WO2018079604A1 - Nanocarbon separation membrane, composite nanocarbon separation membrane, and production method for nanocarbon separation membrane - Google Patents

Nanocarbon separation membrane, composite nanocarbon separation membrane, and production method for nanocarbon separation membrane Download PDF

Info

Publication number
WO2018079604A1
WO2018079604A1 PCT/JP2017/038512 JP2017038512W WO2018079604A1 WO 2018079604 A1 WO2018079604 A1 WO 2018079604A1 JP 2017038512 W JP2017038512 W JP 2017038512W WO 2018079604 A1 WO2018079604 A1 WO 2018079604A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
graphene oxide
mass
nanocarbon
membrane
Prior art date
Application number
PCT/JP2017/038512
Other languages
French (fr)
Japanese (ja)
Inventor
知行 福世
ゴメス アーロン モレロス
シルバ ロドルフォ クルス
遠藤 守信
Original Assignee
昭和電工株式会社
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社, 国立大学法人信州大学 filed Critical 昭和電工株式会社
Priority to JP2018547721A priority Critical patent/JP6679117B2/en
Publication of WO2018079604A1 publication Critical patent/WO2018079604A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1214Chemically bonded layers, e.g. cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide

Definitions

  • the present invention relates to a nanocarbon separation membrane, a nanocarbon composite separation membrane, and a method for producing a nanocarbon separation membrane.
  • Separation membranes used for water treatment include UF membranes (Ultrafiltration Membrane), NF membranes (Nanofiltration Membrane), RO membranes (Reverse Osmosis Membrane), and There are FO membranes (Forward Osmosis Membrane). Separation membranes are not limited to water treatment, and are widely used for gas separation and the like.
  • Non-Patent Document 1 describes a separation membrane produced by subjecting a dispersion in which graphene oxide pieces are dispersed under reduced pressure.
  • Non-Patent Document 2 describes a separation membrane in which graphene oxide pieces are cross-linked with 1,3,5-benzenetricarbonyl trichloride (TMC).
  • TMC 1,3,5-benzenetricarbonyl trichloride
  • Non-Patent Document 3 describes a method of producing an NF film by filtering a dispersion in which graphene oxide pieces and multi-wall carbon nanotubes (hereinafter referred to as MWCNT) are dispersed under reduced pressure on a porous substrate. ing.
  • MWCNT multi-wall carbon nanotubes
  • the separation membranes described in Non-Patent Document 1 and Non-Patent Document 3 also have a problem that the graphene oxide pieces peel off during use. This is because the graphene oxide pieces are easily dispersed in water or the like.
  • the separation membrane described in Non-Patent Document 2 graphene oxide pieces are cross-linked. Therefore, it is difficult for the graphene oxide pieces to be separated from each other. However, since it is crosslinked by organic molecules, the robustness of the separation membrane cannot be sufficiently increased.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a nanocarbon separation membrane excellent in both water permeability and separation performance.
  • the present inventors have found that a nanocarbon separation membrane having excellent separation performance can be obtained by crosslinking a plurality of graphene oxide pieces with divalent cations and inserting double wall carbon nanotubes between the layers. It was. That is, this invention provides the following means in order to solve the said subject.
  • the first aspect of the present invention is a nanocarbon separation membrane described in the following (1).
  • the nanocarbon separation membrane according to the first aspect of the present invention includes a plurality of graphene oxide pieces that are present so as to overlap each other when viewed in the thickness direction and are cross-linked with each other by a divalent cation, and the plurality of graphene oxide pieces Double wall carbon nanotubes inserted between the layers, wherein the mass ratio of the graphene oxide pieces to the total mass of the graphene oxide pieces and the double wall carbon nanotubes is greater than 0% by mass and less than 70% by mass, The mass ratio is 30% by mass or more and less than 100% by mass.
  • the mass ratio of the graphene oxide pieces to the total mass of the graphene oxide pieces and the double wall carbon nanotubes is 30% by mass to 70% by mass, and the double wall carbon 30 mass% or more and 70 mass% or less may be sufficient as the mass ratio of a nanotube.
  • the divalent cation may be a calcium ion.
  • the second aspect of the present invention is the following nanocarbon composite separation membrane described in (4).
  • a nanocarbon composite separation membrane according to the second aspect of the present invention is disposed on the one surface side of the nanocarbon separation membrane according to any one of (1) to (3) above. And a porous membrane that supports the nanocarbon separation membrane.
  • the nanocarbon separation membrane and the porous membrane may be bonded.
  • the nanocarbon separation membrane and the porous membrane may be bonded together by a polyvinyl alcohol membrane.
  • a third aspect of the present invention is a method for producing a nanocarbon separation membrane described in the following (7).
  • a method for producing a nanocarbon separation membrane according to a third aspect of the present invention includes a step of applying a dispersion in which graphene oxide pieces and double-walled carbon nanotubes are dispersed and drying to form a carbon membrane. Immersing the carbon film in a solution in which divalent cations are dissolved.
  • the nanocarbon separation membrane according to the first aspect of the present invention is excellent in separation performance.
  • FIG. 1 It is a perspective schematic diagram which shows the preferable example of the nanocarbon composite separation membrane which concerns on the 1st aspect of this invention. It is a cross-sectional schematic diagram which shows the preferable example of the nanocarbon composite separation membrane which concerns on the 1st aspect of this invention. It is a scanning electron microscope (SEM) image of a graphene oxide piece simple substance. It is a transmission electron microscope (TEM) image of a graphene oxide piece simple substance. It is a transmission electron microscope (TEM) image of a nanocarbon separation membrane. It is a transmission electron microscope (TEM) image of a nanocarbon separation membrane. It is the figure which showed typically the manufacturing method of the nanocarbon composite separation membrane concerning this embodiment.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • TEM transmission electron microscope
  • TEM transmission electron microscope
  • TEM transmission electron microscope
  • TEM transmission electron microscope
  • the results of FTIR measurement of Reference Comparative Examples 2, 2-1, and 2-2 are shown.
  • the results of Raman spectroscopic measurements of Reference Comparative Examples 2, 2-1, and 2-2 are shown.
  • required by the XPS measurement of the reference comparative example 2-1 is shown.
  • required by the XPS measurement of the reference comparative example 2-2 is shown.
  • required by the XPS measurement of the reference comparative example 2 is shown.
  • required by the XPS measurement of the reference comparative example 2 is shown.
  • required by the XPS measurement of the reference comparative example 2 is shown.
  • Example 4 is a photograph of the surface of a carbon nanocomposite separation membrane after the treatment of Example 4.
  • 2 is a photograph of the surface of the carbon nanocomposite separation membrane after the treatment of Example 1. The result of having performed FTIR measurement before the heating of a polyvinyl alcohol film and after a heating is shown.
  • FIG. 1 is a schematic perspective view of a nanocarbon composite separation membrane according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the nanocarbon composite separation membrane according to the first embodiment of the present invention. In FIG. 1, each component is illustrated separately for easy understanding.
  • the nanocarbon separation membrane 10 is a functional membrane having a high filtration function.
  • the porous membrane 30 is a support membrane that supports the nanocarbon separation membrane 10 and increases the mechanical strength of the nanocarbon composite separation membrane 100 as a whole.
  • the nanocarbon composite separation membrane 100 can be used for both gas phase separation and liquid phase separation depending on the application. Hereinafter, the description will focus on liquid phase separation.
  • the nanocarbon separation membrane 10 includes a graphene oxide (GO (abbreviation of graphene oxide)) piece 1 and a double wall carbon nanotube (hereinafter referred to as “DWCNT” (abbreviation of double wall carbon nanotube)) 2.
  • DWCNT2 is a carbon nanotube having a two-layer structure. DWCNT may have a structure in which at least two carbon nanotubes having different inner diameters overlap each other. Existence of graphene oxide so as to overlap each other when viewed from the thickness direction may mean that at least a part thereof overlaps each other when viewed from the thickness direction.
  • FIG. 3 is a scanning electron microscope (SEM) image of the graphene oxide piece 1 in a single state.
  • FIG. 4 is a transmission electron microscope (TEM) image of the graphene oxide piece 1 in a single state.
  • the graphene oxide piece 1 is a piece of graphene oxide.
  • Graphene oxide is a material in which an oxygen-containing functional group selected from an epoxy group, a carboxyl group, a carbonyl group, a hydroxyl group, and the like is bonded to a monolayer of graphene.
  • Graphene oxide is also known as a material that becomes graphite when reduced.
  • the thickness of the graphene oxide piece 1 is one carbon atom and is about 1 to 1.5 nm.
  • the size of the graphene oxide piece 1 in the in-plane direction can be designed as appropriate.
  • the average diameter in the in-plane direction of the graphene oxide piece 1 shown in FIG. 3 is 12 ⁇ m.
  • the average diameter was determined as follows. First, the dispersion liquid in which the graphene oxide pieces 1 are dispersed is dropped on the Si substrate and dried. Next, the Si substrate is observed with an SEM, and a circumscribed ellipse of the graphene oxide piece 1 is drawn. At this time, the graphene oxide pieces 1 that do not aggregate and cannot draw a circumscribed ellipse are not selected. Then, the major axis of the circumscribed ellipse obtained is measured. The same operation was performed on 90 graphene oxide pieces 1 and the average value was calculated to obtain the average diameter.
  • the graphene oxide piece 1 is partially perforated (see the dotted area in FIG. 4). In other words, one or more holes (openings) may be provided on the surface of the graphene oxide piece 1. This hole functions as a flow path for fluid passing through the nanocarbon separation membrane 10.
  • the diameter and the amount of the holes formed in the graphene oxide piece 1 can be arbitrarily selected, and can be controlled by changing the degree of oxidation of the graphene oxide piece 1.
  • the average diameter of the holes formed in the graphene oxide piece 1 is preferably 0.5 nm or more and 5 nm or less, and more preferably 1 nm or more and 3 nm or less.
  • the area of the pores is preferably 0.5% or more and 5% or less in the area of graphene oxide (GO).
  • FIG. 5 is a transmission electron microscope (TEM) image of a nanocarbon separation membrane, which is a preferred example of the present invention.
  • TEM transmission electron microscope
  • FIG. 6 is a transmission electron microscope (TEM) image of the nanocarbon separation membrane, and is an enlarged view of a part of FIG.
  • TEM transmission electron microscope
  • a part of DWCNT 2 can be confirmed through a hole (see the dotted line region in FIG. 6), and the other part can be confirmed through a carbon atom constituting graphene oxide piece 1. That is, the DWCNT 2 is present behind the graphene oxide piece 1.
  • the hole portion there is a portion where a dot of carbon atoms is confirmed inside the hole. That is, the graphene oxide piece 1 is present behind the DWCNT 2 in the drawing. That is, the DWCNT 2 is sandwiched between the graphene oxide pieces 1 that are present so as to overlap each other when viewed from the thickness direction.
  • DWCNT 2 has a diameter of about several nanometers to several tens of nanometers and is thicker than the thickness of the graphene oxide piece 1. Therefore, when at least one DWCNT 2 is sandwiched between the plurality of graphene oxide pieces 1, the interval between the stacked graphene oxide pieces 1 increases.
  • the diameter of DWCNT2, the innermost inner diameter of DWCNT2, and the length of DWCNT2 may be arbitrarily selected.
  • the average inter-plane distance of the graphene oxide piece is 7.7 mm.
  • the average inter-surface distance becomes 7.7 mm or more.
  • the average inter-surface distance is obtained from a peak value obtained by X-ray diffraction. Note that the average inter-plane distance of the graphene oxide pieces in the nanocarbon separation membrane of the present invention can be arbitrarily changed by changing conditions and the like.
  • the flow path of the fluid passing through the nanocarbon separation membrane 10 increases. That is, in the case of liquid phase separation, water permeability increases.
  • the spread of the average inter-surface distance is in units of ridges and is slight. Therefore, it is possible to avoid the deterioration of the separation characteristics of the separation object.
  • the mass ratio of the graphene oxide piece 1 to the total mass of the graphene oxide pieces and the double wall carbon nanotubes is 70% by mass or less and greater than 0% by mass. Moreover, the mass ratio of DWCNT2 with respect to the total mass of a graphene oxide piece and a double wall carbon nanotube is 30 to 100 mass%. When the ratio of the graphene oxide piece 1 and the DWCNT 2 is within this range, it is possible to avoid that the performance of one of the water permeability or the separation characteristic of the separation object is significantly deteriorated.
  • the mass ratio of the graphene oxide piece 1 to the total mass of the graphene oxide pieces and the double wall carbon nanotubes is preferably 30% by mass or more and 70% by mass or less, and more preferably 40% by mass or more and 70% by mass or less. More preferably, the content is 50% by mass or more and 70% by mass or less.
  • the mass ratio of DWCNT2 to the total mass of graphene oxide pieces and double-walled carbon nanotubes is preferably 30% by mass to 70% by mass, more preferably 30% by mass to 60% by mass, and more preferably 30% by mass. More preferably, the content is from 50% to 50% by weight.
  • the sum total of the mass ratio of the graphene oxide piece 1 and DWCNT2 will be 100 mass%.
  • the plurality of graphene oxide pieces 1 are cross-linked with each other by a divalent cation.
  • the graphene oxide piece 1 has at least one oxygen-containing functional group selected from an epoxy group, a carboxyl group, a carbonyl group, a hydroxyl group, and the like.
  • the divalent cation is coordinated in the vicinity of the oxygen-containing functional group of the graphene oxide pieces 1 and bridges adjacent graphene oxide pieces 1.
  • the graphene oxide piece 1 is highly dispersible in water. Therefore, if the graphene oxide pieces 1 are simply laminated, the graphene oxide pieces 1 may be separated from the nanocarbon separation film 10 when water is passed through. In particular, in the case of cross flow in which water flows in a direction parallel to the membrane surface of the nanocarbon separation membrane 10, the graphene oxide piece 1 is easily peeled off.
  • the divalent cation is not particularly limited as long as it can contribute to crosslinking. From the viewpoint of availability, at least one of calcium ions and magnesium ions is preferable.
  • the nanocarbon separation membrane 10 according to this embodiment is excellent in both water permeability and separation characteristics of the separation object as a separation membrane.
  • the graphene oxide pieces 1 are cross-linked with a divalent cation. For this reason, peeling of the graphene oxide piece 1 is suppressed during use. Therefore, the solution can be supplied to the nanocarbon separation membrane 10 by crossflow.
  • the thickness of the nanocarbon separation membrane may be arbitrarily selected.
  • the porous membrane 30 is disposed on one side of the nanocarbon separation membrane 10.
  • the porous membrane 30 supports the nanocarbon separation membrane 10 and increases the mechanical strength of the nanocarbon composite separation membrane 100 as a whole.
  • the porous film 30 has a hole 31 therein.
  • the hole 31 By having the hole 31 inside, it has water permeability in the thickness direction.
  • the hole part 31 does not need to be a hole part extended in the thickness direction as shown to a figure.
  • a connecting hole in which a plurality of minute holes are connected may be used.
  • porous membrane 30 a known porous substrate can be selected and used as long as it has water permeability and mechanical strength.
  • a resin film made of polyimide, polysulfone, polyethersulfone, or the like and having communication holes, porous alumina, or the like can be used as the porous film 30.
  • the adhesive layer 20 described later is formed by crosslinking with heat or light, it is particularly preferable to use polysulfone having high heat resistance.
  • the thickness of the porous membrane may be arbitrarily selected.
  • the adhesive layer 20 adheres the nanocarbon separation membrane 10 and the porous membrane 30.
  • a material capable of adhering the nanocarbon separation membrane 10 and the porous membrane 30 without significantly inhibiting water permeability can be used.
  • the adhesive layer material can be selected arbitrarily.
  • polyvinyl alcohol or the like can be used. Uncrosslinked polyvinyl alcohol is provided between the nanocarbon separation membrane 10 and the porous membrane 30, and these can be bonded by crosslinking the polyvinyl alcohol.
  • the nanocarbon separation membrane 10 When performing a dead-end flow in which liquid is passed from a direction perpendicular to the in-plane direction of the nanocarbon composite separation membrane 100, the nanocarbon separation membrane 10 hardly peels from the porous membrane 30. On the other hand, when performing the cross flow which lets a liquid flow from a parallel direction with respect to the in-plane direction of the nanocarbon composite separation membrane 100, the nanocarbon separation membrane 10 becomes easy to peel from the porous membrane 30. Therefore, in the case where liquid is passed through the nanocarbon composite separation membrane 100 by crossflow, it is particularly preferable to provide the adhesive layer 20.
  • the thickness of the adhesive layer may be arbitrarily selected.
  • the nanocarbon composite separation membrane 100 includes the nanocarbon separation membrane 10 having excellent water permeability and separation characteristics of the separation object. For this reason, it has excellent separation characteristics.
  • the mechanical strength of the nanocarbon composite separation membrane 100 can be increased by supporting one surface of the nanocarbon separation membrane 10 with the porous membrane 30. Furthermore, by bonding the nanocarbon separation membrane 10 and the porous membrane 30 with the adhesive layer 20, it is possible to prevent the nanocarbon separation membrane 10 from being peeled off during use.
  • FIG. 7 is a view schematically showing a method for producing a nanocarbon composite separation membrane according to the present embodiment.
  • the nanocarbon composite separation membrane 100 includes a step of forming the adhesive layer 20 on one surface of the porous membrane 30, and an adhesive layer 20. Forming a nanocarbon separation membrane 10 on the surface on which is formed.
  • the nanocarbon separation membrane 10 includes a step of applying a dispersion liquid in which graphene oxide pieces 1 and DWCNT2 are dispersed to the surface of the porous membrane 30 on which the adhesive layer 20 is formed, and drying to form a carbon membrane; Dipping the membrane in a solution in which divalent cations are dissolved.
  • the thickness of the graphene oxide piece 1 used for production can be arbitrarily selected, but is preferably about 1 to 1.5 nm. You may select arbitrarily the average diameter (outer diameter) of DWCNT2 used for manufacture. Further, the innermost inner diameter of the DWCNT 2 may be arbitrarily selected. The length of DWCNT2 may be arbitrarily selected.
  • the mass ratio of the graphene oxide piece 1 to the total mass of the graphene oxide piece 1 and the DWCNT 2 can be arbitrarily selected, but is preferably 30% by mass or more and 70% by mass or less, for example, 40% by mass or more and 70% More preferably, it is 50 mass% or less, and it is especially preferable that it is 50 to 70 mass%.
  • the mass ratio of DWCNT2 to the total mass of graphene oxide pieces and double-walled carbon nanotubes can be arbitrarily selected, but is preferably 30% by mass to 70% by mass, and more preferably 30% by mass to 60% by mass. Is more preferable, and 30% by mass or more and 50% by mass or less is particularly preferable.
  • a porous film 30 is prepared.
  • the porous membrane 30 is selected from the above-described ones.
  • the adhesive layer 20 is formed on one surface of the porous film 30.
  • the adhesive layer 20 can be formed by means such as coating.
  • the adhesive layer 20 can be formed on one surface of the porous film 30 by immersing the porous film 30 in an aqueous polyvinyl alcohol solution, or applying the aqueous solution to the film and drying it.
  • the dispersion 11 in which the graphene oxide pieces 1 and the DWCNTs 2 are dispersed is applied to the surface on which the adhesive layer 20 is formed.
  • the application method is not particularly limited. You may use it arbitrarily selecting from well-known methods. For example, when spray coating is performed from the nozzle, a shearing force is applied to the dispersion 11 at the nozzle tip, and the dispersibility of the graphene oxide pieces 1 and the DWCNT 2 is increased.
  • the dispersion 11 is obtained, for example, by mixing a first dispersion in which the graphene oxide pieces 1 are dispersed and a second dispersion in which DWCNT2 is dispersed.
  • the first dispersion is obtained by the following procedure, for example.
  • the graphene oxide piece 1 is obtained by a known method (for example, a method described in Patent Document 1 or Non-Patent Document 4) using graphite as a raw material.
  • the graphene oxide piece 1 is highly dispersible in water. For this reason, a 1st dispersion liquid is obtained only by adding to water.
  • DWCNT2 is produced.
  • DWCNT2 can be produced by a general synthesis method.
  • CVD methods include a substrate method and a gas phase flow method.
  • the substrate method includes a method of synthesizing carbon nanotubes on a substrate on which a metal layer having a thickness of several nanometers to several ⁇ m is deposited, and a method of synthesizing carbon nanotubes by supporting transition metal part particles on a simple substance such as zeolite or ceramic. .
  • the gas phase flow method is a method of synthesizing carbon nanotubes by reacting catalyst fine particles and a raw material gas in a high temperature zone in a reaction tube.
  • the catalyst fine particles are obtained by spraying the precursor compound onto the reaction tube and thermally decomposing the precursor compound at the reaction tube inlet.
  • the catalyst fine particles and the raw material gas are sent into the reaction tube by the carrier gas.
  • a method for producing DWCNT described in Patent Document 2, Patent Document 3, and the like is given as an example.
  • the DWCNT 2 thus produced is added to an aqueous solution selected as necessary to obtain a second dispersion.
  • aqueous solution for example, a sodium polystyrene sulfonate (PSS) aqueous solution, a sodium dodecyl sulfate aqueous solution, a sodium deoxycholate aqueous solution, or the like can be used.
  • PSS sodium polystyrene sulfonate
  • a sodium dodecyl sulfate aqueous solution a sodium deoxycholate aqueous solution, or the like
  • the first dispersion and the second dispersion are mixed and diluted if necessary to obtain the dispersion 11.
  • the coated dispersion 11 is dried, for example, naturally dried to obtain a carbon film.
  • the carbon film is preferably heated together with the porous film 30.
  • the adhesive layer is cross-linked by heat
  • polyvinyl alcohol when used as the adhesive layer, the polyvinyl alcohol of the adhesive layer 20 is cross-linked by heating, and the adhesion between the carbon film and the porous film 30 is increased. Also exhibits water resistance. Also, excess water can be removed.
  • the carbon film formed by applying the dispersion 11 is immersed in a solution in which divalent cations are dissolved.
  • divalent cations for example, when calcium ions are used as divalent cations, they are immersed in a solution in which calcium chloride is dissolved.
  • the solvent of the solution may be arbitrarily selected.
  • the divalent cation can be arbitrarily selected, and examples thereof include calcium ions and magnesium ions.
  • a predetermined nanocarbon separation membrane can be easily obtained.
  • a nanocarbon composite separation membrane can be easily obtained by using this method for producing a nanocarbon separation membrane.
  • the fluid of the nanocarbon separation membrane can be obtained simply by mixing the first dispersion in which the graphene oxide pieces 1 are dispersed and the second dispersion in which the DWCNT2 is dispersed. It is possible to control the flow path through which the gas flows. That is, the water permeability and separation performance of the nanocarbon separation membrane can be easily controlled.
  • the nanocarbon separation membrane can be produced by applying a dispersion liquid. Therefore, it is easy to increase the area of the nanocarbon separation membrane.
  • the nanocarbon separation membrane, the nanocarbon composite separation membrane, and the method for producing the nanocarbon separation membrane have been described above.
  • the present invention may be variously modified without changing the gist of the invention.
  • Example 1 As Example 1, a nanocarbon composite separation membrane having a nanocarbon separation membrane composed of 30% by mass of graphene oxide pieces and 70% by mass of DWCNT was prepared. Specifically, the nanocarbon composite separation membrane of Example 1 was produced by the following procedure.
  • a first dispersion in which graphene oxide pieces having an average diameter of 12 ⁇ m were dispersed was prepared using graphite (product number 332461 manufactured by Sigma-Aldrich) as a raw material.
  • the first dispersion was prepared as follows.
  • the liquid that was allowed to stand was separated into a supernatant and a precipitate.
  • the supernatant was removed by decantation to obtain a precipitate.
  • the obtained precipitate was added to a 5% by mass H 2 SO 4 aqueous solution (1 L) and dispersed.
  • the operation of adding the dispersion into pure water, centrifuging, and then dispersing in pure water was repeated 5 times to clean the dispersion medium.
  • the precipitate after centrifugation becomes two layers.
  • the lower layer was graphite that was not exfoliated from each other, and the upper layer was that the exfoliated graphene oxide pieces absorbed water.
  • a first dispersion having a solid content concentration of 0.9% by mass was obtained.
  • the obtained first dispersion was diluted with water and dropped onto the Si substrate and dried, the sample was observed by SEM. As a result, the average diameter of the graphene oxide pieces was 12 ⁇ m.
  • DWCNT outer diameter 1.8 nm, inner diameter 1.2 nm by TEM observation
  • the diameter of DWCNT in the second dispersion was about several nm.
  • the obtained first dispersion and second dispersion were mixed and diluted to obtain a dispersion.
  • nanocarbon composed of graphene oxide pieces and DWCNT is dispersed.
  • the composition ratio of the nanocarbon in the dispersion was 30% by mass for graphene oxide pieces and 70% by mass for DWCNT.
  • the concentration of nanocarbon relative to the solvent was 0.8 mg / mL.
  • a commercially available polysulfone membrane (Alfa Label: GR40PP, size 50 mm ⁇ 50 mm) was prepared as a porous membrane. Then, the polysulfone film was immersed in a 1% by mass aqueous polyvinyl alcohol solution (manufactured by Sigma-Aldrich: molecular weight 31,000-50,000, 98-99% saponified product) for 1 hour. The polysulfone membrane after immersion was air-dried in an upright state. As a result, polyvinyl alcohol was coated on the surface of the polysulfone film.
  • the dispersion was sprayed onto the porous film coated with polyvinyl alcohol using an air brush (manufactured by Anest Iwata: HP-BCS). Thereafter, the porous film was dried in an air atmosphere at 100 ° C. for 1 hour. At this time, the polyvinyl alcohol was cross-linked, and the porous film and the carbon film formed by drying the dispersion were adhered.
  • the obtained laminated film was immersed in a calcium chloride solution for 1 hour.
  • the calcium chloride solution had a calcium chloride concentration of 5% by mass, and the solvent of the calcium chloride solution was a mixture of ethanol and water in a volume ratio of 1: 3.
  • the laminated film after immersion was dried. The drying was performed by air-drying, then immersed in ethanol for 1 hour and then air-dried again.
  • Example 2 nanocarbon composite separation membranes were prepared in the same procedure as in Example 1 except that the mixing ratio of the first dispersion and the second dispersion was changed.
  • the composition ratio of the obtained nanocarbon separation membrane is as follows.
  • Example 2 Graphene oxide pieces (50 mass%), DWCNT (50 mass%)
  • Example 3 Graphene oxide pieces (70 mass%), DWCNT (30 mass%)
  • Comparative Example 1 a nanocarbon composite separation membrane was prepared in the same procedure as in Example 1 except that the mixing ratio of the first dispersion and the second dispersion was changed.
  • the composition ratio of the nanocarbon separation membrane of Comparative Example 1 was 90% by mass of graphene oxide pieces and 10% by mass of DWCNT.
  • Comparative Example 2 In Comparative Example 2, a nanocarbon composite separation membrane was prepared in the same procedure as in Example 1 except that only the first dispersion was used and the second dispersion was not used. That is, the composition ratio of the nanocarbon separation membrane of Comparative Example 2 was 100% by mass of graphene oxide pieces.
  • Comparative Example 3 a nanocarbon composite separation membrane was prepared in the same procedure as in Example 1 except that only the second dispersion liquid was used and the first dispersion liquid was not used. That is, the composition ratio of the nanocarbon separation membrane of Comparative Example 3 was set to 100% by mass of DWCNT.
  • the water permeability was calculated from the results of water permeability measurement at a pressure of 5.0 MPa.
  • the NaCl removal rate was obtained by cutting out the membrane into a circle having a diameter of 25 mm and using a cross flow filter (manufactured by Tosk Corporation).
  • NaCl removal rate [%] ⁇ 1-NaCl concentration of permeated water [mass%] / NaCl concentration of raw water [mass%] ⁇ ⁇ 100
  • Table 1 shows the measurement results.
  • GO indicates graphene oxide pieces
  • DWCNT indicates double wall carbon nanotubes
  • PVA indicates polyvinyl alcohol.
  • the nanocarbon composite separation membranes of Examples 1 to 3 in which the ratio of the graphene oxide pieces to DWCNT is in a predetermined range are more permeable than the nanocarbon composite separation membranes of Comparative Examples 1 and 2.
  • the amount was greatly improved.
  • the NaCl removal rate slightly decreased, depending on the application, about 40% was sufficient, and a sufficient NaCl removal rate was exhibited.
  • Applications include, for example, nanofiltration membranes for divalent ion removal and organic matter separation. In Comparative Example 3 consisting only of DWCNT, water freely flowed and no desalting performance was confirmed.
  • Reference Comparative Example 2-1 The sample of Reference Comparative Example 2 was immersed before being immersed in the calcium chloride solution, and the sample was heated at 100 ° C. (hereinafter referred to as Reference Comparative Example 2-2: No immersion in the calcium chloride solution) ) And three samples.
  • Reference Comparative Example 2 the dispersion used in Comparative Example 2 was applied on a Si substrate instead of the porous film, and the same procedure including immersion in a calcium chloride solution was performed. A separation membrane was formed.
  • a reference comparative example what was formed on the Si substrate will be referred to as a reference comparative example.
  • Reference Comparative Example 2 corresponds to one produced under the same conditions as Comparative Example 2, and the other reference examples and reference comparative examples also have the same correspondence.
  • FIG. 8 shows the results of FTIR measurement of Reference Comparative Examples 2, 2-1, and 2-2.
  • FTIR was performed by the total reflection measurement (ATR) method.
  • the comparative example 2 in which the CaCl 2 treatment was performed has the intensity of the C—O and C ⁇ O peaks compared to the reference comparative example 2-1 before the treatment. It's down. This is because the relative intensity of C—O and C ⁇ O peak with respect to the C ⁇ C peak is reduced by coordination of Ca 2+ ions with oxygen ions.
  • FIG. 9 shows the results of Raman spectroscopic measurement in Reference Comparative Examples 2, 2-1, and 2-2.
  • the D (1350 cm ⁇ 1 ) / G (1600 cm ⁇ 1 ) ratio in the result of Raman spectroscopic measurement was 0.92 in Reference Comparative Example 2-1, 0.84 in Reference Comparative Example 2-2, and 0 in Reference Comparative Example 2. .87.
  • Reference Comparative Example 2-2 is obtained by heating Reference Comparative Example 2-1 at 100 ° C., and it is considered that a part of the graphene oxide was reduced by heating and approached the graphite structure.
  • the D / G ratio of the reference comparative example 2 is large. It is considered that the disorder of the crystal arrangement was caused by the coordination of calcium ions.
  • 10A to 10C show analysis results of C1s spectra obtained by XPS measurement in Reference Comparative Examples 2, 2-1, and 2-2.
  • 10A shows the analysis result of Reference Comparative Example 2-1
  • FIG. 10B shows the analysis result of Reference Comparative Example 2-2
  • FIG. 10C shows the analysis result of Reference Comparative Example 2.
  • FIG. 11A and 11B show the analysis results of the Cl2p spectrum and Ca2p spectrum obtained by XPS measurement in Reference Comparative Example 2.
  • FIG. 11A shows the analysis result of the Cl2p spectrum
  • FIG. 11B shows the analysis result of the Ca2p spectrum.
  • Example 4 differs from Example 1 in that the polysulfone film is not immersed in an aqueous polyvinyl alcohol solution in the production process of Example 1.
  • a 0.2% concentration sodium chloride aqueous solution was fed to the carbon nanocomposite separation membranes of Example 1 and Example 4 at a flow rate of 300 ml / min at a pressure of 2 to 5 MPa by cross flow.
  • FIG. 12A and 12B are photographs of the surface of the carbon nanocomposite separation membrane after the treatment in Example 1 and Example 4.
  • FIG. 12A is a photograph of the surface of the carbon nanocomposite separation membrane of Example 4 23 hours after the start of supplying the sodium chloride aqueous solution.
  • FIG. 12B is a surface photograph of the carbon nanocomposite separation membrane of Example 1 after 70 hours from the start of supply of the sodium chloride aqueous solution.
  • the carbon nanoseparation membrane is peeled off by the flow of the supplied liquid (portion shown by the arrow in FIG. 12A).
  • the carbon nanocomposite separation membrane of Example 1 did not peel off.
  • the adhesive layer it is possible to suppress the separation of the carbon nanoseparation membrane from the carbon nanocomposite separation membrane.
  • the liquid is supplied to the carbon nanocomposite separation membrane by crossflow, it is preferable to provide an adhesive layer.
  • a liquid or gas is supplied in a dead end flow, it can be used without an adhesive layer.
  • FIG. 13 shows the results of FTIR measurement before and after heating polyvinyl alcohol. As shown in FIG. 13, when normalized by the 854 cm ⁇ 1 peak, the peak at 1141 cm ⁇ 1 increased. This indicates the curing of the polyvinyl alcohol film by heat. That is, the polyvinyl alcohol film is sufficiently crosslinked when it is dried for 1 hour in an atmosphere of 100 degrees.
  • An object of the present invention is to provide a nanocarbon separation membrane excellent in both water permeability and separation performance.
  • Nanocarbon separation membrane 1 Graphene oxide pieces, 2 Double wall carbon nanotube (DWCNT), 10 Nanocarbon separation membrane, 11 Dispersion 20 Adhesive layer, 30 porous membrane, 31 holes, 100 Nanocarbon composite separation membrane

Abstract

This nanocarbon separation membrane is provided with a plurality of graphene oxide pieces that are provided in a mutually overlapping manner when viewed from the thickness direction and that are cross-linked together by divalent cations, and double-walled carbon nanotubes that are inserted between the layers of the plurality of graphene oxide pieces. Relative to the total mass of the graphene oxide pieces and the double-walled carbon nanotubes, the mass ratio of the graphene oxide pieces is more than 0 mass% to 70 mass%, and the mass ratio of the double-walled carbon nanotubes is 30 mass% to less than 100 mass%.

Description

ナノカーボン分離膜、ナノカーボン複合分離膜及びナノカーボン分離膜の製造方法Nanocarbon separation membrane, nanocarbon composite separation membrane, and method for producing nanocarbon separation membrane
 本発明は、ナノカーボン分離膜、ナノカーボン複合分離膜及びナノカーボン分離膜の製造方法に関する。
 本願は、2016年10月26日に、日本に出願された特願2016-209841号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a nanocarbon separation membrane, a nanocarbon composite separation membrane, and a method for producing a nanocarbon separation membrane.
This application claims priority based on Japanese Patent Application No. 2016-209841 filed in Japan on October 26, 2016, the contents of which are incorporated herein by reference.
 水処理に用いられる分離膜(水処理膜)には、UF膜(Ultrafiltration Membrane:限外ろ過膜)、NF膜(Nanofiltration Membrane:ナノろ過膜)、RO膜(ReverseOsmosis Membrane:逆浸透膜)、及びFO膜(Forward Osmosis Membrane:正浸透膜)などがある。また分離膜は水処理に限られず、ガスの分離等にも広く用いられている。 Separation membranes (water treatment membranes) used for water treatment include UF membranes (Ultrafiltration Membrane), NF membranes (Nanofiltration Membrane), RO membranes (Reverse Osmosis Membrane), and There are FO membranes (Forward Osmosis Membrane). Separation membranes are not limited to water treatment, and are widely used for gas separation and the like.
 近年、耐薬品性、耐熱性、及び耐久性等のロバスト性(robustness)を高めるために、分離膜にナノカーボン材料を用いる検討が進められている。 In recent years, in order to improve robustness such as chemical resistance, heat resistance, and durability, studies using nanocarbon materials for separation membranes are in progress.
 例えば、非特許文献1には、酸化グラフェン片が分散した分散液を減圧濾過して作製した分離膜が記載されている。また例えば、非特許文献2には、酸化グラフェン片を1,3,5-ベンゼントリカルボニルトリクロライド(TMC)で架橋した分離膜が記載されている。また例えば、非特許文献3には、酸化グラフェン片とマルチウォールカーボンナノチューブ(以下、MWCNTという)とが分散した分散液を多孔質基材上で減圧濾過し、NF膜を作製する方法が記載されている。
 なお酸化グラフェン片の製造方法としては、グラファイトを原料とした方法が知られている(例えば、特許文献1や非特許文献4に記載の方法参照)。
For example, Non-Patent Document 1 describes a separation membrane produced by subjecting a dispersion in which graphene oxide pieces are dispersed under reduced pressure. For example, Non-Patent Document 2 describes a separation membrane in which graphene oxide pieces are cross-linked with 1,3,5-benzenetricarbonyl trichloride (TMC). Further, for example, Non-Patent Document 3 describes a method of producing an NF film by filtering a dispersion in which graphene oxide pieces and multi-wall carbon nanotubes (hereinafter referred to as MWCNT) are dispersed under reduced pressure on a porous substrate. ing.
In addition, as a manufacturing method of a graphene oxide piece, the method using graphite as a raw material is known (for example, refer to the method described in Patent Literature 1 and Non-Patent Literature 4).
特開2014-201492号公報JP 2014-201492 A 特開2013-18673号公報JP 2013-18673 A 特開2005-343726号公報JP 2005-343726 A
 しかしながら、いずれの分離膜もその特性が充分とは言えなかった。分離膜に求められる性能や特性の一つとして、透水性能と、分離対象物の分離性能がある。これらは、いずれか一方を高めようとすると、他方が低下する相関関係を有し、透水性能と分離対象物の分離性能の両方を充分満たす分離膜は得られていなかった。 However, none of the separation membranes has sufficient characteristics. As one of the performance and characteristics required for the separation membrane, there are water permeability performance and separation performance of the separation object. These have a correlation in which when one of them is increased, the other decreases, and a separation membrane that sufficiently satisfies both the water permeation performance and the separation performance of the separation object has not been obtained.
 また非特許文献1及び非特許文献3に記載の分離膜は、酸化グラフェン片が使用途中に剥離するという問題も有する。酸化グラフェン片は、水等に分散しやすいためである。一方、非特許文献2に記載の分離膜は、酸化グラフェン片同士が架橋されている。そのため、酸化グラフェン片同士が剥離することは生じにくい。しかしながら、有機分子により架橋しているため、分離膜のロバスト性を充分高めることができない。 Further, the separation membranes described in Non-Patent Document 1 and Non-Patent Document 3 also have a problem that the graphene oxide pieces peel off during use. This is because the graphene oxide pieces are easily dispersed in water or the like. On the other hand, in the separation membrane described in Non-Patent Document 2, graphene oxide pieces are cross-linked. Therefore, it is difficult for the graphene oxide pieces to be separated from each other. However, since it is crosslinked by organic molecules, the robustness of the separation membrane cannot be sufficiently increased.
 本発明は、上記事情に鑑みてなされたものであり、透水性と分離性能とが共に優れたナノカーボン分離膜を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a nanocarbon separation membrane excellent in both water permeability and separation performance.
 本発明者らは、二価のカチオンにより複数の酸化グラフェン片を架橋し、その層間にダブルウォールカーボンナノチューブが挿入されていることで、分離性能に優れたナノカーボン分離膜が得られることを見出した。すなわち、本発明は、上記課題を解決するため、以下の手段を提供する。 The present inventors have found that a nanocarbon separation membrane having excellent separation performance can be obtained by crosslinking a plurality of graphene oxide pieces with divalent cations and inserting double wall carbon nanotubes between the layers. It was. That is, this invention provides the following means in order to solve the said subject.
 本発明の第一の態様は、以下の(1)に述べるナノカーボン分離膜である。
(1)本発明の第一の態様のナノカーボン分離膜は、厚み方向からみて互いに重なり合うように存在し、二価のカチオンによって互いに架橋された複数の酸化グラフェン片と、前記複数の酸化グラフェン片の層間に挿入されたダブルウォールカーボンナノチューブと、を備え、酸化グラフェン片及びダブルウォールカーボンナノチューブの合計質量に対する酸化グラフェン片の質量比が0質量%より大きく70質量%以下であり、ダブルウォールカーボンナノチューブの質量比が30質量%以上100質量%未満である。
The first aspect of the present invention is a nanocarbon separation membrane described in the following (1).
(1) The nanocarbon separation membrane according to the first aspect of the present invention includes a plurality of graphene oxide pieces that are present so as to overlap each other when viewed in the thickness direction and are cross-linked with each other by a divalent cation, and the plurality of graphene oxide pieces Double wall carbon nanotubes inserted between the layers, wherein the mass ratio of the graphene oxide pieces to the total mass of the graphene oxide pieces and the double wall carbon nanotubes is greater than 0% by mass and less than 70% by mass, The mass ratio is 30% by mass or more and less than 100% by mass.
(2)上記(1)に記載のナノカーボン分離膜において、酸化グラフェン片及びダブルウォールカーボンナノチューブとの合計質量に対する酸化グラフェン片の質量比が30質量%以上70質量%以下であり、ダブルウォールカーボンナノチューブの質量比が30質量%以上70質量%以下であってもよい。 (2) In the nanocarbon separation membrane according to (1), the mass ratio of the graphene oxide pieces to the total mass of the graphene oxide pieces and the double wall carbon nanotubes is 30% by mass to 70% by mass, and the double wall carbon 30 mass% or more and 70 mass% or less may be sufficient as the mass ratio of a nanotube.
(3)上記(1)または(2)のいずれかに記載のナノカーボン分離膜において、前記二価のカチオンが、カルシウムイオンであってもよい。 (3) In the nanocarbon separation membrane according to (1) or (2) above, the divalent cation may be a calcium ion.
本発明の第二の態様は、(4)に述べる以下のナノカーボン複合分離膜である。
(4)本発明の第二の態様のナノカーボン複合分離膜は、上記(1)~(3)のいずれか一つに記載のナノカーボン分離膜と、前記ナノカーボン分離膜の一面側に配設され、前記ナノカーボン分離膜を支持する多孔質膜と、を有する。
The second aspect of the present invention is the following nanocarbon composite separation membrane described in (4).
(4) A nanocarbon composite separation membrane according to the second aspect of the present invention is disposed on the one surface side of the nanocarbon separation membrane according to any one of (1) to (3) above. And a porous membrane that supports the nanocarbon separation membrane.
(5)上記(4)に記載のナノカーボン複合分離膜において、前記ナノカーボン分離膜と前記多孔質膜とが、接着されていてもよい。 (5) In the nanocarbon composite separation membrane according to (4) above, the nanocarbon separation membrane and the porous membrane may be bonded.
(6)上記(5)に記載のナノカーボン複合分離膜において、前記ナノカーボン分離膜と前記多孔質膜とが、ポリビニルアルコール膜によって接着されていてもよい。 (6) In the nanocarbon composite separation membrane according to (5) above, the nanocarbon separation membrane and the porous membrane may be bonded together by a polyvinyl alcohol membrane.
本発明の第三の態様は、以下の(7)に述べるナノカーボン分離膜の製造方法である。
(7)本発明の第三の態様のナノカーボン分離膜の製造方法は、酸化グラフェン片と、ダブルウォールカーボンナノチューブと、が分散した分散液を塗付、乾燥し、カーボン膜を形成する工程と、前記カーボン膜を二価のカチオンが溶解した溶液に浸漬する工程と、を有する。
A third aspect of the present invention is a method for producing a nanocarbon separation membrane described in the following (7).
(7) A method for producing a nanocarbon separation membrane according to a third aspect of the present invention includes a step of applying a dispersion in which graphene oxide pieces and double-walled carbon nanotubes are dispersed and drying to form a carbon membrane. Immersing the carbon film in a solution in which divalent cations are dissolved.
 本発明の第一の態様に係るナノカーボン分離膜は、分離性能に優れる。 The nanocarbon separation membrane according to the first aspect of the present invention is excellent in separation performance.
本発明の第一の態様に係るナノカーボン複合分離膜の好ましい例を示す斜視模式図である。It is a perspective schematic diagram which shows the preferable example of the nanocarbon composite separation membrane which concerns on the 1st aspect of this invention. 本発明の第一の態様に係るナノカーボン複合分離膜の好ましい例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the preferable example of the nanocarbon composite separation membrane which concerns on the 1st aspect of this invention. 酸化グラフェン片単体の走査型電子顕微鏡(SEM)画像である。It is a scanning electron microscope (SEM) image of a graphene oxide piece simple substance. 酸化グラフェン片単体の透過型電子顕微鏡(TEM)画像である。It is a transmission electron microscope (TEM) image of a graphene oxide piece simple substance. ナノカーボン分離膜の透過型電子顕微鏡(TEM)画像である。It is a transmission electron microscope (TEM) image of a nanocarbon separation membrane. ナノカーボン分離膜の透過型電子顕微鏡(TEM)画像である。It is a transmission electron microscope (TEM) image of a nanocarbon separation membrane. 本実施形態にかかるナノカーボン複合分離膜の製造方法を模式的に示した図である。It is the figure which showed typically the manufacturing method of the nanocarbon composite separation membrane concerning this embodiment. 参考比較例2、2-1,2-2のFTIR測定の結果を示す。The results of FTIR measurement of Reference Comparative Examples 2, 2-1, and 2-2 are shown. 参考比較例2、2-1,2-2のラマン分光測定の結果を示す。The results of Raman spectroscopic measurements of Reference Comparative Examples 2, 2-1, and 2-2 are shown. 参考比較例2-1のXPS測定により求められたC1sスペクトルの分析結果を示す。The analysis result of the C1s spectrum calculated | required by the XPS measurement of the reference comparative example 2-1 is shown. 参考比較例2-2のXPS測定により求められたC1sスペクトルの分析結果を示す。The analysis result of the C1s spectrum calculated | required by the XPS measurement of the reference comparative example 2-2 is shown. 参考比較例2のXPS測定により求められたC1sスペクトルの分析結果を示す。The analysis result of the C1s spectrum calculated | required by the XPS measurement of the reference comparative example 2 is shown. 参考比較例2のXPS測定により求められたCl2pスペクトルの分析結果を示す。The analysis result of the Cl2p spectrum calculated | required by the XPS measurement of the reference comparative example 2 is shown. 参考比較例2のXPS測定により求められたCa2pスペクトルの分析結果を示す。The analysis result of the Ca2p spectrum calculated | required by the XPS measurement of the reference comparative example 2 is shown. 実施例4の処理後のカーボンナノ複合分離膜の表面の写真である。4 is a photograph of the surface of a carbon nanocomposite separation membrane after the treatment of Example 4. 実施例1の処理後のカーボンナノ複合分離膜の表面の写真である。2 is a photograph of the surface of the carbon nanocomposite separation membrane after the treatment of Example 1. ポリビニルアルコール膜の加熱前及び加熱後にFTIR測定を行った結果を示す。The result of having performed FTIR measurement before the heating of a polyvinyl alcohol film and after a heating is shown.
 以下に本願発明の好ましい例や好ましい実施形態について説明する。なお本発明はこれら例や実施形態のみに限定されるものではない。本発明の範囲内において、必要に応じて好ましく変更及び/又は追加することも可能である。特に制限の無い限り、数、量、材料、形状、位置、種類などを必要に応じて変更、追加、省略してもよい。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上、部分や構成を拡大や縮小や変形や省略をして示している場合がある。
<ナノカーボン複合分離膜>
 図1は、本発明の第一の態様に係るナノカーボン複合分離膜の斜視模式図である。図2は、本発明の第一の態様に係るナノカーボン複合分離膜の断面模式図である。図1では、理解を容易にするために、各構成要素を離して図示している。
Preferred examples and preferred embodiments of the present invention will be described below. In addition, this invention is not limited only to these examples and embodiment. Within the scope of the present invention, modifications and / or additions can be made as necessary. As long as there is no restriction | limiting in particular, you may change, add, and abbreviate | omit number, quantity, material, a shape, a position, a kind, etc. as needed. Note that in the drawings used in the following description, in order to make the features easy to understand, for the sake of convenience, portions and configurations may be shown enlarged, reduced, modified, or omitted.
<Nanocarbon composite separation membrane>
FIG. 1 is a schematic perspective view of a nanocarbon composite separation membrane according to the first embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of the nanocarbon composite separation membrane according to the first embodiment of the present invention. In FIG. 1, each component is illustrated separately for easy understanding.
 図1及び図2に示すナノカーボン複合分離膜100は、ナノカーボン分離膜10と、接着層20と、多孔質膜30とを有する。ナノカーボン分離膜10は、高いろ過機能を有する機能膜である。多孔質膜30はナノカーボン分離膜10を支持し、ナノカーボン複合分離膜100全体としての機械的強度を高める支持膜である。ナノカーボン複合分離膜100は、気相分離、液相分離のいずれにも用途に応じて用いることができる。以下、液相分離を中心に説明する。 1 and 2 includes a nanocarbon separation membrane 10, an adhesive layer 20, and a porous membrane 30. The nanocarbon separation membrane 10 is a functional membrane having a high filtration function. The porous membrane 30 is a support membrane that supports the nanocarbon separation membrane 10 and increases the mechanical strength of the nanocarbon composite separation membrane 100 as a whole. The nanocarbon composite separation membrane 100 can be used for both gas phase separation and liquid phase separation depending on the application. Hereinafter, the description will focus on liquid phase separation.
(ナノカーボン分離膜)
 ナノカーボン分離膜10は、酸化グラフェン(GO(Graphene oxideの略))片1と、ダブルウォールカーボンナノチューブ(以下、「DWCNT」という。(Double Wall Carbon Nanotubeの略))2と、を備える。DWCNT2は、2層構造のカーボンナノチューブである。DWCNTは少なくとも内径の異なる2つのカーボンナノチューブが重なった構造を有しても良い。酸化グラフェンが厚み方向からみて互いに重なり合うように存在するとは、厚み方向からみて互いに少なくとも一部が重なることを意味しても良い。
(Nanocarbon separation membrane)
The nanocarbon separation membrane 10 includes a graphene oxide (GO (abbreviation of graphene oxide)) piece 1 and a double wall carbon nanotube (hereinafter referred to as “DWCNT” (abbreviation of double wall carbon nanotube)) 2. DWCNT2 is a carbon nanotube having a two-layer structure. DWCNT may have a structure in which at least two carbon nanotubes having different inner diameters overlap each other. Existence of graphene oxide so as to overlap each other when viewed from the thickness direction may mean that at least a part thereof overlaps each other when viewed from the thickness direction.
 図3は、酸化グラフェン片1の単体の状態にある走査型電子顕微鏡(SEM)画像である。また図4は、酸化グラフェン片1の単体の状態にある透過型電子顕微鏡(TEM)画像である。 FIG. 3 is a scanning electron microscope (SEM) image of the graphene oxide piece 1 in a single state. FIG. 4 is a transmission electron microscope (TEM) image of the graphene oxide piece 1 in a single state.
 酸化グラフェン片1は、酸化グラフェンの一片である。酸化グラフェンは、グラフェンの単分子層にエポキシ基、カルボキシル基、カルボニル基、及び水酸基などから選択される酸素含有官能基が結合した材料である。酸化グラフェンは、還元するとグラファイトになる材料としても知られている。 The graphene oxide piece 1 is a piece of graphene oxide. Graphene oxide is a material in which an oxygen-containing functional group selected from an epoxy group, a carboxyl group, a carbonyl group, a hydroxyl group, and the like is bonded to a monolayer of graphene. Graphene oxide is also known as a material that becomes graphite when reduced.
 酸化グラフェン片1の厚みは、炭素原子一層分であり、1~1.5nm程度である。酸化グラフェン片1の面内方向の大きさは、適宜設計することができる。 図3に示す酸化グラフェン片1の面内方向の平均径は、12μmである。 The thickness of the graphene oxide piece 1 is one carbon atom and is about 1 to 1.5 nm. The size of the graphene oxide piece 1 in the in-plane direction can be designed as appropriate. The average diameter in the in-plane direction of the graphene oxide piece 1 shown in FIG. 3 is 12 μm.
 ここで平均径は、以下のようにして求めた。まず、酸化グラフェン片1が分散した分散液をSi基板上に滴下し、乾燥する。次いで、Si基板をSEMで観察し、酸化グラフェン片1の外接楕円を描く。この際、酸化グラフェン片1は、凝集して外接楕円を描けないものは選択しない。そして、得られた外接楕円の長径を測定する。同様の作業を90個の酸化グラフェン片1に対して行い、平均値を算出することで平均径を求めた。 Here, the average diameter was determined as follows. First, the dispersion liquid in which the graphene oxide pieces 1 are dispersed is dropped on the Si substrate and dried. Next, the Si substrate is observed with an SEM, and a circumscribed ellipse of the graphene oxide piece 1 is drawn. At this time, the graphene oxide pieces 1 that do not aggregate and cannot draw a circumscribed ellipse are not selected. Then, the major axis of the circumscribed ellipse obtained is measured. The same operation was performed on 90 graphene oxide pieces 1 and the average value was calculated to obtain the average diameter.
 酸化グラフェン片1は、一部に孔が開いている(図4の点線の領域参照)。言い換えると、酸化グラフェン片1の表面には1つ以上の穴(開口部)が設けられていて良い。この孔は、ナノカーボン分離膜10を通過する流体の流路として機能する。 The graphene oxide piece 1 is partially perforated (see the dotted area in FIG. 4). In other words, one or more holes (openings) may be provided on the surface of the graphene oxide piece 1. This hole functions as a flow path for fluid passing through the nanocarbon separation membrane 10.
 酸化グラフェン片1に形成された孔の径及び孔の量は任意に選択でき、酸化グラフェン片1の酸化度を変えることで制御できる。酸化グラフェン片1に形成された孔の平均径は、0.5nm以上5nm以下であることが好ましく、1nm以上3nm以下であることがより好ましい。
孔の面積は、酸化グラフェン(GO)の面積の中の0.5%以上5%以下であることが好ましい。
The diameter and the amount of the holes formed in the graphene oxide piece 1 can be arbitrarily selected, and can be controlled by changing the degree of oxidation of the graphene oxide piece 1. The average diameter of the holes formed in the graphene oxide piece 1 is preferably 0.5 nm or more and 5 nm or less, and more preferably 1 nm or more and 3 nm or less.
The area of the pores is preferably 0.5% or more and 5% or less in the area of graphene oxide (GO).
 図5は、本発明の好ましい例である、ナノカーボン分離膜の透過型電子顕微鏡(TEM)画像である。
 図5に示すように、ナノカーボン分離膜中の、DWCNT2は長さが500nm以上であり、隣接するDWCNT2の間の距離は、最大で100nm程度である。
FIG. 5 is a transmission electron microscope (TEM) image of a nanocarbon separation membrane, which is a preferred example of the present invention.
As shown in FIG. 5, DWCNT2 in the nanocarbon separation membrane has a length of 500 nm or more, and the distance between adjacent DWCNT2 is about 100 nm at the maximum.
 図6は、ナノカーボン分離膜の透過型電子顕微鏡(TEM)画像であり、図5の一部を拡大した図である。 FIG. 6 is a transmission electron microscope (TEM) image of the nanocarbon separation membrane, and is an enlarged view of a part of FIG.
 図6に示すように、TEM画像では、酸化グラフェン片1の孔(図6の点線の領域参照)の見え方に違いがある。これは、紙面手前側の酸化グラフェン片1の孔と、紙面奥側の酸化グラフェン片1の孔と、のいずれを見ているかが、異なるためである。換言すると、酸化グラフェン片1が厚み方向から見て、互いに重なるように存在していることをこの画像は示している。なお、互いに重なるように存在するとは、酸化グラフェン片の少なくとも一部が重なりあっていることを意味する。 As shown in FIG. 6, in the TEM image, there is a difference in how the holes of the graphene oxide pieces 1 (see the dotted line area in FIG. 6) are seen. This is because which one of the holes of the graphene oxide piece 1 on the front side of the paper and the hole of the graphene oxide piece 1 on the back side of the paper is viewed is different. In other words, this image shows that the graphene oxide pieces 1 are present so as to overlap each other when viewed from the thickness direction. Note that the presence so as to overlap with each other means that at least a part of the graphene oxide pieces overlap each other.
 また図6では、DWCNT2の一部が、孔(図6の点線の領域参照)を介して確認でき、その他の部分は、酸化グラフェン片1を構成する炭素原子を介して確認できる。すなわち、DWCNT2は、酸化グラフェン片1より、紙面奥に存在している。また孔の部分に着目すると、孔の内部にも炭素原子のドットが確認される部分がある。すなわち、DWCNT2より紙面奥側に酸化グラフェン片1は存在している。つまり、DWCNT2は、厚み方向から見て互いに重なるように存在する酸化グラフェン片1の間に挟まれている。 In FIG. 6, a part of DWCNT 2 can be confirmed through a hole (see the dotted line region in FIG. 6), and the other part can be confirmed through a carbon atom constituting graphene oxide piece 1. That is, the DWCNT 2 is present behind the graphene oxide piece 1. When attention is paid to the hole portion, there is a portion where a dot of carbon atoms is confirmed inside the hole. That is, the graphene oxide piece 1 is present behind the DWCNT 2 in the drawing. That is, the DWCNT 2 is sandwiched between the graphene oxide pieces 1 that are present so as to overlap each other when viewed from the thickness direction.
 DWCNT2は、直径が数nm~数十nm程度であり、酸化グラフェン片1の厚みより厚い。そのため、複数の酸化グラフェン片1の間に少なくとも一つのDWCNT2が挟まれると、積層される酸化グラフェン片1の間隔が広がる。なおDWCNT2の直径、DWCNT2の最も内側の内径、及びDWCNT2の長さは任意に選択してよい。 DWCNT 2 has a diameter of about several nanometers to several tens of nanometers and is thicker than the thickness of the graphene oxide piece 1. Therefore, when at least one DWCNT 2 is sandwiched between the plurality of graphene oxide pieces 1, the interval between the stacked graphene oxide pieces 1 increases. The diameter of DWCNT2, the innermost inner diameter of DWCNT2, and the length of DWCNT2 may be arbitrarily selected.
 酸化グラフェン片1のみからなる場合の酸化グラフェン片の平均面間距離は7.7Åである。DWCNT2が挟まることで、平均面間距離は7.7Å以上となる。平均面間距離は、X線回折によって得られるピーク値から求められる。なお本発明のナノカーボン分離膜における酸化グラフェン片の平均面間距離は、条件等を変更することによって、任意に変更できる。 When the graphene oxide piece 1 alone is used, the average inter-plane distance of the graphene oxide piece is 7.7 mm. By sandwiching DWCNT2, the average inter-surface distance becomes 7.7 mm or more. The average inter-surface distance is obtained from a peak value obtained by X-ray diffraction. Note that the average inter-plane distance of the graphene oxide pieces in the nanocarbon separation membrane of the present invention can be arbitrarily changed by changing conditions and the like.
 酸化グラフェン片1の平均面間距離が広がることで、ナノカーボン分離膜10を通過する流体の流路が広がる。すなわち、液相分離の場合は透水性が高まる。一方で、平均面間距離の広がりは、Å単位であり僅かである。そのため、分離対象物の分離特性が大きく劣化することが避けられる。 As the average inter-surface distance of the graphene oxide piece 1 increases, the flow path of the fluid passing through the nanocarbon separation membrane 10 increases. That is, in the case of liquid phase separation, water permeability increases. On the other hand, the spread of the average inter-surface distance is in units of ridges and is slight. Therefore, it is possible to avoid the deterioration of the separation characteristics of the separation object.
 酸化グラフェン片及びダブルウォールカーボンナノチューブの合計質量に対する酸化グラフェン片1の質量比は70質量%以下0質量%より大きい。また酸化グラフェン片及びダブルウォールカーボンナノチューブの合計質量に対するDWCNT2の質量比は30質量%以上100質量%未満である。酸化グラフェン片1とDWCNT2の比率がこの範囲内であると、透水性又は分離対象物の分離特性の一方の性能が著しく低下することを避けられる。 The mass ratio of the graphene oxide piece 1 to the total mass of the graphene oxide pieces and the double wall carbon nanotubes is 70% by mass or less and greater than 0% by mass. Moreover, the mass ratio of DWCNT2 with respect to the total mass of a graphene oxide piece and a double wall carbon nanotube is 30 to 100 mass%. When the ratio of the graphene oxide piece 1 and the DWCNT 2 is within this range, it is possible to avoid that the performance of one of the water permeability or the separation characteristic of the separation object is significantly deteriorated.
 また酸化グラフェン片及びダブルウォールカーボンナノチューブの合計質量に対する酸化グラフェン片1の質量比は、30質量%以上70質量%以下であることが好ましく、40質量%以上70質量%以下であることがより好ましく、50質量%以上70質量%以下であることがさらに好ましい。また酸化グラフェン片及びダブルウォールカーボンナノチューブの合計質量に対するDWCNT2の質量比は、30質量%以上70質量%以下であることが好ましく、30質量%以上60質量%以下であることがより好ましく、30質量%以上50質量%以下であることがさらに好ましい。なお、酸化グラフェン片1とDWCNT2の質量比の合計は100質量%となる。 Further, the mass ratio of the graphene oxide piece 1 to the total mass of the graphene oxide pieces and the double wall carbon nanotubes is preferably 30% by mass or more and 70% by mass or less, and more preferably 40% by mass or more and 70% by mass or less. More preferably, the content is 50% by mass or more and 70% by mass or less. The mass ratio of DWCNT2 to the total mass of graphene oxide pieces and double-walled carbon nanotubes is preferably 30% by mass to 70% by mass, more preferably 30% by mass to 60% by mass, and more preferably 30% by mass. More preferably, the content is from 50% to 50% by weight. In addition, the sum total of the mass ratio of the graphene oxide piece 1 and DWCNT2 will be 100 mass%.
 また複数の酸化グラフェン片1同士は、二価のカチオンにより互いに架橋されている。酸化グラフェン片1は、エポキシ基、カルボキシル基、カルボニル基、及び水酸基などから選択される少なくとも1種の酸素含有官能基を有している。
二価のカチオンは、酸化グラフェン片1の酸素含有官能基の近傍に配位し、隣接する酸化グラフェン片1どうしを架橋する。複数の酸化グラフェン片1が架橋されると、ナノカーボン分離膜10が強固になる。
The plurality of graphene oxide pieces 1 are cross-linked with each other by a divalent cation. The graphene oxide piece 1 has at least one oxygen-containing functional group selected from an epoxy group, a carboxyl group, a carbonyl group, a hydroxyl group, and the like.
The divalent cation is coordinated in the vicinity of the oxygen-containing functional group of the graphene oxide pieces 1 and bridges adjacent graphene oxide pieces 1. When the plurality of graphene oxide pieces 1 are cross-linked, the nanocarbon separation membrane 10 becomes strong.
 一般に酸化グラフェン片1は、水に対する分散性が高い。そのため、単純に酸化グラフェン片1を積層しただけでは、通水した際にナノカーボン分離膜10から酸化グラフェン片1が剥離することがある。特に、ナノカーボン分離膜10の膜面に対して平行な方向に通水するクロスフローの場合において、酸化グラフェン片1は剥離しやすくなる。 Generally, the graphene oxide piece 1 is highly dispersible in water. Therefore, if the graphene oxide pieces 1 are simply laminated, the graphene oxide pieces 1 may be separated from the nanocarbon separation film 10 when water is passed through. In particular, in the case of cross flow in which water flows in a direction parallel to the membrane surface of the nanocarbon separation membrane 10, the graphene oxide piece 1 is easily peeled off.
 酸化グラフェン片1同士を架橋することで、酸化グラフェン片1の剥離を抑制できる。
また酸化グラフェン片1間に挟まれるDWCNT2も、層間から脱離し難くなる。
By cross-linking the graphene oxide pieces 1, peeling of the graphene oxide pieces 1 can be suppressed.
Further, the DWCNT 2 sandwiched between the graphene oxide pieces 1 is also difficult to be detached from the layers.
 二価のカチオンは、架橋に寄与できるものであれば、そのイオン種は問わない。入手の容易性等の観点からは、カルシウムイオン、及びマグネシウムイオンの少なくとも1種が好ましい。 The divalent cation is not particularly limited as long as it can contribute to crosslinking. From the viewpoint of availability, at least one of calcium ions and magnesium ions is preferable.
 上述のように、本実施形態にかかるナノカーボン分離膜10は、DWCNT2によって酸化グラフェン片1の層間が適切に広げられている。そのため、本実施形態にかかるナノカーボン分離膜10は、分離膜として、透水性及び分離対象物の分離特性のいずれも優れる。 As described above, in the nanocarbon separation membrane 10 according to this embodiment, the interlayer of the graphene oxide pieces 1 is appropriately expanded by the DWCNT 2. Therefore, the nanocarbon separation membrane 10 according to the present embodiment is excellent in both water permeability and separation characteristics of the separation object as a separation membrane.
 また酸化グラフェン片1同士は二価のカチオンにより架橋されている。このため、使用途中で酸化グラフェン片1の剥離が抑制されている。そのため、溶液をナノカーボン分離膜10に対してクロスフローで供給することができる。
 なおナノカーボン分離膜の厚さは任意に選択してよい。
Further, the graphene oxide pieces 1 are cross-linked with a divalent cation. For this reason, peeling of the graphene oxide piece 1 is suppressed during use. Therefore, the solution can be supplied to the nanocarbon separation membrane 10 by crossflow.
The thickness of the nanocarbon separation membrane may be arbitrarily selected.
(多孔質膜)
 多孔質膜30は、ナノカーボン分離膜10の一面側に配設される。多孔質膜30は、ナノカーボン分離膜10を支持し、ナノカーボン複合分離膜100全体としての機械的強度を高める。
(Porous membrane)
The porous membrane 30 is disposed on one side of the nanocarbon separation membrane 10. The porous membrane 30 supports the nanocarbon separation membrane 10 and increases the mechanical strength of the nanocarbon composite separation membrane 100 as a whole.
 多孔質膜30は、図1及び図2に示すように、内部に孔部31を有する。内部に孔部31を有することで、厚み方向に透水性を有する。なお、孔部31は、図に示すような厚み方向に延在する孔部である必要はない。実際には微小な孔が複数連結した連結孔であってもよい。 As shown in FIGS. 1 and 2, the porous film 30 has a hole 31 therein. By having the hole 31 inside, it has water permeability in the thickness direction. In addition, the hole part 31 does not need to be a hole part extended in the thickness direction as shown to a figure. Actually, a connecting hole in which a plurality of minute holes are connected may be used.
 多孔質膜30は、透水性と機械的強度を有すれば、公知の多孔質基材を選択し用いることができる。例えば、ポリイミド、ポリサルフォン、又はポリエーテルサルフォン等からなり連通孔を有する樹脂の膜や、ポーラスアルミナ等を、多孔質膜30として用いることができる。後述する接着層20を、熱や光等による架橋により形成する場合は、耐熱性の高いポリサルフォンの使用が特に好ましい。多孔質膜の厚さは任意に選択してよい。 As the porous membrane 30, a known porous substrate can be selected and used as long as it has water permeability and mechanical strength. For example, a resin film made of polyimide, polysulfone, polyethersulfone, or the like and having communication holes, porous alumina, or the like can be used as the porous film 30. When the adhesive layer 20 described later is formed by crosslinking with heat or light, it is particularly preferable to use polysulfone having high heat resistance. The thickness of the porous membrane may be arbitrarily selected.
(接着層)
 接着層20は、ナノカーボン分離膜10と多孔質膜30とを接着する。接着層20は、透水性を大きく阻害せず、ナノカーボン分離膜10と多孔質膜30とを接着できるものを用いることができる。
(Adhesive layer)
The adhesive layer 20 adheres the nanocarbon separation membrane 10 and the porous membrane 30. As the adhesive layer 20, a material capable of adhering the nanocarbon separation membrane 10 and the porous membrane 30 without significantly inhibiting water permeability can be used.
 接着層の材料は任意に選択できる。例えば、ポリビニルアルコール等を用いることができる。未架橋のポリビニルアルコールをナノカーボン分離膜10と多孔質膜30との間に設け、ポリビニルアルコールを架橋させることで、これらを接着できる。 ) The adhesive layer material can be selected arbitrarily. For example, polyvinyl alcohol or the like can be used. Uncrosslinked polyvinyl alcohol is provided between the nanocarbon separation membrane 10 and the porous membrane 30, and these can be bonded by crosslinking the polyvinyl alcohol.
 ナノカーボン複合分離膜100の面内方向に対して、垂直な方向から通液するデッドエンドフローを行う場合は、ナノカーボン分離膜10が多孔質膜30から剥離することはほとんどない。これに対し、ナノカーボン複合分離膜100の面内方向に対して、平行な方向から通液するクロスフローを行う場合は、ナノカーボン分離膜10が多孔質膜30から剥離しやすくなる。そのため、ナノカーボン複合分離膜100に対してクロスフローで通液する場合は、特に接着層20を設けることが好ましい。接着層の厚さは任意に選択してよい。 When performing a dead-end flow in which liquid is passed from a direction perpendicular to the in-plane direction of the nanocarbon composite separation membrane 100, the nanocarbon separation membrane 10 hardly peels from the porous membrane 30. On the other hand, when performing the cross flow which lets a liquid flow from a parallel direction with respect to the in-plane direction of the nanocarbon composite separation membrane 100, the nanocarbon separation membrane 10 becomes easy to peel from the porous membrane 30. Therefore, in the case where liquid is passed through the nanocarbon composite separation membrane 100 by crossflow, it is particularly preferable to provide the adhesive layer 20. The thickness of the adhesive layer may be arbitrarily selected.
 上述のように、本実施形態にかかるナノカーボン複合分離膜100は、透水性及び分離対象物の分離特性の優れたナノカーボン分離膜10を備える。このため、分離特性に優れる。 As described above, the nanocarbon composite separation membrane 100 according to the present embodiment includes the nanocarbon separation membrane 10 having excellent water permeability and separation characteristics of the separation object. For this reason, it has excellent separation characteristics.
 またナノカーボン分離膜10の一面が多孔質膜30で支持されることにより、ナノカーボン複合分離膜100の機械強度を高めることができる。さらに、接着層20でナノカーボン分離膜10と多孔質膜30とを接着することで、使用途中においてナノカーボン分離膜10が剥離することが抑制される。 Further, the mechanical strength of the nanocarbon composite separation membrane 100 can be increased by supporting one surface of the nanocarbon separation membrane 10 with the porous membrane 30. Furthermore, by bonding the nanocarbon separation membrane 10 and the porous membrane 30 with the adhesive layer 20, it is possible to prevent the nanocarbon separation membrane 10 from being peeled off during use.
<ナノカーボン複合分離膜>
 図7は、本実施形態にかかるナノカーボン複合分離膜の製造方法を、模式的に示した図である。
<Nanocarbon composite separation membrane>
FIG. 7 is a view schematically showing a method for producing a nanocarbon composite separation membrane according to the present embodiment.
 図7の(a)~(d)にこの順で示すように、本実施形態にかかるナノカーボン複合分離膜100は、多孔質膜30の一面に接着層20を形成する工程と、接着層20が形成された面にナノカーボン分離膜10を形成する工程とを有する。 As shown in FIGS. 7A to 7D in this order, the nanocarbon composite separation membrane 100 according to this embodiment includes a step of forming the adhesive layer 20 on one surface of the porous membrane 30, and an adhesive layer 20. Forming a nanocarbon separation membrane 10 on the surface on which is formed.
 ナノカーボン分離膜10は、酸化グラフェン片1とDWCNT2とが分散した分散液を、多孔質膜30の接着層20が形成された面に塗付、乾燥し、カーボン膜を形成する工程と、カーボン膜を二価のカチオンが溶解した溶液に浸漬する工程と、によって形成される。
 製造に使用される、前記酸化グラフェン片1の厚みは、任意に選択できるが、1~1.5nm程度であることが好ましい。
 製造に使用される、DWCNT2の平均直径(外径)は、任意に選択してよい。またDWCNT2の最も内側の内径も任意に選択してよい。DWCNT2の長さも任意に選択してよい。
 分散液において、酸化グラフェン片1及びDWCNT2の合計質量に対する、酸化グラフェン片1の質量比は任意に選択できるが、例えば、30質量%以上70質量%以下であることが好ましく、40質量%以上70質量%以下であることがより好ましく、50質量%以上70質量%以下であることが特に好ましい。また酸化グラフェン片及びダブルウォールカーボンナノチューブの合計質量に対するDWCNT2の質量比は、任意に選択できるが、30質量%以上70質量%以下であることが好ましく、30質量%以上60質量%以下であることがより好ましく、30質量%以上50質量%以下であることが特に好ましい。
 以下、図7を基に具体的に説明する。
The nanocarbon separation membrane 10 includes a step of applying a dispersion liquid in which graphene oxide pieces 1 and DWCNT2 are dispersed to the surface of the porous membrane 30 on which the adhesive layer 20 is formed, and drying to form a carbon membrane; Dipping the membrane in a solution in which divalent cations are dissolved.
The thickness of the graphene oxide piece 1 used for production can be arbitrarily selected, but is preferably about 1 to 1.5 nm.
You may select arbitrarily the average diameter (outer diameter) of DWCNT2 used for manufacture. Further, the innermost inner diameter of the DWCNT 2 may be arbitrarily selected. The length of DWCNT2 may be arbitrarily selected.
In the dispersion, the mass ratio of the graphene oxide piece 1 to the total mass of the graphene oxide piece 1 and the DWCNT 2 can be arbitrarily selected, but is preferably 30% by mass or more and 70% by mass or less, for example, 40% by mass or more and 70% More preferably, it is 50 mass% or less, and it is especially preferable that it is 50 to 70 mass%. The mass ratio of DWCNT2 to the total mass of graphene oxide pieces and double-walled carbon nanotubes can be arbitrarily selected, but is preferably 30% by mass to 70% by mass, and more preferably 30% by mass to 60% by mass. Is more preferable, and 30% by mass or more and 50% by mass or less is particularly preferable.
Hereinafter, a specific description will be given based on FIG.
 まず図7の(a)に示すように、多孔質膜30を準備する。多孔質膜30は、上述のものから選択して用いられる。 First, as shown in FIG. 7A, a porous film 30 is prepared. The porous membrane 30 is selected from the above-described ones.
 次いで、図7の(b)に示すように、多孔質膜30の一面に接着層20を形成する。接着層20は、塗布等の手段によって形成できる。例えばポリビニルアルコール水溶液に、多孔質膜30を浸漬し、又は前記水溶液を前記膜に塗布し、乾燥させることで、多孔質膜30の一面に接着層20を形成できる。 Next, as shown in FIG. 7B, the adhesive layer 20 is formed on one surface of the porous film 30. The adhesive layer 20 can be formed by means such as coating. For example, the adhesive layer 20 can be formed on one surface of the porous film 30 by immersing the porous film 30 in an aqueous polyvinyl alcohol solution, or applying the aqueous solution to the film and drying it.
 次いで、図7の(c)に示すように、接着層20が形成された面に、酸化グラフェン片1とDWCNT2とが分散した分散液11を塗布する。塗布の方法は特に問わない。公知の方法の中から任意に選択して使用してもよい。例えば、ノズルからスプレーコートをすると、ノズル先端で分散液11にせん断力が加わり、酸化グラフェン片1及びDWCNT2の分散性が高まる。 Next, as shown in FIG. 7C, the dispersion 11 in which the graphene oxide pieces 1 and the DWCNTs 2 are dispersed is applied to the surface on which the adhesive layer 20 is formed. The application method is not particularly limited. You may use it arbitrarily selecting from well-known methods. For example, when spray coating is performed from the nozzle, a shearing force is applied to the dispersion 11 at the nozzle tip, and the dispersibility of the graphene oxide pieces 1 and the DWCNT 2 is increased.
 分散液11は、例えば、酸化グラフェン片1が分散した第1分散液と、DWCNT2が分散した第2分散液とを、混合して得られる。 The dispersion 11 is obtained, for example, by mixing a first dispersion in which the graphene oxide pieces 1 are dispersed and a second dispersion in which DWCNT2 is dispersed.
 第1分散液は、例えば、以下の手順で得られる。まず酸化グラフェン片1を準備する。酸化グラフェン片1は、グラファイトを原料として公知の方法(例えば、特許文献1や非特許文献4に記載の方法など)で得られる。酸化グラフェン片1は水への分散性が高い。このため、水に添加しただけで第1分散液が得られる。 The first dispersion is obtained by the following procedure, for example. First, the graphene oxide piece 1 is prepared. The graphene oxide piece 1 is obtained by a known method (for example, a method described in Patent Document 1 or Non-Patent Document 4) using graphite as a raw material. The graphene oxide piece 1 is highly dispersible in water. For this reason, a 1st dispersion liquid is obtained only by adding to water.
 次いで、第2分散液は、例えば、以下の手順で得られる。まずDWCNT2を作製する。DWCNT2は、一般的な合成法により作製できる。例えば、アーク放電法、レーザー・アブレーション法、およびCVD(化学気相成長法)等の方法がある。CVD法には、基板法と気相流動法がある。基板法は、厚さ数nmから数μmの金属層を蒸着した基板にカーボンナノチューブを合成する方法と、ゼオライトやセラミックなどの単体に遷移金属部粒子を担持させてカーボンナノチューブを合成する方法がある。気相流動法は、触媒微粒子と原料ガスとを反応管内の高温区域で反応させ、カーボンナノチューブを合成する方法である。触媒微粒子は、前駆体化合物を反応管に噴霧し、反応管入口で前駆体化合物を熱分解することにより得られる。触媒微粒子と原料ガスとは、キャリアガスによって反応管内に送り込まれる。具体的には、特許文献2や特許文献3などに記載の、DWCNTの製造方法が、例として挙げられる。 Next, the second dispersion is obtained by the following procedure, for example. First, DWCNT2 is produced. DWCNT2 can be produced by a general synthesis method. For example, there are methods such as arc discharge, laser ablation, and CVD (chemical vapor deposition). CVD methods include a substrate method and a gas phase flow method. The substrate method includes a method of synthesizing carbon nanotubes on a substrate on which a metal layer having a thickness of several nanometers to several μm is deposited, and a method of synthesizing carbon nanotubes by supporting transition metal part particles on a simple substance such as zeolite or ceramic. . The gas phase flow method is a method of synthesizing carbon nanotubes by reacting catalyst fine particles and a raw material gas in a high temperature zone in a reaction tube. The catalyst fine particles are obtained by spraying the precursor compound onto the reaction tube and thermally decomposing the precursor compound at the reaction tube inlet. The catalyst fine particles and the raw material gas are sent into the reaction tube by the carrier gas. Specifically, a method for producing DWCNT described in Patent Document 2, Patent Document 3, and the like is given as an example.
 こうして作製されたDWCNT2を、必要に応じて選択される水溶液中に添加して第2分散液を得る。水溶液は、例えば、ポリスチレンスルホン酸ナトリウム(PSS)水溶液、ドデシル硫酸ナトリウム水溶液、及びデオキシコール酸ナトリウム水溶液等を用いることができる。
 次に、第1分散液と第2分散液とを混合し、必要であれば希釈し、分散液11を得る。
The DWCNT 2 thus produced is added to an aqueous solution selected as necessary to obtain a second dispersion. As the aqueous solution, for example, a sodium polystyrene sulfonate (PSS) aqueous solution, a sodium dodecyl sulfate aqueous solution, a sodium deoxycholate aqueous solution, or the like can be used.
Next, the first dispersion and the second dispersion are mixed and diluted if necessary to obtain the dispersion 11.
 塗布後の分散液11を、乾燥して、例えば自然乾燥して、カーボン膜が得られる。カーボン膜は、多孔質膜30と共に加熱することが好ましい。接着層が熱により架橋するものである場合、接着層としてポリビニルアルコールを用いた場合には、加熱により、接着層20のポリビニルアルコールが架橋し、カーボン膜と多孔質膜30の接着性が高まり、耐水性も発現する。また余計な水分等も除去できる。 The coated dispersion 11 is dried, for example, naturally dried to obtain a carbon film. The carbon film is preferably heated together with the porous film 30. When the adhesive layer is cross-linked by heat, when polyvinyl alcohol is used as the adhesive layer, the polyvinyl alcohol of the adhesive layer 20 is cross-linked by heating, and the adhesion between the carbon film and the porous film 30 is increased. Also exhibits water resistance. Also, excess water can be removed.
 最後に、分散液11の塗布により形成されたカーボン膜を、二価のカチオンが溶解した溶液に浸漬する。例えば、二価のカチオンとしてカルシウムイオンを用いる場合は、塩化カルシウムが溶解した溶液に浸漬する。カチオンが溶解した溶液に浸漬することで、酸化グラフェン片1同士がカチオンを介して架橋する。溶液の溶媒は任意に選択してよい。二価のカチオンは任意に選択できるが、カルシウムイオン、マグネシウムイオンなどが挙げられる。 Finally, the carbon film formed by applying the dispersion 11 is immersed in a solution in which divalent cations are dissolved. For example, when calcium ions are used as divalent cations, they are immersed in a solution in which calcium chloride is dissolved. By immersing in the solution in which the cation is dissolved, the graphene oxide pieces 1 are cross-linked via the cation. The solvent of the solution may be arbitrarily selected. The divalent cation can be arbitrarily selected, and examples thereof include calcium ions and magnesium ions.
 上述のように、本実施形態にかかるナノカーボン分離膜の製造方法によれば、容易に所定のナノカーボン分離膜が得られる。またこのナノカーボン分離膜の製造方法を利用することで、容易にナノカーボン複合分離膜が得られる。 As described above, according to the method for producing a nanocarbon separation membrane according to this embodiment, a predetermined nanocarbon separation membrane can be easily obtained. Moreover, a nanocarbon composite separation membrane can be easily obtained by using this method for producing a nanocarbon separation membrane.
 また本実施形態にかかるナノカーボン分離膜の製造方法によれば、酸化グラフェン片1が分散した第1分散液と、DWCNT2が分散した第2分散液を混合するだけで、ナノカーボン分離膜の流体が流れる流路を制御できる。すなわち、ナノカーボン分離膜の透水性及び分離性能を容易に制御できる。 In addition, according to the method for producing a nanocarbon separation membrane according to the present embodiment, the fluid of the nanocarbon separation membrane can be obtained simply by mixing the first dispersion in which the graphene oxide pieces 1 are dispersed and the second dispersion in which the DWCNT2 is dispersed. It is possible to control the flow path through which the gas flows. That is, the water permeability and separation performance of the nanocarbon separation membrane can be easily controlled.
 また本実施形態にかかるナノカーボン分離膜の製造方法によれば、ナノカーボン分離膜を分散液の塗布により作製することができる。そのため、ナノカーボン分離膜の大面積化が容易になる。 Moreover, according to the method for producing a nanocarbon separation membrane according to the present embodiment, the nanocarbon separation membrane can be produced by applying a dispersion liquid. Therefore, it is easy to increase the area of the nanocarbon separation membrane.
 以上、ナノカーボン分離膜、ナノカーボン複合分離膜及びナノカーボン分離膜の製造方法について説明した。本発明は、発明の要旨を変えない範囲で種々の変更をしてもよい。 The nanocarbon separation membrane, the nanocarbon composite separation membrane, and the method for producing the nanocarbon separation membrane have been described above. The present invention may be variously modified without changing the gist of the invention.
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれら実施例により何ら制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(実施例1)
 実施例1として、30質量%の酸化グラフェン片と70質量%のDWCNTとからなるナノカーボン分離膜を有するナノカーボン複合分離膜を作製した。具体的には、以下の手順で実施例1のナノカーボン複合分離膜を作製した。
Example 1
As Example 1, a nanocarbon composite separation membrane having a nanocarbon separation membrane composed of 30% by mass of graphene oxide pieces and 70% by mass of DWCNT was prepared. Specifically, the nanocarbon composite separation membrane of Example 1 was produced by the following procedure.
 まずグラファイト(Sigma-Aldrich社製 製品番号332461)を原料として、平均径12μmの酸化グラフェン片が分散した第1分散液を作製した。第1分散液は、以下のようにして作製した。 First, a first dispersion in which graphene oxide pieces having an average diameter of 12 μm were dispersed was prepared using graphite (product number 332461 manufactured by Sigma-Aldrich) as a raw material. The first dispersion was prepared as follows.
 まず95質量%のHSO水溶液200mLと、85質量%のHPO水溶液40mLと、を混合し、さらに5gのグラファイトを添加し、マグネチックスターラで混合した。次いで、混合液にKMnOを25gゆっくり添加した。この際、液の色は黒から緑に変化した。そしてこの液を5分かけて40℃に昇温し、40℃で1時間保持した。1時間後には、グラファイトが剥離して、液がペースト状になった。得られたペーストを、テフロン(登録商標)棒を用いて40℃で2.5時間さらに混合した。その後、混合後のペーストを常温まで降温した。 First, 200 mL of 95% by mass H 2 SO 4 aqueous solution and 40 mL of 85% by mass H 3 PO 4 aqueous solution were mixed, and further 5 g of graphite was added and mixed with a magnetic stirrer. Next, 25 g of KMnO 4 was slowly added to the mixture. At this time, the color of the liquid changed from black to green. And this liquid was heated up to 40 degreeC over 5 minutes, and was hold | maintained at 40 degreeC for 1 hour. After 1 hour, the graphite peeled off and the liquid became a paste. The resulting paste was further mixed for 2.5 hours at 40 ° C. using a Teflon rod. Thereafter, the paste after mixing was cooled to room temperature.
 次いで、このペーストに、35%のH水溶液40mLと5℃以下の冷水600mLとの混合液を、ゆっくり注いだ。混合液を注ぐと、ペーストは発熱し、泡が発生した。
そして、得られた混合液を1晩以上静置した。
Next, a mixed solution of 40 mL of 35% aqueous H 2 O 2 solution and 600 mL of cold water at 5 ° C. or lower was slowly poured into this paste. When the mixture was poured, the paste generated heat and foam was generated.
And the obtained liquid mixture was left still for 1 night or more.
 静置した液は、上澄み液と沈殿物に分離した。上澄み液をデカンテーションにより除去し、沈殿物を得た。得られた沈殿物は、5質量%のHSO水溶液(1L)に添加し、分散させた。 The liquid that was allowed to stand was separated into a supernatant and a precipitate. The supernatant was removed by decantation to obtain a precipitate. The obtained precipitate was added to a 5% by mass H 2 SO 4 aqueous solution (1 L) and dispersed.
 そして、分散液を純水中に添加し、遠心分離し、その後純水へ分散する操作を5回繰り返し、分散媒の清浄を行った。この過程で、遠心分離後の沈殿物は2層になる。下の層は互いに剥離していないグラファイトであり、上の層は剥離した酸化グラフェン片が水を吸ったものであった。下の層を除去することで、固形分濃度が0.9質量%の第1分散液を得た。得られた第1分散液を水で希釈し、Si基板上に滴下、乾燥した試料をSEM観察したところ、酸化グラフェン片の平均径は12μmだった。 Then, the operation of adding the dispersion into pure water, centrifuging, and then dispersing in pure water was repeated 5 times to clean the dispersion medium. In this process, the precipitate after centrifugation becomes two layers. The lower layer was graphite that was not exfoliated from each other, and the upper layer was that the exfoliated graphene oxide pieces absorbed water. By removing the lower layer, a first dispersion having a solid content concentration of 0.9% by mass was obtained. When the obtained first dispersion was diluted with water and dropped onto the Si substrate and dried, the sample was observed by SEM. As a result, the average diameter of the graphene oxide pieces was 12 μm.
 次いで、第2分散液を用意した。0.5質量%のデオキシコール酸ナトリウム水溶液にDWCNT(TEM観察で、外径1.8nm、内径1.2nm)を分散し、第2分散液を作製した。第2分散液中におけるDWCNTの直径は、数nm程度であった。 Next, a second dispersion was prepared. DWCNT (outer diameter 1.8 nm, inner diameter 1.2 nm by TEM observation) was dispersed in a 0.5 mass% sodium deoxycholate aqueous solution to prepare a second dispersion. The diameter of DWCNT in the second dispersion was about several nm.
 そして得られた第1分散液と第2分散液を混合、希釈して、分散液を得た。分散液中には、酸化グラフェン片とDWCNTとからなるナノカーボンが分散している。分散液中のナノカーボンの構成比率は、酸化グラフェン片が30質量%で、DWCNTが70質量%であった。溶媒に対するナノカーボンの濃度は、0.8mg/mLとした。 Then, the obtained first dispersion and second dispersion were mixed and diluted to obtain a dispersion. In the dispersion, nanocarbon composed of graphene oxide pieces and DWCNT is dispersed. The composition ratio of the nanocarbon in the dispersion was 30% by mass for graphene oxide pieces and 70% by mass for DWCNT. The concentration of nanocarbon relative to the solvent was 0.8 mg / mL.
 また多孔質膜として、市販のポリサルフォン膜(Alfa Lavel社製:GR40PP、大きさ50mm×50mm)を準備した。そして、ポリサルフォン膜を1質量%のポリビニルアルコール水溶液(Sigma-Aldrich社製:分子量31,000-50,000、98~99%ケン化品)に1時間浸漬した。浸漬後のポリサルフォン膜を、起立させた状態で風乾させた。その結果、ポリサルフォン膜の表面にポリビニルアルコールが被覆された。 Also, a commercially available polysulfone membrane (Alfa Label: GR40PP, size 50 mm × 50 mm) was prepared as a porous membrane. Then, the polysulfone film was immersed in a 1% by mass aqueous polyvinyl alcohol solution (manufactured by Sigma-Aldrich: molecular weight 31,000-50,000, 98-99% saponified product) for 1 hour. The polysulfone membrane after immersion was air-dried in an upright state. As a result, polyvinyl alcohol was coated on the surface of the polysulfone film.
 次いで、ポリビニルアルコールで被覆された多孔質膜に対して、エアーブラシ(アネストイワタ製:HP-BCS)を用いて、前記分散液をスプレーした。その後、前記多孔質膜を100℃の大気雰囲気下で1時間乾燥させた。この際、ポリビニルアルコールは架橋し、多孔質膜と、分散液が乾燥してなるカーボン膜と、が接着した。 Next, the dispersion was sprayed onto the porous film coated with polyvinyl alcohol using an air brush (manufactured by Anest Iwata: HP-BCS). Thereafter, the porous film was dried in an air atmosphere at 100 ° C. for 1 hour. At this time, the polyvinyl alcohol was cross-linked, and the porous film and the carbon film formed by drying the dispersion were adhered.
 最後に、得られた積層膜を、塩化カルシウム溶液に1時間浸漬した。塩化カルシウム溶液は、塩化カルシウムの濃度が5質量%であり、塩化カルシウム溶液の溶媒は、容積比で1:3の比率でエタノールと水が混合したものとした。そして、浸漬後の積層膜を乾燥させた。乾燥は、まず風乾した後、一度エタノールに一時間浸漬し、再度風乾した。 Finally, the obtained laminated film was immersed in a calcium chloride solution for 1 hour. The calcium chloride solution had a calcium chloride concentration of 5% by mass, and the solvent of the calcium chloride solution was a mixture of ethanol and water in a volume ratio of 1: 3. And the laminated film after immersion was dried. The drying was performed by air-drying, then immersed in ethanol for 1 hour and then air-dried again.
(実施例2及び3)
 実施例2及び3は、第1分散液と第2分散液の混合比率を変更した点以外は、実施例1と同様の手順でナノカーボン複合分離膜を作製した。
 得られたナノカーボン分離膜の構成比率は以下である。
 実施例2:酸化グラフェン片(50質量%)、DWCNT(50質量%)
 実施例3:酸化グラフェン片(70質量%)、DWCNT(30質量%)
(Examples 2 and 3)
In Examples 2 and 3, nanocarbon composite separation membranes were prepared in the same procedure as in Example 1 except that the mixing ratio of the first dispersion and the second dispersion was changed.
The composition ratio of the obtained nanocarbon separation membrane is as follows.
Example 2: Graphene oxide pieces (50 mass%), DWCNT (50 mass%)
Example 3: Graphene oxide pieces (70 mass%), DWCNT (30 mass%)
(比較例1)
 比較例1は、第1分散液と第2分散液の混合比率を変更した点以外は、実施例1と同様の手順でナノカーボン複合分離膜を作製した。
 比較例1のナノカーボン分離膜の構成比率は、酸化グラフェン片を90質量%、DWCNTを10質量%とした。
(Comparative Example 1)
In Comparative Example 1, a nanocarbon composite separation membrane was prepared in the same procedure as in Example 1 except that the mixing ratio of the first dispersion and the second dispersion was changed.
The composition ratio of the nanocarbon separation membrane of Comparative Example 1 was 90% by mass of graphene oxide pieces and 10% by mass of DWCNT.
(比較例2)
 比較例2は、分散液を第1分散液のみとして、第2分散液を用いなかった点以外は、実施例1と同様の手順でナノカーボン複合分離膜を作製した。
 すなわち、比較例2のナノカーボン分離膜の構成比率は、酸化グラフェン片を100質量%とした。
(Comparative Example 2)
In Comparative Example 2, a nanocarbon composite separation membrane was prepared in the same procedure as in Example 1 except that only the first dispersion was used and the second dispersion was not used.
That is, the composition ratio of the nanocarbon separation membrane of Comparative Example 2 was 100% by mass of graphene oxide pieces.
(比較例3)
 比較例3は、分散液を第2分散液のみとして、第1分散液を用いなかった点以外は、実施例1と同様の手順でナノカーボン複合分離膜を作製した。
 すなわち、比較例3のナノカーボン分離膜の構成比率は、DWCNTを100質量%とした。
(Comparative Example 3)
In Comparative Example 3, a nanocarbon composite separation membrane was prepared in the same procedure as in Example 1 except that only the second dispersion liquid was used and the first dispersion liquid was not used.
That is, the composition ratio of the nanocarbon separation membrane of Comparative Example 3 was set to 100% by mass of DWCNT.
<ナノカーボン複合分離膜の評価>
 実施例1~3及び比較例1~3のナノカーボン複合分離膜の透水量及びNaCl除去率を測定した。具体的には、前記膜に、クロスフローで、0.2%濃度の塩化ナトリウム水溶液を300mL/分で送液し、ナノカーボン複合分離膜の透水量及びNaCl除去率を測定した。
<Evaluation of nanocarbon composite separation membrane>
The water permeability and NaCl removal rate of the nanocarbon composite separation membranes of Examples 1 to 3 and Comparative Examples 1 to 3 were measured. Specifically, a 0.2% concentration sodium chloride aqueous solution was fed to the membrane at 300 mL / min by crossflow, and the water permeability and NaCl removal rate of the nanocarbon composite separation membrane were measured.
 透水量は、圧力5.0MPaでの透水性測定の結果から算出した。
 NaCl除去率は、膜を直径25mmの円形に切り抜いて、クロスフロー濾過器(トスク社製)を用いて求めた。
 NaCl除去率[%]={1-透過水のNaCl濃度[質量%]/原水のNaCl濃度[質量%]}×100
The water permeability was calculated from the results of water permeability measurement at a pressure of 5.0 MPa.
The NaCl removal rate was obtained by cutting out the membrane into a circle having a diameter of 25 mm and using a cross flow filter (manufactured by Tosk Corporation).
NaCl removal rate [%] = {1-NaCl concentration of permeated water [mass%] / NaCl concentration of raw water [mass%]} × 100
 測定結果を表1に示す。表1において、GOは酸化グラフェン片を示し、DWCNTはダブルウォールカーボンナノチューブを示し、PVAはポリビニルアルコールを示す。 Table 1 shows the measurement results. In Table 1, GO indicates graphene oxide pieces, DWCNT indicates double wall carbon nanotubes, and PVA indicates polyvinyl alcohol.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上述のように、酸化グラフェン片とDWCNTの比率が所定の範囲にある実施例1~3のナノカーボン複合分離膜は、比較例1及び比較例2のナノカーボン複合分離膜と比較して、透水量が大きく向上した。またNaCl除去率は多少低下したが、用途によっては、40%程度あれば十分であり、充分なNaCl除去率を示した。用途としては、例えば、2価イオン除去用、有機物分離用のナノフィルトレーション膜等がある。なお、DWCNTのみからなる比較例3は、水が自由に流れ、脱塩性能は確認されなかった。 As described above, the nanocarbon composite separation membranes of Examples 1 to 3 in which the ratio of the graphene oxide pieces to DWCNT is in a predetermined range are more permeable than the nanocarbon composite separation membranes of Comparative Examples 1 and 2. The amount was greatly improved. Further, although the NaCl removal rate slightly decreased, depending on the application, about 40% was sufficient, and a sufficient NaCl removal rate was exhibited. Applications include, for example, nanofiltration membranes for divalent ion removal and organic matter separation. In Comparative Example 3 consisting only of DWCNT, water freely flowed and no desalting performance was confirmed.
<酸化グラフェン同士の架橋>
 酸化グラフェン同士が二価のカチオンによって架橋していることを確認する検討を行った。
 検討は、フーリエ変換赤外分光(FTIR)測定、ラマン分光測定、X線光電子分光(XPS)測定によって行った。
<Bridge between graphene oxides>
A study was conducted to confirm that graphene oxide was crosslinked by divalent cations.
The examination was performed by Fourier transform infrared spectroscopy (FTIR) measurement, Raman spectroscopy measurement, and X-ray photoelectron spectroscopy (XPS) measurement.
 測定は、酸化グラフェン片のみからなる参考比較例2と、参考比較例2の試料を塩化カルシウム溶液に浸漬する前でとめた試料(以下、参考比較例2-1と言う:塩化カルシウム溶液への浸漬なし)と、参考比較例2の試料を塩化カルシウム溶液に浸漬する前にとめてこの試料を100℃で加熱した試料(以下、参考比較例2-2と言う:塩化カルシウム溶液への浸漬なし)と、の3つの試料に対して行った。 The measurement was performed by immersing the sample of Reference Comparative Example 2 consisting only of graphene oxide pieces and the sample of Reference Comparative Example 2 in the calcium chloride solution (hereinafter referred to as Reference Comparative Example 2-1: The sample of Reference Comparative Example 2 was immersed before being immersed in the calcium chloride solution, and the sample was heated at 100 ° C. (hereinafter referred to as Reference Comparative Example 2-2: No immersion in the calcium chloride solution) ) And three samples.
 なお、参考比較例2では、比較例2で用いた分散液を多孔質膜の代わりにSi基板上に塗布し、塩化カルシウム溶液への浸漬も含む同様の手順を行い、Si基板上にナノカーボン分離膜を形成した。以下、Si基板上に形成したものを参考比較例等と表記する。参考比較例2は、比較例2と同様の条件で作製されたものに対応し、その他の参考実施例及び参考比較例も同様の対応関係を意味する。 In Reference Comparative Example 2, the dispersion used in Comparative Example 2 was applied on a Si substrate instead of the porous film, and the same procedure including immersion in a calcium chloride solution was performed. A separation membrane was formed. Hereinafter, what was formed on the Si substrate will be referred to as a reference comparative example. Reference Comparative Example 2 corresponds to one produced under the same conditions as Comparative Example 2, and the other reference examples and reference comparative examples also have the same correspondence.
 図8は、参考比較例2、2-1,2-2のFTIR測定の結果を示す。FTIRは、全反射測定(ATR)法により行った。FTIR測定の観測ピークは、C-O (alkoxy/alkoxide,1042cm-1)、C-O(carboxy,1410cm-1)、C=C (aromatic,1620cm-1)、C=O (carboxy/carbonyl,1716cm-1)、OH(3300cm-1)に帰属される。 FIG. 8 shows the results of FTIR measurement of Reference Comparative Examples 2, 2-1, and 2-2. FTIR was performed by the total reflection measurement (ATR) method. The observed peaks of FTIR measurement are: CO (alkoxy / alkoxide, 1042 cm -1 ), CO (carboxy, 1410 cm -1 ), C = C (aromatic, 1620 cm -1 ), C = O (carboxy / carbonyl, 1716 cm -1 ) , OH (3300 cm −1 ).
 C=Cピークを基準として相対比較すると、CaCl処理を行った参考比較例2は、処理を行う前の参考比較例2-1と比較して、C-OとC=Oピークの強度が下がっている。これはCa2+イオンが酸素イオンに対して配位することで、C=Cピークを基準とするC-OとC=Oピークの相対強度が低下したためである。 When the relative comparison is made with the C = C peak as a reference, the comparative example 2 in which the CaCl 2 treatment was performed has the intensity of the C—O and C═O peaks compared to the reference comparative example 2-1 before the treatment. It's down. This is because the relative intensity of C—O and C═O peak with respect to the C═C peak is reduced by coordination of Ca 2+ ions with oxygen ions.
 図9は、参考比較例2、2-1,2-2のラマン分光測定の結果を示す。
 ラマン分光測定の結果におけるD(1350cm-1)/G(1600cm-1)比は、参考比較例2-1が0.92、参考比較例2-2が0.84、参考比較例2が0.87であった。
FIG. 9 shows the results of Raman spectroscopic measurement in Reference Comparative Examples 2, 2-1, and 2-2.
The D (1350 cm −1 ) / G (1600 cm −1 ) ratio in the result of Raman spectroscopic measurement was 0.92 in Reference Comparative Example 2-1, 0.84 in Reference Comparative Example 2-2, and 0 in Reference Comparative Example 2. .87.
 参考比較例2-1と参考比較例2-2とを比較すると、参考比較例2-2のD/G比が小さくなっている。
Gバンドはグラファイト構造に由来のピークであり、Dバンドは欠陥由来のピークである。そのため、D/G比が小さくなったことは、結晶性が高まったことを意味する。参考比較例2-2は、参考比較例2-1を100℃で加熱したものであり、加熱により酸化グラフェンの一部が還元され、グラファイト構造に近づいたためと考えられる。
When the reference comparative example 2-1 and the reference comparative example 2-2 are compared, the D / G ratio of the reference comparative example 2-2 is small.
The G band is a peak derived from the graphite structure, and the D band is a defect derived peak. Therefore, a decrease in the D / G ratio means an increase in crystallinity. Reference Comparative Example 2-2 is obtained by heating Reference Comparative Example 2-1 at 100 ° C., and it is considered that a part of the graphene oxide was reduced by heating and approached the graphite structure.
 一方で、参考比較例2-2と参考比較例2とを比較すると、参考比較例2のD/G比が大きくなっている。カルシウムイオンが配位することで、結晶配列に乱れが生じたためと考えられる。 On the other hand, when the reference comparative example 2-2 is compared with the reference comparative example 2, the D / G ratio of the reference comparative example 2 is large. It is considered that the disorder of the crystal arrangement was caused by the coordination of calcium ions.
 図10A~10Cは、参考比較例2、2-1,及び2-2のXPS測定により求められたC1sスペクトルのそれぞれの分析結果を示す。図10Aは参考比較例2-1の分析結果であり、図10Bは参考比較例2-2の分析結果であり、図10Cは参考比較例2の分析結果である。 10A to 10C show analysis results of C1s spectra obtained by XPS measurement in Reference Comparative Examples 2, 2-1, and 2-2. 10A shows the analysis result of Reference Comparative Example 2-1, FIG. 10B shows the analysis result of Reference Comparative Example 2-2, and FIG. 10C shows the analysis result of Reference Comparative Example 2.
 図10Aと図10Bを比較すると、C=Cピークを基準としてC-O及びCOOのピーク比が小さくなっている。加熱により酸化グラフェンの一部が還元され、酸素元素が抜けたためと考えられる。 When comparing FIG. 10A and FIG. 10B, the peak ratio of CO and COO is small with the C = C peak as a reference. This is probably because part of the graphene oxide was reduced by heating, and oxygen element was released.
 また図10Bと図10Cを比較すると、C=Cピークを基準としてC-O及びCOOのピーク比が小さくなっている。これは、酸素元素に対してカルシウムイオンが配位することで、C-O及びCOOピークの検出量が低下したためと考えられる。 Also, comparing FIG. 10B and FIG. 10C, the peak ratio of CO and COO is smaller with the C = C peak as a reference. This is presumably because the detected amount of CO and COO peaks decreased due to the coordination of calcium ions to the oxygen element.
 また図11Aと図11Bは、参考比較例2のXPS測定により求められたCl2pスペクトル及びCa2pスペクトルの分析結果を示す。図11AはCl2pスペクトルの分析結果であり、図11BはCa2pスペクトルの分析結果である。 11A and 11B show the analysis results of the Cl2p spectrum and Ca2p spectrum obtained by XPS measurement in Reference Comparative Example 2. FIG. 11A shows the analysis result of the Cl2p spectrum, and FIG. 11B shows the analysis result of the Ca2p spectrum.
 図11Aに示すように、参考比較例2はCaのピークは検出されたが、Clのピークは検出されなかった。すなわち、参考比較例2には、CaClが残存しているのではなく、Caとして取り込まれていることが分かる。 As shown in FIG. 11A, in Reference Comparative Example 2, a Ca peak was detected, but a Cl peak was not detected. That is, it can be seen that in Reference Comparative Example 2, CaCl 2 is not remaining, but is taken in as Ca.
 上記の実験結果から、カルシウムイオンは酸素に配位し、酸化グラフェン同士を架橋していると言える。 From the above experimental results, it can be said that calcium ions are coordinated to oxygen and cross-linked graphene oxides.
<接着層の有無の検討>
 実施例1のナノカーボン複合分離膜と、実施例1から接着層を除いたナノカーボン複合分離膜(以下、実施例4という)とを準備した。実施例4は、実施例1の作製工程において、ポリサルフォン膜をポリビニルアルコール水溶液に浸漬していない点が異なる。
<Examination of presence or absence of adhesive layer>
A nanocarbon composite separation membrane of Example 1 and a nanocarbon composite separation membrane obtained by removing the adhesive layer from Example 1 (hereinafter referred to as Example 4) were prepared. Example 4 differs from Example 1 in that the polysulfone film is not immersed in an aqueous polyvinyl alcohol solution in the production process of Example 1.
 実施例1と実施例4のカーボンナノ複合分離膜に対して、クロスフローで2~5MPaの圧力で0.2%濃度の塩化ナトリウム水溶液を流速300ml/分で送液した。 A 0.2% concentration sodium chloride aqueous solution was fed to the carbon nanocomposite separation membranes of Example 1 and Example 4 at a flow rate of 300 ml / min at a pressure of 2 to 5 MPa by cross flow.
 図12Aと図12Bは、実施例1及び実施例4の処理後のカーボンナノ複合分離膜の表面の写真である。図12Aは、塩化ナトリウム水溶液を供給開始してから23時間後の、実施例4のカーボンナノ複合分離膜の表面写真である。図12Bは、塩化ナトリウム水溶液を供給開始してから70時間後の、実施例1のカーボンナノ複合分離膜の表面写真である。 12A and 12B are photographs of the surface of the carbon nanocomposite separation membrane after the treatment in Example 1 and Example 4. FIG. FIG. 12A is a photograph of the surface of the carbon nanocomposite separation membrane of Example 4 23 hours after the start of supplying the sodium chloride aqueous solution. FIG. 12B is a surface photograph of the carbon nanocomposite separation membrane of Example 1 after 70 hours from the start of supply of the sodium chloride aqueous solution.
 実施例4のカーボンナノ複合分離膜は、供給する液の流れによりカーボンナノ分離膜が剥がれている(図12Aの矢印で図示している部分)。これに対して、図12Bに示すように、実施例1のカーボンナノ複合分離膜は、剥がれ等が生じなかった。 In the carbon nanocomposite separation membrane of Example 4, the carbon nanoseparation membrane is peeled off by the flow of the supplied liquid (portion shown by the arrow in FIG. 12A). In contrast, as shown in FIG. 12B, the carbon nanocomposite separation membrane of Example 1 did not peel off.
 すなわち、接着層を設けることで、カーボンナノ分離膜がカーボンナノ複合分離膜から剥離することを抑制できる。特に、カーボンナノ複合分離膜に対して、クロスフローで液を供給する場合は、接着層を設けることが好ましい。これに対し、デッドエンドフローで液や気体を供給する場合は、接着層が無くても使用することはできる。 That is, by providing the adhesive layer, it is possible to suppress the separation of the carbon nanoseparation membrane from the carbon nanocomposite separation membrane. In particular, when the liquid is supplied to the carbon nanocomposite separation membrane by crossflow, it is preferable to provide an adhesive layer. On the other hand, when a liquid or gas is supplied in a dead end flow, it can be used without an adhesive layer.
<接着層の硬化の確認>
 図13は、ポリビニルアルコールの加熱前後のFTIR測定を行った結果を示す。
 図13に示すように、854cm-1ピークで規格化したときに、1141cm-1のピークが大きくなった。これは、ポリビニルアルコール膜の熱による硬化を示す。
 すなわち、ポリビニルアルコール膜は、100度雰囲気下で1時間乾燥させれば充分架橋する。
<Confirmation of curing of adhesive layer>
FIG. 13 shows the results of FTIR measurement before and after heating polyvinyl alcohol.
As shown in FIG. 13, when normalized by the 854 cm −1 peak, the peak at 1141 cm −1 increased. This indicates the curing of the polyvinyl alcohol film by heat.
That is, the polyvinyl alcohol film is sufficiently crosslinked when it is dried for 1 hour in an atmosphere of 100 degrees.
 透水性と分離性能とが共に優れたナノカーボン分離膜を提供することを目的とする。 An object of the present invention is to provide a nanocarbon separation membrane excellent in both water permeability and separation performance.
1 酸化グラフェン片、
2 ダブルウォールカーボンナノチューブ(DWCNT)、
10 ナノカーボン分離膜、
11 分散液
20 接着層、
30 多孔質膜、
31 孔部、
100 ナノカーボン複合分離膜
1 Graphene oxide pieces,
2 Double wall carbon nanotube (DWCNT),
10 Nanocarbon separation membrane,
11 Dispersion 20 Adhesive layer,
30 porous membrane,
31 holes,
100 Nanocarbon composite separation membrane

Claims (7)

  1.  厚み方向からみて互いに重なり合うように存在し、二価のカチオンによって互いに架橋された複数の酸化グラフェン片と、
     前記複数の酸化グラフェン片の層間に挿入されたダブルウォールカーボンナノチューブと、を備え、
     酸化グラフェン片及びダブルウォールカーボンナノチューブの合計質量に対する、酸化グラフェン片の質量比が0質量%より大きく70質量%以下であり、ダブルウォールカーボンナノチューブの質量比が30質量%以上100質量%未満である、ナノカーボン分離膜。
    A plurality of graphene oxide pieces that exist so as to overlap each other when viewed from the thickness direction and are cross-linked with each other by a divalent cation;
    A double wall carbon nanotube inserted between layers of the plurality of graphene oxide pieces,
    The mass ratio of the graphene oxide piece to the total mass of the graphene oxide piece and the double wall carbon nanotube is greater than 0% by mass and 70% by mass or less, and the mass ratio of the double wall carbon nanotube is 30% by mass or more and less than 100% by mass. Nanocarbon separation membrane.
  2.  酸化グラフェン片及びダブルウォールカーボンナノチューブとの合計質量に対する酸化グラフェン片の質量比が30質量%以上70質量%以下であり、ダブルウォールカーボンナノチューブの質量比が30質量%以上70質量%以下である請求項1に記載のナノカーボン分離膜。 The mass ratio of the graphene oxide piece to the total mass of the graphene oxide piece and the double wall carbon nanotube is 30% by mass to 70% by mass, and the mass ratio of the double wall carbon nanotube is 30% by mass to 70% by mass. Item 2. The nanocarbon separation membrane according to Item 1.
  3.  前記二価のカチオンが、カルシウムイオンである請求項1または2のいずれかに記載のナノカーボン分離膜。 The nanocarbon separation membrane according to claim 1 or 2, wherein the divalent cation is calcium ion.
  4.  請求項1~3のいずれか一項に記載のナノカーボン分離膜と、
     前記ナノカーボン分離膜の一面側に配設され、前記ナノカーボン分離膜を支持する多孔質膜と、を有するナノカーボン複合分離膜。
    The nanocarbon separation membrane according to any one of claims 1 to 3,
    A nanocarbon composite separation membrane having a porous membrane disposed on one side of the nanocarbon separation membrane and supporting the nanocarbon separation membrane.
  5.  前記ナノカーボン分離膜と前記多孔質膜とが、接着されている請求項4に記載のナノカーボン複合分離膜。 The nanocarbon composite separation membrane according to claim 4, wherein the nanocarbon separation membrane and the porous membrane are adhered to each other.
  6.  前記ナノカーボン分離膜と前記多孔質膜とが、ポリビニルアルコールによって接着されている請求項5に記載のナノカーボン複合分離膜。 The nanocarbon composite separation membrane according to claim 5, wherein the nanocarbon separation membrane and the porous membrane are bonded together with polyvinyl alcohol.
  7.  酸化グラフェン片と、ダブルウォールカーボンナノチューブと、が分散した分散液を塗付、及び乾燥し、カーボン膜を形成する工程と、
     前記カーボン膜を二価のカチオンが溶解した溶液に浸漬する工程と、を有するナノカーボン分離膜の製造方法。
    Applying a dispersion of dispersed graphene oxide pieces and double-walled carbon nanotubes and drying to form a carbon film;
    A step of immersing the carbon membrane in a solution in which a divalent cation is dissolved.
PCT/JP2017/038512 2016-10-26 2017-10-25 Nanocarbon separation membrane, composite nanocarbon separation membrane, and production method for nanocarbon separation membrane WO2018079604A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018547721A JP6679117B2 (en) 2016-10-26 2017-10-25 Nanocarbon separation membrane, nanocarbon composite separation membrane, and method for producing nanocarbon separation membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016209841 2016-10-26
JP2016-209841 2016-10-26

Publications (1)

Publication Number Publication Date
WO2018079604A1 true WO2018079604A1 (en) 2018-05-03

Family

ID=62024955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038512 WO2018079604A1 (en) 2016-10-26 2017-10-25 Nanocarbon separation membrane, composite nanocarbon separation membrane, and production method for nanocarbon separation membrane

Country Status (2)

Country Link
JP (1) JP6679117B2 (en)
WO (1) WO2018079604A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108722198A (en) * 2018-05-29 2018-11-02 华中科技大学 A kind of preparation method and products thereof of full carbon composite membrane
CN110479108A (en) * 2019-07-18 2019-11-22 北京工业大学 A kind of preparation method of the CNT-GO composite membrane of efficient removal organic micro-pollutant
JP2021505359A (en) * 2018-12-18 2021-02-18 大連理工大学 Method and application of conductive polymer / carbon nanotube composite nanofiltration membrane
CN115650224A (en) * 2022-11-10 2023-01-31 杭州嘉悦智能设备有限公司 High-thermal-conductivity nitrogen-doped graphene-carbon nanotube composite film and preparation method thereof
WO2023022084A1 (en) * 2021-08-19 2023-02-23 東レ株式会社 Fluid separation membrane
WO2023157844A1 (en) * 2022-02-17 2023-08-24 株式会社ナノメンブレン Polymer composite thin film, gas separation device provided with said polymer composite thin film, and method for producing polymer composite thin film
JP7470348B2 (en) 2022-09-22 2024-04-18 崑山科技大学 Preparation and application of three-dimensional carbon nanotubes grown on earth clay and graphene oxide

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102333293B1 (en) * 2021-05-28 2021-12-01 국방과학연구소 The manufacturing method of selectively permeable membrane comprising carbon-based support and separation layer
KR102488108B1 (en) * 2021-06-01 2023-01-13 연세대학교 산학협력단 Method for manufacturing a separation membrane based on a polar carbon nanotube dispersion and a polar one-dimensional carbon body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500179A (en) * 2008-08-19 2012-01-05 ウィリアム・マーシュ・ライス・ユニバーシティ Production of graphene nanoribbons from carbon nanotubes
JP2012031024A (en) * 2010-08-02 2012-02-16 Fuji Electric Co Ltd Method for manufacturing graphene thin film
WO2014021257A1 (en) * 2012-07-30 2014-02-06 国立大学法人信州大学 Method for producing composite film comprising graphene and carbon nanotubes
WO2014038600A1 (en) * 2012-09-05 2014-03-13 独立行政法人物質・材料研究機構 Linked stacks of partly reduced graphene, process for producing linked stacks of partly reduced graphene, powder comprising linked stacks of partly reduced graphene, film comprising linked stacks of partly reduced graphene, graphene electrode film, process for producing graphene electrode film, and graphene capacitor
JP2014169193A (en) * 2013-03-01 2014-09-18 Nec Corp Carbon material composed of nanocarbon and graphene or graphite compounded with each other, and method for producing the same
JP2014231453A (en) * 2013-05-29 2014-12-11 株式会社船井電機新応用技術研究所 Porous composite carbon material and production method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500179A (en) * 2008-08-19 2012-01-05 ウィリアム・マーシュ・ライス・ユニバーシティ Production of graphene nanoribbons from carbon nanotubes
JP2012031024A (en) * 2010-08-02 2012-02-16 Fuji Electric Co Ltd Method for manufacturing graphene thin film
WO2014021257A1 (en) * 2012-07-30 2014-02-06 国立大学法人信州大学 Method for producing composite film comprising graphene and carbon nanotubes
WO2014038600A1 (en) * 2012-09-05 2014-03-13 独立行政法人物質・材料研究機構 Linked stacks of partly reduced graphene, process for producing linked stacks of partly reduced graphene, powder comprising linked stacks of partly reduced graphene, film comprising linked stacks of partly reduced graphene, graphene electrode film, process for producing graphene electrode film, and graphene capacitor
JP2014169193A (en) * 2013-03-01 2014-09-18 Nec Corp Carbon material composed of nanocarbon and graphene or graphite compounded with each other, and method for producing the same
JP2014231453A (en) * 2013-05-29 2014-12-11 株式会社船井電機新応用技術研究所 Porous composite carbon material and production method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAN YI ET AL.: "High-Flux Graphene Oxide Nanofiltration Membrane Intercalated by Carbon Nanotubes", ACS APPL. MATER. INTERFACES, 2 April 2015 (2015-04-02), pages 8147 - 8155, XP055606737 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108722198A (en) * 2018-05-29 2018-11-02 华中科技大学 A kind of preparation method and products thereof of full carbon composite membrane
JP2021505359A (en) * 2018-12-18 2021-02-18 大連理工大学 Method and application of conductive polymer / carbon nanotube composite nanofiltration membrane
CN110479108A (en) * 2019-07-18 2019-11-22 北京工业大学 A kind of preparation method of the CNT-GO composite membrane of efficient removal organic micro-pollutant
WO2023022084A1 (en) * 2021-08-19 2023-02-23 東レ株式会社 Fluid separation membrane
WO2023157844A1 (en) * 2022-02-17 2023-08-24 株式会社ナノメンブレン Polymer composite thin film, gas separation device provided with said polymer composite thin film, and method for producing polymer composite thin film
JP7418758B2 (en) 2022-02-17 2024-01-22 株式会社ナノメンブレン Polymer composite thin film, gas separation device equipped with this polymer composite thin film, and method for manufacturing the polymer composite thin film
JP7470348B2 (en) 2022-09-22 2024-04-18 崑山科技大学 Preparation and application of three-dimensional carbon nanotubes grown on earth clay and graphene oxide
CN115650224A (en) * 2022-11-10 2023-01-31 杭州嘉悦智能设备有限公司 High-thermal-conductivity nitrogen-doped graphene-carbon nanotube composite film and preparation method thereof

Also Published As

Publication number Publication date
JPWO2018079604A1 (en) 2019-06-24
JP6679117B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
WO2018079604A1 (en) Nanocarbon separation membrane, composite nanocarbon separation membrane, and production method for nanocarbon separation membrane
Al Aani et al. Thin Film Nanocomposite (TFN) membranes modified with polydopamine coated metals/carbon-nanostructures for desalination applications
Emadzadeh et al. Synthesis, modification and optimization of titanate nanotubes-polyamide thin film nanocomposite (TFN) membrane for forward osmosis (FO) application
Cheng et al. Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification
US10953371B2 (en) Thin film composites having graphene oxide quantum dots
Lou et al. A facile way to prepare ceramic-supported graphene oxide composite membrane via silane-graft modification
Lecaros et al. Tunable interlayer spacing of composite graphene oxide-framework membrane for acetic acid dehydration
Bhadra et al. Flux enhancement in direct contact membrane distillation by implementing carbon nanotube immobilized PTFE membrane
JP2021504135A (en) Graphene or graphene derivative membrane
EP2579967B1 (en) Asymmetric nanotube containing membranes
Yang et al. Preparation and characterization of high-performance electrospun forward osmosis membrane by introducing a carbon nanotube interlayer
Zhang et al. Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance
Sonawane et al. Nanomaterials for membrane synthesis: Introduction, mechanism, and challenges for wastewater treatment
KR101381890B1 (en) Thin film nanocomposite membranes for desalination and method for preparing the same
Phao et al. A nitrogen-doped carbon nanotube enhanced polyethersulfone membrane system for water treatment
US20130015122A1 (en) Nanocomposite membranes
JP5518186B2 (en) Thin film-containing pervaporation film
EP2983808A1 (en) Membranes comprising graphene
Gao et al. Graphene oxide hybrid poly (p-phenylene sulfide) nanofiltration membrane intercalated by bis (triethoxysilyl) ethane
WO2009001970A1 (en) Separation membrane complex, and method for production of separation membrane complex
Li et al. Perforative pore formation on nanoplates for 2D porous MXene membranes via H2O2 mild etching
JP6679118B2 (en) Nanocarbon separation membrane, nanocarbon composite separation membrane, and method for producing nanocarbon separation membrane
US11786870B2 (en) CMS membrane, method for the production thereof and use thereof
Park et al. Fabrication of thin film composite polyamide membrane for water purification via inkjet printing of aqueous and solvent inks
Yu et al. Structure-performance relationships between amino acid-functionalized graphene quantum dots and self-cleaning nanofiltration membranes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865864

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547721

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865864

Country of ref document: EP

Kind code of ref document: A1