WO2018070724A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
WO2018070724A1
WO2018070724A1 PCT/KR2017/010960 KR2017010960W WO2018070724A1 WO 2018070724 A1 WO2018070724 A1 WO 2018070724A1 KR 2017010960 W KR2017010960 W KR 2017010960W WO 2018070724 A1 WO2018070724 A1 WO 2018070724A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
electrode
conductive pad
cell module
cell
Prior art date
Application number
PCT/KR2017/010960
Other languages
French (fr)
Korean (ko)
Inventor
오훈
경도현
김태준
Original Assignee
현대중공업그린에너지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업그린에너지 주식회사 filed Critical 현대중공업그린에너지 주식회사
Priority to KR1020197006501A priority Critical patent/KR20190032584A/en
Publication of WO2018070724A1 publication Critical patent/WO2018070724A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module, and more particularly, to configure a solar cell module using a plurality of split cells, and to electrically connect neighboring split cells using metallic wires to increase a light receiving area and to provide electricity.
  • the present invention relates to a solar cell module capable of reducing resistance.
  • the solar cell module is composed of a plurality of solar cells (solar cell) is a device for receiving photovoltaic photovoltaic conversion.
  • Each solar cell constituting the solar cell module may be referred to as a diode composed of a p-n junction.
  • the plurality of solar cells constituting the solar cell module is electrically connected, for example, the front electrode of the first solar cell is connected in the form of being connected to the rear electrode of the second solar cell.
  • the front electrode and the back electrode of the neighboring solar cells are connected by a ribbon-shaped interconnector (refer to Korean Patent No. 1138174).
  • the front electrode and the rear electrode of the neighboring solar cell 110 when the front electrode and the rear electrode of the neighboring solar cell 110 are connected by the interconnector 120, the front electrode and the rear electrode include the bus bar electrode 111 in detail.
  • the interconnector 120 connects the bus bar electrode 111 of the front electrode and the bus bar electrode 111 of the back electrode.
  • the busbar electrode transfers carriers collected from the finger electrodes of the front electrode and the back electrode to the interconnector.
  • the structure of the solar cell module has been described above in general, but as described above, an interconnector is essentially required for electrical connection of the solar cells.
  • one of the conditions for increasing the photoelectric conversion efficiency of the solar cell is to increase the light receiving area.
  • the light receiving area is reduced because the ribbon-type interconnector occupies a considerable area.
  • Patent Document 1 Korean Registered Patent No. 1138174
  • the present invention has been made to solve the above problems, and by using a plurality of split cells to configure a solar cell module, by using a metallic wire to connect neighboring split cells to increase the light receiving area and It is an object of the present invention to provide a solar cell module that can reduce the electrical resistance.
  • a solar cell module including a first split cell and a second split cell, and a plurality of split cells disposed adjacent to each other; And a plurality of metallic wires electrically connecting the front electrode of the first divided cell and the rear electrode of the second divided cell, wherein the divided cells comprise a plurality of unit cells completed through a solar cell manufacturing process. It is characterized by being divided.
  • Each of the front electrode and the rear electrode includes a plurality of collection electrodes spaced apart in parallel to each other, and the metallic wires are connected to cross the plurality of collection electrodes.
  • Each of the front electrode and the rear electrode includes a plurality of collection electrodes spaced apart in parallel, and a conductive pad is provided in a region where the metallic wire is disposed, and the plurality of conductive pads are electrically connected to the metallic wire.
  • Each of the front electrode and the rear electrode includes a plurality of collection electrodes spaced apart in parallel to each other, and includes a bus bar electrode intersecting the plurality of collection electrodes, and the bus bar electrode is electrically connected to the metallic wire.
  • Each of the front electrode and the rear electrode includes a plurality of collection electrodes spaced apart in parallel, a bus bar electrode intersecting the plurality of collection electrodes, and a conductive pad is provided on the bus bar electrode.
  • the conductive pad of is electrically connected with the metallic wire.
  • Each of the front electrode and the rear electrode includes a plurality of collecting electrodes spaced apart in parallel, and a conductive pad is provided in a region where metallic wires are disposed, and a bus bar electrode is provided between the conductive pad and the conductive pad.
  • the conductive pads are electrically connected to the metallic wires.
  • the number of the said metallic wires is 6-13 pieces, Most preferably, it is 6-10 pieces.
  • the diameter of the metallic wire is 120 to 370 ⁇ m, most preferably 120 to 240 ⁇ m.
  • the area of the front conductive pad or the rear conductive pad disposed at the outermost side may be larger than the area of the front conductive pad or the rear conductive pad disposed at the inner side.
  • the number of front conductive pads and the number of rear conductive pads may be the same, or the number of rear conductive pads may be larger than the number of front conductive pads.
  • the plurality of front conductive pads and the plurality of rear conductive pads are spaced apart from each other at equal intervals, and the distance between the front conductive pads or the rear conductive pads is 15 mm or less.
  • the outermost conductive pad or rear conductive pad disposed at the outermost portion may be disposed at a distance of 2.5 mm or more from the end of the solar cell substrate.
  • the solar cell is a double-sided light-receiving solar cell
  • the emitter layer is a front junction type double-sided light-receiving solar cell in which the emitter layer is located on the front surface of the substrate is provided with a rear field layer.
  • the solar cell is a double-sided light-receiving solar cell
  • the emitter layer is a back-junction double-sided light-receiving solar cell having an emitter layer is located on the rear surface of the substrate is provided with a front field layer.
  • the solar cell is a front-receiving solar cell.
  • the area of the front conductive pad or the rear conductive pad disposed at the outermost side is 4 to 8 times larger than the area of the front conductive pad or the rear conductive pad disposed at the inner side.
  • the solar cell module according to the present invention has the following effects.
  • the number of metallic wires can be increased than the number of ribbon interconnectors to improve the electrical characteristics of the solar cell module, ribbon interconnector By applying a narrower metallic wire, the light receiving area can be increased.
  • the electrical resistance in the divided cells can be reduced to reduce the number or diameter of the metallic wires.
  • the number or diameter of the metallic wires can be reduced. As it can be reduced, it is possible to increase the light receiving area of the split cell and to reduce the material consumed to form the metallic wire.
  • 1a and 1b is a block diagram of a solar cell module according to the prior art.
  • FIG. 2 is a reference diagram illustrating a unit cell and a divided cell.
  • FIG 3 is a perspective view of a solar cell module according to an embodiment of the present invention.
  • 5 is an experimental result of performing a module output evaluation according to the number of metallic wires.
  • 6 is an experimental result of evaluating module output according to the number of metallic wires in a normal cell (undivided cell).
  • Figure 7 is a photograph showing the actual manufacturing state of the unit cell applied to the present invention.
  • Figure 8 is a photograph showing the outermost conductive pad.
  • the present invention proposes a technique of replacing a ribbon-type interconnector (hereinafter referred to as a ribbon interconnector) with metallic wires in forming a solar cell module by applying a split cell.
  • a ribbon interconnector hereinafter referred to as a ribbon interconnector
  • the "split cell” refers to a plurality of solar cells (hereinafter, referred to as "unit cells") divided into a plurality.
  • a conventional solar cell that is, a unit cell, refers to a solar cell in which a pn junction structure and an electrode structure are completed by applying a solar cell process to a silicon substrate having a width of 6 inches (about 156 mm x 156 mm).
  • the "dividing cell” of the present invention means a cell obtained by dividing such unit cells into a plurality of equal parts.
  • the unit cell may be a silicon substrate of 5 to 8 inches in width and length in addition to a silicon substrate of 6 inches in width and length.
  • the "split cell” may mean a solar cell having an area corresponding to a cell divided from the above-described unit cell.
  • the “split cell” refers to a solar cell completed by applying a solar cell process on a silicon substrate having an area corresponding to a cell divided from a unit cell.
  • the dividing cell' of the present invention divides a cell in which a solar cell manufacturing process is completed, the dividing cell has a p-n junction structure and an electrode structure of a completed form similarly to a unit cell.
  • the present invention configures a solar cell module using a plurality of divided cells as described above, and proposes a technique for replacing a ribbon interconnector in configuring a solar cell module.
  • the ribbon-type interconnector electrically connects the busbar electrodes of each unit cell.
  • the present invention replaces the ribbon interconnect connection method through the metallic wire connection method.
  • Metallic wires electrically connect neighboring split cells.
  • the metallic wire electrically connects the front electrode of the first divided cell and the rear electrode of the second divided cell.
  • Each of the front electrode and the back electrode electrically connected to the metallic wire means a collection electrode or any one of a combination of a collection electrode and a conductive pad, a combination of a collection electrode and a bus bar electrode, and a combination of a collection electrode and a bus bar electrode and a conductive pad. It may mean.
  • the metallic wires are connected to cross the plurality of collection electrodes.
  • the conductive pad is provided in the region where the metallic wire is disposed, and the plurality of conductive pads are electrically connected to the metallic wire. In this case, it is preferable that conductive pads are provided on each collection electrode.
  • the busbar electrodes are arranged in a cross shape on the plurality of collection electrodes, and the busbar electrodes are electrically connected to the metallic wires.
  • the busbar electrode may be disposed to cross the plurality of collection electrodes, and the conductive pad may be provided on the busbar electrode.
  • a structure in which a conductive pad is provided in a region where the metallic wire is disposed, and a bus bar electrode is provided between the conductive pad and the conductive pad is also possible.
  • the ribbon interconnector system two to four busbar electrodes are provided on the front and rear sides of the unit cell, and the same number of interconnectors as the busbar electrodes are applied.
  • a metallic wire having a width smaller than that of the ribbon interconnect is applied. Since the width of the metallic wire is smaller than the width of the ribbon interconnector, the number of metallic wires can be increased more than the number of conventional ribbon interconnectors, and the number of metallic wires is greater than the number of ribbon interconnectors at the level of minimizing the reduction of light receiving area. As is disposed, it is possible to improve the electrical connection between the divided cells.
  • the electrical resistance of the carrier while moving in the metallic wire of each divided cell is reduced, and thus there is room for reducing the number or diameter of the metallic wires.
  • the number or diameter of the metallic wires can be reduced means that the material required for forming the metallic wires can be reduced, and the light receiving area can be minimized.
  • the present invention in the process of attaching the metallic wire and the electrode (front electrode or rear electrode of the split cell), that is, tabbing, the adhesion characteristics between the metallic wire and the electrode and the bowing characteristics of the solar cell Additionally present techniques for improving
  • the number of conductive pads disposed on the rear surface may be the same as the front surface or more than the number of conductive pads on the front surface in consideration of the fact that the heat transfer efficiency of the rear surface is relatively lower than that of the solar cell front surface. Through this, the adhesion property between the metallic wire and the electrode and the bending property of the solar cell can be improved. If the number of conductive pads on the front and back is different from each other, bending may occur.
  • the outermost conductive pad is disposed at a distance of 2.5 mm or more from the end of the solar cell substrate to reduce the possibility of cracking of the substrate.
  • a solar cell module according to an embodiment of the present invention includes a plurality of split cells 200, and the plurality of split cells 200 are electrically connected by metallic wires 10. do.
  • the division cell 200 is a unit cell 100 is divided into a plurality of equal parts or more, the unit cell 100 is a solar cell manufacturing process on a silicon substrate of 6 inches (about 156mm x 156mm) horizontally and vertically The solar cell is applied to the pn junction structure and the electrode structure.
  • the unit cell 100 may use a silicon substrate having a width of 5 to 8 inches in addition to a silicon substrate having a width of 6 inches (about 156 mm x 156 mm).
  • Each split cell 200 includes a semiconductor substrate 201 including a p-n junction.
  • Collection electrodes are provided on the front and rear surfaces of the substrate 201, respectively.
  • the collection electrode 211 provided on the front surface of the substrate 201 collects electrons generated by photoelectric conversion, and the collection electrode (not shown) provided on the rear surface of the substrate 201 collects holes generated by photoelectric conversion.
  • the role may be reversed.
  • Solar cells are classified into a front electrode type, a rear electrode type, etc. according to the arrangement of the electrodes, and are classified into a front light receiving type, a double-sided light receiving type, and the like according to the light receiving type of the solar cell.
  • 100) is not limited in form, provided that it includes a pn junction that enables photoelectric conversion.
  • the collection electrode provided on the back of the substrate may be configured in the form of a plate like an Al electrode inducing the formation of a back surface field.
  • the front and rear surfaces of the substrate 201 will be described based on the solar cell 10 having the collection electrodes 211 having the same shape.
  • the collection electrodes may be provided on the front or rear surface of the substrate 201, and the plurality of collection electrodes 211 may be spaced apart in parallel to each other.
  • a plurality of conductive pads 212 are spaced apart from each other on the substrate 201 in a direction crossing the collection electrode 211.
  • Each conductive pad 212 is connected to the collection electrode 211 at the provided position, and the arrangement direction of the columns formed by the plurality of conductive pads 212 is determined by the direction in which the metallic wire 10 to be described later is disposed. same.
  • the metallic wire 10 is disposed on the conductive pad 212, and the arrangement direction of the metallic wire 10 is the same as the arrangement direction of the columns of the plurality of conductive pads 212 and the collection electrode 211. Intersect with the arrangement direction.
  • the conductive pad 212 transfers electrons or holes collected by the collection electrode 211 to the metallic wire 10, and the metallic wire 10 is a carrier collected by the collection electrode 211. ) Is transmitted through the conductive pad 212 to transmit to an external system or power storage device.
  • the bus bar electrode 213 may be further provided as shown in FIG. 7.
  • a bus bar electrode 213 is provided in a direction crossing the plurality of collection electrodes 211, and a conductive pad (B) is formed on the bus bar electrode at a point where the bus bar electrode 213 and the collection electrode 211 cross each other. 212) may be provided.
  • a bus bar electrode may be provided between the conductive pad 212 and the conductive pad 212 to allow the collection electrode 211 and the bus bar electrode to be connected to the conductive pad 212.
  • the metallic wire 10 is connected to the conductive pad 212.
  • each of the front electrode and the rear electrode of the split cell may consist of only a collection electrode or a combination of a collection electrode and a bus bar electrode.
  • the metallic wires are connected to cross the plurality of collection electrodes.
  • the busbar electrode is disposed in a shape intersecting on the plurality of collection electrodes, and the busbar electrode is electrically connected to the metallic wire.
  • the distance between the conductive pads 212 is not limited, but the adhesion characteristics of the metallic wire 10 and the conductive pads 212, the light receiving area is reduced, and the amount of the conductive material (eg, Ag) used to form the conductive pads. And it is preferable to design within 15mm in consideration of the electrical characteristics.
  • the collection electrode 211 and the conductive pad 212 may be composed of Ag as a main component
  • the metallic wire 10 may be made of a copper (Cu) and tin (Sn) -based metal compound.
  • the area of the outermost conductive pad (hereinafter referred to as the outermost conductive pad) is designed to be larger than the area of the conductive pad disposed inside, as shown in FIG. .
  • the outermost conductive pad may have an area of 4 to 8 times the area of the inner conductive pad. Only four to eight times the length can be designed.
  • the outermost conductive pad may be disposed at a distance of 2.5 mm or more from the end of the dividing cell 200.
  • the output of the split cell 200 is improved, but the bending angle of the metallic wire is increased, which increases the possibility of cracking at the end of the substrate.
  • one end of the busbar electrode is disposed 6 mm or more away from the end of the substrate.
  • the outermost conductive pad is attached to the end of the substrate because of the flexible bending property of the metallic wire. It can be provided in a near position. In consideration of such a point, the outermost conductive pad is preferably disposed at a distance of 2.5 to 6 mm from an end of the split cell 200.
  • the number of conductive pads on the front of the substrate 201 and the number of conductive pads on the back of the substrate 201 are preferably the same.
  • the reason for designing the same number of front conductive pads and rear conductive pads is to prevent warpage of the division cell 200.
  • the warpage phenomenon of the solar cell substrate may occur due to the difference in the coating amount of the conductive material forming the front and rear conductive pads.
  • 4 illustrates the amount of warpage of the solar cell substrate according to the difference in the number of front conductive pads and the rear conductive pads. As shown in FIG. 4, the amount of warpage of the substrate increases as the difference in the number of front conductive pads and the rear conductive pads increases. It can be seen.
  • the heat source of the tabbing device is located on the front side of the solar cell, There is a problem that the heat transfer efficiency is lowered, in which case the number of the rear conductive pads may be larger than the front conductive pads.
  • the metallic wire 10 connects the front electrode and the rear electrode of the neighboring split cell 200.
  • the metallic wire 10 may be formed of the front electrode of the first split cell 200 and the second split cell 200.
  • the rear electrode is connected (or the rear electrode of the first split cell 200 and the front electrode of the second split cell 200 are connected by the metallic wire 10).
  • the metallic wire 10 disposed on the conductive pad 212 on the front of the first split cell 200 extends and is disposed on the conductive pad (not shown) on the rear of the second split cell 200.
  • the number of metallic wires 10 connecting the front electrode of the first divided cell 200 and the rear electrode of the second divided cell 200 is not limited, but may be comprised of 6 to 13, preferably 6 It can comprise with -10 pieces.
  • the electrical resistance decreases but the light receiving area also decreases.
  • the number of metallic wires decreases, the light receiving area increases but the electrical resistance also increases.
  • FIG. 5 it can be seen that the configuration of 8 to 9 metallic wires showing the maximum value of the module output is most preferable at a diameter of 360 ⁇ m of the metallic wires. .
  • the cell area is reduced to half, and the number of metallic wires can be reduced from 12 to six as the generated current amount of each divided cell is reduced to half compared to the normal cell.
  • the electrical characteristics of the split cell are deteriorated in comparison with the normal cell. This is because the electrical resistance in the emitter increases when the number of metallic wires is reduced in response to the decrease in cell area. Therefore, when designing a reduction in the number of metallic wires due to cell division, an increase in the electrical resistance of the emitter should be considered.
  • the optimal number of metallic wires (y) applied to each of the n divided cells is (1 / n + 1 / 3n).
  • x ⁇ y ⁇ (1 / n + 1 / 2n) x must be satisfied.
  • x is the optimal number of metallic wires applied to the normal cell
  • y is the optimal number of metallic wires applied to the divided cell.
  • the diameter of the metallic wire can be designed to 120 ⁇ 370 ⁇ m, most preferably can be configured to 120 ⁇ 240 ⁇ m.
  • the output of the solar cell module is improved.
  • the moving distance becomes shorter when the carrier moves in the metallic wire of the divided cell 200, and the carrier moving distance becomes shorter. It means that the electrical resistance in the 200) is reduced, thereby reducing the diameter of the metallic wire in the state that the electrical properties are not degraded. As the diameter of the metallic wire can be reduced, the light receiving area of the split cell 200 can be increased and the material consumed to form the metallic wire can be reduced.
  • the number of metallic wires can be increased than the number of ribbon interconnectors, thereby improving the electrical characteristics of the solar cell module, and narrower than the ribbon interconnectors.
  • the metallic wire By applying the metallic wire, the light receiving area can be increased.
  • the electrical resistance in the divided cells can be reduced to reduce the number or diameter of the metallic wires.
  • the number or diameter of the metallic wires can be reduced. As it can be reduced, it is possible to increase the light receiving area of the split cell and to reduce the material consumed to form the metallic wire.

Abstract

The present invention relates to a solar cell module configured using a plurality of segmented cells and capable of increasing a light-receiving area and reducing electrical resistance by having neighboring segmented cells electrically connected by means of metallic wires, the solar cell module, according to the present invention, comprising: a plurality of segmented cells which include a first segmented cell and a second segmented cell and are arranged so as to neighbor each other; and a plurality of metallic wires which electrically connect a front electrode of the first segmented cell and a back electrode of the second segmented cell, wherein the segmented cells are formed by having a unit cell segmented into a plurality of equal parts, the unit cell being formed by means of a solar cell manufacturing process.

Description

태양전지 모듈Solar cell module
본 발명은 태양전지 모듈에 관한 것으로서, 보다 상세하게는 복수의 분할셀을 이용하여 태양전지 모듈을 구성함과 함께, 금속성와이어를 이용하여 이웃하는 분할셀을 전기적으로 연결시킴으로써 수광면적을 증대시키고 전기저항을 감소시킬 수 있는 태양전지 모듈에 관한 것이다.The present invention relates to a solar cell module, and more particularly, to configure a solar cell module using a plurality of split cells, and to electrically connect neighboring split cells using metallic wires to increase a light receiving area and to provide electricity. The present invention relates to a solar cell module capable of reducing resistance.
태양전지 모듈은 복수의 태양전지(solar cell)로 구성되어 태양광을 수광하여 광전변환시키는 장치이다. 태양전지 모듈을 구성하는 각각의 태양전지는 p-n 접합으로 이루어진 다이오드(diode)라 할 수 있다. The solar cell module is composed of a plurality of solar cells (solar cell) is a device for receiving photovoltaic photovoltaic conversion. Each solar cell constituting the solar cell module may be referred to as a diode composed of a p-n junction.
태양광이 태양전지에 의해 전기로 변환되는 과정을 살펴보면, 태양전지의 p-n 접합부에 태양광이 입사되면 전자-정공 쌍이 생성되고, 전기장에 의해 전자는 n층으로, 정공은 p층으로 이동하게 되어 p-n 접합부 사이에 광기전력이 발생되며, 태양전지의 양단에 부하나 시스템을 연결하면 전류가 흐르게 되어 전력을 생산할 수 있게 된다. 태양전지의 전면과 후면에는 기판 내부로부터 전자, 정공을 수집하기 위한 전면전극과 후면전극이 구비된다. In the process of converting sunlight into electricity by solar cells, when solar light is incident on the pn junction of solar cells, electron-hole pairs are generated, and electrons move to n layers and holes move to p layers by the electric field. Photovoltaic power is generated between the pn junctions, and when a load or a system is connected to both ends of the solar cell, current flows to generate power. The front and rear of the solar cell is provided with a front electrode and a rear electrode for collecting electrons and holes from the inside of the substrate.
한편, 태양전지 모듈을 구성하는 복수의 태양전지는 전기적으로 연결되는데, 예를 들어 제 1 태양전지의 전면전극은 제 2 태양전지의 후면전극과 접속되는 형태로 연결된다. 이 때, 이웃하는 태양전지의 전면전극과 후면전극은 리본 형태의 인터커넥터(interconnector)에 의해 연결된다(한국등록특허 제1138174호 참조). On the other hand, the plurality of solar cells constituting the solar cell module is electrically connected, for example, the front electrode of the first solar cell is connected in the form of being connected to the rear electrode of the second solar cell. At this time, the front electrode and the back electrode of the neighboring solar cells are connected by a ribbon-shaped interconnector (refer to Korean Patent No. 1138174).
도 1a 및 도 1b를 참조하면, 인터커넥터(120)에 의해 이웃하는 태양전지(110)의 전면전극과 후면전극이 연결됨에 있어서, 전면전극과 후면전극은 세부적으로 버스바전극(111)을 포함하여 구성되며 인터커넥터(120)는 전면전극의 버스바전극(111)과 후면전극의 버스바전극(111)을 연결한다. 버스바전극은 전면전극과 후면전극의 핑거전극 등으로부터 수집된 캐리어를 인터커넥터로 전달한다. 1A and 1B, when the front electrode and the rear electrode of the neighboring solar cell 110 are connected by the interconnector 120, the front electrode and the rear electrode include the bus bar electrode 111 in detail. The interconnector 120 connects the bus bar electrode 111 of the front electrode and the bus bar electrode 111 of the back electrode. The busbar electrode transfers carriers collected from the finger electrodes of the front electrode and the back electrode to the interconnector.
이상, 태양전지 모듈의 구조에 대해 개괄적으로 설명하였는데, 상술한 바와 같이 태양전지들의 전기적 연결을 위해 인터커넥터가 필수적으로 요구된다. 한편, 태양전지의 광전변환 효율을 높이기 위한 조건 중 하나는 수광면적 증대이다. 그러나, 리본 형태의 인터커넥터가 상당한 면적을 차지하고 있어 수광면적이 감소되는 문제점이 있다. The structure of the solar cell module has been described above in general, but as described above, an interconnector is essentially required for electrical connection of the solar cells. On the other hand, one of the conditions for increasing the photoelectric conversion efficiency of the solar cell is to increase the light receiving area. However, there is a problem that the light receiving area is reduced because the ribbon-type interconnector occupies a considerable area.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) 한국등록특허 제1138174호(Patent Document 1) Korean Registered Patent No. 1138174
본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 복수의 분할셀을 이용하여 태양전지 모듈을 구성함과 함께, 금속성와이어를 이용하여 이웃하는 분할셀을 전기적으로 연결시킴으로써 수광면적을 증대시키고 전기저항을 감소시킬 수 있는 태양전지 모듈을 제공하는데 그 목적이 있다. The present invention has been made to solve the above problems, and by using a plurality of split cells to configure a solar cell module, by using a metallic wire to connect neighboring split cells to increase the light receiving area and It is an object of the present invention to provide a solar cell module that can reduce the electrical resistance.
상기의 목적을 달성하기 위한 본 발명에 따른 태양전지 모듈은 제 1 분할셀 및 제 2 분할셀을 포함하며, 이웃하여 배치되는 복수의 분할셀; 및 제 1 분할셀의 전면전극과 제 2 분할셀의 후면전극을 전기적으로 연결하는 복수의 금속성와이어;를 포함하여 이루어지며, 상기 분할셀은 태양전지 제조공정을 통해 완성된 단위셀이 복수 등분으로 분할된 것인 것을 특징으로 한다. According to an aspect of the present invention, there is provided a solar cell module including a first split cell and a second split cell, and a plurality of split cells disposed adjacent to each other; And a plurality of metallic wires electrically connecting the front electrode of the first divided cell and the rear electrode of the second divided cell, wherein the divided cells comprise a plurality of unit cells completed through a solar cell manufacturing process. It is characterized by being divided.
상기 전면전극과 후면전극 각각은 평행한 형태로 이격되어 배치되는 복수의 수집전극으로 이루어지며, 상기 금속성와이어는 복수의 수집전극과 교차하는 형태로 연결된다. Each of the front electrode and the rear electrode includes a plurality of collection electrodes spaced apart in parallel to each other, and the metallic wires are connected to cross the plurality of collection electrodes.
상기 전면전극과 후면전극 각각은 평행한 형태로 이격되어 배치되는 복수의 수집전극을 구비하며, 금속성와이어가 배치되는 영역에 도전성패드가 구비되고, 복수의 도전성패드는 금속성와이어와 전기적으로 연결된다. Each of the front electrode and the rear electrode includes a plurality of collection electrodes spaced apart in parallel, and a conductive pad is provided in a region where the metallic wire is disposed, and the plurality of conductive pads are electrically connected to the metallic wire.
상기 전면전극과 후면전극 각각은 평행한 형태로 이격되어 배치되는 복수의 수집전극을 구비하며, 복수의 수집전극과 교차하는 버스바전극을 구비하며, 상기 버스바전극은 금속성와이어와 전기적으로 연결된다. Each of the front electrode and the rear electrode includes a plurality of collection electrodes spaced apart in parallel to each other, and includes a bus bar electrode intersecting the plurality of collection electrodes, and the bus bar electrode is electrically connected to the metallic wire. .
상기 전면전극과 후면전극 각각은 평행한 형태로 이격되어 배치되는 복수의 수집전극을 구비하며, 복수의 수집전극과 교차하는 버스바전극을 구비하며, 버스바전극 상에 도전성패드가 구비되며, 복수의 도전성패드는 금속성와이어와 전기적으로 연결된다. Each of the front electrode and the rear electrode includes a plurality of collection electrodes spaced apart in parallel, a bus bar electrode intersecting the plurality of collection electrodes, and a conductive pad is provided on the bus bar electrode. The conductive pad of is electrically connected with the metallic wire.
상기 전면전극과 후면전극 각각은 평행한 형태로 이격되어 배치되는 복수의 수집전극을 구비하며, 금속성와이어가 배치되는 영역에 도전성패드가 구비되고, 도전성패드와 도전성패드 사이에 버스바전극이 구비되며, 복수의 도전성패드는 금속성와이어와 전기적으로 연결된다. Each of the front electrode and the rear electrode includes a plurality of collecting electrodes spaced apart in parallel, and a conductive pad is provided in a region where metallic wires are disposed, and a bus bar electrode is provided between the conductive pad and the conductive pad. The conductive pads are electrically connected to the metallic wires.
상기 금속성와이어의 개수는 6∼13개이고, 가장 바람직하게는 6∼10개이다. 또한, 상기 금속성와이어의 지름은 120∼370㎛이고, 가장 바람직하게는 120∼240㎛이다. The number of the said metallic wires is 6-13 pieces, Most preferably, it is 6-10 pieces. In addition, the diameter of the metallic wire is 120 to 370 µm, most preferably 120 to 240 µm.
최외곽에 배치되는 전면 도전성패드의 면적 또는 후면 도전성패드의 면적은 내측에 배치되는 전면 도전성패드의 면적 또는 후면 도전성패드의 면적보다 클 수 있다. The area of the front conductive pad or the rear conductive pad disposed at the outermost side may be larger than the area of the front conductive pad or the rear conductive pad disposed at the inner side.
또한, 전면 도전성패드의 개수와 후면 도전성패드의 개수는 동일하거나, 후면 도전성패드의 개수가 전면 도전성패드의 개수보다 많을 수 있다. In addition, the number of front conductive pads and the number of rear conductive pads may be the same, or the number of rear conductive pads may be larger than the number of front conductive pads.
복수의 전면 도전성패드와 복수의 후면 도전성패드는 동일 간격으로 이격, 배치되며, 전면 도전성패드 또는 후면 도전성패드 사이의 간격은 15mm 이하이다. The plurality of front conductive pads and the plurality of rear conductive pads are spaced apart from each other at equal intervals, and the distance between the front conductive pads or the rear conductive pads is 15 mm or less.
최외곽에 배치되는 전면 도전성패드 또는 후면 도전성패드는 태양전지 기판 끝단으로부터 2.5mm 이상 떨어진 곳에 배치될 수 있다. The outermost conductive pad or rear conductive pad disposed at the outermost portion may be disposed at a distance of 2.5 mm or more from the end of the solar cell substrate.
상기 태양전지는 양면수광형 태양전지이며, 에미터층이 기판 전면부에 위치하고 기판 후면부에 후면전계층이 구비되는 전면접합형 양면수광형 태양전지이다. 또한, 상기 태양전지는 양면수광형 태양전지이며, 에미터층이 기판 후면부에 위치하고 기판 전면부에 전면전계층이 구비되는 후면접합형 양면수광형 태양전지이다. 이와 함께, 상기 태양전지는 전면수광형 태양전지이다. The solar cell is a double-sided light-receiving solar cell, the emitter layer is a front junction type double-sided light-receiving solar cell in which the emitter layer is located on the front surface of the substrate is provided with a rear field layer. In addition, the solar cell is a double-sided light-receiving solar cell, the emitter layer is a back-junction double-sided light-receiving solar cell having an emitter layer is located on the rear surface of the substrate is provided with a front field layer. In addition, the solar cell is a front-receiving solar cell.
최외곽에 배치되는 전면 도전성패드의 면적 또는 후면 도전성패드의 면적은 내측에 배치되는 전면 도전성패드의 면적 또는 후면 도전성패드의 면적보다 4∼8배 크다. The area of the front conductive pad or the rear conductive pad disposed at the outermost side is 4 to 8 times larger than the area of the front conductive pad or the rear conductive pad disposed at the inner side.
본 발명에 따른 태양전지 모듈은 다음과 같은 효과가 있다. The solar cell module according to the present invention has the following effects.
종래 기술에 따른 리본 형태의 인터커넥터 연결 방식을 금속성와이어 연결 방식으로 대체함에 따라, 금속성와이어의 개수를 리본 인터커넥터의 개수보다 늘릴 수 있어 태양전지 모듈의 전기적 특성을 향상시킬 수 있으며, 리본 인터커넥터보다 폭이 좁은 금속성와이어를 적용함으로써 수광면적을 증대시킬 수 있다. By replacing the ribbon-type interconnector method according to the prior art with the metallic wire connection method, the number of metallic wires can be increased than the number of ribbon interconnectors to improve the electrical characteristics of the solar cell module, ribbon interconnector By applying a narrower metallic wire, the light receiving area can be increased.
또한, 단위셀을 분할한 분할셀을 배치하여 태양전지 모듈을 구성함에 따라, 분할셀 내에서의 전기저항이 감소되어 금속성와이어의 개수 또는 지름을 줄일 수 있게 되며, 이와 같이 금속성와이어의 개수 또는 지름을 줄일 수 있게 됨에 따라, 분할셀의 수광면적을 증대시킴과 함께 금속성와이어 형성에 소모되는 재료를 절감할 수 있게 된다. In addition, as the solar cell module is configured by arranging the divided cells in which the unit cells are divided, the electrical resistance in the divided cells can be reduced to reduce the number or diameter of the metallic wires. As such, the number or diameter of the metallic wires can be reduced. As it can be reduced, it is possible to increase the light receiving area of the split cell and to reduce the material consumed to form the metallic wire.
이와 함께, 도전성패드의 개수, 면적, 위치 등을 최적 설계함으로써 금속성와이어와 도전성패드 간의 부착특성 및 태양전지의 휨(bowing) 특성을 향상시킬 수 있다. In addition, by optimally designing the number, area, and position of the conductive pads, adhesion characteristics between the metallic wires and the conductive pads and bowing characteristics of the solar cell can be improved.
도 1a 및 도 1b는 종래 기술에 따른 태양전지 모듈의 구성도. 1a and 1b is a block diagram of a solar cell module according to the prior art.
도 2는 단위셀 및 분할셀을 나타낸 참고도. 2 is a reference diagram illustrating a unit cell and a divided cell.
도 3은 본 발명의 일 실시예에 따른 태양전지 모듈의 사시도. 3 is a perspective view of a solar cell module according to an embodiment of the present invention.
도 4는 전면 도전성패드와 후면 도전성패드의 개수 차이에 따른 태양전지 기판의 휨량을 나타낸 실험결과. 4 is an experimental result showing the amount of warpage of the solar cell substrate according to the difference in the number of the front conductive pad and the rear conductive pad.
도 5는 금속성와이어의 개수에 따른 모듈 출력 평가를 실시한 실험결과. 5 is an experimental result of performing a module output evaluation according to the number of metallic wires.
도 6은 정상셀(미분할셀)에서의 금속성와이어 개수에 따른 모듈 출력 평가를 실시한 실험결과.6 is an experimental result of evaluating module output according to the number of metallic wires in a normal cell (undivided cell).
도 7은 본 발명에 적용되는 단위셀의 실제 제작상태를 나타낸 사진. Figure 7 is a photograph showing the actual manufacturing state of the unit cell applied to the present invention.
도 8은 최외곽 도전성패드를 나타낸 사진. Figure 8 is a photograph showing the outermost conductive pad.
본 발명은 분할셀을 적용하여 태양전지 모듈을 구성함과 함께 태양전지 모듈을 구성함에 있어서 리본 형태의 인터커넥터(이하, '리본 인터커넥터'라 함)를 금속성와이어로 대체하는 기술을 제시한다. The present invention proposes a technique of replacing a ribbon-type interconnector (hereinafter referred to as a ribbon interconnector) with metallic wires in forming a solar cell module by applying a split cell.
본 발명에서 '분할셀'이라 함은 태양전지 셀(이하, '단위셀'이라 함)이 복수개로 분할된 것을 일컫는다. 통상의 태양전지 셀 즉, 통상의 단위셀은 가로, 세로 6인치 크기(약 156mm x 156mm)의 실리콘 기판에 태양전지 공정을 적용하여 p-n 접합 구조 및 전극 구조가 완성된 태양전지를 의미하며, 본 발명의 '분할셀'은 이와 같은 단위셀을 복수 등분으로 분할한 셀을 의미한다. 단위셀은 가로, 세로 6인치의 실리콘 기판 이외에 가로, 세로 5∼8인치의 실리콘 기판을 이용할 수도 있다. 또한, 본 발명에서 '분할셀'은 상술한 단위셀로부터 분할된 셀에 대응되는 면적을 갖는 태양전지 셀을 의미할 수도 있다. 이 경우, '분할셀'은 단위셀로부터 분할된 셀에 대응되는 면적을 갖는 실리콘 기판 상에 태양전지 공정을 적용하여 완성된 태양전지 셀을 의미한다. In the present invention, the "split cell" refers to a plurality of solar cells (hereinafter, referred to as "unit cells") divided into a plurality. A conventional solar cell, that is, a unit cell, refers to a solar cell in which a pn junction structure and an electrode structure are completed by applying a solar cell process to a silicon substrate having a width of 6 inches (about 156 mm x 156 mm). The "dividing cell" of the present invention means a cell obtained by dividing such unit cells into a plurality of equal parts. The unit cell may be a silicon substrate of 5 to 8 inches in width and length in addition to a silicon substrate of 6 inches in width and length. In addition, in the present invention, the "split cell" may mean a solar cell having an area corresponding to a cell divided from the above-described unit cell. In this case, the "split cell" refers to a solar cell completed by applying a solar cell process on a silicon substrate having an area corresponding to a cell divided from a unit cell.
본 발명의 '분할셀'은 태양전지 제조공정이 완료된 셀을 분할 것임에 따라, 분할셀은 단위셀과 마찬가지로 완성된 형태의 p-n 접합 구조 및 전극 구조를 구비한다. As the 'dividing cell' of the present invention divides a cell in which a solar cell manufacturing process is completed, the dividing cell has a p-n junction structure and an electrode structure of a completed form similarly to a unit cell.
본 발명은 상술한 바와 같은 복수의 분할셀을 이용하여 태양전지 모듈을 구성하며, 태양전지 모듈을 구성함에 있어서 리본 인터커넥터를 대체하는 기술을 제시한다. '발명의 배경이 되는 기술'에서 설명한 바와 같이, 리본 형태의 인터커넥터는 각 단위셀의 버스바전극을 전기적으로 연결한다. 본 발명은 금속성와이어 연결 방식을 통해 리본 인터커넥터 연결 방식을 대체한다. The present invention configures a solar cell module using a plurality of divided cells as described above, and proposes a technique for replacing a ribbon interconnector in configuring a solar cell module. As described in the background technology of the invention, the ribbon-type interconnector electrically connects the busbar electrodes of each unit cell. The present invention replaces the ribbon interconnect connection method through the metallic wire connection method.
금속성와이어는 이웃하는 분할셀을 전기적으로 연결시킨다. 예를 들어, 금속성와이어는 제 1 분할셀의 전면전극과 제 2 분할셀의 후면전극을 전기적으로 연결시킨다. 금속성와이어와 전기적으로 연결되는 전면전극과 후면전극 각각은 수집전극을 의미하거나 수집전극과 도전성패드의 조합, 수집전극과 버스바전극의 조합, 수집전극과 버스바전극 및 도전성패드의 조합 중 어느 하나를 의미할 수 있다. Metallic wires electrically connect neighboring split cells. For example, the metallic wire electrically connects the front electrode of the first divided cell and the rear electrode of the second divided cell. Each of the front electrode and the back electrode electrically connected to the metallic wire means a collection electrode or any one of a combination of a collection electrode and a conductive pad, a combination of a collection electrode and a bus bar electrode, and a combination of a collection electrode and a bus bar electrode and a conductive pad. It may mean.
전면전극과 후면전극 각각이 수집전극만으로 이루어지는 경우, 금속성와이어는 복수의 수집전극과 교차하는 형태로 연결된다. When each of the front electrode and the rear electrode includes only the collection electrode, the metallic wires are connected to cross the plurality of collection electrodes.
수집전극과 도전성패드의 조합인 경우, 금속성와이어가 배치되는 영역에 도전성패드가 구비되고, 복수의 도전성패드는 금속성와이어와 전기적으로 연결된다. 이 경우, 각각의 수집전극 상에 도전성패드가 구비되는 것이 바람직하다. In the case of the combination of the collection electrode and the conductive pad, the conductive pad is provided in the region where the metallic wire is disposed, and the plurality of conductive pads are electrically connected to the metallic wire. In this case, it is preferable that conductive pads are provided on each collection electrode.
수집전극과 버스바전극의 조합인 경우, 버스바전극은 복수의 수집전극 상에 교차하는 형태로 배치되며, 버스바전극은 금속성와이어와 전기적으로 연결된다. In the case of the combination of the collection electrode and the busbar electrode, the busbar electrodes are arranged in a cross shape on the plurality of collection electrodes, and the busbar electrodes are electrically connected to the metallic wires.
수집전극과 버스바전극 및 도전성패드의 조합인 경우, 버스바전극은 복수의 수집전극과 교차하는 형태로 배치되며, 버스바전극 상에 도전성패드가 구비될 수 있다. 이와 함께, 금속성와이어가 배치되는 영역에 도전성패드가 구비되고, 도전성패드와 도전성패드 사이에 버스바전극이 구비되는 구조 또한 가능하다. In the case of the combination of the collection electrode, the busbar electrode, and the conductive pad, the busbar electrode may be disposed to cross the plurality of collection electrodes, and the conductive pad may be provided on the busbar electrode. In addition, a structure in which a conductive pad is provided in a region where the metallic wire is disposed, and a bus bar electrode is provided between the conductive pad and the conductive pad is also possible.
리본 인터커넥터 방식의 경우, 2∼4개의 버스바전극이 단위셀의 전면과 후면에 구비되고 버스바전극과 동일한 개수의 인터커넥터가 적용된다. 이에 반해, 본 발명의 경우 리본 인터커넥터의 폭보다 작은 폭을 갖는 금속성와이어가 적용된다. 금속성와이어의 폭이 리본 인터커넥터의 폭보다 작기 때문에 수광면적의 감소를 최소화하는 수준에서 금속성와이어의 수를 종래의 리본 인터커넥터의 개수보다 늘릴 수 있으며, 리본 인터커넥터의 개수보다 많은 수의 금속성와이어가 배치됨에 따라 분할셀 간의 전기적 연결특성을 향상시킬 수 있다. In the ribbon interconnector system, two to four busbar electrodes are provided on the front and rear sides of the unit cell, and the same number of interconnectors as the busbar electrodes are applied. In contrast, in the present invention, a metallic wire having a width smaller than that of the ribbon interconnect is applied. Since the width of the metallic wire is smaller than the width of the ribbon interconnector, the number of metallic wires can be increased more than the number of conventional ribbon interconnectors, and the number of metallic wires is greater than the number of ribbon interconnectors at the level of minimizing the reduction of light receiving area. As is disposed, it is possible to improve the electrical connection between the divided cells.
이와 함께, 단위셀보다 면적이 작은 분할셀이 적용됨으로 인해 캐리어가 각 분할셀의 금속성와이어 내에서 이동하는 과정에서의 전기저항이 감소되며, 이에 따라 금속성와이어의 개수 또는 지름을 줄일 수 있는 여지가 커진다. 금속성와이어의 개수 또는 지름을 줄일 수 있음은 금속성와이어 형성에 소요되는 재료를 절감함과 함께 수광면적 감소를 최소화할 수 있음을 의미함은 당연하다. In addition, due to the application of the divided cell having a smaller area than the unit cell, the electrical resistance of the carrier while moving in the metallic wire of each divided cell is reduced, and thus there is room for reducing the number or diameter of the metallic wires. Grows The fact that the number or diameter of the metallic wires can be reduced means that the material required for forming the metallic wires can be reduced, and the light receiving area can be minimized.
또한, 본 발명은 금속성와이어와 전극(분할셀의 전면전극 또는 후면전극) 간의 부착공정 즉, 태빙공정(tabbing)을 진행함에 있어서, 금속성와이어와 전극 간의 부착특성 및 태양전지의 휨(bowing) 특성을 향상시키는 기술을 부가적으로 제시한다. In addition, the present invention in the process of attaching the metallic wire and the electrode (front electrode or rear electrode of the split cell), that is, tabbing, the adhesion characteristics between the metallic wire and the electrode and the bowing characteristics of the solar cell Additionally present techniques for improving
태빙장치의 특성상 태양전지 전면에 비해 후면의 열전달 효율이 상대적으로 떨어지는 점을 고려하여 후면에 배치되는 도전성패드의 개수를 전면과 동일하게 하거나 전면의 도전성패드의 개수보다 많도록 설계할 수 있다. 이를 통해, 금속성와이어와 전극 간의 부착특성 및 태양전지의 휨 특성을 향상시킬 수 있다. 전면과 후면의 도전성패드의 개수가 서로 다르면 휨 현상이 발생될 수 있다. Due to the characteristics of the tabbing device, the number of conductive pads disposed on the rear surface may be the same as the front surface or more than the number of conductive pads on the front surface in consideration of the fact that the heat transfer efficiency of the rear surface is relatively lower than that of the solar cell front surface. Through this, the adhesion property between the metallic wire and the electrode and the bending property of the solar cell can be improved. If the number of conductive pads on the front and back is different from each other, bending may occur.
금속성와이어와 도전성패드 간의 부착특성을 향상시키기 위한 추가적인 방안으로, 최외곽에 배치되는 도전성패드의 면적을 다른 도전성패드(내측에 배치되는 도전성패드)의 면적보다 넓게 설계하는 기술을 제시한다. 이와 함께, 최외곽에 배치되는 도전성패드가 태양전지 기판 끝단으로부터 2.5mm 이상 떨어진 곳에 배치되도록 함으로써 기판의 크랙(crack) 가능성을 낮추는 기술을 제시한다. As an additional method for improving the adhesion property between the metallic wire and the conductive pad, a technique of designing the area of the outermost conductive pad to be wider than that of other conductive pads (conductive pads disposed inside) is proposed. Along with this, the outermost conductive pad is disposed at a distance of 2.5 mm or more from the end of the solar cell substrate to reduce the possibility of cracking of the substrate.
이하, 도면을 참조하여 본 발명의 일 실시예에 따른 태양전지 모듈 및 그 제조방법을 상세히 설명하기로 한다. Hereinafter, a solar cell module and a method of manufacturing the same according to an embodiment of the present invention will be described in detail with reference to the drawings.
도 2 및 도 3을 참조하면, 본 발명의 일 실시예에 따른 태양전지 모듈은 복수의 분할셀(200)을 구비하며, 복수의 분할셀(200)은 금속성와이어(10)에 의해 전기적으로 연결된다. 2 and 3, a solar cell module according to an embodiment of the present invention includes a plurality of split cells 200, and the plurality of split cells 200 are electrically connected by metallic wires 10. do.
상기 분할셀(200)은 단위셀(100)이 2등분 이상의 복수 등분으로 분할된 것이며, 상기 단위셀(100)은 가로, 세로 6인치(약 156mm x 156mm)의 실리콘 기판에 태양전지 제조공정이 적용되어 p-n 접합 구조 및 전극 구조가 구비된 태양전지이다. 상기 단위셀(100)은 가로, 세로 6인치(약 156mm x 156mm)의 실리콘 기판 이외에 가로, 세로 5∼8인치의 실리콘 기판을 이용할 수도 있다. The division cell 200 is a unit cell 100 is divided into a plurality of equal parts or more, the unit cell 100 is a solar cell manufacturing process on a silicon substrate of 6 inches (about 156mm x 156mm) horizontally and vertically The solar cell is applied to the pn junction structure and the electrode structure. The unit cell 100 may use a silicon substrate having a width of 5 to 8 inches in addition to a silicon substrate having a width of 6 inches (about 156 mm x 156 mm).
각 분할셀(200)는 p-n 접합부를 포함하는 반도체 기판(201)을 포함한다. 상기 기판(201) 전면과 후면에는 각각 수집전극이 구비된다. 기판(201) 전면에 구비된 수집전극(211)은 광전변환에 의해 생성된 전자를 수집하고, 기판(201) 후면에 구비된 수집전극(도시하지 않음)은 광전변환에 의해 생성된 정공을 수집하며, 그 역할이 반대로 설계될 수도 있다. 태양전지는 전극의 배치 형태에 따라 전면전극형, 후면전극형 등으로 구분되고, 태양광의 수광 형태에 따라 전면수광형, 양면수광형 등으로 구분되는데, 본 발명에 적용되는 태양전지 즉, 단위셀(100)은 광전변환을 가능하게 하는 p-n 접합부를 포함함을 전제 하에 그 형태가 제한되지 않는다. 참고로, 전면수광형 태양전지를 구성하는 경우, 기판 후면에 구비되는 수집전극은 후면전계층(back surface field) 형성을 유도하는 Al전극과 같이 판 형태로 구성할 수 있다. 이하의 설명에서는, 설명의 편의상 기판(201) 전면과 후면이 동일한 형태의 수집전극(211)을 구비하는 태양전지(10)를 중심으로 설명하기로 한다. Each split cell 200 includes a semiconductor substrate 201 including a p-n junction. Collection electrodes are provided on the front and rear surfaces of the substrate 201, respectively. The collection electrode 211 provided on the front surface of the substrate 201 collects electrons generated by photoelectric conversion, and the collection electrode (not shown) provided on the rear surface of the substrate 201 collects holes generated by photoelectric conversion. The role may be reversed. Solar cells are classified into a front electrode type, a rear electrode type, etc. according to the arrangement of the electrodes, and are classified into a front light receiving type, a double-sided light receiving type, and the like according to the light receiving type of the solar cell. 100) is not limited in form, provided that it includes a pn junction that enables photoelectric conversion. For reference, in the case of configuring the front-receiving solar cell, the collection electrode provided on the back of the substrate may be configured in the form of a plate like an Al electrode inducing the formation of a back surface field. In the following description, for convenience of description, the front and rear surfaces of the substrate 201 will be described based on the solar cell 10 having the collection electrodes 211 having the same shape.
상기 수집전극은 기판(201) 전면 또는 후면 상에 복수개 구비되며, 복수의 수집전극(211)은 평행한 형태로 이격되어 배치된다. The collection electrodes may be provided on the front or rear surface of the substrate 201, and the plurality of collection electrodes 211 may be spaced apart in parallel to each other.
또한, 상기 기판(201) 상에는 수집전극(211)과 교차하는 방향으로 복수의 도전성패드(212)가 이격되어 배치된다. 각각의 도전성패드(212)는 구비된 위치에서 수집전극(211)과 연결되며, 복수의 도전성패드(212)가 이루는 열(Column)의 배치 방향은 후술하는 금속성와이어(10)가 배치되는 방향과 동일하다. In addition, a plurality of conductive pads 212 are spaced apart from each other on the substrate 201 in a direction crossing the collection electrode 211. Each conductive pad 212 is connected to the collection electrode 211 at the provided position, and the arrangement direction of the columns formed by the plurality of conductive pads 212 is determined by the direction in which the metallic wire 10 to be described later is disposed. same.
상기 도전성패드(212) 상에는 금속성와이어(10)이 배치되며, 금속성와이어(10)의 배치 방향은 복수의 도전성패드(212)가 이루는 열(Column)의 배치 방향과 동일함과 함께 수집전극(211)의 배치 방향에 교차한다. The metallic wire 10 is disposed on the conductive pad 212, and the arrangement direction of the metallic wire 10 is the same as the arrangement direction of the columns of the plurality of conductive pads 212 and the collection electrode 211. Intersect with the arrangement direction.
상기 도전성패드(212)는 수집전극(211)에 의해 수집된 전자 또는 정공을 금속성와이어(10)로 전달하는 역할을 하며, 금속성와이어(10)은 수집전극(211)에 의해 수집된 캐리어(carrier)를 도전성패드(212)를 매개로 전달받아 외부의 시스템 또는 전력저장장치로 전송하는 역할을 한다. The conductive pad 212 transfers electrons or holes collected by the collection electrode 211 to the metallic wire 10, and the metallic wire 10 is a carrier collected by the collection electrode 211. ) Is transmitted through the conductive pad 212 to transmit to an external system or power storage device.
한편, 다른 실시예로 도 7에 도시한 바와 같이 버스바전극(213)이 더 구비될 수 있다. 이 경우, 복수의 수집전극(211)에 교차하는 방향에 버스바전극(213)이 구비되고, 버스바전극(213)과 수집전극(211)이 교차하는 지점의 버스바전극 상에 도전성패드(212)가 구비될 수 있다. 또 다른 실시예로, 도전성패드(212)와 도전성패드(212) 사이에 버스바전극을 구비시킴으로써 도전성패드(212)에 수집전극(211) 및 버스바전극이 연결되도록 하는 구조도 가능하다. 상술한 실시예 공히, 금속성와이어(10)이 도전성패드(212)와 연결되는 구조이다. In another embodiment, the bus bar electrode 213 may be further provided as shown in FIG. 7. In this case, a bus bar electrode 213 is provided in a direction crossing the plurality of collection electrodes 211, and a conductive pad (B) is formed on the bus bar electrode at a point where the bus bar electrode 213 and the collection electrode 211 cross each other. 212) may be provided. In another embodiment, a bus bar electrode may be provided between the conductive pad 212 and the conductive pad 212 to allow the collection electrode 211 and the bus bar electrode to be connected to the conductive pad 212. In the above-described embodiment, the metallic wire 10 is connected to the conductive pad 212.
이상의 실시예에서, 분할셀의 전면전극과 후면전극 각각이 수집전극과 도전성패드의 조합이거나 수집전극과 버스바전극 및 도전성패드의 조합인 경우에 대해서 설명하였으나, 또 다른 실시예로 도전성패드를 생략하는 구성도 가능하다. 도전성패드가 생략되는 경우, 분할셀의 전면전극과 후면전극 각각이 수집전극만으로 구성되거나 수집전극과 버스바전극의 조합으로 구성될 수 있다. 수집전극만으로 이루어지는 경우, 금속성와이어는 복수의 수집전극과 교차하는 형태로 연결된다. 또한, 수집전극과 버스바전극의 조합인 경우, 버스바전극은 복수의 수집전극 상에 교차하는 형태로 배치되며, 버스바전극은 금속성와이어와 전기적으로 연결된다. In the above embodiments, the case in which the front electrode and the rear electrode of the split cell are a combination of the collection electrode and the conductive pad or a combination of the collection electrode, the busbar electrode and the conductive pad has been described, but the conductive pad is omitted in another embodiment. It is also possible to configure. When the conductive pad is omitted, each of the front electrode and the rear electrode of the split cell may consist of only a collection electrode or a combination of a collection electrode and a bus bar electrode. In the case where only the collection electrodes are formed, the metallic wires are connected to cross the plurality of collection electrodes. In addition, in the case of a combination of the collection electrode and the busbar electrode, the busbar electrode is disposed in a shape intersecting on the plurality of collection electrodes, and the busbar electrode is electrically connected to the metallic wire.
한편, 도전성패드(212) 사이의 간격은 제한되지는 않으나 금속성와이어(10)와 도전성패드(212)의 부착특성, 수광면적 감소, 도전성패드 형성을 위한 도전성물질(예를 들어, Ag)의 사용량 및 전기적 특성을 고려하여 15mm 이내로 설계하는 것이 바람직하다. 또한, 상기 수집전극(211) 및 도전성패드(212)는 Ag를 주성분으로 구성할 수 있으며, 상기 금속성와이어(10)는 구리(Cu)과 주석(Sn) 기반의 금속화합물로 이루어질 수 있다. On the other hand, the distance between the conductive pads 212 is not limited, but the adhesion characteristics of the metallic wire 10 and the conductive pads 212, the light receiving area is reduced, and the amount of the conductive material (eg, Ag) used to form the conductive pads. And it is preferable to design within 15mm in consideration of the electrical characteristics. In addition, the collection electrode 211 and the conductive pad 212 may be composed of Ag as a main component, the metallic wire 10 may be made of a copper (Cu) and tin (Sn) -based metal compound.
도전성패드(212)를 구성함에 있어서, 최외곽에 배치되는 도전성패드(이하, 최외곽 도전성패드라 칭함)의 면적은 도 8에 도시한 바와 같이 내측에 배치되는 도전성패드의 면적보다 크도록 설계한다. 태빙공정시 내측의 도전성패드에는 균일한 열이 공급되어 금속성와이어(10)와 도전성패드의 접착특성이 양호하나 최외곽 도전성패드의 경우 셀의 가장자리에 위치함에 따라 열 공급이 원활하지 않아 금속성와이어(10)와의 접촉특성이 저하되며 이를 보완하기 위해, 최외곽 도전성패드의 면적을 내측의 도전성패드의 면적보다 크게 설계할 필요가 있다. 금속성와이어(10)와 최외곽 도전성패드의 부착특성 향상을 위해 최외곽 도전성패드의 면적은 내측의 도전성패드의 면적 대비 4∼8배로 설계할 수 있으며, 도전성패드의 폭은 동일하게 하고 도전성패드의 길이만 4∼8배로 설계할 수 있다. In configuring the conductive pad 212, the area of the outermost conductive pad (hereinafter referred to as the outermost conductive pad) is designed to be larger than the area of the conductive pad disposed inside, as shown in FIG. . During the tabbing process, uniform heat is supplied to the inner conductive pads, so that the adhesive property of the metallic wire 10 and the conductive pad is good, but the outermost conductive pad is located at the edge of the cell. 10) the contact characteristics with the lowering and to compensate for this, it is necessary to design the area of the outermost conductive pad larger than the area of the inner conductive pad. In order to improve the adhesion characteristics of the metallic wire 10 and the outermost conductive pad, the outermost conductive pad may have an area of 4 to 8 times the area of the inner conductive pad. Only four to eight times the length can be designed.
또한, 분할셀(200)의 크랙을 방지하기 위해 최외곽 도전성패드는 분할셀(200) 끝단으로부터 2.5mm 이상 떨어진 곳에 배치하는 것이 바람직하다. 최외곽 도전성패드의 구비위치가 기판(201) 끝단에 가까울수록 분할셀(200)의 출력은 향상되나 금속성와이어의 절곡 각도가 커져 기판 끝단에서의 크랙 발생 가능성이 커진다. 종래의 리본 형상의 인터커넥터를 적용하는 경우 버스바전극의 일단은 기판 끝단으로부터 6mm 이상 이격 배치하였으나, 본 발명의 금속성와이어를 적용하는 경우 금속성와이어의 유연한 절곡 특성 때문에 최외곽 도전성패드를 기판 끝단에 가까운 위치에 구비시킬 수 있다. 이와 같은 점을 고려하여, 최외곽 도전성패드는 분할셀(200) 끝단으로부터 2.5∼6mm 떨어진 곳에 배치하는 것이 바람직하다. In addition, in order to prevent cracking of the dividing cell 200, the outermost conductive pad may be disposed at a distance of 2.5 mm or more from the end of the dividing cell 200. As the position of the outermost conductive pad is closer to the end of the substrate 201, the output of the split cell 200 is improved, but the bending angle of the metallic wire is increased, which increases the possibility of cracking at the end of the substrate. In the case of applying a conventional ribbon-shaped interconnector, one end of the busbar electrode is disposed 6 mm or more away from the end of the substrate. However, when the metallic wire of the present invention is applied, the outermost conductive pad is attached to the end of the substrate because of the flexible bending property of the metallic wire. It can be provided in a near position. In consideration of such a point, the outermost conductive pad is preferably disposed at a distance of 2.5 to 6 mm from an end of the split cell 200.
기판(201) 전면의 도전성패드 개수와 기판(201) 후면의 도전성패드 개수는 동일하게 설계하는 것이 바람직하다. 전면 도전성패드와 후면 도전성패드를 동일 개수로 설계하는 이유는 분할셀(200)의 휨 현상을 방지하기 위함이다. 기판 전면과 후면의 도전성패드의 개수가 다른 경우, 전면과 후면 도전성패드를 형성하는 도전성 물질의 도포량 차이로 인해 태양전지 기판의 휨 현상이 발생된다. 도 4는 전면 도전성패드와 후면 도전성패드의 개수 차이에 따른 태양전지 기판의 휨량을 나타낸 것으로서, 도 4에 도시한 바와 같이 전면 도전성패드와 후면 도전성패드의 개수 차이가 커질수록 기판의 휨량이 증가함을 알 수 있다. 전면 도전성패드와 후면 도전성패드의 개수를 같게 하는 것이 기판의 휨량을 최소화 할 수 있어 가장 바람직하나, 통상의 구조에 있어서 태빙(tabbing) 장치의 열원이 태양전지 전면측에 위치하고 있어 태양전지 후면측으로의 열전달효율이 떨어지는 문제점이 있으며, 이 경우 후면 도전성패드의 개수를 전면 도전성패드보다 많도록 할 수도 있다. The number of conductive pads on the front of the substrate 201 and the number of conductive pads on the back of the substrate 201 are preferably the same. The reason for designing the same number of front conductive pads and rear conductive pads is to prevent warpage of the division cell 200. When the number of conductive pads on the front and rear surfaces of the substrate is different, the warpage phenomenon of the solar cell substrate may occur due to the difference in the coating amount of the conductive material forming the front and rear conductive pads. 4 illustrates the amount of warpage of the solar cell substrate according to the difference in the number of front conductive pads and the rear conductive pads. As shown in FIG. 4, the amount of warpage of the substrate increases as the difference in the number of front conductive pads and the rear conductive pads increases. It can be seen. It is most preferable to equalize the number of front conductive pads and rear conductive pads to minimize the amount of warpage of the substrate. However, in a conventional structure, the heat source of the tabbing device is located on the front side of the solar cell, There is a problem that the heat transfer efficiency is lowered, in which case the number of the rear conductive pads may be larger than the front conductive pads.
각 분할셀(200)의 전면전극 및 후면전극이 상술한 바와 같은 구조를 갖는 상태에서, 금속성와이어(10)는 이웃하는 분할셀(200)의 전면전극과 후면전극을 연결한다. 일 실시예로, 제 1 분할셀(200)과 제 2 분할셀(200)이 배치되는 경우, 금속성와이어(10)는 제 1 분할셀(200)의 전면전극과 제 2 분할셀(200)의 후면전극을 연결한다(또는 제 1 분할셀(200)의 후면전극과 제 2 분할셀(200)의 전면전극이 금속성와이어(10)에 의해 연결된다). In the state where the front electrode and the rear electrode of each split cell 200 have the structure as described above, the metallic wire 10 connects the front electrode and the rear electrode of the neighboring split cell 200. In an embodiment, when the first split cell 200 and the second split cell 200 are disposed, the metallic wire 10 may be formed of the front electrode of the first split cell 200 and the second split cell 200. The rear electrode is connected (or the rear electrode of the first split cell 200 and the front electrode of the second split cell 200 are connected by the metallic wire 10).
구체적으로, 제 1 분할셀(200) 전면의 도전성패드(212) 상에 배치된 금속성와이어(10)는 연장되어 제 2 분할셀(200) 후면의 도전성패드(도시하지 않음) 상에 배치되는 형태를 이룬다. 제 1 분할셀(200)의 전면전극과 제 2 분할셀(200)의 후면전극을 연결하는 금속성와이어(10)의 수는 제한되지는 않으나, 6∼13개로 구성할 수 있으며, 바람직하게는 6∼10개로 구성할 수 있다. 금속성와이어의 개수 증가시에는 전기저항은 감소되나 수광면적 또한 감소하며, 금속성와이어의 개수 감소시에는 수광면적은 증가하나 전기저항 또한 증가하게 된다. 금속성와이어의 개수에 따른 모듈 출력 평가를 실시한 결과, 도 5에 도시한 바와 같이 금속성와이어의 지름 360㎛에서는 모듈 출력의 최대값을 보이는 금속성와이어 8~9개로의 구성이 가장 바람직함을 알 수 있다. Specifically, the metallic wire 10 disposed on the conductive pad 212 on the front of the first split cell 200 extends and is disposed on the conductive pad (not shown) on the rear of the second split cell 200. To achieve. The number of metallic wires 10 connecting the front electrode of the first divided cell 200 and the rear electrode of the second divided cell 200 is not limited, but may be comprised of 6 to 13, preferably 6 It can comprise with -10 pieces. When the number of metallic wires increases, the electrical resistance decreases but the light receiving area also decreases. When the number of metallic wires decreases, the light receiving area increases but the electrical resistance also increases. As a result of evaluating the module output according to the number of metallic wires, as shown in FIG. 5, it can be seen that the configuration of 8 to 9 metallic wires showing the maximum value of the module output is most preferable at a diameter of 360 µm of the metallic wires. .
한편, 분할하지 않은 정상셀(약 156mm x 156mm)의 경우, 지름 360㎛의 금속성와이어를 적용시 최적의 모듈출력을 위해 12개의 금속성와이어가 적용될 필요가 있음을 도 6의 실험결과를 통해 확인할 수 있다. On the other hand, in the case of the normal cell (about 156mm x 156mm) undivided, it can be confirmed through the experimental results of FIG. have.
정상셀을 2개의 분할셀로 분할하게 되면 셀 면적이 절반으로 축소됨과 함께 각 분할셀의 발생 전류량이 정상셀 대비 절반으로 줄어듬에 따라 금속성와이어의 개수를 12개에서 6개로 줄일 수 있다. 그러나, 분할에 따른 셀 면적 축소, 발생 전류량 감소에 대응하여 금속성와이어의 개수를 분할 면적 비율에 대응하여 줄이게 되면 분할셀의 전기적 특성이 정상셀에 대비하여 악화된다. 그 이유는, 셀 면적 감소에 대응하여 금속성와이어의 개수를 줄이게 되면 에미터에서의 전기저항은 증가하기 때문이다. 따라서, 셀 분할에 따른 금속성와이어 개수의 축소 설계시 에미터의 전기저항 증가를 고려해야 한다. When the normal cell is divided into two divided cells, the cell area is reduced to half, and the number of metallic wires can be reduced from 12 to six as the generated current amount of each divided cell is reduced to half compared to the normal cell. However, when the number of metallic wires is reduced in correspondence with the split area ratio in response to the reduction of the cell area and the amount of generated current due to the split, the electrical characteristics of the split cell are deteriorated in comparison with the normal cell. This is because the electrical resistance in the emitter increases when the number of metallic wires is reduced in response to the decrease in cell area. Therefore, when designing a reduction in the number of metallic wires due to cell division, an increase in the electrical resistance of the emitter should be considered.
이러한 점을 고려하여, 정상셀을 n개(n은 2이상의 자연수)로 분할하는 경우, n개로 분할된 각 분할셀에 적용되는 금속성와이어의 최적 개수(y)는 (1/n+1/3n)x ≤ y ≤ (1/n+1/2n)x를 만족해야 한다. 여기서, x는 정상셀에 적용되는 금속성와이어의 최적 개수, y는 분할셀에 적용되는 금속성와이어의 최적 개수이다. 이에 근거하여, 정상셀을 2개의 분할셀로 분할하는 경우 분할셀에 적용되는 금속성와이어의 최적 개수(y)는 (1/2+1/6)x ≤ y ≤ (1/2+1/4)x를 만족해야 함에 따라 8~9개임을 알 수 있다. In consideration of this, when dividing the normal cell into n (n is a natural number of 2 or more), the optimal number of metallic wires (y) applied to each of the n divided cells is (1 / n + 1 / 3n). x ≤ y ≤ (1 / n + 1 / 2n) x must be satisfied. Here, x is the optimal number of metallic wires applied to the normal cell, y is the optimal number of metallic wires applied to the divided cell. Based on this, when dividing the normal cell into two divided cells, the optimal number of metallic wires (y) applied to the divided cells is (1/2 + 1/6) x ≦ y ≦ (1/2 + 1/4) As you must satisfy) x, you can see that it is 8-9.
한편, 금속성와이어 개수 대신 금속성와이어 지름의 변경 설계도 가능하며, 이와 같은 경우, 상기 금속성와이어의 지름은 120∼370㎛로 설계할 수 있으며, 가장 바람직하게는 120∼240㎛로 구성할 수 있다. 또한, 도 5의 실험결과에서 통상의 태양전지 셀과 리본의 조합에 대비하여 분할셀에 금속성와이어를 조합한 경우 태양전지 모듈 출력이 향상됨을 확인할 수 있다. On the other hand, it is also possible to change the design of the diameter of the metallic wire instead of the number of metallic wire, in this case, the diameter of the metallic wire can be designed to 120 ~ 370㎛, most preferably can be configured to 120 ~ 240㎛. In addition, in the experimental result of FIG. 5, when the metallic wire is combined with the split cell in comparison to the combination of the conventional solar cell and the ribbon, the output of the solar cell module is improved.
단위셀(100)을 분할한 분할셀(200)을 이용하여 태양전지 모듈을 구성함에 따라, 분할셀(200)의 금속성와이어 내에서 캐리어 이동시 이동거리가 짧아지며 캐리어 이동거리가 짧아짐은 분할셀(200) 내에서의 전기저항이 감소됨을 의미하며, 이에 전기적 특성이 저하되지 않는 상태에서 금속성와이어의 지름을 줄일 수 있게 된다. 이와 같이 금속성와이어의 지름을 줄일 수 있게 됨에 따라, 분할셀(200)의 수광면적을 증대시킴과 함께 금속성와이어 형성에 소모되는 재료를 절감할 수 있게 된다. As the solar cell module is configured using the divided cell 200 in which the unit cell 100 is divided, the moving distance becomes shorter when the carrier moves in the metallic wire of the divided cell 200, and the carrier moving distance becomes shorter. It means that the electrical resistance in the 200) is reduced, thereby reducing the diameter of the metallic wire in the state that the electrical properties are not degraded. As the diameter of the metallic wire can be reduced, the light receiving area of the split cell 200 can be increased and the material consumed to form the metallic wire can be reduced.
[부호의 설명][Description of the code]
10 : 금속성와이어 100 : 단위셀10: metallic wire 100: unit cell
200 : 태양전지 201 : 기판200: solar cell 201: substrate
211 : 수집전극 212 : 도전성패드211: collection electrode 212: conductive pad
222 : 후면 도전성패드222: rear conductive pad
종래의 리본 인터커넥터 연결방식을 금속성와이어 연결방식으로 대체함에 따라, 금속성와이어의 개수를 리본 인터커넥터의 개수보다 늘릴 수 있어 태양전지 모듈의 전기적 특성을 향상시킬 수 있으며, 리본 인터커넥터보다 폭이 좁은 금속성와이어를 적용함으로써 수광면적을 증대시킬 수 있다. By replacing the conventional ribbon interconnection method with the metallic wire connection method, the number of metallic wires can be increased than the number of ribbon interconnectors, thereby improving the electrical characteristics of the solar cell module, and narrower than the ribbon interconnectors. By applying the metallic wire, the light receiving area can be increased.
또한, 단위셀을 분할한 분할셀을 배치하여 태양전지 모듈을 구성함에 따라, 분할셀 내에서의 전기저항이 감소되어 금속성와이어의 개수 또는 지름을 줄일 수 있게 되며, 이와 같이 금속성와이어의 개수 또는 지름을 줄일 수 있게 됨에 따라, 분할셀의 수광면적을 증대시킴과 함께 금속성와이어 형성에 소모되는 재료를 절감할 수 있게 된다. In addition, as the solar cell module is configured by arranging the divided cells in which the unit cells are divided, the electrical resistance in the divided cells can be reduced to reduce the number or diameter of the metallic wires. As such, the number or diameter of the metallic wires can be reduced. As it can be reduced, it is possible to increase the light receiving area of the split cell and to reduce the material consumed to form the metallic wire.
이와 함께, 도전성패드의 개수, 면적, 위치 등을 최적 설계함으로써 금속성와이어와 도전성패드 간의 부착특성 및 태양전지의 휨(bowing) 특성을 향상시킬 수 있다.In addition, by optimally designing the number, area, and position of the conductive pads, adhesion characteristics between the metallic wires and the conductive pads and bowing characteristics of the solar cell can be improved.

Claims (20)

  1. 제 1 분할셀 및 제 2 분할셀을 포함하며, 이웃하여 배치되는 복수의 분할셀; 및A plurality of divided cells including a first divided cell and a second divided cell and disposed adjacent to each other; And
    제 1 분할셀의 전면전극과 제 2 분할셀의 후면전극을 전기적으로 연결하는 복수의 금속성와이어;를 포함하여 이루어지며, And a plurality of metallic wires electrically connecting the front electrode of the first divided cell and the rear electrode of the second divided cell.
    상기 분할셀은 태양전지 제조공정을 통해 완성된 단위셀이 복수 등분으로 분할된 것인 것을 특징으로 하는 태양전지 모듈. The division cell is a solar cell module, characterized in that the unit cell completed through the solar cell manufacturing process is divided into a plurality of equal parts.
  2. 제 1 항에 있어서, 상기 전면전극과 후면전극 각각은 평행한 형태로 이격되어 배치되는 복수의 수집전극으로 이루어지며, The method of claim 1, wherein each of the front electrode and the back electrode is composed of a plurality of collection electrodes spaced apart in parallel form,
    상기 금속성와이어는 복수의 수집전극과 교차하는 형태로 연결되는 것을 특징으로 하는 태양전지 모듈. The metallic wire is a solar cell module, characterized in that connected in a form crossing with a plurality of collection electrodes.
  3. 제 1 항에 있어서, 상기 전면전극과 후면전극 각각은 평행한 형태로 이격되어 배치되는 복수의 수집전극을 구비하며, The method of claim 1, wherein each of the front electrode and the back electrode is provided with a plurality of collection electrodes spaced apart in parallel form,
    금속성와이어가 배치되는 영역에 도전성패드가 구비되고, 복수의 도전성패드는 금속성와이어와 전기적으로 연결되는 것을 특징으로 하는 태양전지 모듈. A conductive pad is provided in a region where the metallic wire is disposed, and the plurality of conductive pads are electrically connected to the metallic wire.
  4. 제 1 항에 있어서, 상기 전면전극과 후면전극 각각은 평행한 형태로 이격되어 배치되는 복수의 수집전극을 구비하며, The method of claim 1, wherein each of the front electrode and the back electrode is provided with a plurality of collection electrodes spaced apart in parallel form,
    복수의 수집전극과 교차하는 버스바전극을 구비하며, 상기 버스바전극은 금속성와이어와 전기적으로 연결되는 것을 특징으로 하는 태양전지 모듈. And a bus bar electrode intersecting a plurality of collection electrodes, wherein the bus bar electrode is electrically connected to the metallic wire.
  5. 제 1 항에 있어서, 상기 전면전극과 후면전극 각각은 평행한 형태로 이격되어 배치되는 복수의 수집전극을 구비하며, The method of claim 1, wherein each of the front electrode and the back electrode is provided with a plurality of collection electrodes spaced apart in parallel form,
    복수의 수집전극과 교차하는 버스바전극을 구비하며, 버스바전극 상에 도전성패드가 구비되며, 복수의 도전성패드는 금속성와이어와 전기적으로 연결되는 것을 특징으로 하는 태양전지 모듈. And a bus bar electrode intersecting the plurality of collection electrodes, wherein a conductive pad is provided on the bus bar electrode, and the plurality of conductive pads are electrically connected to the metallic wires.
  6. 제 1 항에 있어서, 상기 전면전극과 후면전극 각각은 평행한 형태로 이격되어 배치되는 복수의 수집전극을 구비하며, The method of claim 1, wherein each of the front electrode and the back electrode is provided with a plurality of collection electrodes spaced apart in parallel form,
    금속성와이어가 배치되는 영역에 도전성패드가 구비되고, 도전성패드와 도전성패드 사이에 버스바전극이 구비되며, 복수의 도전성패드는 금속성와이어와 전기적으로 연결되는 것을 특징으로 하는 태양전지 모듈. A conductive pad is provided in a region where the metallic wire is disposed, a bus bar electrode is provided between the conductive pad and the conductive pad, and the plurality of conductive pads are electrically connected to the metallic wire.
  7. 제 1 항에 있어서, 상기 금속성와이어의 개수는 6∼13개인 것을 특징으로 하는 태양전지 모듈. The solar cell module of claim 1, wherein the number of metallic wires is 6 to 13.
  8. 제 1 항에 있어서, 상기 금속성와이어의 개수는 6∼10개인 것을 특징으로 하는 태양전지 모듈. The solar cell module of claim 1, wherein the number of metallic wires is 6 to 10.
  9. 제 1 항에 있어서, 금속성와이어의 지름은 120∼370㎛인 것을 특징으로 하는 태양전지 모듈. The solar cell module according to claim 1, wherein the diameter of the metallic wire is 120 to 370 µm.
  10. 제 1 항에 있어서, 금속성와이어의 지름은 120∼240㎛인 것을 특징으로 하는 태양전지 모듈. The solar cell module according to claim 1, wherein the diameter of the metallic wire is 120 to 240 µm.
  11. 제 3 항, 제 5 항, 제 6 항 중 어느 한 항에 있어서, 최외곽에 배치되는 전면 도전성패드의 면적 또는 후면 도전성패드의 면적은 내측에 배치되는 전면 도전성패드의 면적 또는 후면 도전성패드의 면적보다 큰 것을 특징으로 하는 태양전지 모듈. According to any one of claims 3, 5, and 6, the area of the front conductive pad or the rear conductive pad disposed at the outermost part is the area of the front conductive pad or rear conductive pad disposed at the inner side. Solar cell module characterized in that larger.
  12. 제 3 항, 제 5 항, 제 6 항 중 어느 한 항에 있어서, 전면 도전성패드의 개수와 후면 도전성패드의 개수는 동일한 것을 특징으로 하는 태양전지 모듈. The solar cell module according to any one of claims 3, 5, and 6, wherein the number of front conductive pads and the number of rear conductive pads are the same.
  13. 제 3 항, 제 5 항, 제 6 항 중 어느 한 항에 있어서, 후면 도전성패드의 개수는 전면 도전성패드의 개수보다 많은 것을 특징으로 하는 태양전지 모듈. The solar cell module of claim 3, wherein the number of rear conductive pads is greater than the number of front conductive pads.
  14. 제 3 항, 제 5 항, 제 6 항 중 어느 한 항에 있어서, 복수의 도전성패드는 동일 간격으로 이격, 배치되는 것을 특징으로 하는 태양전지 모듈. The solar cell module of any one of claims 3, 5, and 6, wherein the plurality of conductive pads are spaced apart from each other at equal intervals.
  15. 제 3 항, 제 5 항, 제 6 항 중 어느 한 항에 있어서, 도전성패드 또는 도전성패드 사이의 간격은 15mm 이하인 것을 특징으로 하는 태양전지 모듈. The solar cell module according to any one of claims 3, 5, and 6, wherein an interval between the conductive pads or the conductive pads is 15 mm or less.
  16. 제 3 항, 제 5 항, 제 6 항 중 어느 한 항에 있어서, 최외곽에 배치되는 전면 도전성패드 또는 후면 도전성패드는 태양전지 기판 끝단으로부터 2.5mm 이상 떨어진 곳에 배치되는 것을 특징으로 하는 태양전지 모듈. The solar cell module of any one of claims 3, 5 and 6, wherein the front conductive pad or the rear conductive pad disposed at the outermost part is disposed at a distance of 2.5 mm or more from the end of the solar cell substrate. .
  17. 제 1 항에 있어서, 상기 태양전지는 양면수광형 태양전지이며, 에미터층이 기판 전면부에 위치하고 기판 후면부에 후면전계층이 구비되는 전면접합형 양면수광형 태양전지인 것을 특징으로 하는 태양전지 모듈. The solar cell module of claim 1, wherein the solar cell is a double-sided light-receiving solar cell, and the emitter layer is a front-junction type double-sided light-receiving solar cell having an emitter layer disposed on a front surface of the substrate and a rear electric field layer provided on the rear surface of the substrate. .
  18. 제 1 항에 있어서, 상기 태양전지는 양면수광형 태양전지이며, 에미터층이 기판 후면부에 위치하고 기판 전면부에 전면전계층이 구비되는 후면접합형 양면수광형 태양전지인 것을 특징으로 하는 태양전지 모듈. The solar cell module according to claim 1, wherein the solar cell is a double-sided light-receiving solar cell, and the emitter layer is a back-junction double-sided light-receiving solar cell having an emitter layer disposed on a rear surface of the substrate and a front electric field layer provided on the front surface of the substrate.
  19. 제 1 항에 있어서, 상기 태양전지는 전면수광형 태양전지인 것을 특징으로 하는 태양전지 모듈. The solar cell module according to claim 1, wherein the solar cell is a front light receiving solar cell.
  20. 제 3 항, 제 5 항, 제 6 항 중 어느 한 항에 있어서, 최외곽에 배치되는 전면 도전성패드의 면적 또는 후면 도전성패드의 면적은 내측에 배치되는 전면 도전성패드의 면적 또는 후면 도전성패드의 면적보다 4∼8배 큰 것을 특징으로 하는 태양전지 모듈. According to any one of claims 3, 5, and 6, the area of the front conductive pad or the rear conductive pad disposed at the outermost part is the area of the front conductive pad or rear conductive pad disposed at the inner side. Solar cell module, characterized in that 4 to 8 times larger.
PCT/KR2017/010960 2016-10-13 2017-09-29 Solar cell module WO2018070724A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020197006501A KR20190032584A (en) 2016-10-13 2017-09-29 Solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0132589 2016-10-13
KR20160132589 2016-10-13

Publications (1)

Publication Number Publication Date
WO2018070724A1 true WO2018070724A1 (en) 2018-04-19

Family

ID=61905654

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2017/006495 WO2018070636A1 (en) 2016-10-13 2017-06-21 Solar cell module
PCT/KR2017/010960 WO2018070724A1 (en) 2016-10-13 2017-09-29 Solar cell module

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006495 WO2018070636A1 (en) 2016-10-13 2017-06-21 Solar cell module

Country Status (2)

Country Link
KR (1) KR20190032584A (en)
WO (2) WO2018070636A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102632464B1 (en) 2021-07-23 2024-02-01 (재)한국나노기술원 Method for manufacturing flexible solar cell module and flexible solar cell module manufactured by using the same
CN115084301B (en) * 2022-01-13 2024-01-23 浙江晶科能源有限公司 Solar energy assembly
CN115101617B (en) 2022-01-13 2024-01-19 浙江晶科能源有限公司 Solar energy assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295145A (en) * 2005-03-16 2006-10-26 Fuji Electric Holdings Co Ltd Manufacturing method of solar cell module
KR20130008918A (en) * 2011-07-13 2013-01-23 고려대학교 산학협력단 Mixed type photovoltaic module
KR20160001226A (en) * 2014-06-26 2016-01-06 엘지전자 주식회사 Solar cell module
KR20160019317A (en) * 2014-08-11 2016-02-19 엘지전자 주식회사 Solar cell module
KR101627943B1 (en) * 2014-12-18 2016-06-07 고려대학교 산학협력단 Photovoltaic cell module and method of manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4036692B2 (en) * 2002-06-27 2008-01-23 三洋電機株式会社 Method for manufacturing solar cell module and method for separating solar cells
CN103038896B (en) * 2010-05-28 2018-02-23 太阳能世界工业有限公司 For connecting and connecting the method and solar cell assembly of solar cell
KR101138174B1 (en) 2010-09-09 2012-04-25 현대중공업 주식회사 Method for fabricating back electrodes of solar cell
KR102175893B1 (en) * 2014-02-24 2020-11-06 엘지전자 주식회사 Manufacturing method of solar cell module
KR102219791B1 (en) * 2014-08-04 2021-02-24 엘지전자 주식회사 Solar cell module
KR101630130B1 (en) * 2015-08-20 2016-06-13 엘지전자 주식회사 Solar cell and solar cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295145A (en) * 2005-03-16 2006-10-26 Fuji Electric Holdings Co Ltd Manufacturing method of solar cell module
KR20130008918A (en) * 2011-07-13 2013-01-23 고려대학교 산학협력단 Mixed type photovoltaic module
KR20160001226A (en) * 2014-06-26 2016-01-06 엘지전자 주식회사 Solar cell module
KR20160019317A (en) * 2014-08-11 2016-02-19 엘지전자 주식회사 Solar cell module
KR101627943B1 (en) * 2014-12-18 2016-06-07 고려대학교 산학협력단 Photovoltaic cell module and method of manufacturing the same

Also Published As

Publication number Publication date
WO2018070636A1 (en) 2018-04-19
KR20190032584A (en) 2019-03-27

Similar Documents

Publication Publication Date Title
WO2011078630A2 (en) Solar power generating apparatus
WO2012102451A1 (en) Solar cell and manufacturing method of the same
WO2011043517A1 (en) Solar cell and solar cell module
WO2011021755A1 (en) Solar cell
WO2010131816A1 (en) Solar cell
WO2018070724A1 (en) Solar cell module
WO2015056934A1 (en) Solar cell module
WO2013100498A1 (en) Connector and solar cell module comprising the same
WO2012020887A1 (en) Solar cell panel
WO2015041437A1 (en) Solar battery module
WO2019083059A1 (en) Solar cell having edge collecting electrode, and solar cell module comprising same
WO2012015108A1 (en) Solar cell panel
WO2012096548A2 (en) Solar cell module
WO2011052875A2 (en) Solar cell, method of manufacturing the same, and solar cell module
WO2018004179A1 (en) Solar cell module
WO2013162302A1 (en) Photovoltaic apparatus
WO2017222292A1 (en) Perl solar cell and method for preparing same
WO2013105750A1 (en) Silicon solar cell module using conductive paste as electrode and method for manufacturing same
WO2017155224A1 (en) Stranded conductor wire for solar cell module
WO2013077674A1 (en) Solar cell module and method of fabricating the same
WO2013066031A1 (en) Solar cell module and method of fabricating the same
WO2015041463A1 (en) Solar battery module
WO2016085044A1 (en) Method for manufacturing multi-junction solar battery using compound thin film and multi-junction solar battery
WO2013094937A1 (en) Solar cell apparatus and method of fabricating the same
WO2013051854A2 (en) Solar cell and solar cell module using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197006501

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17859957

Country of ref document: EP

Kind code of ref document: A1