析出時充電率)以上であるか否かを判定する。なお、リチウム析出電圧に対応する上限閾値S2(図4(b)参照)の値は、事前の実験等によって求められ、記憶手段22(図5参照)に格納されている。
 SOCが上限閾値S2以上である場合(S103→Yes)、制御装置20は電力系統4(図1参照)と蓄電池との電気的接続を遮断して充電を終了する(END)。これによって、蓄電池の負極電圧がリチウム析出電圧を下回ることを防止し、蓄電池の劣化を抑制することができる。一方、SOCが上限閾値S2未満である場合(S103→No)、制御装置20の処理はステップS104に進む。
 ステップS104において制御装置20は、電池電圧CCVが満充電相当電圧Vful以上であるか否かを判定する。前記したように、満充電相当電圧Vfulの値も予め設定されて記憶手段22(図5参照)に格納されている。
 電池電圧CCVが満充電相当電圧Vful以上である場合(S104→Yes)、制御装置20の処理はステップS105に進む。なお、この時点において電池電圧CCVは最大許容電圧Vfin(>Vful:図4(a)参照)未満であるため、リチウム金属が析出しない範囲内において、さらに充電する余裕がある。一方、電池電圧CCVが満充電相当電圧Vful未満である場合(S104→No)、制御装置20の処理はステップS101に戻る。
 このように、制御装置20は、蓄電池の充電中において電池電圧CCVが満充電相当電圧Vful(<Vfin)に達したか否かを所定のサイクルタイム毎に監視し、電池電圧CCVが満充電相当電圧Vfulに到達しない場合、充電を継続する。
 ステップS105において制御装置20は、充電中の電池電圧CCVが満充電相当電圧Vfulに達した時点における負極電圧Vaを読み込む。当該負極電圧Vaは、図4(b)に示す負極電圧Va1に相当する。
 ステップS106において制御装置20は、蓄電池の負極電圧Vaが現時点から電圧Va1分だけ低下してリチウム析出電圧(0V)となるまでのSOCの変化量ΔS(図4(b)参照)を算出する。なお、当該変化量ΔSは、リチウム析出電圧(0V)に対応する上限閾値S2から、ステップS105の処理の直前に算出したSOCの値(S3:図4(b)参照)を減算することで得られる。
 つまり、制御装置20は、電池電圧CCVが満充電相当電圧Vfulに到達した時点における蓄電池のSOC(つまり、S3:図4(b)参照)を算出し、当該SOCと、予め設定される上限閾値S2(リチウム析出時充電率)と、の差分ΔSを算出する。
 ステップS107において制御装置20は、蓄電池のSOCが所定値S3から上限閾値S2まで増加する際の電池電圧CCVの上昇幅ΔV1(図4(a)参照)を、無負荷特性に基づいて算出する(電圧差分算出処理)。
 前記した無負荷特性は、図4(a)に示すSOC-電池電圧特性(破線)と、図4(b)に示すSOC-負極電圧特性(破線)であり、予め記憶手段22(図示せず)に格納されている。
 図4(a)に示すように、蓄電池の無負荷特性(破線)を内部抵抗による電圧降下分だけ平行移動させたものが負荷特性(実線)となる。したがって、無負荷特性を用いて算出した電圧上昇幅ΔV1は、実際に充電を行う場合の電圧上昇幅ΔV1と略一致する(図4(a)参照)。
 このように、制御装置20は、電池電圧CCVが満充電相当電圧Vfulに到達した時点のSOC(S3)と、予め設定される上限閾値S2(リチウム析出時充電率)と、の差分ΔSに対応する電池電圧の差分ΔV1を、蓄電池の無負荷特性に基づいて算出する
 ステップS108において制御装置20は、充電終了電圧V2finを算出する(充電終了電圧算出処理)。充電終了電圧V2finは、記憶手段22(図5参照)に格納されている満充電相当電圧Vfulに、ステップS107で算出した上昇幅ΔV1を加算することによって算出される。
 ステップS109において制御装置20は、充電終了電圧V2finが最大許容電圧Vfin以上であるか否かを判定する。充電終了電圧V2finが最大許容電圧Vfin以上である場合(S109→Yes)、制御装置20の処理はステップS110に進む。
 ステップS110において制御装置20は、充電終了電圧V2finを最大許容電圧Vfinの値で置き換える。つまり、制御装置20は、蓄電池の仕様に応じて予め設定される最大許容電圧Vfinを新たな充電終了電圧V2finとして再設定する。
 一方、充電終了電圧V2finが最大許容電圧Vfin未満である場合(S109→No)、制御装置20の処理はステップS111に進む。
 つまり、制御装置20は、充電終了電圧V2fin及び最大許容電圧Vfinのうち、小さいほうを新たな充電終了電圧V2finとして再設定する。
 ステップS111において制御装置20は、蓄電池の電池電圧CCV、充電電流I、及び負極電圧Vaの値を読み込む。
 ステップS112において制御装置20は、ステップS111で読み込んだ電池電圧CCVと、充電電流Iとに基づいて、蓄電池のSOCを算出する。
 ステップS113において制御装置20は、ステップS112で算出したSOCが、リチウム析出電圧に対応する上限閾値S2以上であるか否かを判定する。SOCが上限閾値S2以上である場合(S113→Yes)、制御装置20は充電を終了する(END)。一方、SOCが上限閾値S2未満である場合(S113→No)、制御装置20の処理はステップS114に進む。
 ステップS114において制御装置20は、電池電圧CCVが充電終了電圧V2fin以上であるか否かを判定する。なお、制御装置20は、ステップS112の比較処理を行う際、ステップS109,S110の処理で再設定した充電終了電圧V2finの値を用いる。
 電池電圧CCVが充電終了電圧V2fin以上である場合(S114→Yes)、制御装置20は蓄電池の充電を終了する(充電制御処理:END)。一方、電池電圧CCVが充電終了電圧V2fin未満である場合(S114→No)、制御装置20の処理はステップS111に戻る。
 つまり、制御装置20は、電池電圧CCVが最大許容電圧Vfinに達するタイミングと、蓄電池の負極電圧がリチウム析出電圧(0V)に達するタイミングと、のうち早い方のタイミングで蓄電池の充電を停止させる。
 当該処理を行うことによって、蓄電池の負極電圧Vaがリチウム析出電圧(0V)を下回ることを防止し、かつ、蓄電池の電池電圧CCVが最大許容電圧Vfinを上回ることを防止できる。
 図8(a)は蓄電池のSOC-CCV特性及び無負荷特性、図8(b)は蓄電池のSOC-負極電圧特性、図8(c)はSOC-充電電流特性を示す説明図である。なお、図8(a)に示す電池電圧CCV1、図8(b)に示す負極電圧Va1、及び図8(c)に示す充電電流I1は、それぞれ対応している。他の電池電圧、負極電圧、及び充電電流についても同様である。
 また、蓄電池のSOC使用範囲として、下限閾値S1以上かつ上限閾値S2以下の範囲を設定し、図8(c)に示すように充電電流I1,I2,I3(I1<I2<I3)の各電流値でCCCV充電を行った。
 前記したように、充電電流の値が大きいほど内部抵抗による電圧降下も大きくなる。したがって、比較的小さい充電電流I1である場合、電池電圧CCV1(図8(a)参照)は他の電池電圧CCV2,CCV3よりも低くなり、負極電圧Va1(図8(b)参照)は他の負極電圧Va2,Va3よりも高くなる。
 充電電流I1(図8(c)参照)で充電を行った場合、図8(a)に示すようにSOC使用範囲において電池電圧CCV1が満充電相当電圧Vfulに達することなく充電が進む(S104→No:図6参照)。そして、制御装置20は、蓄電池のSOCが上限閾値S2に到達した時点で充電を終了させる(S103→Yes,END)。このとき、図8(b)に示すように、負極電圧Va1の値はリチウム析出電圧(0V)に対して所定の余裕を有している。
 充電電流I2(図8(c)参照)で充電を行った場合、図8(a)に示すように電池電圧CCV2が満充電相当電圧Vfulに到達した時点において制御装置20は充電終了電圧V2finを算出し(S108,S110)、電池電圧CCVを所定のサイクルタイム毎に監視する(S114)。そして、制御装置20は、電池電圧CCVが充電終了電圧V2finに到達した時点で充電を終了させる(S114→Yes,END)。このとき、図8(b)に示すように、負極電圧Va2がリチウム析出電圧(0V)と等しい状態で充電が終了している。
 充電電流I3(図8(c)参照)で充電を行った場合、図8(a)に示すように電池電圧CCV3が満充電相当電圧Vfulに到達した時点で制御装置20は充電終了電圧V2finを算出する(S108,S110)。充電電流I3の値は比較的大きいため、蓄電池のSOCが上限閾値S2に達するよりも前に電池電圧CCVが充電終了電圧V2finに達し、充電が終了する(S114→Yes,END)。このとき、図8(b)に示すように、負極電圧Va2がリチウム析出電圧(0V)と等しく、蓄電池のSOCは上限閾値S2よりも低い値S3となっている。
 このように、制御装置20は、充電電流の値の大小に関わらず(図8(c)参照)、SOC使用範囲内において蓄電池の充電を行うとともに(図8(a)参照)、負極電圧Vaがリチウム析出電圧(0V)を下回る前に充電を終了させる(図8(b)参照)。
≪効果≫
 本実施形態に係る蓄電装置2によれば、制御装置20が充電中における蓄電池のSOCを監視し、SOCがリチウム析出電圧(0V)に対応する上限閾値S2以上となった場合(S103→Yes)、ただちに蓄電池の充電を終了させる(END)。したがって、蓄電池の負極電圧Vaがリチウム析出電圧を下回ることを防止し、リチウム金属の析出に伴う蓄電池の性能劣化を回避できる。
 また、制御装置20は、充電中における蓄電池の電池電圧CCVが満充電相当電圧Vfulに到達した時点において、蓄電池の充電終了電圧V2finを算出する(S108)。なお、当該時点において、蓄電池の負極電圧Vaがリチウム析出電圧を下回ることはない。これは、図4(a)、図4(b)に示すように、電池電圧CCVが満充電相当電圧Vfulとなった状態に対応するSOC:S3が、リチウム析出電圧(0V)に対応するSOC:S2未満となっているためである。したがって、制御装置20は、充電終了電圧V2finを算出するタイミングを適切に設定することができる。
 すなわち、制御装置20は、充電状態において蓄電池の負極電圧Vaがリチウム析出電圧を下回るよりも前に充電終了電圧V2finを算出する。さらに、制御装置20は、電池電圧CCVが充電終了電圧V2finに達した場合(S114→Yes:図7参照)、蓄電池と電力系統4との電気的接続を遮断して充電を終了させる(END)。
 したがって、制御装置20からの信号が入力されてから、発電装置1の制御(例えば、風車の停止)に反映させるまでに応答遅れが生じても、蓄電池の負極電圧がリチウム析出電圧を下回ることを確実に防止できる。
 また、図6のS108で算出した充電終了電圧V2finが蓄電池の最大許容電圧Vfin以上である場合(S109→Yes:図7参照)、制御装置20は充電終了電圧V2finの値を最大許容電圧Vfinで置き換える(S110)。
 これによって、電池電圧CCVが最大許容電圧Vfinを上回って蓄電池に不具合が生じることを防止しつつ、負極電圧Vaがリチウム析出電圧を下回ることを確実に防止できる。
 また、制御装置20は、電池電圧CCVが満充電相当電圧Vfulに達した時点での負極電圧Vaを読み込み(S101)、無負荷特性(図4(a)、図4(b)の破線)等を用いて充電終了電圧V2finの値を算出する。これによって、リチウム析出電圧に対応する充電終了電圧V2finを正確に算出できる。
≪比較例≫
 CCCV充電では、電池電圧CCVが満充電相当電圧Vfulに到達してからSOCが最大となるまでの間は電流を制限し、満充電相当電圧Vfulを超えないように充電する。従って、CCCV充電では充電電流Iの値が大きくなるほど電池電圧CCVが早期に満充電相当電圧Vfulに到達するため、充電電流Iを制限して充電する必要がある。
 これに対して、前記した特許文献1に記載の技術では、負極電圧を推定し、負極電圧が0Vを下回らない範囲であれば電池電圧CCVが満充電相当電圧Vful(図9(a)参照)を超えても充電を継続していた。なお、図9(b)に示す0Vは、リチウム析出電圧を基準にしている。
 この場合、電池電圧CCVが満充電相当電圧Vfulに到達しても負極電圧がリチウム析出電圧よりも大きい区間は電流制限をしないため(図9(c)のSOC:S5~S6)、CCCV充電方式よりも電流制限区間が短くなる(図9(c)のSOC:S6~100%)。
 また、特許文献1に記載の技術は、蓄電池の充電電流を瞬時に制御可能な場合(例えば、ハイブリッド自動車や電気自動車に適用する場合)には、負極電圧Vaがリチウム析出電圧(0V)を下回らないよう制御することが可能である。例えば、ハイブリッド自動車や電気自動車では、減速時にモータを発電機として作動させ、回生エネルギを電力に変換して回収して蓄電池を充電する。また、蓄電池のSOCが高く電流値を抑える必要がある場合は、回生を行わずにブレーキペダルによる減速(フットブレーキ)に切り替える。
 このようにハイブリッド自動車や電気自動車は、減速時における回生やフットブレーキを用いたエネルギ配分を蓄電池の充放電によって制御することが可能であり、負極電圧が所定値を下回らないように短時間に電流を制御することが可能となる。
 一方、例えば、風力発電用の風車では、発電電力が風車のブレードの受風面積に比例する。したがって、この場合、蓄電池のSOCに応じてブレードの取り付け角(ピッチ角)を制御し、受風面積を調整する必要がある。ただし、現状ではピッチ角の変化には数sec~数十secの時間を要する。
 そうすると、風力発電装置の余剰電力を吸収する目的で特許文献1の方法を適用すると、充電電流の制御が間に合わず、負極電圧がリチウム電圧を下回る可能性がある。この場合、蓄電池の負極側でリチウム金属が析出し、蓄電池の性能劣化を招くおそれがある。
 これに対して本実施形態に係る蓄電装置2は、負極電圧Vaがリチウム析出電圧を下回るよりも前に充電終了電圧V2finを算出し、電池電圧CCVが充電終了電圧V2fin以上になった場合、蓄電池と電力系統4とを電気的に切り離して充電を終了する。
 したがって、例えば風力発電による発電電力の余剰分を蓄電池で吸収する際、停止指令が入力されてから、慣性力に抗して風車の回転を実際に停止させるまでに生成される発電電力が、当該蓄電池に流入することを防止できる。
 すなわち、本実施形態によれば、発電装置1側の応答性に関わらず、蓄電池の負極側でリチウム金属が析出することを確実に防止し、蓄電装置2の信頼性を向上させることができる。なお、前記した余剰電力は、蓄電装置2が備える他の蓄電池(電池セル242)のうち、電力系統4と電気的に接続されているものに充電される。
≪変形例≫
 以上、本発明に係る蓄電装置2について、図面を参照して詳細に説明したが、本発明は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更することが可能である。
 例えば、前記実施形態では、SOC算出部21aが、電池電圧CCVと、充電電流Iと、に基づいて蓄電池のSOCを算出する場合について説明したが、これに限らない。例えば、充電流Iを逐次積算するなど、他の方法を用いてもよい。また、SOCを算出する際、温度センサ(図示せず)によって検出される蓄電池の温度を併せて用いてもよい。
 また、前記実施形態では、発電装置1が風力発電装置や太陽光発電装置など自然エネルギを利用した発電装置である場合について説明したが、これに限らず他の種類の発電装置を用いてもよい。
 また、発電装置1に代えて、又は発電装置1に加えて、電力を消費する負荷を電力系統4に接続し、蓄電装置2から前記負荷に電力供給するようにしてもよい。この場合において、需要側の負荷が軽い夜間に蓄電池を充電し、需要側の負荷が重い昼間に蓄電池から放電することによって、電力負荷の平準化を図ることが望ましい。
 また、前記実施形態では、SOCの上限閾値S2をリチウム析出電圧(0V)に対応するSOCとして設定したが、これに限らない。すなわち、上限閾値S2を、リチウム析出電圧に対応するSOCよりも小さい値に設定して所定の余裕を持たせるようにしてもよい。
 また、前記実施形態では、リチウム析出電圧に対応するSOC:S2(図4(b)参照)から、満充電相当電圧Vfulに対応するSOC:S3を減算することによって変化量ΔSを算出し、当該変化量ΔSを用いて充電終了電圧V2finを算出する場合について説明したが、これに限らない。例えば、前記した変化量ΔSに所定係数k(0<k<1)を乗算してΔS2とし、当該ΔS2に基づいて充電終了電圧V2finを算出してもよい。
 また、前記実施形態では、制御装置20が、蓄電池の電池電圧CCVが満充電相当電圧Vfulに到達した時点でのSOCを用いて充電終了電圧V2finを算出する場合について説明したが、これに限らない。すなわち、予め設定される所定値に到達した時点でのSOCを用いて充電終了電圧V2finを算出してもよい。なお、前記所定値は、SOC使用範囲内において設定される。
 また、制御装置20は、充電電流平均値が所定時間内に所定量以上増加した場合、充電終了電圧V2finを低下させる「充電終了電圧補正手段」を有することが好ましい(第1補正処理)。なお、前記した所定量及び所定時間の値は、予め設定されて記憶手段に格納されている。
 また、充電終了電圧補正手段は、充電電流平均値が所定時間内に所定量以上減少した場合、充電終了電圧V2finを上昇させてもよい(第2補正処理)。
 なお、充電終了電圧補正手段は、前記した第1補正処理及び第2補正処理の両方を実行してもよいし、いずれか一方を実行してもよい。
 これによって、充電電流Iの増加に伴う蓄電池内での電圧降下(内部抵抗Rによる電圧降下)を考慮して、適切に充電終了電圧V2finの値を設定することができる。
 また、前記実施形態において図7に示すステップS109,S110の処理を省略してもよい。この場合でも、蓄電池の電池電圧CCVが充電終了電圧V2finに到達した場合緒に充電を終了させることによって、蓄電池の負極側でリチウム金属が析出することを防止することができる。
 S 電力システム
 1 発電装置
 2 蓄電装置
 20 制御装置
 21 充電終了電圧算出手段
 21a SOC算出部(充電率算出手段)
 21b 電圧差分算出部(電圧差分算出手段)
 21c 加算器
 22 記憶手段
 23 充電制御手段
 210 システム制御装置
 220 電池ブロック(蓄電装置)
 221 統合制御装置
 230 電池パック(蓄電装置)
 231 電池制御装置
 240 電池モジュール(蓄電装置)
 241 電池セル監視部
 242 電池セル(リチウムイオン蓄電池)
 3 双方向インバータ
 4 電力系統

Claims (6)

  1.  充電中におけるリチウムイオン蓄電池の電池電圧が所定値に到達した場合、当該到達時における前記リチウムイオン蓄電池の充電率を算出する充電率算出手段と、
     前記充電率算出手段によって算出される充電率と、予め設定されるリチウム析出時充電率と、の差分に対応する電池電圧の差分を、前記リチウムイオン蓄電池の無負荷特性に基づいて算出する電圧差分算出手段と、
     前記電圧差分算出手段によって算出される前記電池電圧の差分を、前記到達時における電池電圧に加算し、充電終了を行うか否かの判定基準である充電終了電圧を算出する充電終了電圧算出手段と、
     前記リチウムイオン蓄電池の電池電圧が前記充電終了電圧に達した場合、前記リチウムイオン蓄電池の充電を終了させる充電制御手段と、を備えること
     を特徴とする蓄電装置。
  2.  前記充電率算出手段は、
     電流検出手段によって検出される前記リチウムイオン蓄電池の充電電流を所定時間毎に平均した値である充電電流平均値と、電圧検出手段によって検出される前記リチウムイオン蓄電池の電池電圧と、に基づいて、前記リチウムイオン蓄電池の充電率を算出すること
     を特徴とする請求項1に記載の蓄電装置。
  3.  前記充電電流平均値が所定時間内に所定量以上増加した場合、前記充電終了電圧を低下させる第1補正処理、
     及び/又は、
     前記充電電流平均値が所定時間内に所定量以上減少した場合、前記充電終了電圧を上昇させる第2補正処理、
     を実行する充電終了電圧補正手段を備えること
     を特徴とする請求項2に記載の蓄電装置。
  4.  前記充電終了電圧算出手段は、
     前記電圧差分算出手段によって算出される前記電池電圧の差分に基づいて算出した前記充電終了電圧が、前記リチウムイオン蓄電池の仕様に応じて予め設定される最大許容電圧よりも高い場合、当該最大許容電圧を新たな充電終了電圧として再設定し、
     前記充電制御手段は、
     前記リチウムイオン蓄電池の電池電圧が、再設定された前記新たな充電終了電圧に達した場合、前記リチウムイオン蓄電池の充電を終了させること
     を特徴とする請求項1から請求項3のいずれか一項に記載の蓄電装置。
  5.  前記充電率算出手段は、
     前記リチウムイオン蓄電池の充電中における電池電圧が、無負荷時における前記リチウムイオン蓄電池の満充電電圧に相当する満充電相当電圧に到達した場合、当該到達時における前記リチウムイオン蓄電池の充電率を算出し、当該充電率を前記電圧差分算出手段に出力すること
     を特徴とする請求項1に記載の蓄電装置。
  6.  充電中におけるリチウムイオン蓄電池の電池電圧が所定値に到達した場合、当該到達時における前記リチウムイオン蓄電池の充電率を算出する充電率算出処理と、
     前記充電率算出処理によって算出される充電率と、予め設定されるリチウム析出時充電率と、の差分に対応する電池電圧の差分を、前記リチウムイオン蓄電池の無負荷特性に基づいて算出する電圧差分算出処理と、
     前記電圧差分算出処理によって算出される前記電池電圧の差分を、前記到達時における電池電圧に加算し、充電終了を行うか否かの判定基準である充電終了電圧を算出する充電終了電圧算出処理と、
     前記リチウムイオン蓄電池の電池電圧が前記充電終了電圧に達した場合、前記リチウムイオン蓄電池の充電を終了させる充電制御処理と、を含むこと
     を特徴とする充電方法。
PCT/JP2012/082508 2012-12-14 2012-12-14 蓄電装置及びその充電方法 WO2014091622A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2012/082508 WO2014091622A1 (ja) 2012-12-14 2012-12-14 蓄電装置及びその充電方法
CN201280077654.3A CN104854772B (zh) 2012-12-14 2012-12-14 蓄电装置及其充电方法
US14/651,327 US9787119B2 (en) 2012-12-14 2012-12-14 Electric storage device and method for charging same
JP2014551819A JP6088543B2 (ja) 2012-12-14 2012-12-14 蓄電装置及びその充電方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/082508 WO2014091622A1 (ja) 2012-12-14 2012-12-14 蓄電装置及びその充電方法

Publications (1)

Publication Number Publication Date
WO2014091622A1 true WO2014091622A1 (ja) 2014-06-19

Family

ID=50933938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082508 WO2014091622A1 (ja) 2012-12-14 2012-12-14 蓄電装置及びその充電方法

Country Status (4)

Country Link
US (1) US9787119B2 (ja)
JP (1) JP6088543B2 (ja)
CN (1) CN104854772B (ja)
WO (1) WO2014091622A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113419185A (zh) * 2021-06-22 2021-09-21 盛德东南(福建)新能源科技有限公司 一种锂离子动力蓄电池的单体容量检测方法和***

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2888463C (en) 2012-10-16 2021-01-26 Ambri Inc. Electrochemical energy storage devices and housings
US11721841B2 (en) 2012-10-18 2023-08-08 Ambri Inc. Electrochemical energy storage devices
US11387497B2 (en) 2012-10-18 2022-07-12 Ambri Inc. Electrochemical energy storage devices
US11211641B2 (en) 2012-10-18 2021-12-28 Ambri Inc. Electrochemical energy storage devices
US10541451B2 (en) 2012-10-18 2020-01-21 Ambri Inc. Electrochemical energy storage devices
US10270139B1 (en) 2013-03-14 2019-04-23 Ambri Inc. Systems and methods for recycling electrochemical energy storage devices
US9502737B2 (en) 2013-05-23 2016-11-22 Ambri Inc. Voltage-enhanced energy storage devices
DK3058605T3 (da) 2013-10-16 2024-03-04 Ambri Inc Tætninger til anordninger af reaktivt højtemperaturmateriale
US20150268643A1 (en) * 2014-01-08 2015-09-24 Nec Laboratories America, Inc. Quantifying the Impact of Constraints on a Grid-Tied Microgrid Using Optimal Control
JP2015154593A (ja) * 2014-02-14 2015-08-24 ソニー株式会社 充放電制御装置、電池パック、電子機器、電動車両および充放電制御方法
US10181800B1 (en) * 2015-03-02 2019-01-15 Ambri Inc. Power conversion systems for energy storage devices
WO2016141354A2 (en) 2015-03-05 2016-09-09 Ambri Inc. Ceramic materials and seals for high temperature reactive material devices
CN105870525B (zh) 2016-06-20 2018-08-24 宁德新能源科技有限公司 电池充电的方法及装置
US11929466B2 (en) 2016-09-07 2024-03-12 Ambri Inc. Electrochemical energy storage devices
WO2018088260A1 (ja) * 2016-11-10 2018-05-17 Necエナジーデバイス株式会社 制御装置、制御方法、及びプログラム
WO2018094501A1 (en) * 2016-11-24 2018-05-31 Blue Solutions Canada Inc. Conversion circuit device for uninterruptible power supply (ups) systems
EP3607603A4 (en) 2017-04-07 2021-01-13 Ambri Inc. MOLTEN SALT BATTERY WITH SOLID METAL CATHODE
KR102441505B1 (ko) * 2017-12-11 2022-09-07 현대자동차주식회사 전기 자동차의 배터리 충전 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052760A (ja) * 1999-08-04 2001-02-23 Sony Corp 非水電解液二次電池の充電方法
JP2012016263A (ja) * 2010-06-03 2012-01-19 Nissan Motor Co Ltd 電池の充電装置および電池の充電方法
JP2012085452A (ja) * 2010-10-12 2012-04-26 Honda Motor Co Ltd リチウムイオン電池の制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103851B (zh) * 2007-09-14 2018-10-09 A123***有限责任公司 具有用于健康状态监视的参考电极的锂可再充电电池
JP5301657B2 (ja) * 2009-03-27 2013-09-25 株式会社日立製作所 蓄電装置
US20110279088A1 (en) * 2009-12-16 2011-11-17 Taisuke Yamamoto Battery pack, discharge system, charge and discharge system, and discharge control method of lithium ion secondary battery
JP5488343B2 (ja) 2010-08-27 2014-05-14 株式会社Gsユアサ 充電制御装置及び蓄電装置
JP2012085487A (ja) * 2010-10-14 2012-04-26 Sony Corp 二次電池の充電制御方法および電池パック
JP5775725B2 (ja) * 2011-04-11 2015-09-09 日立オートモティブシステムズ株式会社 充電制御システム
JP5304844B2 (ja) * 2011-05-24 2013-10-02 トヨタ自動車株式会社 バッテリの充電制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052760A (ja) * 1999-08-04 2001-02-23 Sony Corp 非水電解液二次電池の充電方法
JP2012016263A (ja) * 2010-06-03 2012-01-19 Nissan Motor Co Ltd 電池の充電装置および電池の充電方法
JP2012085452A (ja) * 2010-10-12 2012-04-26 Honda Motor Co Ltd リチウムイオン電池の制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113419185A (zh) * 2021-06-22 2021-09-21 盛德东南(福建)新能源科技有限公司 一种锂离子动力蓄电池的单体容量检测方法和***
CN113419185B (zh) * 2021-06-22 2024-02-02 盛德东南(福建)新能源科技有限公司 一种锂离子动力蓄电池的单体容量检测方法和***

Also Published As

Publication number Publication date
CN104854772B (zh) 2017-05-10
CN104854772A (zh) 2015-08-19
JP6088543B2 (ja) 2017-03-01
JPWO2014091622A1 (ja) 2017-01-05
US9787119B2 (en) 2017-10-10
US20150318717A1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
JP6088543B2 (ja) 蓄電装置及びその充電方法
EP3292018B1 (en) Hybrid energy storage system
JP5401366B2 (ja) ハイブリッド車両の制御装置
US9774193B2 (en) Battery cell charge balancing
JP5478743B2 (ja) 電力回生電源システム
JP4640391B2 (ja) 電源システムおよびそれを備えた車両
CN102648104B (zh) 车辆及车辆的控制方法
CN101752620B (zh) 一种车载锂电池充电***
JP4923116B2 (ja) 二次電池システム
US10071649B2 (en) Method for controlling external electric power supply system of fuel cell-mounted vehicle, and external electric power supply system
JP5679738B2 (ja) 電池制御装置及びこの電池制御装置を搭載した車両システム
KR102007360B1 (ko) 모터에 의해 구동되는 차량 및 차량에 탑재되는 이차 전지의 충방전 제어 방법
US20130175858A1 (en) Electric vehicle
JP5720538B2 (ja) 蓄電装置の制御装置
KR20200082293A (ko) 리튬이온배터리와 슈퍼커패시터를 이용한 에너지 저장 시스템 및 이의 출력 안정화 방법
CN102859186A (zh) 风力发电设备的输出正常化方法及风力发电设备的输出正常化装置
EP3082210B1 (en) Power generation system and method with energy management
JP5692037B2 (ja) 電池充放電制御装置
CN102208796B (zh) 电源电压保护装置以及电源电压保护方法
JP6614010B2 (ja) 蓄電池システム
JP2012054019A (ja) バッテリ
JP6639789B2 (ja) 充放電制御装置、移動体及び電力分担量決定方法
Di Napoli et al. Auxiliary power buffer based on ultracapacitors
JP7120938B2 (ja) 電池システムおよび二次電池の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890104

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551819

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14651327

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890104

Country of ref document: EP

Kind code of ref document: A1