WO2014073582A1 - Co2ガス分離膜及びその製造方法 - Google Patents

Co2ガス分離膜及びその製造方法 Download PDF

Info

Publication number
WO2014073582A1
WO2014073582A1 PCT/JP2013/080043 JP2013080043W WO2014073582A1 WO 2014073582 A1 WO2014073582 A1 WO 2014073582A1 JP 2013080043 W JP2013080043 W JP 2013080043W WO 2014073582 A1 WO2014073582 A1 WO 2014073582A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
gas separation
polymer
amine
gas
Prior art date
Application number
PCT/JP2013/080043
Other languages
English (en)
French (fr)
Inventor
浩太 山崎
育雄 谷口
照彦 甲斐
池田 健一
淑紅 段
崇 斉藤
伸吾 風間
Original Assignee
公益財団法人地球環境産業技術研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人地球環境産業技術研究機構 filed Critical 公益財団法人地球環境産業技術研究機構
Priority to JP2014545738A priority Critical patent/JP6235479B2/ja
Publication of WO2014073582A1 publication Critical patent/WO2014073582A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/145Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing embedded catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/28Polymers of vinyl aromatic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/402Polymers based on the polymerisation of fumaric acid or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/403Polymers based on the polymerisation of maleic acid or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/404Polymers based on the polymerisation of crotonic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • B01D2323/345UV-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a CO 2 gas separation membrane, a method for producing the same, and a gas separation method using the CO 2 gas separation membrane.
  • a gas component can be separated by a film composed of the polymer material (see, for example, Non-Patent Document 1).
  • a gas component separation technique using a polymer membrane has advantages such as low energy requirements, a reduction in the size of the separation device, and ease of maintenance of the separation device, and is used in various fields.
  • the conventional CO 2 gas separation membrane has insufficient carbon dioxide selectivity (the membrane permeation rate of carbon dioxide / the membrane permeation rate of the separation target gas), and carbon dioxide cannot be recovered at the target concentration. It was. Therefore, development of a separation membrane having excellent carbon dioxide selectivity has been desired.
  • Non-patent Documents 2 and 3 a separation membrane in which a polyamidoamine dendrimer that is a liquid substance at room temperature is impregnated in a microporous support has been proposed.
  • a separation membrane in which a polyamidoamine dendrimer that is a liquid substance at room temperature is impregnated in a microporous support has been proposed (Non-patent Documents 2 and 3).
  • a helium carrier method in which no pressure difference was provided to the membrane, the carbon dioxide selectivity was excellent and the carbon dioxide selectivity exceeding 1000 was shown.
  • Patent Document 1 a separation membrane capable of applying a practical pressure difference by fixing a substance having selective strong affinity for carbon dioxide such as polyamide amine dendrimer was developed.
  • the present invention improves the transmission rate of CO 2 gas, and to provide a CO 2 gas separation membrane with an improved CO 2 gas separation performance.
  • the present inventors have formulated a zinc complex in which an amine is coordinated with a polymer film in which a nonvolatile amine compound is immobilized, In order to complete the present invention, it is found that an environment in which HCO 3 ⁇ is easily generated in the separation membrane can be obtained, and that the permeation rate of the CO 2 gas through the separation membrane can be improved. It came.
  • a CO 2 gas separation membrane comprising a polymer membrane in which a nonvolatile amine compound is immobilized in a polymer, and a zinc complex in which an amine is coordinated.
  • the nonvolatile amine compound is a nonvolatile amine compound having at least one group represented by the following formulas [I] to [III].
  • a 1 represents a divalent organic residue having 1 to 3 carbon atoms.
  • P represents an integer of 0 or 1.
  • R 1 , R 2 and R 3 are the same or different from each other, and represent a hydrogen atom or Represents an alkyl group having 1 to 6 carbon atoms, * represents a binding site);
  • a 2 represents a divalent organic residue having 1 to 3 carbon atoms.
  • Q represents an integer of 0 or 1.
  • R 4 , R 5 and R 6 are the same or different from each other, and represent a hydrogen atom or Represents an alkyl group having 1 to 6 carbon atoms, * represents a binding site);
  • R 7 , R 8 and R 9 are the same or different from each other and represent a hydrogen atom or carbon.
  • a zinc complex lamination or coating solution in which an amine is coordinated is used for blending a zinc complex in which an amine is coordinated, and diaminopropionic acid, monoethanolamine, amino acid and poly
  • the CO 2 gas separation membrane according to any one of the above [1] to [7], comprising one or more additives selected from the group consisting of sodium acrylate.
  • the [1] to [8], wherein the non-volatile amine compound is poly N- [3- (dimethylamino) propyl] methacrylamide, a polyamidoamine dendrimer or a triazine dendrimer. CO 2 gas separation membrane.
  • a polymer is obtained by polymerizing a polyfunctional polymerizable monomer, and the polyfunctional polymerizable monomer is a polyfunctional (meth) acrylamide, a polyfunctional (meth) acrylate, 10.
  • the CO 2 gas separation membrane according to any one of the above [1] to [9], which is at least one selected from the group consisting of functional vinyl ethers and divinylbenzene.
  • Any one of [1] to [10] above, wherein the high molecular weight polymer is obtained by adding a monofunctional polymerizable monomer to a polyfunctional polymerizable monomer for polymerization. 2.
  • Monofunctional polymerizable monomers are monofunctional (meth) acrylamides, monofunctional (meth) acrylates, monofunctional vinyl ethers, monofunctional N-vinyl compounds, monofunctional vinyl compounds, and monofunctional ⁇ .
  • a method for producing a CO 2 gas separation membrane wherein (1) a polymerizable monomer in the presence of a nonvolatile amine compound having at least one group represented by the following formulas [I] to [III] And a step of immobilizing the amine compound in the resulting polymer to form a polymer film, and (2) a zinc complex in which an amine is coordinated to the polymer film.
  • a method for producing a CO 2 gas separation membrane comprising a step of blending.
  • a 1 represents a divalent organic residue having 1 to 3 carbon atoms.
  • P represents an integer of 0 or 1.
  • R 1 , R 2 and R 3 are the same or different from each other, and represent a hydrogen atom or Represents an alkyl group having 1 to 6 carbon atoms, * represents a binding site);
  • a 2 represents a divalent organic residue having 1 to 3 carbon atoms.
  • Q represents an integer of 0 or 1.
  • R 4 , R 5 and R 6 are the same or different from each other, and represent a hydrogen atom or Represents an alkyl group having 1 to 6 carbon atoms, * represents a binding site);
  • R 7 , R 8 and R 9 are the same or different from each other and represent a hydrogen atom or carbon.
  • step (2) at least one kind selected from the group consisting of diaminopropionic acid, monoethanolamine, amino acid, and sodium polyacrylate is used as a solution for coating or coating a zinc complex in which an amine is coordinated.
  • the method for producing a CO 2 gas separation membrane according to any one of the above [14] to [17], comprising an additive.
  • the non-volatile amine compound is poly N- [3- (dimethylamino) propyl] methacrylamide, a polyamidoamine dendrimer or a triazine dendrimer.
  • CO 2 gas separation membrane and its manufacturing method capable of separating carbon dioxide with a transmission rate of high CO 2 gas from the other gas is provided.
  • separating a carbon dioxide from another gas efficiently using this separation membrane is provided.
  • the separation membrane of the present invention is very stable because the amine compound having carbon dioxide separation ability is not supported on the surface of the polymer membrane but is immobilized in the polymer membrane. It has the feature of being excellent. That is, the separation membrane obtained in the present invention does not leak out amine compounds having groups represented by the formulas [I] to [III] when pressure is applied, and thus the separation membrane can be used stably for a long period of time. It has the feature that it can.
  • FIG. 1 shows the reaction in a CO 2 gas separation membrane.
  • FIG. 2 shows an embodiment of a CO 2 gas separation membrane.
  • FIG. 3 is a schematic view of a gas separation device.
  • GC means gas chromatography.
  • the CO 2 gas separation membrane of the present invention is characterized in that a zinc complex in which an amine is coordinated is blended with a polymer membrane in which a nonvolatile amine compound is immobilized.
  • the non-volatile amine compound refers to a non-volatile amine at the use temperature of the polymer film (200 ° C. or lower).
  • the polymer film is not particularly limited as long as a non-volatile amine compound is immobilized on the polymer film, but preferably a group represented by the following formulas [I] to [III] is present in the polymer polymer.
  • a non-volatile amine compound having at least one is immobilized.
  • a 1 represents a divalent organic residue having 1 to 3 carbon atoms.
  • P represents an integer of 0 or 1.
  • R 1 , R 2 and R 3 are the same or different from each other, and represent a hydrogen atom or Represents an alkyl group having 1 to 6 carbon atoms, * represents a binding site);
  • a 2 represents a divalent organic residue having 1 to 3 carbon atoms.
  • the CO 2 gas separation membrane includes those in which a polymer membrane having gas separation ability and a porous support membrane are integrally formed.
  • the compounding of the zinc complex in which amine is coordinated to the polymer film is not particularly limited.
  • a method of laminating or coating a zinc complex in which amine is coordinated on at least one surface of the polymer film Preferably mentioned.
  • the reaction in the CO 2 gas separation membrane of the present invention is as shown in FIG. CO 2 moves in the membrane as CO 2 ⁇ HCO 3 ⁇ (supply side) ⁇ diffusion ⁇ HCO 3 ⁇ (permeation side) ⁇ CO 2 .
  • the present inventors have identified a rate-limiting reaction site in order to improve the CO 2 permeation amount (Q CO2 ) and increase CO 2 selectivity over conventional membranes, The present invention has been completed to promote.
  • the zinc complex in which an amine is coordinated is not particularly limited as long as the central metal is zinc and the ligand is an amine.
  • the amine is a secondary amine and / or a tertiary amine. Is preferred.
  • the zinc complex formed by coordination of the secondary amine and / or tertiary amine is not particularly limited, but preferably includes a heterocyclic compound having 4 to 15 carbon atoms.
  • zinc complex comprising the heterocyclic compound having 4 to 15 carbon atoms and coordinated with a secondary amine and / or a tertiary amine are not particularly limited, (Zn-nitrilotris (2-benzimidazolylmethyl-6-sulfonic acid; ZNTBS)), carbonic anhydrase (CA), etc.
  • ZNTBS Zn-nitrilotris (2-benzimidazolylmethyl-6-sulfonic acid
  • CA carbonic anhydrase
  • it includes not only natural carbonic anhydrase but also genetically engineered carbonic anhydrase produced by a known genetic engineering technique. Two or more kinds can be used in combination.
  • the thickness of a layer composed of a zinc complex in which an amine is coordinated hinders the effect of the present invention.
  • a catalyst layer a layer composed of a zinc complex in which an amine is coordinated
  • it is not particularly limited, but is usually 0.01 to 100 ⁇ m, and preferably 0.1 to 10 ⁇ m.
  • an additive may be added to the zinc complex as necessary.
  • the additive include, but are not particularly limited to, for example, diaminopropionic acid (DAPA), monoethanolamine (MEA), amino acids (proline, etc.), sodium polyacrylate, etc. Diaminopropionic acid, proline and the like are preferable. These may be used alone or in combination of two or more.
  • DAPA diaminopropionic acid
  • MEA monoethanolamine
  • amino acids proline, etc.
  • sodium polyacrylate etc.
  • Diaminopropionic acid, proline and the like are preferable. These may be used alone or in combination of two or more.
  • a salt may be added to the zinc complex as necessary from the viewpoint of further improving the CO 2 separation performance.
  • a metal salt is preferable, For example, an alkali metal salt and an alkaline-earth metal salt are mentioned suitably.
  • the metal salt examples include alkali metal hydroxides (for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, rubidium hydroxide, etc.), alkaline earth metal hydroxides (for example, calcium hydroxide, Magnesium hydroxide, strontium hydroxide, barium hydroxide, etc.), alkali metal carbonates (eg, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, etc.), alkaline earth metal carbonates (eg, magnesium carbonate, calcium carbonate, Barium carbonate, etc.), alkali metal bicarbonates (eg, lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, cesium bicarbonate, etc.), alkaline earth metal bicarbonates (eg, magnesium bicarbonate, calcium bicarbonate, carbonates) Barium hydrogen, etc.), alkali metal alkoxides (eg , Lithium ethoxide, sodium ethoxide, potassium ethoxide, sodium methoxide
  • the amount of the salt added to the zinc complex is not particularly limited as long as the zinc complex does not phase-separate, but the salt is preferably added in an amount of 0.1 to 0.7 M with respect to 0.5% zinc complex. 0.2 to 0.6M is more preferable, and 0.3 to 0.5M is even more preferable.
  • salt can be mixed in the film-forming solution.
  • the salt concentration in the CO 2 separation membrane is not particularly limited, but is preferably 25 to 95 wt%, more preferably 30 to 90 wt%, and further preferably 35 to 90 wt%.
  • the non-volatile amine compound immobilized in the polymer is not particularly limited as long as it is a non-volatile amine at the use temperature of the polymer film (200 ° C. or lower), but is represented by the above formulas [I] to [III].
  • An amine compound having at least one group is preferred.
  • examples of the divalent organic residue having 1 to 3 carbon atoms represented by A 1 , A 2 , A 3 and A 4 include, for example, linear or branched carbon number Examples include 1 to 3 alkylene groups.
  • alkylene groups -CH 2 -, - CH 2 -CH 2 -, - CH 2 -CH 2 -CH 2 -, - CH 2 -CH (CH 3) - , and the like, Of these, —CH 2 — is particularly preferable.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 in the formulas [I] to [III] are the same as or different from each other, and each represents a hydrogen atom or a carbon number of 1 to Represents an alkyl group of 6;
  • the alkyl group having 1 to 6 carbon atoms is not particularly limited, and may be linear or branched, and specifically includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group. , Sec-butyl group, tert-butyl group, pentyl group, hexyl group and the like.
  • the number of the groups is not particularly limited as long as at least one group represented by the formulas [I] to [III] is contained, but preferably the group is 2 to 4096. Examples thereof include those having 3 to 128 groups, more preferably 3 to 128 groups.
  • the weight fraction occupied by the groups represented by the formulas [I] to [III] is not particularly limited. From the viewpoint of enhancing the separation ability of carbon dioxide, the weight fraction of the groups represented by the formulas [I] to [III] in the amine compound is preferably about 5% or more, and is about 10 to 94%. More preferred is about 15 to 53%.
  • the skeleton to which the groups represented by the general formulas [I] to [III] are bonded is not particularly limited, but preferred examples include those represented by the following formulas ( In the following formula, n represents an integer of 0 to 10 (other than 0 is a positive integer), and m represents a positive integer).
  • the m is not particularly limited as long as the effect of the present invention is not hindered, and may be, for example, 1 to 3000 or 1 to 2500.
  • the groups represented by the formulas [I] to [III] are bonded directly or via an alkylene group to some or all of the binding sites of the rice mark in the above formula. It is a compound in which a hydrogen atom, an alkyl group, an aminoalkyl group, a hydroxyalkyl group, or the like is bonded to a bonding site to which a group represented by formulas [I] to [III] is not bonded.
  • amine compound of the present invention for example, in a dendrimer having at least one amino group represented by —NH 2 at the terminal, at least one of the amino groups is converted to an amino group represented by the following general formula [IV]. Examples thereof include those having a substituted structure.
  • R a and R b may be the same or different and each represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R a and R b are not particularly limited as long as the effects of the present invention are not hindered, and may be the same or different from each other, and may be a hydrogen atom, a methyl group, an ethyl group, a propyl group, or isopropyl. A group or the like is preferable.
  • the non-volatile amine compound is not particularly limited as long as the effect of the present invention is not hindered.
  • poly N- [3- (dimethylamino) propyl] methacrylamide Poly N- [3- (Dimethylamino) propyl] methacrylamide)
  • Polyamidoamine dendrimers, triazine dendrimers, and the like are preferred.
  • Non-volatile amine compounds used in the present invention include, for example, the 0th generation polyamidoamine dendrimers represented by the following formula, and the 1st generation or more corresponding to these 0 th generation polyamidoamine dendrimers. It is done.
  • examples of particularly suitable compounds include the following polyamidoamine-based dendrimers.
  • Preferred examples of the triazine-based dendrimer include 0th generation dendrimers represented by the following formula and 1st to 5th generation dendrimers corresponding thereto.
  • bonded with the following skeleton among the said skeleton is mentioned, for example.
  • m has the same meaning as above
  • the following compound etc. are mentioned.
  • m has the same meaning as above
  • the dendrimers used in the present invention include those in which all the branches have the same length and those in which at least one of them is substituted with a hydroxyalkyl group or an alkyl group and the lengths of the branches are different.
  • various dendrimers having different numbers of surface groups that is, groups represented by the formulas [I] to [III]] can be used.
  • the relation between the number of surface groups of polyamidoamine-based dendrimer and the generation is as follows. When the number of the surface groups of the 0th generation is a (a represents an integer of 3 or more), the b generation (b represents an integer).
  • the number c of the surface groups of. c a ⁇ 2 b
  • the dendrimer a known commercially available product (for example, the 0th to 10th generation PAMAM dendrimer manufactured by Aldrich) can be used, and in particular, the 0th to 5th generation polyamidoamine dendrimer is preferably used. be able to.
  • the number of surface groups for each generation when the number of surface groups of the 0th generation of the polyamidoamine dendrimer is 4 is shown in Table 1 below.
  • the amine compound having a group represented by the formula [I] can be produced according to a known organic synthesis method.
  • a method of reacting a mother nucleus compound having an alkyl ester group with an amine compound represented by the following formula [Ia] is exemplified.
  • an amine compound having a group represented by the formula [II] can be produced by converting the alkyl ester group of the compound having an alkyl ester group into a group represented by the formula [I].
  • the following formula is a formula in which an alkyl ester group is converted to a group represented by the formula [I] in the synthesis method.
  • a 5 represents an alkoxy group having 1 to 3 carbon atoms.
  • Examples of the alkoxy group having 1 to 3 carbon atoms represented by A 5 include a methoxy group, an ethoxy group, and a propoxy group, and a methoxy group and an ethoxy group are preferable.
  • the reaction between the compound having an alkyl ester group and the amine compound represented by the formula [Ia] is usually performed by converting the amine compound represented by the formula [Ia] to about 3 to 20 per 1 mol of the compound having an alkyl ester group. It is carried out using a mole, preferably about 5 to 10 moles.
  • the reaction between the compound having an alkyl ester group and the amine compound represented by the formula [Ia] is usually carried out in a suitable solvent.
  • the solvent known solvents can be widely used as long as they do not inhibit the reaction. Examples of such a solvent include methanol, ethanol, 2-propanol, tetrahydrofuran, 1,4-dioxane and the like.
  • the reaction between the compound having an alkyl ester group and the amine compound represented by [Ia] is usually about 0 to 40 ° C., preferably about 20 to 30 ° C., about 90 to 180 hours, preferably about 160 to 170 hours. This is done by continuing to stir.
  • compounds of known compounds can be used as the compound having an alkyl ester group used as a raw material and the amine compound represented by the formula [Ia].
  • the reaction mixture obtained by the above reaction is cooled, for example, and then subjected to an isolation operation such as filtration, concentration, extraction, etc. to separate the crude reaction product, and further, if necessary, column chromatography, recrystallization, etc.
  • the amine compound having a group represented by the formula [I] can be isolated and purified by carrying out a normal purification operation.
  • the amine compound having a group represented by the formula [II] is prepared by reacting a mother nucleus compound having an amino group and an amine compound having an alkyl ester group at the terminal represented by the following formula [IIa] in the same manner as described above. Can be manufactured.
  • a 2 , R 4 , R 5 , R 6 and q have the same meaning as described above.
  • a 6 represents an alkoxy group having 1 to 3 carbon atoms.
  • Examples of the alkoxy group having 1 to 3 carbon atoms represented by A 6 include a methoxy group, an ethoxy group, and a propoxy group, and a methoxy group and an ethoxy group are preferable.
  • the amine compound having a group represented by the formula [III] is, for example, a mother nucleus compound having an alkenyl group at the terminal represented by the following formula [IIIa] and a diamine compound represented by the following formula [IIIb] in the same manner as described above. It can be produced by reacting. (In the formula, A 3 , A 4 , R 7 , R 8 , R 9 , r and s have the same meaning as described above.)
  • the polymer of the present invention is not particularly limited, but may be, for example, a polyvinyl alcohol (PVA) polymer or a polymer obtained by polymerizing a polyfunctional polymerizable monomer.
  • the polyfunctional polymerizable monomer is not particularly limited as long as it is a polymerizable compound having two or more carbon-carbon unsaturated bonds. Examples include polyfunctional acrylic monomers such as polyfunctional (meth) acrylamides and polyfunctional (meth) acrylates, polyfunctional vinyl ethers such as polyfunctional vinyl ethers or divinylbenzene, and the like. Particularly preferred is a polyfunctional acrylic monomer having an ester bond in the molecule from the viewpoint of more stable polymerization when polymerized in the presence of the amine compound. These polyfunctional polymerizable monomers can be used alone or in combination of two or more.
  • the PVA polymer is not particularly limited, and a known polymer can be used. Moreover, the said PVA-type polymer can be manufactured by a well-known method, for example, can be obtained by saponifying polyvinyl ester.
  • the polyvinyl ester used in the present invention is obtained by solution polymerization of vinyl ester.
  • vinyl esters include vinyl formate, vinyl acetate, vinyl propionate, vinyl pivalate, vinyl stearate and the like, and vinyl acetate is preferred industrially.
  • An unsaturated monomer copolymerizable with the aliphatic vinyl ester may be copolymerized with the aliphatic vinyl ester for the purpose of improving the characteristics of the high molecular polymer within the range not impairing the effects of the present invention.
  • Embodiments involving such copolymerization are also included in the category of “polymerization of aliphatic vinyl esters” of the present invention.
  • unsaturated monomers copolymerizable with aliphatic vinyl esters include aliphatic vinyl esters such as vinyl formate, vinyl acetate, vinyl propionate, vinyl versatate, vinyl pivalate, vinyl stearate; ethylene, propylene ⁇ -olefins such as acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid and other polymerizable monocarboxylic acids or salts thereof; maleic acid, itaconic acid, fumaric acid and other polymerizable dicarboxylic acids or salts thereof; methyl acrylate , Ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate, etc.
  • Acrylic esters methyl methacrylate, methacrylate Methacrylic acid such as ethyl lurate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, octadecyl methacrylate Acid esters; acrylamide, N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetoneacrylamide, acrylamidepropanesulfonic acid and its salt, acrylamidopropyldimethylamine and its salt, N-methylolacrylamide and its derivative Acrylamide derivatives such as: methacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, methacrylamidepropanesulfonic acid and its salts, methacrylamide
  • Vinylsilyls isopropenyl acetate, 3-buten-1-ol, 4-penten-1-ol, 5-hexen-1-ol, 7-octen-1-ol, 9-decen-1-ol, 3-methyl Hydroxyl group-containing ⁇ -olefins such as -3-buten-1-ol; acetoxy group-containing unsaturated monomers such as 3,4-diacetoxy-1-butene and 1,2-diacetoxyethylene, ethylenesulfonic acid , Sulfonic acid group-containing unsaturated monomers such as allyl sulfonic acid, methallyl sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, and halogen-free non-containing monomers such as vinyl chloride, vinylidene chloride, vinyl fluoride, and vinylidene fluoride.
  • PVA polymer is not particularly limited, but a carboxylic acid-modified PVA polymer (carboxy group-containing PVA polymer) is preferable.
  • the viscosity average polymerization degree (also referred to as “polymerization degree” in the present specification) of the PVA polymer is not particularly limited, but is preferably 200 to 3000, and more preferably 250 to 2800 because of excellent film strength. 300 to 2500 is more preferable.
  • the degree of saponification of the PVA polymer is not particularly limited, but is preferably 80 to 100 mol%, more preferably 90 to 99.9 mol% from the viewpoint of film forming properties. The degree of polymerization and the degree of saponification are measured according to the method described in JIS K 6726 (1994).
  • the content ratio of the modified group is not particularly limited, but is preferably about 0.5 to 5.0 mol%, and It is more preferably about 7 to 3.0 mol%.
  • polyfunctional (meth) acrylamides examples include N, N ′-(1,2-dihydroxyethylene) bisacrylamide, ethidium bromide-N, N′-bisacrylamide, ethidium.
  • examples thereof include bromide-N, N′-bismethacrylamide, N, N′-ethylenebisacrylamide, N, N′-methylenebisacrylamide, and the like.
  • polyfunctional (meth) acrylates examples include di (meth) acrylates, tri (meth) acrylates, and tetra (meth) acrylates.
  • di (meth) acrylates examples include (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolpropane di (meth) And alkylene glycol di (meth) acrylates such as acrylate and pentaerythritol di (meth) acrylate.
  • tri (meth) acrylates examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethylene oxide-modified trimethylolpropane tri (meth) acrylate, glycerin tri (meth) acrylate, and the like. .
  • Examples of the tetra (meth) acrylates include ditrimethylolpropane tetra (meth) acrylate and pentaerythritol tetra (meth) acrylate.
  • Examples of the polyfunctional vinyl ethers include trimethylolpropane trivinyl ether, ditrimethylolpropane tetravinyl ether, glycerin trivinyl ether, and the like.
  • the polymerization reaction may be carried out by using the polyfunctional polymerizable monomer and the monofunctional polymerizable monomer in combination.
  • the size of the network in the polymer can be adjusted.
  • the monofunctional polymerizable monomer include monofunctional acrylic monomers such as monofunctional (meth) acrylamides and monofunctional (meth) acrylates, monofunctional vinyl ethers, monofunctional N-vinyl compounds, and monofunctional monomers.
  • monofunctional vinyl monomers such as functional vinyl compounds, monofunctional ⁇ , ⁇ -unsaturated compounds, and the like.
  • Examples of the monofunctional (meth) acrylamides include 2-acetamidoacrylic acid, (meth) acrylamide, 2-acrylamido-2-methylpropanesulfonic acid, N- (butoxymethyl) acrylamide, N-tert-butylacrylamide, diacetone.
  • Examples include acrylamide, N, N-dimethylacrylamide, and N- [3- (dimethylamino) propyl] methacrylamide.
  • Examples of the monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, methoxyethyl (meth) acrylate, Examples thereof include methoxypolyethylene glycol (meth) acrylate, (meth) acrylic acid, N, N-dimethylaminoethyl (meth) acrylate, (poly) ethylene glycol methacrylate, polypropylene glycol (meth) acrylate and the like.
  • Examples of the monofunctional vinyl ethers include methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, 2-ethylhexyl vinyl ether, cyclohexyl vinyl ether, methoxyethyl vinyl ether, and methoxypolyethylene glycol vinyl ether.
  • Examples of the monofunctional N-vinyl compounds include N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylformamide, N-vinylacetamide and the like.
  • Examples of the monofunctional vinyl compounds include styrene, ⁇ -methylstyrene, vinyl acetate and the like.
  • Examples of the monofunctional ⁇ , ⁇ -unsaturated compounds include maleic anhydride, maleic acid, dimethyl maleate, diethyl maleate, fumaric acid, dimethyl fumarate, diethyl fumarate, monomethyl fumarate, monoethyl fumarate, and itaconic anhydride.
  • Examples thereof include acid, itaconic acid, dimethyl itaconate, methylene malonic acid, dimethyl methylene malonate, cinnamic acid, methyl cinnamate, crotonic acid, and methyl crotonic acid.
  • the amount of the non-volatile amine compound having at least one group represented by the formulas [I] to [III] immobilized in the polymer is usually about 2 to 100 parts by weight of the polymer. 400 parts by weight, preferably about 25 to 250 parts by weight, more preferably about 40 to 100 parts by weight.
  • the “immobilization” means that the amine compound is not supported on the surface of the polymer film, but the amine compound enters the network structure of the polymer film and is supported inside. It means to do.
  • the film thickness of the polymer membrane of the present invention is not particularly limited as long as the effects of the present invention are not hindered, but is usually about 1000 ⁇ m or less from the viewpoint of high gas permeation rate and preferable performance of CO 2 gas separation. About 600 ⁇ m or less, more preferably about 250 ⁇ m or less.
  • the lower limit of the film thickness is not particularly limited as long as gas separation can be effectively performed, but is preferably about 0.1 ⁇ m or more, and more preferably about 1.0 ⁇ m or more from the viewpoint of durability.
  • a support may be used as a base material as necessary.
  • a porous support membrane etc. are mentioned, The separation membrane which laminated
  • the porous support membrane used in the present invention can be produced using, for example, a polymer described later, and ceramics or polyethylene phthalate (PET) nonwoven fabric can also be used.
  • a coagulation liquid a mixed solution of a solvent and a non-solvent.
  • a porous support membrane can be produced by a method of inducing phase separation by increasing the solvent concentration (non-solvent induced phase separation method; NIPS method, see Japanese Patent Publication No. 1-2003).
  • the ceramic include alumina, zirconia, titania, and silica.
  • Examples of the polymer used for the production of the porous support membrane include polyethersulfone (PES), polysulfone (PSF), polyphenylenesulfone, triacetylcellulose, cellulose acetate, carbon, polyacrylonitrile, polyvinylidene fluoride, aromatic nylon, and polyethylene.
  • Examples thereof include phthalate (PET), polyethylene naphthalate, polyarylate, polyimide, polyether, cellophane, aromatic polyamide, polyethylene, and polypropylene. These polymers can be used alone or in combination of two or more.
  • the solvent examples include N-methylpyrrolidone (NMP), acetone, dimethylformamide and the like. These can be used alone or in combination of two or more. There is no particular limitation as long as the solvent dissolves in the coagulation liquid during coagulation.
  • the non-solvent examples include water, monohydric alcohol, polyhydric alcohol, ethylene glycol, and tetraethylene glycol. These can be used alone or in combination of two or more.
  • a swelling agent to increase the number of through-holes in the support membrane after solidification and improve gas permeability.
  • the swelling agent include polyethylene glycol, polyvinyl pyrrolidone, hydroxypropyl cellulose, sodium chloride, lithium chloride, magnesium bromide and the like, and these can be used alone or as a mixture of two or more.
  • these swelling agents polyethylene glycol is preferable, and polyethylene glycol having a weight average molecular weight of 400 to 800 is particularly preferable.
  • the concentration of the raw material solution and the coagulation liquid is not particularly limited as long as the concentration is such that the raw material solution and the coagulation liquid are brought into contact with each other and a porous support membrane can be obtained by a non-solvent induced phase separation method.
  • the raw material solution is preferably 10 to 40 wt%, more preferably 15 to 37 wt% from the viewpoint of film forming properties.
  • the method for contacting the raw material solution with the coagulating liquid is not particularly limited, and examples thereof include a method of immersing the raw material solution in the coagulating liquid.
  • the concentration of the solvent in the coagulation liquid is not particularly limited, but by changing the solvent concentration in the coagulation liquid in the coagulation of the raw material solution, the structure of the support film can be changed and the pressure resistance can be increased.
  • the pore diameter of the pores of the porous support membrane is not particularly limited, but is preferably 100 nm or less, more preferably 10 nm or less.
  • the thickness of the porous support membrane is not particularly limited as long as the gas permeability of the polymer membrane does not become larger than the gas permeability of the porous support membrane.
  • the first aspect of the method for producing a CO 2 gas separation membrane of the present invention includes (1) polymerization in the presence of a nonvolatile amine compound having at least one group represented by the above formulas [I] to [III]. A step of immobilizing the amine compound in the resulting polymer to form a polymer film, and (2) an amine is coordinated to the polymer film. And a step of blending a zinc complex.
  • Step (1) This step involves polymerizing a polymerizable monomer (the polyfunctional polymerizable monomer or vinyl ester) in the presence of the non-volatile amine compound to form the amine compound in the resulting polymer. This is a step of forming a polymer film by immobilization.
  • Examples of the method for polymerizing the polyfunctional polymerizable monomer of the present invention in the presence of the amine compound include solution polymerization, thermal polymerization, and photopolymerization.
  • a polymerization initiator (usually heat or light) is usually used for the polymerization reaction. It does not specifically limit as a polymerization initiator illustrated below, A well-known commercial item can be used.
  • thermal polymerization initiator known ones can be used and are not particularly limited. Specifically, methyl ethyl ketone peroxide, benzoyl peroxide, dicumyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, Organic peroxides such as t-butyl peroxyoctoate, t-butylperoxybenzoate, and lauroyl peroxide; azo compounds such as azobisisobutyronitrile are suitable.
  • a curing accelerator may be used by mixing at the time of thermal polymerization, and as the curing accelerator, cobalt naphthenate, cobalt octylate, etc., or tertiary amine is suitable.
  • the addition amount of the thermal polymerization initiator is preferably about 0.01 to 10 parts by weight with respect to 100 parts by weight of the polyfunctional polymerizable monomer. More preferably, it is about 0.1 to 1 part by weight.
  • Benzoin and its alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 4- (1 -T-butyldioxy-1-methylethyl) acetophenone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one and 2-benzyl-2-dimethylamino-1- (4 -Morpholinophenyl) -butanone-1, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyld
  • Anthraquinones such as 2-methylanthraquinone, 2-amylanthraquinone, 2-t-butylanthraquinone, 1-chloroanthraquinone; 2,4-dimethylthioxanthone, 2,4-diisopropylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2- (3-dimethylamino-2-hydroxy) -3,4-dimethyl-9H-thioxanthone Thioxanthones such as -9-one mesochloride; ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenone, 4- (1-t-butyldi
  • the addition amount of the photopolymerization initiator is preferably about 0.5 to 10 parts by weight with respect to 100 parts by weight of the polyfunctional polymerizable monomer. More preferably, it is about 2 to 3 parts by weight.
  • a basic compound can be used as a sensitizer together with a photopolymerization initiator.
  • an amine compound is preferably used, and the amine compound is not particularly limited. Specifically, monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, monopropylamine, dimethylpropyl are used. Examples include amine, monoethanolamine, diethanolamine, ethylenediamine, diethylenetriamine, dimethylaminoethyl methacrylate, and polyethyleneimine. Of these, tertiary amine compounds are particularly preferred.
  • tertiary amine compound examples include triethanolamine, triisopropanolamine, tributanolamine, methyldiethanolamine, methyldiisopropanolamine, methyldibutanolamine, ethyldiethanolamine, ethyldiisopropanolamine, ethyldibutanolamine, propyldiethanolamine, propyl Diisopropanolamine, propyldibutanolamine, dimethylethanolamine, dimethylisopropanolamine, dimethylbutanolamine, diethylethanolamine, diethylisopropanolamine, diethylbutanolamine, dipropylethanolamine, dipropylisopropanolamine, dipropylbutanolamine, dibutylethanol Amine, dibutyl isopropano Amine, dibutyl butanolamine, methyl ethyl ethanolamine, methyl
  • these hydroxyl group-containing tertiary amine compounds are added with ethylene oxide to introduce a polyethylene glycol chain, and the hydroxyl group-containing tertiary amine compound is added with a monomer containing a functional group having reactivity with a hydroxyl group to obtain a polymerizable second group.
  • transduced the tertiary amino group to the polymer or the oligomer, etc. can also be used.
  • These amine compounds can be used alone or in combination of two or more.
  • the amount of the sensitizer used is preferably about 1 to 10 parts by weight with respect to 100 parts by weight of the photopolymerization initiator. More preferably, it is about 5 to 8 parts by weight.
  • the polymerization reaction is preferably carried out in an appropriate solvent by heating in the case of thermal polymerization and by irradiation with ultraviolet rays in the case of photopolymerization.
  • the solvent is not particularly limited as long as it dissolves the amine compound and the polyfunctional polymerizable monomer. Usually, water, alcohol (for example, methanol, ethanol, etc.) or a mixture thereof can be preferably used. .
  • Heating in the thermal polymerization is usually performed at about 40 to 90 ° C., preferably about 60 to 70 ° C., usually about 2 to 24 hours, preferably about 5 to 10 hours.
  • the ultraviolet irradiation of the photopolymerization is usually performed for about 30 seconds to 10 minutes, preferably about 1 to 3 minutes, using a wavelength of about 200 to 400 nm, preferably about 250 to 360 nm.
  • thermal polymerization and photopolymerization can be performed in combination.
  • photopolymerization can be performed after thermal polymerization, thermal polymerization can be performed after photopolymerization, or photopolymerization and thermal polymerization can be performed simultaneously.
  • a polymer film is obtained in which a non-volatile amine compound having at least one group represented by the formulas [I] to [III] is immobilized in the polymer at the same time as the polymer is produced. It is done.
  • a nonvolatile amine compound having at least one group represented by the formulas [I] to [III] is encapsulated in the network structure of the polymer having the three-dimensional network structure, The thing fixed is mentioned suitably.
  • the polymer film has at least one group represented by the formulas [I] to [III] in an aqueous polymer polymer solution such as a PVA polymer (preferably a carboxylic acid-modified PVA polymer). It can also be obtained by mixing the non-volatile amine compound having, applying it by casting, and removing the water by drying.
  • Step (2) This step is a step of blending a zinc complex formed by coordination of an amine with the polymer film obtained in the step (1).
  • the compounding of the zinc complex formed by coordination of amine to the polymer film is not particularly limited.
  • a method of laminating or coating a zinc complex formed by coordination of amine on at least one surface of the polymer film. are preferable.
  • a method for laminating or coating the zinc complex on at least one surface of the polymer film a method known per se can be employed, and examples thereof include known coating methods such as spray coating, applicator, dip coating and the like. .
  • a known apparatus can be used for each coating method.
  • the structure of the laminate is not particularly limited as long as the catalyst layer and the CO 2 gas separation functional layer (polymer membrane) are laminated.
  • the catalyst may permeate the polymer film without forming a laminate, and such an embodiment is also included in the present invention.
  • the laminate of, HCO 3 - is a high efficiency of catalytic reaction back to CO 2
  • mixing containing CO 2 A laminate in the form of B, C, E, and F in FIG. 2 in which a catalyst layer is provided on the back side of the surface that is in contact with the mixed gas when the gas permeates
  • the zinc complex formed by coordination of an amine may be laminated or coated on at least one surface of the polymer film, and may be laminated or coated on both surfaces.
  • the catalyst layer may be applied with a basic pH.
  • a basic pH By making the catalyst layer on the surface basic, the reaction rate can be improved and the gas permeation rate can be improved.
  • it does not specifically limit as said pH, For example, it is 9.0 or more, Preferably it is 9.5 or more, More preferably, it is 10.0 or more.
  • the polymer membrane used in this step may be laminated with a porous support membrane as shown in FIGS.
  • the porous support membrane is as described above.
  • the adhesive used for laminating is not particularly limited, but an aqueous adhesive (eg, ⁇ -olefin adhesive, aqueous polymer-isocyanate adhesive, etc.), an aqueous dispersion adhesive (eg, acrylic resin emulsion adhesive) , Epoxy resin emulsion adhesives, vinyl acetate resin emulsion adhesives, etc.), solvent adhesives (eg, nitrocellulose adhesives, vinyl chloride resin solvent adhesives, chloroprene rubber adhesives, etc.), reactive adhesives (eg, , Cyanoacrylate adhesives, acrylic resin adhesives, silicone adhesives, etc.), hot melt adhesives (eg, ethylene-vinyl acetate resin hot melt adhesives, polyamide resin hot melt adhesives, polyamide resin hot melt adhesives) , Polyolefin resin hot melt adhesive, etc.).
  • an aqueous adhesive eg, ⁇ -olefin adhesive, aqueous polymer-isocyanate adhesive, etc.
  • the adhesive film examples include films made of a thermoplastic transparent resin such as polyvinyl butyral, polyurethane, and ethylene-vinyl acetate copolymer resin.
  • the thickness of the adhesive or adhesive film layer is not particularly limited as long as it does not interfere with the gas permeability of the CO 2 gas separation membrane of the present invention.
  • a nonvolatile amine compound having at least one group represented by the above formulas [I] to [III] and a polymerizable monomer are used.
  • the above-mentioned additives and / or salts may be added to the solution used for coating or dipping before the polymerization reaction from the viewpoint of further improving the CO 2 separation performance.
  • a non-volatile amine compound having at least one group represented by the above formulas [I] to [III] is mixed with an aqueous polymer polymer solution such as a PVA polymer
  • the method include a step of obtaining a membrane solution, a step of casting and applying the obtained membrane-forming solution, drying and removing water, and a step of blending a zinc complex formed by coordination of an amine with the polymer membrane.
  • the above-mentioned additives and / or salts may be added to the membrane-forming solution.
  • Step (1) This step is a step of applying a solution containing the amine compound and the polymerizable monomer to the porous support membrane, or immersing the porous support membrane in the solution.
  • the solution containing the amine compound and the polymerizable monomer is obtained by dissolving the amine compound and the polymerizable monomer in a solvent (hereinafter referred to as a precursor solution).
  • solvent known solvents can be widely used as long as they do not inhibit the polymerization reaction.
  • examples of such a solvent include water, alcohols such as methanol, ethanol, 2-propanol, tetrahydrofuran, 1,4-dioxane, benzene, acetone, glycerin, polyethylene glycol, and the like. These solvents can be used alone or in admixture of two or more.
  • a polymerization initiator is usually used for the precursor solution.
  • the above-described thermal polymerization initiator or photopolymerization initiator can be used.
  • the above-described sensitizer can be added to the precursor solution. it can.
  • the amount of the thermal polymerization initiator, photopolymerization initiator or sensitizer used is the same as described above.
  • a polymer such as a PVA polymer it is not necessary to add a polymerization initiator.
  • the application or dipping method is not particularly limited as long as it does not impair the object of the present invention, but a known casting method, spin coating method or dip coating method is preferable.
  • the casting method is a method in which a predetermined amount of the precursor solution is dropped on the surface of a porous support film, and cast and applied by a baker applicator or the like, and the liquid is uniformly applied.
  • the spin coating method is a method in which a predetermined amount of the precursor solution is dropped on the surface of the porous support film and uniformly applied to the surface.
  • the amount of dripping in spin coating is preferably about 0.1 to 1 ⁇ l / mm 2 .
  • the rotation speed at the time of spin coating is preferably about 500 to 4000 rpm.
  • the dip coating method is a method in which the precursor solution is applied to the porous support film by immersing the porous support film in the precursor solution and then pulling it up at about 1 to 10 mm / sec.
  • the precursor solution may contain a crosslinking agent in addition to the components.
  • the crosslinking agent is not particularly limited as long as the effects of the present invention are not hindered, and a known crosslinking agent can be used.
  • Step (2) In this step, following the step (1), the non-volatile amine compound is fixed in the resulting high molecular polymer by polymerizing the polymerizable monomer applied to the surface of the porous support membrane. Forming a polymer membrane on the porous support membrane.
  • the method for polymerizing the polymerizable monomer coated on the surface of the porous support membrane in the presence of the nonvolatile amine compound may be thermal polymerization or photopolymerization. The conditions such as the temperature and time of the polymerization reaction can be the same as described above.
  • Step (3) is a step of blending the zinc complex formed by coordination of amine with the polymer film obtained in the step (2). This step can be performed in the same manner as in the first production method.
  • CO2 separation method Another aspect of the present invention is a method for separating carbon dioxide from a mixed gas containing carbon dioxide using the CO 2 gas separation membrane obtained above. That is, the gas separation method of the present invention includes a step of bringing a mixed gas containing carbon dioxide into contact with the CO 2 gas separation membrane obtained above to selectively permeate carbon dioxide in the mixed gas. And
  • the gas separation method it is preferable to provide a pressure difference between the gas supply side and the gas permeation side of the separation membrane. This pressure difference is usually provided by reducing the pressure on the gas permeation side. In addition, it is desirable to carry out this separation method under a temperature condition of usually 5 to 150 ° C., preferably room temperature to 100 ° C.
  • the mixed gas applicable to the separation method of the present invention is not particularly limited as long as it is a mixed gas containing carbon dioxide.
  • the relative humidity of the mixed gas is set to 30. % Or more, preferably 60 to 100%.
  • the gas separation method can be applied to, for example, separating carbon dioxide (CO 2 ) from combustion exhaust gas generated in a thermal power plant, a steel plant, or the like.
  • Another aspect of the present invention includes a step of bringing a mixed gas containing carbon dioxide into contact with the CO 2 gas separation membrane obtained above to selectively permeate CO 2 in the mixed gas.
  • a method for producing a mixed gas of CO 2 can be mentioned.
  • the high concentration CO 2 is not particularly limited, a gas preferably containing 80% or more of CO 2.
  • Another aspect of the present invention includes a step of bringing a mixed gas containing carbon dioxide and hydrogen into contact with the CO 2 gas separation membrane obtained above to selectively permeate CO 2 in the mixed gas.
  • a method for producing high-concentration hydrogen gas can be mentioned.
  • high concentration hydrogen is not specifically limited, Preferably it is the gas containing 80% or more of hydrogen.
  • Example 1 Preparation of polymer film The 0th generation polyamidoamine (PAMAM) dendrimer (surface group: —CONHCH 2 CH 2 NH 2 ; number of amino groups: 4; 50 wt% aqueous solution, manufactured by NARD) in 1.85 g of water
  • PAMAM polyamidoamine
  • Irgacure 2959 (1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, manufactured by BASF) was added to obtain a precursor solution.
  • PEGDMA is polymerized by dropping 1.3 g of the precursor solution onto a glass petri dish ( ⁇ 47) and irradiating UV light (wavelength peak: 312 nm) at room temperature for 3 minutes using UV CROSSLINKER (manufactured by SPECTROLINE). And a porous support membrane (polyethersulfone ultrafiltration membrane, molecular weight cut off 300,000, manufactured by Millipore).
  • catalyst layer The obtained polymer membrane was applied by spray coating using a catalyst solution in which 0.0125 g of carbonic anhydrase (CA) (manufactured by Aldrich) was dissolved in 50 ml of water to separate the desired CO 2 gas.
  • a membrane (hereinafter referred to as catalyst-treated membrane 1) was obtained.
  • the obtained separation membrane has a thickness of about 0.01 mm
  • the catalyst layer has a thickness of about 0.0001 mm
  • the proportion of 4GMAP, PEGDMA, and PAMAM dendrimers in the polymer membrane is 7.5, 42.5 and 50 wt%.
  • Example 2 a CO 2 gas separation membrane (hereinafter referred to as catalyst-treated membrane 2) was obtained in the same manner as in Example 1 except that 0.02 g of ZNTBS was used as the zinc complex catalyst.
  • the obtained separation membrane has a thickness of about 0.01 mm
  • the catalyst layer has a thickness of about 0.0001 mm
  • the proportion of 4GMAP, PEGDMA, and PAMAM dendrimers in the polymer membrane is 7.5, 42.5 and 50 wt%.
  • Example 1 A CO 2 gas separation membrane (hereinafter referred to as an untreated membrane) was obtained in the same manner as in Example 1 except that the catalyst layer was not provided.
  • ⁇ CO 2 / H 2 represents the selectivity of carbon dioxide
  • X CO2 represents a molar fraction of CO 2 in the feed gas
  • X H2 represents the molar fraction of H 2 feed gases
  • Y (CO2 represents the molar fraction of CO 2 in the gas that has permeated the membrane
  • Y H2 represents the molar fraction of H 2 in the gas that has permeated the membrane.
  • QCO 2 was improved at atmospheric pressure of 0.1 MPa, and CO 2 / H 2 selectivity was increased.
  • Example 3 As the COOH-modified poly (vinyl alcohol), PVA having a carboxyl group of 1 mol%, a vinyl acetate unit saponification degree of 98.6 mol% and a polymerization degree of 1800 (brand: KL-118, manufactured by Kuraray Co., Ltd.) was used. .
  • the precursor solution was dropped on the support film, and after film formation using a spin coater, heat treatment was performed at 120 ° C.
  • the obtained polymer membrane was applied by spray coating using a catalyst solution obtained by dissolving 0.02 g of ZC as a zinc complex catalyst and 0.018 g of DAPA as an additive in 50 ml of water, and a CO 2 gas separation membrane (hereinafter referred to as catalyst).
  • catalyst a CO 2 gas separation membrane
  • treatment film 3 The obtained separation membrane had a thickness of about 0.01 mm
  • the catalyst layer had a thickness of about 0.0001 mm
  • the proportions of PVA, PAAm, PAMAM dendrimer and PAEPI in the polymer membrane were 20, It was 16, 40, and 24 wt%.
  • Test Example 2 Carbon dioxide and hydrogen separation test The same as Test Example 1 except that the CO 2 gas separation membrane (catalyst treatment membrane 3) obtained in Example 3 was used and the pressure on the supply side was 0.1 MPa. Thus, a carbon dioxide and hydrogen separation test was conducted. The results are shown in Table 3 below.
  • Example 4 As in Example 3, except that 0.02 g of ZC was used as the zinc complex catalyst and 0.059 g of Cs 2 CO 3 was used as the salt, a CO 2 gas separation membrane (hereinafter referred to as catalyst-treated membrane 4). ) The obtained separation membrane had a thickness of about 0.01 mm, the catalyst layer had a thickness of about 0.0001 mm, and the proportions of PVA, PAAm, PAMAM dendrimer and PAEPI in the polymer membrane were 20, It was 16, 40, and 24 wt%.
  • Test Example 3 Carbon dioxide and hydrogen separation test Carbon dioxide and hydrogen separation test in the same manner as in Test Example 1 except that the CO 2 gas separation membrane (catalyst treatment membrane 4) obtained in Example 4 was used. Went. The results are shown in Table 4 below.
  • Example 5 A CO 2 gas separation membrane (hereinafter referred to as catalyst) was used in the same manner as in Example 3 except that 0.02 g of carbonic anhydrase (CA) was used as the zinc complex catalyst and 3.5 mg of Na 2 CO 3 was used as the salt. Treatment film 5).
  • the obtained separation membrane had a thickness of about 0.01 mm
  • the catalyst layer had a thickness of about 0.0001 mm
  • the proportions of PVA, PAAm, PAMAM dendrimer, and PAEPI in the polymer were 20, It was 16, 40, and 24 wt%.
  • Example 6 A CO 2 gas separation membrane (hereinafter referred to as catalyst) was prepared in the same manner as in Example 3 except that 0.02 g of carbonic anhydrase (CA) was used as the zinc complex catalyst and 3.5 mg of K 2 CO 3 was used as the salt. Treatment film 6).
  • the obtained separation membrane had a thickness of about 0.01 mm
  • the catalyst layer had a thickness of about 0.0001 mm
  • the proportions of PVA, PAAm, PAMAM dendrimer, and PAEPI in the polymer were 20, It was 16, 40, and 24 wt%.
  • Example 5 Carbon dioxide and hydrogen separation test Using the CO 2 gas separation membrane (catalyst treatment membrane 6) obtained in Example 6, the pressure on the supply side was set to 0.1 MPa under the setting conditions of the gas permeation measuring device. A separation test of carbon dioxide and hydrogen was performed in the same manner as in Test Example 1 except that. The results are shown in Table 6 below.
  • Example 7 A CO 2 gas separation membrane (hereinafter referred to as catalyst) was prepared in the same manner as in Example 3 except that 0.02 g of carbonic anhydrase (CA) was used as the zinc complex catalyst and 3.5 mg of Rb 2 CO 3 was used as the salt. Treatment film 7).
  • the obtained separation membrane had a thickness of about 0.01 mm
  • the catalyst layer had a thickness of about 0.0001 mm
  • the proportions of PVA, PAAm, PAMAM dendrimer, and PAEPI in the polymer were 20, It was 16, 40, and 24 wt%.
  • Example 6 Carbon dioxide and hydrogen separation test Using the CO 2 gas separation membrane (catalyst treatment membrane 7) obtained in Example 7, the pressure on the supply side was set to 0.1 MPa under the gas permeation measuring device setting conditions. A separation test of carbon dioxide and hydrogen was performed in the same manner as in Test Example 1 except that. The results are shown in Table 7 below.
  • Example 8 A CO 2 gas separation membrane (hereinafter referred to as catalyst) was prepared in the same manner as in Example 3 except that 0.02 g of carbonic anhydrase (CA) was used as the zinc complex catalyst and 3.5 mg of Cs 2 CO 3 was used as the salt. Treatment film 10).
  • the obtained separation membrane had a thickness of about 0.01 mm
  • the catalyst layer had a thickness of about 0.0001 mm
  • the proportions of PVA, PAAm, PAMAM dendrimer, and PAEPI in the polymer were 20, It was 16, 40, and 24 wt%.
  • Example 9 As in Example 3, except that 0.02 g of carbonic anhydrase (CA) was used as the zinc complex catalyst, and a mixture of 1.7 mg of Na 2 CO 3 and K 2 CO 3 was used as the salt. Thus, a CO 2 gas separation membrane (hereinafter referred to as catalyst treatment membrane 9) was obtained.
  • the obtained separation membrane had a thickness of about 0.01 mm
  • the catalyst layer had a thickness of about 0.0001 mm
  • the proportions of PVA, PAAm, PAMAM dendrimer, and PAEPI in the polymer were 20, It was 16, 40, and 24 wt%.
  • Example 8 Carbon dioxide and hydrogen separation test Using the CO 2 gas separation membrane (catalyst treatment membrane 9) obtained in Example 9, the pressure on the supply side was set to 0.1 MPa under the setting conditions of the gas permeation measuring device. A separation test of carbon dioxide and hydrogen was performed in the same manner as in Test Example 1 except that. The results are shown in Table 9 below.
  • Example 10 As in Example 3, except that 0.02 g of carbonic anhydrase (CA) was used as the zinc complex catalyst and a mixture of 1.7 mg of Na 2 CO 3 and Cs 2 CO 3 was used as the salt. Thus, a CO 2 gas separation membrane (hereinafter referred to as catalyst treatment membrane 10) was obtained.
  • the obtained separation membrane had a thickness of about 0.01 mm
  • the catalyst layer had a thickness of about 0.0001 mm
  • the proportions of PVA, PAAm, PAMAM dendrimer, and PAEPI in the polymer were 20, It was 16, 40, and 24 wt%.
  • Example 9 Carbon dioxide and hydrogen separation test Using the CO 2 gas separation membrane (catalyst treatment membrane 10) obtained in Example 10, the pressure on the supply side was set to 0.1 MPa under the setting conditions of the gas permeation measuring device. A separation test of carbon dioxide and hydrogen was performed in the same manner as in Test Example 1 except that. The results are shown in Table 10 below.
  • the CO 2 gas separation membrane of the present invention can separate carbon dioxide from other gases with a high CO 2 gas permeation rate.
  • Example 11 The experiment was conducted in the same manner as in Example 3. 9.76 g of water was added to 6.0 g of COOH-modified poly (vinyl alcohol) (5 wt% solution, manufactured by Kuraray Co., Ltd.), and 1.2 g of 0th generation polyamidoamine (PAMAM) dendrimer (50 wt% aqueous solution, manufactured by NARD) After adding 1.6 g of polyallylamine (hereinafter also referred to as PAAm; 15 wt% aqueous solution, manufactured by Aldrich) and stirring for 60 minutes, 1.44 g of PAEPI (25 wt% aqueous solution) was added and further stirred for 20 minutes to obtain a film forming solution. .
  • PAMAM 0th generation polyamidoamine
  • the film-forming solution was dropped on the support film, cast using a Baker applicator at a gap of 150 microns, and then air-dried for 18 hours. Thereafter, heat treatment was performed at 120 ° C. for 10 minutes.
  • a 0.5% CA aqueous solution as a zinc complex catalyst was applied to the obtained polymer membrane by spray coating to obtain a CO 2 gas separation membrane (hereinafter referred to as catalyst treatment membrane 11).
  • the obtained separation membrane had a thickness of about 10 microns
  • the catalyst layer had a thickness of about 1 micron
  • the proportions of PVA, PAAm, PAMAM dendrimer, and PAEPI in the polymer membrane were 20, 16, respectively. 40 and 24 wt%.
  • Test Example 3 Carbon dioxide and hydrogen separation test The same as Test Example 1 except that the CO 2 gas separation membrane (catalyst treatment membrane 11) obtained in Example 11 was used and the pressure on the supply side was 0.1 MPa. Thus, a carbon dioxide and hydrogen separation test was conducted. The results are shown in Table 11 below.
  • Example 12 The experiment was conducted in the same manner as in Example 3. 9.76 g of water was added to 6.0 g of COOH-modified poly (vinyl alcohol) (5 wt% solution, manufactured by Kuraray Co., Ltd.), and 1.2 g of 0th generation polyamidoamine (PAMAM) dendrimer (50 wt% aqueous solution, manufactured by NARD) After adding 1.6 g of polyallylamine (hereinafter also referred to as PAAm; 15 wt% aqueous solution, manufactured by Aldrich) and stirring for 60 minutes, 1.44 g of PAEPI (25 wt% aqueous solution) was added and further stirred for 20 minutes to obtain a film forming solution. .
  • PAMAM 0th generation polyamidoamine
  • the precursor solution was dropped onto the support film, cast using a Baker applicator at a gap of 150 microns, and then air-dried for 18 hours. Thereafter, heat treatment was performed at 120 ° C. for 10 minutes.
  • a mixed aqueous solution of 0.5% CA as a zinc complex catalyst and 0.5M potassium carbonate as an additive was applied to the obtained polymer membrane by spray coating, and a CO 2 gas separation membrane (hereinafter referred to as catalyst treatment membrane 11). I got).
  • the obtained separation membrane had a thickness of about 10 microns
  • the catalyst layer had a thickness of about 1 micron
  • the proportions of PVA, PAAm, PAMAM dendrimer, and PAEPI in the polymer membrane were 20, 16, respectively. 40 and 24 wt%.
  • Test Example 4 Separation test of carbon dioxide and hydrogen Same as Test Example 1 except that the CO 2 gas separation membrane (catalyst treatment membrane 12) obtained in Example 12 was used and the pressure on the supply side was set to 0.1 MPa. Thus, a carbon dioxide and hydrogen separation test was conducted. The results are shown in Table 11 below. From the result of the comparative example which does not use the zinc complex of Table 11 and an additive, and the comparative example which does not use a zinc complex but uses an additive, an additive has the effect which suppresses the gas permeation rate of H2 significantly.
  • Example 13 The experiment was conducted in the same manner as in Example 3. 9.76 g of water was added to 6.0 g of COOH-modified poly (vinyl alcohol) (5 wt% solution, manufactured by Kuraray Co., Ltd.), and poly N- [3- (dimethylamino) propyl] methacrylamide (Poly 3 rd -MAM) (50 wt. 1.2 g of polyethylamine (hereinafter also referred to as PAAm; 15 wt% aqueous solution, manufactured by Aldrich) and stirring for 60 minutes, and then 1.44 g of PAEPI (25 wt% aqueous solution) are added for another 20 minutes.
  • COOH-modified poly (vinyl alcohol)
  • Poly 3 rd -MAM poly N- [3- (dimethylamino) propyl] methacrylamide
  • PAAm polyethylamine
  • PAAm 15 wt% aqueous solution, manufactured by Aldrich
  • the mixture was stirred to obtain a film forming solution having a solid content concentration of 5%. This was diluted 5 times to obtain a film forming solution having a solid content concentration of 1%.
  • the film-forming solution was dropped on the support film, cast using a Baker applicator at a gap of 150 microns, and then air-dried for 18 hours. Thereafter, heat treatment was performed at 120 ° C. for 10 minutes.
  • a 0.5% CA aqueous solution as a zinc complex catalyst was applied to the obtained polymer membrane by spray coating to obtain a CO 2 gas separation membrane (hereinafter referred to as catalyst treatment membrane 11).
  • the obtained separation membrane has a thickness of about 10 microns
  • the catalyst layer has a thickness of about 1 micron
  • the proportions of PVA, PAAm, Poly 3rd-MAM, and PAEPI in the polymer membrane are 20, respectively. It was 16, 40, and 24 wt%.
  • Test Example 3 Carbon dioxide and hydrogen separation test The same as Test Example 1 except that the CO 2 gas separation membrane (catalyst treatment membrane 11) obtained in Example 11 was used and the pressure on the supply side was 0.1 MPa. Thus, a carbon dioxide and hydrogen separation test was conducted. The results are shown in Table 12 below.
  • the content of the present invention is not limited to the effect only when the pressure is 0.1 MPa, and even if the pressure is 0.4 MPa or 0.7 MPa. Compared with the conventional example, high ⁇ CO 2 / H 2 can be maintained.
  • the CO 2 gas separation membrane of the present invention is useful for separating carbon dioxide from other gases with a high CO 2 gas permeation rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 本発明は、COガスの透過速度を向上させ、COガス分離性能を向上させたCOガス分離膜を提供することを目的とする。本発明は、高分子重合体内に不揮発アミン化合物が固定化されてなる高分子膜に、アミンが配位してなる亜鉛錯体を配合してなることを特徴とするCOガス分離膜に関する。

Description

CO2ガス分離膜及びその製造方法
 本発明は、COガス分離膜及びその製造方法並びに該COガス分離膜を用いたガス分離方法に関する。
 従来より、高分子素材には、その素材に特有の気体透過性があるため、高分子素材から構成された膜によって、気体成分を分離できることが知られている(例えば、非特許文献1参照)。特に、高分子膜による気体成分の分離技術には、所要エネルギーが少ない、分離装置が小型化できる、分離装置のメンテナンスが容易になる等の利点があり、種々の分野で使用されている。
 近年、高分子膜により気体成分を分離する技術の中でも、二酸化炭素を選択的に分離する技術が精力的に検討されている。この技術は、油田のオフガス、ゴミ焼却や火力発電の排ガス、天然ガス等からの二酸化炭素の分離回収に利用することができる。
 しかしながら、従来のCOガス分離膜では二酸化炭素の選択性(二酸化炭素の膜透過速度/分離対象ガスの膜透過速度)が不十分で、目的とする濃度で二酸化炭素を回収することが出来なかった。そのため、二酸化炭素選択性に優れた分離膜の開発が望まれていた。
 このような膜を得るために、二酸化炭素に対して選択的に親和性が高い素材を用いることが提案されている。例えば、室温で液状物質であるポリアミドアミンデンドリマーを、微多孔質の支持体に含浸させた分離膜が提案されている(非特許文献2及び3)。この含浸膜の分離性能を、ヘリウムキャリアー法と言う膜に圧力差を設けない方法を用いて測定すると、二酸化炭素選択性が1000を超える優れた二酸化炭素選択性を示した。
 しかしながら、液状物質であるポリアミドアミンデンドリマーを微多孔質の支持体に含浸させた分離膜では、この膜に圧力を掛けると、含浸させたデンドリマーが時間と共に支持体から抜け出して、性能を維持できないため、実用に供することが困難である。
 そこで、ポリアミドアミンデンドリマーのような二酸化炭素に選択的に強い親和性を有する物質を固定して、実用的な圧力差をかけることが可能な分離膜が開発された(特許文献1)。
 しかしながら、ガス分離性能をさらに向上させるために、ガス透過速度を向上させた分離膜の開発が求められていた。
特開2009-241006号公報
ガス分離技術の新展開、東レリサーチセンター調査研究事業部編、株式会社東レリサーチセンター発行、1990年、第345~362頁 J.Am.Chem.Soc.122(2000)7594~7595 Ind.Eng.Chem.Res.40(2001)2502~2511
 本発明は、COガスの透過速度を向上させ、COガス分離性能を向上させたCOガス分離膜を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、不揮発性アミン化合物が固定化されてなる高分子膜に、アミンが配位してなる亜鉛錯体を配合することによって、分離膜中でHCO を生成しやすい環境が得られ、分離膜のCOガスの透過速度を向上させることができることを見い出し、この知見に基づいてさらに研究を進め、本発明を完成するに至った。
 すなわち、本発明は以下の発明を含む。
[1]高分子重合体内に不揮発性アミン化合物が固定化されてなる高分子膜に、アミンが配位してなる亜鉛錯体を配合してなることを特徴とするCOガス分離膜。
[2]不揮発性アミン化合物が、下記式[I]~[III]で示される基を少なくとも1以上有する不揮発性アミン化合物である前記[1]記載のCOガス分離膜。
Figure JPOXMLDOC01-appb-C000007
(式中、Aは炭素数1~3の二価有機残基を表す。pは0又は1の整数を表す。R、R及びRは、互いに同一又は異なって、水素原子又は炭素数1~6のアルキル基を表す。*は結合部位を表す。);
Figure JPOXMLDOC01-appb-C000008
(式中、Aは炭素数1~3の二価有機残基を表す。qは0又は1の整数を表す。R、R及びRは、互いに同一又は異なって、水素原子又は炭素数1~6のアルキル基を表す。*は結合部位を表す。);
Figure JPOXMLDOC01-appb-C000009
(式中、A及びAは、互いに同一又は異なって、炭素数1~3の二価有機残基を表す。R、R及びRは互いに同一又は異なって、水素原子又は炭素数1~6のアルキル基を表す。r及びsは0又は1の整数を表す。*は結合部位を表す。)
[3]アミンが配位してなる亜鉛錯体が、2級アミン及び/又は3級アミンが配位してなる亜鉛錯体であることを特徴とする前記[1]又は[2]に記載のCOガス分離膜。
[4]高分子膜の少なくとも片面に、アミンが配位してなる亜鉛錯体を積層又は塗布させてなることを特徴とする前記[1]~[3]のいずれか1項に記載のCOガス分離膜。
[5]アミンが配位してなる亜鉛錯体が、炭素数4~15の複素環式化合物を含むことを特徴とする前記[1]~[4]のいずれか1項に記載のCOガス分離膜。
[6]アミンが配位してなる亜鉛錯体の配合に、アミンが配位してなる亜鉛錯体の積層又は塗布用溶液を使用し、前記溶液に、塩を含むことを特徴とする前記[1]~[5]のいずれか1項に記載のCOガス分離膜。
[7]塩が、アルカリ金属塩及び/又はアルカリ土類金属塩である前記[6]記載のCOガス分離膜。
[8]アミンが配位してなる亜鉛錯体の配合に、アミンが配位してなる亜鉛錯体の積層又は塗布用溶液を使用し、前記溶液に、ジアミノプロピオン酸、モノエタノールアミン、アミノ酸及びポリアクリル酸ナトリウムからなる群から選ばれる1種以上の添加剤を含むことを特徴とする前記[1]~[7]のいずれか1項に記載のCOガス分離膜。
[9]不揮発性アミン化合物が、ポリ N-[3-(ジメチルアミノ)プロピル]メタクリルアミド、ポリアミドアミン系デンドリマー又はトリアジン系デンドリマーである前記[1]~[8]のいずれか1項に記載のCOガス分離膜。
[10]高分子重合体が、多官能重合性単量体を重合させて得られ、前記多官能重合性単量体が、多官能(メタ)アクリルアミド類、多官能(メタ)アクリレート類、多官能ビニルエーテル類及びジビニルベンゼンからなる群から選ばれる1種以上であることを特徴とする前記[1]~[9]のいずれか1項に記載のCOガス分離膜。
[11]高分子重合体が、多官能重合性単量体に単官能重合性単量体を加えて重合させて得られることを特徴とする前記[1]~[10]のいずれか1項に記載のCOガス分離膜。
[12]単官能重合性単量体が、単官能(メタ)アクリルアミド類、単官能(メタ)アクリレート類、単官能ビニルエーテル類、単官能N-ビニル化合物類、単官能ビニル化合物類及び単官能α,β-不飽和化合物類からなる群から選ばれる1種以上であることを特徴とする前記[11]記載のCOガス分離膜。
[13]高分子重合体が、カルボン酸変性PVA系重合体であることを特徴とする前記[1]~[8]のいずれか1項に記載のCOガス分離膜。
[14]COガス分離膜の製造方法であって、(1)下記式[I]~[III]で示される基を少なくとも1以上有する不揮発性アミン化合物の存在下に、重合性単量体を重合反応させることにより、生成する高分子重合体内に上記アミン化合物を固定化させ、高分子膜を形成する工程、及び(2)該高分子膜に、アミンが配位してなる亜鉛錯体を配合する工程、を含むことを特徴とするCOガス分離膜の製造方法。
Figure JPOXMLDOC01-appb-C000010
(式中、Aは炭素数1~3の二価有機残基を表す。pは0又は1の整数を表す。R、R及びRは、互いに同一又は異なって、水素原子又は炭素数1~6のアルキル基を表す。*は結合部位を表す。);
Figure JPOXMLDOC01-appb-C000011
(式中、Aは炭素数1~3の二価有機残基を表す。qは0又は1の整数を表す。R、R及びRは、互いに同一又は異なって、水素原子又は炭素数1~6のアルキル基を表す。*は結合部位を表す。);
Figure JPOXMLDOC01-appb-C000012

(式中、A及びAは、互いに同一又は異なって、炭素数1~3の二価有機残基を表す。R、R及びRは互いに同一又は異なって、水素原子又は炭素数1~6のアルキル基を表す。r及びsは0又は1の整数を表す。*は結合部位を表す。)
[15]工程(2)が、高分子膜の少なくとも片面に、アミンが配位してなる亜鉛錯体を積層又は塗布する工程である前記[14]記載のCOガス分離膜の製造方法。
[16]工程(2)において、アミンが配位してなる亜鉛錯体の積層又は塗布用溶液に、塩を含むことを特徴とする前記[14]又は[15]に記載のCOガス分離膜の製造方法。
[17]塩が、アルカリ金属塩及び/又はアルカリ土類金属塩である前記[16]記載のCOガス分離膜の製造方法。
[18]工程(2)において、アミンが配位してなる亜鉛錯体の積層又は塗布用溶液に、ジアミノプロピオン酸、モノエタノールアミン、アミノ酸及びポリアクリル酸ナトリウムからなる群から選ばれる1種以上の添加剤を含むことを特徴とする前記[14]~[17]のいずれか1項に記載のCOガス分離膜の製造方法。
[19]不揮発性アミン化合物が、ポリ N-[3-(ジメチルアミノ)プロピル]メタクリルアミド、ポリアミドアミン系デンドリマー又はトリアジン系デンドリマーである前記[14]~[18]のいずれか1項に記載のCOガス分離膜の製造方法。
[20]高分子重合体が、カルボン酸変性PVA系重合体であることを特徴とする前記[14]~[19]のいずれか1項に記載のCO2ガス分離膜の製造方法。
[21]COを含む混合ガスを、前記[1]~[13]のいずれか1項に記載のCOガス分離膜に接触させて、該混合ガス中のCOを選択的に透過させる工程を含むことを特徴とする高濃度COの混合ガスの製造方法。
[22]COと水素を含む混合ガスを、前記[1]~[13]のいずれか1項に記載のCOガス分離膜に接触させて、該混合ガス中のCOを選択的に透過させる工程を含むことを特徴とする高濃度水素ガスの製造方法。
 本発明によれば、高いCOガスの透過速度をもって二酸化炭素を他のガスから分離できるCOガス分離膜及びその製造方法が提供される。また、本発明によれば、該分離膜を用いて効率よく二酸化炭素を他のガスから分離する方法が提供される。なお、本発明の分離膜は、二酸化炭素分離能を有するアミン化合物が高分子膜の表面に担持されているのではなく、該高分子膜内に固定化されているため、安定性が非常に優れているという特長を有する。すなわち、本発明で得られる分離膜は圧力をかけた場合に式[I]~[III]で示される基を有するアミン化合物が漏出することがなく、したがって、該分離膜を長期間安定に使用しうるという特長を有する。
図1は、COガス分離膜における反応を示す。 図2は、COガス分離膜の態様を示す。 図3は、ガス分離装置の概略図である。図中、GCはガスクロマトグラフィーを意味する。
 本発明のCOガス分離膜は、不揮発性アミン化合物が固定化されてなる高分子膜に、アミンが配位してなる亜鉛錯体を配合してなることを特徴とする。本発明において、不揮発性アミン化合物とは、高分子膜の使用温度(200℃以下)で不揮発なアミンをいう。
 前記高分子膜は、不揮発性アミン化合物が高分子膜に固定化されていれば、特に限定されないが、好適には、高分子重合体内に、下記式[I]~[III]で示される基を少なくとも1以上有する不揮発性アミン化合物が固定化されてなるものが挙げられる。
Figure JPOXMLDOC01-appb-C000013
(式中、Aは炭素数1~3の二価有機残基を表す。pは0又は1の整数を表す。R、R及びRは、互いに同一又は異なって、水素原子又は炭素数1~6のアルキル基を表す。*は結合部位を表す。);
Figure JPOXMLDOC01-appb-C000014
(式中、Aは炭素数1~3の二価有機残基を表す。qは0又は1の整数を表す。R、R及びRは、互いに同一又は異なって、水素原子又は炭素数1~6のアルキル基を表す。*は結合部位を表す。);
Figure JPOXMLDOC01-appb-C000015
(式中、A及びAは、互いに同一又は異なって、炭素数1~3の二価有機残基を表す。R、R及びRは互いに同一又は異なって、水素原子又は炭素数1~6のアルキル基を表す。r及びsは0又は1の整数を表す。*は結合部位を表す。)
なお、本発明において、COガス分離膜とは、ガス分離能を有する高分子膜と多孔質支持膜が一体に形成されたものも含まれる。
 高分子膜への、アミンが配位してなる亜鉛錯体の配合は、特に限定されないが、例えば、高分子膜の少なくとも片面に、アミンが配位してなる亜鉛錯体を積層又は塗布する方法が好適に挙げられる。
 本発明のCOガス分離膜における反応は、図1に示されるとおりである。COは膜中でCO→HCO (供給側)―拡散→HCO (透過側)→COとして移動する。本発明者らは、工業化の観点から、従来の膜よりもCO透過量(QCO2)を向上させ、CO選択性を増加させるために、律速となる反応部位を同定し、当該部位の促進する本発明を完成させた。
 本発明のアミンが配位してなる亜鉛錯体の使用により、下記式の双方向の反応速度が向上する。
Figure JPOXMLDOC01-appb-I000016
 本発明において、アミンが配位してなる亜鉛錯体は、中心金属が亜鉛であり、配位子がアミンであれば、特に限定されず、前記アミンとしては、2級アミン及び/又は3級アミンが好ましい。前記2級アミン及び/又は3級アミンが配位してなる亜鉛錯体としては、特に限定されないが、炭素数4~15の複素環式化合物を含むものが好適に挙げられる。前記炭素数4~15の複素環式化合物を含み、2級アミン及び/又は3級アミンが配位してなる亜鉛錯体の具体例としては、特に限定されないが、
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(Zn-ニトリロトリス(2-ベンズイミダゾリルメチル-6-スルホン酸(Zn-Nitrilotris(2-benzimidazolylmethyl-6-sulfonic acid; ZNTBS))、又は炭酸脱水酵素(CA)等が挙げられる。炭酸脱水酵素は、酵素活性を有していれば特に限定されず、天然の炭酸脱水酵素だけでなく、公知の遺伝子工学的手法により作製された遺伝子組み換え炭酸脱水酵素も含む。これらの亜鉛錯体は、単独で又は2種以上を併用して使用することができる。
 本発明において、アミンが配位してなる亜鉛錯体を積層する場合、アミンが配位してなる亜鉛錯体からなる層(以下、触媒層ともいう。)の厚さは、本発明の効果を妨げない限り、特に限定されないが、通常、0.01~100μmであり、好ましくは、0.1~10μmである。
 本発明において、必須ではないが、必要に応じて、前記亜鉛錯体に添加剤を加えてもよい。前記添加剤としては、特に限定されないが、例えば、ジアミノプロピオン酸(DAPA)、モノエタノールアミン(MEA)、アミノ酸(プロリン等)、ポリアクリル酸ナトリウム等が挙げられ、ガス分離性能が高まる点から、ジアミノプロピオン酸、プロリン等が好ましい。これらは単独で使用してもよく、2種以上を併用してもよい。
 また、本発明において、必須ではないが、CO分離性能をさらに向上させる点から、必要に応じて、前記亜鉛錯体に塩を加えてもよい。前記塩としては、特に限定されないが、金属塩が好ましく、例えば、アルカリ金属塩、アルカリ土類金属塩が好適に挙げられる。前記金属塩としては、アルカリ金属水酸化物(例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化ルビジウム等)、アルカリ土類金属水酸化物(例えば、水酸化カルシウム、水酸化マグネシウム、水酸化ストロンチウム、水酸化バリウム等)、アルカリ金属炭酸塩(例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等)、アルカリ土類金属炭酸塩(例えば、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム等)、アルカリ金属炭酸水素塩(例えば、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム等)、アルカリ土類金属炭酸水素塩(例えば、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素バリウム等)、アルカリ金属アルコキシド(例えば、リチウムエトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウムメトキシド、カリウムtert-ブトキシド、ナトリウムtert-ブトキシド等)等が挙げられ、好ましくは、炭酸セシウム(CsCO)、炭酸カリウム(KCO)、水酸化ナトリウム、水酸化カリウム等が挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。前記亜鉛錯体に加える塩の量は、亜鉛錯体が相分離することがない限り特に限定されないが、0.5%の亜鉛錯体に対して、塩は0.1~0.7Mの添加が好ましく、0.2~0.6Mがより好ましく、0.3~0.5Mがさらに好ましい。また、塩の量を増やすために製膜溶液に塩を混ぜることもできる。CO分離膜中の塩濃度は、特に限定されないが、25~95wt%が好ましく、30~90wt%がより好ましく、35~90wt%がさらに好ましい。
 高分子重合体内に固定化されている不揮発性アミン化合物は、高分子膜の使用温度(200℃以下)で不揮発なアミンである限り特に限定されないが、前記式[I]~[III]で示される基を少なくとも1以上有するアミン化合物が好ましい。式[I]~[III]中、A、A、A及びAで示される炭素数1~3の二価有機残基としては、例えば、直鎖状又は分枝状の炭素数1~3のアルキレン基が挙げられる。このようなアルキレン基の具体例としては、-CH-、-CH-CH-、-CH-CH-CH-、-CH-CH(CH)-等が挙げられ、これらのうち特に-CH-が好ましい。式[I]~[III]におけるR、R、R、R、R、R、R、R及びRは、互いに同一又は異なって、水素原子又は炭素数1~6のアルキル基を表す。前記炭素数1~6のアルキル基としては、特に限定されないが、直鎖もしくは分枝状であってよく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基等が挙げられる。
 本発明の不揮発性アミン化合物は、式[I]~[III]で示される基が1個以上含まれている限り、該基の数については特に制限されないが、好ましくは該基が2~4096個、更に好ましくは該基を3~128個有するものが例示される。
 また、本発明で使用されるアミン化合物において、式[I]~[III]で示される基が占める重量分率は、特に制限されるものではない。二酸化炭素の分離能を高めるという観点から、該アミン化合物に占める式[I]~[III]で示される基の重量分率が約5%以上であるものが好ましく、約10~94%であるものがより好ましく、約15~53%であるものがさらに好ましい。
 本発明で使用されるアミン化合物において、一般式[I]~[III]で示される基が結合する骨格としては、特に限定されないが、好適には、例えば次式で示されるものが挙げられる(下記式中、nは0~10の整数(0以外は正の整数)を示し、mは正の整数を示す)。前記mは、本発明の効果を妨げない限り特に限定されず、例えば、1~3000であってもよく、1~2500であってもよい。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 すなわち、本発明で使用される不揮発性アミン化合物は、式[I]~[III]で示される基が、上記式において米印の結合部位の一部又は全部に、直接又はアルキレン基を介して結合し、式[I]~[III]で示される基が結合してない結合部位には、水素原子、アルキル基、アミノアルキル基、ヒドロキシアルキル基等が結合した化合物である。
 本発明のアミン化合物としては、例えば、末端に少なくとも1以上の-NHで示されるアミノ基を有するデンドリマーにおいて、該アミノ基のうち少なくとも1以上が下記一般式[IV]で示されるアミノ基に置換された構造を有するもの等が挙げられる。
Figure JPOXMLDOC01-appb-C000022
(式中、R及びRは同一又は異なってもよく、水素原子又は炭素数1~6のアルキル基を表す。)
 前記一般式[IV]において、R及びRとしては、本発明の効果を妨げない限り特に限定されないが、互いに同一又は異なってもよく、水素原子、メチル基、エチル基、プロピル基又はイソプロピル基等であることが好ましい。
 前記不揮発性アミン化合物としては、本発明の効果を妨げない限り特に限定されないが、例えば、ポリ N-[3-(ジメチルアミノ)プロピル]メタクリルアミド(Poly N-[3-(Dimethylamino)propyl]methacrylamide)、ポリアミドアミン系デンドリマー及びトリアジン系デンドリマー等が好ましく挙げられる。
 本発明で使用される不揮発性アミン化合物としては、例えば、下記の式で示される第0世代のポリアミドアミン系デンドリマー、及びこれら第0世代ポリアミドアミン系デンドリマーに対応する第1世代以上のものが挙げられる。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 上記ポリアミドアミン系デンドリマーのうち、特に好適な化合物の一例として、下記ポリアミドアミン系デンドリマーが挙げられる。
Figure JPOXMLDOC01-appb-C000030
 前記トリアジン系デンドリマーとしては、例えば、次式で示される第0世代デンドリマー及びこれらに対応する第1~5世代デンドリマー等が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 また、前記不揮発性アミン化合物の好適な他の態様としては、例えば、上記骨格のうち、以下の骨格に、2級及び/又は3級アミンが結合した化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000033
(式中、mは上記と同様の意味を有する)
 好適な具体例としては、特に限定されないが、下記化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000034
(式中、mは上記と同様の意味を有する)
 なお、本発明で用いるデンドリマーは、枝の長さがすべて等しいものと、そのうちの少なくとも1つがヒドロキシアルキル基又はアルキル基で置換され、枝の長さが異なるものを含む。また、デンドリマーは、表面基[すなわち、式[I]~[III]で示される基]の数が異なる各種のデンドリマーを使用することができる。例えば、ポリアミドアミン系デンドリマーの表面基の数と世代の関係は、第0世代の表面基の数をa(aは3以上の整数を示す。)とすると、第b世代(bは整数を示す。)の表面基の数cは、次の通りである。
 c=a×2
 本発明において、デンドリマーは公知の市販品(例えば、アルドリッチ社製の第0~10世代のPAMAMデンドリマー等)を使用することもでき、とりわけ第0~5世代のポリアミドアミン系デンドリマーを好適に使用することができる。ポリアミドアミン系デンドリマーの第0世代の表面基の数が4個の場合の世代ごとの表面基の数を下記表1に示す。
Figure JPOXMLDOC01-appb-T000035
 式[I]で示される基を有するアミン化合物は、公知の有機合成法に従って製造することができる。当該アミン化合物の合成方法の一例として、アルキルエステル基を有する母核化合物と、下記式[Ia]で示されるアミン化合物を反応させる方法が例示される。かかる方法によれば、アルキルエステル基を有する化合物の該アルキルエステル基が式[I]で示される基に変換されて、式[II]で示される基を有するアミン化合物を製造することができる。下式は、当該合成法において、アルキルエステル基が式[I]で示される基に変換される式である。
Figure JPOXMLDOC01-appb-C000036
 [式中、A、R、R、R及びpは前記と同一意味を有する。Aは、炭素数1~3のアルコキシ基を表す。]
 Aで示される炭素数1~3のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基が挙げられ、メトキシ基、エトキシ基が好適に挙げられる。
 アルキルエステル基を有する化合物と、式[Ia]で示されるアミン化合物との反応は、アルキルエステル基を有する化合物1モルに対して、式[Ia]で示されるアミン化合物を、通常約3~20モル、好ましくは約5~10モルの割合で使用して行われる。
 アルキルエステル基を有する化合物と、式[Ia]で示されるアミン化合物との反応は、通常、適当な溶媒中で行われる。溶媒としては、反応を阻害しない溶媒であれば公知のものを広く使用できる。このような溶媒としては、例えば、メタノール、エタノール、2-プロパノール、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。これらの溶媒には、水が含まれていていることを妨げるものではない。
 アルキルエステル基を有する化合物と、[Ia]で示されるアミン化合物との反応は、通常約0~40℃、好ましくは約20~30℃で、約90~180時間、好ましくは約160~170時間攪拌を続けることにより行われる。
 原料として用いられるアルキルエステル基を有する化合物、及び式[Ia]で示されるアミン化合物は公知化合物の化合物を用いることができる。
 上記反応によって得られた反応混合物を、例えば、冷却した後、濾過、濃縮、抽出等の単離操作に供して粗反応生成物を分離し、更に必要に応じてカラムクロマトグラフィー、再結晶等の通常の精製操作を行うことによって式[I]で示される基を有するアミン化合物を単離精製することができる。
 また、式[II]で示される基を有するアミン化合物は、アミノ基を有する母核化合物と下記式[IIa]で示される末端にアルキルエステル基を有するアミン化合物を、前記と同様に反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-C000037
 [式中、A、R、R、R及びqは前記と同一意味を有する。Aは、炭素数1~3のアルコキシ基を表す。]
 Aで示される炭素数1~3のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基が挙げられ、メトキシ基、エトキシ基が好適に挙げられる。
 式[III]で示される基を有するアミン化合物は、例えば、下記式[IIIa]で示される末端にアルケニル基を有する母核化合物と下記式[IIIb]で示されるジアミン化合物を、前記と同様に反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-C000038
 (式中、A、A、R、R、R、r及びsは前記と同一意味を有する。)
 本発明の高分子重合体は、特に限定されないが、例えば、ポリビニルアルコール(PVA)系重合体であってもよく、多官能重合性単量体を重合させてなるものであってもよい。前記多官能重合性単量体としては、炭素-炭素不飽和結合を2個以上有する重合可能な化合物であれば、特に限定されない。例えば、多官能(メタ)アクリルアミド類、多官能(メタ)アクリレート類等の多官能アクリル系単量体、多官能ビニルエーテル類又はジビニルベンゼン等の多官能ビニル系単量体等が挙げられ、本発明のアミン化合物存在下で重合させた場合に、より安定的に重合が進む点から、分子内にエステル結合を有する多官能アクリル系単量体が特に好ましく挙げられる。これらの多官能重合性単量体は、単独又は2種以上を組み合わせて用いることができる。
 前記PVA系重合体としては、特に限定されず、公知のものを使用することができる。また、前記PVA系重合体は、公知の方法で製造することができ、例えば、ポリビニルエステルをケン化して得ることができる。
 本発明に使用されるポリビニルエステルはビニルエステルを溶液重合して得られる。ビニルエステルとして、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、ステアリン酸ビニル等が挙げられ、工業的には酢酸ビニルが好ましい。
 本発明の効果を損なわない範囲で高分子重合体の特性改良を目的に、前記脂肪族ビニルエステルと共重合可能な不飽和単量体を脂肪族ビニルエステルと共重合してもよく、そのような共重合を伴う態様も本発明の「脂肪族ビニルエステルの重合」の範疇に含まれる。脂肪族ビニルエステルと共重合可能な不飽和単量体として、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニル、ピバリン酸ビニル、ステアリン酸ビニル等の脂肪族ビニルエステル類;エチレン、プロピレン等のα-オレフィン類;アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸等の重合性モノカルボン酸類又はその塩;マレイン酸、イタコン酸、フマル酸等の重合性ジカルボン酸類又はその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ドデシル、アクリル酸オクタデシル等のアクリル酸エステル類;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ドデシル、メタクリル酸オクタデシル等のメタクリル酸エステル類;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸及びその塩、アクリルアミドプロピルジメチルアミン及びその塩、N-メチロールアクリルアミド及びその誘導体等のアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸及びその塩、メタクリルアミドプロピルジメチルアミン及びその塩、N-メチロールメタクリルアミド及びその誘導体等のメタクリルアミド誘導体;N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルピロリドン等のN-ビニルアミド類;n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル等のビニルエーテル類;エチレングリコールビニルエーテル、1,3-プロパンジオールビニルエーテル、1,4-ブタンジオールビニルエーテル等のヒドロキシ基含有のビニルエーテル;アリルアセテート、プロピルアリルエーテル、ブチルアリルエーテル、ヘキシルアリルエーテル等のアリルエーテル類、オキシアルキレン基を有する不飽和単量体;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニルシリル類、酢酸イソプロペニル、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、7-オクテン-1-オール、9-デセン-1-オール、3-メチル-3-ブテン-1-オール等のヒドロキシ基含有のα-オレフィン類;3,4-ジアセトキ-1-ブテン、1,2-ジアセトキシエチレン等のアセトキシ基含有不飽和単量体、エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸等のスルホン酸基含有不飽和単量体、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン含有不飽和単量体、スチレン等の芳香族不飽和系単量体を挙げることができるが、それらに限らない。また、これら脂肪族ビニルエステルと共重合可能な不飽和単量体を単独で用いても、2種以上を併用してもよい。前記PVA系重合体としては、特に限定されないが、カルボン酸変性PVA系重合体(カルボキシ基含有PVA系重合体)等が好ましい。
 前記PVA系重合体の粘度平均重合度(本明細書中、「重合度」ともいう)は、特に限定されないが、膜の強度に優れることから、200~3000が好ましく、250~2800がより好ましく、300~2500がさらに好ましい。PVA系重合体のケン化度は、特に限定されないが、製膜性の点から、80~100モル%が好ましく、90~99.9モル%がより好ましい。前記重合度及びケン化度は、JIS K 6726(1994)に記載の方法に従って測定される。また、前記PVA系重合体が変性基(例えばカルボキシ基)含有PVA系重合体の場合、変性基の含有割合は、特に限定されないが、0.5~5.0モル%程度が好ましく、0.7~3.0モル%程度がより好ましい。
 上記多官能(メタ)アクリルアミド類としては、N,N’-(1,2-ジヒドロキシエチレン)ビスアクリルアミド、エチジウムブロマイド-N,N’-ビスアクリルアミド(Ethidium bromide-N,N’-bisacrylamide)、エチジウムブロマイド-N,N’-ビスメタクリルアミド(Ethidium bromide-N,N’-bismethacrylamide)、N,N’-エチレンビスアクリルアミド、N,N’-メチレンビスアクリルアミド等が挙げられる。
 上記多官能(メタ)アクリレート類としては、ジ(メタ)アクリレート類、トリ(メタ)アクリレート類又はテトラ(メタ)アクリレート類等が挙げられる。
 上記ジ(メタ)アクリレート類としては、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオ-ルジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート類が挙げられる。
 上記トリ(メタ)アクリレート類としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリストールトリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等が挙げられる。
 上記テトラ(メタ)アクリレート類としては、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。
 上記多官能ビニルエーテル類としては、トリメチロールプロパントリビニルエーテル、ジトリメチロールプロパンテトラビニルエーテル、グリセリントリビニルエーテル等が挙げられる。
 また、必要に応じて、重合反応を上記多官能重合性単量体と単官能重合性単量体とを併用して行ってもよい。併用することにより、高分子重合体内の網目の大きさを調節することができる。前記単官能重合性単量体としては、単官能(メタ)アクリルアミド類、単官能(メタ)アクリレート類等の単官能アクリル系単量体、単官能ビニルエーテル類、単官能N-ビニル化合物類又は単官能ビニル化合物類等の単官能ビニル系単量体、単官能α,β-不飽和化合物類等が挙げられる。これらの単官能重合性単量体は、単独又は2種以上を組み合わせて用いることができる。
 上記単官能(メタ)アクリルアミド類としては、2-アセトアミドアクリル酸、(メタ)アクリルアミド、2-アクリルアミド-2-メチルプロパンスルホン酸、N-(ブトキシメチル)アクリルアミド、N-tert-ブチルアクリルアミド、ジアセトンアクリルアミド、N,N-ジメチルアクリルアミド、N-[3-(ジメチルアミノ)プロピル]メタクリルアミド、等が挙げられる。
 上記単官能(メタ)アクリレート類としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、(メタ)アクリル酸、N,N-ジメチルアミノエチル(メタ)アクリレート、(ポリ)エチレングリコールメタクリレート、ポリプロピレングリコール(メタ)アクリレート等が挙げられる。
 上記単官能ビニルエーテル類としては、メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル、2-エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル、メトキシエチルビニルエーテル、メトキシポリエチレングリコールビニルエーテル等が挙げられる。
 上記単官能N-ビニル化合物類としては、N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルホルムアミド、N-ビニルアセトアミド等が挙げられる。
 上記単官能ビニル化合物類としては、スチレン、α-メチルスチレン、酢酸ビニル等が挙げられる。
 上記単官能α,β-不飽和化合物類としては、無水マレイン酸、マレイン酸、マレイン酸ジメチル、マレイン酸ジエチル、フマル酸、フマル酸ジメチル、フマル酸ジエチル、フマル酸モノメチル、フマル酸モノエチル、無水イタコン酸、イタコン酸、イタコン酸ジメチル、メチレンマロン酸、メチレンマロン酸ジメチル、桂皮酸、桂皮酸メチル、クロトン酸、クロトン酸メチル等が挙げられる。
 上記高分子重合体内に固定化される前記式[I]~[III]で示される基を少なくとも1以上有する不揮発性アミン化合物の量は、高分子重合体100重量部に対して通常約2~400重量部、好ましくは約25~250重量部、さらに好ましくは約40~100重量部である。前記「固定化」とは、前記アミン化合物が高分子膜の表面に担持されているのではなく、高分子膜の網目状構造の中に前記アミン化合物が入り込み、内部に担持されている状態とすることを意味する。
 本発明の高分子膜の膜厚は、本発明の効果を妨げない限り特に限定されないが、ガス透過速度が高く、COガス分離の性能が好ましく発揮される等の点から、通常約1000μm以下であり、約600μm以下が好ましく、約250μm以下がより好ましい。前記膜厚の下限としては、効果的にガス分離を行うことができる限り特に限定されないが、耐久性等の点から、約0.1μm以上が好ましく、約1.0μm以上がさらに好ましい。
 上記のように、本発明の高分子膜は、自己支持性を有しない場合、必要に応じて、支持体を基材として使用してもよい。支持体としては、特に限定されないが、例えば、多孔質支持膜等が挙げられ、該多孔質支持膜を積層した分離膜も本発明に含まれる。本発明に用いる多孔質支持膜は、例えば、後述するポリマー等を用いて製造することができ、セラミックスやポリエチレンフタレート(PET)不織布等を用いることもできる。具体的には、ポリマーを用いて製造する場合、ポリマーを溶媒に溶解して、原料溶液を得たのち、該原料溶液と、凝固液(溶媒と非溶媒の混合溶液)と接触させて、非溶媒濃度の上昇により相分離を誘起する方法(非溶媒誘起相分離法;NIPS法、特公平1-22003号公報参照)により、多孔質支持膜を製造することができる。前記セラミックスとしては、アルミナ、ジルコニア、チタニア、シリカ等が挙げられる。
 多孔質支持膜の製造に用いるポリマーとしては、例えば、ポリエーテルスルホン(PES)、ポリスルホン(PSF)、ポリフェニレンスルホン、トリアセチルセルロース、酢酸セルロース、カーボン、ポリアクリロニトリル、ポリフッ化ビニリデン、芳香族ナイロン、ポリエチレンフタレ-ト(PET)、ポリエチレンナフタレート、ポリアリレート、ポリイミド、ポリエーテル、セロファン、芳香族ポリアミド、ポリエチレン、ポリプロピレン等が挙げられる。これらのポリマーは、単独又は2種以上を組み合わせて用いることができる。
 前記溶媒としては、N-メチルピロリドン(NMP)、アセトン、ジメチルホルムアミド等が挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。凝固時に凝固液へ溶媒が溶解するものであれば、特に限定されない。前記非溶媒としては、例えば水、一価アルコール、多価アルコール、エチレングリコール、テトラエチレングリコール等が挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。
 原料溶液の調製の際に、膨潤剤を添加して、凝固後の支持膜内の貫通孔を増加させ、ガス透過性を向上させることが好ましい。前記膨潤剤としては、例えば、ポリエチレングリコール、ポリビニルピロリドン、ヒドロキシプロピルセルロース、食塩、塩化リチウム、臭化マグネシウム等が挙げられ、これらは、単独又は2種以上の混合物を用いることができる。この膨潤剤の中で、ポリエチレングリコールが好ましく、特に重量平均分子量400~800のポリエチレングリコールが好ましい。原料溶液及び凝固液の濃度は、原料溶液と凝固液とを接触させ、非溶媒誘起相分離法により、多孔質支持膜を得られる濃度であれば、特に限定されないが、例えば、原料のポリマーとしてポリエーテルスルホン(PES)を用いる場合、原料溶液(PES溶液)は、製膜性から10~40wt%が好ましく、15~37wt%がより好ましい。
 原料溶液と凝固液との接触の方法としては、特に限定されないが、例えば、原料溶液を凝固液に浸漬する方法が挙げられる。凝固液中の溶媒濃度は、特に限定されないが、原料溶液の凝固において、凝固液中の溶媒濃度を変化させることにより、支持膜の構造が変化し、耐圧性を上げることができる。
 多孔質支持膜の細孔の孔径としては、特に限定されないが、100nm以下が好ましく、さらに好ましくは10nm以下である。多孔質支持膜の膜厚は、高分子膜のガス透過性が多孔質支持膜のガス透過性よりも大きくならない範囲であれば、特に限定されない。
 以下に、本発明のCOガス分離膜の製造方法について説明する。
 本発明のCOガス分離膜の製造方法の第一の態様としては、(1)前記式[I]~[III]で示される基を少なくとも1以上有する不揮発性アミン化合物の存在下に、重合性単量体を重合反応させることにより、生成する高分子重合体内に上記アミン化合物を固定化させ、高分子膜を形成する工程、及び(2)該高分子膜に、アミンが配位してなる亜鉛錯体を配合する工程、を含む方法が挙げられる。
 [工程(1)]
 本工程は、前記不揮発性アミン化合物の存在下に、重合性単量体(前記多官能重合性単量体又はビニルエステル)を重合反応させることにより、生成する高分子重合体内に前記アミン化合物を固定化させ、高分子膜を形成する工程である。
 本発明の多官能重合性単量体を前記アミン化合物の存在下に重合反応させる方法としては、例えば、溶液重合、熱重合、光重合等が挙げられる。重合反応には、通常(熱又は光)重合開始剤が用いられる。以下に例示する重合開始剤としては、特に限定されず、公知の市販品を用いることができる。
 上記熱重合開始剤としては、公知のものを使用でき、特に限定されないが、具体的には、メチルエチルケトンパーオキサイド、ベンゾイルパーオキサイド、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルパーオキシオクトエート、t-ブチルパーオキシベンゾエー卜、ラウロイルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル等のアゾ系化合物等が好適である。また、熱重合時には硬化促進剤を混合して使用してもよく、硬化促進剤としては、ナフテン酸コバルトやオクチル酸コバルト等又は3級アミン等が好適である。熱重合開始剤の添加量としては、上記多官能重合性単量体100重量部に対し、約0.01~10重量部とすることが好ましい。より好ましくは、約0.1~1重量部である。
 上記光重合開始剤としては、公知のものを使用でき、特に限定されないが、具体的には、以下のような化合物が好適である。これらは単独又は2種以上の混合物として使用される。
 ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインとそのアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、4-(1-t-ブチルジオキシ-1-メチルエチル)アセトフェノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オンや2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノンオリゴマー等のアセトフェノン類。
 2-メチルアントラキノン、2-アミルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン等のアントラキノン類;2,4-ジメチルチオキサントン、2,4-ジイソプロピルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-(3-ジメチルアミノ-2-ヒドロキシ)-3,4-ジメチル-9H-チオキサントン-9-オンメソクロリド等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン、4-(1-t-ブチルジオキシ-1-メチルエチル)ベンゾフェノン、3,3′,4,4′-テトラキス(t-ブチルジオキシカルボニル)ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4′-メチル-ジフェニルサルファイド、3,3′,4,4′-テトラ(t-ブチルパーオキシルカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド等のベンゾフェノン類;アシルフォスフィンオキサイド類及びキサントン類。
 上記光重合開始剤の添加量としては、上記多官能重合性単量体100重量部に対し、約0.5~10重量部とすることが好ましい。より好ましくは約2~3重量部である。
 本発明に用いる多官能重合性単量体を光により硬化させる場合、光重合開始剤とともに増感剤として塩基性化合物を用いることができる。塩基性化合物としてはアミン化合物を用いることが好ましく、上記アミン化合物としては、特に制限されないが、具体的には、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、モノプロピルアミン、ジメチルプロピルアミン、モノエタノールアミン、ジエタノールアミン、エチレンジアミン、ジエチレントリアミン、ジメチルアミノエチルメタクリレート、ポリエチレンイミン等が挙げられる。これらの中で特に3級アミン化合物が好適である。
 上記3級アミン化合物としては、トリエタノールアミン、トリイソプロパノールアミン、トリブタノールアミン、メチルジエタノールアミン、メチルジイソプロパノールアミン、メチルジブタノールアミン、エチルジエタノールアミン、エチルジイソプロパノールアミン、エチルジブタノールアミン、プロピルジエタノールアミン、プロピルジイソプロパノールアミン、プロピルジブタノールアミン、ジメチルエタノールアミン、ジメチルイソプロパノールアミン、ジメチルブタノールアミン、ジエチルエタノールアミン、ジエチルイソプロパノールアミン、ジエチルブタノールアミン、ジプロピルエタノールアミン、ジプロピルイソプロパノールアミン、ジプロピルブタノールアミン、ジブチルエタノールアミン、ジブチルイソプロパノールアミン、ジブチルブタノールアミン、メチルエチルエタノールアミン、メチルエチルイソプロパノールアミン、メチルエチルブタノールアミン、ベンジルジエタノールアミン、N-フェニルジエタノールアミン、テトラエタノールエチレンジアミン、テトラプロパノールエチレンジアミン等が挙げられる。また、これら水酸基含有3級アミン化合物にエチレンオキサイドを付加させてポリエチレングリコール鎖を導入したもの、水酸基含有3級アミン化合物に水酸基と反応性を有する官能基を含有するモノマーを付加させて重合性二重結合を導入したもの、ポリマー又はオリゴマーに3級アミノ基を導入したもの等も用いることができる。これらのアミン化合物は単独又は2種以上を組み合わせて用いることができる。
 上記増感剤の使用量は、光重合開始剤100重量部に対し、約1~10重量部とすることが好ましい。より好ましくは約5~8重量部である。
 上記重合反応は、適当な溶媒中、熱重合の場合は加熱により、光重合の場合は紫外線の照射により実施することが好ましい。溶媒としては、上記アミン化合物と上記多官能重合性単量体を溶解するものであれば特に限定されないが、通常水、アルコール(例えば、メタノール、エタノール等)又はこれらの混合液が好適に使用できる。熱重合の加熱は、通常約40~90℃、好ましくは約60~70℃で、通常約2~24時間、好ましくは約5~10時間で行われる。光重合の紫外線照射は、通常約200~400nm、好ましくは約250~360nmの波長を用いて、通常約30秒~10分、好ましくは約1~3分で行われる。なお、熱重合と光重合とは併用して行うこともでき、例えば熱重合の後に光重合を行うか、光重合させた後に熱重合するか、あるいは光重合と熱重合を同時に行うこともできる。
 かくして、高分子重合体が生成すると同時に、該高分子重合体内に前記式[I]~[III]で示される基を少なくとも1以上有する不揮発性アミン化合物が固定化されてなる高分子膜が得られる。得られる高分子膜は、該三次元網目構造を有する高分子重合体の該網目構造内に前記式[I]~[III]で示される基を少なくとも1以上有する不揮発性アミン化合物が封入され、固定化されているものが好適に挙げられる。また、高分子膜は、PVA系重合体(好適には、カルボン酸変性PVA系重合体等)等の高分子重合体水溶液に前記式[I]~[III]で示される基を少なくとも1以上有する不揮発性アミン化合物を混合し、流延塗布し、水を乾燥除去することでも得られる。
[工程(2)]
 本工程は、前記工程(1)で得られた高分子膜に、アミンが配位してなる亜鉛錯体を配合する工程である。前記高分子膜への、アミンが配位してなる亜鉛錯体の配合は、特に限定されないが、例えば、高分子膜の少なくとも片面に、アミンが配位してなる亜鉛錯体を積層又は塗布する方法が好適に挙げられる。
 高分子膜の少なくとも片面に、前記亜鉛錯体を積層又は塗布する方法としては、それ自体公知の方法を採用することができ、例えば、スプレー塗布、アプリケーター、ディップコート等の公知の塗工法が挙げられる。各塗工法には、公知の装置を用いることができる。
 図2に示されるように、触媒層とCOガス分離機能層(高分子膜)が積層されている限り、積層体の構造は特に限定されない。また、前記触媒は、積層体を形成せずに、高分子膜に浸透していてもよく、このような態様も本発明に含まれる。例えば、前記の積層体を形成している場合、HCO がCOに戻る反応を触媒する効率が高く、得られるCOガス分離膜のガス分離性能が優れる点から、COを含む混合ガスを透過させる際に該混合ガスが接する面の裏面側に、触媒層を設けた積層体(図2では、B、C、E、Fの形態)が好ましい。本発明において、アミンが配位してなる亜鉛錯体は、前記高分子膜の少なくとも片面に積層又は塗布されていればよく、両面に積層又は塗布されてもよい。
 本工程において、pHを塩基性にして触媒層を塗布してもよい。表面の触媒層を、塩基性にすることで、反応速度を向上させることができ、ガスの透過速度を向上させることができる。前記pHとしては、特に限定されないが、例えば9.0以上、好ましくは9.5以上であり、より好ましくは10.0以上である。
 また、本工程に用いる高分子膜は、図2のA~Cに示されるように、多孔質支持膜を積層していてもよい。多孔質支持膜については、上述のとおりである。
 ラミネートに用いる接着剤としては、特に限定されないが、水系接着剤(例えば、α-オレフィン系接着剤、水性高分子-イソシアネート系接着剤等)、水分散系接着剤(例えば、アクリル樹脂エマルジョン接着剤、エポキシ樹脂エマルジョン接着剤、酢酸ビニル樹脂エマルジョン接着剤等)、溶剤系接着剤(例えば、ニトロセルロース接着剤、塩化ビニル樹脂溶剤系接着剤、クロロプレンゴム系接着剤等)、反応系接着剤(例えば、シアノアクリレート系接着剤、アクリル樹脂系接着剤、シリコーン系接着剤等)、ホットメルト接着剤(例えば、エチレン-酢酸ビニル樹脂ホットメルト接着剤、ポリアミド樹脂ホットメルト接着剤、ポリアミド樹脂ホットメルト接着剤、ポリオレフィン樹脂ホットメルト接着剤等)等が挙げられる。接着フィルムとしては、ポリビニルブチラール、ポリウレタン、エチレン-酢酸ビニル共重合体樹脂等の熱可塑性透明樹脂からなるフィルム等が挙げられる。本発明のCOガス分離膜のガス透過性を妨げない範囲であれば、接着剤又は接着フィルムの層の厚さは特に限定されない。
 本発明のCOガス分離膜の製造方法の他の態様としては、(1)前記式[I]~[III]で示される基を少なくとも1以上有する不揮発性アミン化合物及び重合性単量体を含む溶液を多孔質支持膜に塗布する、又は多孔質支持膜を前記溶液に浸漬する工程、(2)該重合性単量体を重合反応させることにより、生成する高分子重合体内に上記アミン化合物が固定されている高分子膜を多孔質支持膜上に形成させる工程、及び(3)該高分子膜にアミンが配位してなる亜鉛錯体を配合する工程を含む方法が挙げられる。前記重合反応前の塗布又は浸漬に用いる溶液に、CO分離性能をさらに向上させる点から、上述の添加剤及び/又は塩を加えてもよい。又、他の製造方法の態様としては、PVA系重合体等の高分子重合体水溶液に前記式[I]~[III]で示される基を少なくとも1以上有する不揮発性アミン化合物を混合し、製膜溶液を得る工程、得られた製膜溶液を流延塗布し、水を乾燥除去する工程、及び該高分子膜にアミンが配位してなる亜鉛錯体を配合する工程を含む方法が挙げられる。前記製膜溶液に、CO分離性能をさらに向上させる点から、上述の添加剤及び/又は塩を加えてもよい。
[工程(1)]
 本工程は、前記アミン化合物及び重合性単量体を含む溶液を多孔質支持膜に塗布する、又は多孔質支持膜を前記溶液に浸漬する工程である。前記アミン化合物及び重合性単量体を含む溶液は、溶媒に前記アミン化合物及び重合性単量体を溶媒に溶解させて得られる(以下、前駆体溶液という。)。
 前記溶媒としては、重合反応を阻害しない溶媒であれば公知のものを広く使用できる。このような溶媒としては、例えば、水、メタノール、エタノール、2-プロパノール等のアルコール類、テトラヒドロフラン、1,4-ジオキサン、ベンゼン、アセトン、グリセリン、ポリエチレングリコール等が挙げられる。これらの溶媒は、単独で又は2種以上を混合して使用できる。
 前駆体溶液には、通常、重合開始剤が用いられる。前駆体溶液に添加する重合開始剤としては、上記した熱重合開始剤又は光重合開始剤を用いることができ、光重合を行う場合は、上記した増感剤を前駆体溶液に添加することができる。熱重合開始剤、光重合開始剤又は増感剤の使用量は上記と同様である。なお、PVA系重合体等の高分子を使用した場合には重合開始剤を添加する必要はない。
 塗布又は浸漬の方法は、本発明の目的を阻害しない限り特に限定されないが、それ自体公知のキャスティング法、スピンコーティング法やディップコーティング法が好ましい。
 前記キャスティング法は多孔質支持膜の表面に前記前駆体溶液を所定量滴下し、ベーカーアプリケーター等で流延塗布し、液を均一に塗布する方法である。
 前記スピンコーティング法は、多孔質支持膜の表面に前記前駆体溶液を所定量滴下し、表面に均一塗布する方法である。なお、スピンコーティングにおける滴下量は0.1~1μl/mm程度が好ましい。スピンコーティング時における回転速度は500~4000rpm程度が好ましい。
 また、前記ディップコーティング法は、前記前駆体溶液内に多孔質支持膜を浸し、ついで1~10mm/sec程度で引き上げることにより、多孔質支持膜に前駆体溶液を塗布する方法である。
 前記前駆体溶液は、前記成分以外に架橋剤等を含有していてもよい。該架橋剤としては、本発明の効果を妨げない限り、特に限定されず、公知の架橋剤を用いることができる。例えば、製造される膜の安定性が高くなることから、分岐末端にアクリル基及び/又はメタクリル基を3点以上有する架橋性アミン化合物を用いることも好ましい。
[工程(2)]
 本工程は、前記工程(1)に続いて、多孔質支持膜表面に塗布された重合性単量体を重合反応させることにより、生成する高分子重合体内に上記不揮発性アミン化合物が固定されている高分子膜を多孔質支持膜上に形成させる工程である。
 前記不揮発性アミン化合物の存在下に、多孔質支持膜表面に塗布された重合性単量体を重合反応させる方法としては、熱重合であっても光重合であってもよい。また、重合反応の温度、時間等の条件も上記と同様にすることができる。
[工程(3)]
 本工程は、前記工程(2)で得られた高分子膜に、アミンが配位してなる亜鉛錯体を配合する工程である。本工程は、前記第一の製造方法の態様と同様に行うことができる。
(炭酸ガス分離方法)
 本発明の他の一つは、上記で得られたCOガス分離膜を用いて、二酸化炭素を含む混合ガスから、二酸化炭素を分離する方法である。すなわち、本発明のガス分離方法は、二酸化炭素を含む混合ガスを上記で得られたCOガス分離膜に接触させて該混合ガス中の二酸化炭素を選択的に透過させる工程を含むことを特徴とする。
 当該ガス分離方法は、分離膜のガス供給側とガス透過側との間に圧力差を設けておくのが好ましい。この圧力差は、通常、ガス透過側を減圧にすることにより設けられる。また、本分離方法は、通常5~150℃、好ましくは室温~100℃の温度条件下で実施するのが望ましい。
 本発明の分離方法に適用できる混合ガスは、二酸化炭素を含む混合ガスであれば特に制限されないが、二酸化炭素と他のガスとの分離性能を向上させるためには、混合ガスの相対湿度を30%以上、好ましくは60~100%に調製しておくのが好ましい。
 上記ガス分離方法は、例えば、火力発電所、鉄鋼プラント等で発生する燃焼排ガスから二酸化炭素(CO)を分離するのに適用することができる。
 本発明の他の一つは、二酸化炭素を含む混合ガスを、上記で得られたCOガス分離膜に接触させて、該混合ガス中のCOを選択的に透過させる工程を含む高濃度COの混合ガスの製造方法が挙げられる。高濃度COとは、特に限定されないが、好ましくは80%以上のCOを含むガスである。
 本発明の他の一つは、二酸化炭素と水素を含む混合ガスを、上記で得られたCOガス分離膜に接触させて、該混合ガス中のCOを選択的に透過させる工程を含む高濃度水素ガスの製造方法が挙げられる。高濃度水素とは、特に限定されないが、好ましくは80%以上の水素を含むガスである。
 次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。
 [実施例1]
1.高分子膜の作製
 下記式
Figure JPOXMLDOC01-appb-C000039
で示される第0世代のポリアミドアミン(PAMAM)デンドリマー(表面基:-CONHCHCHNH;アミノ基の数:4個;50wt%水溶液、NARD社製)4.0gを水1.85gに加え、11,11‘-(ethane-1,2-diyl)bis(2,20-dihydroxy-24-methyl-8,14,23-trioxo-22’-oxa-4‘,7’,11‘,15’,18‘-pentaazapentacos-24-ene-11,1-diyl)bis(2-methylacrylate)(以下、4GMAPと略す、66.6wt%水溶液、RITE製)0.45gを入れて攪拌し、その後ポリエチレングリコールジメタクリレート(以下、PEGDMAと略す、分子量:750;アルドリッチ社製)1.7g(2.27mmol)を溶かして攪拌した。
 次いで、Irgacure2959(1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、BASF社製)を加え、前駆体溶液を得た。ガラスシャーレ(φ47)上に前記前駆体溶液1.3gを滴下し、UV CROSSLINKER(SPECTROLINE社製)を用いて紫外光(波長ピーク:312nm)を室温で3分間照射することにより、PEGDMAを重合し、多孔質支持膜(ポリエーテルスルホン限外濾過膜、分画分子量300,000、ミリポア社製)に転写した。
2.触媒層の作製
 得られた高分子膜に、炭酸脱水酵素(CA)(アルドリッチ社製)0.0125gを水50mlに溶かした触媒溶液を用いて、スプレー塗布により塗布し、目的のCOガス分離膜(以下、触媒処理膜1という)を得た。得られた分離膜の膜厚は約0.01mmで、触媒層の厚さは、約0.0001mmであり、該高分子膜中の4GMAP、PEGDMA、PAMAMデンドリマーの割合は、それぞれ7.5、42.5、50wt%であった。
 [実施例2]
 実施例1において、亜鉛錯体触媒に、ZNTBSを、0.02g用いた以外は、実施例1と同様にして、COガス分離膜(以下、触媒処理膜2という)を得た。得られた分離膜の膜厚は約0.01mmで、触媒層の厚さは、約0.0001mmであり、該高分子膜中の4GMAP、PEGDMA、PAMAMデンドリマーの割合は、それぞれ7.5、42.5、50wt%であった。
 [比較例1]
 触媒層を設けない以外は、実施例1と同様にして、COガス分離膜(以下、未処理膜という)を得た。
 [試験例1]二酸化炭素と水素の分離試験
 実施例1~2で得たCOガス分離膜(触媒処理膜1~2)を用い、図3に概略図を示す装置を用いてCO分離能を測定した。すなわち、COガス分離膜の高分子膜層が供給ガスと接触するように設置して、該分離膜に表2に示すCO分圧の二酸化炭素ガスと水素ガスとの混合ガスを供給し、COガス分離膜を透過したガスの透過速度QCO2(m(STP)/m s Pa)を下記条件でガスクロマトグラフィーと流量計を用いて測定し、下記式に従って選択性αを算出した。試験に用いた分離膜中の高分子膜は、0.8cmとした。なお、COガス分離膜に代えて、比較例1で得たCOガス分離膜(未処理膜)を用いて同様の試験を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-M000040
(式中、iはガスの種類を表し、Qはガス透過速度(m3(STP)/(m2・s・Pa))を表し、Aは有効な膜の面積(m)を表し、Fは排出ガスの総流量(m3(STP)/s)を表し、Xは供給ガス中のCOのモル分率を表し、Yは透過したガス中のCOのモル分率を表し、Pは供給側の圧力(Pa)を表し、Pは透過側の圧力(Pa)を表す。)
Figure JPOXMLDOC01-appb-M000041
(式中、αCO2/H2は、二酸化炭素の選択性を表し、XCO2は供給ガスのCOのモル分率を表し、XH2は供給ガスのHのモル分率を表し、YCO2は膜を透過したガス中のCOのモル分率を表し、YH2は膜を透過したガス中のHのモル分率を表す。)
<ガス透過測定装置の設定条件>
 供給ガス量:約100ml/分、
測定温度:40℃、
供給ガス組成:CO/H=80/20(vol/vol)、
透過側循環ガス:Ar(乾燥)、
相対湿度:90%、
圧力:供給側;0.0MPaG、透過側;0kPaG
<ガスクロマトグラフィー分析条件>
 製品:GC390B(GLサイエンス製)
 Arスウィープガス量:約10ml/分
1)非透過側
カラム1: Porapak Q 80/100 1/8 inch×1m
カラム2: Active Carbon 60/80 1/8 inch×1m+Flusin F 80/100 1/8 inch×0.5m
2)透過側
カラム1: Porapak Q 80/100 1/8 inch×1m
カラム2: Active Carbon 60/80 1/8 inch×1m+Flusin F 80/100 1/8 inch×0.5m
3)水分析用
カラム1: Porapak Q 80/100 1/8 inch×2m
カラム2: Porapak Q 80/100 1/8 inch×2m
Figure JPOXMLDOC01-appb-T000042
 以上のことから、本発明により大気圧0.1MPaでQCOが向上し、CO/H選択性が増加した。
 [実施例3]
 COOH変性ポリ(ビニルアルコール)としてはカルボキシル基1モル%を含有し、酢酸ビニル単位のケン化度98.6モル%、重合度1800のPVA(銘柄:KL-118、クラレ社製)を使用した。該ポリマーの5wt%溶液、2.0gに水6.6gを加え、第0世代のポリアミドアミン(PAMAM)デンドリマー(50wt%水溶液、NARD社製)0.4gとポリアリルアミン(以下PAAmともいう;15wt%水溶液、アルドリッチ社製)0.5gを加えて60分攪拌後、ポリアミドエピクロロヒドリン樹脂(PAEPI)25wt%水溶液(銘柄:WS4020、星光PMC社製)0.48gを入れてさらに60分攪拌し前駆体溶液を得た。支持膜上に前記前駆体溶液を滴下し、スピンコーターを用いて製膜後、120℃で熱処理を行った。得られた高分子膜に、亜鉛錯体触媒としてZC0.02gを、添加剤としてDAPA0.018gを水50mlに溶かした触媒溶液を用いて、スプレー塗布により塗布し、COガス分離膜(以下、触媒処理膜3という)を得た。得られた分離膜の膜厚は約0.01mmで、触媒層の厚さは、約0.0001mmであり、該高分子膜中のPVA、PAAm、PAMAMデンドリマー、PAEPIの割合は、それぞれ20、16、40、24wt%であった。
 [試験例2]二酸化炭素と水素の分離試験
 実施例3で得たCOガス分離膜(触媒処理膜3)を用い、供給側の圧力を0.1MPaとした以外は、試験例1と同様にして、二酸化炭素と水素の分離試験を行った。結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000043
 [実施例4]
 亜鉛錯体触媒として、ZCを、0.02g用い、塩として、CsCOを0.059g用いた以外は、実施例3と同様にして、COガス分離膜(以下、触媒処理膜4という)を得た。得られた分離膜の膜厚は約0.01mmで、触媒層の厚さは、約0.0001mmであり、該高分子膜中のPVA、PAAm、PAMAMデンドリマー、PAEPIの割合は、それぞれ20、16、40、24wt%であった。
 [試験例3]二酸化炭素と水素の分離試験
 実施例4で得たCOガス分離膜(触媒処理膜4)を用いた以外は、試験例1と同様にして、二酸化炭素と水素の分離試験を行った。結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000044
 [実施例5]
 亜鉛錯体触媒として、炭酸脱水酵素(CA)を、0.02g用い、塩として、NaCOを3.5mg用いた以外は実施例3と同様にして、COガス分離膜(以下、触媒処理膜5という)を得た。得られた分離膜の膜厚は約0.01mmで、触媒層の厚さは、約0.0001mmであり、該当高分子中のPVA、PAAm、PAMAMデンドリマー,PAEPIの割合は、それぞれ、20、16、40、24wt%であった。
 [試験例4]二酸化炭素と水素の分離試験
実施例5で得たCOガス分離膜(触媒処理膜5)を用い、ガス透過測定装置の設定条件において、供給側の圧力を0.1MPaとした以外は、試験例1と同様にして、二酸化炭素と水素の分離試験を行った。結果を下記表5に示す。
Figure JPOXMLDOC01-appb-T000045
 [実施例6]
 亜鉛錯体触媒として、炭酸脱水酵素(CA)を、0.02g用い、塩として、KCOを3.5mg用いた以外は実施例3と同様にして、COガス分離膜(以下、触媒処理膜6という)を得た。得られた分離膜の膜厚は約0.01mmで、触媒層の厚さは、約0.0001mmであり、該当高分子中のPVA、PAAm、PAMAMデンドリマー,PAEPIの割合は、それぞれ、20、16、40、24wt%であった。
 [試験例5]二酸化炭素と水素の分離試験
実施例6で得たCOガス分離膜(触媒処理膜6)を用い、ガス透過測定装置の設定条件において、供給側の圧力を0.1MPaとした以外は、試験例1と同様にして、二酸化炭素と水素の分離試験を行った。結果を下記表6に示す。
Figure JPOXMLDOC01-appb-T000046
 [実施例7]
 亜鉛錯体触媒として、炭酸脱水酵素(CA)を、0.02g用い、塩として、RbCOを3.5mg用いた以外は実施例3と同様にして、COガス分離膜(以下、触媒処理膜7という)を得た。得られた分離膜の膜厚は約0.01mmで、触媒層の厚さは、約0.0001mmであり、該当高分子中のPVA、PAAm、PAMAMデンドリマー,PAEPIの割合は、それぞれ、20、16、40、24wt%であった。
 [試験例6]二酸化炭素と水素の分離試験
 実施例7で得たCOガス分離膜(触媒処理膜7)を用い、ガス透過測定装置の設定条件において、供給側の圧力を0.1MPaとした以外は、試験例1と同様にして、二酸化炭素と水素の分離試験を行った。結果を下記表7に示す。
Figure JPOXMLDOC01-appb-T000047
 [実施例8]
 亜鉛錯体触媒として、炭酸脱水酵素(CA)を、0.02g用い、塩として、CsCOを3.5mg用いた以外は実施例3と同様にして、COガス分離膜(以下、触媒処理膜10という)を得た。得られた分離膜の膜厚は約0.01mmで、触媒層の厚さは、約0.0001mmであり、該当高分子中のPVA、PAAm、PAMAMデンドリマー,PAEPIの割合は、それぞれ、20、16、40、24wt%であった。
 [試験例7]二酸化炭素と水素の分離試験
 実施例8で得たCOガス分離膜(触媒処理膜8)を用い、ガス透過測定装置の設定条件において、供給側の圧力を0.1MPaとした以外は、試験例1と同様にして、二酸化炭素と水素の分離試験を行った。結果を下記表8に示す。
Figure JPOXMLDOC01-appb-T000048
 [実施例9]
 亜鉛錯体触媒として、炭酸脱水酵素(CA)を、0.02g用い、塩として、NaCOとKCOをそれぞれ1.7mgずつ混合した混合物を用いた以外は実施例3と同様にして、COガス分離膜(以下、触媒処理膜9という)を得た。得られた分離膜の膜厚は約0.01mmで、触媒層の厚さは、約0.0001mmであり、該当高分子中のPVA、PAAm、PAMAMデンドリマー,PAEPIの割合は、それぞれ、20、16、40、24wt%であった。
 [試験例8]二酸化炭素と水素の分離試験
 実施例9で得たCOガス分離膜(触媒処理膜9)を用い、ガス透過測定装置の設定条件において、供給側の圧力を0.1MPaとした以外は、試験例1と同様にして、二酸化炭素と水素の分離試験を行った。結果を下記表9に示す。
Figure JPOXMLDOC01-appb-T000049
 [実施例10]
 亜鉛錯体触媒として、炭酸脱水酵素(CA)を、0.02g用い、塩として、NaCOとCsCOをそれぞれ1.7mgずつ混合した混合物を用いた以外は実施例3と同様にして、COガス分離膜(以下、触媒処理膜10という)を得た。得られた分離膜の膜厚は約0.01mmで、触媒層の厚さは、約0.0001mmであり、該当高分子中のPVA、PAAm、PAMAMデンドリマー,PAEPIの割合は、それぞれ、20、16、40、24wt%であった。
 [試験例9]二酸化炭素と水素の分離試験
 実施例10で得たCOガス分離膜(触媒処理膜10)を用い、ガス透過測定装置の設定条件において、供給側の圧力を0.1MPaとした以外は、試験例1と同様にして、二酸化炭素と水素の分離試験を行った。結果を下記表10に示す。
Figure JPOXMLDOC01-appb-T000050
 上記結果から、本発明のCOガス分離膜は、高いCOガスの透過速度をもって二酸化炭素を他のガスから分離できることが確認できた。
 [実施例11]
 実施例3と同様にして実験を行った。COOH変性ポリ(ビニルアルコール)(5wt%溶液、クラレ社製)6.0gに水9.76gを加え、第0世代のポリアミドアミン(PAMAM)デンドリマー(50wt%水溶液、NARD社製)1.2gとポリアリルアミン(以下PAAmともいう;15wt%水溶液、アルドリッチ社製)1.6gを加えて60分攪拌後、PAEPI(25wt%水溶液)1.44gを入れてさらに20分攪拌し製膜溶液を得た。支持膜上に前記製膜溶液を滴下し、ベーカーアプリケーターを用いて150ミクロンのギャップで流延塗布後、18時間風乾した。その後、120℃で10分間熱処理を行った。得られた高分子膜に、亜鉛錯体触媒として0.5%CA水溶液を、スプレー塗布により塗布し、COガス分離膜(以下、触媒処理膜11という)を得た。得られた分離膜の膜厚は約10ミクロンで、触媒層の厚さは、約1ミクロンであり、該高分子膜中のPVA、PAAm、PAMAMデンドリマー、PAEPIの割合は、それぞれ20、16、40、24wt%であった。
 [試験例3]二酸化炭素と水素の分離試験
 実施例11で得たCOガス分離膜(触媒処理膜11)を用い、供給側の圧力を0.1MPaとした以外は、試験例1と同様にして、二酸化炭素と水素の分離試験を行った。結果を下記表11に示す。
 [実施例12]
 実施例3と同様にして実験を行った。COOH変性ポリ(ビニルアルコール)(5wt%溶液、クラレ社製)6.0gに水9.76gを加え、第0世代のポリアミドアミン(PAMAM)デンドリマー(50wt%水溶液、NARD社製)1.2gとポリアリルアミン(以下PAAmともいう;15wt%水溶液、アルドリッチ社製)1.6gを加えて60分攪拌後、PAEPI(25wt%水溶液)1.44gを入れてさらに20分攪拌し製膜溶液を得た。支持膜上に前記前駆体溶液を滴下し、ベーカーアプリケーターを用いて150ミクロンのギャップで流延塗布後、18時間風乾した。その後、120℃で10分間熱処理を行った。得られた高分子膜に、亜鉛錯体触媒として0.5%CAと、添加剤として0.5M炭酸カリウムの混合水溶液を、スプレー塗布により塗布し、COガス分離膜(以下、触媒処理膜11という)を得た。得られた分離膜の膜厚は約10ミクロンで、触媒層の厚さは、約1ミクロンであり、該高分子膜中のPVA、PAAm、PAMAMデンドリマー、PAEPIの割合は、それぞれ20、16、40、24wt%であった。
 [試験例4]二酸化炭素と水素の分離試験
 実施例12で得たCOガス分離膜(触媒処理膜12)を用い、供給側の圧力を0.1MPaとした以外は、試験例1と同様にして、二酸化炭素と水素の分離試験を行った。結果を下記表11に示す。表11の亜鉛錯体や添加剤を使用しない比較例と、亜鉛錯体を使用せず添加剤を使用した比較例の結果から、添加剤は大幅に、H2のガス透過速度を抑制する効果はある。一方、表11の亜鉛錯体や添加剤を使用しない比較例と触媒処理膜11の結果から、亜鉛錯体触媒を使用することで、CO2のガス透過速度を増加させると共に、H2のガス透過速度を抑制することができ、二酸化炭素の選択性であるα(CO2/H2)を大幅に向上させることができる。また、表11の触媒処理膜11や12の結果から分るように、更に添加剤として塩を加えることで、上記に記載と同様な効果を得ることができ、二酸化炭素の選択性であるα(CO2/H2)を、更に大きく向上させることができる。
Figure JPOXMLDOC01-appb-T000051
 [実施例13]
 実施例3と同様にして実験を行った。COOH変性ポリ(ビニルアルコール)(5wt%溶液、クラレ社製)6.0gに水9.76gを加え、ポリ N-[3-(ジメチルアミノ)プロピル]メタクリルアミド(Poly 3rd-MAM)(50wt%水溶液、)1.2gとポリアリルアミン(以下PAAmともいう;15wt%水溶液、アルドリッチ社製)1.6gを加えて60分攪拌後、PAEPI(25wt%水溶液)1.44gを入れてさらに20分攪拌し固形分濃度5%の製膜溶液を得た。これを5倍希釈して固形分濃度1%の製膜溶液を得た。支持膜上に前記製膜溶液を滴下し、ベーカーアプリケーターを用いて150ミクロンのギャップで流延塗布後、18時間風乾した。その後、120℃で10分間熱処理を行った。得られた高分子膜に、亜鉛錯体触媒として、0.5%CA水溶液を、スプレー塗布により塗布し、COガス分離膜(以下、触媒処理膜11という)を得た。得られた分離膜の膜厚は約10ミクロンで、触媒層の厚さは、約1ミクロンであり、該高分子膜中のPVA、PAAm、Poly 3rd-MAM、PAEPIの割合は、それぞれ20、16、40、24wt%であった。
 [試験例3]二酸化炭素と水素の分離試験
 実施例11で得たCOガス分離膜(触媒処理膜11)を用い、供給側の圧力を0.1MPaとした以外は、試験例1と同様にして、二酸化炭素と水素の分離試験を行った。結果を下記表12に示す。
Figure JPOXMLDOC01-appb-T000052
 以上の結果から明確なように、本願発明の内容は、圧力が0.1MPaの状況下でのみに限定して効果を有するものではなく、圧力が、0.4MPa、0.7MPaであっても、従来例に比較して、高いαCO/Hを維持することができるものである。
 本発明のCOガス分離膜は、高いCOガスの透過速度をもって二酸化炭素を他のガスから分離するのに有用である。
 1  触媒層
 2  分離機能層
 3  支持膜
 4  COガス分離膜
 5  加湿器
 6  背圧弁
 7  圧力計
 8  石鹸膜流量計

Claims (22)

  1.  高分子重合体内に不揮発性アミン化合物が固定化されてなる高分子膜に、アミンが配位してなる亜鉛錯体を配合してなることを特徴とするCOガス分離膜。
  2.  不揮発性アミン化合物が、下記式[I]~[III]で示される基を少なくとも1以上有する不揮発性アミン化合物であることを特徴とする請求項1記載のCOガス分離膜。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Aは炭素数1~3の二価有機残基を表す。pは0又は1の整数を表す。R、R及びRは、互いに同一又は異なって、水素原子又は炭素数1~6のアルキル基を表す。*は結合部位を表す。);
    Figure JPOXMLDOC01-appb-C000002
    (式中、Aは炭素数1~3の二価有機残基を表す。qは0又は1の整数を表す。R、R及びRは、互いに同一又は異なって、水素原子又は炭素数1~6のアルキル基を表す。*は結合部位を表す。);
    Figure JPOXMLDOC01-appb-C000003
    (式中、A及びAは、互いに同一又は異なって、炭素数1~3の二価有機残基を表す。R、R及びRは互いに同一又は異なって、水素原子又は炭素数1~6のアルキル基を表す。r及びsは0又は1の整数を表す。*は結合部位を表す。)
  3.  アミンが配位してなる亜鉛錯体が、2級アミン及び/又は3級アミンが配位してなる亜鉛錯体であることを特徴とする請求項1又は2に記載のCOガス分離膜。
  4.  高分子膜の少なくとも片面に、アミンが配位してなる亜鉛錯体を積層又は塗布させてなることを特徴とする請求項1~3のいずれか1項に記載のCOガス分離膜。
  5.  アミンが配位してなる亜鉛錯体が、炭素数4~15の複素環式化合物を含むことを特徴とする請求項1記載のCOガス分離膜。
  6.  アミンが配位してなる亜鉛錯体の配合に、アミンが配位してなる亜鉛錯体の積層又は塗布用溶液を使用し、前記溶液に、塩を含むことを特徴とする請求項1記載のCOガス分離膜。
  7.  塩が、アルカリ金属塩及び/又はアルカリ土類金属塩である請求項6記載のCOガス分離膜。
  8.  アミンが配位してなる亜鉛錯体の配合に、アミンが配位してなる亜鉛錯体の積層又は塗布用溶液を使用し、前記溶液に、ジアミノプロピオン酸、モノエタノールアミン、アミノ酸及びポリアクリル酸ナトリウムからなる群から選ばれる1種以上の添加剤を含むことを特徴とする請求項1記載のCOガス分離膜。
  9.  不揮発性アミン化合物が、ポリ N-[3-(ジメチルアミノ)プロピル]メタクリルアミド、ポリアミドアミン系デンドリマー又はトリアジン系デンドリマーである請求項1記載のCOガス分離膜。
  10.  高分子重合体が、多官能重合性単量体を重合させて得られ、前記多官能重合性単量体が、多官能(メタ)アクリルアミド類、多官能(メタ)アクリレート類、多官能ビニルエーテル類及びジビニルベンゼンからなる群から選ばれる1種以上であることを特徴とする請求項1記載のCOガス分離膜。
  11.  高分子重合体が、多官能重合性単量体に単官能重合性単量体を加えて重合させて得られることを特徴とする請求項1記載のCOガス分離膜。
  12.  単官能重合性単量体が、単官能(メタ)アクリルアミド類、単官能(メタ)アクリレート類、単官能ビニルエーテル類、単官能N-ビニル化合物類、単官能ビニル化合物類及び単官能α,β-不飽和化合物類からなる群から選ばれる1種以上であることを特徴とする請求項11記載のCOガス分離膜。
  13.  高分子重合体が、カルボン酸変性PVA系重合体であることを特徴とする請求項1記載のCOガス分離膜。
  14.  COガス分離膜の製造方法であって、(1)下記式[I]~[III]で示される基を少なくとも1以上有する不揮発性アミン化合物の存在下に、重合性単量体を重合反応させることにより、生成する高分子重合体内に上記アミン化合物を固定化させ、高分子膜を形成する工程、及び(2)該高分子膜に、アミンが配位してなる亜鉛錯体を配合する工程、を含むことを特徴とするCOガス分離膜の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式中、Aは炭素数1~3の二価有機残基を表す。pは0又は1の整数を表す。R、R及びRは、互いに同一又は異なって、水素原子又は炭素数1~6のアルキル基を表す。*は結合部位を表す。);
    Figure JPOXMLDOC01-appb-C000005
    (式中、Aは炭素数1~3の二価有機残基を表す。qは0又は1の整数を表す。R、R及びRは、互いに同一又は異なって、水素原子又は炭素数1~6のアルキル基を表す。*は結合部位を表す。);
    Figure JPOXMLDOC01-appb-C000006

    (式中、A及びAは、互いに同一又は異なって、炭素数1~3の二価有機残基を表す。R、R及びRは互いに同一又は異なって、水素原子又は炭素数1~6のアルキル基を表す。r及びsは0又は1の整数を表す。*は結合部位を表す。)
  15.  工程(2)が、高分子膜の少なくとも片面に、アミンが配位してなる亜鉛錯体を積層又は塗布する工程である請求項14記載のCOガス分離膜の製造方法。
  16.  工程(2)において、アミンが配位してなる亜鉛錯体の積層又は塗布用溶液に、塩を含むことを特徴とする請求項14又は15に記載のCOガス分離膜の製造方法。
  17.  塩が、アルカリ金属塩及び/又はアルカリ土類金属塩である請求項16記載のCOガス分離膜の製造方法。
  18.  工程(2)において、アミンが配位してなる亜鉛錯体の積層又は塗布用溶液に、ジアミノプロピオン酸、モノエタノールアミン、アミノ酸及びポリアクリル酸ナトリウムからなる群から選ばれる1種以上の添加剤を含むことを特徴とする請求項14又は15に記載のCOガス分離膜の製造方法。
  19.  不揮発性アミン化合物が、ポリ N-[3-(ジメチルアミノ)プロピル]メタクリルアミド、ポリアミドアミン系デンドリマー又はトリアジン系デンドリマーである請求項14は15に記載のCOガス分離膜の製造方法。
  20.  高分子重合体が、カルボン酸変性PVA系重合体であることを特徴とする請求項14に記載のCO2ガス分離膜の製造方法。
  21.  COを含む混合ガスを、請求項1記載のCOガス分離膜に接触させて、該混合ガス中のCOを選択的に透過させる工程を含むことを特徴とする高濃度COの混合ガスの製造方法。
  22.  COと水素を含む混合ガスを、請求項1記載のCOガス分離膜に接触させて、該混合ガス中のCOを選択的に透過させる工程を含むことを特徴とする高濃度水素ガスの製造方法。
PCT/JP2013/080043 2012-11-12 2013-11-06 Co2ガス分離膜及びその製造方法 WO2014073582A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014545738A JP6235479B2 (ja) 2012-11-12 2013-11-06 Co2ガス分離膜及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-248775 2012-11-12
JP2012248775 2012-11-12

Publications (1)

Publication Number Publication Date
WO2014073582A1 true WO2014073582A1 (ja) 2014-05-15

Family

ID=50684684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080043 WO2014073582A1 (ja) 2012-11-12 2013-11-06 Co2ガス分離膜及びその製造方法

Country Status (2)

Country Link
JP (1) JP6235479B2 (ja)
WO (1) WO2014073582A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016168525A (ja) * 2015-03-11 2016-09-23 次世代型膜モジュール技術研究組合 ガス分離膜エレメント、ガス分離膜モジュール、及び二酸化炭素の製造方法
WO2016162518A1 (en) * 2015-04-08 2016-10-13 Norwegian University Of Science And Technology (Ntnu) Composite membrane
JP2017148724A (ja) * 2016-02-24 2017-08-31 国立大学法人神戸大学 正浸透膜分離で使用するドロー溶質およびその製造方法
WO2017179396A1 (ja) * 2016-04-14 2017-10-19 富士フイルム株式会社 ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法、ガス分離膜用組成物及びガス分離膜の製造方法
WO2019212359A3 (en) * 2018-04-30 2019-12-19 Sintef Tto As Carbon dioxide separation membrane comprising carbonic anhydrase
WO2021041581A1 (en) * 2019-08-26 2021-03-04 Ohio State Innovation Foundation Co 2 utilization for co production via fuel cell enabled by co 2-selective membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114053884B (zh) * 2021-11-23 2023-05-26 浙江机电职业技术学院 纳滤膜及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152888A (en) * 1976-06-11 1977-12-19 Exxon Research Engineering Co Elimination of gas component existent in gas stream
JPS6118419A (ja) * 1984-07-05 1986-01-27 Agency Of Ind Science & Technol 気体の選択透過方法
JPS61204019A (ja) * 1985-03-01 1986-09-10 エア・プロダクツ・アンド・ケミカルズ・インコーポレイテツド ガスの分離法
JPH06198122A (ja) * 1984-09-24 1994-07-19 Aquanautics Corp 流体から酸素その他のリガンドを抽出利用するためのシステム
JPH07246321A (ja) * 1993-08-12 1995-09-26 Agency Of Ind Science & Technol 多座配位子を含む二酸化炭素分離膜及び二酸化炭素キャリヤー
JP2007177152A (ja) * 2005-12-28 2007-07-12 Hokkaido Univ 複合材フィルム及びその製造方法、多孔質積層体、並びに炭酸水素イオンの生成方法
JP2008068238A (ja) * 2006-09-15 2008-03-27 Research Institute Of Innovative Technology For The Earth ガス分離膜およびその利用
JP2009226251A (ja) * 2008-03-19 2009-10-08 Nippon Steel Corp Co2吸収剤およびco2回収方法
US20110094379A1 (en) * 2009-10-23 2011-04-28 Hamilton Sundstrand Corporation Film-based system and method for carbon dioxide separation
JP2011233329A (ja) * 2010-04-27 2011-11-17 Tsutomu Toida 液膜co2分離工程を組み込んだ燃料電池発電システム
JP2012192316A (ja) * 2011-03-15 2012-10-11 Research Institute Of Innovative Technology For The Earth ガス分離複合膜

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102310B2 (ja) * 1993-10-19 1995-11-08 工業技術院長 二酸化炭素分離ゲル膜及びその製造方法
JP2009241006A (ja) * 2008-03-31 2009-10-22 Research Institute Of Innovative Technology For The Earth 複合膜およびその製造方法
JP2013049042A (ja) * 2011-01-12 2013-03-14 Fujifilm Corp 二酸化炭素分離膜形成用組成物、二酸化炭素分離膜及びその製造方法、並びに二酸化炭素分離装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152888A (en) * 1976-06-11 1977-12-19 Exxon Research Engineering Co Elimination of gas component existent in gas stream
JPS6118419A (ja) * 1984-07-05 1986-01-27 Agency Of Ind Science & Technol 気体の選択透過方法
JPH06198122A (ja) * 1984-09-24 1994-07-19 Aquanautics Corp 流体から酸素その他のリガンドを抽出利用するためのシステム
JPS61204019A (ja) * 1985-03-01 1986-09-10 エア・プロダクツ・アンド・ケミカルズ・インコーポレイテツド ガスの分離法
JPH07246321A (ja) * 1993-08-12 1995-09-26 Agency Of Ind Science & Technol 多座配位子を含む二酸化炭素分離膜及び二酸化炭素キャリヤー
JP2007177152A (ja) * 2005-12-28 2007-07-12 Hokkaido Univ 複合材フィルム及びその製造方法、多孔質積層体、並びに炭酸水素イオンの生成方法
JP2008068238A (ja) * 2006-09-15 2008-03-27 Research Institute Of Innovative Technology For The Earth ガス分離膜およびその利用
JP2009226251A (ja) * 2008-03-19 2009-10-08 Nippon Steel Corp Co2吸収剤およびco2回収方法
US20110094379A1 (en) * 2009-10-23 2011-04-28 Hamilton Sundstrand Corporation Film-based system and method for carbon dioxide separation
JP2011233329A (ja) * 2010-04-27 2011-11-17 Tsutomu Toida 液膜co2分離工程を組み込んだ燃料電池発電システム
JP2012192316A (ja) * 2011-03-15 2012-10-11 Research Institute Of Innovative Technology For The Earth ガス分離複合膜

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016168525A (ja) * 2015-03-11 2016-09-23 次世代型膜モジュール技術研究組合 ガス分離膜エレメント、ガス分離膜モジュール、及び二酸化炭素の製造方法
WO2016162518A1 (en) * 2015-04-08 2016-10-13 Norwegian University Of Science And Technology (Ntnu) Composite membrane
JP2017148724A (ja) * 2016-02-24 2017-08-31 国立大学法人神戸大学 正浸透膜分離で使用するドロー溶質およびその製造方法
WO2017179396A1 (ja) * 2016-04-14 2017-10-19 富士フイルム株式会社 ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法、ガス分離膜用組成物及びガス分離膜の製造方法
JPWO2017179396A1 (ja) * 2016-04-14 2019-02-28 富士フイルム株式会社 ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法、ガス分離膜用組成物及びガス分離膜の製造方法
WO2019212359A3 (en) * 2018-04-30 2019-12-19 Sintef Tto As Carbon dioxide separation membrane comprising carbonic anhydrase
WO2021041581A1 (en) * 2019-08-26 2021-03-04 Ohio State Innovation Foundation Co 2 utilization for co production via fuel cell enabled by co 2-selective membrane

Also Published As

Publication number Publication date
JP6235479B2 (ja) 2017-11-22
JPWO2014073582A1 (ja) 2016-09-08

Similar Documents

Publication Publication Date Title
JP6235479B2 (ja) Co2ガス分離膜及びその製造方法
WO2012133737A1 (ja) 架橋性アミン化合物、該化合物を用いた高分子膜及びその製造方法
JP5945478B2 (ja) 分離膜、複合分離膜及び分離膜の製造方法
JP5314291B2 (ja) 高分子膜およびその製造方法
JP2009241006A (ja) 複合膜およびその製造方法
JP5598630B1 (ja) 共重合体及び炭酸ガス分離膜
JP2016503448A (ja) フッ素化エチレン‐プロピレンポリマーを含有するガス分離のためのブレンドポリマー膜
US20200222860A1 (en) Method for preparing membrane selective layers by interfacial free radical polymerization
JP6038058B2 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
JP2010155207A (ja) ガス分離膜用エチレン−ビニルアルコール系重合体複合膜
JP5969169B2 (ja) 複合分離膜
JP6421113B2 (ja) ガス分離膜およびガス分離方法
JP2017136546A (ja) 二酸化炭素分離膜、及びその製造方法
JP2010155206A (ja) 耐水性に優れるガス分離膜用シリル基含有ビニルアルコール系重合体複合膜
JP2010155205A (ja) 耐水性に優れるガス分離膜用ビニルアルコール系重合体複合膜
JP6609209B2 (ja) ガス分離膜
CN102834167A (zh) 复合半透膜
CN115888441B (zh) 一种复合纳滤膜及其制备方法
JP2015500891A (ja) 膜分離のためのアジド架橋および物理架橋されたポリマー
JP5821094B2 (ja) 積層フィルム
CN115155331A (zh) 丙烯酰氧基封端的pdms制备薄膜复合膜、制备方法和用途
JP2017131856A (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
JP6779642B2 (ja) ガス分離膜
KR102211640B1 (ko) Uv 반응성 관능기가 함유된 고분자를 이용한 uv 가교 기체 분리막의 제조방법 및 이에 따라 제조되는 기체 분리막
JP2020203227A (ja) 分離膜、分離膜モジュール、分離装置、分離膜形成用組成物、分離用複合膜の製造方法、及びセルロース化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545738

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853797

Country of ref document: EP

Kind code of ref document: A1