WO2014050370A1 - 複合樹脂組成物及び該複合樹脂組成物から成形される平面状コネクター - Google Patents

複合樹脂組成物及び該複合樹脂組成物から成形される平面状コネクター Download PDF

Info

Publication number
WO2014050370A1
WO2014050370A1 PCT/JP2013/072224 JP2013072224W WO2014050370A1 WO 2014050370 A1 WO2014050370 A1 WO 2014050370A1 JP 2013072224 W JP2013072224 W JP 2013072224W WO 2014050370 A1 WO2014050370 A1 WO 2014050370A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
composite resin
mol
respect
structural units
Prior art date
Application number
PCT/JP2013/072224
Other languages
English (en)
French (fr)
Inventor
峰生 大竹
和博 龍
吉昭 田口
博樹 深津
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to KR1020157009524A priority Critical patent/KR101627243B1/ko
Priority to CN201380050126.3A priority patent/CN104662087B/zh
Priority to JP2014538281A priority patent/JP5826404B2/ja
Publication of WO2014050370A1 publication Critical patent/WO2014050370A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/18Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for manufacturing bases or cases for contact members

Definitions

  • the present invention relates to a composite resin composition and a planar connector molded from the composite resin composition.
  • the liquid crystalline polymer is a thermoplastic resin excellent in dimensional accuracy, fluidity and the like. Due to these characteristics, liquid crystalline polymers have been conventionally employed as materials for various electronic components.
  • Patent Document 1 discloses a planar connector molded from a liquid crystalline polymer composition reinforced with glass fibers.
  • Patent Document 2 discloses a planar connector molded from a liquid crystalline polymer composition reinforced with glass fiber and talc.
  • Such a connector is employed as a planar connector (such as a CPU socket) having a lattice structure inside the outer frame, which requires high heat resistance and the like.
  • planar connectors In recent years, the shape required for planar connectors has changed as the integration rate of planar connectors has increased. For example, as the shape of the planar connector, an increase in the number of connector pins, a shape in which the width of the lattice portion is thinner, and the like are required.
  • the present invention has been made in view of such circumstances, a composite resin composition capable of obtaining a planar connector having excellent flatness and fluidity, suppressing warpage deformation, and excellent crack resistance, And it aims at providing the planar connector shape
  • the present inventors have found that the above problem can be solved by combining a liquid crystalline polymer containing a predetermined amount of a specific structural unit, glass fiber, and a predetermined inorganic filler. Specifically, the present invention provides the following.
  • a composite resin composition comprising (A) a liquid crystalline polymer, (B) glass fiber, and (C) one or more inorganic fillers selected from the group consisting of talc and milled fiber,
  • the (A) liquid crystalline polymer has the following constituent units as essential constituents: (I) 4-hydroxybenzoic acid, (II) 2-hydroxy-6-naphthoic acid, (III) terephthalic acid, (IV) Including isophthalic acid and (V) 4,4′-dihydroxybiphenyl,
  • the structural unit of (I) is 35 to 75 mol% with respect to all the structural units,
  • the structural unit of (II) is 2 to 8 mol% with respect to all the structural units,
  • the structural unit of (III) is 4.5 to 30.5 mol% with respect to all the structural units,
  • the structural unit of (IV) is 2 to 8 mol% with respect to all the structural units,
  • the structural unit of (V) is 12.5 to 32.5 mol% with
  • the flatness and fluidity are good, warpage deformation is suppressed, and a planar connector having excellent crack resistance is obtained, and the composite resin composition is molded from the composite resin composition.
  • a flat connector is provided.
  • the composite resin composition of the present invention contains a predetermined amount of a specific liquid crystalline polymer, glass fiber, and inorganic filler.
  • a specific liquid crystalline polymer glass fiber, and inorganic filler.
  • the liquid crystalline polymer according to the present invention has the following constituent units as essential constituents: (I) 4-hydroxybenzoic acid (also referred to as “HBA”), (II) 2-hydroxy-6-naphthoic acid (“HNA”) (III) terephthalic acid (also referred to as “TA”), (IV) isophthalic acid (also referred to as “IA”) and (V) 4,4′-dihydroxybiphenyl (also referred to as “BP”).
  • HBA 4-hydroxybenzoic acid
  • HNA 2-hydroxy-6-naphthoic acid
  • TA terephthalic acid
  • IA isophthalic acid
  • BP 4,4′-dihydroxybiphenyl
  • the liquid crystalline polymer in the present invention contains the above structural units at a specific ratio. That is, the structural unit of (I) is 35 to 75 mol% (preferably 40 to 65 mol%) with respect to all the structural units.
  • the structural unit (II) is 2 to 8 mol% (preferably 3 to 7 mol%) with respect to the total structural units.
  • the structural unit of (III) is 4.5 to 30.5 mol% (preferably 13 to 26 mol%) with respect to the total structural units.
  • the structural unit (IV) is 2 to 8 mol% (preferably 3 to 7 mol%) with respect to the total structural units.
  • the structural unit (V) is 12.5 to 32.5 mol% (preferably 15.5 to 29 mol%) with respect to the total structural units.
  • the total amount of the structural units (II) and (IV) is 4 to 10 mol% (preferably 5 to 10 mol%) with respect to the total structural units.
  • the melting point of the liquid crystalline polymer becomes remarkably high, and liquid crystallinity is produced in the production of molded products such as planar connectors. This is not preferable because the polymer may solidify in the reactor and a liquid crystalline polymer having a desired molecular weight may not be produced.
  • the constituent unit of (III) is less than 4.5 mol% or more than 30.5 mol% with respect to all the constituent units, the melting point of the liquid crystalline polymer becomes remarkably high, and a molded product such as a planar connector is produced. At this time, the liquid crystalline polymer is solidified in the reactor, and it may not be possible to produce a liquid crystalline polymer having a desired molecular weight.
  • the crystallization heat amount of the liquid crystalline polymer can be 2.5 J / g or more.
  • a preferable value for the heat of crystallization of the liquid crystalline polymer is 2.3 J / g or less, and more preferably 2.0 J / g or less.
  • the crystallization heat quantity indicates the crystallization state of the liquid crystalline polymer, and is a value obtained by differential calorimetry.
  • Tm1 endothermic peak temperature
  • Tm1 + 40 ° C. for 2 minutes the calorific value of the exothermic peak obtained from the peak of the exothermic peak temperature observed when measured under the temperature lowering condition per minute.
  • the heat resistance of the liquid crystalline polymer is lowered, which is not preferable.
  • the well-known other structural unit can also be introduce
  • the liquid crystalline polymer in the present invention can be obtained by polymerizing the above structural units by a direct polymerization method, a transesterification method, a melt polymerization method, a solution polymerization method, a slurry polymerization method, a solid phase polymerization method or the like.
  • an acylating agent for the above structural unit or a monomer having an activated terminal as an acid chloride derivative can be used in combination.
  • the acylating agent include acid anhydrides such as acetic anhydride.
  • various catalysts can be used, for example, dialkyl tin oxide, diaryl tin oxide, titanium dioxide, alkoxy titanium silicates, titanium alcoholates, alkali metal salts of carboxylic acids, alkaline earths. Metal salts, Lewis acid salts (BF 3 and the like) and the like.
  • the amount of the catalyst used may be about 0.001 to 1% by mass, preferably about 0.003 to 0.2% by mass, based on the total amount of the above structural units.
  • the conditions for the polymerization reaction are not particularly limited as long as the polymerization of the above structural units proceeds.
  • the reaction temperature is 200 to 380 ° C.
  • the final ultimate pressure is 0.1 to 760 Torr (that is, 13 to 101,080 Pa). ).
  • the polymerization reaction may be a method (one-step system) in which all the raw material monomers, the acylating agent and the catalyst are charged in the same reaction vessel and the reaction is started, and the hydroxyl groups of the raw material monomers (I), (II) and (V) are acylated.
  • a method of reacting with the carboxyl groups of (III) and (IV) (two-stage system) after acylation with an agent may be used.
  • liquid crystalline polymers obtained from the structural units (I) to (V) do not form an anisotropic molten phase depending on the constituent components and the sequence distribution in the liquid crystalline polymer.
  • the liquid crystalline polymer in the present invention is preferably one that forms an anisotropic molten phase, that is, a liquid crystalline polymer that exhibits optical anisotropy when melted.
  • melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. Specifically, for melting anisotropy, a polarizing microscope (manufactured by Olympus Co., Ltd.) is used, a sample placed on a hot stage (manufactured by Linkham Co., Ltd.) is melted, and the magnification is 150 times under a nitrogen atmosphere. This can be confirmed by observation. Liquid crystalline polymers that exhibit optical anisotropy when melted are optically anisotropic and transmit light when inserted between crossed polarizers. When the sample is optically anisotropic, for example, polarized light is transmitted even in a molten stationary liquid state.
  • the melt viscosity of the liquid crystalline polymer is 1 ⁇ 10 5 Pa ⁇ s or less (more preferably 5 Pa ⁇ s or more and 1 ⁇ 10 2 Pa ⁇ s) at a temperature 10 to 40 ° C. higher than the melting point and a shear rate of 1000 / sec. s or less) is preferable in that the fluidity of the composite resin composition is ensured and the filling pressure does not become excessive at the time of forming the lattice portion of the planar connector.
  • the composite resin composition of the present invention contains 45 to 60% by mass of the liquid crystalline polymer in the composite resin composition with respect to the total composite resin composition. If the content of the liquid crystalline polymer is less than 45% by mass relative to the entire composite resin composition, the fluidity deteriorates, which is not preferable. If the content of the liquid crystalline polymer is more than 60% by mass with respect to the entire composite resin composition, the bending elastic modulus and crack resistance of a molded product such as a planar connector obtained from the composite resin composition are reduced. It is not preferable.
  • the composite resin composition of the present invention preferably contains the liquid crystalline polymer in the composite resin composition in an amount of 50 to 60% by mass based on the total composite resin composition.
  • the composite resin composition of the present invention contains the above liquid crystalline polymer and glass fiber, a molded product obtained by molding the composite resin composition has high crack resistance.
  • the composite resin composition of the present invention contains 35 to 50% by mass of glass fiber in the composite resin composition with respect to the total composite resin composition.
  • the glass fiber content is less than 35% by mass with respect to the entire composite resin composition, the flexural modulus of the molded product obtained from the composite resin composition is low, and the molded product is a planar connector or the like. Is not preferable because cracks may occur in the lattice portion. If the glass fiber content is more than 50% by mass relative to the entire composite resin composition, the fluidity of the composition deteriorates, which is not preferable.
  • the glass fiber in the present invention is preferably contained in the composite resin composition in an amount of 40 to 50% by mass with respect to the entire composite resin composition.
  • the composite resin composition of the present invention further includes one or more inorganic fillers selected from the group consisting of talc and milled fiber.
  • inorganic fillers selected from the group consisting of talc and milled fiber.
  • the average glass fiber length calculated from the fiber length of the glass fiber and the fiber length of the milled fiber among the inorganic fillers is preferably 200 to 500 ⁇ m.
  • An average fiber length of less than 200 ⁇ m is not preferable because cracks may occur in a lattice portion of a molded product such as a planar connector obtained from the composite resin composition. If the average fiber length is more than 500 ⁇ m, the fluidity is deteriorated and it may be difficult to mold the composite resin composition.
  • the fiber diameter of the glass fiber and milled fiber in the present invention is not particularly limited, but generally about 5 to 15 ⁇ m is used.
  • pigments such as nucleating agent, carbon black, inorganic calcined pigment, antioxidant, stabilizer, plasticizer, lubricant, mold release agent, flame retardant, and You may mix
  • the method for producing the composite resin composition of the present invention is not particularly limited as long as the above liquid crystalline polymer and glass fiber can be mixed uniformly, and can be appropriately selected from conventionally known methods for producing resin compositions.
  • each component is melt-kneaded and extruded using a melt-kneader such as a single-screw or twin-screw extruder, and then the resulting composite resin composition is processed into a desired form such as powder, flakes, pellets, etc.
  • a melt-kneader such as a single-screw or twin-screw extruder
  • the minimum filling pressure at the time of molding is hardly excessive, and a portion having a complicated shape such as a lattice portion of a planar connector can be preferably molded.
  • the minimum filling pressure is specified as the minimum injection filling pressure at which a good molded product can be obtained at 365 ° C. when molding the composite resin composition.
  • the planar connector of the present invention By molding the composite resin composition of the present invention, the planar connector of the present invention can be obtained.
  • the shape of the planar connector is not particularly limited, but has a lattice structure inside the outer frame portion, an opening inside the lattice structure, and a pitch interval of the lattice portion in the lattice structure is 1.5 mm. It may be the following, and the planar connector whose thickness ratio of the said outer frame part and the said grating
  • Examples of the shape of the planar connector of the present invention include those shown in FIG.
  • This flat connector has an overall size of 43.88 mm ⁇ 43.88 mm ⁇ 3 mmt, an outer frame portion having a thickness of 3 mm or less, a lattice portion having a thickness of 1.5 mm or less, and 13.88 mm in the center portion.
  • X 13.88 mm opening Further, the pin insertion hole of the planar connector may be partially narrowed in order to prevent the pin inserted into the planar connector from coming off.
  • the shape of the pin insertion hole in the lattice portion of the planar connector of the present invention is not particularly limited, and may be a square shape, a round shape, or the like.
  • Examples of the shape of the pin insertion hole that is preferable in the present invention include shapes other than square and round (referred to as “variant” in the present invention), such as the shape shown in FIG. 5 and the shape of a star. It is done.
  • a pin insertion hole having such a shape (referred to as “an irregularly shaped hole” in the present invention) is not only very difficult to mold, but also easily cracks, and the crack resistance of the molded product tends to decrease.
  • the planar connector of the present invention has excellent crack resistance even if the pin insertion hole is an irregular hole.
  • the planar connector of the present invention includes not only one having an opening in the lattice part but also one having no opening in the lattice part.
  • the molding method for obtaining the planar connector of the present invention is not particularly limited, but there is no residual internal stress in order to prevent deformation of the obtained planar connector and to obtain a planar connector having good flatness (described later). It is preferable to select the molding conditions.
  • the cylinder temperature of the molding machine is preferably a temperature equal to or higher than the melting point of the liquid crystalline polymer.
  • the mold temperature is preferably 70 to 100 ° C. If the mold temperature is low, the composite resin composition filled in the mold may cause flow failure, which is not preferable. If the mold temperature is high, problems such as the occurrence of burrs may occur, which is not preferable.
  • the injection speed is preferably 150 mm / second or more. If the injection speed is low, there is a possibility that only an unfilled molded product can be obtained. Even if a completely filled molded product is obtained, it becomes a molded product with a high filling pressure and a large residual internal stress, resulting in a poor flatness. May only be obtained.
  • the planar connector of the present invention has a good flexural modulus and excellent crack resistance.
  • the bending elastic modulus of the planar connector of the present invention may be 17 GPa or more.
  • a planar connector having an elastic modulus of 17 GPa or more is hardly cracked even if it has a thin lattice portion, and has excellent crack resistance.
  • a bending elastic modulus is measured based on ISO178.
  • planar connector of the present invention is suppressed from being deformed.
  • the degree of deformation of the planar connector is determined using the flatness of the planar connector as an index. Specifically, the flat connector is placed on a horizontal desk, the height of the flat connector is measured with an image measuring device, and the position of 0.5 mm is measured at 10 mm intervals from the connector end surface. The difference between the height and the minimum height is defined as flatness.
  • the change in flatness is suppressed before and after performing IR reflow.
  • Method for producing liquid crystalline polymer 1 A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomers, a metal catalyst, and an acylating agent, and nitrogen substitution was started.
  • the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 1 hour. Thereafter, the temperature is further increased to 360 ° C. over 5.5 hours, and then reduced to 5 Torr (ie, 667 Pa) over 30 minutes to melt while distilling acetic acid, excess acetic anhydride, and other low-boiling components. Polymerization was performed. After the stirring torque reached a predetermined value, nitrogen was introduced to change from a reduced pressure state to a normal pressure through a normal pressure, the polymer was discharged from the lower part of the polymerization vessel, and the strand was pelletized to pelletize. The obtained pellets were heat-treated at 300 ° C. for 8 hours under a nitrogen stream. The melting point of the pellet was 349 ° C., the heat of crystallization was 5.6 J / g, and the melt viscosity was 23 Pa ⁇ s.
  • Method for producing liquid crystalline polymer 2 A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomers, a metal catalyst, and an acylating agent, and nitrogen substitution was started.
  • the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 1 hour. Thereafter, the temperature is further raised to 340 ° C. over 4.5 hours, and then the pressure is reduced to 10 Torr (ie, 667 Pa) over 15 minutes to melt while distilling acetic acid, excess acetic anhydride, and other low-boiling components. Polymerization was performed. After the stirring torque reached a predetermined value, nitrogen was introduced to change from a reduced pressure state to a normal pressure through a normal pressure, the polymer was discharged from the lower part of the polymerization vessel, and the strand was pelletized to pelletize. The obtained pellet had a melting point of 334 ° C., a heat of crystallization of 2.7 J / g, and a melt viscosity of 18 Pa ⁇ s.
  • the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 1 hour. Thereafter, the temperature is further increased to 360 ° C. over 5.5 hours, and then reduced to 10 Torr (ie, 1330 Pa) over 20 minutes to melt while distilling acetic acid, excess acetic anhydride, and other low-boiling components. Polymerization was performed. After the stirring torque reached a predetermined value, nitrogen was introduced to change from a reduced pressure state to a normal pressure through a normal pressure, the polymer was discharged from the lower part of the polymerization vessel, and the strand was pelletized to pelletize. The obtained pellet had a melting point of 358 ° C., a heat of crystallization of 1.6 J / g, and a melt viscosity of 9 Pa ⁇ s.
  • the composite resin composition was injection molded under the following molding conditions, and the flexural modulus was measured according to ISO178.
  • Molding machine Sumitomo Heavy Industries SE100DU Cylinder temperature (indicates temperature from nozzle side); 360 ° C.-370 ° C.-370 ° C.-360 ° C.-340 ° C.-330 ° C. (Examples 1 to 6, Comparative Examples 3 to 7) 370 ° C.-370 ° C.-370 ° C.-370 ° C.-370 ° C.-380 ° C.
  • the composite resin composition has an overall size of 43.88 mm ⁇ 43.88 mm ⁇ 3 mmt, an opening of 13.88 mm ⁇ 13.88 mm in the center, and a lattice pitch of 1.0 mm.
  • the flat connector (number of pin holes: 1248) was injection molded.
  • As the gate a special gate (overflow) shown in FIG. 2 was used.
  • the obtained connector was placed on a horizontal desk, and the height of the connector was measured with Mitutoyo Quick Vision 404 PROCNC image measuring device. At that time, as shown in FIG. 3, 0.5 mm positions were measured at 10 mm intervals from the connector end face, and the difference between the maximum height and the minimum height from the least square plane was defined as flatness.
  • IR reflow was performed under the following conditions, the flatness was measured by the method described above, and the difference in flatness of the flat connector before and after reflow was determined as the amount of connector deformation.
  • Measureasuring instrument RF-300 (using far infrared heater) Sample feed rate: 140 mm / sec Reflow furnace passage time: 5 minutes Preheating zone temperature condition: 150 ° C. Reflow zone temperature condition; 225 ° C Peak temperature: 287 ° C [Molding condition] Molding machine; Sumitomo Heavy Industries SE30DUZ Cylinder temperature (indicates temperature from nozzle side); 360 ° C.-365 ° C.-340 ° C.-330 ° C.
  • the evaluation injection-molded product shown in FIG. 4 has an outer diameter of 23.6 mm, 31 holes of ⁇ 3.2 mm inside, and a minimum wall thickness of 0.16 mm.
  • a three-point gate indicated by an arrow in FIG. Use a stereomicroscope to observe the cracking of the molded product at a magnification of 5 times, and observe the occurrence of cracks around the hole. If there was a crack in the molded product, “X”; if not, “ ⁇ ” It was judged.
  • Molding machine Sumitomo Heavy Industries SE30DUZ Cylinder temperature (indicates temperature from nozzle side); 370 ° C.-375 ° C.-360 ° C.-350 ° C.
  • the planar connector of the present invention was excellent in flatness, warp deformation, fluidity and crack resistance, and had a flexural modulus of 17 GPa or more. Further, when a similar test was performed on a planar connector obtained from the composite resin composition of the present invention, in which the pin insertion hole is a deformed hole (a deformed hole having the shape of FIG. 5), the same preferable results were obtained. Obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Connector Housings Or Holding Contact Members (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

平面度及び流動性が良好であり、そり変形が抑制されており、耐クラック性が優れた平面状コネクターが得られる複合樹脂組成物、及び当該複合樹脂組成物から成形された平面状コネクターを提供すること。 本発明は、(A)液晶性ポリマーと、(B)ガラス繊維と、(C)タルク及びミルドファイバーからなる群より選択される1以上の無機充填材と、を含む複合樹脂組成物であって、上記(A)液晶性ポリマーは、必須の構成成分として、下記の構成単位;(I)4-ヒドロキシ安息香酸、(II)2-ヒドロキシ-6-ナフトエ酸、(III)テレフタル酸、(IV)イソフタル酸及び(V)4,4'-ジヒドロキシビフェニルを含む。

Description

複合樹脂組成物及び該複合樹脂組成物から成形される平面状コネクター
 本発明は、複合樹脂組成物及び該複合樹脂組成物から成形される平面状コネクターに関する。
 液晶性ポリマーは、寸法精度、流動性等に優れる熱可塑性樹脂である。このような特徴を有するため、液晶性ポリマーは、従来より各種電子部品の材料として採用されてきた。
 特に、近年のエレクトロニクス機器の高性能化に伴い、高耐熱性等を有する電子部品(コネクター等)に対するニーズがある。例えば、特許文献1には、ガラス繊維で強化された液晶性ポリマー組成物から成形される平面状コネクターが開示されている。また、特許文献2には、ガラス繊維及びタルクで強化された液晶性ポリマー組成物から成形される平面状コネクターが開示されている。このようなコネクターは、高い高耐熱性等が要求される、外枠内部に格子構造を有する平面状コネクター(CPUソケット等)として採用されている。
 近年は、平面状コネクターの集積率の増加等に伴い、平面状コネクターについて要求される形状が変化している。例えば、平面状コネクターの形状として、コネクターピン数の増加、格子部の幅がより薄肉である形状等が求められている。
特開2005-276758号公報 特開2010-3661号公報
 しかし、従来の液晶性ポリマーを含む組成物から、上記のニーズに沿った平面状コネクターを成形すると、組成物の流動性が十分ではなく、加工性に劣るうえに、得られる平面状コネクターの格子部に割れ(「クラック」とも呼ばれる)が生じることがあった。従って、耐クラック性が高い平面状コネクターが得られにくかった。また、十分な平面度を有し、そり変形が低減された平面状コネクターを得ることも困難であった。
 本発明は、かかる事情に鑑みてなされたものであり、平面度及び流動性が良好であり、そり変形が抑制されており、耐クラック性が優れた平面状コネクターが得られる複合樹脂組成物、及び当該複合樹脂組成物から成形された平面状コネクターを提供することを目的とする。
 本発明者らは、特定の構成単位を所定量含む液晶性ポリマーと、ガラス繊維と、所定の無機充填材と、を組み合わせることで上記の課題を解決できることを見出した。具体的には、本発明は、以下のようなものを提供する。
 (1) (A)液晶性ポリマーと、(B)ガラス繊維と、(C)タルク及びミルドファイバーからなる群より選択される1以上の無機充填材と、を含む複合樹脂組成物であって、
 上記(A)液晶性ポリマーは、必須の構成成分として、下記の構成単位;(I)4-ヒドロキシ安息香酸、(II)2-ヒドロキシ-6-ナフトエ酸、(III)テレフタル酸、(IV)イソフタル酸及び(V)4,4’-ジヒドロキシビフェニルを含み、
 全構成単位に対して(I)の構成単位は35~75モル%であり、
 全構成単位に対して(II)の構成単位は2~8モル%であり、
 全構成単位に対して(III)の構成単位は4.5~30.5モル%であり、
 全構成単位に対して(IV)の構成単位は2~8モル%であり、
 全構成単位に対して(V)の構成単位は12.5~32.5モル%であり、
 全構成単位に対して(II)及び(IV)の構成単位の総量は4~10モル%であり、
 上記(A)液晶性ポリマーは、複合樹脂組成物全体に対して45~60質量%であり、
 上記(B)ガラス繊維は、複合樹脂組成物全体に対して35~50質量%であり、
 上記(C)タルク及びミルドファイバーからなる群より選択される1以上の無機充填材は、複合樹脂組成物全体に対して0~15質量%である複合樹脂組成物。
 (2) 上記(B)ガラス繊維の繊維長及び上記(C)ミルドファイバーの繊維長の平均ガラス繊維長は200~500μmである(1)に記載の複合樹脂組成物。
 (3) (1)又は(2)に記載の複合樹脂組成物から成形され、
 外枠部の内部に格子構造を有し、上記格子構造の内部に開口部を有し、
 上記格子構造における格子部のピッチ間隔が1.5mm以下であり、
 上記外枠部と上記格子部の厚み比率が1.0以下であり、
 ピン挿入穴が異形穴である、平面状コネクター。
 (4) ISO178に準拠して測定された曲げ弾性率が17GPa以上である(3)に記載の平面状コネクター。
 本発明によれば、平面度及び流動性が良好であり、そり変形が抑制されており、耐クラック性が優れた平面状コネクターが得られる複合樹脂組成物、及び当該複合樹脂組成物から成形された平面状コネクターが提供される。
実施例で成形した平面状コネクターを示す図であり、(a)は平面図、(b)は右側面図である。なお、図中の数値の単位はmmである。 実施例で成形した平面状コネクターのゲート位置を示す図であり、(a)は平面図、(b)は右側面図である。なお、図中の数値の単位はmmである。 実施例で行ったコネクター平面度の測定における測定点を示す図である。なお、図中の数値の単位はmmである。 実施例で行った耐クラック性の評価において使用した評価用射出成形品を示す図である。なお、図中の数値の単位はmmである。 本発明の平面状コネクターの格子部における異形穴であるピン挿入穴の形状の例を示す図である。
 以下、本発明の実施形態について具体的に説明する。
 [複合樹脂組成物]
 本発明の複合樹脂組成物は、特定の液晶性ポリマーとガラス繊維と無機充填材とを所定量ずつ含む。以下、本発明の複合樹脂組成物を構成する成分について説明する。
(液晶性ポリマー)
 本発明における液晶性ポリマーは、必須の構成成分として、下記の構成単位;(I)4-ヒドロキシ安息香酸(「HBA」とも呼ばれる)、(II)2-ヒドロキシ-6-ナフトエ酸(「HNA」とも呼ばれる)、(III)テレフタル酸(「TA」とも呼ばれる)、(IV)イソフタル酸(「IA」とも呼ばれる)及び(V)4,4’-ジヒドロキシビフェニル(「BP」とも呼ばれる)を含む。
 本発明における液晶性ポリマーには、上記の構成単位が特定の割合で含まれる。すなわち、全構成単位に対して(I)の構成単位は35~75モル%(好ましくは40~65モル%)である。全構成単位に対して(II)の構成単位は2~8モル%(好ましくは3~7モル%)である。全構成単位に対して(III)の構成単位は4.5~30.5モル%(好ましくは13~26モル%)である。全構成単位に対して(IV)の構成単位は2~8モル%(好ましくは3~7モル%)である。全構成単位に対して(V)の構成単位は12.5~32.5モル%(好ましくは15.5~29モル%)である。全構成単位に対して(II)及び(IV)の構成単位の総量は4~10モル%(好ましくは5~10モル%)である。
 全構成単位に対して(I)の構成単位が35モル%未満又は75モル%超であると、液晶性ポリマーの融点が著しく高くなり、平面状コネクター等の成形品を製造する際に液晶性ポリマーがリアクター内で固化し、所望の分子量の液晶性ポリマーを製造することができなくなる可能性があるため好ましくない。
 全構成単位に対して(II)の構成単位が2モル%未満であると、平面状コネクター等の成形品を製造する際に、格子部等に割れが発生する可能性があるため好ましくない。また、全構成単位に対して(II)の構成単位が8モル%超であると、液晶性ポリマーの耐熱性が低くなるため好ましくない。
 全構成単位に対して(III)の構成単位が4.5モル%未満又は30.5モル%超であると、液晶性ポリマーの融点が著しく高くなり、平面状コネクター等の成形品を製造する際に液晶性ポリマーがリアクター内で固化し、所望の分子量の液晶性ポリマーを製造することができなくなる可能性があるため好ましくない。
 全構成単位に対して(IV)の構成単位が2モル%未満であると、平面状コネクター等の成形品を製造する際に、格子部等に割れが発生する可能性があるため好ましくない。また、全構成単位に対して(IV)の構成単位が8モル%超であると、液晶性ポリマーの耐熱性が低くなるため好ましくない。
 全構成単位に対して(V)の構成単位が12.5モル%未満又は32.5モル%超であると、液晶性ポリマーの融点が著しく高くなり、平面状コネクター等の成形品を製造する際に液晶性ポリマーがリアクター内で固化し、所望の分子量の液晶性ポリマーを製造することができなくなるため好ましくない。
 全構成単位に対して(II)及び(IV)の構成単位の総量が4モル%未満であると、液晶性ポリマーの結晶化熱量が2.5J/g以上となり得る。この場合、平面状コネクター等の成形品を製造する際に、格子部等に割れが発生する可能性があるため好ましくない。液晶性ポリマーの結晶化熱量の好ましい値は、2.3J/g以下であり、より好ましくは2.0J/g以下である。なお、結晶化熱量は、液晶性ポリマーの結晶化状態を示し、示差熱量測定によって求められる値である。具体的には、液晶性ポリマーを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、Tm1+40℃の温度で2分間保持した後、20℃/分の降温条件で測定した際に観測される発熱ピーク温度のピークより求められる発熱ピークの熱量を指す。
 また、全構成単位に対して(II)及び(IV)の構成単位の総量が10モル%超であると、液晶性ポリマーの耐熱性が低くなるため好ましくない。
 なお、本発明における液晶性ポリマーには、本発明の目的を阻害しない範囲で公知の他の構成単位を導入することもできる。
 本発明における液晶性ポリマーは、上記の構成単位を、直接重合法、エステル交換法、溶融重合法、溶液重合法、スラリー重合法、固相重合法等によって重合させることで得られる。
 上記の構成単位の重合においては、上記の構成単位にくわえて、上記の構成単位に対するアシル化剤や、酸塩化物誘導体として末端を活性化したモノマーを併用できる。アシル化剤としては、無水酢酸等の酸無水物等が挙げられる。
 上記の構成単位の重合においては、種々の触媒を使用でき、例えば、ジアルキル錫酸化物、ジアリール錫酸化物、二酸化チタン、アルコキシチタンけい酸塩類、チタンアルコラート類、カルボン酸のアルカリ金属塩類、アルカリ土類金属塩類、ルイス酸塩(BF等)等が挙げられる。触媒の使用量は、上記の構成単位の総量に対して約0.001~1質量%、好ましくは約0.003~0.2質量%であってもよい。
 重合反応の条件としては、上記の構成単位の重合が進行する条件であれば特に限定されず、例えば、反応温度200~380℃、最終到達圧力0.1~760Torr(すなわち、13~101,080Pa)であってもよい。
 重合反応は、全原料モノマー、アシル化剤及び触媒を同一反応容器に仕込んで反応を開始させる方法(一段方式)でもよく、原料モノマー(I)、(II)及び(V)のヒドロキシル基をアシル化剤によりアシル化させた後、(III)及び(IV)のカルボキシル基と反応させる方法(二段方式)でもよい。
 上記の構成単位(I)乃至(V)から得られる液晶性ポリマーは、構成成分及び液晶性ポリマー中のシーケンス分布によっては、異方性溶融相を形成しないものも存在するが、熱安定性と易加工性を併せ持つ点で、本発明における液晶性ポリマーは、異方性溶融相を形成するもの、すなわち、溶融時に光学的異方性を示す液晶性ポリマーであることが好ましい。
 溶融異方性の性質は直交偏光子を利用した慣用の偏光検査方法により確認することができる。具体的には、溶融異方性は、偏光顕微鏡(オリンパス(株)製等)を使用し、ホットステージ(リンカム社製等)にのせた試料を溶融し、窒素雰囲気下で150倍の倍率で観察することにより確認できる。溶融時に光学的異方性を示す液晶性ポリマーは、光学的に異方性であり、直交偏光子間に挿入したとき光を透過させる。試料が光学的に異方性であると、例えば溶融静止液状態であっても偏光が透過する。
 さらに、融点より10~40℃高い温度で、剪断速度1000/秒における、液晶性ポリマーの溶融粘度が1×10Pa・s以下(さらに好ましくは、5Pa・s以上かつ1×10Pa・s以下)であることが、平面状コネクターの格子部の成形時において、複合樹脂組成物の流動性を確保し、充填圧力が過度にならない点で好ましい。
 本発明の複合樹脂組成物は、上記の液晶性ポリマーを、複合樹脂組成物中に、複合樹脂組成物全体に対して45~60質量%含む。液晶性ポリマーの含有量が、複合樹脂組成物全体に対して45質量%未満であると、流動性が悪化するため好ましくない。液晶性ポリマーの含有量が、複合樹脂組成物全体に対して60質量%超であると、複合樹脂組成物から得られる平面状コネクター等の成形品の曲げ弾性率及び耐クラック性が低下するため好ましくない。本発明の複合樹脂組成物は、上記の液晶性ポリマーを、複合樹脂組成物中に、複合樹脂組成物全体に対して50~60質量%含むことが好ましい。
 (ガラス繊維)
 本発明の複合樹脂組成物は、上記の液晶性ポリマーとガラス繊維とを含むため、当該複合樹脂組成物を成形して得られた成形品は高い耐クラック性を有する。
 本発明の複合樹脂組成物は、ガラス繊維を、複合樹脂組成物中に、複合樹脂組成物全体に対して35~50質量%含む。ガラス繊維の含有量が、複合樹脂組成物全体に対して35質量%未満であると、複合樹脂組成物から得られる成形品の曲げ弾性率が低く、成形品が平面状コネクター等である場合には、その格子部等に割れが発生する可能性があるため好ましくない。ガラス繊維の含有量が、複合樹脂組成物全体に対して50質量%超であると、組成物の流動性が悪化するため好ましくない。本発明におけるガラス繊維は、複合樹脂組成物中に、複合樹脂組成物全体に対して40~50質量%含まれることが好ましい。
 (無機充填材)
 本発明の複合樹脂組成物には、タルク及びミルドファイバーからなる群より選択される1以上の無機充填材がさらに含まれる。これらの成分がガラス繊維とともに複合樹脂組成物に含まれることにより、複合樹脂組成物の流動性を悪化させることなく、そり変形が抑制された成形体を得ることができる。これらの成分は、その総量が複合樹脂組成物全体に対して0~15質量%含まれる。
 本発明の複合樹脂組成物において、ガラス繊維の繊維長、及び、上記の無機充填材のうちミルドファイバーの繊維長から算出される平均ガラス繊維長は200~500μmであることが好ましい。平均繊維長が200μm未満であると、複合樹脂組成物から得られる平面状コネクター等の成形品の格子部等に割れが発生する可能性があるため好ましくない。平均繊維長が500μm超であると、流動性が悪化し、複合樹脂組成物の成形が困難になる可能性があるため好ましくない。
 また、本発明におけるガラス繊維及びミルドファイバーの繊維径は、特に制限されないが、一般的に5~15μm程度のものが使用される。
 (その他の成分)
 本発明の複合樹脂組成物には、上記の成分の他に、核剤、カーボンブラック、無機焼成顔料等の顔料、酸化防止剤、安定剤、可塑剤、滑剤、離型剤、難燃剤、及び公知の無機充填剤のうちの1種以上を配合してもよい。
 本発明の複合樹脂組成物の製造方法は、上記の液晶性ポリマーと、ガラス繊維等とを均一に混合できれば特に限定されず、従来知られる樹脂組成物の製造方法から適宜選択することができる。例えば、1軸又は2軸押出機等の溶融混練装置を用いて、各成分を溶融混練して押出した後、得られた複合樹脂組成物を粉末、フレーク、ペレット等の所望の形態に加工する方法が挙げられる。
 本発明の複合樹脂組成物は流動性に優れるため、成形時の最小充填圧力が過度になりにくく、平面状コネクターの格子部等のような複雑な形状を有する部分を好ましく成形できる。最小充填圧力は、複合樹脂組成物を成形する際に、365℃において良好な成形品を得られる最小の射出充填圧として特定される。
 (平面状コネクター)
 本発明の複合樹脂組成物を成形することにより、本発明の平面状コネクターを得ることができる。平面状コネクターの形状としては、特に限定されないが、外枠部の内部に格子構造を有し、前記格子構造の内部に開口部を有し、上記格子構造における格子部のピッチ間隔が1.5mm以下であり、上記外枠部と前記格子部の厚み比率が1.0以下である平面状コネクターであってもよい。また、平面状コネクターにおける端子を保持する格子部の樹脂部分の幅が0.5mm以下、製品全体の高さが5.0mm以下という非常に薄肉の平面状コネクターであってもよい。
 本発明の平面状コネクターの形状としては、例えば、図1に示すようなものが挙げられる。この平面状コネクターは、全体の大きさが43.88mm×43.88mm×3mmtであり、厚みが3mm以下の外枠部と、厚みが1.5mm以下の格子部と、中央部に13.88mm×13.88mmの開口部とを有する。また、この平面状コネクターのピン挿入穴は、平面状コネクターに差し込んだピンの抜けを防止するために、ピン挿入穴の幅が一部狭まっていてもよい。
 本発明の平面状コネクターの格子部におけるピン挿入穴の形状は特に限定されず、角形、丸形等であってもよい。本発明において好ましいピン挿入穴の形状としては、角形、丸形以外の形状(本発明において「異形」という)が挙げられ、例えば、図5に示されるような形状、星形の形状等が挙げられる。このような形状を有するピン挿入穴(本発明において「異形穴」という)は、成形が非常に困難であるだけでなく、割れが生じやすく、成形品の耐クラック性が低下しやすい。しかし、本発明の平面状コネクターはピン挿入穴が異形穴であっても、優れた耐クラック性を有する。また、本発明の平面状コネクターとしては、格子部の中に開口部を有しているものだけではなく、格子部の中に開口部を有さないものも含まれる。
 本発明の平面状コネクターを得る成形方法としては特に限定されないが、得られる平面状コネクターの変形を防ぎ、良好な平面度(後述する)を有する平面状コネクターを得るために、残留内部応力のない成形条件を選ぶことが好ましい。充填圧力を低くし、得られる平面状コネクターの残留内部応力を低下させるために、成形機のシリンダー温度は、液晶性ポリマーの融点以上の温度が好ましい。
 また、金型温度は70~100℃が好ましい。金型温度が低いと、金型に充填された複合樹脂組成物が流動不良を起こす可能性があるため好ましくない。金型温度が高いと、バリ発生等の問題が生じる可能性があるため好ましくない。射出速度については、150mm/秒以上で成形することが好ましい。射出速度が低いと、未充填成形品しか得られない可能性があり、完全に充填した成形品が得られたとしても、充填圧力が高く残留内部応力の大きい成形品となり、平面度が劣るコネクターしか得られない可能性がある。
 本発明の平面状コネクターは、良好な曲げ弾性率を有し、耐クラック性に優れる。本発明の平面状コネクターの曲げ弾性率は、17GPa以上であってもよい。弾性率が17GPa以上である平面状コネクターは、薄肉の格子部を有するものであっても割れを生じにくく、耐クラック性に優れる。なお、曲げ弾性率は、ISO178に準拠して測定される。
 また、本発明の平面状コネクターは、変形が抑制されている。平面状コネクターの変形の程度は、平面状コネクターの平面度を指標として判断する。具体的には、平面状コネクターを水平な机の上に静置し、平面状コネクターの高さを画像測定器により測定し、コネクター端面より、0.5mmの位置を10mm間隔で測定し、最大高さと最小高さの差を平面度とする。本発明の平面状コネクターは、IRリフローを行う前後において、平面度の変化が抑制されている。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 (液晶性ポリマー1の製造方法)
 撹拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、金属触媒、アシル化剤を仕込み、窒素置換を開始した。
 (I)2-ヒドロキシ-6-ナフトエ酸;166g(48モル%)(HNA)
 (II)テレフタル酸;76g(25モル%)(TA)
 (III)4,4’-ジヒドロキシビフェニル;86g(25モル%)(BP)
 (IV)4-ヒドロキシ安息香酸;5g(2モル%)(HBA)
 酢酸カリウム触媒;22.5mg
 無水酢酸;191g
 重合容器に原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、さらに360℃まで5.5時間かけて昇温し、そこから30分かけて5Torr(すなわち667Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレット化した。得られたペレットについて、窒素気流下、300℃で8時間の熱処理を行った。ペレットの融点は349℃、結晶化熱量は5.6J/g、溶融粘度は23Pa・sであった。
 なお、本実施例において、溶融粘度の測定は、下記の条件で行った。
 L=20mm、d=1mmの(株)東洋精機製キャピログラフ1B型を使用し、液晶性ポリマーの融点よりも10~20℃高い温度で、剪断速度1000/秒で、ISO11443に準拠して、液晶性ポリマーの溶融粘度を測定した。
 (液晶性ポリマー2の製造方法)
 撹拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、金属触媒、アシル化剤を仕込み、窒素置換を開始した。
 (I)4-ヒドロキシ安息香酸;188.4g(60モル%)(HBA)
 (II)6-ヒドロキシ-2-ナフトエ酸;21.4g(5モル%)(HNA)
 (III)テレフタル酸;66.8g(17.7モル%)(TA)
 (IV)4,4’-ジヒドロキシビフェニル;52.2g(12.3モル%)(BP)
 (V)4-アセトキシアミノフェノール;17.2g(5モル%)(APAP)
 酢酸カリウム触媒;15mg
 無水酢酸;226.2g
 重合容器に原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、さらに340℃まで4.5時間かけて昇温し、そこから15分かけて10Torr(すなわち667Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレット化した。得られたペレットの融点は334℃、結晶化熱量は2.7J/g、溶融粘度は18Pa・sであった。
 (液晶性ポリマー3の製造方法)
 撹拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、金属触媒、アシル化剤を仕込み、窒素置換を開始した。
 (I)4-ヒドロキシ安息香酸;1041g(48モル%)(HBA)
 (II)6-ヒドロキシ-2-ナフトエ酸;89g(3モル%)(HNA)
 (III)テレフタル酸;565g(21.7モル%)(TA)
 (IV)イソフタル酸;78g(3モル%)(IA)
 (V)4,4’-ジヒドロキシビフェニル;711g(24.3モル%)(BP)
 酢酸カリウム触媒;110mg
 無水酢酸;1645g
 重合容器に原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、さらに360℃まで5.5時間かけて昇温し、そこから20分かけて10Torr(すなわち1330Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレット化した。得られたペレットの融点は358℃、結晶化熱量は1.6J/g、溶融粘度は9Pa・sであった。
 (液晶性ポリマー以外の成分)
 上記で得られた各液晶性ポリマーと、下記の成分とを二軸押出機を使用して混合し、複合樹脂組成物を得た。各成分の配合量は表1及び2に示した通りである。なお、以下、表中の「%」は質量%を示す。
 ガラス繊維;日本電気硝子(株)製ECS03T-786H、繊維径10μm、長さ3mmのチョプドストランド
 タルク;松村産業(株)製クラウンタルクPP、平均粒径10μm
 ミルドファイバー;日東紡(株)製PF70E001、繊維径10μm、繊維長70μm
 下記の方法に基づき、得られた液晶性ポリマー又は平面状コネクターの物性を測定した。各評価結果を表1及び2に示す。
 (平均ガラス繊維長)
 複合樹脂組成物ペレット5gを600℃で2時間加熱し灰化した。灰化残渣を5%ポリエチレングリコール水溶液に十分分散させた後、スポイトでシャーレに移し、顕微鏡でガラス繊維を観察した。同時に画像測定器((株)ニレコ製LUZEXFS)を用いてガラス繊維の重量平均繊維長を測定した。なお、ミルドファイバーを含む組成物については、平均ガラス繊維長とは、ガラス繊維及びミルドファイバーの繊維長の平均を指す。
 (曲げ弾性率)
 下記成形条件で、複合樹脂組成物を射出成形し、ISO178に準拠して曲げ弾性率を測定した。
[成形条件]
 成形機;住友重機械工業SE100DU
 シリンダー温度(ノズル側からの温度を示す);
      360℃-370℃-370℃-360℃-340℃-330℃(実施例1~6、比較例3~7)
      370℃-370℃-370℃-370℃-370℃-380℃(比較例1)
      350℃-350℃-350℃-350℃-340℃-330℃(比較例2)
 金型温度;80℃
 射出速度;2m/min
 保圧力;50MPa
 保圧時間;2sec
 冷却時間;10sec
 スクリュー回転数;120rpm
 スクリュー背圧;1.2MPa
 (コネクター平面度)
 複合樹脂組成物を図1に示すような、全体の大きさ43.88mm×43.88mm×3mmt、中央部に13.88mm×13.88mmの開口部を有し、格子部ピッチ間隔1.0mmの平面状コネクター(ピン孔数1248ピン)に射出成形した。なお、ゲートは、図2に示す特殊なゲート(オーバーフロー)を使用した。
 得られたコネクターを水平な机の上に静置し、コネクターの高さをミツトヨ製クイックビジョン404PROCNC画像測定器により測定した。その際、図3に示すように、コネクター端面より、0.5mmの位置を10mm間隔で測定し、最小二乗平面からの最大高さと最小高さの差を平面度とした。
 (コネクター変形量)
 下記条件のIRリフローを行い、上述の方法で平面度を測定し、リフロー前後における平面状コネクターの平面度の差をコネクター変形量として求めた。
 [IRリフロー条件]
 測定器;日本パルス技術研究所製大型卓上リフローハンダ付け装置RF-300(遠赤外線ヒーター使用)
 試料送り速度;140mm/秒
 リフロー炉通過時間;5分
 プレヒートゾーンの温度条件;150℃
 リフローゾーンの温度条件;225℃
 ピーク温度;287℃
 [成形条件]
 成形機;住友重機械工業SE30DUZ
 シリンダー温度(ノズル側からの温度を示す);
      360℃-365℃-340℃-330℃(実施例1~6、比較例3~7)
      370℃-370℃-370℃-380℃(比較例1)
      350℃-350℃-340℃-330℃(比較例2)
 金型温度;80℃
 射出速度;300mm/sec
 保圧力;50MPa
 保圧時間;2sec
 冷却時間;10sec
 スクリュー回転数;120rpm
 スクリュー背圧;1.2MPa
 (コネクター最小充填圧力)
 図1の平面状コネクターを射出成形する際に良好な成形品を得られる最小の射出充填圧力を最小充填圧力として測定した。
 (耐クラック性)
 図4に示す評価用射出成形品は、外周が直径:23.6mmで内部に31個のφ3.2mmの孔が開いており、孔間距離の最小肉厚が0.16mmである。ゲートは図4の矢印部の3点ゲートを採用した。成形品割れ観察は実体顕微鏡を使用し、倍率5倍で孔周りの割れ発生状況を観察し、成形品に割れが発生していた場合は“×”、発生していなかった場合は“○”と判断した。
 [成形条件]
 成形機;住友重機械工業SE30DUZ
 シリンダー温度(ノズル側からの温度を示す);
      370℃-375℃-360℃-350℃(実施例1~6、比較例3~7)
      360℃-360℃-360℃-370℃(比較例1)
      350℃-350℃-340℃-330℃(比較例2)
 金型温度;140℃
 射出速度;150mm/sec
 保圧力;100MPa
 保圧時間;2sec
 冷却時間;10sec
 スクリュー回転数;120rpm
 スクリュー背圧;1.2MPa
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び2に示される通り、本発明の平面状コネクターは、平面度、そり変形、流動性、耐クラック性に優れ、曲げ弾性率が17GPa以上であった。また、本発明の複合樹脂組成物から得られた、ピン挿入穴が異形穴(図5の形状を有する異形穴)である平面状コネクターについて同様の試験を行ったところ、上記同様に好ましい結果を得た。

Claims (4)

  1.  (A)液晶性ポリマーと、(B)ガラス繊維と、(C)タルク及びミルドファイバーからなる群より選択される1以上の無機充填材と、を含む複合樹脂組成物であって、
     前記(A)液晶性ポリマーは、必須の構成成分として、下記の構成単位;(I)4-ヒドロキシ安息香酸、(II)2-ヒドロキシ-6-ナフトエ酸、(III)テレフタル酸、(IV)イソフタル酸及び(V)4,4’-ジヒドロキシビフェニルを含み、
     全構成単位に対して(I)の構成単位は35~75モル%であり、
     全構成単位に対して(II)の構成単位は2~8モル%であり、
     全構成単位に対して(III)の構成単位は4.5~30.5モル%であり、
     全構成単位に対して(IV)の構成単位は2~8モル%であり、
     全構成単位に対して(V)の構成単位は12.5~32.5モル%であり、
     全構成単位に対して(II)及び(IV)の構成単位の総量は4~10モル%であり、
     前記(A)液晶性ポリマーは、複合樹脂組成物全体に対して45~60質量%であり、
     前記(B)ガラス繊維は、複合樹脂組成物全体に対して35~50質量%であり、
     前記(C)タルク及びミルドファイバーからなる群より選択される1以上の無機充填材は、複合樹脂組成物全体に対して0~15質量%である複合樹脂組成物。
  2.  前記(B)ガラス繊維の繊維長及び前記(C)ミルドファイバーの繊維長の平均ガラス繊維長は200~500μmである請求項1に記載の複合樹脂組成物。
  3.  請求項1又は2に記載の複合樹脂組成物から成形され、
     外枠部の内部に格子構造を有し、前記格子構造の内部に開口部を有し、
     前記格子構造における格子部のピッチ間隔が1.5mm以下であり、
     前記外枠部と前記格子部の厚み比率が1.0以下であり、
     ピン挿入穴が異形穴である、平面状コネクター。
  4.  ISO178に準拠して測定された曲げ弾性率が17GPa以上である請求項3に記載の平面状コネクター。
PCT/JP2013/072224 2012-09-27 2013-08-20 複合樹脂組成物及び該複合樹脂組成物から成形される平面状コネクター WO2014050370A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157009524A KR101627243B1 (ko) 2012-09-27 2013-08-20 복합 수지 조성물 및 당해 복합 수지 조성물로 성형되는 평면상 커넥터
CN201380050126.3A CN104662087B (zh) 2012-09-27 2013-08-20 复合树脂组合物以及由该复合树脂组合物成型而成的平面状连接器
JP2014538281A JP5826404B2 (ja) 2012-09-27 2013-08-20 複合樹脂組成物及び該複合樹脂組成物から成形される平面状コネクター

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-213668 2012-09-27
JP2012213668 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014050370A1 true WO2014050370A1 (ja) 2014-04-03

Family

ID=50387780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072224 WO2014050370A1 (ja) 2012-09-27 2013-08-20 複合樹脂組成物及び該複合樹脂組成物から成形される平面状コネクター

Country Status (5)

Country Link
JP (1) JP5826404B2 (ja)
KR (1) KR101627243B1 (ja)
CN (1) CN104662087B (ja)
TW (1) TWI502018B (ja)
WO (1) WO2014050370A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6022127B1 (ja) * 2014-12-05 2016-11-09 ポリプラスチックス株式会社 複合樹脂組成物及び平面状コネクター
JP6473796B1 (ja) * 2017-11-27 2019-02-20 住友化学株式会社 液晶ポリエステル樹脂組成物および成形体
WO2021085224A1 (ja) * 2019-10-31 2021-05-06 ポリプラスチックス株式会社 樹脂組成物及び平面状コネクター
US11584850B2 (en) 2017-11-27 2023-02-21 Sumitomo Chemical Company, Limited Liquid crystal polyester resin composition and molded body

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105837803B (zh) * 2016-02-01 2017-05-31 金发科技股份有限公司 一种液晶聚酯以及由其组成的模塑组合物和其应用
JP6944615B1 (ja) * 2019-10-31 2021-10-06 ポリプラスチックス株式会社 樹脂組成物及びコネクター
CN111303410A (zh) * 2020-03-18 2020-06-19 南京清研高分子新材料有限公司 一种液晶聚合物及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243826A (ja) * 1985-04-19 1986-10-30 Asahi Chem Ind Co Ltd ポリエステルフイルム及びその製造方法
JPH0216120A (ja) * 1988-07-05 1990-01-19 Polyplastics Co 溶融時に光学的異方性を示すポリエステル樹脂及び樹脂組成物
JP2001200034A (ja) * 2000-01-14 2001-07-24 Ticona Llc 伸縮自在なポリマーを製造するための組成物および方法ならびにそれらによって製造される造形物品
JP2009127024A (ja) * 2007-11-28 2009-06-11 Polyplastics Co 全芳香族ポリエステル及びポリエステル樹脂組成物
JP2011122148A (ja) * 2009-11-16 2011-06-23 Sumitomo Chemical Co Ltd コネクタ用液晶ポリエステル組成物およびこれを用いたコネクタ
JP2012107221A (ja) * 2010-10-29 2012-06-07 Sumitomo Chemical Co Ltd 液晶ポリエステル組成物
WO2012137636A1 (ja) * 2011-04-01 2012-10-11 ポリプラスチックス株式会社 全芳香族ポリエステル及びポリエステル樹脂組成物
JP2012214652A (ja) * 2011-04-01 2012-11-08 Polyplastics Co 平面状コネクター

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804634A (en) * 1995-12-15 1998-09-08 Toray Industries, Inc. Liquid crystalline resin compound and moldings thereof
JP4717366B2 (ja) 2004-03-26 2011-07-06 ポリプラスチックス株式会社 平面状コネクター
JP5165492B2 (ja) 2008-05-23 2013-03-21 ポリプラスチックス株式会社 平面状コネクター
JP2010037364A (ja) * 2008-07-31 2010-02-18 Polyplastics Co コネクター

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243826A (ja) * 1985-04-19 1986-10-30 Asahi Chem Ind Co Ltd ポリエステルフイルム及びその製造方法
JPH0216120A (ja) * 1988-07-05 1990-01-19 Polyplastics Co 溶融時に光学的異方性を示すポリエステル樹脂及び樹脂組成物
JP2001200034A (ja) * 2000-01-14 2001-07-24 Ticona Llc 伸縮自在なポリマーを製造するための組成物および方法ならびにそれらによって製造される造形物品
JP2009127024A (ja) * 2007-11-28 2009-06-11 Polyplastics Co 全芳香族ポリエステル及びポリエステル樹脂組成物
JP2011122148A (ja) * 2009-11-16 2011-06-23 Sumitomo Chemical Co Ltd コネクタ用液晶ポリエステル組成物およびこれを用いたコネクタ
JP2012107221A (ja) * 2010-10-29 2012-06-07 Sumitomo Chemical Co Ltd 液晶ポリエステル組成物
WO2012137636A1 (ja) * 2011-04-01 2012-10-11 ポリプラスチックス株式会社 全芳香族ポリエステル及びポリエステル樹脂組成物
JP2012214652A (ja) * 2011-04-01 2012-11-08 Polyplastics Co 平面状コネクター

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6022127B1 (ja) * 2014-12-05 2016-11-09 ポリプラスチックス株式会社 複合樹脂組成物及び平面状コネクター
JP6473796B1 (ja) * 2017-11-27 2019-02-20 住友化学株式会社 液晶ポリエステル樹脂組成物および成形体
US11485851B2 (en) 2017-11-27 2022-11-01 Sumitomo Chemical Company, Limited Liquid crystal polyester resin composition and molded body
US11584850B2 (en) 2017-11-27 2023-02-21 Sumitomo Chemical Company, Limited Liquid crystal polyester resin composition and molded body
WO2021085224A1 (ja) * 2019-10-31 2021-05-06 ポリプラスチックス株式会社 樹脂組成物及び平面状コネクター
JP6944616B1 (ja) * 2019-10-31 2021-10-06 ポリプラスチックス株式会社 樹脂組成物及び平面状コネクター

Also Published As

Publication number Publication date
JPWO2014050370A1 (ja) 2016-08-22
KR101627243B1 (ko) 2016-06-03
TW201422714A (zh) 2014-06-16
KR20150060765A (ko) 2015-06-03
CN104662087A (zh) 2015-05-27
TWI502018B (zh) 2015-10-01
CN104662087B (zh) 2016-08-17
JP5826404B2 (ja) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5826404B2 (ja) 複合樹脂組成物及び該複合樹脂組成物から成形される平面状コネクター
KR101399743B1 (ko) 평면상 커넥터
JP5753144B2 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物、並びにポリエステル成形品
JP6356938B1 (ja) 複合樹脂組成物、及び当該複合樹脂組成物から成形されたコネクター
CN109790379B (zh) 复合树脂组合物、及由该复合树脂组合物成形而成的电子部件
JP5769888B2 (ja) 電子部品用複合樹脂組成物、及び当該複合樹脂組成物から成形された電子部品
JP6321899B1 (ja) 複合樹脂組成物、及び当該複合樹脂組成物から成形されたコネクター
JP5753143B2 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物、並びにポリエステル成形品
WO2017110867A1 (ja) 複合樹脂組成物、及び当該複合樹脂組成物から成形されたコネクター
JP6109651B2 (ja) 複合樹脂組成物及び当該複合樹脂組成物から成形された平面状コネクター
JP2016124947A (ja) 成形品の製造方法及び複合樹脂組成物
WO2017110866A1 (ja) 複合樹脂組成物、及び当該複合樹脂組成物から成形された電子部品
CN109790380B (zh) 复合树脂组合物、及由该复合树脂组合物成形而成的电子部件
JP2018095684A (ja) 複合樹脂組成物、及び当該複合樹脂組成物から成形されたコネクター
JP6944615B1 (ja) 樹脂組成物及びコネクター
JP6189750B2 (ja) 全芳香族ポリエステル、ポリエステル樹脂組成物、及びポリエステル成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538281

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157009524

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13842681

Country of ref document: EP

Kind code of ref document: A1