WO2014040507A1 - 一种场效应晶体管的外延结构、外延工艺及场效应晶体管的制作方法 - Google Patents

一种场效应晶体管的外延结构、外延工艺及场效应晶体管的制作方法 Download PDF

Info

Publication number
WO2014040507A1
WO2014040507A1 PCT/CN2013/082821 CN2013082821W WO2014040507A1 WO 2014040507 A1 WO2014040507 A1 WO 2014040507A1 CN 2013082821 W CN2013082821 W CN 2013082821W WO 2014040507 A1 WO2014040507 A1 WO 2014040507A1
Authority
WO
WIPO (PCT)
Prior art keywords
epitaxial layer
substrate
epitaxial
layer
trench
Prior art date
Application number
PCT/CN2013/082821
Other languages
English (en)
French (fr)
Inventor
周宏伟
阮孟波
吴宗宪
孙晓儒
Original Assignee
无锡华润上华半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡华润上华半导体有限公司 filed Critical 无锡华润上华半导体有限公司
Publication of WO2014040507A1 publication Critical patent/WO2014040507A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Definitions

  • the present invention relates to semiconductor technology, and more particularly to a field effect transistor structure and method of fabricating the same. Background technique
  • drift layer breakdown voltage of a power FET is subject to the doping concentration of the drift layer and the thickness of the drift layer. Under normal circumstances, it is desirable for power field effect transistors to have a higher breakdown voltage and a lower drift layer on-resistance. A higher breakdown voltage requires a greater thickness of the drift layer, but a larger thickness results in a larger resistance of the drift layer.
  • the power field effect transistor has a high breakdown voltage and the drift layer resistance is as low as possible.
  • a lot of research and development work has been carried out, and efforts have been made to develop a kind of high A power FET that breaks down the voltage and causes the on-resistance of the drift layer to be lower.
  • the present invention discloses an epitaxial structure of a trench-filled super junction power field effect transistor that satisfies this need.
  • the fabricated field effect transistor can have a higher breakdown voltage and a lower on-resistance. Summary of the invention It is an object of the present invention to provide a trench-filled superjunction field effect transistor structure having a higher breakdown voltage and a smaller on-resistance.
  • Another object of the present invention is to provide a method of fabricating a trench-filled superjunction field effect transistor having a higher breakdown voltage and a smaller on-resistance.
  • the present invention provides an epitaxial structure of a field effect transistor, the other comprising: an N + substrate as a drain of a field effect transistor; an N_ epitaxial layer formed on the substrate; formed in N a trench in the epitaxial layer, and the trench is filled with a P epitaxial layer; a P + well formed in the P- epitaxial layer; an N + source region formed in the P + well; and a region formed outside the P-groove
  • the thickness of the N- epitaxial layer may be 30 ⁇ m - 60 ⁇ m, and the doping concentration of the germanium-epitaxial layer is in the range of 30 ⁇ m - 60 ⁇ m
  • the ⁇ + substrate was linearly ramped from the initial concentration of 4.9e 15 -9.5e 15 to 1.15 times the initial concentration in the direction away from the substrate.
  • the edge of the trench filled with the P_ epitaxial layer has an inclination angle with respect to a plane perpendicular to the top surface of the substrate, and the inclination angle causes the groove to be present
  • the side of the N + substrate is narrower and away from the wider shape of the side of the N + substrate.
  • the inclination angle of the groove is 85 - 89 degrees.
  • a gate oxide layer is formed between the N- epitaxial layer and the polysilicon gate, and the gate oxide layer has a thickness of 800 - 1200A.
  • an epitaxial process for fabricating a field effect transistor structure comprising the steps of: step a): growing a layer of germanium epitaxial layer on the N + substrate; step b): Etching the trench in the N_ epitaxial layer; step c): filling the trench with a P epitaxial layer; step d): ⁇ epitaxy of the region outside the trench filled with the germanium epitaxial layer formed by step c) Forming a gate oxide layer on the surface of the layer; step e): growing a heavily doped N + polysilicon layer on the gate oxide layer formed by step c), or after depositing a layer of undoped polysilicon Injecting impurities into the undoped polysilicon to form an N + polysilicon gate; step f): implanting and annealing the P + well
  • the thickness of the N_ epitaxial layer is 30 ⁇ m - 60 ⁇ m, and the doping concentration of the epitaxial layer is in the range of 30 ⁇ m - 60 ⁇ m, from ⁇ + lining
  • the bottom is linearly graded from a starting concentration of 4.9e 15 -9.5e 15 to 1.15 times the initial concentration in a direction away from the substrate.
  • the first step is to first grow an oxide layer on the tantalum epitaxial layer. Then, the formed oxide layer is used as a mask to etch the trench.
  • Step c - 1 planarizing the surface of the substrate filled with the P- epitaxial layer by CMP, ie, chemical mechanical planarization or silicon etchback;
  • the thickness of the gate oxide layer is 800 - 1200A.
  • the edge of the trench filled with the p- epitaxial layer has an oblique angle with respect to a top surface perpendicular to the substrate, and the tilt angle causes the trench to be rendered
  • the one side of the N + substrate is narrower and has a wider shape on the side away from the N + substrate.
  • the inclination angle of the groove is 85 - 89 degrees.
  • FIG. 1 is a schematic diagram of a longitudinal double-diffusion structure of a high voltage planar power field effect transistor
  • Figure 2 is a schematic view showing the structure of a so-called super junction device
  • 3a to 3e are schematic diagrams showing the process principle of implementing the super junction device structure shown in Fig. 2 by multiple epitaxy and implantation methods;
  • 4a to 4c are schematic diagrams showing the principle of a process for fabricating a superjunction device structure by a trench etch refill process
  • 5a and 5b are schematic diagrams illustrating the further improvement of the breakdown voltage in the case where the P-doping concentration is gradually changed;
  • 6a to 6h are schematic views showing a specific process of forming a structure of a doped trench-filled super junction field effect transistor according to an embodiment of the present invention
  • 7a and 7b are longitudinal profiles of the doping concentration of the N-type epitaxial layer of the electric field at the time of breakdown in the case where the doping concentration of the N-type epitaxial layer is constant and the sidewalls of the deep trench are at a right angle of 90 degrees;
  • Figures 8a and 8b show that the doping concentration is constant in the N-type epitaxial layer and the deep trench sidewall is 89 degrees In the case of an angle, the longitudinal distribution of the doping concentration of the N-type epitaxial layer at the time of breakdown of the electric field;
  • Figures 9a and 9b show the longitudinal distribution of the doping concentration of the N-type epitaxial layer of the electric field at the time of breakdown in the case where the doping concentration of the N-type epitaxial layer is gradually changed and the sidewall of the deep trench is inclined by 89 degrees.
  • the high voltage planar power field effect transistor as shown in Figure 1 is designed to be a longitudinal double diffused structure.
  • the so-called vertical double-diffusion structure uses the edge of polysilicon as a mask to achieve vertical double diffusion to form p + and n + regions.
  • the breakdown voltage is mainly reflected on the PN junction formed by the p + region and the drift layer (ie, the i epitaxial layer).
  • the breakdown voltage is mainly determined by the drift layer.
  • one consideration is to make the doping concentration of the drift layer lower and at the same time increase the thickness of the drift layer.
  • the on-resistance has a limit called "silicon limit" due to the limitation of the breakdown voltage. Therefore, the on-resistance cannot be continuously reduced.
  • the so-called super junction device structure shown in Figure 2 is that only the majority carriers (ie, electricity) are turned on. Sub) There is no process in which minority carriers participate.
  • the switching loss of this super junction structure is the same as that of other metal oxide field effect transistors, and the doping concentration of the voltage support layer of such a super junction structure can be increased by nearly an order of magnitude for the same breakdown voltage.
  • the on-resistance R 0N can be greatly reduced to exceed the silicon limit at the same breakdown voltage.
  • the die area can be made smaller, thereby reducing the gate charge and increasing the switching frequency.
  • the device of the super junction structure is a majority carrier device, the device does not have current tailing of the bipolar transistor. Therefore, devices with super junction structures have lower on-state power dissipation and higher switching speeds.
  • the critical field strength is almost constant. This makes the breakdown voltage only depend on the thickness of the epitaxial layer, regardless of the doping concentration, so that the relationship between the on-resistance R 0N and the breakdown voltage V B changes from a linear relationship to a linear relationship:
  • cp is the width of the cell, is the electron mobility, E c is the critical electric field, and Q is the electricity.
  • the amount of charge, s Si is the dielectric constant of silicon Si.
  • a photoresist is applied, and boron implantation is performed in the remaining window;
  • the photoresist is applied and a second boron implantation is performed, followed by photoresist removal and annealing.
  • the superjunction structure device can also be fabricated by a trench etch refill process as shown in 4a and 4b.
  • the photoresist is applied on the N-layer without further etching
  • deep trench etching is performed at a region where the photoresist is not applied, and the depth of the deep trench is 30 - 50 ⁇ m for a super-junction device with a breakdown voltage of 600V;
  • the germanium layer after the growth of the germanium-region is polished by a etch back or CMP (chemical mechanical planarization) process, and a super-junction structure device is formed after the subsequent process.
  • CMP chemical mechanical planarization
  • the boron doping concentration for the ⁇ epitaxial layer growth in the deep trench is constant.
  • doping with boron if it is not handled properly, it is easy to have voids, which affects the leakage of the source and drain of the device and thus the breakdown voltage. Therefore, in order to reduce the void Generated, requires very demanding process conditions to ensure that there are no voids in the P epitaxial fill in the trench, thus ensuring the quality of the superjunction device.
  • the trench In order to ensure that no voids are generated as much as possible in the trench filling of the super junction structure device, it is conceivable to form the trench into a shape which is as wide as the upper and lower as shown in Fig. 4c. Experiments have shown that when the sidewall of the trench is made to have a small tilt angle with respect to the vertical direction, the doping quality of the P-region in the trench is greatly greater.
  • the breakdown voltage is determined only by the widths of the P-region and the N-region and the respective doping concentrations, which are constant.
  • Equation 3 is satisfied at the position (ii) shown in Fig. 5b, but at the position (iii), Equation 3 cannot be satisfied.
  • the doping concentration of the N-region epitaxial layer can be gradually increased from the side of the substrate toward the direction away from the substrate to be linearly graded so as to be at each cross-sectional position as shown in FIG. 5b. Satisfy Equation 3.
  • the N- epitaxial layer is grown on the N + substrate.
  • the doping concentration of the epitaxial layer changes linearly from the N + substrate toward the direction away from the N + substrate.
  • the grown germanium epitaxial layer has a thickness of 30 - 60 ⁇ m and an initial concentration of 4.9e 15 to 9.5 e 15 , which linearly increases to about 1.15 times the initial concentration.
  • an oxide layer of a certain thickness for example, an oxide layer having a thickness of 1 - 2 ⁇ m, is grown on the epitaxial layer of the grown N-doped concentration linearly varying.
  • the deep trench is etched using the oxide layer as a mask, for example, a trench of 30 - 50 ⁇ m is etched.
  • the groove formed has a shape that is wide and narrow.
  • the formed upper width and lower narrow shape and the vertical elevation have an inclination angle of 85 to 89 degrees.
  • filling of the P-type epitaxial layer is performed in the trench formed by the etching.
  • CMP is used.
  • the (Chemical-Mechanical Planarization) technique or the lithography technique is used to planarize the surface of the substrate after the P-type epitaxial layer is filled.
  • the so-called CMP technique is a technique for planarizing the surface of a semiconductor material during processing using chemical etching and mechanical force.
  • the silicon etchback technique is performed after the trench is etched. Since the P-type epitaxial layer not only grows in the trench but also grows outside the trench, chemical methods (such as reagents) or plasma gas can be used. A technique for etching away silicon outside the trench.
  • the growth of the SiO 2 sacrificial oxide layer is performed. After the growth of the sacrificial oxide layer is completed, the grown sacrificial oxide layer is removed. The purpose of this is because there may be damage or impurities on the surface of the device after the CMP process or the silicon etchback process. After the sacrificial oxide layer is grown, the sacrificial oxide layer that is grown is removed, and then the subsequent process is performed to make the surface of the device cleaner.
  • the gate oxide layer is thermally grown, for example, having a thickness of 800 - 1200 ⁇ .
  • a layer of heavily doped N+ polysilicon is then grown.
  • impurities are implanted into the undoped polysilicon to form an N+ polysilicon gate.
  • the formed heavily doped polysilicon gate layer and the gate oxide layer are photolithographically patterned to form a device structure as shown in Fig. 6e.
  • implantation and annealing of the P+ well are performed in the filled P- epitaxial layer.
  • implantation and annealing of the N+ source region is performed in the formed P+ well.
  • Figures 7a and 7b show longitudinal profiles of the doping concentration of the N-type epitaxial layer of the electric field at breakdown when the doping concentration of the N-type epitaxial layer is constant and the sidewalls of the deep trench are at a right angle of 90 degrees.
  • the abscissa shows the longitudinal distance of the device and the ordinate shows the electric field strength.
  • the abscissa shows the longitudinal distance of the device and the ordinate shows the concentration of the monument doping.
  • Figures 8a and 8b show the longitudinal distribution of the doping concentration of the N-type epitaxial layer of the electric field at the time of breakdown in the case where the doping concentration of the N-type epitaxial layer is constant and the sidewall of the deep trench is 89 degrees.
  • the abscissa shows the longitudinal distance of the device and the ordinate shows the electric field strength.
  • the abscissa shows the longitudinal distance of the device and the ordinate shows the concentration of the monument.
  • 9a and 9b show the longitudinal distribution of the doping concentration of the N-type epitaxial layer during the breakdown of the electric field in the case where the doping concentration of the N-type epitaxial layer is gradually changed and the sidewall of the deep trench is inclined by 89 degrees. .
  • the abscissa shows the longitudinal distance of the device and the ordinate shows the electric field strength.
  • the abscissa shows the longitudinal distance of the device and the ordinate shows the concentration of the monument doping.
  • the breakdown voltage is low because it is sufficiently depleted in the horizontal direction as shown in Figs. 5a and 5b.
  • the N-type epitaxial layer and the P-type epitaxial layer can be horizontally due to the technique in which the doping concentration is gradually changed and the trench sidewall has a small tilt angle.
  • the direction is well depleted sufficiently, so that the on-resistance of the device is also small while increasing the breakdown voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

一种场效应晶体管的外延结构,它包括:N+衬底、形成在衬底上的N-外延层、形成在N-外延层中并且填充有P-外延层的倾斜沟槽、形成在F外延层中的P+阱、形成在P+阱中的N+源区;以及形成在F沟槽以外区域的N-外延层上的多晶硅栅极,其中,N-外延层的掺杂浓度从N+衬底向着远离衬底的方向是缓变的,该场效应晶体管的外延结构击穿电压较高而导通电阻同时较小。

Description

说明书
发明名称: 一种场效应晶体管的外延结构、 外延工艺及场效应晶体管的制作 方法 技术领域
本发明涉及半导体技术, 本发明尤其涉及一种场效应晶体管结构及其制 作方法。 背景技术
众所周知, 功率场效应晶体管的漂移层击穿电压是受制于漂移层的掺杂 浓度和漂移层的厚度的。 而在通常情况下, 人们希望功率场效应晶体管具有 较高的击穿电压和较低的漂移层导通电阻。 较高的击穿电压要求漂移层的厚 度较大, 但较大的厚度却使得漂移层的电阻较大。
为了解决这一矛盾, 使得功率场效应晶体管即具有较高的击穿电压, 又 使得漂移层电阻尽可能较低, 人们开展了大量的研究、 开发工作, 力图研制 出一种即具有较高的击穿电压, 又使得漂移层的导通电阻较低的功率场效应 晶体管。
本发明揭示了一种满足这种需求的沟槽填充型超结功率场效应晶体管的 外延结构。
釆用本发明的沟槽填充型超结功率场效应晶体管的外延结构, 可以使得 制成的场效应晶体管具有较高的击穿电压, 同时其导通电阻也较低。 发明内容 本发明的一个目的是提供一种击穿电压较高而导通电阻同时较小的沟槽 填充超结场效应晶体管结构。
本发明的另一个目的是提供一种击穿电压较高而导通电阻同时较小的沟 槽填充超结场效应晶体管的制作方法。
按照本发明的一个方面, 本发明提供了一种场效应晶体管的外延结构, 其它包括: N+衬底, 作为场效应晶体管的漏极; 形成在衬底上的 N_外延层; 形成在 N-外延层中沟槽, 并且沟槽中填充有 P 外延层; 形成在 P-外延层中的 P+阱; 形成在 P+阱中的 N+源区; 以及形成在 P-沟槽以外区域的 N-外延层上的 多晶硅栅极, 其中, N_外延层的掺杂浓度从 N+衬底向着远离衬底的方向是緩 变的。
在按照本发明的第一个方面中的场效应晶体管的外延结构中, N_外延层 的厚度可以是 30μιη - 60μιη, 并且 Ν-外延层的掺杂浓度在 30μιη - 60μιη的厚 度范围内, 从 Ν+衬底向着远离衬底的方向, 从 4.9e15-9.5e15的起始浓度线性 緩变到起始浓度的 1.15倍。
在按照本发明第一个方面中的场效应晶体管的外延结构中, 填充有 P_外 延层的沟槽的边缘相对于垂直于衬底顶面有一个倾斜角, 并且倾斜角使得沟 槽呈现位于 N+衬底的一侧较窄而远离 N+衬底的一侧较宽的形状。
在按照本发明第一个方面中的场效应晶体管的外延结构中, 沟槽的倾斜 角是 85 - 89度。
在按照本发明第一个方面中的场效应晶体管的外延结构中,在 N—外延层 和多晶硅栅极之间,还形成有一层栅氧化层,栅氧化层的厚度是 800 - 1200A。
在按照本发明第一个方面中的场效应晶体管的外延结构中, 沟槽的深度 为 30μηι - 50μηι。 按照本发明的第二个方面, 提供了一种制作场效应晶体管结构的外延工 艺, 它包含下述步骤: 步骤 a ): 在 N+衬底上生长一层 Ν·外延层; 步骤 b): 在 N_外延层中刻蚀沟槽; 步骤 c ): 在沟槽中填充 P 外延层; 步骤 d ): 在由 步骤 c )形成的填充有 Ρ·外延层的沟槽以外区域的 Ν·外延层表面上, 形成一 层栅氧化层; 步骤 e ): 在由步骤 c )形成的栅氧化层上生长一层重掺杂的 N+ 多晶硅层, 或者在淀积一层非掺杂的多晶硅之后在非掺杂的多晶硅中注入杂 质以形成 N+多晶硅栅极; 步骤 f ): 在形成的 F外延层中进行 P+阱的注入和 退火; 步骤 g ): 在形成的 P+阱中进行 N+源区的注入和退火; 以及步骤 h ): 在所形成的 P+阱上方形成金属源极,并在 N+衬底上进行金属铝的淀积以形成 漏极,其中, N-外延层中的掺杂浓度从 N+衬底向着远离衬底的方向是緩变的。
在按照本发明第二个方面的制作场效应晶体管结构的外延工艺中, N_外 延层的厚度是 30μιη - 60μιη, 并且 外延层的掺杂浓度在 30μιη - 60μιη的厚 度范围内, 从 Ν+衬底向着远离衬底的方向, 从 4.9e15-9.5e15的起始浓度线性 緩变到该起始浓度的 1.15倍。
在按照本发明第二个方面的制作场效应晶体管结构的外延工艺中, 在步 b )对 Ν·外延层进行沟槽刻蚀之前, 还包括首先在 Ν·外延层上生长一层氧 化层, 然后再以所形成的氧化层为掩膜板, 进行沟槽的刻蚀。
在按照本发明第二个方面的制作场效应晶体管结构的外延工艺中, 在完 成步骤 c )对沟槽进行了 Ρ_外延层的填充之后和在进行步骤 d )形成栅氧化层 之前, 还包括下述步骤:
步骤 c - 1 ): 采用 CMP 即化学机械平坦化技术或硅回刻技术, 对经 P- 外延层填充后的衬底表面进行平坦化处理; 以及
步骤 c - 2 ): 生长一层牺牲氧化层, 然后再去除所生长的牺牲氧化层, 以 便使器件表面更清洁。
在按照本发明第二个方面的制作场效应晶体管结构的外延工艺中, 栅氧 化层的厚度是 800 - 1200A。
在按照本发明第二个方面的制作场效应晶体管结构的外延工艺中, 填充 有 p-外延层的沟槽的边缘相对于垂直于衬底顶面有一个倾斜角, 并且倾斜角 使得沟槽呈现位于 N+衬底的一侧较窄而远离 N+衬底的一侧较宽的形状。
在按照本发明第二个方面的制作场效应晶体管结构的外延工艺中, 沟槽 的倾斜角是 85 - 89度。 附图说明
图 1是高压平面功率场效应晶体管的纵向双扩散结构示意图;
图 2示出是的所谓超结器件结构的示意图;
图 3a至 3e示出的是通过多次外延和注入方式来实现图 2所示超结器件 结构的工艺过程原理示意图;
图 4a至 4c示出的是通过沟槽刻蚀再填充工艺, 来制成超结器件结构的 工艺过程的原理示意图;
图 5a和 5b是说明 P区掺杂浓度緩变情况下进一步提高击穿电压的原理 图;
图 6a至 6h是举例说明本发明实施例的形成变掺杂沟槽填充超结场效应 晶体管结构的具体工艺过程示意图;
图 7a和 7b示出的是在 N型外延层掺杂浓度恒定而深沟槽侧壁是 90度直 角的情况下, 电场在击穿时 N型外延层掺杂浓度的纵向分布图;
图 8a和 8b示出的是在 N型外延层掺杂浓度恒定而深沟槽侧壁是 89度倾 角的情况下, 电场在击穿时 N型外延层掺杂浓度的纵向分布图; 而
图 9a和 9b示出的是在 N型外延层掺杂浓度緩变而深沟槽侧壁是 89度倾 角的情况下, 电场在击穿时 N型外延层掺杂浓度的纵向分布图。 具体实施方式
如图 1 中示出的高压平面功率场效应晶体管被设计成是一种纵向双扩散 结构。
所谓的纵向双扩散结构, 就是利用多晶硅的边缘作为掩膜来实现纵向的 双扩散, 以形成 p+区和 n+区。 击穿电压主要体现在 p+区与漂移层(即 i外延 层)所形成的 PN结上。
从图 1 中可以看出, 击穿电压主要是由漂移层决定的。 为了得到较高的 击穿电压, 一种考虑是使漂移层的掺杂浓度较低, 并同时增大漂移层的厚度。
但是, 为了提高击穿电压的目的而不断降低漂移层的掺杂浓度和不断增 大厚度, 会使得作为电流通路的漂移层电阻升高, 从而导致导通电阻的增加, 进而使得通态功耗增大。 因此, 击穿电压的提高和导通电阻的降低是一对矛 盾。
对于理想的 N沟道功率场效应晶体管, 即在导通电阻 Row只考虑漂移层 电阻 RD的情况下, 导通电阻 Row和击穿电压 νβ 之间存在如下的关系:
?。„ = 5.93*10-9 (式 Π
从上式 1 中可以看到, 导通电阻因受击穿电压的限制而存在一个称之为 "硅限 (silicon limit)"的极限。 因而, 导通电阻是无法继续降低的。
为了突破这一极限, 可以采用图 2所示的超结器件结构。
图 2所示的所谓超结器件结构, 是其导通过程中只有多数载流子 (即电 子) 而没有少数载流子参与的过程。
这种超结结构的开关损耗和其它的金属氧化物场效应晶体管相同, 并且 这种超结结构的电压支持层的掺杂浓度对于相同的击穿电压来说可以提高将 近一个数量级。
此外, 由于垂直方向上***了 p型区, 可以补偿过量的电流导通电荷。 在向漂移层施加反向偏置电压时, 将产生一个横向电场, 使得 p - n结耗尽。 当电压加大到一定值时, 漂移层将完全耗尽, 起到电压支持层的作用。
由于这种超结结构可以使得掺杂浓度大大提高, 从而在相同的击穿电压 下, 可以大大降低导通电阻 R0N, 使之突破硅限值。
同时, 在相同击穿电压、 相同导通电阻 R0N的情况下, 可以使管芯面积 做得更小, 从而减小栅电荷、 提高开关频率。
另外, 由于超结结构的器件是多数载流子器件, 器件不会有双极型晶体 管的电流拖尾现象。 因此, 超结结构的器件具有较低的通态功耗和较高的开 关速度。
在超结结构的器件中, 由于 N区和 P区中的电荷相互平衡, 使得电场分 布和传统的金属氧化物场效应晶体管中的电场分布不同。超结结构的器件中, 临界场强几乎是恒定的。 这就使得击穿电压仅仅依赖于外延层的厚度, 而与 掺杂浓度无关,从而使得导通电阻 R0N与击穿电压 VB之间的关系由传统的平 方关系变为线性关系:
R = cp - VB = cp - VB
°" lq nEcQ 2μηεΕ
(式 2 )
上式中, cp是原胞的宽度, 是电子迁移率, Ec是临界电场, Q代表电 荷量, sSi是硅 Si的电介质常数。
下面参照图 3a至图 3e,描述通过多次外延和注入方式来实现超结结构的 过程。
首先, 在 N+衬底上, 第一次外延生长 N 层;
在所生长的 N_层上的特定区域中, 涂抹光刻胶, 并在留下的窗口中进行 硼注入;
去除光刻胶并进行退火, 退火后, 进行第二次外延生长 N-层;
然后, 在第二次外延生长的 Ν·层上, 如同前一次步骤那样, 涂抹光刻胶, 并进行第二次硼注入, 随后进行光刻胶的去除和退火。
重复上述步骤, 直至形成所需的超结结构器件。
也可以通过如同 4a和 4b所示的沟槽刻蚀再填充工艺, 来制成超结结构 器件。
首先, 在 N+衬底上, 外延生长 N_层;
然后, 采用如同多次外延、 注入方式相同的步骤, 在 N-层上无需作进一 步刻蚀的区域上涂抹光刻胶;
接着,在没有涂抹光刻胶的区域处,进行深沟槽刻蚀,对于击穿电压 600V 的超结结构器件, 深沟槽的深度是 30 - 50μιη;
接着, 在沟槽中, 外延生长经硼掺杂的 Ρ—区;
完成 Ρ—区生长后, 采用回刻或 CMP (化学机械平坦化)工艺, 对经 Ρ— 区生长后的 Ν_层进行抛光, 并经后续工艺后形成超结结构器件。
在上述第二种沟槽刻蚀再填充工艺中, 在深沟槽中进行 Ρ 外延层生长的 硼掺杂浓度是恒定的。 在填充硼掺杂时, 如果处理不当, 容易有空洞产生, 从而影响器件源、 漏极的漏电, 并从而影响击穿电压。 因此, 为了减少空洞 产生, 要求执行非常苛刻的工艺条件, 以确保在沟槽中进行 P 外延层填充时 不会有空洞产生, 从而确保超结结构器件的质量。
为了确保在超结结构器件的沟槽填充时尽可能地不会有空洞产生, 可以 考虑将沟槽做成如图 4c所示的截面呈上宽下窄的形状。 实验证明, 当把沟槽 侧壁做成一个相对于垂直方向有小倾角的情况下, 沟槽内 P—区的掺杂质量会 大大才是 ΐ¾
为了进一步提高在斜沟槽情况下, 超结结构器件的击穿电压, 我们可以 进一步考虑使得沟槽外的 Ν_区掺杂浓度呈緩变状态。
下面结合图 5a和 5b , 说明 N-区掺杂浓度緩变情况下进一步提高击穿电 压的原理。
参照图 5a所示。超结结构器件的理想击穿电压是在电荷平衡情况下得到 的。 当偏离电荷平衡的情况下, 击穿电压会明显降低。
在理想情况下, 假设 P—区的电荷浓度为恒定值 NP, 而 P—区的宽度为恒 定值 WP。 同时, 假设 N—区的电荷浓度为恒定值 Nn, 而 N—区的宽度为恒定 值 Wn。 那么, 当达到电荷平衡时, 应该有
Np * Wp = Nn * Wn
(式 3 )
这意味着, 在图 5a所示的上、 下各截面中, 击穿电压仅仅由 P—区和 N— 区的宽度和各自的掺杂浓度决定, 是恒定的。
下面,让我们来看看如果是在沟槽带有倾角并且 N—区浓度是恒定时的情 况。
如图 5b所示。 当采用如图 5b所示带有倾角的沟槽并且 N—区浓度是恒定 的结构时, 如果 P—区的掺杂浓度是恒定的, 则在截面不同的位置处, 电荷的 平衡情况是不同的。
假设在图 5b所示的位置(ii )处满足等式 3 , 但在位置(iii )处, 等式 3 就不能被满足了。
为此,可以采用使 N 区外延层的掺杂浓度从衬底一侧向远离衬底的方向 逐渐增大而作线性緩变的方式,来使得在如图 5b所示的各个截面位置处都满 足等式 3。
实验表明, 采用这种使 N—区外延层掺杂浓度呈线性緩变的方式, 在斜沟 槽的情况下, 可以满足等式 3 , 并且所制得的超结结构器件具有较高的击穿 电压。
为了更清楚地描述本发明,下面参照图 6a至 6h,举例描述本发明的一种 具体实施方式。
如图 6a所示。 首先, 在 N+衬底上生长一定厚度的 N_外延层。 该外延层 的掺杂浓度从 N+衬底开始向着远离 N+衬底的方向呈线性緩变。举例来说,生 长的 Ν·外延层的厚度是 30 - 60μιη, 起始浓度是 4.9e15至 9.5e15, 以这个浓度 线性递增至起始浓度的 1.15倍左右。
接着,如图 6b所示,在所生长的 N参杂浓度线性緩变的外延层上生长一 定厚度的氧化层, 例如, 厚度为 1 - 2μιη的氧化层。
以该氧化层为掩膜板进行深沟槽的刻蚀, 例如, 刻蚀出 30 - 50μιη的沟 槽。 所形成的沟槽呈上宽下窄的形状。 所形成的上宽下窄形状与垂直立面的 倾斜角为 85度 - 89度。
然后, 如图 6c所示, 在刻蚀所形成的沟槽中, 进行 P 型外延层的填充。 在完成沟槽 中 的 P 型外延层的填充之后 , 采用 CMP ( Chemical-Mechanical Planarization, 化学机械平坦化 )技术或石圭回刻技术, 对进行了 P 型外延层填充后的衬底表面进行平坦化处理。
所谓的 CMP技术,是一种使用化学腐蚀及机械力对经加工过程中的半导 体材料的表面进行平坦化处理的技术。
而硅回刻技术是在完成沟槽的刻蚀后, 由于 P 型外延层不仅会在沟槽内 生长, 也会在沟槽外生长, 此时, 可以采用化学方法 (例如试剂)或等离子 气体把沟槽外的硅刻蚀掉的一种技术。
由于 CMP技术和硅回刻技术是半导体技术中人们所熟知的, 所以, 本文 中不再赘述。
在完成 CMP工艺或硅回刻工艺使经 P 型外延层填充后的表面平坦化之 后, 接着进行 Si02牺牲氧化层的生长。 在完成牺牲氧化层的生长之后, 再去 掉所生长的牺牲氧化层。这样做的目的,是因为在经过 CMP工艺或者硅回刻 工艺后, 在器件的表面可能会有损伤或留有杂质。 而在生长了牺牲氧化层后, 再去掉所生长的牺牲氧化层, 然后在进行后续工艺, 可以使器件的表面更清 洁。
接着, 如图 6d所示, 在去掉了牺牲氧化层的器件表面上, 热生长栅氧化 层, 例如厚度是 800 - 1200 A。
在热生长所形成的栅氧化层表面上,再接着生长一层重掺杂的 N+多晶硅 层。 或者在淀积了一层非掺杂的多晶硅后, 在非掺杂的多晶硅中注入杂质以 形成 N+多晶硅栅极。
然后, 对所形成的重掺杂的多晶硅栅极层和栅氧化层进行光刻, 形成如 图 6e所示的器件结构。
接着, 如图 6f所示, 在所述填充的 P-外延层中进行 P+阱的注入和退火。 并且如图 6g所示, 在所形成的 P+阱中进行 N+源区的注入和退火。
在完成上述工艺后, 接着进行金属源极和栅极的光刻, 以及 P+阱接触的 注入,并进行金属铝的淀积和光刻以形成漏极。最终得到如图 6h的器件结构。
下文中, 将参照附图 7a至 9b ,描述在沟槽截面是 90度和 89度时, 以及 掺杂浓度是恒定和緩变情况下, 沟槽型填充超结功率场效应管的击穿电压和 特征电阻的情况。
图 7a和 7b示出的是在 N—型外延层掺杂浓度恒定而深沟槽侧壁是 90度 直角的情况下, 电场在击穿时 N—型外延层掺杂浓度的纵向分布图。
图 7a中,横坐标示出的是器件的纵向距离,而纵坐标示出的是电场强度。 图 7b中,横坐标示出的是器件的纵向距离, 而纵坐标示出的是碑掺杂的 浓度。
图 8a和 8b示出的是在 N—型外延层掺杂浓度恒定而深沟槽侧壁是 89度 倾角的情况下, 电场在击穿时 N—型外延层掺杂浓度的纵向分布图。
图 8a中,横坐标示出的是器件的纵向距离,而纵坐标示出的是电场强度。 图 8b中,横坐标示出的是器件的纵向距离, 而纵坐标示出的是碑掺杂的 浓度。
图 9a和 9b示出的是在 N—型外延层掺杂浓度緩变而深沟槽侧壁是 89度 倾角的情况下, 电场在击穿时 N—型外延层掺杂浓度的纵向分布图。
图 9a中,横坐标示出的是器件的纵向距离,而纵坐标示出的是电场强度。 图 9b中,横坐标示出的是器件的纵向距离, 而纵坐标示出的是碑掺杂的 浓度。
从 7a至 9b中可以看到, 当 N—型外延层的掺杂浓度是恒定的时候, 如果 沟槽壁是直角的, 由于 P 型外延层和 N—型外延层能够很好地在如图 5a和 5b 所示的水平方向上充分耗尽, 因此, 击穿电压也较高。
但是, 当侧壁具有一个小倾角时, 由于在如图 5a和 5b所示的水平方向 上很好地充分耗尽, 因此, 击穿电压较低。
然而, 从图 9a和 9b可以看到, 在 N—型外延层采用掺杂浓度緩变的情况 下, 即使沟槽的侧壁不是直角的, 在水平方向上, 随着漏极电压的增加, 由 于 P 型外延层和 N—型外延层的掺杂浓度和宽度是不同的, 也能够很好地在 如图 5a和 5b所示的水平方向上做到电荷充分耗尽。 因此, 击穿电压也较高。
模拟实验表明, 在有沟槽倾角的情况下, 如果采用 N—型外延层掺杂浓度 緩变技术, 可以使得击穿电压较高, 同时导通电阻较低, 如下表 1所示。
表 1
Figure imgf000014_0001
从上文的描述中可以看到, 在本发明中, 由于采用了掺杂浓度緩变并且 沟槽侧壁具有小的倾角这种技术, 使得 N—型外延层和 P 型外延层能够在水 平方向上很好地充分耗尽, 从而在使击穿电压提高的同时, 器件的导通电阻 也较小。
上文中, 参照附图描述了本发明的具体实施例。 但是, 本领域中的普通 技术人员能够理解, 在不偏离本发明的原理和精神的情况下, 还可以对本发 明的上述实施例作某些修改和变更。 上文中所提及的特定角度值、 特定外延 层厚度以及特定的掺杂浓度等等参数只是为了描述本发明的方便而举的例 子, 不能将其理解为是对本发明的限制。 本领域中的普通技术人员能够理解, 仅是为了使本领域中的普通技术人员能够理解、 实施本发明, 不应当将本发 明理解仅仅限于这些实施例。 本发明的保护范围由权利要求书所限定。

Claims

权利要求书
1. 一种场效应晶体管的外延结构, 其特征在于, 它包括:
N+衬底, 作为所述场效应晶体管的漏极;
形成在所述衬底上的 Ν·外延层;
形成在所述 N-外延层中沟槽, 并且所述沟槽中填充有 P 外延层; 形成在所述 P_外延层中的 P+阱;
形成在所述 P+阱中的 N+源区; 以及
形成在所述 P-沟槽以外区域的所述 N-外延层上的多晶硅栅极,
其中, 所述 N-外延层的掺杂浓度从所述 N+衬底向着远离所述衬底的方 向緩变。
2. 如权利要求 1 所述的场效应晶体管的外延结构, 其特征在于, 所述 N-外延层的掺杂浓度从所述 N+衬底向着远离所述衬底的方向緩慢增加。
3. 如权利要求 2 所述的场效应晶体管的外延结构, 其特征在于, 所述 N-外延层的厚度是 30μιη - 60μιη, 并且所述 Ν·外延层的掺杂浓度从所述 Ν+ 衬底向着远离所述衬底的方向, 从起始浓度线性緩变到所述起始浓度的 1.15 倍; 所述起始浓度为 4.9e15-9.5e15/cm3
4. 如权利要求 2所述的场效应晶体管的外延结构, 其特征在于, 填充有 所述 外延层的沟槽的边缘相对于所述衬底顶面有一个倾斜角, 并且所述倾 斜角使得所述沟槽呈现位于所述 Ν+衬底的一侧较窄而远离所述 Ν+衬底的一 侧较宽的形状。
5. 如权利要求 4所述的场效应晶体管的外延结构, 其特征在于, 所述倾 斜角是 85 - 89度。
6. 如权利要求 1所述的场效应晶体管的外延结构, 其特征在于, 在所述 N—外延层和所述多晶硅栅极之间, 还形成有一层栅氧化层, 所述栅氧化层的 厚度是 800 - 1200A。
7. 如权利要求 1至 6中任一权利要求所述的场效应晶体管的外延结构, 其特征在于, 所述沟槽的深度为 30μιη - 50μιη。
8. 一种制作如权利要求 1所述的场效应晶体管结构的外延工艺, 其特征 在于, 它包含下述步骤:
步骤 a ): 在 N+衬底上生长一层 Ν·外延层;
步骤 b): 在所述 N_外延层中刻蚀沟槽;
步骤 c ): 在所述沟槽中填充 P 外延层;
步骤 d ): 在由步骤 c )形成的填充有 P-外延层的所述沟槽以外区域的 N- 外延层表面上, 形成一层栅氧化层;
步骤 e ): 在由步骤 c )形成的所述栅氧化层上生长一层重掺杂的 N+多晶 硅层, 或者在淀积一层非掺杂的多晶硅之后在非掺杂的多晶硅中注入杂质以 形成 N+多晶硅栅极;
步骤 f ): 在形成的所述 外延层中进行 Ρ +阱的注入和退火;
步骤 g ): 在形成的所述 P+阱中进行 N+源区的注入和退火; 以及 步骤 h ): 在所形成的 P+阱上方形成金属源极, 并在所述 N+衬底上进行 金属铝的淀积以形成漏极,
其中,所述 N-外延层中的掺杂浓度从所述 N+衬底向着远离所述衬底的方 向緩变。
9. 如权利要求 8所述的外延工艺, 其特征在于, 所述 N-外延层的厚度是 30μιη - 60μιη, 并且所述 Ν·外延层的掺杂浓度从所述 Ν+衬底向着远离所述衬 底的方向, 从起始浓度线性緩变到所述起始浓度的 1.15倍; 所述起始浓度为 4.9e15-9.5e15/cm3
10. 如权利要求 8所述的外延工艺, 其特征在于, 在步骤 b )对所述 N- 外延层进行沟槽刻蚀之前, 还包括首先在所述 Ν·外延层上生长一层氧化层, 然后再以所形成的氧化层为掩膜板, 进行所述沟槽的刻蚀。
11. 如权利要求 8所述的外延工艺, 其特征在于, 在完成步骤 c )对所述 沟槽进行了 P_外延层的填充之后和在进行步骤 d )形成所述栅氧化层之前, 还包括下述步骤:
步骤 c - 1 ): 采用 CMP 即化学机械平坦化技术或硅回刻技术, 对经 P- 外延层填充后的衬底表面进行平坦化处理; 以及
步骤 c - 2 ): 生长一层牺牲氧化层, 然后再去除所生长的牺牲氧化层。
12. 如权利要求 8 所述的外延工艺, 其特征在于, 所述栅氧化层的厚度 是 800 - 1200A。
13. 如权利要求 8至 12中任一权利要求所述的外延工艺, 其特征在于, 填充有所述 Ρ·外延层的沟槽的边缘相对于所述衬底顶面有一个倾斜角, 并且 所述倾斜角使得所述沟槽呈现位于所述 Ν+衬底的一侧较窄而远离所述 Ν+衬 底的一侧较宽的形状。
14. 如权利要求 13所述的外延工艺, 其特征在于, 所述倾斜角是 85 - 89 度。
15. 一种制作场效应晶体管结构的方法, 其特征在于, 包括下述步骤: 步骤 a ): 在 N+衬底上生长一层 Ν·外延层;
步骤 b): 在所述 N_外延层中刻蚀形成沟槽;
步骤 c ): 在所述沟槽中填充形成 P 外延层; 步骤 d ): 在所述 N_外延层表面形成栅氧化层;
步骤 e ): 在所述栅氧化层上形成 N+多晶硅栅极;
步骤 f ): 在形成的所述 外延层中进行 Ρ +阱的注入和退火;
步骤 g ): 在形成的所述 P+阱中进行 N+源区的注入和退火; 以及 步骤 h ): 在所形成的 P+阱上方形成金属源极, 并在所述 N+衬底上进行 金属铝的淀积以形成漏极,
其中,所述 N-外延层中的掺杂浓度从所述 N+衬底向着远离所述衬底的方 向緩慢增加。
16. 如权利要求 15所述的制作场效应晶体管结构的方法, 其特征在于, 所述 N_外延层的厚度是 30μιη - 60μιη, 所述 Ν_外延层的掺杂浓度沿所述 Ν+ 衬底向着背离所述衬底的方向、 从起始浓度线性緩变到所述起始浓度的 1.15 倍; 所述起始浓度为 4.9e15-9.5e15/cm3
17. 如权利要求 15所述的制作场效应晶体管结构的方法, 其特征在于, 在所述步骤 b )之前, 还包括在所述 Ν·外延层上生长一层氧化层的步骤, 所 述步骤 b )是以所述氧化层为掩膜板, 进行所述沟槽的刻蚀。
18. 如权利要求 15所述的制作场效应晶体管结构的方法, 其特征在于, 所述步骤 c )之后、 所述步骤 d )之前, 还包括下述步骤:
采用化学机械平坦化技术或硅回刻技术, 对经 p-外延层填充后的衬底表 面进行平坦化处理; 以及
在经平坦化处理后的衬底表面生长牺牲氧化层, 然后再去除所述牺牲氧 化层。
19. 如权利要求 15至 18中任一项所述的制作场效应晶体管结构的方法, 其特征在于, 填充有所述 P_外延层的沟槽的边缘相对于所述衬底顶面有一个 倾斜角, 并且所述倾斜角使得所述沟槽呈现邻接所述 Ν+衬底的一侧较窄而背 离所述 Ν+衬底的一侧较宽的形状。
20. 如权利要求 19所述的制作场效应晶体管结构的方法, 其特征在于, 所述倾斜角是 85 - 89度。
PCT/CN2013/082821 2012-09-11 2013-09-02 一种场效应晶体管的外延结构、外延工艺及场效应晶体管的制作方法 WO2014040507A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210333874.XA CN103681779A (zh) 2012-09-11 2012-09-11 一种场效应晶体管结构及其制作方法
CN201210333874.X 2012-09-11

Publications (1)

Publication Number Publication Date
WO2014040507A1 true WO2014040507A1 (zh) 2014-03-20

Family

ID=50277610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082821 WO2014040507A1 (zh) 2012-09-11 2013-09-02 一种场效应晶体管的外延结构、外延工艺及场效应晶体管的制作方法

Country Status (2)

Country Link
CN (1) CN103681779A (zh)
WO (1) WO2014040507A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023283417A1 (en) * 2021-07-08 2023-01-12 Applied Materials, Inc. Gradient doping epitaxy in superjunction to improve breakdown voltage

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104517853A (zh) * 2014-05-15 2015-04-15 上海华虹宏力半导体制造有限公司 超级结半导体器件制造方法
CN105244369A (zh) * 2015-09-16 2016-01-13 重庆平伟实业股份有限公司 一种超结vdmosfet制备方法及利用该方法形成的器件
CN107134492B (zh) * 2016-02-26 2020-01-14 苏州东微半导体有限公司 超级结功率器件及其制造方法
TWI628792B (zh) * 2017-09-21 2018-07-01 新唐科技股份有限公司 半導體基底結構及半導體裝置
CN109346524B (zh) * 2018-09-30 2020-06-02 重庆大学 一种具有阶梯浓度多晶硅侧墙结构的超结vdmos器件
CN112038391B (zh) * 2019-06-03 2024-05-24 上海先进半导体制造有限公司 超结场效应晶体管的制作方法
CN113540204A (zh) * 2020-04-13 2021-10-22 上海新微技术研发中心有限公司 半导体器件结构的制备方法
CN113540205A (zh) * 2020-04-13 2021-10-22 上海新微技术研发中心有限公司 半导体器件结构
CN112117330B (zh) * 2020-09-21 2024-05-07 南京华瑞微集成电路有限公司 一种改善深槽超结mosfet耐压的器件结构及其工艺方法
CN117912958B (zh) * 2024-03-19 2024-06-07 芯联越州集成电路制造(绍兴)有限公司 超结结构的制备方法及超结器件的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050045922A1 (en) * 2003-08-28 2005-03-03 Infineon Technologies Ag Semiconductor power device with charge compensation structure and monolithic integrated circuit, and method for fabricating it
US20080048175A1 (en) * 2006-08-25 2008-02-28 De Fresart Edouard D Semiconductor superjunction structure
CN102403354A (zh) * 2010-09-15 2012-04-04 无锡华润上华半导体有限公司 Coo1MOS器件及其制造方法
CN102456715A (zh) * 2010-10-25 2012-05-16 上海华虹Nec电子有限公司 一种半导体器件结构及其制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050045922A1 (en) * 2003-08-28 2005-03-03 Infineon Technologies Ag Semiconductor power device with charge compensation structure and monolithic integrated circuit, and method for fabricating it
US20080048175A1 (en) * 2006-08-25 2008-02-28 De Fresart Edouard D Semiconductor superjunction structure
CN102403354A (zh) * 2010-09-15 2012-04-04 无锡华润上华半导体有限公司 Coo1MOS器件及其制造方法
CN102456715A (zh) * 2010-10-25 2012-05-16 上海华虹Nec电子有限公司 一种半导体器件结构及其制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023283417A1 (en) * 2021-07-08 2023-01-12 Applied Materials, Inc. Gradient doping epitaxy in superjunction to improve breakdown voltage

Also Published As

Publication number Publication date
CN103681779A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
WO2014040507A1 (zh) 一种场效应晶体管的外延结构、外延工艺及场效应晶体管的制作方法
KR101857917B1 (ko) 반도체 구조물 및 그 제조 방법
US9466700B2 (en) Semiconductor device and method of fabricating same
US9443972B2 (en) Semiconductor device with field electrode
US7705396B2 (en) Trench type MOSFET and method of fabricating the same
US7595241B2 (en) Method for fabricating silicon carbide vertical MOSFET devices
US8742501B2 (en) Power semiconductor devices and methods for manufacturing the same
TWI464883B (zh) 形成具深溝式電荷補償區域之半導體裝置之方法
US20070290260A1 (en) Trench Type Mosfet And Method Of Fabricating The Same
TWI289355B (en) Trench MOSFET and method of manufacturing same
US20120018800A1 (en) Trench Superjunction MOSFET with Thin EPI Process
US9159786B2 (en) Dual gate lateral MOSFET
KR101294917B1 (ko) 초접합 트렌치 모스펫을 포함하는 반도체 장치들
KR101961235B1 (ko) 두꺼운 트렌치 바텀 산화물을 구비하는 모스펫 장치
TW201347187A (zh) 具有一漏斗形溝槽之屏蔽閘極金屬氧化物半導體場效電晶體裝置
US20160020308A1 (en) Edge Termination Structure Having a Termination Charge Region Below a Recessed Field Oxide Region
WO2015060947A1 (en) Semiconductor structure with high energy dopant implantation technology
US9257503B2 (en) Superjunction semiconductor device and method for producing thereof
CN112864246B (zh) 超结器件及其制造方法
US20190067427A1 (en) Inter-poly oxide in field effect transistors
JP2016506082A (ja) 適応電荷平衡mosfet技法
CN103413823B (zh) 超级结晶体管及其形成方法
CN108091683B (zh) 半导体功率器件的超结结构及其制作方法
KR101801406B1 (ko) 반도체 장치 및 관련 제조 방법
CN109216463B (zh) 一种半导体器件及其形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836814

Country of ref document: EP

Kind code of ref document: A1