WO2014021257A1 - Method for producing composite film comprising graphene and carbon nanotubes - Google Patents

Method for producing composite film comprising graphene and carbon nanotubes Download PDF

Info

Publication number
WO2014021257A1
WO2014021257A1 PCT/JP2013/070462 JP2013070462W WO2014021257A1 WO 2014021257 A1 WO2014021257 A1 WO 2014021257A1 JP 2013070462 W JP2013070462 W JP 2013070462W WO 2014021257 A1 WO2014021257 A1 WO 2014021257A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite film
producing
carbon nanotubes
graphene
nanotubes
Prior art date
Application number
PCT/JP2013/070462
Other languages
French (fr)
Japanese (ja)
Inventor
テロネス マウリシオ
トリスタン フェルディナンド
鶴岡 秀志
マグダレナ ヴェガ ディアス ソフィア
クルス シルバ ロドルフォ
遠藤 守信
モレロス アーロン
ペレア ネスター
エリアス アナ
Original Assignee
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人信州大学 filed Critical 国立大学法人信州大学
Priority to JP2014528141A priority Critical patent/JP6164695B2/en
Publication of WO2014021257A1 publication Critical patent/WO2014021257A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a composite film made of a composite carbon material in which graphene and carbon nanotubes are alternately laminated.
  • a carbon nanotube is a hollow nano-sized carbon fiber having a high aspect ratio obtained by rounding a graphene sheet into a cylindrical shape. Carbon atoms that make up the carbon skeleton of CNTs are substituted with other atoms called other-atom-doped CNTs, such as nitrogen-doped CNTs and boron-doped CNTs. Type CNT).
  • Hybrid carbon materials combining CNTs hereinafter including other-atom doped CNTs and encapsulated CNTs
  • graphene (G), graphene oxide (GO) or reduced graphene (RGO) are materials composed of a carbon skeleton and have a specific surface area. It is expected to have excellent physical properties that are not present in conventional materials, such as high mechanical stability, high mechanical stability, and high electrical and thermal conductivity. For example, application to supercapacitors, carbon electrodes, solar cell components, energy storage, sensors, etc. is expected.
  • CNT, G, GO, and RGO are all carbon crystals, and CNTs are randomly coordinated on the G, GO, and RGO surfaces. It is not impossible to mechanically or electrically align the direction of CNTs on the G, GO, and RGO planes, but it is not easy to make a laminated composite material.
  • Non-Patent Documents 1 and 2 Methods for overcoming these technical problems include filtration methods (Non-Patent Documents 1 and 2), casting of dispersion liquid (Non-Patent Documents 3), electrophoretic growth methods (Non-Patent Documents 4 and 5), layer-by-layer lamination Methods (Non-Patent Documents 6 and 7) and Langmuir-Blodgett film method (Non-Patent Document 8) have been proposed.
  • these methods are not suitable for mass production practical use because they require a lot of man-hours and take a lot of time or require operation under a microscope.
  • Patent Document 1 As a technique for simply combining CNT with G, GO, and RGO, a system in which CNT is cut when CNT is applied to an electrode and G and CNT coexist as a mixture has been proposed (Patent Document 1). ). This is to fix the cylindrical structure of CNT to the current plate (through electrode) using graphene. It cannot be said to be a laminated structure material of CNT and graphene. In addition, although it has been proposed as an electrode material to squeeze CNTs to make graphene and dope lithium (Patent Document 2), it appeals for CNT / G, CNT / GO, and CNT / RGO laminated structures. I don't mean.
  • Patent Document 3 A laminate structure in which vapor-grown carbon fibers are laminated and CNTs are arranged in gaps has been reported (Patent Document 3).
  • This structure is a composite having a structure in which a vapor-grown carbon fiber having a diameter of 100 nm or more is a basic skeleton, and the gap is filled with CNTs having a diameter of less than 100 nm. It should be noted that the description describes the rounded graphene but does not form a CNT / G stacked structure.
  • An electronic material having a structure in which graphite is deposited on the surface centering on CNT has been proposed (Patent Document 4).
  • This material should be understood that the carbon remaining in the CNT manufacturing process has a graphite structure, and is greatly different from the CNT / G laminated structure of the present invention.
  • a method for producing a CNT / G, CNT / GO, and CNT / RGO laminated composite carbon material in which CNT and graphene are laminated has not been established so far, and has not yet reached a practical stage.
  • a composite film having a structure in which carbon nanotubes (CNT) are sandwiched between layers made of graphene, and layers made of graphene and layers made of carbon nanotubes are alternately stacked is applied to a long-time reaction treatment with a large number of steps. It is an object of the present invention to provide a method that enables easy production without performing work under a microscope.
  • the method for producing a composite film according to the present invention is a method for producing a composite film having a structure in which nanosheet structures and nanocarbon structures are alternately laminated, a.
  • d. It is effective to include a step of reducing the composite film.
  • the reduction treatment method thermal or chemical reduction treatment can be used.
  • thermal reduction treatment a treatment of heating to a high temperature sufficient to reduce the nanosheet structure such as graphene oxide in the atmosphere can be used.
  • chemical reduction treatment treatment using hydrazine monohydrate, hydroquinone, gaseous hydrogen, alkaline solution (NaOH, KOH, etc.), vitamin C, sodium borohydride can be used.
  • the composite film means a film made of a composite carbon material in which nanosheet structures and nanocarbon structures are alternately laminated.
  • the composite film is subjected to the reduction treatment in step d and the reduction treatment in step d. Includes both not.
  • a composite film subjected to a reduction treatment is used in order to obtain the conductivity or toughness of the film, but a composite film that has not been subjected to the reduction treatment can be used depending on the application.
  • any one of graphene, graphene oxide, reduced graphene, graphite oxide, or reduced graphite can be used.
  • Graphene oxide (GO) has a structure in which part of carbon in graphene is substituted with oxygen or a structure in which oxygen is bonded to carbon, and can be synthesized by oxidizing graphite.
  • Reduced graphene (RGO) is obtained by reducing graphene oxide. In the reduced graphene obtained by reducing graphene oxide, a portion where graphene is oxidized remains slightly, and in this sense, it is not completely the same as graphene.
  • Graphite oxide is obtained by oxidizing graphite, and reduced graphite is obtained by reducing graphite oxide.
  • Graphite oxide can be obtained by a method of chemically oxidizing graphite. Note that graphite is formed by stacking a plurality of graphenes.
  • graphene used as a nanosheet structure does not have a structure in which carbon and oxygen are combined, its action is different from graphene oxide or the like. However, it can be dispersed in a solvent by a method such as using a surfactant, and a composite film can be formed using the same steps as other nanosheet structures.
  • a composite film is manufactured using graphene, the structure is similar to that of graphene oxide in which carbon is replaced with oxygen or bonded to oxygen by passing the treatment process. Therefore, the reduction treatment step d has an effective effect of improving the electrical conductivity of the composite film even when graphene is used as the nanosheet structure.
  • a peelable layered material made of a divalent or trivalent chalcogenide of a transition metal can be used instead of graphene, graphene oxide, reduced graphene, or the like.
  • transition metal chalcogenides include MoS 2 , WS 2 , NbS 3 , and MnPS 3 .
  • a layered material such as boron nitride can also be used.
  • carbon nanotubes As the nanocarbon structure, carbon nanotubes, other atom-doped carbon nanotubes, encapsulated carbon nanotubes, fullerenes, and graphene nanoribbons can be used.
  • carbon nanotubes single-walled carbon nanotubes (SWCNT), double-walled carbon nanotubes (DWCNT), triple-walled carbon nanotubes (TWCNT), and multi-walled carbon nanotubes (MWCNT) can be used.
  • SWCNT single-walled carbon nanotubes
  • DWCNT double-walled carbon nanotubes
  • TWCNT triple-walled carbon nanotubes
  • MWCNT multi-walled carbon nanotubes
  • the atoms to be doped as other atom-doped carbon nanotubes are not particularly limited, but single-walled carbon nanotubes (SWCNT), double-walled carbon nanotubes (DWCNT), triple-walled carbon nanotubes (TWCNT), multi-walled carbon nanotubes (MWCNT) ), Carbon nanotubes doped with nitrogen or boron can be suitably used. Carbon nanotubes can be synthesized using, for example, a CVD method (Non-patent Documents 17 and 18).
  • inorganic nanotubes such as boron nitride nanotubes, tungsten disulfide nanotubes, molybdenum disulfide nanotubes, titanium oxide nanotubes, chalcogenide nanotubes, and boron-carbon-nitrogen (BCN) nanotubes can be used.
  • BCN boron-carbon-nitrogen
  • step a As a method for functionalizing the nanocarbon structure cationically (step a), the methods already disclosed (Non-Patent Documents 12, 13, 14, and 15) can be used.
  • a method for functionalizing the nanocarbon structure cationically there is a method using a surfactant, a polymer, or a polyelectrolyte.
  • a nanocarbon structure such as a carbon nanotube
  • the nanocarbon structure can be suitably dispersed in a polar solvent such as water, alcohol, acetone, or aldehydes.
  • step b of the method of the present invention the dispersion liquid of the functionalized nanocarbon structure and the dispersion liquid of the nanosheet structure are mixed to obtain a mixed suspension containing the nanocarbon structure and the nanosheet structure.
  • the mixed suspension is meant to include both nanocarbon structures and nanosheet structures.
  • a polar solvent as the dispersion, the functionalized nanocarbon structure becomes cationic and is suitably dispersed in the polar solvent, and the nanosheet structure is anionic and suitably dispersed in the polar solvent.
  • the polar solvent a solvent can be appropriately used, and it is of course possible to use water. When water is used, the treatment operation can be easily performed, which is preferable.
  • nanocarbon structure dispersion little by little into the nanosheet structure dispersion. What is necessary is just to mix a nanocarbon structure.
  • a method of dropping the nanosheet structure dispersion into the nanocarbon structure dispersion may be used.
  • the nanocarbon structure and the nanosheet structure can be effectively dispersed and mixed by mixing the dispersion while applying ultrasonic vibration. Ultrasonic vibration, a stirrer, and a vortex generator can be used in combination.
  • the dispersion of nanocarbon structure and nanosheet structure is mixed, the structure in which the nanocarbon structure and nanosheet structure are alternately stacked gradually by the cation-anion action of the nanocarbon structure and nanosheet structure. Will be built.
  • Step c is a step of removing the dispersion medium from the mixed suspension to form a film.
  • a method for forming a film using the mixed suspension a method of casting the mixed suspension on the surface of the substrate and allowing it to stand to remove a dispersion medium such as moisture from the mixed suspension can be used.
  • the mixed suspension is cast on the surface of the base material, it is made of a composite carbon material in which nanocarbon structures and nanosheet structures are alternately stacked on the surface of the base material by heating gently to remove the dispersion medium. A film is produced.
  • a composite film is a composite carbon material in which nanocarbon structures and nanosheet structures are alternately laminated in a plurality of layers in a sheet shape, and the composite carbon materials are accumulated in various directions in the film. However, in the vicinity of the surface of the composite film, the composite carbon materials are arranged so that the plane of the nanosheet structure is parallel to the surface of the composite film.
  • the composite film formed on the substrate surface is used after being detached (peeled) from the substrate surface. Therefore, the substrate on which the mixed suspension is cast is preferably a water-repellent substrate.
  • the method of forming a film using the mixed suspension is not limited to the casting method, and a method used in the paper manufacturing process can be used.
  • the method of casting the mixed suspension on the surface of the substrate to form a composite film can arbitrarily set the width, length, thickness, etc. of the composite film.
  • FIG. 1 shows a process of forming a composite carbon material of carbon nanotubes and graphene when carbon nanotubes are used as nanocarbon structures and graphene oxide is used as nanosheet structures.
  • Steps A and B are processes in which the graphene oxide 10 and the carbon nanotubes 12 are each stably dispersed in the dispersion.
  • Graphene oxide can be dispersed in a dispersion as an anionic polyelectrolyte by addition of carboxylic acid or itself, and carbon nanotubes can be dispersed in a dispersion as a cationic polyelectrolyte by the functionalization treatment described above. .
  • the graphene oxide dispersion and the carbon nanotube dispersion are mixed to prepare a suspension (mixed suspension) in which the graphene oxide 10 and the carbon nanotubes 12 are mixed with each other (step C). ).
  • the mixed suspension the graphene oxide and the carbon nanotubes interact with each other by a cation-anion action, and the graphene oxide and the carbon nanotubes are gradually arranged alternately.
  • the mixed suspension of graphene oxide and carbon nanotubes is cast into a mold (substrate surface), heated gently to remove the dispersion medium (dispersion), and the graphene oxide and carbon nanotubes are re-coordinated.
  • Step D shows one composite carbon material in which graphene oxide 10 and carbon nanotubes 12 have a laminated structure.
  • Step E is a state in which the film is subjected to a reduction treatment to finally obtain a composite film (hybrid film).
  • the composite film of graphene oxide and carbon nanotube is a film having a structure in which graphene oxide (GO) is reduced to reduced graphene (RGO) by reduction treatment, and reduced graphene and carbon nanotubes are alternately laminated.
  • a composite film of graphene (G) and carbon nanotubes is obtained.
  • a hybrid film (composite carbon material) composed of graphene and carbon nanotubes can have a laminated structure that is a combination of CNT / GO, CNT / RGO, and CNT / G.
  • carbon nanotubes and graphene oxide are stacked by the action of Self-Assemble by utilizing the cation-anion reaction between carbon nanotubes (CNT) and graphene oxide (GO).
  • CNT carbon nanotubes
  • GO graphene oxide
  • a hybrid laminated structure can be configured easily.
  • This method can be applied not only to carbon nanotubes, but also to other atom-doped carbon nanotubes, encapsulated carbon nanotubes, fullerenes, graphene nanoribbons, etc. that can be modified (functionalized) using a polyelectrolyte. it can.
  • CNT / GO hybrid film produced using graphene oxide can adjust its physical properties by adjusting the degree of reduction of GO. Since the hybrid film is basically a carbon composite, it has high heat stability. A fully reduced CNT / G hybrid film is chemically stable. Further, since the composite carbon material is formed by the self-stacking reaction, it is not necessary to form a support structure between the graphene layers, and the number of steps can be significantly reduced as a method of manufacturing the composite carbon material (hybrid film).
  • the composite film obtained by the method of the present invention is composed of a regular composite, and the fibrous CNT (nanocarbon structure) and the planar G, GO, RGO (nanosheet structure) are in contact at multiple points. Therefore, it exhibits a low electric resistance of 10 ⁇ 3 ⁇ ⁇ cm or less.
  • the band gap can be controlled, so that it can be applied as a carbon semiconductor.
  • it since it is made of carbon, it has high heat resistance, chemical resistance, and rust resistance.
  • the range of applications includes supercapacitors, fuel cells and other electrochemical fields, metal-free catalyst fields, scaffolding materials and other tissue engineering fields, metal replacement materials such as electric wires, wire harnesses, mobile vehicle bodies, and aircraft.
  • fibers, heat-resistant fabrics and the like are fibers, heat-resistant fabrics and the like.
  • a composite film having a structure in which nanocarbon structures and nanosheet structures are alternately laminated can be easily and efficiently produced.
  • the composite film which can be utilized for various uses from a physical characteristic can be provided.
  • MWNT multi-walled carbon nanotube
  • GO graphene oxide
  • Multi-walled CNTs use a mixture of 6 wt% ferrocene and 94 wt% toluene, and CVD (chemical) with argon flow (2.5 L / min), 825 ° C, normal pressure This was obtained by performing annealing and purification after synthesis by vapor deposition).
  • Nitrogen-doped CNTs were synthesized by a CVD (chemical vapor deposition) method using a mixture of ferrocene 6wt% and benzylamine 94wt%, argon flow (2.5L / min), 850 °C, normal pressure, and annealed in the same way Obtained by processing.
  • CVD chemical vapor deposition
  • Boron-doped CNTs were first synthesized using a continuous reaction vessel using a continuous reaction system using a cylindrical reaction vessel, using ferrocene as a catalyst precursor, toluene as a carbon supply source, and hydrogen as a carrier gas.
  • a toluene solution containing 2-3 wt% of the ferrocene compound was fed into the reaction vessel with a supply pump (25 g / min) and reacted at about 1200 ° C.
  • the obtained carbon nanotubes were mixed with boric acid (5 wt%), and the mixture was heat-treated at 2400 ° C. in an argon atmosphere to obtain boron-doped CNTs.
  • the carbon nanotube can be functionalized as a cationic polyelectrolyte by a method already disclosed (Non-Patent Documents 12, 13, 14, and 15).
  • a polar solvent such as water, alcohol, acetone, and aldehydes, and are uniformly dispersed in the solvent.
  • the carbon nanotubes were functionalized as follows. First, 10 mg of carbon nanotubes were heat-treated at 800 ° C. in the presence of oxygen (air flow rate: 0.5 L / min) to remove amorphous carbon on the surface of carbon nanotubes and impurities (solvent, hydrocarbon, etc.) remaining on the surface. By this heat treatment, it becomes possible to slightly oxidize the surface of the carbon nanotube and form an anchor site functionalized by the polyelectrolyte.
  • oxygen air flow rate: 0.5 L / min
  • the carbon nanotubes subjected to the heat treatment were uniformly dispersed in water by applying ultrasonic waves to form a suspension, and this suspension was applied to the 2 mg / L cationic polyelectrolyte solution while applying ultrasonic waves. It was dripped.
  • Carbon nanotubes (MWCNT), nitrogen-doped carbon nanotubes, and boron-doped carbon nanotubes can be functionalized cationically with amines or amines, imines or imines, and this operation enables functionalized carbon nanotubes. Is uniformly dispersed in the electrolyte solution.
  • a functionalized carbon nanotube was obtained by removing excess polyelectrolyte using a washing method using a centrifugal separation method.
  • this suspension (mixed suspension) containing graphene oxide and carbon nanotubes is cast on the surface of a PTFE (polytetrafluoroethylene) substrate and heated at 60 ° C. to dissipate moisture.
  • a film was formed on the material surface.
  • the obtained film is a composite film made of a composite carbon material in which graphene oxide, multilayer CNT, nitrogen-doped multilayer CNT, and boron-doped multilayer CNT are alternately laminated.
  • the reduction treatment of the composite film was performed by heating the film detached from the substrate surface to 800 ° C. under Ar flow.
  • a suspension containing only graphene oxide is stirred for 30 minutes using an ultrasonic stirrer, cast on the substrate surface, a film is formed by the same method as described above, and comparative measurement is performed. went.
  • Table 1 shows carbon, oxygen, and nitrogen before and after reduction treatment by heating at 800 ° C. for 10 minutes in air for a composite film made of multi-walled carbon nanotubes, nitrogen-doped carbon nanotubes, boron-doped carbon nanotubes and graphene oxide.
  • the result of having measured the content of is shown.
  • the content of carbon, oxygen and the like can be measured by obtaining a core level spectrum of each element using XPS.
  • the measurement results show that oxygen is greatly reduced by reduction treatment for any composite film. However, oxygen is not completely lost by the reduction treatment.
  • the amount of nitrogen in the sample using nitrogen-doped carbon nanotubes does not change much before and after the reduction treatment.
  • FIG. 2 shows a composite film produced by the above-described method using multi-walled carbon nanotubes and graphene oxide.
  • the composite film shown here is the one before the reduction treatment.
  • 2 (a)) shows a state where the composite film is bent
  • FIGS. 2 (b) and 2 (c) show a state where the composite film is twisted
  • FIG. 2 (d) shows a state where the composite film is twisted and further bent.
  • the composite film is a highly flexible film.
  • FIG. 3 (a) shows the state before and after the reduction treatment of the MWCNT / GO
  • FIG. 3 (b) shows the N-MWCNT / GO
  • FIG. 3 (c) shows the B-MWCNT / GO composite film.
  • the composite film before the reduction treatment has a darker color than the composite film after the reduction treatment. This is mainly due to the carbon nanotubes present between the graphene oxide sheets.
  • the composite film exhibits a silver metallic color as shown in FIG.
  • FIGSEM observation) 4, 5, and 6 show SEM images of a hybrid film (composite carbon material) of multilayer CNT, nitrogen-doped multilayer CNT, boron-doped multilayer CNT, and graphene oxide.
  • (a), (b), and (c) are before the reduction treatment and have different magnifications
  • (d) is the one subjected to the reduction treatment at 800 ° C. in an argon atmosphere.
  • the carbon nanotubes are randomly and uniformly distributed in the film plane and are sandwiched between the graphene oxide layers.
  • FIG. 7 shows the results of Raman spectroscopic analysis before and after the reduction treatment of the composite film of MWCNT / GO, N-MWCNT / GO, and B-MWCNT / GO and the GO film.
  • 7A and 7B show the measurement results before the reduction treatment
  • FIGS. 7C and 7D show the measurement results after the reduction treatment.
  • Table 2 shows the peak value of the Raman band.
  • FIG. 8 shows the thermogravimetric analysis results.
  • the first change around 200 ° C indicates an exothermic reaction when GO is reduced.
  • the change around 500 °C indicates the oxidation of carbon with graphite structure.
  • the difference in the oxidation reaction temperature of each sample is due to the influence of other atom doping on CNT. That is, other atoms dope a defect in the carbon crystal lattice and shift the oxidation start temperature to the low temperature side. From these results, it can be seen that the graphene-CNT hybrid film (laminated composite carbon material) produced by the method of the present invention has different physical properties from graphene or graphene oxide.
  • Table 3 shows the resistance values of CNT / GO and GO. Although the resistance of single-walled CNT has been reported to be 10 ⁇ 4 ⁇ cm, the effective value is 10 0 ⁇ cm. The resistance value of graphene oxide was 4.26 ⁇ 10 ⁇ 3 ⁇ cm. As shown in Table 3, the resistance value of the composite film of carbon nanotubes (MWCNT) and graphene oxide (after reduction treatment) according to the present invention is much smaller than the resistance value of graphene oxide. This means that the electrical conductivity has been improved by the addition of carbon nanotubes.

Abstract

[Problem] To provide a method for producing a composite film that enables a composite film having a structure obtained by alternately laminating graphene and carbon nanotubes to be efficiently and easily produced. [Solution] This method for producing a composite film provided with a structure obtained by alternately laminating a nanosheet structure (10) and a nano carbon structure (12) is characterized by being provided with: a. a step in which the nano carbon structure (12) is cationically functionalized; b. a step in which a dispersion liquid of the functionalized non carbon structure (12) and a dispersion liquid of the nanosheet structure (10) is mixed to produce a suspension containing the nano carbon and nanosheet structures; and c. a step in which the dispersion medium is removed from the suspension to produce a film.

Description

グラフェンとカーボンナノチューブからなる複合フィルムの製造方法Method for producing composite film comprising graphene and carbon nanotube
 本発明は、グラフェンとカーボンナノチューブとが交互に積層された複合炭素材からなる複合フィルムの製造方法に関する。 The present invention relates to a method for producing a composite film made of a composite carbon material in which graphene and carbon nanotubes are alternately laminated.
 カーボンナノチューブ(CNT)はグラフェンシートを円筒状にまるめた高アスペクト比を有する中空状のナノサイズの径を有する炭素繊維である。CNTの炭素骨格を構成する炭素の原子を他の原子の置き換えたものを他原子ドープCNTと言い窒素ドープCNT、ホウ素ドープCNT等)、CNTの中心中空部分に微粒子をドープしたものをピーポッド(内包型CNT)と言う。
 CNT(以下、他原子ドープCNT、内包型CNTを含む)とグラフェン(G)、酸化グラフェン(GO)または還元グラフェン(RGO)を組み合わせたハイブリッド炭素材料は、炭素骨格からなる材料であり、比表面積が大きい、機械的安定性が高い、電気伝導性及び熱伝導性が高い等、今までの材料に無い優れた物性を備えることが予想されている。例として、スーパーキャパシタ、炭素電極、太陽電池部品、エネルギー貯蔵、センサーなどへの応用が期待される。
A carbon nanotube (CNT) is a hollow nano-sized carbon fiber having a high aspect ratio obtained by rounding a graphene sheet into a cylindrical shape. Carbon atoms that make up the carbon skeleton of CNTs are substituted with other atoms called other-atom-doped CNTs, such as nitrogen-doped CNTs and boron-doped CNTs. Type CNT).
Hybrid carbon materials combining CNTs (hereinafter including other-atom doped CNTs and encapsulated CNTs) and graphene (G), graphene oxide (GO) or reduced graphene (RGO) are materials composed of a carbon skeleton and have a specific surface area. It is expected to have excellent physical properties that are not present in conventional materials, such as high mechanical stability, high mechanical stability, and high electrical and thermal conductivity. For example, application to supercapacitors, carbon electrodes, solar cell components, energy storage, sensors, etc. is expected.
 これらCNTと、グラフェン(G)、酸化グラフェン(GO)、還元グラフェン(RGO)とを組み合わせたハイブリッド炭素材料(CNT/G、CNT/GO、CNT/RGO)を作成する方法として望まれるのは、(1)グラフェン層間に支柱を入れること無しにCNTを導入する、(2)グラフェン層間へ均一にCNTを配位、配向させる方法の2点を満たすことである。
 (1)については、G、GO、RGOの積層間隔は、基本的にグラファイトの層間距離の0.335nmであり、CNTの最小直径0.4nmより狭い。従って、何らかの支柱(支持体)を用いてG、GO、RGO層間隔を広げないとCNTが層間に配位しない。
 (2)については、CNT、G、GO、RGOは何れも炭素結晶物であり、G、GO、RGO面にはCNTがランダムに配位する。機械的あるいは電気的にCNTの方向をG、GO、RGO面上で配向させることも不可能ではないが積層複合材料にすることは容易ではない。
What is desired as a method of creating hybrid carbon materials (CNT / G, CNT / GO, CNT / RGO) combining these CNTs with graphene (G), graphene oxide (GO), and reduced graphene (RGO) (1) Introducing CNTs without placing support between the graphene layers, (2) Satisfying the two points of coordinating and orienting CNTs between the graphene layers.
Regarding (1), the stacking interval of G, GO, and RGO is basically 0.335 nm of the interlayer distance of graphite, and is narrower than the minimum diameter of 0.4 nm of CNT. Therefore, CNTs will not be coordinated between the layers unless the G, GO, and RGO layer spacing is increased using some support (support).
Regarding (2), CNT, G, GO, and RGO are all carbon crystals, and CNTs are randomly coordinated on the G, GO, and RGO surfaces. It is not impossible to mechanically or electrically align the direction of CNTs on the G, GO, and RGO planes, but it is not easy to make a laminated composite material.
 これらの技術的課題を克服する方法として濾過による方法(非特許文献1、2)、分散液の鋳込み(非特許文献3)、電気泳動成長法(非特許文献4、5)、一層ごとの積層法(非特許文献6、7)、Langmuir-Blodgett膜法(非特許文献8)が提案されている。
 しかし、これらの方法は工数が多く多大な時間がかかる、あるいは顕微鏡下での操作が必要等、量産実用化には適さないものであった。
 化学的に容易な反応によりCNTとグラフェンの積層を完成させるためにCNTまたはグラフェンのどちらか一方、または両方を化学的に処理して反応させ積層構造を得ようとする試みもなされている(非特許文献9、10)。しかしながら、この方法も時間がかかるか、CNTまたはG、GO、RGOが凝集することにより実用化には程遠いものであった。
Methods for overcoming these technical problems include filtration methods (Non-Patent Documents 1 and 2), casting of dispersion liquid (Non-Patent Documents 3), electrophoretic growth methods (Non-Patent Documents 4 and 5), layer-by-layer lamination Methods (Non-Patent Documents 6 and 7) and Langmuir-Blodgett film method (Non-Patent Document 8) have been proposed.
However, these methods are not suitable for mass production practical use because they require a lot of man-hours and take a lot of time or require operation under a microscope.
In order to complete a stack of CNT and graphene by a chemically easy reaction, attempts have been made to obtain a stacked structure by chemically treating and reacting either CNT or graphene or both (non- Patent Documents 9 and 10). However, this method also takes time or is far from practical use due to aggregation of CNT or G, GO, and RGO.
 単純にCNTとG、GO、RGOを組み合わせる技術としては、CNTを電極に適用する際にCNTを切削して結果的にGとCNTが混合体として共存する系が提案されている(特許文献1)。これはCNTの円筒構造を、グラフェンを利用して通電板(通電極)に固定するものであり。CNTとグラフェンの積層構造材料とは言えない。また、CNTを開搾してグラフェンを作成し、リチウムをドープさせる電極材料としての提案がされているが(特許文献2)、CNT/G、CNT/GO、CNT/RGO積層構造を訴求しているわけではない。 As a technique for simply combining CNT with G, GO, and RGO, a system in which CNT is cut when CNT is applied to an electrode and G and CNT coexist as a mixture has been proposed (Patent Document 1). ). This is to fix the cylindrical structure of CNT to the current plate (through electrode) using graphene. It cannot be said to be a laminated structure material of CNT and graphene. In addition, although it has been proposed as an electrode material to squeeze CNTs to make graphene and dope lithium (Patent Document 2), it appeals for CNT / G, CNT / GO, and CNT / RGO laminated structures. I don't mean.
 気相成長炭素繊維を積層させてCNT を隙間に配置した積層物構造が報告されている(特許文献3)。この構造は直径が100nm以上である気相成長炭素繊維を基本骨格とするものでありその隙間を直径が100nm未満のCNTで充填する構造の複合物である。記述はグラフェンをまるめたと記載されているがCNT/G積層構造を成すものではないことに注意する必要がある。
 CNTを中心としてその表面にグラファイトを堆積した構造を持つ電子材料が提案されている(特許文献4)。この材料はCNT 製造過程で残留したカーボンがグラファイト構造を持ったものと解すべきであって本発明のCNT/G積層構造とは大きく異なる。
 このように、CNTとグラフェンを積層させたCNT/G、CNT/GO、CNT/RGO積層複合炭素材料の作成方法についていままで確立されておらず、少なくとも実用段階には至っていない。
A laminate structure in which vapor-grown carbon fibers are laminated and CNTs are arranged in gaps has been reported (Patent Document 3). This structure is a composite having a structure in which a vapor-grown carbon fiber having a diameter of 100 nm or more is a basic skeleton, and the gap is filled with CNTs having a diameter of less than 100 nm. It should be noted that the description describes the rounded graphene but does not form a CNT / G stacked structure.
An electronic material having a structure in which graphite is deposited on the surface centering on CNT has been proposed (Patent Document 4). This material should be understood that the carbon remaining in the CNT manufacturing process has a graphite structure, and is greatly different from the CNT / G laminated structure of the present invention.
As described above, a method for producing a CNT / G, CNT / GO, and CNT / RGO laminated composite carbon material in which CNT and graphene are laminated has not been established so far, and has not yet reached a practical stage.
再表02/063693号公報Table 02/063693 特表2011-503804号公報Special table 2011-503804 gazette 特開2008-285745号公報JP 2008-285745 A 特表2009-524567号公報JP 2009-524567 A
 本発明は、グラフェンからなる層間に、カーボンナノチューブ(CNT)が挟み込まれ、グラフェンからなる層とカーボンナノチューブから成る層が交互に積層された構造を有する複合フィルムを、工数の多い長時間反応処理や顕微鏡下での作業を行うことなく容易に製造することを可能にする方法を提供することを目的とする。 In the present invention, a composite film having a structure in which carbon nanotubes (CNT) are sandwiched between layers made of graphene, and layers made of graphene and layers made of carbon nanotubes are alternately stacked, is applied to a long-time reaction treatment with a large number of steps. It is an object of the present invention to provide a method that enables easy production without performing work under a microscope.
 本発明に係る複合フィルムの製造方法は、ナノシート構造体とナノカーボン構造体とが交互に積層された構造を備える複合フィルムの製造方法であって、
a.ナノカーボン構造体をカチオン性に機能化させる工程、
b.機能化されたナノカーボン構造体の分散液と前記ナノシート構造体の分散液とを混合して混合懸濁液を作製する工程、
c.前記混合懸濁液から分散媒を除去して複合フィルムを形成する工程、
を備えることを特徴とする。
The method for producing a composite film according to the present invention is a method for producing a composite film having a structure in which nanosheet structures and nanocarbon structures are alternately laminated,
a. A step of functionalizing the nanocarbon structure to be cationic,
b. A step of mixing the dispersion of the functionalized nanocarbon structure and the dispersion of the nanosheet structure to produce a mixed suspension;
c. Removing the dispersion medium from the mixed suspension to form a composite film;
It is characterized by providing.
 また、本発明に係る複合フィルムの製造方法としては、前記工程cの後工程として、d.前記複合フィルムを還元処理する工程を備えることが有効である。
 還元処理方法としては、熱的あるいは化学的な還元処理を利用することができる。熱的な還元処理としては、大気下において酸化グラフェン等のナノシート構造体を還元するに十分な高温に加熱する処理が利用できる。化学的な還元処理としては、ヒドラジン一水和物、ハイドロキノン、気体水素、アルカリ溶液(NaOH、KOH等)、ビタミンC、水素化ホウ素ナトリウムを使用して還元する処理が利用できる。
 なお、複合フィルムとは、ナノシート構造体とナノカーボン構造体とが交互に積層された複合炭素材からなるフィルムの意味であり、工程dの還元処理を施したもの、工程dの還元処理を施していないものの双方を含む。通常は、フィルムの導電性あるいは強靭性を得るために還元処理を施した複合フィルムを使用するが、用途によっては還元処理を施していない状態の複合フィルムを使用することができる。
Moreover, as a manufacturing method of the composite film which concerns on this invention, d. It is effective to include a step of reducing the composite film.
As the reduction treatment method, thermal or chemical reduction treatment can be used. As the thermal reduction treatment, a treatment of heating to a high temperature sufficient to reduce the nanosheet structure such as graphene oxide in the atmosphere can be used. As the chemical reduction treatment, treatment using hydrazine monohydrate, hydroquinone, gaseous hydrogen, alkaline solution (NaOH, KOH, etc.), vitamin C, sodium borohydride can be used.
The composite film means a film made of a composite carbon material in which nanosheet structures and nanocarbon structures are alternately laminated. The composite film is subjected to the reduction treatment in step d and the reduction treatment in step d. Includes both not. Usually, a composite film subjected to a reduction treatment is used in order to obtain the conductivity or toughness of the film, but a composite film that has not been subjected to the reduction treatment can be used depending on the application.
 前記ナノシート構造体としては、グラフェン、酸化グラフェン、還元グラフェン、酸化グラファイトまたは還元グラファイトのいずれかを使用することができる。酸化グラフェン(GO)はグラフェンのカーボンの一部が酸素に置換された構成あるいはカーボンに酸素が結合した構成を有するもので、グラファイトを酸化して合成することができる。還元グラフェン(RGO)は酸化グラフェンを還元したものである。酸化グラフェンを還元した還元グラフェンは、グラフェンが酸化された部位がわずかに残留しておりこの意味でグラフェンとは完全に同一のものではない。酸化グラファイトはグラファイトを酸化したもの、還元グラファイトは酸化グラファイトを還元したものである。酸化グラファイトはグラファイトを化学的に酸化処理する方法によって得ることができる。なお、グラフェンを複数枚積層した構成からなるものがグラファイトである。 As the nanosheet structure, any one of graphene, graphene oxide, reduced graphene, graphite oxide, or reduced graphite can be used. Graphene oxide (GO) has a structure in which part of carbon in graphene is substituted with oxygen or a structure in which oxygen is bonded to carbon, and can be synthesized by oxidizing graphite. Reduced graphene (RGO) is obtained by reducing graphene oxide. In the reduced graphene obtained by reducing graphene oxide, a portion where graphene is oxidized remains slightly, and in this sense, it is not completely the same as graphene. Graphite oxide is obtained by oxidizing graphite, and reduced graphite is obtained by reducing graphite oxide. Graphite oxide can be obtained by a method of chemically oxidizing graphite. Note that graphite is formed by stacking a plurality of graphenes.
 ナノシート構造体として用いられるグラフェンは、カーボンと酸素が結合した構成を有しないことから、酸化グラフェン等とは作用が異なる。しかしながら、界面活性剤を利用するといった方法で溶媒に分散させることができ、他のナノシート構造体と同様の工程を利用して複合フィルムを形成することができる。
 グラフェンを使用して複合フィルムを作製した場合も、処理工程を経過させることにより、カーボンが酸素に置換され、あるいは酸素と結合した酸化グラフェンと類似した構成をとるようになる。したがって、工程dの還元処理工程は、ナノシート構造体としてグラフェンを使用する場合も、複合フィルムの電気伝導性を向上させるといった有効な作用を奏する。
Since graphene used as a nanosheet structure does not have a structure in which carbon and oxygen are combined, its action is different from graphene oxide or the like. However, it can be dispersed in a solvent by a method such as using a surfactant, and a composite film can be formed using the same steps as other nanosheet structures.
When a composite film is manufactured using graphene, the structure is similar to that of graphene oxide in which carbon is replaced with oxygen or bonded to oxygen by passing the treatment process. Therefore, the reduction treatment step d has an effective effect of improving the electrical conductivity of the composite film even when graphene is used as the nanosheet structure.
 なお、前記ナノシート構造体としては、グラフェン、酸化グラフェン、還元グラフェン等のかわりに、遷移金属の二価あるいは三価カルコゲナイドからなる剥離型層状物質を用いることが可能である。遷移金属のカルゴゲナイドとしては、MoS2、WS2、NbS3、MnPS3などがある。この他に、窒化ホウ素等の層状物質を使用することもできる。 As the nanosheet structure, a peelable layered material made of a divalent or trivalent chalcogenide of a transition metal can be used instead of graphene, graphene oxide, reduced graphene, or the like. Examples of transition metal chalcogenides include MoS 2 , WS 2 , NbS 3 , and MnPS 3 . In addition, a layered material such as boron nitride can also be used.
 前記ナノカーボン構造体としては、カーボンナノチューブ、他原子ドープカーボンナノチューブ、内包型カーボンナノチューブ、フラーレン、グラフェンナノリボンを用いることができる。また、カーボンナノチューブとしては、単層カーボンナノチューブ(SWCNT)、二層カーボンナノチューブ(DWCNT)、三層カーボンナノチューブ(TWCNT)、多層カーボンナノチューブ(MWCNT)を用いることができる。
 また、他原子ドープカーボンナノチューブとしてドープする原子がとくに限定されるものではないが、単層カーボンナノチューブ(SWCNT)、二層カーボンナノチューブ(DWCNT)、三層カーボンナノチューブ(TWCNT)、多層カーボンナノチューブ(MWCNT)に、窒素あるいはホウ素がドープされたカーボンナノチューブを好適に用いることができる。
 カーボンナノチューブは、たとえばCVD法を利用して合成することができる(非特許文献17、18)。
As the nanocarbon structure, carbon nanotubes, other atom-doped carbon nanotubes, encapsulated carbon nanotubes, fullerenes, and graphene nanoribbons can be used. As the carbon nanotubes, single-walled carbon nanotubes (SWCNT), double-walled carbon nanotubes (DWCNT), triple-walled carbon nanotubes (TWCNT), and multi-walled carbon nanotubes (MWCNT) can be used.
The atoms to be doped as other atom-doped carbon nanotubes are not particularly limited, but single-walled carbon nanotubes (SWCNT), double-walled carbon nanotubes (DWCNT), triple-walled carbon nanotubes (TWCNT), multi-walled carbon nanotubes (MWCNT) ), Carbon nanotubes doped with nitrogen or boron can be suitably used.
Carbon nanotubes can be synthesized using, for example, a CVD method (Non-patent Documents 17 and 18).
 なお、前記ナノカーボン構造体として、窒化ボロンナノチューブ、二硫化タングステンナノチューブ、二硫化モリブデンナノチューブ、酸化チタンナノチューブ、カルコゲナイドナノチューブ、ボロン-カーボン-窒素(BCN)ナノチューブ等の無機ナノチューブを使用することができる。 As the nanocarbon structure, inorganic nanotubes such as boron nitride nanotubes, tungsten disulfide nanotubes, molybdenum disulfide nanotubes, titanium oxide nanotubes, chalcogenide nanotubes, and boron-carbon-nitrogen (BCN) nanotubes can be used.
 ナノカーボン構造体をカチオン性に機能化させる(functionalize)方法(工程a)としては、既に開示されている方法(非特許文献12、13、14、15)が利用できる。ナノカーボン構造体をカチオン性に機能化する方法には、界面活性剤、ポリマーあるいは多価電解質(polyelectrolyte)を用いる方法がある。
 カーボンナノチューブ等のナノカーボン構造体を機能化させることにより、ナノカーボン構造体は水、アルコール、アセトン、アルデヒド類等の極性溶媒(polar solvent)中で好適に分散させることができる。
As a method for functionalizing the nanocarbon structure cationically (step a), the methods already disclosed (Non-Patent Documents 12, 13, 14, and 15) can be used. As a method for functionalizing the nanocarbon structure cationically, there is a method using a surfactant, a polymer, or a polyelectrolyte.
By functionalizing a nanocarbon structure such as a carbon nanotube, the nanocarbon structure can be suitably dispersed in a polar solvent such as water, alcohol, acetone, or aldehydes.
 本発明方法の工程bにおいては、機能化されたナノカーボン構造体の分散液と前記ナノシート構造体の分散液とを混合して、ナノカーボン構造体とナノシート構造体とを含む混合懸濁液を作製する。混合懸濁液とは、ナノカーボン構造体とナノシート構造体の双方を含む意味である。
 分散液として極性溶媒を使用することにより、機能化したナノカーボン構造体はカチオン性となって極性溶媒中で好適に分散し、ナノシート構造体はアニオン性となって極性溶媒中で好適に分散する。極性溶媒には適宜溶媒が使用でき、水を使用することももちろん可能である。水を使用した場合は、処理操作が容易にできて好適である。
In step b of the method of the present invention, the dispersion liquid of the functionalized nanocarbon structure and the dispersion liquid of the nanosheet structure are mixed to obtain a mixed suspension containing the nanocarbon structure and the nanosheet structure. Make it. The mixed suspension is meant to include both nanocarbon structures and nanosheet structures.
By using a polar solvent as the dispersion, the functionalized nanocarbon structure becomes cationic and is suitably dispersed in the polar solvent, and the nanosheet structure is anionic and suitably dispersed in the polar solvent. . As the polar solvent, a solvent can be appropriately used, and it is of course possible to use water. When water is used, the treatment operation can be easily performed, which is preferable.
 機能化されたナノカーボン構造体とナノシート構造体を含む混合懸濁液を作製するには、ナノシート構造体の分散液に、ナノカーボン構造体の分散液を少しずつ滴下して、ナノシート構造体とナノカーボン構造体とを混合させればよい。逆に、ナノカーボン構造体の分散液にナノシート構造体の分散液を滴下する方法でもよい。
 混合工程では、分散液に超音波振動を作用させながら混合することにより、ナノカーボン構造体とナノシート構造体とを効果的に分散、混合することができる。超音波振動とスターラー、渦流発生装置を併用することもできる。
 ナノカーボン構造体とナノシート構造体の分散液を混合させていくと、ナノカーボン構造体とナノシート構造体のカチオン-アニオン作用により、ナノカーボン構造体とナノシート構造体が交互に積層される構造が徐々に構築されていく。
To prepare a mixed suspension containing a functionalized nanocarbon structure and nanosheet structure, drop the nanocarbon structure dispersion little by little into the nanosheet structure dispersion. What is necessary is just to mix a nanocarbon structure. Conversely, a method of dropping the nanosheet structure dispersion into the nanocarbon structure dispersion may be used.
In the mixing step, the nanocarbon structure and the nanosheet structure can be effectively dispersed and mixed by mixing the dispersion while applying ultrasonic vibration. Ultrasonic vibration, a stirrer, and a vortex generator can be used in combination.
When the dispersion of nanocarbon structure and nanosheet structure is mixed, the structure in which the nanocarbon structure and nanosheet structure are alternately stacked gradually by the cation-anion action of the nanocarbon structure and nanosheet structure. Will be built.
 工程cは、混合懸濁液から分散媒を除去してフィルム化する工程である。
 混合懸濁液を用いてフィルム化する方法としては、基材表面に混合懸濁液をキャスティングし、静置して混合懸濁液から分散媒、たとえば水分、を除去する方法が利用できる。基材表面に混合懸濁液をキャスティングした後、弱く加温して分散媒を除去することで、基材表面に、ナノカーボン構造体とナノシート構造体とが交互に積層した複合炭素材からなるフィルムが生成される。
Step c is a step of removing the dispersion medium from the mixed suspension to form a film.
As a method for forming a film using the mixed suspension, a method of casting the mixed suspension on the surface of the substrate and allowing it to stand to remove a dispersion medium such as moisture from the mixed suspension can be used. After the mixed suspension is cast on the surface of the base material, it is made of a composite carbon material in which nanocarbon structures and nanosheet structures are alternately stacked on the surface of the base material by heating gently to remove the dispersion medium. A film is produced.
 基材表面に混合懸濁液をキャスティングして静置すると、ナノカーボン構造体とナノシート構造体はカチオン-アニオン作用により、交互に積層する配置に再配位し(自己積層化:self-assembly)、その状態でフィルム化される。複合フィルムは、ナノカーボン構造体とナノシート構造体とが交互に複数層に積層した複合炭素材がシート状になったもので、フィルム中で複合炭素材はさまざまな向き集積されてなる。ただし、複合フィルムの表面近傍では、ナノシート構造体の平面が複合フィルムの表面に平行になるように複合炭素材が配列する。 When the mixed suspension is cast and allowed to stand on the surface of the substrate, the nanocarbon structure and nanosheet structure are re-coordinated to the alternately stacked configuration by the cation-anion action (self-assembly). In this state, the film is formed. A composite film is a composite carbon material in which nanocarbon structures and nanosheet structures are alternately laminated in a plurality of layers in a sheet shape, and the composite carbon materials are accumulated in various directions in the film. However, in the vicinity of the surface of the composite film, the composite carbon materials are arranged so that the plane of the nanosheet structure is parallel to the surface of the composite film.
 基材表面でフィルム化した複合フィルムは、基材表面から脱離(剥離)させて使用する。したがって、混合懸濁液をキャスティングする基材は撥水性の基材であることが好ましい。
 混合懸濁液を用いてフィルム化する方法は、キャスティング方法に限らず、紙の製造工程において使用される方法等を利用することができる。基材表面に混合懸濁液をキャスティングして複合フィルムとする方法は、複合フィルムの幅、長さ、厚さ等を任意に設定することができる。
The composite film formed on the substrate surface is used after being detached (peeled) from the substrate surface. Therefore, the substrate on which the mixed suspension is cast is preferably a water-repellent substrate.
The method of forming a film using the mixed suspension is not limited to the casting method, and a method used in the paper manufacturing process can be used. The method of casting the mixed suspension on the surface of the substrate to form a composite film can arbitrarily set the width, length, thickness, etc. of the composite film.
 図1にナノカーボン構造体としてカーボンナノチューブ、ナノシート構造体として酸化グラフェンを使用した場合について、カーボンナノチューブとグラフェンとの複合炭素材を形成する工程を示す。
 ステップA、Bは、酸化グラフェン10とカーボンナノチューブ12を、それぞれ分散液中で安定的に分散させる工程である。酸化グラフェンはカルボン酸の添加あるいはそれ自体でアニオン性多価電解質として分散液中で分散し、カーボンナノチューブは、上述した機能化処理により、カチオン性多価電解質として分散液中で分散させることができる。
FIG. 1 shows a process of forming a composite carbon material of carbon nanotubes and graphene when carbon nanotubes are used as nanocarbon structures and graphene oxide is used as nanosheet structures.
Steps A and B are processes in which the graphene oxide 10 and the carbon nanotubes 12 are each stably dispersed in the dispersion. Graphene oxide can be dispersed in a dispersion as an anionic polyelectrolyte by addition of carboxylic acid or itself, and carbon nanotubes can be dispersed in a dispersion as a cationic polyelectrolyte by the functionalization treatment described above. .
 次に、酸化グラフェンの分散液とカーボンナノチューブの分散液を混合して、酸化グラフェン10とカーボンナノチューブ12とが分散した状態で混じり合った懸濁液(混合懸濁液)を作製する(ステップC)。混合懸濁液中では、酸化グラフェンとカーボンナノチューブとがカチオン-アニオン作用によって相互作用し、徐々に、酸化グラフェンとカーボンナノチューブとが交互に配位する配置となっていく。
 次いで、酸化グラフェンとカーボンナノチューブの混合懸濁液を型(基材表面)にキャストし、マイルドに加熱して分散媒(分散液)を除去し、酸化グラフェンとカーボンナノチューブとを再配位させ、酸化グラフェン10とカーボンナノチューブ12とが交互に積層した構造を構築する(ステップD)。ステップDは酸化グラフェン10とカーボンナノチューブ12とが積層構造となっている一つの複合炭素材を示す。ステップEは、フィルムに還元処理を施し、最終的に複合フィルム(ハイブリッドフィルム)を得た状態である。
Next, the graphene oxide dispersion and the carbon nanotube dispersion are mixed to prepare a suspension (mixed suspension) in which the graphene oxide 10 and the carbon nanotubes 12 are mixed with each other (step C). ). In the mixed suspension, the graphene oxide and the carbon nanotubes interact with each other by a cation-anion action, and the graphene oxide and the carbon nanotubes are gradually arranged alternately.
Next, the mixed suspension of graphene oxide and carbon nanotubes is cast into a mold (substrate surface), heated gently to remove the dispersion medium (dispersion), and the graphene oxide and carbon nanotubes are re-coordinated. A structure in which graphene oxide 10 and carbon nanotubes 12 are alternately stacked is constructed (step D). Step D shows one composite carbon material in which graphene oxide 10 and carbon nanotubes 12 have a laminated structure. Step E is a state in which the film is subjected to a reduction treatment to finally obtain a composite film (hybrid film).
 酸化グラフェンとカーボンナノチューブの複合フィルムは、還元処理により酸化グラフェン(GO)が還元グラフェン(RGO)となり、還元グラフェンとカーボンナノチューブとが交互に積層された構造を備えるフィルムとなる。この複合フィルムをさらに還元して、還元グラフェンを完全に還元すると、グラフェン(G)とカーボンナノチューブとの複合フィルムとなる。このように、グラフェンとカーボンナノチューブから構成されるハイブリッドフィルム(複合炭素材)は、CNT/GO、CNT/RGO、CNT/Gの組み合わせとなる積層構造を取り得る。 The composite film of graphene oxide and carbon nanotube is a film having a structure in which graphene oxide (GO) is reduced to reduced graphene (RGO) by reduction treatment, and reduced graphene and carbon nanotubes are alternately laminated. When this composite film is further reduced to reduce the reduced graphene completely, a composite film of graphene (G) and carbon nanotubes is obtained. Thus, a hybrid film (composite carbon material) composed of graphene and carbon nanotubes can have a laminated structure that is a combination of CNT / GO, CNT / RGO, and CNT / G.
 本方法によれば、カーボンナノチューブ(CNT)と酸化グラフェン(GO)とのカチオン‐アニオン反応を利用することにより、Self-Assembleの作用によってカーボンナノチューブと酸化グラフェンとを積層化するから、短時間で簡便にハイブリッド積層構造を構成することができる。本方法は、カーボンナノチューブに限らず多価電解質を用いて修飾する(機能化する)処理が可能な他原子ドープカーボンナノチューブ、内包型カーボンナノチューブ、フラーレン、グラフェンナノリボン等についても同様に適用することができる。 According to this method, carbon nanotubes and graphene oxide are stacked by the action of Self-Assemble by utilizing the cation-anion reaction between carbon nanotubes (CNT) and graphene oxide (GO). A hybrid laminated structure can be configured easily. This method can be applied not only to carbon nanotubes, but also to other atom-doped carbon nanotubes, encapsulated carbon nanotubes, fullerenes, graphene nanoribbons, etc. that can be modified (functionalized) using a polyelectrolyte. it can.
 酸化グラフェンを用いて生成されるCNT/GOハイブリッドフィルムはGOの還元度合いを調整することにより物性を調整可能である。ハイブリッドフィルムは基本的に炭素複合体であるから熱に対する安定性が高い。完全に還元されたCNT/Gハイブリッドフィルムは化学的にも安定である。また、自己積層化反応によって複合炭素材が形成されるから、グラフェン層間に支柱構造を形成するといった必要がなく、複合炭素材(ハイブリッドフィルム)の製造方法として工数の大幅な削減が可能である。 CNT / GO hybrid film produced using graphene oxide can adjust its physical properties by adjusting the degree of reduction of GO. Since the hybrid film is basically a carbon composite, it has high heat stability. A fully reduced CNT / G hybrid film is chemically stable. Further, since the composite carbon material is formed by the self-stacking reaction, it is not necessary to form a support structure between the graphene layers, and the number of steps can be significantly reduced as a method of manufacturing the composite carbon material (hybrid film).
 本発明方法によって得られる複合フィルムは、規則性のある複合体からなり、かつ繊維状のCNT(ナノカーボン構造体)と面状のG、GO、RGO(ナノシート構造体)とが多点で接触していることから、10-3Ω・cm以下の低い電気抵抗を示す。また、窒素ドープCNTあるいはホウ素ドープCNT等の他原子ドープCNTを使用することにより、バンドギャップを制御可能になるので炭素半導体として応用できる。他方、炭素で構成されるので耐熱性、耐薬品性、耐錆性が高い。
 これらの事実から応用範囲として、スーパーキャパシター、燃料電池等の電気化学分野、金属を使用しない触媒分野、足場材料等の組織工学分野、金属代替材料としての電線、ワイヤーハーネス、移動車両車体、航空機用材料、宇宙船・宇宙基地材料、電磁波遮蔽材料、炭素半導体、電子・電磁波放出源、建築物構造材、樹脂複合材料、金属複合材料、エネルギー貯蔵材料、Photovoltaic材料、水処理用吸着材、導電性繊維、耐熱性織物等がある。
The composite film obtained by the method of the present invention is composed of a regular composite, and the fibrous CNT (nanocarbon structure) and the planar G, GO, RGO (nanosheet structure) are in contact at multiple points. Therefore, it exhibits a low electric resistance of 10 −3 Ω · cm or less. In addition, by using other atom-doped CNT such as nitrogen-doped CNT or boron-doped CNT, the band gap can be controlled, so that it can be applied as a carbon semiconductor. On the other hand, since it is made of carbon, it has high heat resistance, chemical resistance, and rust resistance.
Based on these facts, the range of applications includes supercapacitors, fuel cells and other electrochemical fields, metal-free catalyst fields, scaffolding materials and other tissue engineering fields, metal replacement materials such as electric wires, wire harnesses, mobile vehicle bodies, and aircraft. Materials, spacecraft / base materials, electromagnetic shielding materials, carbon semiconductors, electron / electromagnetic emission sources, building structural materials, resin composite materials, metal composite materials, energy storage materials, photovoltaic materials, water treatment adsorbents, conductivity There are fibers, heat-resistant fabrics and the like.
 本発明に係る複合フィルムの製造方法によれば、ナノカーボン構造体とナノシート構造体とが交互に積層された構造を備える複合フィルムを容易にかつ効率的に製造することができ、その特徴的な物理特性から種々の用途に利用することができる複合フィルムを提供することができる。 According to the method for producing a composite film according to the present invention, a composite film having a structure in which nanocarbon structures and nanosheet structures are alternately laminated can be easily and efficiently produced. The composite film which can be utilized for various uses from a physical characteristic can be provided.
グラフェンとカーボンナノチューブとの積層複合構造を有する複合フィルムの製造方法についての概念図である。It is a conceptual diagram about the manufacturing method of the composite film which has a laminated composite structure of a graphene and a carbon nanotube. 多層カーボンナノチューブと酸化グラフェンを用いて作製した複合フィルム(還元処理前)の写真である。It is a photograph of the composite film (before reduction process) produced using the multi-walled carbon nanotube and graphene oxide. MWCNT/GO(a)、N-MWCNT/GO(b)、B-MWCNT/GO(c)の複合フィルムについて、還元処理前後の状態を示す写真である。It is a photograph which shows the state before and behind reduction processing about the composite film of MWCNT / GO (a), N-MWCNT / GO (b), and B-MWCNT / GO (c). 多層カーボンナノチューブ(MWNT)と酸化グラフェン(GO)からなる複合フィルムのSEM像である。It is a SEM image of the composite film which consists of a multi-walled carbon nanotube (MWNT) and a graphene oxide (GO). 窒素ドープMWNTと酸化グラフェンからなる複合フィルムについてのSEM像である。It is a SEM image about the composite film which consists of nitrogen dope MWNT and a graphene oxide. ホウ素ドープMWNTと酸化グラフェンからなる複合フィルムのSEM像である。It is a SEM image of the composite film which consists of boron dope MWNT and graphene oxide. 還元処理前後の複合フィルムについてのラマンスペクトルである。It is a Raman spectrum about the composite film before and behind a reduction process. 熱重量分析結果を示すグラフである。It is a graph which shows a thermogravimetric analysis result.
(カーボンナノチューブの合成)
 多層CNTは、フェロセン6wt%及びトルエン94wt%を混合した溶液を使用し、アルゴン流通(2.5L/min)、825℃、常圧のCVD(chemical
vapor deposition)法により合成した後、アニール処理と精製処理を行った得たものである。
(Synthesis of carbon nanotubes)
Multi-walled CNTs use a mixture of 6 wt% ferrocene and 94 wt% toluene, and CVD (chemical) with argon flow (2.5 L / min), 825 ° C, normal pressure
This was obtained by performing annealing and purification after synthesis by vapor deposition).
 窒素ドープCNTは、フェロセン6wt%とベンジルアミン94wt%を混合した溶液を使用し、アルゴン流通(2.5L/min)、850℃、常圧のCVD(chemical vapor deposition)法により合成し、同様にアニール処理して得た。 Nitrogen-doped CNTs were synthesized by a CVD (chemical vapor deposition) method using a mixture of ferrocene 6wt% and benzylamine 94wt%, argon flow (2.5L / min), 850 ℃, normal pressure, and annealed in the same way Obtained by processing.
 ホウ素ドープCNTは、筒状の反応容器を使用し、触媒の前駆体としてフェロセン、カーボンの供給源としてトルエン、水素をキャリアガスとして連続的なシステムを用いてまずカーボンナノチューブを合成した。フェロセン化合物を2-3wt%含むトルエン溶液を、反応容器内へ供給用ポンプで送り込み(25g/min)、約1200℃で反応させた。得られたカーボンナノチューブをホウ酸(5wt%)と混合し、この混合物をアルゴン雰囲気下2400℃で熱処理してホウ素ドープCNTを得た。 Boron-doped CNTs were first synthesized using a continuous reaction vessel using a continuous reaction system using a cylindrical reaction vessel, using ferrocene as a catalyst precursor, toluene as a carbon supply source, and hydrogen as a carrier gas. A toluene solution containing 2-3 wt% of the ferrocene compound was fed into the reaction vessel with a supply pump (25 g / min) and reacted at about 1200 ° C. The obtained carbon nanotubes were mixed with boric acid (5 wt%), and the mixture was heat-treated at 2400 ° C. in an argon atmosphere to obtain boron-doped CNTs.
(酸化グラフェンの合成)
 酸化グラフェンは、市販のグラファイトを用いて合成し、化学的な酸化処理を行って得た(非特許文献16)。
 得られた酸化グラフェンを蒸留水で十分に洗浄した後、凍結乾燥して酸化グラフェンにトラップされた水分を除去する。
(Synthesis of graphene oxide)
Graphene oxide was synthesized using commercially available graphite and obtained by chemical oxidation treatment (Non-patent Document 16).
The obtained graphene oxide is thoroughly washed with distilled water, and then freeze-dried to remove moisture trapped in the graphene oxide.
(カーボンナノチューブの修飾)
 カーボンナノチューブ(他原子ドープカーボンナノチューブを含む)を修飾する(カチオン修飾)方法としては多価電解質を用いる方法を利用することができる。カーボンナノチューブは、既に開示されている方法(非特許文献12、13、14、15)により、カチオン性多価電解質として機能化(functionalize)させることができる。機能化により、カーボンナノチューブは、水、アルコール、アセトン、アルデヒド類等の極性溶媒(polar solvent)中で、束状に集まった状態から分散し、溶媒中において均一に分散する。
(Modification of carbon nanotube)
As a method for modifying (cation modification) the carbon nanotube (including other atom-doped carbon nanotube), a method using a polyelectrolyte can be used. The carbon nanotube can be functionalized as a cationic polyelectrolyte by a method already disclosed (Non-Patent Documents 12, 13, 14, and 15). By functionalization, the carbon nanotubes are dispersed from a bundled state in a polar solvent such as water, alcohol, acetone, and aldehydes, and are uniformly dispersed in the solvent.
 実施例では、カーボンナノチューブを次のようにして機能化した。
 まず、カーボンナノチューブ10mgを酸素存在下(空気流量:0.5L/min)、800℃で加熱処理し、カーボンナノチューブの表面のアモルファスカーボンと表面に残留する不純物(溶媒、炭化水素等)を除去した。この熱処理により、カーボンナノチューブの表面を若干酸化し、多価電解質によって機能化されるアンカーサイトを形成することが可能となる。
In the examples, the carbon nanotubes were functionalized as follows.
First, 10 mg of carbon nanotubes were heat-treated at 800 ° C. in the presence of oxygen (air flow rate: 0.5 L / min) to remove amorphous carbon on the surface of carbon nanotubes and impurities (solvent, hydrocarbon, etc.) remaining on the surface. By this heat treatment, it becomes possible to slightly oxidize the surface of the carbon nanotube and form an anchor site functionalized by the polyelectrolyte.
 加熱処理を施したカーボンナノチューブを、超音波を作用させ水に均一に分散させて懸濁液とした、この懸濁液を、2mg/Lのカチオン性多価電解質溶液に超音波を加えながら、滴下した。
 カーボンナノチューブ(MWCNT)、窒素ドープカーボンナノチューブ、ホウ素ドープカーボンナノチューブについては、アミンあるいはアミン類、イミンあるいはイミン類を用いてカチオン性に機能化することができ、この操作により、機能化されたカーボンナノチューブは電解質溶液中で均一に分散する。次に、遠心分離法を用いる洗浄法を利用し余分の多価電解質を除去して機能化されたカーボンナノチューブを得た。
The carbon nanotubes subjected to the heat treatment were uniformly dispersed in water by applying ultrasonic waves to form a suspension, and this suspension was applied to the 2 mg / L cationic polyelectrolyte solution while applying ultrasonic waves. It was dripped.
Carbon nanotubes (MWCNT), nitrogen-doped carbon nanotubes, and boron-doped carbon nanotubes can be functionalized cationically with amines or amines, imines or imines, and this operation enables functionalized carbon nanotubes. Is uniformly dispersed in the electrolyte solution. Next, a functionalized carbon nanotube was obtained by removing excess polyelectrolyte using a washing method using a centrifugal separation method.
(グラフェン-カーボンナノチューブ複合フィルムの作成)
 上記方法によって調製したMWCNT、窒素ドープMWCNT、ホウ素ドープMWCNTの懸濁液(分散媒:水)10mgを、それぞれ、濃度0.05g/mLの酸化グラフェンの懸濁液(分散媒:水)に、超音波を作用させながら滴下した。滴下後、さらに30分間、超音波を利用して攪拌し、カーボンナノチューブと酸化グラフェンとを均一に分散させ混合懸濁液とした。
 続いて、この酸化グラフェンとカーボンナノチューブとを含む懸濁液(混合懸濁液)をPTFE(ポリテトラフルオロエチレン)の基材表面にキャスティングし、60℃で加温して水分を散逸させ、基材表面にフィルムを形成した。得られたフィルムは、酸化グラフェンと、多層CNT、窒素ドープ多層CNT、ホウ素ドープ多層CNTとが交互に積層された複合炭素材からなる複合フィルムとなる。
 複合フィルムの還元処理は、基材表面から脱離させたフィルムをAr流通下、800℃に加熱して行った。
(Creation of graphene-carbon nanotube composite film)
10 mg of the suspension (dispersion medium: water) of MWCNT, nitrogen-doped MWCNT, and boron-doped MWCNT prepared by the above method was added to the suspension of graphene oxide (dispersion medium: water) at a concentration of 0.05 g / mL, respectively. The solution was dropped while applying sound waves. After dropping, the mixture was further stirred for 30 minutes using ultrasonic waves to uniformly disperse the carbon nanotubes and graphene oxide to obtain a mixed suspension.
Subsequently, this suspension (mixed suspension) containing graphene oxide and carbon nanotubes is cast on the surface of a PTFE (polytetrafluoroethylene) substrate and heated at 60 ° C. to dissipate moisture. A film was formed on the material surface. The obtained film is a composite film made of a composite carbon material in which graphene oxide, multilayer CNT, nitrogen-doped multilayer CNT, and boron-doped multilayer CNT are alternately laminated.
The reduction treatment of the composite film was performed by heating the film detached from the substrate surface to 800 ° C. under Ar flow.
 なお、比較例として、酸化グラフェンのみを含む懸濁液を超音波撹拌装置を使って30分撹拌し、基材表面にキャスティングし、上述した方法と同様の方法によりフィルムを形成し、比較測定を行った。 As a comparative example, a suspension containing only graphene oxide is stirred for 30 minutes using an ultrasonic stirrer, cast on the substrate surface, a film is formed by the same method as described above, and comparative measurement is performed. went.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は、多層カーボンナノチューブ、窒素ドープカーボンナノチューブ、ホウ素ドープカーボンナノチューブと酸化グラフェンとから作製した複合フィルムについて、大気中で800℃、10分加熱による還元処理を行った前後の炭素、酸素、窒素の含有量を測定した結果を示す。炭素、酸素等の含有量はXPSを使用し、各元素のコアレベルのスペクトルを得ることで測定できる。
 測定結果は、いずれの複合フィルムについても還元処理により酸素が大幅に減少していることを示す。ただし還元処理によって、酸素が完全になくなってはいない。
 窒素ドープカーボンナノチューブを使用したサンプルの窒素量は、還元処理の前後でさほど変化していない。ホウ素ドープカーボンナノチューブを使用したサンプルについてはホウ素量の測定結果を示していないが、窒素ドープカーボンナノチューブを使用したサンプルと同様に、還元処理の前後でホウ素量はさほど変化せず、ホウ素量は使用したホウ素ドープカーボンナノチューブのホウ素量に依存する。
Table 1 shows carbon, oxygen, and nitrogen before and after reduction treatment by heating at 800 ° C. for 10 minutes in air for a composite film made of multi-walled carbon nanotubes, nitrogen-doped carbon nanotubes, boron-doped carbon nanotubes and graphene oxide. The result of having measured the content of is shown. The content of carbon, oxygen and the like can be measured by obtaining a core level spectrum of each element using XPS.
The measurement results show that oxygen is greatly reduced by reduction treatment for any composite film. However, oxygen is not completely lost by the reduction treatment.
The amount of nitrogen in the sample using nitrogen-doped carbon nanotubes does not change much before and after the reduction treatment. Although the measurement results of boron content are not shown for samples using boron-doped carbon nanotubes, the amount of boron does not change much before and after the reduction treatment, as with samples using nitrogen-doped carbon nanotubes. Depends on the boron content of the boron doped carbon nanotubes.
(複合フィルム)
 図2は、多層カーボンナノチューブと酸化グラフェンを用いて前述した方法により作製した複合フィルムを示す。ここで示している複合フィルムは還元処理を施す前のものである。図2(a))は複合フィルムを曲げた状態、図2(b)、(c)は複合フィルムをねじった状態、図2(d)は複合フィルムをねじってさらに曲げた状態を示す。図2からわかるように、複合フィルムは柔軟性に富むフィルムとなっている。
(Composite film)
FIG. 2 shows a composite film produced by the above-described method using multi-walled carbon nanotubes and graphene oxide. The composite film shown here is the one before the reduction treatment. 2 (a)) shows a state where the composite film is bent, FIGS. 2 (b) and 2 (c) show a state where the composite film is twisted, and FIG. 2 (d) shows a state where the composite film is twisted and further bent. As can be seen from FIG. 2, the composite film is a highly flexible film.
 図3(a)はMWCNT/GO、図3(b)はN-MWCNT/GO、図3(c)はB-MWCNT/GOの複合フィルムについて、還元処理前後の状態を示している。いずれのサンプルも、還元処理を施す前の複合フィルムの方が還元処理後の複合フィルムよりも黒ずんだ色となっている。これは、主として、酸化グラフェンシート間に存在するカーボンナノチューブに起因する。還元処理を施すと、図3に示すように、複合フィルムは銀色の金属色を呈するようになる。 FIG. 3 (a) shows the state before and after the reduction treatment of the MWCNT / GO, FIG. 3 (b) shows the N-MWCNT / GO, and FIG. 3 (c) shows the B-MWCNT / GO composite film. In any sample, the composite film before the reduction treatment has a darker color than the composite film after the reduction treatment. This is mainly due to the carbon nanotubes present between the graphene oxide sheets. When the reduction treatment is performed, the composite film exhibits a silver metallic color as shown in FIG.
(SEM観察)
 図4、5、6に、多層CNT、窒素ドープ多層CNT、ホウ素ドープ多層CNTと酸化グラフェンとによるハイブリッドフィルム(複合炭素材)のSEM像を示す。各図で(a)、(b)、(c)は還元処理前のもので、拡大率が異なるもの、(d)は、800℃、アルゴン雰囲気下において還元処理を施したものである。
 いずれの場合も、カーボンナノチューブはフィルム面内においてランダムにかつ均一に分布し、酸化グラフェンの層間に挟まれて存在していることがわかる。カーボンナノチューブがフィルム内で独立して分散し、凝集しないことが重要であり、この結果はフィルムを構成するための強い相互作用が存在すること、酸化グラフェンとカーボンナノチューブの分散液(懸濁液)からフィルムを構成することが有効であることを示している。
 なお、還元処理を行った場合も、積層複合炭素材の構成は変化していない。
(SEM observation)
4, 5, and 6 show SEM images of a hybrid film (composite carbon material) of multilayer CNT, nitrogen-doped multilayer CNT, boron-doped multilayer CNT, and graphene oxide. In each figure, (a), (b), and (c) are before the reduction treatment and have different magnifications, and (d) is the one subjected to the reduction treatment at 800 ° C. in an argon atmosphere.
In any case, it can be seen that the carbon nanotubes are randomly and uniformly distributed in the film plane and are sandwiched between the graphene oxide layers. It is important that the carbon nanotubes disperse independently within the film and do not agglomerate, and this results in the presence of strong interactions that make up the film, a dispersion (suspension) of graphene oxide and carbon nanotubes It is shown that it is effective to construct a film from
Even when the reduction treatment is performed, the configuration of the laminated composite carbon material is not changed.
(ラマン分光)
 図7にMWCNT/GO、N-MWCNT/GO、B-MWCNT/GOの複合フィルムとGOフィルムの還元処理前後のラマン分光分析結果を示す。図7(A)、(B)は還元処理前の測定結果、図7(C)、(D)は還元処理後の測定結果を示す。また、表2にラマンバンドのピーク値を示す。
Figure JPOXMLDOC01-appb-T000002
(Raman spectroscopy)
FIG. 7 shows the results of Raman spectroscopic analysis before and after the reduction treatment of the composite film of MWCNT / GO, N-MWCNT / GO, and B-MWCNT / GO and the GO film. 7A and 7B show the measurement results before the reduction treatment, and FIGS. 7C and 7D show the measurement results after the reduction treatment. Table 2 shows the peak value of the Raman band.
Figure JPOXMLDOC01-appb-T000002
 すべてのスペクトルにおいて、D(1348cm-1)、G(1588cm-1)、2D(2724cm-1)、D+G(2918cm-1)、2D’(3151cm-1)バンドがあらわれている。カーボンナノチューブの種類が異なるとピークシフトが生じるが、本実験結果ではシフト量はきわめてわずかである。これは、カーボンナノチューブと酸化グラフェンシートとの強い相互作用に基づくものである。また、還元処理前後のピークシフトがきわめてわずかなことから、還元処理前後でグラフェン及びカーボンナノチューブの構造が保持されて大きく変化せず、グラフェンとカーボンナノチューブの積層構造が安定であることがわかる。 In all spectra, D (1348 cm −1 ), G (1588 cm −1 ), 2D (2724 cm −1 ), D + G (2918 cm −1 ), and 2D ′ (3151 cm −1 ) bands appear. Although the peak shift occurs when the types of carbon nanotubes are different, the shift amount is very small in the result of this experiment. This is based on a strong interaction between the carbon nanotube and the graphene oxide sheet. In addition, since the peak shift before and after the reduction treatment is very slight, it can be seen that the structure of graphene and carbon nanotubes is retained before and after the reduction treatment and does not change significantly, and the laminated structure of graphene and carbon nanotubes is stable.
(熱重量分析)
 図8は、熱重量分析結果を示す。最初の200℃付近の変化はGOが還元される際の発熱反応を示している。500℃付近の変化は黒鉛構造を持つ炭素の酸化を示している。それぞれのサンプルが示す酸化反応温度の違いはCNTへの他原子ドープによる影響である。すなわち、他原子ドープにより炭素結晶格子に欠陥が生じて酸化開始温度が低温側にシフトする。これらの結果より、本発明方法によって作成されたグラフェンとCNTのハイブリッドフィルム(積層複合炭素材)はグラフェンあるいは酸化グラフェンとは物性が異なることがわかる。
(Thermogravimetric analysis)
FIG. 8 shows the thermogravimetric analysis results. The first change around 200 ° C indicates an exothermic reaction when GO is reduced. The change around 500 ℃ indicates the oxidation of carbon with graphite structure. The difference in the oxidation reaction temperature of each sample is due to the influence of other atom doping on CNT. That is, other atoms dope a defect in the carbon crystal lattice and shift the oxidation start temperature to the low temperature side. From these results, it can be seen that the graphene-CNT hybrid film (laminated composite carbon material) produced by the method of the present invention has different physical properties from graphene or graphene oxide.
(電気抵抗測定) (Electrical resistance measurement)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3にCNT/GOとGOの抵抗値を示す。単層CNTの抵抗は10-4Ωcmという報告があるものの、実効的な数値は100Ωcmである。また、酸化グラフェンの抵抗値は、4.26×10-3Ωcmであった。表3に示すように本発明に係るカーボンナノチューブ(MWCNT)と酸化グラフェンとの複合フィルム(還元処理後のもの)の抵抗値は、酸化グラフェンの抵抗値と比較してはるかに小さい。これはカーボンナノチューブの添加によって電気伝導率が向上したことを意味する。 Table 3 shows the resistance values of CNT / GO and GO. Although the resistance of single-walled CNT has been reported to be 10 −4 Ωcm, the effective value is 10 0 Ωcm. The resistance value of graphene oxide was 4.26 × 10 −3 Ωcm. As shown in Table 3, the resistance value of the composite film of carbon nanotubes (MWCNT) and graphene oxide (after reduction treatment) according to the present invention is much smaller than the resistance value of graphene oxide. This means that the electrical conductivity has been improved by the addition of carbon nanotubes.
 10 酸化グラフェン(ナノシート構造体)
 12 カーボンナノチューブ(ナノカーボン構造体)
10 Graphene oxide (nanosheet structure)
12 Carbon nanotubes (nanocarbon structure)

Claims (13)

  1.  ナノシート構造体とナノカーボン構造体とが交互に積層された構造を備える複合フィルムの製造方法であって、
    a.ナノカーボン構造体をカチオン性に機能化させる工程、
    b.機能化されたナノカーボン構造体の分散液と前記ナノシート構造体の分散液とを混合して混合懸濁液を作製する工程、
    c.前記混合懸濁液から分散媒を除去して複合フィルムを形成する工程、
    を備えることを特徴とする複合フィルムの製造方法。
    A method for producing a composite film having a structure in which nanosheet structures and nanocarbon structures are alternately laminated,
    a. A step of functionalizing the nanocarbon structure to be cationic,
    b. A step of mixing the dispersion of the functionalized nanocarbon structure and the dispersion of the nanosheet structure to produce a mixed suspension;
    c. Removing the dispersion medium from the mixed suspension to form a composite film;
    A method for producing a composite film, comprising:
  2.  前記工程cの後工程として、
     d.前記複合フィルムを還元処理する工程
    を備えることを特徴とする請求項1記載の複合フィルムの製造方法。
    As a subsequent step of the step c,
    d. The method for producing a composite film according to claim 1, further comprising a step of reducing the composite film.
  3.  前記工程dにおける還元処理として、熱的あるいは化学的な還元処理を行うことを特徴とする請求項2記載の複合フィルムの製造方法。 The method for producing a composite film according to claim 2, wherein a thermal or chemical reduction treatment is performed as the reduction treatment in the step d.
  4.  前記ナノシート構造体として、
     グラフェン、酸化グラフェン、還元グラフェン、酸化グラファイトまたは還元グラファイトのいずれかを使用することを特徴とする請求項1~3のいずれか一項記載の複合フィルムの製造方法。
    As the nanosheet structure,
    The method for producing a composite film according to any one of claims 1 to 3, wherein any one of graphene, graphene oxide, reduced graphene, graphite oxide, and reduced graphite is used.
  5.  前記ナノカーボン構造体として、
     カーボンナノチューブ、他原子ドープカーボンナノチューブ、内包型カーボンナノチューブ、フラーレン、グラフェンナノリボンを用いることを特徴とする請求項1~4のいずれか一項記載の複合フィルムの製造方法。
    As the nanocarbon structure,
    5. The method for producing a composite film according to claim 1, wherein carbon nanotubes, other atom-doped carbon nanotubes, encapsulated carbon nanotubes, fullerenes, and graphene nanoribbons are used.
  6.  前記カーボンナノチューブとして、
     単層カーボンナノチューブ(SWCNT)、二層カーボンナノチューブ(DWCNT)、三層カーボンナノチューブ(TWCNT)、多層カーボンナノチューブ(MWCNT)を用いることを特徴とする請求項5記載の複合フィルムの製造方法。
    As the carbon nanotube,
    6. The method for producing a composite film according to claim 5, wherein single-walled carbon nanotubes (SWCNT), double-walled carbon nanotubes (DWCNT), triple-walled carbon nanotubes (TWCNT), and multi-walled carbon nanotubes (MWCNT) are used.
  7.  前記他原子ドープカーボンナノチューブとして、
     単層カーボンナノチューブ(SWCNT)、二層カーボンナノチューブ(DWCNT)、三層カーボンナノチューブ(TWCNT)、多層カーボンナノチューブ(MWCNT)に、窒素あるいはホウ素がドープされたカーボンナノチューブを用いることを特徴とする請求項5記載の複合フィルムの製造方法。
    As the other atom-doped carbon nanotube,
    A single-walled carbon nanotube (SWCNT), a double-walled carbon nanotube (DWCNT), a triple-walled carbon nanotube (TWCNT), or a multi-walled carbon nanotube (MWCNT), wherein carbon nanotubes doped with nitrogen or boron are used. 5. A method for producing a composite film according to 5.
  8.  前記分散液として極性溶媒を用いることを特徴とする請求項1~7のいずれか一項記載の複合フィルムの製造方法。 The method for producing a composite film according to any one of claims 1 to 7, wherein a polar solvent is used as the dispersion.
  9.  前記極性溶媒として水を用いることを特徴とする請求項8記載の複合フィルムの製造方法。 The method for producing a composite film according to claim 8, wherein water is used as the polar solvent.
  10.  前記工程aにおいて、界面活性剤、ポリマー、多価電解質溶液を用いてナノカーボン構造体を機能化させることを特徴とする請求項1記載の複合フィルムの製造方法。 The method for producing a composite film according to claim 1, wherein in step a, the nanocarbon structure is functionalized using a surfactant, a polymer, and a polyelectrolyte solution.
  11.  前記工程bにおいては、超音波の作用を利用してナノカーボン構造体とナノシート体との懸濁液を作製することを特徴とする請求項1記載の複合フィルムの製造方法。 The method for producing a composite film according to claim 1, wherein, in the step b, a suspension of the nanocarbon structure and the nanosheet body is produced using an action of ultrasonic waves.
  12.  前記ナノシート構造体として、
     遷移金属の二価カルコゲナイド、三価カルコゲナイドからなる剥離型層状物質を用いることを特徴とする請求項1記載の複合フィルムの製造方法。
    As the nanosheet structure,
    2. The method for producing a composite film according to claim 1, wherein a peelable layered material comprising a divalent chalcogenide or a trivalent chalcogenide of a transition metal is used.
  13.  前記ナノカーボン構造体として、
     窒化ボロンナノチューブ、二硫化タングステンナノチューブ、二硫化モリブデンナノチューブ、酸化チタンナノチューブ、カルコゲナイドナノチューブ、ボロン-カーボン-窒素(BCN)ナノチューブを用いることを特徴とする請求項1記載の複合フィルムの製造方法。
    As the nanocarbon structure,
    2. The method for producing a composite film according to claim 1, wherein boron nitride nanotubes, tungsten disulfide nanotubes, molybdenum disulfide nanotubes, titanium oxide nanotubes, chalcogenide nanotubes, and boron-carbon-nitrogen (BCN) nanotubes are used.
PCT/JP2013/070462 2012-07-30 2013-07-29 Method for producing composite film comprising graphene and carbon nanotubes WO2014021257A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014528141A JP6164695B2 (en) 2012-07-30 2013-07-29 Method for producing composite film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-168715 2012-07-30
JP2012168715 2012-07-30

Publications (1)

Publication Number Publication Date
WO2014021257A1 true WO2014021257A1 (en) 2014-02-06

Family

ID=50027932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070462 WO2014021257A1 (en) 2012-07-30 2013-07-29 Method for producing composite film comprising graphene and carbon nanotubes

Country Status (2)

Country Link
JP (1) JP6164695B2 (en)
WO (1) WO2014021257A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840158A (en) * 2014-03-21 2014-06-04 新疆大学 Preparation method for graphene/molybdenum disulfide composite material
CN104852021A (en) * 2015-03-24 2015-08-19 天津师范大学 Preparation method of graphene/carbon nanotube composite material
JP2015156358A (en) * 2014-02-20 2015-08-27 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 Method for producing graphene based composite negative electrode material, negative electrode material produced thereby, and lithium ion secondary battery
WO2015129820A1 (en) * 2014-02-28 2015-09-03 独立行政法人物質・材料研究機構 Lithium-ion supercapacitor using graphene-cnt hybrid electrode and method for manufacturing said lithium-ion supercapacitor
WO2015112088A3 (en) * 2014-01-27 2015-11-12 Nanyang Technological University Graphene-metal chalcogenide porous material
JP2015220036A (en) * 2014-05-15 2015-12-07 国立大学法人 名古屋工業大学 Air electrode, metal air battery, and carbon nanotube doped with nitrogen and method of manufacturing air electrode
JP2016008155A (en) * 2014-06-24 2016-01-18 国立大学法人信州大学 Carbon nanotube/graphene composite material and production method thereof
CN105984858A (en) * 2015-01-27 2016-10-05 中国科学院苏州纳米技术与纳米仿生研究所 Self-supporting boron nitride nano sheet flexible thin film and preparation method thereof
CN106128784A (en) * 2016-08-26 2016-11-16 重庆文理学院 A kind of molybdenum bisuphide/Graphene hollow compound microsphere and preparation method thereof
CN106229157A (en) * 2016-08-17 2016-12-14 哈尔滨万鑫石墨谷科技有限公司 A kind of polyatom co-doped nano carbon fiber and one one step preparation method and purposes
CN107394184A (en) * 2017-08-11 2017-11-24 福州大学 A kind of molybdenum disulfide/graphene nano belt composite with loose three-dimensional winding arrangement and its preparation method and application
KR20180012948A (en) * 2016-07-28 2018-02-07 연세대학교 산학협력단 Composite including porous grapheme and carbonaceous material
WO2018079604A1 (en) * 2016-10-26 2018-05-03 昭和電工株式会社 Nanocarbon separation membrane, composite nanocarbon separation membrane, and production method for nanocarbon separation membrane
JP2018108918A (en) * 2016-09-29 2018-07-12 ザ・ボーイング・カンパニーThe Boeing Company Fabrication of ceramic matrix composites with carbon nanotubes and graphene
CN108529591A (en) * 2018-05-15 2018-09-14 湘潭大学 A kind of porous carbon nanosheet and its preparation method and application of B, N codope
JP2019157283A (en) * 2018-03-07 2019-09-19 日本ゼオン株式会社 Non-woven fabric and manufacturing method thereof
JP2019157284A (en) * 2018-03-07 2019-09-19 日本ゼオン株式会社 Non-woven fabric and manufacturing method thereof
JP2020515102A (en) * 2016-12-27 2020-05-21 イエダ リサーチ アンド ディベロップメント カンパニー リミテッド Electromechanical resonators based on metal chalcogenide nanotubes
JP2020085890A (en) * 2018-11-16 2020-06-04 肇▲慶▼学院 Method of measuring trace amount of fipronil using electrochemical sensor by carboxy nanosheet @ carboxylated graphite composite film
CN111354848A (en) * 2020-03-26 2020-06-30 西安交通大学 Preparation method of high-performance n-type layered multi-walled carbon nanotube/graphene oxide thermoelectric material in mass production
KR20210054405A (en) * 2019-11-05 2021-05-13 한양대학교 산학협력단 Graphene oxide-carbon nanotube composite, manufacturing method for the same and cement paste comprising the same
EP3690906A4 (en) * 2017-09-27 2021-07-07 National Institute for Materials Science Graphene-containing electrode, method of manufacturing same, and electricity storage device using same
WO2022149454A1 (en) * 2021-01-07 2022-07-14 株式会社Gsユアサ Negative electrode active material for nonaqueous electrolyte power storage elements, negative electrode for nonaqueous electrolyte power storage elements, nonaqueous electrolyte power storage element, and power storage device
CN115745608A (en) * 2022-11-29 2023-03-07 科泽新材料股份有限公司 Method for preparing graphene heat-conducting film by doping carbon nanotubes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110526296A (en) * 2019-09-26 2019-12-03 东华大学 A kind of preparation method of the tungsten disulfide composite film electrode of doped carbon nanometer pipe
KR102488108B1 (en) * 2021-06-01 2023-01-13 연세대학교 산학협력단 Method for manufacturing a separation membrane based on a polar carbon nanotube dispersion and a polar one-dimensional carbon body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278127A (en) * 1986-04-23 1987-12-03 サイモン・フレイザ−・ユニバ−シテイ Novel state of transition metal dichalcogenide
JP2003007232A (en) * 2001-06-22 2003-01-10 Hitachi Ltd Display device and manufacturing method of the display device
JP2003267724A (en) * 2002-03-13 2003-09-25 Kyoritsu Kagaku Sangyo Kk Alternately layered ultrathin film composed of clay mineral-metal, method of manufacturing it and metal ultrathin film
JP2008222765A (en) * 2007-03-09 2008-09-25 Japan Science & Technology Agency Nano structure using ionic curdlan derivative

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278127A (en) * 1986-04-23 1987-12-03 サイモン・フレイザ−・ユニバ−シテイ Novel state of transition metal dichalcogenide
JP2003007232A (en) * 2001-06-22 2003-01-10 Hitachi Ltd Display device and manufacturing method of the display device
JP2003267724A (en) * 2002-03-13 2003-09-25 Kyoritsu Kagaku Sangyo Kk Alternately layered ultrathin film composed of clay mineral-metal, method of manufacturing it and metal ultrathin film
JP2008222765A (en) * 2007-03-09 2008-09-25 Japan Science & Technology Agency Nano structure using ionic curdlan derivative

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. YU ET AL.: "Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors", THE JOURNAL OF PHYSICAL CHEMISTRY LETTRS, vol. 1, 2010, pages 467 - 470 *
M. NUMATA ET AL.: "Creation of Hierarchical Carbon Nanotube Assemblies through Alternative Packing of Complementary Semi-Artificial P-1,3 -Glucan/Carbon Nanotube Composites", CHEMISTRY - A EUROPEAN JOURNAL, vol. 14, 2008, pages 2398 - 2404 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10493426B2 (en) 2014-01-27 2019-12-03 Nanyang Technological University Graphene-metal chalcogenide porous material
WO2015112088A3 (en) * 2014-01-27 2015-11-12 Nanyang Technological University Graphene-metal chalcogenide porous material
JP2015156358A (en) * 2014-02-20 2015-08-27 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 Method for producing graphene based composite negative electrode material, negative electrode material produced thereby, and lithium ion secondary battery
WO2015129820A1 (en) * 2014-02-28 2015-09-03 独立行政法人物質・材料研究機構 Lithium-ion supercapacitor using graphene-cnt hybrid electrode and method for manufacturing said lithium-ion supercapacitor
US10014126B2 (en) 2014-02-28 2018-07-03 National Institute For Materials Science Lithium-ion supercapacitor using graphene-CNT composite electrode and method for manufacturing the same
JPWO2015129820A1 (en) * 2014-02-28 2017-03-30 国立研究開発法人物質・材料研究機構 Li-ion supercapacitor equipped with graphene / CNT composite electrode and manufacturing method thereof
CN103840158A (en) * 2014-03-21 2014-06-04 新疆大学 Preparation method for graphene/molybdenum disulfide composite material
JP2015220036A (en) * 2014-05-15 2015-12-07 国立大学法人 名古屋工業大学 Air electrode, metal air battery, and carbon nanotube doped with nitrogen and method of manufacturing air electrode
JP2016008155A (en) * 2014-06-24 2016-01-18 国立大学法人信州大学 Carbon nanotube/graphene composite material and production method thereof
CN105984858A (en) * 2015-01-27 2016-10-05 中国科学院苏州纳米技术与纳米仿生研究所 Self-supporting boron nitride nano sheet flexible thin film and preparation method thereof
CN104852021B (en) * 2015-03-24 2017-03-22 天津师范大学 Preparation method of graphene/carbon nanotube composite material
CN104852021A (en) * 2015-03-24 2015-08-19 天津师范大学 Preparation method of graphene/carbon nanotube composite material
KR101888743B1 (en) * 2016-07-28 2018-08-14 연세대학교 산학협력단 Composite including porous grapheme and carbonaceous material
KR20180012948A (en) * 2016-07-28 2018-02-07 연세대학교 산학협력단 Composite including porous grapheme and carbonaceous material
CN106229157A (en) * 2016-08-17 2016-12-14 哈尔滨万鑫石墨谷科技有限公司 A kind of polyatom co-doped nano carbon fiber and one one step preparation method and purposes
CN106128784A (en) * 2016-08-26 2016-11-16 重庆文理学院 A kind of molybdenum bisuphide/Graphene hollow compound microsphere and preparation method thereof
JP2018108918A (en) * 2016-09-29 2018-07-12 ザ・ボーイング・カンパニーThe Boeing Company Fabrication of ceramic matrix composites with carbon nanotubes and graphene
JP7046548B2 (en) 2016-09-29 2022-04-04 ザ・ボーイング・カンパニー Manufacture of ceramic matrix composites using carbon nanotubes and graphene
WO2018079604A1 (en) * 2016-10-26 2018-05-03 昭和電工株式会社 Nanocarbon separation membrane, composite nanocarbon separation membrane, and production method for nanocarbon separation membrane
JPWO2018079604A1 (en) * 2016-10-26 2019-06-24 国立大学法人信州大学 Nanocarbon separation membrane, nanocarbon composite separation membrane and method for producing nanocarbon separation membrane
JP2020515102A (en) * 2016-12-27 2020-05-21 イエダ リサーチ アンド ディベロップメント カンパニー リミテッド Electromechanical resonators based on metal chalcogenide nanotubes
US11757428B2 (en) 2016-12-27 2023-09-12 Yeda Research And Development Co. Ltd. Electromechanical resonators based on metal-chalcogenide nanotubes
US11411551B2 (en) 2016-12-27 2022-08-09 Yeda Research And Development Co. Ltd. Electromechanical resonators based on metal-chalcogenide nanotubes
CN107394184B (en) * 2017-08-11 2019-08-09 福州大学 A kind of molybdenum disulfide/graphene nanobelt composite material and preparation method and application with loose three-dimensional winding arrangement
CN107394184A (en) * 2017-08-11 2017-11-24 福州大学 A kind of molybdenum disulfide/graphene nano belt composite with loose three-dimensional winding arrangement and its preparation method and application
US11283065B2 (en) 2017-09-27 2022-03-22 National Institute For Materials Science Graphene-containing electrode, method for manufacturing same, and power storage device using same
EP3690906A4 (en) * 2017-09-27 2021-07-07 National Institute for Materials Science Graphene-containing electrode, method of manufacturing same, and electricity storage device using same
JP2019157283A (en) * 2018-03-07 2019-09-19 日本ゼオン株式会社 Non-woven fabric and manufacturing method thereof
JP2019157284A (en) * 2018-03-07 2019-09-19 日本ゼオン株式会社 Non-woven fabric and manufacturing method thereof
JP7139627B2 (en) 2018-03-07 2022-09-21 日本ゼオン株式会社 Nonwoven fabric and its manufacturing method
CN108529591A (en) * 2018-05-15 2018-09-14 湘潭大学 A kind of porous carbon nanosheet and its preparation method and application of B, N codope
JP2020085890A (en) * 2018-11-16 2020-06-04 肇▲慶▼学院 Method of measuring trace amount of fipronil using electrochemical sensor by carboxy nanosheet @ carboxylated graphite composite film
KR102294440B1 (en) * 2019-11-05 2021-08-26 한양대학교 산학협력단 Graphene oxide-carbon nanotube composite, manufacturing method for the same and cement paste comprising the same
KR20210054405A (en) * 2019-11-05 2021-05-13 한양대학교 산학협력단 Graphene oxide-carbon nanotube composite, manufacturing method for the same and cement paste comprising the same
CN111354848A (en) * 2020-03-26 2020-06-30 西安交通大学 Preparation method of high-performance n-type layered multi-walled carbon nanotube/graphene oxide thermoelectric material in mass production
WO2022149454A1 (en) * 2021-01-07 2022-07-14 株式会社Gsユアサ Negative electrode active material for nonaqueous electrolyte power storage elements, negative electrode for nonaqueous electrolyte power storage elements, nonaqueous electrolyte power storage element, and power storage device
CN115745608A (en) * 2022-11-29 2023-03-07 科泽新材料股份有限公司 Method for preparing graphene heat-conducting film by doping carbon nanotubes
CN115745608B (en) * 2022-11-29 2023-12-22 科泽新材料股份有限公司 Method for preparing graphene heat conduction film by doping carbon nano tube

Also Published As

Publication number Publication date
JPWO2014021257A1 (en) 2016-07-21
JP6164695B2 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
JP6164695B2 (en) Method for producing composite film
Dasari et al. Graphene and derivatives–Synthesis techniques, properties and their energy applications
Zhang et al. Multiscale graphene‐based materials for applications in sodium ion batteries
Pang et al. Applications of 2D MXenes in energy conversion and storage systems
Benzigar et al. Advances on emerging materials for flexible supercapacitors: current trends and beyond
Lipton et al. Layer-by-layer assembly of two-dimensional materials: meticulous control on the nanoscale
Wang et al. Phase transformation guided single-layer β-Co (OH) 2 nanosheets for pseudocapacitive electrodes
Higginbotham et al. Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes
Hu et al. A brief review of graphene–metal oxide composites synthesis and applications in photocatalysis
Guo et al. A green approach to the synthesis of graphene nanosheets
Cruz-Silva et al. Formation of nitrogen-doped graphene nanoribbons via chemical unzipping
Zhao et al. Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications
Li et al. Graphene emerges as a versatile template for materials preparation
Chen et al. Highly conductive and flexible paper of 1D silver-nanowire-doped graphene
Wan et al. Low-temperature aluminum reduction of graphene oxide, electrical properties, surface wettability, and energy storage applications
Wang et al. Ternary self-assembly of ordered metal oxide− graphene nanocomposites for electrochemical energy storage
Kumar et al. Synthesis and characterization of covalently-grafted graphene–polyaniline nanocomposites and its use in a supercapacitor
Jeong et al. Evidence of graphitic AB stacking order of graphite oxides
Zhao et al. Efficient preparation of large-area graphene oxide sheets for transparent conductive films
Mitra et al. A brief review on graphene/inorganic nanostructure composites: materials for the future
Cho et al. Fabrication of high-quality or highly porous graphene sheets from exfoliated graphene oxide via reactions in alkaline solutions
Zhu et al. Direct fabrication of single-walled carbon nanotube macro-films on flexible substrates
Babu et al. Facile synthesis of graphene/N-doped carbon nanowire composites as an effective electrocatalyst for the oxygen reduction reaction
Purwaningsih et al. Preparation of rGO/MnO2 composites through simultaneous graphene oxide reduction by electrophoretic deposition
Dave et al. Characteristics of ultrasonication assisted assembly of gold nanoparticles in hydrazine reduced graphene oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528141

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13826348

Country of ref document: EP

Kind code of ref document: A1