WO2014010154A1 - スクライブ方法及びスクライブ装置 - Google Patents

スクライブ方法及びスクライブ装置 Download PDF

Info

Publication number
WO2014010154A1
WO2014010154A1 PCT/JP2013/002571 JP2013002571W WO2014010154A1 WO 2014010154 A1 WO2014010154 A1 WO 2014010154A1 JP 2013002571 W JP2013002571 W JP 2013002571W WO 2014010154 A1 WO2014010154 A1 WO 2014010154A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate system
mark
scribing
ccd camera
moving means
Prior art date
Application number
PCT/JP2013/002571
Other languages
English (en)
French (fr)
Inventor
船城 明
Original Assignee
坂東機工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 坂東機工株式会社 filed Critical 坂東機工株式会社
Priority to KR1020147035513A priority Critical patent/KR20150020217A/ko
Priority to CN201380036795.5A priority patent/CN104428263A/zh
Priority to JP2014524613A priority patent/JPWO2014010154A1/ja
Publication of WO2014010154A1 publication Critical patent/WO2014010154A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/037Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2249/00Aspects relating to conveying systems for the manufacture of fragile sheets
    • B65G2249/04Arrangements of vacuum systems or suction cups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a scribing method and a scribing apparatus suitable for forming a scribe line on a brittle material substrate such as a glass substrate, a semiconductor substrate, and a solar cell substrate.
  • the present invention relates to a scribing method and a scribing apparatus for forming a scribe line on a brittle material substrate such as a glass substrate, a semiconductor substrate, and a solar cell substrate on which an alignment mark is written in accordance with the alignment mark.
  • the present invention also provides a scribing method in which an alignment mark of a positioned brittle material substrate is imaged by a CCD camera, image processing is performed, the position of the alignment mark is measured, and after a necessary processing is performed, a scribing operation is performed. It relates to a scribe device.
  • Patent Document 1 describes a scribing device that forms a scribe line on a glass substrate on which an alignment mark is written in accordance with the alignment mark.
  • the scribing device described in Patent Document 1 positions and fixes the glass substrate on which the alignment mark is marked on the table, and then uses two CCD cameras installed and fixed above the table. Image of the two alignment marks on the left and right on the glass substrate, image processing on the imaged alignment mark, and calculation processing for the result after image processing, and the angle shift amount of the glass substrate Next, for the angle deviation amount, the correction of the rotational position of the table, and for the position deviation amount, the movement correction of the Y-axis position of the table and the X-axis position of the scribe head are measured. After the correction work is completed, a scribing operation is performed, and the correction work and the scribing operation are performed for each new glass substrate. That.
  • the conventional scribing apparatus described in Patent Document 1 images an alignment mark written on a glass substrate with a fixed CCD camera, and performs image processing and arithmetic processing based on the image of the alignment mark captured by the CCD camera.
  • the angle deviation amount and the positional deviation amount of the glass substrate are measured, and the correction command value corrected from the measured value of the deviation amount is sent to the table rotating means, the table moving means and the scribe head moving means.
  • the table rotation position correction, the table position correction, and the scribing head position correction are performed.
  • the table rotating means, the table moving means, and the scribe head moving means have thermal expansion and mechanical error, in such a conventional scribe device, the actual rotation amount of the table with respect to the correction command value from the NC device, The actual amount of movement of the table and the scribe head may not match.Therefore, it takes many repetitions of correction work to adjust to the accurate positioning state, which takes time and labor, and is extremely inefficient. is there.
  • the present invention can form a scribe line that is aligned with the alignment mark even in a state where the positional deviation and the angular deviation occur in the brittle material substrate positioned on the table, with the positional deviation and the angular deviation maintained. It is another object of the present invention to provide a scribing method and a scribing apparatus capable of forming a scribing line corresponding to an alignment mark even if there is a difference in thermal expansion or mechanical error in the table, the table moving means and the scribe head moving means.
  • the present invention is to provide a scribing method and a scribing apparatus capable of forming a scribe line matched to an alignment mark regardless of the thermal expansion difference between the brittle material substrate and the moving means of the scribe head.
  • a brittle material substrate with alignment marks is positioned on the table according to the work coordinate system set in the NC apparatus, and the scribe head and the CCD camera are integrated as a common unit.
  • a scribe head is moved on a brittle material substrate based on a set program to form a scribe line that matches the alignment mark.
  • the scribing device of the present invention has an X direction stopper aligned with the X axis of the workpiece coordinate system set in the NC device at the tip side and a Y axis of the workpiece coordinate system set in the NC device at the tip side.
  • a scribe head that is moved in the work coordinate system to form a scribe line on the brittle material substrate, and a CCD camera that is arranged in parallel with the scribe head on the common bracket and is moved in the work coordinate system together with the scribe head; Move the above scribe head and CCD camera together in the work coordinate system.
  • Common X-axis moving means and Y-axis moving means an imaging instruction by the CCD camera, an image processing apparatus that performs image processing and arithmetic processing of the captured image, an imaging instruction to the CCD camera by the image processing apparatus, and an image A processing instruction and an arithmetic processing instruction, formation of a scribe line on a brittle material substrate by the scribe head, and an NC apparatus for controlling the operation of the common X-axis moving means and the Y-axis moving means.
  • the scribe head and the CCD camera are integrated into a work piece in a state where the brittle material substrate on which the alignment mark is marked is positioned in the work coordinate system in accordance with the tip side of the X direction stopper and the Y side stopper of the work table.
  • the camera centers are aligned, the respective alignment marks M1, M2 and M3 are imaged by the CCD camera, and the image processing and arithmetic processing are performed on the captured images by the image processing device.
  • the alignment marks M1, M2 and M3 are respectively The coordinate values of the actual positions of the mark centers M1C, M2C, and M3C in the workpiece coordinate system are measured, and the measured coordinate values of the mark centers M1C, M2C, and M3C from the image processing apparatus and the alignment marks M1, M2 are measured.
  • the program set in the brittle material substrate in the above-mentioned positioning state in the changed work coordinate system.
  • the scribe head and the CCD camera are moved together by a common moving means, the moving amount of the scribe head and the moving amount of the CCD camera are always matched regardless of the thermal expansion and mechanical error of the moving means. Therefore, the CCD camera moves as a unit with the scribe head, and the command value for moving the scribe head and the movement value of the scribe head always match with the command value based on the measurement value measured by the CCD camera. Become.
  • the scribe head and the CCD camera are integrally moved by a common moving means in a work coordinate system in which the brittle material substrate is positioned, and at least three points written on the brittle material substrate and orthogonally arranged.
  • the changed work coordinate system is a work coordinate system set based on the actual positions of the mark centers M1C, M2C, and M3C, based on the measurement values obtained by the CCD camera.
  • a scribe line that matches the alignment mark at the actual position can be formed on the brittle material substrate.
  • an accurate scribe line that matches the planned command position can be formed.
  • the scribing operation is performed by adjusting the scribe coordinate value on the production drawing as it is to the actual position of the alignment mark.
  • a scribe line that matches the alignment mark at the actual position can be formed regardless of the positional deviation or the angular deviation.
  • a scribe line that matches the alignment mark of the brittle material substrate can be formed regardless of the difference in thermal expansion between the brittle material substrate and the moving means that moves the scribe head.
  • the actual center-to-center distance is 300.5 mm.
  • the interval between the two scribe lines is 300.5 mm.
  • the scribe head is preferably moved in the X-axis direction and the Y-axis direction.
  • the brittle material substrate may be a glass substrate, a semiconductor substrate, a solar cell substrate, or the like. However, it is preferably a glass substrate.
  • the scribe line corresponding to the alignment mark is formed while the positional deviation and the angular deviation remain. Further, it is possible to provide a scribing method and a scribing apparatus capable of forming a scribing line according to an alignment mark even if there is a difference in thermal expansion or mechanical error in the table, the table moving means, and the scribe head moving means. it can.
  • a scribe line that matches the alignment mark regardless of the difference in thermal expansion between the brittle material substrate such as a glass substrate, a semiconductor substrate, and a solar cell substrate and the moving means of the scribe head.
  • a scribing method and a scribing apparatus can be provided.
  • FIG. 1 is a plan view of a scribing apparatus showing an embodiment of the present invention.
  • FIG. 2 is a side view of the scribing apparatus shown in FIG.
  • FIG. 3 is an explanatory diagram in which the work coordinate system is corrected and converted with reference to the center coordinates of three orthogonal alignment marks on the glass substrate.
  • FIG. 4 is a flowchart of the scribing method of the present invention.
  • the scribing apparatus 1 of this example shown in FIG. 1 and FIG. 2 mounts a glass substrate 5 as a brittle material substrate having alignment marks M1, M2, M3.
  • the work table 6, a scribe head 2 that moves in the XY plane coordinate system parallel to the upper surface of the glass substrate 5 above the work table 6, and the scribe head 2 are juxtaposed and integrated with the scribe head 2.
  • CCD camera 10, scribe head 2 and CCD camera 10 as a unitary X-axis moving means 3 and Y-axis moving means 4 for moving the XY plane coordinate system, and an imaging instruction by CCD camera 10 and an image of the captured image
  • An image processing apparatus (not shown) that performs processing and arithmetic processing, and an NC apparatus that numerically controls the movement of the X-axis moving means 3 and the Y-axis moving means 4 ( Has a Shimese not) and.
  • an X-direction stopper 7 and a Y-direction stopper 8 are arranged so as to be orthogonal to the work coordinate system Z 'set in the NC device.
  • the tip side 7A of the X direction stopper 7 indicates the X axis 7B aligned with the X axis of the workpiece coordinate system Z ′
  • the tip side 8A of the Y direction stopper 8 indicates the Y axis 8B aligned with the Y axis of the workpiece coordinate system Z ′.
  • the X axis 7B and the Y axis 8B are orthogonal to each other, and the intersection of the X axis 7B and the Y axis 8B is the origin of the workpiece coordinate system Z '.
  • the scribe head 2 and the CCD camera 10 are juxtaposed on the front surface of the head plate 9 as a common bracket.
  • the scribing head 2 and the CCD camera 10 arranged in parallel on the head plate 9 are moved in an XY coordinate system by a common moving means 30, and the common moving means 30 is a common X-axis moving means. 3 and Y axis moving means 4.
  • the X-axis moving means 3 is composed of an X1-axis moving means 3-1 and an X2-axis moving means 3-2 provided along the X-axis at each of both side positions with the work table 6 interposed therebetween.
  • Each of the X1 axis moving means 3-1 and the X2 axis moving means 3-2 includes a guide rail 12 attached to the base 11 along the X axis 7B, and is movable to the guide rail 12 along the X axis 7B.
  • a ball screw 15 disposed along the guide rail 12 and connected to the rotation output shaft of the servo electric motor 14 at one end.
  • the ball screw 15 is connected to the ball screw 15 via a nut portion 15A.
  • the movable body 13 is connected.
  • Each of the X1-axis moving means 3-1 and the X2-axis moving means 3-2 moves the moving body 13 in the X direction through rotation of the ball screw 15 by the operation of the servo electric motor 14, and X1
  • the servo electric motors 14 of the axis moving means 3-1 and the X2 axis moving means 3-2 are operated synchronously, and the X1 axis moving means 3-1 and the X2 axis moving means 3-2
  • Each moving body 13 is configured to move in the X-axis synchronously by the respective synchronous operation of the servo electric motor 14.
  • the Y-axis moving means 4 is disposed perpendicular to the X-axis and has a brittle body 16 installed on the moving body 13 of the X1-axis moving means 3-1 and the moving body 13 of the X2-axis moving means 3-2.
  • the ball screw 20 is connected to the Y-axis carriage 18 via a nut portion 20A into which the ball screw 20 is screwed.
  • the Y-axis moving means 4 moves the Y-axis carriage 18 in the Y-axis through the rotation of the ball screw 20 by the operation of the Y-axis servo electric motor 19.
  • a pair of guide rails 21 are disposed on the side surface portion 18B of the Y-axis carriage 18 so as to be perpendicular to the upper surface of the work table 6 and along the vertical direction.
  • the guide rails 21 are movable in the vertical direction.
  • a head plate 9 is attached to the held slide block 21A, and a nut portion 9B is fixed to the head plate 9.
  • a ball screw 9C is screwed to the nut portion 9B, and the ball screw 9C is vertically moved at the upper end.
  • the upper and lower servo motors 22 are connected to the output shaft of the servo motor 22 and are fixed to the upper end portion 18 ⁇ / b> A of the Y-axis carriage 18.
  • the head plate 9, and thus the scribe head 2 and the CCD camera 10 are integrally moved in the vertical direction H under numerical control.
  • the scribe head 2 and the CCD camera 10 are positioned at a required height position with respect to the glass substrate 5 positioned on the upper surface of the work table 6 and further on the upper surface by the vertical servo motor 22. Yes.
  • the focus of the CCD camera 10 is adjusted when the CCD camera 10 images the alignment marks M1, M2, and M3, and the scribe line is formed on the glass substrate 5 when the scribe head 2 forms a scribe line.
  • the head 2 is set to an appropriate height position.
  • the vertical movement means of this example for moving the scribe head 2 attached to the head plate 9 and the CCD camera 10 up and down by numerical control is, as described above, the guide rail 21 attached to the Y-axis carriage 18 having an L-shaped cross section, A slide block 21A held on the guide rail 21 so as to move up and down, a head plate 9 attached to the slide block 21A, a nut portion 9B fixed to the head plate 9, a ball screw 9C and a ball screw 9C screwed to the nut portion 9B
  • the vertical servo motor 22 for rotation is provided, the vertical movement means for moving the scribe head 2 and the CCD camera 10 up and down by numerical control may be provided with a linear motor.
  • the scribe head 2 raises and lowers the scribe wheel 2a, the scribe wheel 2a, lowers the scribe wheel 2a when forming the scribe line, and presses the scribe wheel 2a with air elasticity against the glass substrate 5, and the scribe wheel.
  • 2a is provided with an angle control motor 25 that changes the direction according to the scribe line direction.
  • the air cylinder 24 and the angle control motor 25 are attached to the head plate 9, and the scribe wheel 2a is fixed to the piston rod 26. It is attached to the connected connector 28 and is lowered by the air cylinder 24 only when a scribe line is formed.
  • the rotation of the output rotation shaft of the angle control motor 25 is provided on the output rotation shaft.
  • the pinion 27 is attached to the piston rod 26 of the air cylinder 24, and is connected to the piston rod 26 and supports the scribe wheel 2a. Is transmitted to the scribe wheel 2a, whereby the scribe wheel 2a can be turned in accordance with the scribe line direction, and the scribe wheel 2a is lowered, raised and angle-controlled by the air cylinder 24. The orientation of the scribe wheel 2a in the direction of the scribe line by 24 is performed independently of the vertical movement of the scribe head 2 and the CCD camera 10 when the scribe line is formed.
  • the scribing apparatus 1 performs numerical control of the X-axis moving unit 3, the Y-axis moving unit 4, the vertical servo motor 22 and the angle control motor 25, and performs arithmetic processing such as workpiece coordinate system conversion.
  • An image processing apparatus that performs imaging by the CCD camera 10 based on instructions of the apparatus (CNC) and the NC apparatus (CNC), image processing of the captured image, and calculation processing of the image processing result is provided.
  • the glass substrate 5 is positioned in accordance with the workpiece coordinate system Z ′ set in advance in the NC apparatus, and the orthogonal sides of the glass substrate 5 are set to the X axis and Y of the workpiece coordinate system Z ′. Fit to each of the axes.
  • the scribe head 2 and the CCD camera 10 are integrally moved by the common moving means 30 in the work coordinate system Z ′ and written on the glass substrate 5 in a positioning state on the work table 6 and arranged in an orthogonal arrangement.
  • the coordinate values of the actual positions in the workpiece coordinate system Z ′ of the mark centers M1C, M2C and M3C are measured.
  • the measured coordinate values of the mark centers M1C, M2C, and M3C are sent to the NC device, and the NC device measures the coordinate values of the mark centers M1C, M2C, and M3C and the set coordinate values of the alignment marks M1, M2, and M3.
  • the scribe head 2 is moved and operated on the glass substrate 5 positioned on the work table 6 based on a preset NC program to form a scribe line that matches the alignment mark. To do. (Step IV)
  • the glass substrate 5 on which the alignment marks are written is positioned on the upper surface of the work table 6 according to the work coordinate system Z ′ set in the NC apparatus.
  • the scribe head 2 and the CCD camera 10 are integrally moved in the work coordinate system Z ′ by the common moving means 30 and are written on the glass substrate 5 and at least three alignment marks M1 that are orthogonally arranged.
  • the scribe head 2 is moved to the glass substrate 5 positioned on the work table 6 based on a preset NC program to form a scribe line that matches the alignment mark.
  • the scribing device 1 has an X-direction stopper 7 aligned with the X axis 7B of the work coordinate system Z ′ set in the NC device at the front end side 7A, and the Y axis 8B of the work coordinate system Z ′ at the front end side 8A.
  • the scribe head 2 that forms the scribe lines 32 and 33 on the glass substrate 5
  • the CCD camera 10 that is arranged in parallel with the scribe head 2 and moves together with the scribe head 2 and the scribe head 2 And the CCD camera 10 are moved together in the work coordinate system Z ′ and the XY coordinate system of Z.
  • Means 3 and Y axis moving means 4 image processing by CCD camera 10, image processing, arithmetic processing, image processing device for outputting data to NC device, imaging instruction by CCD camera 10, image processing by image processing device And an NC device that controls the movement of the image processing result, the formation of the scribe lines 32 and 33 by the scribe head 2, and the movement of the common X-axis moving means 3 and Y-axis moving means 4.
  • the camera center 31 of the CCD camera 10 is aligned, the respective alignment marks M1, M2, and M3 are imaged by the CCD camera 10, image processing is performed by the image processing device, and the image processing results are obtained.
  • Calculation processing is performed to measure the coordinate values of the actual positions in the workpiece coordinate system Z ′ of the mark centers M1C, M2C and M3C of the alignment marks M1, M2 and M3, and the measured mark centers M1C, M2C and M3C respectively.
  • the scribe head 2 is moved by the X-axis moving means 3 and the Y-axis moving means 4, and the X-direction scan passing through the mark center M3C, for example, aligned with the alignment mark. And performs the formation of each of the Y-direction of the scribe line 33 through the live line 32 and the mark center M2C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

 スクライブ装置1は、上面にアライメントマークM1、M2、M3・・・が記された脆性材料基板としてのガラス基板5を載置し、位置決めし、吸着固定するワークテーブル6と、ワークテーブル6の上方において、ガラス基板5の上面に平行してXY平面座標系の移動を行うスクライブヘッド2と、スクライブヘッド2に並設され、スクライブヘッド2と共に一体となっているCCDカメラ10と、スクライブヘッド2及びCCDカメラ10を一体としてXY平面座標系を移動させる共通のX軸移動手段3及びY軸移動手段4と、CCDカメラ10による撮像指示、撮像した画像の画像処理及び演算処理を行う画像処理装置と、X軸移動手段3及びY軸移動手段4の移動を数値制御するNC装置とを備えている。 

Description

スクライブ方法及びスクライブ装置
 本発明は、ガラス基板、半導体基板及び太陽電池用基板等の脆性材料基板上にスクライブラインを形成するに適するスクライブ方法及びスクライブ装置に関する。
 特に、本発明は、アライメントマークを記したガラス基板、半導体基板及び太陽電池用基板等の脆性材料基板に、アライメントマークに合わせて、スクライブラインを形成するスクライブ方法及びスクライブ装置に関する。
 また、本発明は、位置決めした脆性材料基板のアライメントマークをCCDカメラにより撮像、画像処理し、アライメントマークの位置を計測し、必要な処理を行った後に、スクライブ動作を行うようにしたスクライブ方法及びスクライブ装置に係る。
 特許文献1には、アライメントマークが記されたガラス基板にアライメントマークに合わせてスクライブラインを形成するスクライブ装置が記載されている。
 特許文献1に記載されたスクライブ装置は、アライメントマークを記したガラス基板をテーブル上に位置決めして吸着固定し、次に、テーブルの上方に設置、固定された2台のCCDカメラを用いて、ガラス基板上の左右2ヶ所のアライメントマークを夫々撮像し、撮像したアライメントマークの画像に対して画像処理し、そして、画像処理後の結果に対して演算処理して位置決めしたガラス基板の角度ズレ量及び位置ズレ量を計測し、次に、角度ズレ量に対しては、テーブルの回転位置の補正と、位置ズレ量に対しては、テーブルのY軸位置の移動補正及びスクライブヘッドのX軸位置の移動補正とを行い、これら補正作業の終了後、スクライブ動作を行い、斯かる補正作業及びスクライブ動作を新しいガラス基板毎に行うようになっている。
特開2011-251900号公報
 ところで、特許文献1に記載の従来のスクライブ装置は、固定されたCCDカメラでガラス基板に記されたアライメントマークを撮像し、CCDカメラで撮像したアライメントマークの画像に基づいて画像処理及び演算処理して、ガラス基板の角度ズレ量及び位置ズレ量を計測し、このズレ量の計測値に基づいて補正されたNC装置からの補正指令値をテーブル回転手段、テーブル移動手段及びスクライブヘッド移動手段に送り、テーブルの回転位置補正、テーブルの位置補正及びスクライブヘッドの位置補正を行うようになっている。しかし、テーブル回転手段、テーブル移動手段及びスクライブヘッド移動手段には熱膨張及び機械誤差がある故に、斯かる従来のスクライブ装置では、NC装置からの補正指令値に対し、テーブルの実際の回転量、テーブル及びスクライブヘッドの実際の移動量が一致しないことがあり、このため、精確な位置決め状態に合わせるには、補正作業の何回もの繰り返しを要し、手間と時間とがかかり、極めて非効率である。
 また、従来のスクライブ装置では、ガラス基板に対する位置補正作業後のスクライブ動作においても、テーブル、テーブル回転手段、テーブル移動手段及びスクライブヘッド移動手段の熱膨張、機械誤差の影響、また、ガラス基板の熱膨張とこれらのテーブル及び移動手段との熱膨張の相異により、アライメントマークに合わせたスクライブラインの形成には、プログラム補正の必要もあり、試しスクライブ等手間を要する。
 本発明は、テーブル上に位置決めされた脆性材料基板に位置ズレ及び角度ズレが生じている状態においても、その位置ズレ及び角度ズレ状態のままで、アライメントマークに合わせたスクライブラインを形成し得、また、テーブル、テーブル移動手段及びスクライブヘッド移動手段に熱膨張の相異、機械誤差が存在していてもアライメントマークに合わせたスクライブラインを形成し得るスクライブ方法及びスクライブ装置を提供することにある。
 さらに、本発明は、脆性材料基板とスクライブヘッドの移動手段との熱膨張の相異に関係なくアライメントマークに合わせたスクライブラインを形成し得るスクライブ方法及びスクライブ装置を提供することにある。
 本発明のスクライブ方法は、アライメントマークを記した脆性材料基板を、テーブル上面において、NC装置に設定されたワーク座標系に合わせて位置決めした状態で、スクライブヘッドとCCDカメラとを一体として、共通の移動手段により、上記ワーク座標系において移動させ、上記脆性材料基板に記され、直交配置関係にある少なくとも3点のアライメントマークM1、M2及びM3の上記ワーク座標系における設定座標値M1(X=X1、Y=Y1)、M2(X=X2、Y=Y1)及びM3(X=X1、Y=Y2)に、上記CCDカメラのカメラセンターを合わせ、それぞれのアライメントマークM1、M2及びM3を撮像し、撮像したアライメントマークM1、M2及びM3の画像に対して画像処理を行い、この画像処理の結果に基づいて、上記アライメントマークM1、M2及びM3それぞれのマークセンターM1C、M2C及びM3Cの上記ワーク座標系における実際の位置の座標値を計測し、これらマークセンターM1C、M2C及びM3Cの計測されたそれぞれの座標値と上記アライメントマークM1、M2及びM3の設定座標値M1(X=X1、Y=Y1)、M2(X=X2、Y=Y1)及びM3(X=X1、Y=Y2)とに基づいて演算処理を行い、上記アライメントマークM1のマークセンターM1Cの実際の位置の上記座標値が、指令された座標値(X=0、Y=0)に、上記アライメントマークM2のマークセンターM2Cの実際の位置の上記座標値が、指令された座標値(X=X2-X1、Y=0)に、そして、上記アライメントマークM3のマークセンターM3Cの実際の位置の上記座標値が、指令された座標値(X=0,Y=Y2-Y1)になるワーク座標系に変更し、この変更したワーク座標系において、上記位置決め状態にある脆性材料基板に、設定されたプログラムに基づき、スクライブヘッドを移動させ、アライメントマークに合わせたスクライブラインを形成するようになっている。
 本発明のスクライブ装置は、先端辺において、NC装置に設定されたワーク座標系のX軸に合わせたX方向ストッパー及び先端辺において、NC装置に設定された上記ワーク座標系のY軸に合わせたY方向ストッパーを夫々上面に備えたワークテーブル16と、上記ワークテーブルの上記X方向ストッパーの先端辺及びY方向ストッパーの先端辺に合わせて上記ワーク座標系において位置決めされた脆性材料基板の上方において、ワーク座標系で移動されて、上記脆性材料基板にスクライブラインを形成するスクライブヘッドと、共通ブラケットにこのスクライブヘッドと並設され、スクライブヘッドと一体となってワーク座標系で移動されるCCDカメラと、上記クスライブヘッドとCCDカメラとを一体としてワーク座標系で移動させる共通のX軸移動手段及びY軸移動手段と、上記CCDカメラによる撮像指示、撮像した画像の画像処理及び演算処理を行う画像処理装置と、上記画像処理装置でのCCDカメラへの撮像指示、画像処理指示及び演算処理指示、上記スクライブヘッドによる脆性材料基板へのスクライブラインの形成、上記共通のX軸移動手段及びY軸移動手段の作動を制御するNC装置とを備えており、NC装置は、アライメントマークを記した脆性材料基板を上記ワークテーブルの上記X方向ストッパーの先端辺及びY方向ストッパーの先端辺に合わせて上記ワーク座標系に位置決めした状態で、スクライブヘッドとCCDカメラとを一体としてワーク座標系で移動させ、脆性材料基板に記され、直交配置にある少なくとも3点のアライメントマークM1、M2及びM3の上記ワーク座標系における設定座標値M1(X=X1、Y=Y1)、M2(X=X2、Y=Y1)及びM3(X=X1、Y=Y2)に、上記CCDカメラのカメラセンターを合わせ、それぞれのアライメントマークM1、M2及びM3をCCDカメラで撮像させ、撮像された画像に対して画像処理装置で画像処理及び演算処理を行わせ、上記アライメントマークM1、M2及びM3それぞれのマークセンターM1C、M2C及びM3Cの上記ワーク座標系における実際の位置の座標値を計測させ、画像処理装置からの計測されたマークセンターM1C、M2C及びM3Cそれぞれの座標値と上記アライメントマークM1、M2及びM3の設定座標値M1(X=X1、Y=Y1)、M2(X=X2、Y=Y1)及びM3(X=X1、Y=Y2)とに基づいて演算処理を行い、上記アライメントマークM1のマークセンターM1Cの実際の位置の上記座標値が、指令された座標値(X=0、Y=0)に、上記アライメントマークM2のマークセンターM2Cの実際の位置の上記座標値が、指令された座標値(X=X2-X1、Y=0)に、上記アライメントマークM3のマークセンターM3Cの実際の位置の上記座標値が、指令された座標値(X=0、Y=Y2-Y1)になるワーク座標系に変更し、この変更したワーク座標系において、上記位置決め状態にある脆性材料基板に、設定されたプログラムに基づき、スクライブヘッドを移動させ、アライメントマークに合わせたスクライブラインをスクライブヘッドで形成させるべく、CCDカメラの撮像指示、共通のX軸移動手段及びY軸移動手段の作動の制御を行うようになっている。
 本発明は、スクライブヘッドとCCDカメラとを一体として共通の移動手段により移動させるため、移動手段の熱膨張及び機械誤差に関係なくスクライブヘッドの移動量とCCDカメラの移動量とを常に一致させることができ、従って、CCDカメラがスクライブヘッドと一体として移動し、CCDカメラが計測した計測値に基づいた指令値によって、スクライブヘッドを移動させる指令値とスクライブヘッドの移動値とは常に一致することになる。
 また、本発明は、スクライブヘッドとCCDカメラとを一体として共通の移動手段により脆性材料基板を位置決めしたワーク座標系において移動させ、脆性材料基板に記されていると共に直交配置にある少なくとも3点のアライメントマークM1、M2及びM3の設定座標値M1(X=X1、Y=Y1)、M2(X=X2、Y=Y1)及びM3(X=X1、Y=Y2)にCCDカメラのカメラセンターを合わせて撮像し、アライメントマークM1、M2及びM3それぞれのマークセンターM1C、M2C及びM3Cのワーク座標系における実際位置の座標値を計測し、マークセンターM1C、M2C及びM3Cの計測された座標値に基づいた演算処理を行い、アライメントマークM1のマークセンターM1Cの計測された実際の座標値が、指令された座標値(X=0、Y=0)に、アライメントマークM2のマークセンターM2Cの計測された実際の座標値が、指令された座標値(X=X2-X1、Y=0)に、アライメントマークM3のマークセンターM3Cの計測された実際の座標値が、指令された座標値(X=0、Y=Y2-Y1)に夫々なるワーク座標系に変更する。
 変更ワーク座標系は、位置決めされた脆性材料基板のアライメントマークM1のマークセンターM1Cの実際位置が原点(X=0、Y=0)に、アライメントマークM2のマークセンターM2Cの実際位置がX軸上の座標値(X=X2-X1、Y=0)に、アライメントマークM3のマークセンターM3Cの実際位置がY軸上の座標値(X=0、Y=Y2-Y1)に夫々合わされて設定されたワーク座標系となっている。
 即ち、変更ワーク座標系は、CCDカメラによる計測値を基にし、マークセンターM1C、M2C及びM3Cの実際位置を基準に設定したワーク座標系となる。
 従って、この変更ワーク座標系において脆性材料基板に対してスクライブを行うことにより、実際の位置のアライメントマークに合わせたスクライブラインが脆性材料基板に形成できる。
 また、上述の効果と相まって、予定の指令位置に一致した精確なスクライブラインが形成できる。
 さらに、また、製作図面上のスクライブ座標値がそのまま、アライメントマークの実際位置に合わされてスクライブ動作がなされる。
 また、更に、脆性材料基板の位置決めにおいて、位置ズレ、角度ズレが存在しても、その位置ズレ、角度ズレに関係なく実際位置のアライメントマークに合わせたスクライブラインが形成し得る。
 更に、脆性材料基板とスクライブヘッドを移動する移動手段との熱膨張の差異に関係なく脆性材料基板のアライメントマークに合わせたスクライブラインが形成され得る。
 例えば、本発明のスクライブ方法によると、図面寸法でアライメントマークM1とアライメントマークM2とのセンター間寸法が300mmであるにもかかわらず、実際の中心間距離が300.5mmであった場合、M1を通るX=0の直線と、M2を通るX=300の直線とのスクライブラインを形成した場合、2つのスクライブラインの間隔は300.5mmとなる。
 本発明は、好ましくは、スクライブヘッドをX軸移動及びY軸移動させるようになっており、また、本発明では、脆性材料基板は、ガラス基板、半導体基板又は太陽電池用基板等であってよいが、好ましくは、ガラス基板である。
 本発明によれば、テーブル上に位置決めされた脆性材料基板に位置ズレ及び角度ズレが生じている状態においても、その位置ズレ及び角度ズレ状態のままで、アライメントマークに合わせたスクライブラインを形成し得、また、テーブル、テーブル移動手段及びスクライブヘッド移動手段に熱膨張の相異、機械誤差が存在していてもアライメントマークに合わせたスクライブラインを形成し得るスクライブ方法及びスクライブ装置を提供することができる。
 また、本発明によれば、ガラス基板、半導体基板及び太陽電池用基板等の脆性材料基板とスクライブヘッドの移動手段との熱膨張の相異に関係なくアライメントマークに合わせたスクライブラインを形成し得るスクライブ方法及びスクライブ装置を提供することができる。
図1は、本発明の一実施例を示すスクライブ装置の平面図である。 図2は、図1に示すスクライブ装置の側面図である。 図3は、ガラス基板の直交3点のアライメントマークのセンター座標を基準として、ワーク座標系を補正変換した説明図である。 図4は、本発明のスクライブ方法のフローチャートである。
 次に本発明を、図に示す好ましい実施の形態の例に基づいて更に詳細に説明する。なお、本発明はこれらの例に何等限定されないのである。
 図1及び図2に示す本例のスクライブ装置1は、上面にアライメントマークM1、M2、M3・・・が記された脆性材料基板としてのガラス基板5を載置し、位置決めし、吸着固定するワークテーブル6と、ワークテーブル6の上方において、ガラス基板5の上面に平行してXY平面座標系の移動を行うスクライブヘッド2と、スクライブヘッド2に並設され、スクライブヘッド2と共に一体となっているCCDカメラ10と、スクライブヘッド2及びCCDカメラ10を一体としてXY平面座標系を移動させる共通のX軸移動手段3及びY軸移動手段4と、CCDカメラ10による撮像指示、撮像した画像の画像処理及び演算処理を行う画像処理装置(図示せず)と、X軸移動手段3及びY軸移動手段4の移動を数値制御するNC装置(図示せず)とを備えている。
 ワークテーブル6の上面には、NC装置に設定したワーク座標系Z’に合わせたX方向ストッパー7とY方向ストッパー8とが直交して配設されている。X方向ストッパー7の先端辺7Aがワーク座標系Z’のX軸に合わされたX軸7Bを示し、Y方向ストッパー8の先端辺8Aがワーク座標系Z’のY軸に合わされたY軸8Bを示す。X軸7BとY軸8Bは、直交しており、X軸7BとY軸8Bとの交点がワーク座標系Z’の原点である。
 スクライブヘッド2とCCDカメラ10とは、共通ブラケットとしてのヘッドプレート9の前面に並設されている。
 ヘッドプレート9に並設されたスクライブヘッド2とCCDカメラ10とは、共通の移動手段30によってXY座標系で移動されるようになっており、共通の移動手段30は、共通のX軸移動手段3とY軸移動手段4とからなる。
 X軸移動手段3は、ワークテーブル6を挟んで、両側位置のそれぞれにおいてX軸に沿って設けたX1軸移動手段3-1とX2軸移動手段3-2とからなる。
 X1軸移動手段3-1とX2軸移動手段3-2とのそれぞれは、X軸7Bに沿って基台11に取付けたガイドレール12と、ガイドレール12にX軸7Bに沿って移動自在に保持されたスライドブロック13Aと、スライドブロック13Aに取付けられていると共にナット部15Aが固着された移動体13と、ワークテーブル6及びガイドレール12と共に基台11の上面に取付けられたサーボ電動モータ14と、ガイドレール12に沿って配されると共に一端でサーボ電動モータ14の回転出力軸に連結されたボールネジ15とを備えており、ボールネジ15は、ボールネジ15が螺合したナット部15Aを介して移動体13に連結されている。
 X1軸移動手段3-1とX2軸移動手段3-2とのそれぞれは、サーボ電動モータ14の作動によるボールネジ15の回転を介して移動体13をX方向に移動させるようになっており、X1軸移動手段3-1とX2軸移動手段3-2とのそれぞれのサーボ電動モータ14は同期作動されるようになっており、X1軸移動手段3-1とX2軸移動手段3-2とのそれぞれの移動体13は、サーボ電動モータ14の夫々の同期作動により同期してX軸移動するようになっている。
 Y軸移動手段4は、X軸に直交して配設されていると共にX1軸移動手段3-1の移動体13とX2軸移動手段3-2の移動体13とに架設したブリッチ体16と、ブリッチ体16にY軸に沿って設けられた一対のガイドレール17と、ガイドレール17にY軸沿って移動自在に保持されたスライドブロック17Aと、スライドブロック17Aに取付けられていると共にナット部20Aが固着されたL形のY軸キヤリッジ18と、ブリッチ体16の一端に取付けたY軸サーボモータ19と、一端でY軸サーボモータ19の出力回転軸に連結されていると共にガイドレール17に沿って設けられたボールネジ20とを備えており、ボールネジ20は、当該ボールネジ20が螺合したナット部20Aを介してY軸キヤリッジ18に連結されている。
 Y軸移動手段4は、Y軸サーボ電動モータ19の作動によるボールネジ20の回転を介してY軸キヤリッジ18をY軸移動させるようになっている。
 Y軸キヤリッジ18の側面部18Bには、ワークテーブル6の上面に対して垂直であって上下方向に沿ってかつ一対のガイドレール21が配設され、これらガイドレール21に上下方向に移動自在に保持されたスライドブロック21Aにヘッドプレート9が取付けられており、ヘッドプレート9にはナット部9Bが固定されており、ナット部9Bにはボールネジ9Cが螺合されており、ボールネジ9Cは上端において上下サーボモータ22の出力軸に連結されており、上下サーボモータ22は、Y軸キヤリッジ18の上端部18Aに固定されている。
 上下サーボモータ22の作動によって、ヘッドプレート9、延いてはスクライブヘッド2とCCDカメラ10とは、一体となって、数値制御されて上下方向Hに移動させられるようになっている。
 即ち、スクライブヘッド2とCCDカメラ10とは、上下サーボモータ22によってワークテーブル6の上面、延いては上面に位置決めされたガラス基板5に対して必要な高さ位置に位置決めされるようになっている。これにより、CCDカメラ10によるアライメントマークM1、M2及びM3の撮像に際してのCCDカメラ10の焦点調整が行われ、また、スクライブヘッド2によるガラス基板5へのスクライブラインの形成に際してのガラス基板5に対するスクライブヘッド2の適切な高さ位置への設定が行われるようになっている。
 ヘッドプレート9に取付けられたスクライブヘッド2とCCDカメラ10とを上下に数値制御により移動させる本例の上下移動手段は、上述の如く、断面L形のY軸キヤリッジ18に取付けたガイドレール21、ガイドレール21に上下動自在に保持されたスライドブロック21A、スライドブロック21Aに取付けられたヘッドプレート9、ヘッドプレート9に固着されたナット部9B、ナット部9Bに螺合したボールネジ9C及びボールネジ9Cを回転させる上下サーボモータ22を具備しているが、このスクライブヘッド2とCCDカメラ10とを上下に数値制御により移動させる上下移動手段は、リニアモータを具備して構成してもよい。
 スクライブヘッド2は、スクライブホイール2aと、スクライブホイール2aを昇降させ、スクライブラインの形成時、スクライブホイール2aを降下させ、ガラス基板5にエアー弾性をもってスクライブホイール2aを押圧させるエアーシリンダ24と、スクライブホイール2aをスクライブライン方向に合わせて向きを変える角度制御モータ25とを備えており、エアーシリンダ24及び角度制御モータ25は、ヘッドプレート9に取付けられており、スクライブホイール2aは、ピストンロッド26に固着された連結具28に取付けられて、スクライブラインを形成するときのみエアーシリンダ24により降下させられるようになっており、角度制御モータ25の出力回転軸の回転は、当該出力回転軸に設けられたピニオン25a、ピニオン25aに相対的に上下動移動自在になって噛合っていると共にエアーシリンダ24のピストンロッド26に取付けられたピニオン27、ピストンロッド26に取付けられていると共にスクライブホイール2aを支持した連結具28を介してスクライブホイール2aに伝達され、これにより、スクライブホイール2aは、スクライブライン方向に合わせて向きを変えさせられるようになっており、エアーシリンダ24によるスクライブホイール2aの降下、上昇及び角度制御モータ24によるスクライブホイール2aのスクライブライン方向への配向は、スクライブラインの形成の際に、スクライブヘッド2とCCDカメラ10との上下移動に対して独立して行われるようになっている。
 スクライブ装置1は、以上の構成に加えて、X軸移動手段3、Y軸移動手段4、上下サーボモータ22及び角度制御モータ25の数値制御を行うと共にワーク座標系変換等の演算処理を行うNC装置(CNC)並びにNC装置(CNC)の命令に基づくCCDカメラ10による撮像及び撮像された画像の画像処理及び画像処理結果の演算処理を行う画像処理装置等を備える。
 スクライブ装置1によるスクライブ方法を図3、図4に基づいて説明する。
 アライメントマークM1、M2、M3・・・が記されたガラス基板5を、ワークテーブル6の上面において、X方向ストッパー7の先端辺7A及びY方向ストッパー8の先端辺8Aにその直交辺の夫々で接触させる。この作業により、ガラス基板5は、NC装置に前もって設定されているワーク座標系Z’に合わせて位置決めされることになり、ガラス基板5の直交辺は、ワーク座標系Z’のX軸及びY軸の夫々に合わされる。(ステップI)
 次に、スクライブヘッド2とCCDカメラ10とを一体として共通の移動手段30により、ワーク座標系Z’において移動させ、ワークテーブル6上で位置決め状態のガラス基板5に記されていると共に直交配置にある少なくとも3点のアライメントマークM1、M2及びM3のワーク座標系Z’における設定座標値M1(X=X1、Y=Y1)、M2(X=X2、Y=Y1)及びM3(X=X1、Y=Y2)のそれぞれにCCDカメラ10のカメラセンター31を合わせ、アライメントマークを撮像、画像処理装置において画像処理、画像処理された結果に基づいて演算処理して、アライメントマークM1、M2及びM3それぞれのマークセンターM1C、M2C及びM3Cのワーク座標系Z’における実際の位置の座標値を計測する。(ステップII)
 これらマークセンターM1C、M2C及びM3Cの計測された座標値をNC装置に送り、NC装置において、これらマークセンターM1C、M2C及びM3Cの計測された座標値とアライメントマークM1、M2及びM3の設定座標値M1(X=X1、Y=Y1)、M2(X=X2、Y=Y1)及びM3(X=X1、Y=Y2)とに基づいて、座標回転直角度補正、移動量補正等の演算処理を行い、アライメントマークM1のマークセンターM1Cの実際の位置の計測された座標値が、指令された座標値(X=0、Y=0)に、アライメントマークM2のマークセンターM2Cの実際の位置の計測された座標値が、指令された座標値(X=X2-X1、Y=0)に、アライメントマークM3のマークセンターM3Cの実際の位置の計測された座標値が、指令された座標値(X=0、Y=Y2-Y1)になるワーク座標系Zに変更する。(ステップIII)
 この変更したワーク座標系Zにおいて、ワークテーブル6上で位置決め状態にあるガラス基板5に、予め設定されたNCプログラムに基づきスクライブヘッド2を移動、動作させて、アライメントマークに合わせたスクライブラインを形成する。(ステップIV)
 以上のように、本例のスクライブ装置1によるスクライブ方法は、アライメントマークが記されたガラス基板5を、ワークテーブル6の上面において、NC装置に設定されたワーク座標系Z’に合わせて位置決めした状態で、スクライブヘッド2とCCDカメラ10とを一体として共通の移動手段30によりワーク座標系Z’で移動させ、ガラス基板5に記されていると共に直交配置関係にある少なくとも3点のアライメントマークM1、M2及びM3のワーク座標系Z’における座標値M1(X=X1、Y=Y1)、M2(X=X2、Y=Y1)及びM3(X=X1、Y=Y2)に、CCDカメラ10のカメラセンター31を合わせ、それぞれのアライメントマークM1、M2及びM3を撮像、画像処理、演算処理を行い、アライメントマークM1、M2及びM3それぞれのマークセンターM1C、M2C及びM3Cのワーク座標系Z’における実際の位置の座標値を計測し、計測されたマークセンターM1C、M2C及びM3Cそれぞれの座標値をNC装置に送り、NC装置において、これらマークセンターM1C、M2C及びM3Cの計測された座標値と、アライメントマークM1、M2及びM3の設定座標値M1(X=X1、Y=Y1)、M2(X=X2、Y=Y1)及びM3(X=X1、Y=Y2)とに基づいて演算処理を行い、アライメントマークM1のマークセンターM1Cの実際の位置の座標値が、指令された座標値(X=0、Y=0)に、アライメントマークM2のマークセンターM2Cの実際の位置の座標値が、指令された座標値(X=X2-X1、Y=0)に、アライメントマークM3のマークセンターM3Cの実際の位置の座標値が、指令された座標値(X=0、Y=Y2-Y1)になるワーク座標系Zに変更し、この変更したワーク座標系Zにおいて、ワークテーブル6上で位置決め状態にあるガラス基板5に予め設定されたNCプログラムに基づきスクライブヘッド2を移動させ、アライメントマークに合わせたスクライブラインを形成するようになっている。
 そして、スクライブ装置1は、先端辺7AにおいてNC装置に設定されたワーク座標系Z’のX軸7Bに合わせたX方向ストッパー7と、同じく先端辺8Aにおいてワーク座標系Z’のY軸8Bに合わせたY方向ストッパー8とを上面に備えたワークテーブル6と、ワークテーブル6の上面のX方向ストッパー7の先端辺7A及びY方向ストッパー8の先端辺8Aに合わせ、ワーク座標系Z’で位置決めしたガラス基板5の上方において、ガラス基板5にスクライブライン32及び33を形成するスクライブヘッド2と、スクライブヘッド2に並設されスクライブヘッド2と一体となって移動するCCDカメラ10と、スクライブヘッド2とCCDカメラ10とを一体としてワーク座標系Z’及びZのXY座標系で移動させる共通のX軸移動手段3及びY軸移動手段4と、CCDカメラ10による撮像、画像処理、演算処理、NC装置へのデータ出力を行う画像処理装置と、CCDカメラ10での撮像指示、画像処理装置での画像処理、画像処理結果の演算処理、スクライブヘッド2によるスクライブライン32及び33の形成、共通のX軸移動手段3及びY軸移動手段4の移動を制御するNC装置とを備え、NC装置は、アライメントマークM1、M2、M3・・・を記したガラス基板5をワークテーブル6のX方向ストッパー7の先端辺7A及びY方向ストッパー8の先端辺8Aに合わせてワーク座標系Z’に位置決めした状態で、スクライブヘッド2とCCDカメラ10とを一体としてワーク座標系Z’で移動させ、ガラス基板5に記され、ワーク座標系Z’での直交配置関係にある少なくとも3点のアライメントマークM1、M2及びM3のワーク座標系Z’における座標値M1(X=X1、Y=Y1)、M2(X=X2、Y=Y1)及びM3(X=X1、Y=Y2)に、CCDカメラ10のカメラセンター31を合わせ、それぞれのアライメントマークM1、M2及びM3をCCDカメラ10で撮像させ、画像処理装置で画像処理をさせ、画像処理の結果に基づいて演算処理を行わせ、アライメントマークM1、M2及びM3それぞれのマークセンターM1C、M2C及びM3Cのワーク座標系Z’における実際の位置の座標値を計測、計測されたマークセンターM1C、M2C及びM3Cそれぞれの座標値とアライメントマークM1、M2及びM3の設定座標値M1(X=X1、Y=Y1)、M2(X=X2、Y=Y1)及びM3(X=X1、Y=Y2)とに基づいて演算処理を行い、アライメントマークM1のマークセンターM1Cの実際の位置の座標値が、指令された座標値(X=0、Y=0)に、アライメントマークM2のマークセンターM2Cの実際の位置の座標値が、指令された座標値(X=X2-X1、Y=0)に、アライメントマークM3のマークセンターM3Cの実際の位置の座標値が、指令された座標値(X=0、Y=Y2-Y1)になるワーク座標系Zに変更し、この変更したワーク座標系Zにおいて、位置決め状態にあるガラス基板5に、NC制御プログラムに基づき、X軸移動手段3及びY軸移動手段4によりスクライブヘッド2を移動させ、アライメントマークに合わせた例えばマークセンターM3Cを通るX方向のスクライブライン32及びマークセンターM2Cを通るY方向のスクライブライン33の夫々の形成を行うようになっている。
 1 スクライブ装置
 2 スクライブヘッド
 3 X軸移動手段
 4 Y軸移動手段
 5 ガラス基板
 6 ワークテーブル
 7 X方向ストッパー
 8 Y方向ストッパー
 9 ヘッドプレート
 10 CCDカメラ
 11 基台
 12、17、21 ガイドレール
 13 移動体
 13A、17A、21A スライドブロック
 14 サーボ電動モータ
 9C、15、20 ボールネジ
 9B、15A、20A ナット部
 16 ブリッチ体
 18 Y軸キヤリッジ
 19 Y軸サーボモータ
 22 上下サーボモータ
 24 エアーシリンダ
 25 角度制御モータ
 26 ピストンロッド
 27 ピニオン
 28 連結具

Claims (6)

  1.  アライメントマークを記した脆性材料基板を、テーブル上面において、NC装置に設定されたワーク座標系に合わせて位置決めした状態で、スクライブヘッドとCCDカメラとを一体として、共通の移動手段により、上記ワーク座標系において移動させ、上記脆性材料基板に記され、直交配置関係にある少なくとも3点のアライメントマークM1、M2及びM3の上記ワーク座標系における設定座標値M1(X=X1、Y=Y1)、M2(X=X2、Y=Y1)及びM3(X=X1、Y=Y2)に、上記CCDカメラのカメラセンターを合わせ、それぞれのアライメントマークM1、M2及びM3を撮像し、撮像したアライメントマークM1、M2及びM3の画像に対して画像処理を行い、この画像処理の結果に基づいて、上記アライメントマークM1、M2及びM3それぞれのマークセンターM1C、M2C及びM3Cの上記ワーク座標系における実際の位置の座標値を計測し、これらマークセンターM1C、M2C及びM3Cの計測されたそれぞれの座標値と上記アライメントマークM1、M2及びM3の設定座標値M1(X=X1、Y=Y1)、M2(X=X2、Y=Y1)及びM3(X=X1、Y=Y2)とに基づいて演算処理を行い、上記アライメントマークM1のマークセンターM1Cの実際の位置の上記座標値が、指令された座標値(X=0、Y=0)に、上記アライメントマークM2のマークセンターM2Cの実際の位置の上記座標値が、指令された座標値(X=X2-X1、Y=0)に、そして、上記アライメントマークM3のマークセンターM3Cの実際の位置の上記座標値が、指令された座標値(X=0、Y=Y2-Y1)になるワーク座標系に変更し、この変更したワーク座標系において、プログラムに基づき、スクライブヘッドを移動させ、上記位置決め状態にある脆性材料基板に、アライメントマークに合わせたスクライブラインを形成するスクライブ方法。
  2.  スクライブヘッドをX軸移動及びY軸移動させる請求項1に記載のスクライグ方法。
  3.  脆性材料基板は、ガラス基板である請求項1又は2に記載のスクライブ方法。
  4.  先端辺において、NC装置に設定されたワーク座標系のX軸に合わせたX方向ストッパー及び先端辺において、NC装置に設定された上記ワーク座標系のY軸に合わせたY方向ストッパーを夫々上面に備えたワークテーブルと、上記ワークテーブルの上記X方向ストッパーの先端辺及びY方向ストッパーの先端辺に合わせて上記ワーク座標系において位置決めされた脆性材料基板の上方において、ワーク座標系で移動されて、上記脆性材料基板にスクライブラインを形成するスクライブヘッドと、共通ブラケットにこのスクライブヘッドと並設され、スクライブヘッドと一体となってワーク座標系で移動されるCCDカメラと、上記クスライブヘッドとCCDカメラとを一体としてワーク座標系で移動させる共通のX軸移動手段及びY軸移動手段と、上記CCDカメラによる撮像指示、撮像した画像の画像処理及び演算処理を行う画像処理装置と、上記画像処理装置でのCCDカメラへの撮像指示、画像処理指示及び演算処理指示、上記スクライブヘッドによる脆性材料基板へのスクライブラインの形成、上記共通のX軸移動手段及びY軸移動手段の作動を制御するNC装置とを備えており、NC装置は、アライメントマークを記した脆性材料基板を上記ワークテーブルの上記X方向ストッパーの先端辺及びY方向ストッパーの先端辺に合わせて上記ワーク座標系に位置決めした状態で、スクライブヘッドとCCDカメラとを一体としてワーク座標系で移動させ、脆性材料基板に記され、直交配置にある少なくとも3点のアライメントマークM1、M2及びM3の上記ワーク座標系における設定座標値M1(X=X1、Y=Y1)、M2(X=X2、Y=Y1)及びM3(X=X1、Y=Y2)に、上記CCDカメラのカメラセンターを合わせ、それぞれのアライメントマークM1、M2及びM3をCCDカメラで撮像させ、撮像された画像に対して画像処理装置で画像処理及び演算処理を行わせ、上記アライメントマークM1、M2及びM3それぞれのマークセンターM1C、M2C及びM3Cの上記ワーク座標系における実際の位置の座標値を計測させ、画像処理装置からの計測されたマークセンターM1C、M2C及びM3Cそれぞれの座標値と上記アライメントマークM1、M2及びM3の設定座標値M1(X=X1、Y=Y1)、M2(X=X2、Y=Y1)及びM3(X=X1、Y=Y2)とに基づいて演算処理を行い、上記アライメントマークM1のマークセンターM1Cの実際の位置の上記座標値が、指令された座標値(X=0、Y=0)に、上記アライメントマークM2のマークセンターM2Cの実際の位置の上記座標値が、指令された座標値(X=X2-X1、Y=0)に、上記アライメントマークM3のマークセンターM3Cの実際の位置の上記座標値が、指令された座標値(X=0、Y=Y2-Y1)になるワーク座標系に変更し、この変更したワーク座標系において、プログラムに基づき、スクライブヘッドを移動させ、上記位置決め状態にある脆性材料基板に、アライメントマークに合わせたスクライブラインをスクライブヘッドで形成させるべく、CCDカメラの撮像指示、共通のX軸移動手段及びY軸移動手段の作動の制御を行うようになっているスクライブ装置。
  5.  スクライブヘッドをX軸移動及びY軸移動させる請求項4に記載のスクライブ装置。
  6.  脆性材料基板は、ガラス基板である請求項4又は5に記載のスクライブ装置。
     
PCT/JP2013/002571 2012-07-12 2013-04-16 スクライブ方法及びスクライブ装置 WO2014010154A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147035513A KR20150020217A (ko) 2012-07-12 2013-04-16 스크라이브 방법 및 스크라이브 장치
CN201380036795.5A CN104428263A (zh) 2012-07-12 2013-04-16 划线方法及划线装置
JP2014524613A JPWO2014010154A1 (ja) 2012-07-12 2013-04-16 スクライブ方法及びスクライブ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-157017 2012-07-12
JP2012157017 2012-07-12

Publications (1)

Publication Number Publication Date
WO2014010154A1 true WO2014010154A1 (ja) 2014-01-16

Family

ID=49915642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002571 WO2014010154A1 (ja) 2012-07-12 2013-04-16 スクライブ方法及びスクライブ装置

Country Status (4)

Country Link
JP (1) JPWO2014010154A1 (ja)
KR (1) KR20150020217A (ja)
CN (1) CN104428263A (ja)
WO (1) WO2014010154A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105538518B (zh) * 2016-02-19 2017-05-03 李谋遵 一种应用智能石材切割机器人的切割方法
CN107205318B (zh) * 2016-03-17 2021-01-29 塔工程有限公司 划片设备和划片方法
CN105710978B (zh) * 2016-03-21 2017-08-29 李谋遵 一种应用智能石材切割流水线的切割方法
CN107571416A (zh) * 2016-07-05 2018-01-12 浙江融创磁业有限公司 一种关于磁性材料多线切割自动定位设备
KR101991269B1 (ko) * 2017-09-29 2019-06-20 주식회사 탑 엔지니어링 스크라이빙 장치
CN111908780A (zh) * 2019-05-10 2020-11-10 塔工程有限公司 划线装置及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061628A (ja) * 1992-04-24 1994-01-11 Mitsuboshi Daiyamondo Kogyo Kk 自動ガラススクライバー
JP2000086262A (ja) * 1998-09-09 2000-03-28 Mitsuboshi Diamond Kogyo Kk ガラススクライバー
JP2011251900A (ja) * 2005-12-01 2011-12-15 Mitsuboshi Diamond Industrial Co Ltd スクライブ方法
JP2012138548A (ja) * 2010-12-28 2012-07-19 Mitsuboshi Diamond Industrial Co Ltd 基板加工方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573934U (ja) * 1992-03-13 1993-10-08 株式会社日立製作所 露光装置
JP2008001628A (ja) * 2006-06-22 2008-01-10 Ichimaru Pharcos Co Ltd 毛髪化粧料
JP4656440B2 (ja) * 2007-02-13 2011-03-23 東京エレクトロン株式会社 基板位置検出装置及びその撮像手段位置調整方法
CN201424433Y (zh) * 2009-06-19 2010-03-17 济南德佳玻璃机器有限公司 玻璃边缘激光定位传感器自动寻边定位***
CN102248309B (zh) * 2010-05-17 2014-04-02 苏州天弘激光股份有限公司 Ccd装置辅助定位的晶圆激光划片方法
CN102557420B (zh) * 2010-12-22 2014-10-08 洛阳北方玻璃技术股份有限公司 玻璃切割机的光电定位装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061628A (ja) * 1992-04-24 1994-01-11 Mitsuboshi Daiyamondo Kogyo Kk 自動ガラススクライバー
JP2000086262A (ja) * 1998-09-09 2000-03-28 Mitsuboshi Diamond Kogyo Kk ガラススクライバー
JP2011251900A (ja) * 2005-12-01 2011-12-15 Mitsuboshi Diamond Industrial Co Ltd スクライブ方法
JP2012138548A (ja) * 2010-12-28 2012-07-19 Mitsuboshi Diamond Industrial Co Ltd 基板加工方法

Also Published As

Publication number Publication date
CN104428263A (zh) 2015-03-18
JPWO2014010154A1 (ja) 2016-06-20
KR20150020217A (ko) 2015-02-25

Similar Documents

Publication Publication Date Title
WO2014010154A1 (ja) スクライブ方法及びスクライブ装置
CN205438085U (zh) 板材的周缘加工装置
TWI510323B (zh) 整形裝置及其定位機構
KR102166641B1 (ko) 기계의 자기 진단 및 기계 정밀도의 보정 방법
JP4745727B2 (ja) ペースト塗布装置
TWI545101B (zh) Substrate processing method
KR101373001B1 (ko) 기판 상면 검출 방법 및 스크라이브 장치
JP6667376B2 (ja) 部品圧入方法および部品圧入システム
TW201434573A (zh) 整形裝置
CN101362394A (zh) 用于丝网印刷机的自动对位方法和***
JPWO2014037993A1 (ja) 作業装置
CN101293419A (zh) 玻璃丝网印刷的数字全自动对版***
JP2017074631A (ja) 製造システム
TWI480514B (zh) 影像測量儀
WO2019047938A1 (zh) 一种振镜矫正***及方法
JP2019014011A (ja) ロボットの教示位置補正方法
JP2017019290A (ja) スクライブ方法及びスクライブ装置
WO2019013274A1 (ja) 第1物体を第2物体に対して位置決めする装置及び方法
JP6128977B2 (ja) 板材の周縁加工装置並びに加工精度の計測及び補正方法
CN101296778A (zh) 工作台的定位控制装置
JP2014019641A (ja) スクライブ方法及びスクライブ装置
JP2014006202A (ja) 起点座標補正方法
CN109859273A (zh) 一种在线式动态视觉加工***的标定装置和方法
JP2012133122A (ja) 近接露光装置及びそのギャップ測定方法
JP4615238B2 (ja) レーザ加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524613

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147035513

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817496

Country of ref document: EP

Kind code of ref document: A1