WO2014081051A1 - Movable multi-nozzle system, and method for manufacturing transparent electrode using same - Google Patents

Movable multi-nozzle system, and method for manufacturing transparent electrode using same Download PDF

Info

Publication number
WO2014081051A1
WO2014081051A1 PCT/KR2012/009883 KR2012009883W WO2014081051A1 WO 2014081051 A1 WO2014081051 A1 WO 2014081051A1 KR 2012009883 W KR2012009883 W KR 2012009883W WO 2014081051 A1 WO2014081051 A1 WO 2014081051A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
nozzle
substrate
electrode
nozzle system
Prior art date
Application number
PCT/KR2012/009883
Other languages
French (fr)
Korean (ko)
Inventor
변도영
Original Assignee
엔젯 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엔젯 주식회사 filed Critical 엔젯 주식회사
Priority to PCT/KR2012/009883 priority Critical patent/WO2014081051A1/en
Publication of WO2014081051A1 publication Critical patent/WO2014081051A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • B05B1/20Arrangements of several outlets along elongated bodies, e.g. perforated pipes or troughs, e.g. spray booms; Outlet elements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/18Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with elements moving in a straight line, e.g. along a track; Mobile sprinklers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/08Plant for applying liquids or other fluent materials to objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Definitions

  • the present invention relates to a transfer type multi-nozzle system and a method for manufacturing a transparent electrode using the same, and more particularly, to a system for forming a grid line on a substrate using a simple process, and to manufacturing a highly efficient transparent electrode at low cost using such a system. It relates to a transfer type multi-nozzle system and a transparent electrode manufacturing method using the same.
  • a light transmitting layer having excellent light transmittance is stacked in order to transmit light, and an electrically conductive electrode is formed on the light transmitting layer to serve as an electron transport path.
  • the solar cell of such a structure has a problem that light is not transmitted in the region where the electrode is formed, so that the light collection efficiency is significantly lowered.
  • a transparent electrode is disposed in a solar cell.
  • ITO indium tin oxide
  • ITO indium tin oxide
  • the conventional ITO electrode when used, the light collecting rate of the solar cell can be improved, but the light conversion rate of the entire solar cell is inferior due to the relatively large resistance value.
  • Figure 1 schematically shows an example of a system for manufacturing a conventional transparent electrode.
  • a line S is printed by discharging electrode solution from a fixed nozzle unit 11 and transferring the substrate S in one direction, and the substrate S having completed transfer. After rotating 180 degrees), the grid-shaped lines are printed by re-feeding the substrate in the direction opposite to the previous conveyed direction.
  • an object of the present invention is to solve such a conventional problem, and to provide a transfer type multi-nozzle system capable of patterning an electrode solution on a substrate in a grid form through an economic process.
  • an object of the present invention is to solve the conventional problems, to provide a transparent electrode manufacturing method that can improve the light transmittance and electrical conductivity at the same time by patterning the electrode liquid in a grid shape, and applying a light transmitting layer. .
  • the object is, according to the present invention, in the system for injecting the electrode liquid to the substrate transported along the substrate transport direction, a plurality of nozzles for ejecting the electrode liquid is mounted, but reciprocating along a direction different from the substrate transport direction It is achieved by a transfer type multi-nozzle system comprising a multi-nozzle portion to be transferred.
  • the multi-nozzle portion may be reciprocated along a direction perpendicular to the substrate transfer direction.
  • the plurality of nozzles for injecting the electrode liquid is arranged along the vertical direction of the substrate transfer direction, further comprising a fixed nozzle for injecting the electrode liquid at a fixed position, the plurality of nozzles provided in the multi-nozzle portion It may be arranged along the vertical direction of the substrate transfer direction.
  • the plurality of multi-nozzle unit may be reciprocated along a different transfer path, the transfer path of each of the plurality of multi-nozzle unit may be set so as not to overlap.
  • the plurality of multi-nozzle units may include: a first multi-nozzle unit in which a plurality of nozzles are arranged side by side in the substrate transfer direction, and reciprocally transferred in a direction perpendicular to the substrate transfer direction; And a second multi-nozzle unit reciprocally conveyed along a direction opposite to the conveying direction of the first multi-nozzle portion.
  • the multi-nozzle portion may further include a control unit for controlling any one of the transfer path or the transfer speed.
  • the multi-nozzle unit may inject the electrode liquid by the electrostatic force.
  • the above object is, according to the present invention, the step of printing a grid-shaped electrode by spraying the electrode liquid of the electrically conductive material on the substrate using a transfer-type multi-nozzle system; It is achieved by a transparent electrode manufacturing method comprising a; applying a light transmitting layer on the surface of the substrate on which the grid-shaped electrode is formed.
  • the line width of the printed grid electrode may be 20 ⁇ m or less.
  • a transfer type multi-nozzle system capable of easily printing a grid-type electrode solution through a simple structure.
  • In-line systems can also be constructed by printing grid lines on substrates in a continuously transported state.
  • a transparent electrode manufacturing method that can produce a transparent electrode excellent in electrical conductivity using a transfer-type multi-nozzle system.
  • a transparent electrode having excellent light transmittance can be produced.
  • Figure 1 schematically shows an example of a method of manufacturing a conventional transparent electrode
  • Figure 2 schematically shows a transfer multi-nozzle system according to a first embodiment of the present invention
  • FIG. 3 is a schematic operation of the transfer multi-nozzle system of FIG.
  • Figure 4 schematically shows a transfer multi-nozzle system according to a second embodiment of the present invention
  • FIG. 5 is a schematic operation diagram of the transport multi-nozzle system of FIG. 4.
  • FIG. 2 schematically illustrates a transfer multinozzle system according to a first embodiment of the present invention
  • FIG. 3 is a schematic operation diagram of the transfer multinozzle system of FIG. 2.
  • the transfer multi-nozzle system 100 includes a substrate transfer unit 110, a fixed nozzle unit 120, a multi-nozzle unit 130, and a controller ( 140 and a drying unit 150.
  • the substrate transfer unit 110 is a member for continuously transferring the substrate S along a predetermined substrate transfer direction D in order to configure the transfer type multi-nozzle system 100 of the present embodiment as an in-line system. to be.
  • the substrate transfer unit 110 is configured in a roll-to-roll form in which the transfer roller transfers the substrate S, but the inline system is realized through continuous transfer of the substrate S. Any structure that can be used is not limited to this configuration.
  • the fixed nozzle part 120 is provided at a fixed position on the upper side of the substrate S, and includes a chamber part 121 and a plurality of nozzles 122.
  • the chamber part 121 is a member for communicating with a plurality of nozzles 122 to be described later and supplying an electrode solution to a plurality of nozzles to be described later, and the width direction of the substrate S, that is, the substrate transfer direction D. It is arranged along the direction perpendicular to the elongated.
  • the nozzle 122 is a path for injecting the electrode solution supplied from the chamber portion 121 to the lower substrate S, and a plurality of nozzles 122 are disposed on the lower surface of the chamber portion 121 side by side.
  • the plurality of nozzles 122 arranged on the lower surface along the longitudinal direction of the chamber portion 121 also has a substrate transfer direction ( Arranged side by side along a direction perpendicular to D).
  • the fixed nozzle portion 120 is fixed at a predetermined position, a relative speed difference occurs between the substrates S that are continuously transported, and thus the electrode solution continuously sprayed downward from the fixed nozzle portion 120. As a result, a plurality of lines spaced apart from each other are formed in the substrate S along the substrate transfer direction D.
  • the electrode liquid discharged from the nozzle 122 is an electrode liquid having electrical conductivity, and a discharge electrode (not shown) for applying a voltage is disposed inside the nozzle 122 described above, and the electrode liquid is disposed.
  • the counter electrode (not shown) is provided at a position opposite to the end of the discharge nozzle 122, whereby the fixed nozzle unit 120 discharges the conductive electrode liquid by the electrostatic force generated from the potential difference between the discharge electrode and the counter electrode. It has a structure of EHD (ElectroHydroDnamics) inkjet, but is not limited thereto.
  • the multi-nozzle portion 130 is a member that reciprocates along a direction perpendicular to the substrate transfer direction D on the upper side of the substrate S, and includes a chamber portion 131 and a plurality of nozzles 132.
  • the chamber part 131 is formed long along a direction perpendicular to the substrate transfer direction D, and the plurality of nozzles 132 are arranged side by side on the bottom surface of the chamber part 131.
  • the multi-nozzle unit 130 may also have a structure of an EHD inkjet in which the conductive electrode liquid is discharged by the electrostatic force.
  • the controller 140 controls the multi-nozzle unit 130 to reciprocate a predetermined section.
  • the multi-nozzle unit 130 reciprocates a predetermined straight section along a direction perpendicular to the substrate transfer direction D at a position spaced apart from the fixed nozzle unit 120 by a predetermined distance along the substrate transfer direction D. FIG. And transported.
  • control unit 140 is set to be able to control the transfer path, the feed rate, the feed cycle, etc. of the multi-nozzle unit 130, so that the density, shape, etc. of the grid-type line is finally printed on the substrate (S) You can also adjust.
  • the drying unit 150 is a member for drying the electrode solution sprayed on the substrate from the fixed nozzle unit 120 and the multi-nozzle unit 130 as described above, and is multiplied along the substrate transfer direction (D) above the substrate. It is disposed to be spaced apart from the nozzle unit 130.
  • the substrate S is transferred by the substrate transfer unit 110 so that the lower side of the fixed nozzle unit 120 is excessive.
  • the electrode liquid is continuously discharged from the plurality of nozzles 122 of the fixed nozzle unit 120, and thus the same number of lines as the nozzles are patterned on the upper side of the substrate S being transferred.
  • the line on the substrate S generated by the electrode solution injected from the fixed nozzle unit 120 is defined as a first line L 1 .
  • the substrate (S) is continuously transferred in the above-described process to the lower side of the multi-nozzle unit 130, a plurality of the multi-nozzle unit 130 reciprocally transferred along the direction perpendicular to the substrate transfer direction (D)
  • the electrode liquid discharged from the two nozzles 132 forms an oblique line on the substrate S which continuously passes below. That is, since the relative speed is generated between the substrate S to be linearly transferred only by the simple reciprocating transfer without transferring the multi-nozzle portion 130 in an oblique line, an oblique line is formed on the substrate S.
  • the line on the substrate S generated by the electrode solution sprayed from the multi-nozzle unit 130 is called a second line L 2 .
  • the second line L 2 is printed with diagonal lines crossing the plurality of first lines L 1 , and the first line L 1 and the second line L 2 have a grid shape that intersects each other. To form.
  • the controller 140 increases the feed speed of the multi-nozzle unit 130 so that the distance between the second lines L 2 is reduced and a more dense grid-like line is printed on the substrate S. It may be.
  • FIG. 4 schematically illustrates the transfer multinozzle system according to the second embodiment of the present invention
  • FIG. 5 is a schematic operation diagram of the transfer multinozzle system of FIG.
  • the transfer multi-nozzle system 200 includes a substrate transfer unit 110, a multi-nozzle unit 220, a control unit 140, and a drying unit 150. ).
  • the substrate transfer unit 110, the control unit 140 and the drying unit 150 is the same configuration as the transfer type multi-nozzle system 100 of the first embodiment described above, duplicate description thereof will be omitted.
  • a pair of multi-nozzle parts 220 for reciprocating are provided instead of the fixed nozzle part having a fixed position.
  • the multi-nozzle unit 220 includes a first multi-nozzle unit 221 and a second multi-nozzle unit 224.
  • the first multi-nozzle portion 221 includes a chamber portion 222 and a plurality of nozzles 223, the chamber portion 222 is provided long along the substrate transfer direction (D), a plurality of nozzles 223 ) Is arranged side by side on the lower surface of the chamber portion 222.
  • the second multi-nozzle portion 224 includes a chamber portion 225 and a plurality of nozzles 226, the chamber portion 225 is provided long along the substrate transfer direction (D), a plurality of nozzles 226 ) Is arranged side by side on the lower surface of the chamber portion 225. On the other hand, the second multi-nozzle portion 224 is provided at a position spaced apart from the first multi-nozzle portion 221 by a predetermined distance along the substrate transfer direction (D).
  • the first multi-nozzle portion 221 and the second multi-nozzle portion 224 are disposed at positions corresponding to both sides with respect to the center of the substrate (S). That is, the first multi-nozzle portion 221 and the second multi-nozzle portion 224 are disposed at positions spaced apart from each other in the longitudinal direction of the substrate S, and in the width direction with respect to the center of the substrate S. They are arranged opposite to each other.
  • the controller 140 is a member for controlling the multi-nozzle unit 220 to reciprocate the predetermined section in a direction perpendicular to the substrate transfer direction D.
  • FIG. As described above, since the first multi-nozzle portion 221 and the second multi-nozzle portion 224 are disposed to be spaced apart in the longitudinal direction of the substrate S, the respective reciprocating transfer paths do not overlap each other.
  • control unit 140 controls the transfer of the first multi-nozzle unit 221 and the second multi-nozzle unit 224 so that the respective widthwise positions are symmetric with respect to the center of the substrate S. FIG. .
  • a plurality of diagonal lines are formed on the substrate S by the electrode solution injected from the first multi-nozzle portion 221 reciprocated along the path P 1 .
  • a line formed on the substrate S by the electrode solution injected from the first multi-nozzle unit 221 is defined as a first line L 1 .
  • the first line (L 1 ) due to the repetitive transfer due to repeated reciprocating transfer is composed of a cross form with a portion of the first line (L 1 ) formed during the preceding transfer, the first Grid-shaped lines are formed in a partial region of the substrate S using only the electrode solution sprayed from the multi-nozzle portion 221 only.
  • a diagonal second line L 2 is formed on the substrate S by the electrode solution injected from the nozzle unit 224.
  • the second multi-nozzle unit 224 is transferred to the transfer path along the right to left direction. That is, according to this, the width direction components of the substrate S of the transfer path of each of the first multi-nozzle portion 221 and the second multi-nozzle portion 224 become opposite directions.
  • first multi-nozzle unit 221 and the second multi-nozzle unit 224 are reciprocally transferred at predetermined intervals along the longitudinal direction of the substrate S, the first transfer path P 1 and the second The feed paths P 2 do not overlap with each other.
  • the second line L 2 is printed on the substrate S by the transfer of the second multi-nozzle unit 224, so that a single line, not a grid, is printed by the first multi-nozzle unit 221. Grid-like lines are formed on the areas where the printed areas and the lines themselves are not printed. Finally, the substrate S, which has been printed by the multi-nozzle unit 220, is dried by the drying unit 150.
  • the grid-shaped line is printed on the entire surface of the substrate S without the alienated region through the reciprocating transfer of the first multi-nozzle portion 221 and the second multi-nozzle portion 224. can do.
  • control unit 140 to control the feed speed, the feed cycle, the feed path of the first multi-nozzle unit 221 and the second multi-nozzle unit 224, on the substrate (S)
  • the density of the grid shape to be formed can be controlled.
  • the grid-type lines are printed with a fine line width by spraying the electrode solution on the substrate using the transfer multi-nozzle systems 100 and 200 of the first and second embodiments described above.
  • a transparent electrode is formed by applying a light transmitting layer having excellent light transmittance to a substrate including the printed grid electrode solution.
  • the transparent electrode fabricated by the above-described method in particular, the transfer-type multi-nozzle system employing the EHD method, is printed in a grid form having a fine line width of 20 ⁇ m or less, and is due to the grid electrode liquid printed at a fine line width.
  • a transparent electrode having excellent light transmittance and electrical conductivity can be manufactured.
  • the transparent electrode of the grid-type electrode liquid printed with a fine line width constitutes a solar cell
  • the light transmittance can be improved by minimizing the suppression of light transmission and the light efficiency of the solar cell can be improved.
  • a system for forming a grid line on a substrate using a simple process a transfer multi-nozzle system capable of manufacturing a high-efficiency transparent electrode at low cost, and a method of manufacturing a transparent electrode using the same.

Abstract

The present invention relates to a movable multi-nozzle system. The movable multi-nozzle system according to the present invention sprays an electrode solution onto a substrate that is being transferred in the substrate transfer direction, and comprises a multi-nozzle unit which has a plurality of nozzles mounted thereto so as to spray the electrode solution and which reciprocates in the direction different from the substrate transfer direction. Thus, the movable multi-nozzle system, which sprays the electrode solution so as to easily print a grid line having a fine line width on the substrate, is provided.

Description

이송형 멀티노즐 시스템 및 이를 이용하는 투명전극 제조방법Transfer type multi-nozzle system and transparent electrode manufacturing method using same
본 발명은 이송형 멀티노즐 시스템 및 이를 이용하는 투명전극 제조방법에 관한 것으로서, 보다 상세하게는 간단한 공정을 이용하여 기판 상에 그리드형 라인을 형성하는 시스템과 이러한 시스템으로 고효율의 투명전극을 저렴하게 제조할 수 있는 이송형 멀티노즐 시스템 및 이를 이용하는 투명전극 제조방법에 관한 것이다.The present invention relates to a transfer type multi-nozzle system and a method for manufacturing a transparent electrode using the same, and more particularly, to a system for forming a grid line on a substrate using a simple process, and to manufacturing a highly efficient transparent electrode at low cost using such a system. It relates to a transfer type multi-nozzle system and a transparent electrode manufacturing method using the same.
최근, 친환경적인 장점에다가, 에너지원의 고갈의 염려가 없다는 점에서 태양광에 대한 관심이 집중되고 있는 추세이다.In recent years, attention is focused on solar light in that it is eco-friendly and there is no fear of depletion of energy sources.
태양전지의 광이 입사되는 면에는 광이 투과되기 위하여 광투과율이 우수한 광투과층이 적층되고, 전기적 전도성의 전극이 광투과층 상에 형성되어 전자 이송경로로서의 역할을 한다. 그러나, 이러한 구조의 태양전지는 광이 전극이 형성되는 영역상에서 투과되지 못함으로써, 집광효율이 현저히 떨어진다는 문제가 있었다.On the light incident surface of the solar cell, a light transmitting layer having excellent light transmittance is stacked in order to transmit light, and an electrically conductive electrode is formed on the light transmitting layer to serve as an electron transport path. However, the solar cell of such a structure has a problem that light is not transmitted in the region where the electrode is formed, so that the light collection efficiency is significantly lowered.
상기 문제의 대안으로 태양전지에 투명전극을 배치하고 있다. 특히, 이러한 투명전극으로는 ITO(Indium Tin Oxide) 전극이 주로 이용되고 있다. 이는, ITO가 박막을 형성하기 용이하고, 광투과 특성이 우수하며, 전기적 저항이 비교적 낮기 때문이다. As an alternative to the problem, a transparent electrode is disposed in a solar cell. In particular, indium tin oxide (ITO) electrodes are mainly used as such transparent electrodes. This is because ITO is easy to form a thin film, has excellent light transmission characteristics, and has a relatively low electrical resistance.
그러나, 기존의 ITO 전극의 사용시에 태양전지의 집광율은 향상시킬 수 있으나, 상대적으로 큰 저항값으로 인하여 전체적인 태양전지의 광변환율은 떨어지는 문제가 있었다.However, when the conventional ITO electrode is used, the light collecting rate of the solar cell can be improved, but the light conversion rate of the entire solar cell is inferior due to the relatively large resistance value.
한편, 이러한 종래의 투명전극이 가지는 문제를 해결하기 위하여 전기 전도성의 전극액을 그리드형으로 인쇄함으로서 이를 투명전극으로 이용하는 기술이 있다.On the other hand, in order to solve the problem of the conventional transparent electrode there is a technology that uses this as a transparent electrode by printing the electrode solution of the electrically conductive in a grid.
도 1은 종래의 투명전극을 제작하는 시스템의 일례를 개략적으로 도시한 것이다.Figure 1 schematically shows an example of a system for manufacturing a conventional transparent electrode.
도 1에서와 같이, 종래의 시스템(10)에 의하면, 위치 고정된 노즐부(11)로부터 전극액을 토출하는 동시에 기판(S)을 일방향으로 이송시킴으로써 라인을 인쇄하고, 이송이 완료된 기판(S)을 180도 회전시킨 후에 이전 이송된 방향과 반대방향으로 기판을 재이송함으로써 그리드형의 라인을 인쇄하고 있다.As shown in FIG. 1, according to the conventional system 10, a line S is printed by discharging electrode solution from a fixed nozzle unit 11 and transferring the substrate S in one direction, and the substrate S having completed transfer. After rotating 180 degrees), the grid-shaped lines are printed by re-feeding the substrate in the direction opposite to the previous conveyed direction.
그러나, 이러한 종래의 시스템(10)에서는 기판(S)을 회전시키는 공정의 연속성을 방해하는 공정이 포함됨으로써, 시간적, 비용적으로 비경제적이라는 문제가 있었다.However, such a conventional system 10 has a problem of being time- and cost-effective because it includes a process that interrupts the continuity of the process of rotating the substrate S.
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 경제적인 공정을 통하여 기판 상에 전극액을 그리드 형으로 패터닝 할 수 있는 이송형 멀티노즐 시스템을 제공함에 있다.Accordingly, an object of the present invention is to solve such a conventional problem, and to provide a transfer type multi-nozzle system capable of patterning an electrode solution on a substrate in a grid form through an economic process.
또한, 본 발명의 목적은 종래의 문제점을 해결하기 위한 것으로서, 전극액을 그리드형으로 패터닝하고, 광투과층을 도포함으로써 광투과율 및 전기적 전도성을 동시에 향상시킬 수 있는 투명전극 제조방법을 제공함에 있다.In addition, an object of the present invention is to solve the conventional problems, to provide a transparent electrode manufacturing method that can improve the light transmittance and electrical conductivity at the same time by patterning the electrode liquid in a grid shape, and applying a light transmitting layer. .
상기 목적은, 본 발명에 따라, 기판이송방향을 따라서 이송되는 기판에 전극액을 분사하는 시스템에 있어서, 상기 전극액을 분사하는 복수개의 노즐이 장착되되, 상기 기판이송방향과 다른 방향을 따라서 왕복 이송되는 멀티노즐부;를 포함하는 것을 특징으로 하는 이송형 멀티노즐 시스템에 의해 달성된다.The object is, according to the present invention, in the system for injecting the electrode liquid to the substrate transported along the substrate transport direction, a plurality of nozzles for ejecting the electrode liquid is mounted, but reciprocating along a direction different from the substrate transport direction It is achieved by a transfer type multi-nozzle system comprising a multi-nozzle portion to be transferred.
또한, 상기 멀티노즐부는 상기 기판이송방향에 수직인 방향을 따라서 왕복이송될 수 있다.In addition, the multi-nozzle portion may be reciprocated along a direction perpendicular to the substrate transfer direction.
또한, 전극액을 분사하는 복수개의 노즐이 상기 기판이송방향의 수직방향을 따라서 배열되되, 고정된 위치에서 전극액을 분사하는 고정노즐부를 더 포함하고, 상기 멀티노즐부에 구비되는 복수개의 노즐은 상기 기판이송방향의 수직방향을 따라서 배열될 수 있다.In addition, the plurality of nozzles for injecting the electrode liquid is arranged along the vertical direction of the substrate transfer direction, further comprising a fixed nozzle for injecting the electrode liquid at a fixed position, the plurality of nozzles provided in the multi-nozzle portion It may be arranged along the vertical direction of the substrate transfer direction.
또한, 상기 멀티노즐부는 복수개가 서로 다른 이송경로를 따라서 왕복 이송되되, 상기 복수개의 멀티노즐부 각각의 이송경로는 중복되지 않도록 설정될 수 있다.In addition, the plurality of multi-nozzle unit may be reciprocated along a different transfer path, the transfer path of each of the plurality of multi-nozzle unit may be set so as not to overlap.
또한, 상기 복수개의 멀티노즐부는 복수개의 노즐이 상기 기판이송방향을 따라서 나란히 배열되되, 상기 기판이송방향에 수직한 방향을 따라서 왕복 이송되는 제1멀티노즐부; 상기 제1멀티노즐부의 이송방향과 반대방향을 따라서 왕복 이송되는 제2멀티노즐부;를 포함할 수 있다.The plurality of multi-nozzle units may include: a first multi-nozzle unit in which a plurality of nozzles are arranged side by side in the substrate transfer direction, and reciprocally transferred in a direction perpendicular to the substrate transfer direction; And a second multi-nozzle unit reciprocally conveyed along a direction opposite to the conveying direction of the first multi-nozzle portion.
또한, 상기 멀티노즐부의 이송경로 또는 이송속도 중 어느 하나를 제어하는 제어부를 더 포함할 수 있다.In addition, the multi-nozzle portion may further include a control unit for controlling any one of the transfer path or the transfer speed.
또한, 상기 멀티노즐부는 정전기력에 의하여 전극액을 분사할 수 있다.In addition, the multi-nozzle unit may inject the electrode liquid by the electrostatic force.
또한, 상기 목적은 본 발명에 따라, 이송형 멀티노즐 시스템을 이용하여 전기적 전도성 재질의 전극액을 상기 기판 상에 분사함으로써 그리드형 전극을 인쇄하는 단계; 상기 그리드형 전극이 형성되는 상기 기판의 면에 광투과층을 도포하는 단계;를 포함하는 것을 특징으로 하는 투명전극 제조방법에 의해 달성된다.In addition, the above object is, according to the present invention, the step of printing a grid-shaped electrode by spraying the electrode liquid of the electrically conductive material on the substrate using a transfer-type multi-nozzle system; It is achieved by a transparent electrode manufacturing method comprising a; applying a light transmitting layer on the surface of the substrate on which the grid-shaped electrode is formed.
또한, 상기 인쇄되는 그리드형 전극의 선폭은 20μm 이하일 수 있다.In addition, the line width of the printed grid electrode may be 20μm or less.
본 발명에 따르면, 단순한 구조를 통하여 그리드형의 전극액을 용이하게 인쇄할 수 있는 이송형 멀티노즐 시스템이 제공된다.According to the present invention, there is provided a transfer type multi-nozzle system capable of easily printing a grid-type electrode solution through a simple structure.
또한, 연속적으로 이송되는 상태의 기판에 그리드형 라인을 인쇄함으로써, 인라인(In-line) 시스템이 구축될 수 있다.In-line systems can also be constructed by printing grid lines on substrates in a continuously transported state.
또한, 제어부를 이용하여 멀티노즐부의 이송속도, 이송주기, 이송구간 등을 제어함으로써, 기판 상에 인쇄되는 그리드형 라인의 밀도, 형상 등을 조절할 수 있다.In addition, by controlling the transfer speed, the feed cycle, the transfer section of the multi-nozzle portion using the control unit, it is possible to adjust the density, the shape and the like of the grid-type lines printed on the substrate.
또한, 본 발명에 따르면, 이송형 멀티노즐 시스템을 이용하여 전기전도성이 우수한 투명전극을 제작할 수 있는 투명전극 제조방법이 제공된다.In addition, according to the present invention, there is provided a transparent electrode manufacturing method that can produce a transparent electrode excellent in electrical conductivity using a transfer-type multi-nozzle system.
또한, 20μm 이하 미세 선폭으로 그리드형 라인을 패터닝함으로써, 광투과율이 우수한 투명전극을 제작할 수 있다.In addition, by patterning a grid line with a fine line width of 20 μm or less, a transparent electrode having excellent light transmittance can be produced.
도 1은 종래의 투명전극을 제작하는 방법의 일례를 개략적으로 도시한 것이고,Figure 1 schematically shows an example of a method of manufacturing a conventional transparent electrode,
도 2는 본 발명의 제1실시예에 따른 이송형 멀티노즐 시스템을 개략적으로 도시한 것이고,Figure 2 schematically shows a transfer multi-nozzle system according to a first embodiment of the present invention,
도 3은 도 2의 이송형 멀티노즐 시스템의 개략적인 작동도이고,3 is a schematic operation of the transfer multi-nozzle system of FIG.
도 4는 본 발명의 제2실시예에 따른 이송형 멀티노즐 시스템을 개략적으로 도시한 것이고,Figure 4 schematically shows a transfer multi-nozzle system according to a second embodiment of the present invention,
도 5은 도 4의 이송형 멀티노즐 시스템의 개략적인 작동도이다.FIG. 5 is a schematic operation diagram of the transport multi-nozzle system of FIG. 4.
설명에 앞서, 여러 실시예에 있어서, 동일한 구성을 가지는 구성요소에 대해서는 동일한 부호를 사용하여 대표적으로 제1실시예에서 설명하고, 그 외의 실시예에서는 제1실시예와 다른 구성에 대해서 설명하기로 한다.Prior to the description, in the various embodiments, components having the same configuration will be representatively described in the first embodiment using the same reference numerals, and in other embodiments, different configurations from the first embodiment will be described. do.
이하, 첨부한 도면을 참조하여 본 발명의 제1실시예에 따른 이송형 멀티노즐 시스템(100)에 대하여 상세하게 설명한다.Hereinafter, a transfer type multi-nozzle system 100 according to a first embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명의 제1실시예에 따른 이송형 멀티노즐 시스템을 개략적으로 도시한 것이고, 도 3은 도 2의 이송형 멀티노즐 시스템의 개략적인 작동도이다.FIG. 2 schematically illustrates a transfer multinozzle system according to a first embodiment of the present invention, and FIG. 3 is a schematic operation diagram of the transfer multinozzle system of FIG. 2.
도 2 및 도 3을 참조하면, 본 발명의 제1실시예에 따른 이송형 멀티노즐 시스템(100)은 기판이송부(110)와 고정노즐부(120)와 멀티노즐부(130)와 제어부(140)와 건조부(150)를 포함한다.2 and 3, the transfer multi-nozzle system 100 according to the first embodiment of the present invention includes a substrate transfer unit 110, a fixed nozzle unit 120, a multi-nozzle unit 130, and a controller ( 140 and a drying unit 150.
상기 기판이송부(110)는 본 실시예의 이송형 멀티노즐 시스템(100)을 인라인(in-line) 시스템으로 구성하기 위하여 소정의 기판이송방향(D)을 따라서 기판(S)을 연속 이송하는 부재이다.The substrate transfer unit 110 is a member for continuously transferring the substrate S along a predetermined substrate transfer direction D in order to configure the transfer type multi-nozzle system 100 of the present embodiment as an in-line system. to be.
본 실시예에서 기판이송부(110)는 이송롤러가 기판(S)을 이송하는 구조의 롤투롤(roll-to-roll) 형태로 구성되나, 연속적인 기판(S) 이송을 통하여 인라인 시스템이 구현될 수 있는 구조라면 이러한 구성에 제한되지 않는다.In this embodiment, the substrate transfer unit 110 is configured in a roll-to-roll form in which the transfer roller transfers the substrate S, but the inline system is realized through continuous transfer of the substrate S. Any structure that can be used is not limited to this configuration.
상기 고정노즐부(120)는 기판(S)의 상측의 고정된 위치에 마련되는 것으로서, 챔버부(121)와 복수개의 노즐(122)을 포함한다.The fixed nozzle part 120 is provided at a fixed position on the upper side of the substrate S, and includes a chamber part 121 and a plurality of nozzles 122.
상기 챔버부(121)는 후술하는 복수개의 노즐(122)에 연통하여 후술하는 복수개의 각 노즐에 전극액을 공급하기 위한 부재로서, 기판(S)의 폭방향, 즉, 기판이송방향(D)에 수직인 방향을 따라서 길게 배치된다.The chamber part 121 is a member for communicating with a plurality of nozzles 122 to be described later and supplying an electrode solution to a plurality of nozzles to be described later, and the width direction of the substrate S, that is, the substrate transfer direction D. It is arranged along the direction perpendicular to the elongated.
상기 노즐(122)은 챔버부(121)로부터 공급되는 전극액을 하방의 기판(S)으로 분사하기 위한 경로로서, 챔버부(121)의 하면에 복수개가 나란히 배치된다. 한편, 챔버부(121)가 기판이송방향(D)에 수직인 방향을 따라서 길게 형성되므로, 이러한 챔버부(121)의 길이방향을 따라서 하면에 배열되는 복수개의 노즐(122) 역시 기판이송방향(D)에 수직인 방향을 따라 나란히 배열된다.The nozzle 122 is a path for injecting the electrode solution supplied from the chamber portion 121 to the lower substrate S, and a plurality of nozzles 122 are disposed on the lower surface of the chamber portion 121 side by side. On the other hand, since the chamber portion 121 is formed long along the direction perpendicular to the substrate transfer direction (D), the plurality of nozzles 122 arranged on the lower surface along the longitudinal direction of the chamber portion 121 also has a substrate transfer direction ( Arranged side by side along a direction perpendicular to D).
한편, 고정노즐부(120)는 소정위치에 고정된 상태로서 연속으로 이송되는 기판(S)과의 사이에서 상대적 속도차이가 발생하게 되므로, 고정노즐부(120)로부터 하방으로 연속 분사되는 전극액에 의하여 기판(S)에는 상호 이격되는 복수개의 라인이 기판이송방향(D)을 따라서 형성된다. On the other hand, since the fixed nozzle portion 120 is fixed at a predetermined position, a relative speed difference occurs between the substrates S that are continuously transported, and thus the electrode solution continuously sprayed downward from the fixed nozzle portion 120. As a result, a plurality of lines spaced apart from each other are formed in the substrate S along the substrate transfer direction D.
한편, 본 실시예에서 노즐(122)로부터 토출되는 전극액은 전기적 전도성을 가지는 전극액이며, 상술한 노즐(122)의 내부에는 전압이 인가되기 위한 토출전극(미도시)이 배치되고, 전극액이 토출되는 노즐(122)의 단부에 대향하는 위치에 대향전극(미도시)이 마련됨으로써, 고정노즐부(120)는 토출전극과 대향전극의 전위차로부터 발생하는 정전기력에 의하여 전도성 전극액이 토출되는 형태의 EHD(ElectroHydroDnamics) 잉크젯의 구조를 가지나, 이에 제한되는 것은 아니다.Meanwhile, in the present embodiment, the electrode liquid discharged from the nozzle 122 is an electrode liquid having electrical conductivity, and a discharge electrode (not shown) for applying a voltage is disposed inside the nozzle 122 described above, and the electrode liquid is disposed. The counter electrode (not shown) is provided at a position opposite to the end of the discharge nozzle 122, whereby the fixed nozzle unit 120 discharges the conductive electrode liquid by the electrostatic force generated from the potential difference between the discharge electrode and the counter electrode. It has a structure of EHD (ElectroHydroDnamics) inkjet, but is not limited thereto.
상기 멀티노즐부(130)는 기판(S)의 상측에서 기판이송방향(D)과 수직인 방향을 따라서 왕복이송되는 부재로서, 챔버부(131)와 복수개의 노즐(132)을 포함한다.The multi-nozzle portion 130 is a member that reciprocates along a direction perpendicular to the substrate transfer direction D on the upper side of the substrate S, and includes a chamber portion 131 and a plurality of nozzles 132.
상기 챔버부(131)는 기판이송방향(D)과 수직인 방향을 따라서 길게 형성되며, 상기 복수개의 노즐(132)은 챔버부(131)의 하면에 나란히 배열된다.The chamber part 131 is formed long along a direction perpendicular to the substrate transfer direction D, and the plurality of nozzles 132 are arranged side by side on the bottom surface of the chamber part 131.
한편, 본 실시예에서 멀티노즐부(130) 역시, 정전기력에 의하여 전도성 전극액이 토출되는 형태의 EHD 잉크젯의 구조를 가질 수도 있다.On the other hand, in the present embodiment, the multi-nozzle unit 130 may also have a structure of an EHD inkjet in which the conductive electrode liquid is discharged by the electrostatic force.
상기 제어부(140)는 멀티노즐부(130)가 소정의 구간을 왕복이송 하도록 제어한다. 본 실시예에서 멀티노즐부(130)는 고정노즐부(120)로부터 기판이송방향(D)을 따라 소정간격 이격된 위치에서 기판이송방향(D)에 수직인 방향을 따라서 소정의 직선구간을 왕복하며 이송된다.The controller 140 controls the multi-nozzle unit 130 to reciprocate a predetermined section. In the present embodiment, the multi-nozzle unit 130 reciprocates a predetermined straight section along a direction perpendicular to the substrate transfer direction D at a position spaced apart from the fixed nozzle unit 120 by a predetermined distance along the substrate transfer direction D. FIG. And transported.
한편, 제어부(140)는 멀티노즐부(130)의 이송경로, 이송속도, 이송주기 등의 제어가 가능하도록 설정됨으로써, 기판(S)상에 최종 인쇄되는 그리드형의 라인의 밀도, 형상 등을 조절할 수도 있다.On the other hand, the control unit 140 is set to be able to control the transfer path, the feed rate, the feed cycle, etc. of the multi-nozzle unit 130, so that the density, shape, etc. of the grid-type line is finally printed on the substrate (S) You can also adjust.
상기 건조부(150)는 상술한 고정노즐부(120)와 멀티노즐부(130)로부터 기판상에 분사된 전극액을 건조시키기 위한 부재로서, 기판의 상측에 기판이송방향(D)을 따라 멀티노즐부(130)로부터 이격되게 배치된다.The drying unit 150 is a member for drying the electrode solution sprayed on the substrate from the fixed nozzle unit 120 and the multi-nozzle unit 130 as described above, and is multiplied along the substrate transfer direction (D) above the substrate. It is disposed to be spaced apart from the nozzle unit 130.
지금부터는 상술한 이송형 멀티노즐 시스템(100)의 제1실시예의 작동에 대하여 설명한다.The operation of the first embodiment of the transfer multi-nozzle system 100 described above will now be described.
먼저, 기판이송부(110)에 의하여 기판(S)이 이송됨으로써 고정노즐부(120)의 하측을 지나치게 된다. 이때, 고정노즐부(120)의 복수개의 노즐(122)로부터 전극액이 연속적으로 토출되고, 이로 인하여 이송중인 기판(S)의 상측에는 노즐과 동일한 갯수의 라인이 패터닝된다.First, the substrate S is transferred by the substrate transfer unit 110 so that the lower side of the fixed nozzle unit 120 is excessive. At this time, the electrode liquid is continuously discharged from the plurality of nozzles 122 of the fixed nozzle unit 120, and thus the same number of lines as the nozzles are patterned on the upper side of the substrate S being transferred.
이때, 고정노즐부(120)에서 분사되는 전극액으로 인하여 생성되는 기판(S) 상의 라인을 제1라인(L1)이라 정의한다.In this case, the line on the substrate S generated by the electrode solution injected from the fixed nozzle unit 120 is defined as a first line L 1 .
한편, 상술한 과정에서 기판(S)이 지속적으로 이송되어 멀티노즐부(130)의 하측을 지나치게 되면, 기판이송방향(D)과 수직인 방향을 따라서 왕복 이송되는 멀티노즐부(130)의 다수개의 노즐(132)로부터 토출되는 전극액은 하방에서 연속적으로 지나가는 기판(S)에 사선형태의 라인을 형성한다. 즉, 멀티노즐부(130)를 사선으로 이송시키지 않고, 단순 직선왕복 이송만으로도 직선이송되는 기판(S)과의 사이에서 상대속도가 발생하므로 기판(S)에 사선형태의 라인이 생성된다.On the other hand, if the substrate (S) is continuously transferred in the above-described process to the lower side of the multi-nozzle unit 130, a plurality of the multi-nozzle unit 130 reciprocally transferred along the direction perpendicular to the substrate transfer direction (D) The electrode liquid discharged from the two nozzles 132 forms an oblique line on the substrate S which continuously passes below. That is, since the relative speed is generated between the substrate S to be linearly transferred only by the simple reciprocating transfer without transferring the multi-nozzle portion 130 in an oblique line, an oblique line is formed on the substrate S.
이때, 멀티노즐부(130)에서 분사되는 전극액으로 인하여 생성되는 기판(S) 상의 라인을 제2라인(L2)이라 한다.In this case, the line on the substrate S generated by the electrode solution sprayed from the multi-nozzle unit 130 is called a second line L 2 .
따라서, 제2라인(L2)은 복수개의 제1라인(L1)을 가로지르는 형태의 사선으로 인쇄되며, 제1라인(L1)과 제2라인(L2)은 상호 엇갈리는 그리드 형상을 형성하게 된다.Accordingly, the second line L 2 is printed with diagonal lines crossing the plurality of first lines L 1 , and the first line L 1 and the second line L 2 have a grid shape that intersects each other. To form.
한편, 제어부(140)를 통하여 멀티노즐부(130)의 이송속도, 이송경로, 이송주기를 제어함으로써, 기판에 인쇄되는 라인의 밀도, 형상을 제어할 수 있다. 즉, 예를들면, 제어부(140)가 멀티노즐부(130)의 이송속도를 빠르게 함으로써 제2라인(L2)간의 간격은 줄어들고 더욱 밀집된 형태의 그리드형 라인이 기판(S)상에 인쇄될 수도 있다.On the other hand, by controlling the feed speed, the feed path, the feed cycle of the multi-nozzle unit 130 through the control unit 140, it is possible to control the density, the shape of the line printed on the substrate. That is, for example, the controller 140 increases the feed speed of the multi-nozzle unit 130 so that the distance between the second lines L 2 is reduced and a more dense grid-like line is printed on the substrate S. It may be.
다음으로 본 발명의 제2실시예에 따른 이송형 멀티노즐 시스템(200)에 대하여 설명한다.Next, a transfer type multi-nozzle system 200 according to a second embodiment of the present invention will be described.
도 4는 본 발명의 제2실시예에 따른 이송형 멀티노즐 시스템을 개략적으로 도시한 것이고, 도 5은 도 4의 이송형 멀티노즐 시스템의 개략적인 작동도이다.FIG. 4 schematically illustrates the transfer multinozzle system according to the second embodiment of the present invention, and FIG. 5 is a schematic operation diagram of the transfer multinozzle system of FIG.
도 4 및 도 5를 참조하면, 본 발명의 제2실시예에 따른 이송형 멀티노즐 시스템(200)은 기판이송부(110)와 멀티노즐부(220)와 제어부(140)와 건조부(150)를 포함한다.4 and 5, the transfer multi-nozzle system 200 according to the second embodiment of the present invention includes a substrate transfer unit 110, a multi-nozzle unit 220, a control unit 140, and a drying unit 150. ).
상기 기판이송부(110)와 제어부(140)와 건조부(150)는 상술한 제1실시예의 이송형 멀티노즐 시스템(100)과 동일한 구성이므로 중복설명은 생략한다.Since the substrate transfer unit 110, the control unit 140 and the drying unit 150 is the same configuration as the transfer type multi-nozzle system 100 of the first embodiment described above, duplicate description thereof will be omitted.
본 실시예에서는 위치가 고정된 고정노즐부 대신, 왕복이송하는 한 쌍의 멀티노즐부(220)가 마련된다.In the present embodiment, instead of the fixed nozzle part having a fixed position, a pair of multi-nozzle parts 220 for reciprocating are provided.
즉, 본 실시예에서의 멀티노즐부(220)는 제1멀티노즐부(221)와 제2멀티노즐부(224)를 포함한다.That is, the multi-nozzle unit 220 according to the present embodiment includes a first multi-nozzle unit 221 and a second multi-nozzle unit 224.
상기 제1멀티노즐부(221)는 챔버부(222)와 복수개의 노즐(223)을 포함하며, 상기 챔버부(222)는 기판이송방향(D)을 따라서 길게 마련되되, 복수개의 노즐(223)이 챔버부(222)의 하면에 나란히 배열된다.The first multi-nozzle portion 221 includes a chamber portion 222 and a plurality of nozzles 223, the chamber portion 222 is provided long along the substrate transfer direction (D), a plurality of nozzles 223 ) Is arranged side by side on the lower surface of the chamber portion 222.
상기 제2멀티노즐부(224)는 챔버부(225)와 복수개의 노즐(226)을 포함하며, 상기 챔버부(225)는 기판이송방향(D)을 따라서 길게 마련되되, 복수개의 노즐(226)이 챔버부(225)의 하면에 나란히 배열된다. 한편, 제2멀티노즐부(224)는 제1멀티노즐부(221)로부터 기판이송방향(D)을 따라서 소정간격 이격된 위치에 마련된다. The second multi-nozzle portion 224 includes a chamber portion 225 and a plurality of nozzles 226, the chamber portion 225 is provided long along the substrate transfer direction (D), a plurality of nozzles 226 ) Is arranged side by side on the lower surface of the chamber portion 225. On the other hand, the second multi-nozzle portion 224 is provided at a position spaced apart from the first multi-nozzle portion 221 by a predetermined distance along the substrate transfer direction (D).
한편, 제1멀티노즐부(221)와 제2멀티노즐부(224)는 기판(S) 중심을 기준으로 양쪽에 상호 대응되는 위치에 배치된다. 즉, 제1멀티노즐부(221)와 제2멀티노즐부(224)는 기판(S)의 길이방향으로는 상호 이격된 위치에 배치되고, 기판(S)의 중심을 기준으로 폭방향으로는 상호 마주보는 위치에 대향되게 배치된다.On the other hand, the first multi-nozzle portion 221 and the second multi-nozzle portion 224 are disposed at positions corresponding to both sides with respect to the center of the substrate (S). That is, the first multi-nozzle portion 221 and the second multi-nozzle portion 224 are disposed at positions spaced apart from each other in the longitudinal direction of the substrate S, and in the width direction with respect to the center of the substrate S. They are arranged opposite to each other.
상기 제어부(140)는 멀티노즐부(220)를 제어하여 기판이송방향(D)과 수직인 방향을 따라서 소정구간 내를 왕복이송되도록 하는 부재이다. 상술한 바와 같이, 제1멀티노즐부(221)와 제2멀티노즐부(224)는 기판(S)의 길이방향으로 이격되게 배치되므로, 각각의 왕복이송경로는 서로 중복되지 않는다.The controller 140 is a member for controlling the multi-nozzle unit 220 to reciprocate the predetermined section in a direction perpendicular to the substrate transfer direction D. FIG. As described above, since the first multi-nozzle portion 221 and the second multi-nozzle portion 224 are disposed to be spaced apart in the longitudinal direction of the substrate S, the respective reciprocating transfer paths do not overlap each other.
또한, 제어부(140)는 제1멀티노즐부(221)와 제2멀티노즐부(224)의 이송을 제어하여, 기판(S)의 중심을 기준으로 각각의 폭방향 위치가 상호 대칭이 되도록 한다.In addition, the control unit 140 controls the transfer of the first multi-nozzle unit 221 and the second multi-nozzle unit 224 so that the respective widthwise positions are symmetric with respect to the center of the substrate S. FIG. .
본 발명의 제2실시에에 따른 이송형 멀티노즐 시스템(200)의 작동에 대하여 설명하면, 기판(S)이 이송됨으로써 제1멀티노즐부(221)의 하측을 지나가면서, 소정의 제1이송경로(P1)를 따라서 왕복이송되는 제1멀티노즐부(221)로부터 분사되는 전극액에 의하여 기판(S) 상에는 복수개의 사선형의 라인이 형성된다. Referring to the operation of the transfer type multi-nozzle system 200 according to the second embodiment of the present invention, a predetermined first transfer while passing the lower side of the first multi-nozzle portion 221 by the transfer of the substrate (S) A plurality of diagonal lines are formed on the substrate S by the electrode solution injected from the first multi-nozzle portion 221 reciprocated along the path P 1 .
제1멀티노즐부(221)로부터 분사되는 전극액에 의하여 기판(S)에 형성되는 라인을 제1라인(L1)이라 정의한다. 반복되는 왕복이송으로 인하여 후행(後行)하는 이송으로 인한 제1라인(L1)이 선행(先行)한 이송시에 형성되는 제1라인(L1) 일부와 엇갈리는 형태로 구성되며, 제1멀티노즐부(221)만으로부터 분사되는 전극액만을 이용하여 기판(S)의 일부영역에는 그리드 형상의 라인이 형성된다.A line formed on the substrate S by the electrode solution injected from the first multi-nozzle unit 221 is defined as a first line L 1 . The first line (L 1 ) due to the repetitive transfer due to repeated reciprocating transfer is composed of a cross form with a portion of the first line (L 1 ) formed during the preceding transfer, the first Grid-shaped lines are formed in a partial region of the substrate S using only the electrode solution sprayed from the multi-nozzle portion 221 only.
한편, 기판(S)이 제1멀티노즐부(221)를 지나쳐, 제2멀티노즐부(224)의 하측을 지나면서, 소정의 제2이송경로(P2)를 따라서 왕복이송되는 제2멀티노즐부(224)로부터 분사되는 전극액에 의하여 기판(S)에는 사선형의 제2라인(L2)이 형성된다.On the other hand, the second multi-reciprocal transfer along the predetermined second transfer path P 2 while the substrate S passes the first multi-nozzle portion 221 and passes below the second multi-nozzle portion 224. A diagonal second line L 2 is formed on the substrate S by the electrode solution injected from the nozzle unit 224.
이때, 제1멀티노즐부(221)가 좌측에서 우측의 방향을 따르는 이송경로로 이송되는 경우에, 제2멀티노즐부(224)는 우측에서 좌측의 방향을 따르는 이송경로로 이송되는 것이 바람직하다. 즉, 이에 의하면, 제1멀티노즐부(221)와 제2멀티노즐부(224) 각각의 이송경로의 기판(S)의 폭방향 성분은 서로 반대방향이 된다.At this time, when the first multi-nozzle unit 221 is transferred to the transfer path along the direction from left to right, it is preferable that the second multi-nozzle unit 224 is transferred to the transfer path along the right to left direction. . That is, according to this, the width direction components of the substrate S of the transfer path of each of the first multi-nozzle portion 221 and the second multi-nozzle portion 224 become opposite directions.
또한, 제1멀티노즐부(221)와 제2멀티노즐부(224)는 기판(S)의 길이방향을 따라서 소정간격 이격된 위치에서 왕복 이송되므로, 제1이송경로(P1)와 제2이송경로(P2)는 서로 중첩되지 않는다.In addition, since the first multi-nozzle unit 221 and the second multi-nozzle unit 224 are reciprocally transferred at predetermined intervals along the longitudinal direction of the substrate S, the first transfer path P 1 and the second The feed paths P 2 do not overlap with each other.
상술한 제2멀티노즐부(224)의 이송에 의하여 기판(S)상에 제2라인(L2)이 인쇄됨으로써, 제1멀티노즐부(221)에 의하여 그리드 형태가 아닌 단일의 라인이 인쇄된 영역 및 라인 자체가 인쇄되지 않은 영역 상에는 그리드형 라인이 형성된다. 최종적으로, 멀티노즐부(220)에 의하여 인쇄가 완료된 기판(S)은 건조부(150)에 의하여 건조된다. The second line L 2 is printed on the substrate S by the transfer of the second multi-nozzle unit 224, so that a single line, not a grid, is printed by the first multi-nozzle unit 221. Grid-like lines are formed on the areas where the printed areas and the lines themselves are not printed. Finally, the substrate S, which has been printed by the multi-nozzle unit 220, is dried by the drying unit 150.
따라서, 본 실시예에 의하면, 제1멀티노즐부(221)와 제2멀티노즐부(224)의 왕복이송을 통하여 소외되는 영역 없이 기판(S)의 전면(全面)에 그리드 형상의 라인을 인쇄할 수 있다.Therefore, according to the present embodiment, the grid-shaped line is printed on the entire surface of the substrate S without the alienated region through the reciprocating transfer of the first multi-nozzle portion 221 and the second multi-nozzle portion 224. can do.
한편, 본 실시예에서 제어부(140)를 이용하여 제1멀티노즐부(221)와 제2멀티노즐부(224)의 이송속도, 이송주기, 이송경로 등을 제어함으로써, 기판(S) 상에 형성되는 그리드 형상의 밀도를 제어할 수 있다.On the other hand, in this embodiment by using the control unit 140 to control the feed speed, the feed cycle, the feed path of the first multi-nozzle unit 221 and the second multi-nozzle unit 224, on the substrate (S) The density of the grid shape to be formed can be controlled.
다음으로 본 발명의 이송형 멀티노즐 시스템을 이용한 투명전극 제조방법에 대하여 설명한다.Next, a method of manufacturing a transparent electrode using the transfer multi-nozzle system of the present invention will be described.
상기 투명전극 제조방법은 상술한 제1실시예 및 제2실시예의 이송형 멀티노즐 시스템(100, 200)을 이용하여 기판 상에 전극액을 분사함으로써 그리드형 라인을 미세한 선폭으로 인쇄한다.In the method of manufacturing the transparent electrode, the grid-type lines are printed with a fine line width by spraying the electrode solution on the substrate using the transfer multi-nozzle systems 100 and 200 of the first and second embodiments described above.
그리고 나서, 인쇄된 그리드형 전극액을 포함하여 기판에는 광투과율이 우수한 광투과층이 도포됨으로써 투명전극이 형성된다.Then, a transparent electrode is formed by applying a light transmitting layer having excellent light transmittance to a substrate including the printed grid electrode solution.
즉, 상술한 방법, 특히, EHD 방식을 채용한 이송형 멀티노즐 시스템에 의하여 제작되는 투명전극은 전극액을 20μm 이하 미세한 선폭의 그리드형으로 인쇄되며, 미세한 선폭으로 인쇄되는 그리드형 전극액으로 인하여 우수한 광투과율(transparency) 및 전기적 전도성을 가지는 투명전극을 제작할 수 있다.That is, the transparent electrode fabricated by the above-described method, in particular, the transfer-type multi-nozzle system employing the EHD method, is printed in a grid form having a fine line width of 20 μm or less, and is due to the grid electrode liquid printed at a fine line width. A transparent electrode having excellent light transmittance and electrical conductivity can be manufactured.
또한, 미세한 선폭으로 인쇄되는 그리드형 전극액의 투명전극이 태양전지를 구성하는 경우에 있어서, 광투과의 억제를 최소화하여 집광율의 향상시키는 동시에 태양전지의 광효율을 향상시킬 수 있다.In addition, when the transparent electrode of the grid-type electrode liquid printed with a fine line width constitutes a solar cell, the light transmittance can be improved by minimizing the suppression of light transmission and the light efficiency of the solar cell can be improved.
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.The scope of the present invention is not limited to the above-described embodiment, but may be embodied in various forms of embodiments within the scope of the appended claims. Without departing from the gist of the invention claimed in the claims, it is intended that any person skilled in the art to which the present invention pertains falls within the scope of the claims described in the present invention to various extents which can be modified.
간단한 공정을 이용하여 기판 상에 그리드형 라인을 형성하는 시스템과 이러한 시스템으로 고효율의 투명전극을 저렴하게 제조할 수 있는 이송형 멀티노즐 시스템 및 이를 이용하는 투명전극 제조방법이 제공된다.Provided are a system for forming a grid line on a substrate using a simple process, a transfer multi-nozzle system capable of manufacturing a high-efficiency transparent electrode at low cost, and a method of manufacturing a transparent electrode using the same.

Claims (25)

  1. 기판이송방향을 따라서 이송되는 기판에 전극액을 분사하는 시스템에 있어서,In the system for injecting the electrode liquid to the substrate to be transferred along the substrate transfer direction,
    상기 전극액을 분사하는 복수개의 노즐이 장착되되, 상기 기판이송방향과 다른 방향을 따라서 왕복 이송되는 멀티노즐부;를 포함하는 것을 특징으로 하는 이송형 멀티노즐 시스템.And a plurality of nozzles mounted with a plurality of nozzles for injecting the electrode solution and reciprocally conveyed along a direction different from the substrate transfer direction.
  2. 제1항에 있어서,The method of claim 1,
    상기 멀티노즐부는 상기 기판이송방향에 수직인 방향을 따라서 왕복이송되는 것을 특징으로 하는 이송형 멀티노즐 시스템.The multi-nozzle portion transfer type multi-nozzle system, characterized in that the reciprocating transfer in a direction perpendicular to the substrate transfer direction.
  3. 제2항에 있어서,The method of claim 2,
    전극액을 분사하는 복수개의 노즐이 상기 기판이송방향의 수직방향을 따라서 배열되되, 고정된 위치에서 전극액을 분사하는 고정노즐부를 더 포함하고,A plurality of nozzles for spraying the electrode liquid is arranged along the vertical direction of the substrate transfer direction, further comprising a fixed nozzle unit for spraying the electrode liquid at a fixed position,
    상기 멀티노즐부에 구비되는 복수개의 노즐은 상기 기판이송방향의 수직방향을 따라서 배열되는 것을 특징으로 하는 이송형 멀티노즐 시스템.The plurality of nozzles provided in the multi-nozzle portion is a transfer type multi-nozzle system, characterized in that arranged along the vertical direction of the substrate transfer direction.
  4. 제2항에 있어서,The method of claim 2,
    상기 멀티노즐부는 복수개가 서로 다른 이송경로를 따라서 왕복 이송되되, 상기 복수개의 멀티노즐부 각각의 이송경로는 중복되지 않도록 설정되는 것을 특징으로 하는 이송형 멀티노즐 시스템.The multi-nozzle unit is a plurality of transfer reciprocating along the different transfer paths, the transfer multi-nozzle system, characterized in that the transfer path of each of the plurality of multi-nozzle unit is set so as not to overlap.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 복수개의 멀티노즐부는 복수개의 노즐이 상기 기판이송방향을 따라서 나란히 배열되되, The plurality of multi-nozzle portion is a plurality of nozzles are arranged side by side along the substrate transfer direction,
    상기 기판이송방향에 수직한 방향을 따라서 왕복 이송되는 제1멀티노즐부; 상기 제1멀티노즐부의 이송방향과 반대방향을 따라서 왕복 이송되는 제2멀티노즐부;를 포함하는 것을 특징으로 하는 이송형 멀티노즐 시스템.A first multi-nozzle portion reciprocated along a direction perpendicular to the substrate transfer direction; And a second multi-nozzle unit reciprocally conveyed in a direction opposite to the conveying direction of the first multi-nozzle unit.
  6. 제1항에 있어서,The method of claim 1,
    상기 멀티노즐부는 정전기력에 의하여 전극액을 분사하는 것을 특징으로 하는 이송형 멀티 노즐 시스템.The multi-nozzle portion transfer type multi-nozzle system, characterized in that for spraying the electrode liquid by the electrostatic force.
  7. 제2항에 있어서,The method of claim 2,
    상기 멀티노즐부는 정전기력에 의하여 전극액을 분사하는 것을 특징으로 하는 이송형 멀티 노즐 시스템.The multi-nozzle portion transfer type multi-nozzle system, characterized in that for spraying the electrode liquid by the electrostatic force.
  8. 제3항에 있어서,The method of claim 3,
    상기 멀티노즐부는 정전기력에 의하여 전극액을 분사하는 것을 특징으로 하는 이송형 멀티 노즐 시스템.The multi-nozzle portion transfer type multi-nozzle system, characterized in that for spraying the electrode liquid by the electrostatic force.
  9. 제4항에 있어서,The method of claim 4, wherein
    상기 멀티노즐부는 정전기력에 의하여 전극액을 분사하는 것을 특징으로 하는 이송형 멀티 노즐 시스템.The multi-nozzle portion transfer type multi-nozzle system, characterized in that for spraying the electrode liquid by the electrostatic force.
  10. 제5항에 있어서,The method of claim 5,
    상기 멀티노즐부는 정전기력에 의하여 전극액을 분사하는 것을 특징으로 하는 이송형 멀티 노즐 시스템.The multi-nozzle portion transfer type multi-nozzle system, characterized in that for spraying the electrode liquid by the electrostatic force.
  11. 제1항에 있어서,The method of claim 1,
    상기 멀티노즐부의 이송경로 또는 이송속도 중 어느 하나를 제어하는 제어부를 더 포함하는 것을 특징으로 하는 이송형 멀티노즐 시스템.Transfer multi-nozzle system, characterized in that further comprising a control unit for controlling any one of the transfer path or the feed rate of the multi-nozzle unit.
  12. 제2항에 있어서,The method of claim 2,
    상기 멀티노즐부의 이송경로 또는 이송속도 중 어느 하나를 제어하는 제어부를 더 포함하는 것을 특징으로 하는 이송형 멀티노즐 시스템.Transfer multi-nozzle system, characterized in that further comprising a control unit for controlling any one of the transfer path or the feed rate of the multi-nozzle unit.
  13. 제3항에 있어서,The method of claim 3,
    상기 멀티노즐부의 이송경로 또는 이송속도 중 어느 하나를 제어하는 제어부를 더 포함하는 것을 특징으로 하는 이송형 멀티노즐 시스템.Transfer multi-nozzle system, characterized in that further comprising a control unit for controlling any one of the transfer path or the feed rate of the multi-nozzle unit.
  14. 제4항에 있어서,The method of claim 4, wherein
    상기 멀티노즐부의 이송경로 또는 이송속도 중 어느 하나를 제어하는 제어부를 더 포함하는 것을 특징으로 하는 이송형 멀티노즐 시스템.Transfer multi-nozzle system, characterized in that further comprising a control unit for controlling any one of the transfer path or the feed rate of the multi-nozzle unit.
  15. 제5항에 있어서,The method of claim 5,
    상기 멀티노즐부의 이송경로 또는 이송속도 중 어느 하나를 제어하는 제어부를 더 포함하는 것을 특징으로 하는 이송형 멀티노즐 시스템.Transfer multi-nozzle system, characterized in that further comprising a control unit for controlling any one of the transfer path or the feed rate of the multi-nozzle unit.
  16. 제1항의 이송형 멀티노즐 시스템을 이용하여 전기적 전도성 재질의 전극액을 상기 기판 상에 분사함으로써 그리드형 전극을 인쇄하는 단계;Printing grid-shaped electrodes by spraying an electrode solution of an electrically conductive material onto the substrate using the transfer multi-nozzle system of claim 1;
    상기 그리드형 전극이 형성되는 상기 기판의 면에 광투과층을 도포하는 단계;를 포함하는 것을 특징으로 하는 투명전극 제조방법.And applying a light transmitting layer to a surface of the substrate on which the grid electrode is formed.
  17. 제2항의 이송형 멀티노즐 시스템을 이용하여 전기적 전도성 재질의 전극액을 상기 기판 상에 분사함으로써 그리드형 전극을 인쇄하는 단계;Printing grid-shaped electrodes by spraying an electrode solution of an electrically conductive material onto the substrate using the transfer multi-nozzle system of claim 2;
    상기 그리드형 전극이 형성되는 상기 기판의 면에 광투과층을 도포하는 단계;를 포함하는 것을 특징으로 하는 투명전극 제조방법.And applying a light transmitting layer to a surface of the substrate on which the grid electrode is formed.
  18. 제3항의 이송형 멀티노즐 시스템을 이용하여 전기적 전도성 재질의 전극액을 상기 기판 상에 분사함으로써 그리드형 전극을 인쇄하는 단계;Printing a grid electrode by spraying an electrode solution of an electrically conductive material onto the substrate using the transfer multi-nozzle system of claim 3;
    상기 그리드형 전극이 형성되는 상기 기판의 면에 광투과층을 도포하는 단계;를 포함하는 것을 특징으로 하는 투명전극 제조방법.And applying a light transmitting layer to a surface of the substrate on which the grid electrode is formed.
  19. 제4항의 이송형 멀티노즐 시스템을 이용하여 전기적 전도성 재질의 전극액을 상기 기판 상에 분사함으로써 그리드형 전극을 인쇄하는 단계;Printing a grid electrode by spraying an electrode liquid of an electrically conductive material onto the substrate using the transfer multi-nozzle system of claim 4;
    상기 그리드형 전극이 형성되는 상기 기판의 면에 광투과층을 도포하는 단계;를 포함하는 것을 특징으로 하는 투명전극 제조방법.And applying a light transmitting layer to a surface of the substrate on which the grid electrode is formed.
  20. 제5항의 이송형 멀티노즐 시스템을 이용하여 전기적 전도성 재질의 전극액을 상기 기판 상에 분사함으로써 그리드형 전극을 인쇄하는 단계;Printing grid-shaped electrodes by spraying an electrode solution of an electrically conductive material onto the substrate using the transfer multi-nozzle system of claim 5;
    상기 그리드형 전극이 형성되는 상기 기판의 면에 광투과층을 도포하는 단계;를 포함하는 것을 특징으로 하는 투명전극 제조방법.And applying a light transmitting layer to a surface of the substrate on which the grid electrode is formed.
  21. 제16항에 있어서,The method of claim 16,
    상기 인쇄되는 그리드형 전극의 선폭은 20μm 이하인 것을 특징으로 하는 투명전극 제조방법.The line width of the printed grid electrode is a transparent electrode manufacturing method, characterized in that less than 20μm.
  22. 제17항에 있어서,The method of claim 17,
    상기 인쇄되는 그리드형 전극의 선폭은 20μm 이하인 것을 특징으로 하는 투명전극 제조방법.The line width of the printed grid electrode is a transparent electrode manufacturing method, characterized in that less than 20μm.
  23. 제18항에 있어서,The method of claim 18,
    상기 인쇄되는 그리드형 전극의 선폭은 20μm 이하인 것을 특징으로 하는 투명전극 제조방법.The line width of the printed grid electrode is a transparent electrode manufacturing method, characterized in that less than 20μm.
  24. 제19항에 있어서,The method of claim 19,
    상기 인쇄되는 그리드형 전극의 선폭은 20μm 이하인 것을 특징으로 하는 투명전극 제조방법.The line width of the printed grid electrode is a transparent electrode manufacturing method, characterized in that less than 20μm.
  25. 제20항에 있어서,The method of claim 20,
    상기 인쇄되는 그리드형 전극의 선폭은 20μm 이하인 것을 특징으로 하는 투명전극 제조방법.The line width of the printed grid electrode is a transparent electrode manufacturing method, characterized in that less than 20μm.
PCT/KR2012/009883 2012-11-21 2012-11-21 Movable multi-nozzle system, and method for manufacturing transparent electrode using same WO2014081051A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/009883 WO2014081051A1 (en) 2012-11-21 2012-11-21 Movable multi-nozzle system, and method for manufacturing transparent electrode using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/009883 WO2014081051A1 (en) 2012-11-21 2012-11-21 Movable multi-nozzle system, and method for manufacturing transparent electrode using same

Publications (1)

Publication Number Publication Date
WO2014081051A1 true WO2014081051A1 (en) 2014-05-30

Family

ID=50776221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009883 WO2014081051A1 (en) 2012-11-21 2012-11-21 Movable multi-nozzle system, and method for manufacturing transparent electrode using same

Country Status (1)

Country Link
WO (1) WO2014081051A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3736050A1 (en) * 2019-05-09 2020-11-11 Fraunhofer Gesellschaft zur Förderung der Angewand Device and method for applying liquid media to a substrate surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0179025B1 (en) * 1990-01-09 1999-03-20 엑셀 요훔; 군테르 슈마체르 Method and apparatus for uniformly coating a moving web with a fluid
JP2005116391A (en) * 2003-10-09 2005-04-28 Fujikura Ltd Apparatus of manufacturing substrate for transparent electrode
KR20060051483A (en) * 2004-09-28 2006-05-19 세이코 엡슨 가부시키가이샤 Method of manufacturing a wiring substrate and an electronic instrument
KR20100021609A (en) * 2007-05-17 2010-02-25 퀸 메리 앤드 웨스트필드 컬리지 An electrostatic spraying device and a method of electrostatic spraying
KR20110027895A (en) * 2009-09-11 2011-03-17 연세대학교 산학협력단 Dye sensitized solar cell and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0179025B1 (en) * 1990-01-09 1999-03-20 엑셀 요훔; 군테르 슈마체르 Method and apparatus for uniformly coating a moving web with a fluid
JP2005116391A (en) * 2003-10-09 2005-04-28 Fujikura Ltd Apparatus of manufacturing substrate for transparent electrode
KR20060051483A (en) * 2004-09-28 2006-05-19 세이코 엡슨 가부시키가이샤 Method of manufacturing a wiring substrate and an electronic instrument
KR20100021609A (en) * 2007-05-17 2010-02-25 퀸 메리 앤드 웨스트필드 컬리지 An electrostatic spraying device and a method of electrostatic spraying
KR20110027895A (en) * 2009-09-11 2011-03-17 연세대학교 산학협력단 Dye sensitized solar cell and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3736050A1 (en) * 2019-05-09 2020-11-11 Fraunhofer Gesellschaft zur Förderung der Angewand Device and method for applying liquid media to a substrate surface

Similar Documents

Publication Publication Date Title
CN103946027A (en) Inkjet printing device and printing method
KR101118929B1 (en) Apparatus and method for manufacturing of thin film type solar cell
CN101536209A (en) Large-area lighting systems and methods of making the same
CN103921541A (en) Reel-to-reel multifunctional printing equipment used for printing electronics and application thereof
WO2013187650A1 (en) Touch panel
WO2014081051A1 (en) Movable multi-nozzle system, and method for manufacturing transparent electrode using same
CN103448366A (en) Ink-jet printing system and application thereof
WO2016186431A1 (en) Linear dielectric barrier discharge plasma generating device for surface treatment
CN105856807B (en) A kind of crystal silicon solar energy battery printing equipment, typography and its battery twice
CN102221950B (en) Touch screen
WO2011087317A2 (en) Parallel-connected offset printing system
CN105122188A (en) OLED touch control display device and manufacturing method therefor, and method for manufacturing touch control screen
KR101264215B1 (en) Moving type multi-nozzle system and method for making transparent electrode using the same
WO2018070724A1 (en) Solar cell module
WO2014112819A1 (en) Apparatus and method for continuous plating
WO2016111548A1 (en) Method for manufacturing organic solar cell
WO2016032081A1 (en) Apparatus and method for repairing display using conductive ink
WO2013094937A1 (en) Solar cell apparatus and method of fabricating the same
WO2011145878A2 (en) Pet and tempered glass layer composite type touch sensor for touch screen and manufacturing method therefor
WO2012081759A1 (en) Method for manufacturing organic thin film solar cell having channel structure
CN204183692U (en) A kind of for the powder distribution device in ceramic laser cloth
CN204183700U (en) A kind of laser print apparatus
WO2014058215A1 (en) Solar battery cell connecting member, method for manufacturing same, and apparatus for manufacturing solar battery cell connecting member
WO2013032097A1 (en) Conductor pattern, touch panel module, and electronic device
WO2021137576A1 (en) Battery module and method for manufacturing battery cell assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888755

Country of ref document: EP

Kind code of ref document: A1