WO2014008728A1 - 一种绝对式多圈转动角度的检测装置及方法 - Google Patents

一种绝对式多圈转动角度的检测装置及方法 Download PDF

Info

Publication number
WO2014008728A1
WO2014008728A1 PCT/CN2012/084431 CN2012084431W WO2014008728A1 WO 2014008728 A1 WO2014008728 A1 WO 2014008728A1 CN 2012084431 W CN2012084431 W CN 2012084431W WO 2014008728 A1 WO2014008728 A1 WO 2014008728A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
angle
driven
turn
rotation
Prior art date
Application number
PCT/CN2012/084431
Other languages
English (en)
French (fr)
Inventor
周良杰
陶潇
任志远
吴锁平
毛靖
陈箭
蔡旭东
汤江平
Original Assignee
万向钱潮(上海)汽车***有限公司
万向集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万向钱潮(上海)汽车***有限公司, 万向集团公司 filed Critical 万向钱潮(上海)汽车***有限公司
Priority to US14/125,933 priority Critical patent/US9903703B2/en
Priority to EP12874921.5A priority patent/EP2873945B1/en
Publication of WO2014008728A1 publication Critical patent/WO2014008728A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/02Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means
    • G01D5/04Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means using levers; using cams; using gearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/20Detecting rotary movement
    • G01D2205/26Details of encoders or position sensors specially adapted to detect rotation beyond a full turn of 360°, e.g. multi-rotation

Definitions

  • the invention relates to the technical field of detecting a rotation angle, in particular to an apparatus and a method for detecting an absolute multi-turn angle.
  • the detection device of the rotation angle is applied to various industries, especially in the detection of the rotation angle of the motor, the position detection of the industrial knob and the angle of the steering wheel of the automobile industry.
  • the current technical solution still has the following defects: one case is like a patent A method for detecting a rotatable excess 360 is disclosed in CN1090315C The angle of the object.
  • the solution is achieved by the relative relationship of the two driven gears respectively meshed with the main gear and the respective rotation angles.
  • the errors of the driven gears are all introduced into the calculation. From the performance point of view, it is more serious to analyze the accuracy, resolution, zero drift and nonlinear fluctuation of the rotation angle.
  • the stability of the system depends not only on the stability of the sensor but also on other digital-to-analog conversion, single-chip accumulators, and so on. In addition to this, there is a certain requirement for the installation environment of the end user, and the probability of generating an error is relatively high.
  • the second case is through a
  • the two pulse signal outputs are realized by the photoelectric principle or the Hall principle, and the rotation angle is obtained by the pulse phase relationship.
  • the heavy device and the detecting method cannot record the zero point on the output signal, and the zero point identification is re-executed by the user system after each power-on recovery work.
  • the resolution of the detection device depends on the rotation angle corresponding to a single pulse period, and the number of pulses needs to be It is evenly distributed within 360 degrees.
  • the mechanical distribution of the holes or teeth corresponding to each pulse is limited within 360 degrees.
  • the installation environment is narrow and the size is limited. Therefore, the maximum resolution of the detection device can only reach 0.5. Degree.
  • the rotation angle is smaller than the resolution, there is no effective angle output, and the rotation direction is determined by the order of the two pulses, so the rotation direction cannot be recognized.
  • Such an angle detecting device is also prone to cause a phenomenon of pulse loss, so that there is no correct rotation angle output at the end.
  • the object of the present invention is to provide an absolute multi-turn angle detecting device and method, which can effectively improve the resolution of multi-turn angle detection, so that the output angle signal is directly an absolute angle, and the algorithm for calculating the angle is simple, and the output is improved. Angle reliability and stability.
  • the present invention relates to an absolute multi-turn angle detecting device, comprising a housing, a cover plate and a rotating shaft.
  • the rotating shaft is placed in the housing, and the main gear is fixed on the rotating shaft, and the main gear and the rotating shaft are fixed.
  • the driven gear includes a driven large gear and a driven small gear.
  • the main gear is externally meshed with the driven large gear.
  • the driven large gear has fewer teeth than the main gear, so the driven gear is large.
  • the angle of the gear is enlarged to increase the resolution of the detecting device and to reduce the size of the entire detecting device.
  • the driven gear is provided with a secondary reduction gear that decelerates the rotating shaft to a number of turns of the rotating shaft and the number of turns of the gear rotates only one turn, and the rotational speed is decelerated in two steps.
  • a bearing is arranged on the driven gear and the number of gears, and a magnet is fixed in the bearing, and the two magnets are respectively fixed with the driven gear and the number of gears, and the upper edge of the bearing and the PCB
  • the board is attached, and the angle sensing chip fixed on the PCB is located above the magnet, and the angle sensing chip A fixed distance from the upper surface of the magnet.
  • the angle sensing chip located above the magnet senses the change of the direction of the magnetic field and the angle value of the direction of the output magnetic field.
  • the angle value is the angle value of the rotation of the magnet, and the angle value is the angle at which the gear rotates.
  • Such an angle sensing chip can be a magnetoresistive type or a Hall type. According to the angle of rotation of the driven gear and the number of gears detected by the angle sensing chip, the absolute angle of rotation of the rotating shaft to be detected is output through the system operation.
  • the cover plate is fixed on the housing, and the housing and the cover plate are fixed PCB board position. On the one hand The PCB board presses the gears, and on the other hand, the housing supports the gears, thus effectively ensuring that the relative positions of the driven gears, the number of gears, and the transmission gears are fixed, which helps to improve the detection accuracy.
  • the secondary reduction gear device may include an intermediate transition gear including an intermediate transition large gear and an intermediate transition pinion, and the intermediate transition large gear is externally meshed with the driven pinion, and the intermediate transition pinion and the number of turns The gear is externally engaged.
  • the secondary reduction gear device may include an intermediate transition gear including an intermediate transition large gear and an intermediate transition pinion, and the intermediate transition large gear is externally meshed with the driven pinion, and the intermediate transition pinion and the number of turns The gear is externally engaged.
  • the secondary reduction gear is a lap gear
  • the driven pinion meshes with the lap gear
  • the bearing sleeve is disposed on the casing, and the main gear, the driven gear, the intermediate excessive gear, and the number of gears are all fixed in the bearing sleeve.
  • Ribs are provided in the casing, and ribs are also arranged on the cover.
  • the cover plate is fixed to the housing and is provided with a rib surface facing the inside of the housing. PCB The plate is clamped in the casing by the ribs in the casing and the ribs on the cover plate to ensure that it fits with the upper edge of the bearing of the driven gear and the number of gears, thereby ensuring fixing to the PCB.
  • the angle sensing chip on the board is at a fixed distance from the upper surface of the magnet inside the bearing.
  • the main gear is further provided with a stepped structure, the stepped structure is in contact with the housing when the main gear is assembled with the detecting device housing, and a certain height is set between the main gear and the housing to avoid the main gear during the rotation and the shell The body produces friction.
  • the direction of magnetization of the magnet is radial, only a pair of N/S Magnetic pole, the axial end of the magnet is a boss structure.
  • the structure does not affect the distribution of the internal magnetic lines, so that the magnet does not axially move and rotate in the driven gear and the number of gears, and the position is fixed.
  • the angle sensing chip is spaced apart from the upper surface of the magnet by a fixed distance of between 0.2 mm and 3 mm. If the fixed distance is too small, the magnetic field at the position is too strong. If the fixed distance is too large, the magnetic field strength at the position is too low, which may cause the angle sensor chip to be inoperable.
  • the angle sensing chip outputs an angle ranging from 0 degrees to 360 degrees.
  • the verification step has the capability of preventing errors, and when an error occurs in the sensing element or the data processing process, the angle output is stopped, and the safety of the entire system is improved.
  • the invention provides a high-precision and high-resolution absolute multi-turn angle detecting device and method, and the device and method are applied to detect the obtained rotation angle resolution
  • Rate can reach 0.007 Degree, and the angular accuracy of the final output depends only on the accuracy of the driven gear. With the increase of resolution and precision, the nonlinearity of the device and the repeatability of the zero point during repeated power-on are greatly improved.
  • Embodiment 1 is a front structural view showing the inside of a casing of Embodiment 1 of the present invention
  • Figure 2 shows a rear structural view of the inside of the housing of the embodiment 1 of the present invention
  • Figure 3 shows a structural view of the housing of the embodiment 1 of the present invention
  • Figure 4 shows a schematic structural view of Embodiment 1 of the present invention
  • Figure 5 shows a schematic diagram of the calculation method of the absolute multi-turn angle
  • Figure 6 shows the schematic diagram of the calibration of the rotation angle
  • Figure 7 is a schematic view showing the structure of the inside of the casing of Embodiment 2 of the present invention.
  • Figure 8 is a schematic view showing the structure of the inside of the casing of Embodiment 3 of the present invention.
  • an absolute multi-turn angle detecting device includes a housing. 1.
  • the cover plate 2, the rotating shaft 3, and the rotating shaft 3 are placed in the casing 1.
  • the main gear 4 is fixed on the rotating shaft 3, and the main gear 4 is further provided with a stepped structure 41, and the main gear 4 is smaller than the number of teeth.
  • the driven gear 5 includes a driven large gear 51 and a driven pinion 52, and the main gear 4 is externally meshed with the driven large gear 51, and the driven gear 5
  • a secondary reduction gear is connected to the upper reduction gear including a lap gear 61 and an intermediate transition gear 62, and the intermediate transition gear 62 includes an intermediate transition large gear 621 and an intermediate transition pinion 622, the intermediate transition large gear 621 is externally meshed with the driven pinion 52, and the driven pinion 52 has a smaller number of teeth than the intermediate transitional large gear 621, and the first speed is decelerated.
  • Intermediate transition pinion 622 is externally meshed with the number of gears 61.
  • the intermediate transition pinion 622 has fewer teeth than the number of turns of the gear 61.
  • the second speed is decelerated by the rotational speed.
  • Rotary shaft 3 The multi-turn rotation is decelerated to the lap gear 61, and the lap gear 61 is rotated only once.
  • a bearing 8 is provided on both the driven gear 5 and the number of gears 61, and a magnet 9 is provided in the bearing 8.
  • Magnet 9 The direction of the magnetic flux is radial, only a pair of N/S magnetic poles, and the axial end of the magnet 9 is a boss structure.
  • the two magnets 9 are fixed to the driven gear 5 and the number of gears 61, respectively, and are fixed to the PCB 10
  • the upper angle sensing chip 7 is located above the magnet 9, and the angle sensing chip 7 outputs an angle ranging from 0 degrees to 360 degrees.
  • Angle sensor chip 7 and magnet 9 The upper surfaces are separated by a fixed distance which is between 0.2 mm and 3 mm.
  • An angle sensing chip located above the magnet 9 7 The change in the direction of the magnetic field is sensed, and the angular value of the direction of the output magnetic field changes.
  • the angle value is the angle value of the rotation of the magnet, and the angle is the angle at which the driven gear 5 and the number of gears 61 rotate.
  • the main gear 4, the driven gear 5, the intermediate over gear 62, and the lap gear 61 are all fixed in the bearing sleeve 11.
  • a rib is provided in the casing 1, and a rib is also provided on the cover 2.
  • Cover 2 It is fixed to the casing 1 and is provided with a rib side facing the inside of the casing 1.
  • the PCB board 10 is clamped in the housing 1 by both the inner ribs of the housing and the upper ribs of the cover plate to ensure the same as the driven gear 5 and the number of gears 61
  • the upper edges of the bearings fit together to ensure that the angle sensing chip 7 fixed to the PCB 10 is at a fixed distance from the upper surface of the inner magnet 9 of the bearing.
  • the present invention is applied to a method for detecting an absolute multi-turn angle, comprising the steps of: determining a fixed value in the detecting device, wherein the number of main gears is Z1, wherein the number of main gears is Z1, the driven pinion The number of teeth is Z21, the number of teeth of the driven large gear is Z22, the number of teeth of the middle pinion is Z31, the number of teeth of the middle large gear is Z32, and the number of teeth of the number of turns is Z34; according to the above fixed value, the transmission of the main gear and the driven gear is determined.
  • the secondary speed reduction device of the absolute multi-turn angle detecting device is 6 includes a lap gear 61 and a rack 63, the gear rack 63 includes upper and lower gears, respectively a large gear 631 and a pinion 632, wherein the large gear 631 and the driven pinion 52 External engagement, driven pinion 52
  • the number of teeth is smaller than the number of teeth of the large gear 631, and the first speed is decelerated.
  • the pinion 632 is meshed with the number of gears 61, and the pinion 632 has fewer teeth than the number of turns 61 Number of teeth, the second speed is decelerated by the rotation speed.
  • the rotary shaft is decelerated to the number of gears 61 in multiple turns and the number of turns of the gear 61 is rotated only once.
  • the secondary reduction gear of the absolute multi-turn angle detecting device of the present invention is 6 In the lap gear 61, the driven pinion 52 meshes with the lap gear 61. Driven pinion 52 The number of teeth is less than the number of turns of the gear 61. The rotating shaft is rotated in multiple turns to decelerate to the number of gears 61, and the number of turns gear 61 rotates only one turn.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

公开了一种绝对式多圈转动角度的检测装置,包括壳体(1)、盖板(2)、旋转轴(3),旋转轴(3)置于壳体(1)内,旋转轴(3)上固定有主齿轮(4),主齿轮(4)与齿数比其小的从动齿轮(5)啮合,从动齿轮(5)包括从动大齿轮(51)和从动小齿轮(52),主齿轮(4)与从动大齿轮(51)外啮合,从动齿轮(5)上连接有使旋转轴(3)多圈转动减速到圈数齿轮(61)且圈数齿轮(61)只旋转一圈的二级减速装置,在从动齿轮(5)和圈数齿轮(61)上均设有轴承(8),轴承(8)内均设有磁铁(9),两磁铁(9)分别与从动齿轮(5)和圈数齿轮(61)相对固定,轴承(8)上边缘与PCB板(10)相贴合,固定于PCB板(10)上的角度感应芯片(7)位于磁铁(9)上方,角度感应芯片(7)与磁铁(9)上表面相隔固定距离,盖板(2)固定于壳体(1)上,壳体(1)与盖板(2)配合固定PCB板(10)位置。还公开了一种绝对式多圈转动角度的检测方法。

Description

一种绝对式多圈转动角度的检测装置及方法 技术领域
本发明涉及检测转动角度技术领域,特别涉及一种绝对式多圈转动角度的检测装置及方法。
背景技术
目前转动角度的检测装置应用于多种行业,尤其在电机转动角度检测,工业旋钮位置检测以及汽车行业探测汽车方向盘转动的角度等。但是目前的技术方案仍具有以下缺陷:一种情况是如专利 CN1090315C 中披露了一种检测一个可转动多余 360 度之物体转角。该方案是通过两个分别于主齿轮外啮合的从动齿轮的相对关系与各自的转动角度来实现的。计算过程中 2 个从动齿轮的误差均被引入参与计算,从性能角度分析转动角度的精度、分辨率、零点漂移以及非线性的波动会比较严重。因为算法复杂,***的稳定性不但取决于传感器还依赖于其他数模转换,单片机累加器等单元的稳定性。除此之外对最终用户的使用环境于安装有一定要求,产生错误的概率相对较高。第二种情况是通过一种 使用光电原理或霍尔原理实现两个脉冲信号输出,通过脉冲相位关系得出转动角度。该重装置及检测方法从输出信号上无法进行零点的标示记录,每次必须上电恢复工作后由用户***重新进行零点辨识。此外其检测装置的分辨率取决于单个脉冲周期对应的转动角度,脉冲的个数需要在 360 度范围内均匀分布,每个脉冲对应的孔或齿在 360 度范围内的机械分布是有限的,安装环境狭小,尺寸有限,因此该检测装置的最高分辨率只能达到 0.5 度。当转动角度小于分辨率时,无有效角度输出,且转动方向是由两个脉冲的先后顺序决定的,因此转动方向无法识别。该类角度检测装置还易造成脉冲丢失的现象,使得最终无正确的转动角度输出。
技术问题
本发明的目的在于提供一种绝对式多圈转动角度的检测装置及方法,可以有效提高多圈角度检测的分辨率,使得输出的角度信号直接为绝对角度,且计算角度的算法简单,提高输出角度的可靠性和稳定性。
技术解决方案
为解决上述问题,本发明涉及一种绝对式多圈转动角度的检测装置,包括壳体、盖板、旋转轴,旋转轴置于壳体中,旋转轴上固定有主齿轮,主齿轮与旋转轴之间无相对旋转与轴向运动,从动齿轮包括从动大齿轮和从动小齿轮,主齿轮与从动大齿轮外啮合,从动大齿轮的齿数少于主齿轮,因此从动大齿轮的角度经放大提高了检测装置的分辨率,减小整个检测装置的尺寸。从动齿轮上设有使旋转轴多圈转动减速到圈数齿轮且圈数齿轮只旋转一圈的二级减速装置,将转动速度分两步进行减速。在从动齿轮和圈数齿轮上均设有轴承,轴承内均固定有磁铁,两磁铁分别与从动齿轮和圈数齿轮相对固定,轴承上边缘与PCB 板相贴合,固定于 PCB 板上的角度感应芯片位于磁铁上方,角度感应芯片 与磁铁上表面相隔固定距离。当磁铁旋转时,其表面上方的磁场方向也随之旋转。位于磁铁上方的角度感应芯片感应到磁场方向的变化,输出磁场方向变化的角度值。该角度值即为磁铁转动的角度值,同时该角度值即为齿轮转动的角度。此种角度感应芯片可以是磁阻式、霍尔式。根据角度感应芯片检测所得的从动齿轮和圈数齿轮转动的角度,经***运算输出需检测的旋转轴旋转过的绝对角度。盖板固定于壳体上,壳体与盖板配合固定 PCB 板位置。一方面由于 PCB板对齿轮的压紧,另一方面因壳体对齿轮的支撑,因此有效地保证了从动齿轮、圈数齿轮、传动齿轮的相对位置固定不变,有助于提高检测精度。
优选地,二级减速装置可以包括中间过渡齿轮和圈数齿轮,中间过渡齿轮包括中间过渡大齿轮和中间过渡小齿轮,中间过渡大齿轮于从动小齿轮外啮合,中间过渡小齿轮与圈数齿轮外啮合。
优选地,二级减速装置可以包括中间过渡齿轮和圈数齿轮,中间过渡齿轮包括中间过渡大齿轮和中间过渡小齿轮,中间过渡大齿轮于从动小齿轮外啮合,中间过渡小齿轮与圈数齿轮外啮合。
优选地,二级减速装置即为圈数齿轮,从动小齿轮与圈数齿轮内啮合。
优选地,壳体上设有轴承套,主齿轮、从动齿轮、中间过度齿轮、圈数齿轮均固定于轴承套中。壳体内设有肋板,盖板上也设有肋板。盖板固定于壳体上且设有肋板一面朝向壳体内部。PCB 板在壳体中受到壳体内肋板与盖板上肋板两面夹紧,以保证其与从动齿轮与圈数齿轮的轴承上边缘相贴合,从而保证固定于 PCB 板上的角度感应芯片与轴承内磁铁上表面相隔固定距离。
优选地,主齿轮上还设有阶梯结构,该阶梯结构在主齿轮与检测装置壳体装配时与壳体接触,在主齿轮与壳体间架起一定高度,避免主齿轮在旋转过程中与壳体产生摩擦。
优选地,磁铁的冲磁方向为径向,仅有一对 N/S 磁极,磁铁轴向末端为凸台结构。该结构在不影响内部磁力线分布的情况下,使磁铁不会在从动齿轮和圈数齿轮内发生轴向攒动和旋转窜动,位置固定。
优选地,角度感应芯片与磁铁上表面相隔的固定距离在0.2mm至3mm之间。该固定距离过小则所处位置磁场过强,固定距离过大则所处位置磁场强度过低,可能导致角度感应芯片无法工作。
优选地,角度感应芯片输出的角度范围为 0 度到 360 度。
本发明还涉及一种绝对式多圈转动角度的检测方法,包括下述步骤:确定检测装置中的定值,其中主齿轮数为 Z1, 其中主齿轮数为 Z1,从动小齿轮齿数为Z21,从动大齿轮齿数为 Z22,中间小齿轮齿数为 Z31,中间大齿轮齿数为 Z32,圈数齿轮齿数为 Z34;根据以上定值,确定主齿轮与从动齿轮的传动比为m=Z1/Z22,从动齿轮与中间齿轮的传动比为 n= Z32/Z21*Z34/Z31, 满量程A=(n/m)* 2π;进行标定,指定零点位置,读取标定时角度感应芯片的输出角度Angle_Alpha 0 和 Cycle_phi 0,并进行存储记录;通过设置在从动齿轮上和圈数齿轮上的角度感应芯片,分别检测从动齿轮和圈数齿轮的转动角度,读取相应芯片输出的原始角度信号后,进行补偿,即将读取的原始角度信号分别减去存储标定时记录的 Angle_Alpha 0 和 Cycle_phi 0;补偿后相应地输出转动角度信号为 Angle_Alpha 和 Cycle_phi;根据公式计算从动齿轮 32 转动圈数 i, i=floor(Cycle_phi/Cyclestep),其中 CycleStep=2π/n, imax =A/ 2π*(n-1);根据角度感应芯片输出的转动角度信号 Angle_Alpha 与从动齿轮转动圈数 i,计算主齿轮转动角度 θ= Angle_Alpha/m + i*2π/m;将由 0 到量程 A 的角度输出转化为-A/2 到+A/2的角度 θ 输出。
优选地,该方法还包括对于计算所得的主齿轮转动角度进行校验的步骤,该校验步骤主要包括:给定容差范围 Δθ;根据圈数齿轮上角度感应芯片输出的转动角度信号 Cycle_phi,计算主齿轮转动角度 θ’ =Cycle_Phi*n/m,用 θ’来检验 θ的可信程度;计算 θ 与 θ’的差值的绝对值 Δi,Δi=abs(θ’– θ)。判断 Δi 是否比给定的容差范围 Δθ 小;若 Δi 比 Δθ 小,输出转动角度 θ,否则计算 i+1 对应的转动角度 θ(i+1), θ(i+1)= Angle_Alpha/m + (i+1)*2π/m; 计算 θ(i+1)与 θ’的差值的绝对 值 Δ(i+1),Δ(i+1)= abs(θ’– θ(i+1)),判断 Δ(i+1)是否比给定的容差范围 Δθ 小, 若 Δ(i+1)比 Δθ 小,输出转动角度 θ,否则计算 i-1 对应的转动角度 θ(i-1),θ(i-1)=Angle_Alpha/m + (i-1)*2π/m;计算 θ(i-1)与 θ’的差值的绝对值 Δ(i-1),Δ(i-1)=abs(θ’– θ(i-1)),判断 Δ(i-1)是否比给定的容差范围 Δθ 小,若 Δ(i-1)比 Δθ 小,输出转动角度 θ,否则***故障无法输出正确转动角度 θ。该校验步骤具有防错能力,感应元件或数据处理过程中发生错误时,停止角度输出,提高了整个***的安全性。
有益效果
与现有技术相比,本发明的优点是:
(1) 本发明提出了一种高精度和高分辨率的绝对式多圈转动角度的检测装置及方法,应用该装置及方法,检测所得的转动角度分辨
率可达到 0.007 度,且该最终输出的角度精度仅依赖于从动齿轮的精度。随着分辨率与精度的提高,装置的非线性与重复上电时零点的重复性均大幅度提高。
(2)本发明提出的一种绝对式多圈转动角度的检测装置及方法,在断电时转动的角度值不需要存储,重新上电后输出的仍然是当前的绝对转动角度,便于用户使用。
(3)本发明提出的一种绝对式多圈转动角度的检测装置及方法,算法简单,同时具有防错能力,提高了稳定性。
附图说明
结合以下附图,具体说明本发明的技术方案:
图 1 显示了本实用新型实施例 1 壳体内部的正面结构图;
图 2 显示了本实用新型实施例 1 壳体内部的背面结构图;
图 3 显示了本实用新型实施例 1 壳体结构图;
图 4 显示了本实用新型实施例 1 结构示意图;
图 5 显示了绝对式多圈转动角度的计算方法示意图;
图 6 显示了转动角度标定的原理示意图;
图 7 显示了本实用新型实施例 2 壳体内部的结构示意图;
图 8 显示了本实用新型实施例 3 壳体内部的结构示意图;
本发明的最佳实施方式
如图 1、图 2、图 3、图 4 所示,本发明所涉及的一种绝对式多圈转动角度的检测装置,包括壳体 1、盖板 2、旋转轴 3,旋转轴 3 置于壳体 1 内,旋转轴 3 上固定有主齿轮 4,主齿轮 4 上还设有阶梯结构 41,主齿轮 4 与齿数比其小的从动齿轮 5 啮合,从动齿轮 5 包括从动大齿轮 51 和从动小齿轮 52,主齿轮4 与从动大齿轮 51 外啮合,从动齿轮 5 上连接有二级减速装置,该二级减速装置包括圈数齿轮 61 和中间过渡齿轮 62,中间过渡齿轮 62 包括中间过渡大齿轮621 和中间过渡小齿轮 622,中间过渡大齿轮 621 与从动小齿轮 52 外啮合,从动小齿轮 52 齿数小于中间过渡大齿轮 621 齿数,将转动速度进行第一步减速。中间过渡小齿轮 622 与圈数齿轮 61 外啮合,中间过渡小齿轮 622 齿数小于圈数齿轮 61 齿数,将转动速度进行第二步减速。旋转轴 3 多圈转动减速到圈数齿轮61,且圈数齿轮 61 只旋转一圈。在从动齿轮 5 和圈数齿轮 61 上均设有轴承 8,在轴承 8 内均设有磁铁 9。磁铁 9 的冲磁方向为径向,仅有一对 N/S 磁极,磁铁9 轴向末端为凸台结构。两磁铁 9 分别与从动齿轮 5 和圈数齿轮 61 相对固定,固定于 PCB 板 10 上的角度感应芯片 7 位于磁铁 9 上方,角度感应芯片 7 输出的角度范围在 0 度到 360 度之间。角度感应芯片 7 与磁铁 9 上表面相隔固定距离,该固定距离在 0.2mm 至 3mm 之间。当磁铁 9 旋转时,其表面上方的磁场方向也随之旋转。位于磁铁 9 上方的角度感应芯片 7 感应到磁场方向的变化,输出磁场方向变化的角度值。该角度值即为磁铁转动的角度值,同时该角度即为从动齿轮 5 和圈数齿轮 61 转动的角度。壳体 1 内设有轴承套 11,主齿轮 4、从动齿轮 5、中间过度齿轮 62、圈数齿轮 61 均固定于轴承套 11 中。壳体 1 内设有肋板,盖板 2 上也设有肋板。盖板 2 固定于壳体 1 上且设有肋板一面朝向壳体 1内部。PCB 板 10 在壳体 1 内受到壳体内肋板与盖板上肋板两面夹紧,以保证其与从动齿轮 5 与圈数齿轮 61 的轴承上边缘相贴合,从而保证固定于 PCB 板 10上的角度感应芯片 7 与轴承内磁铁 9 上表面相隔固定距离。
如图 5、图 6 所示,本发明所应用于一种绝对式多圈转动角度的检测方法,包括以下步骤:确定检测装置中的定值,其中主齿轮数为 Z1, 其中主齿轮数为Z1,从动小齿轮齿数为 Z21,从动大齿轮齿数为 Z22,中间小齿轮齿数为 Z31,中间大齿轮齿数为 Z32,圈数齿轮齿数为 Z34;根据以上定值,确定主齿轮与从动齿 轮 的 传 动 比 为 m=Z1/Z22, 从 动 齿 轮 与 中 间 齿 轮 的 传 动 比 为 n=Z32/Z21*Z34/Z31, 满量程 A=(n/m)* 2π;进行标定,指定零点位置,读取标定时角度感应芯片的输出角度 Angle_Alpha 0 和 Cycle_phi 0,并进行存储记录;通过设置在从动齿轮上和圈数齿轮上的角度感应芯片,分别检测从动齿轮和圈数齿轮的转动角度,读取相应芯片输出的原始角度信号后,进行补偿,即将读取的 原始角度信号分别减去存储标定时记录的 Angle_Alpha 0 和 Cycle_phi 0;补偿后相应地输出从动齿轮和圈数齿轮的转动角度信号为 Angle_Alpha 和 Cycle_phi;根据公式计算从动齿轮 32 转动圈数 i, i=floor(Cycle_phi/Cyclestep),其中CycleStep=2π/n;根据圈数齿轮上角度感应芯片输出的转动角度信号 Cycle_phi,计算主齿轮转动角度 θ’ =Cycle_Phi*n/m;根据角度感应芯片输出的转动角度信号Angle_Alpha与从动齿轮转动圈数 i,计算主齿轮转动角度θ= Angle_Alpha/m +i*2π/m;用 θ’来检验 θ 的可信程度,给定容差范围 Δθ,计算 θ 与 θ’的差值的绝对值 Δi,Δi=abs(θ’– θ),判断 Δi 是否比给定的容差范围 Δθ 小;若 Δi 比 Δθ 小,输出转动角度 θ,否则计算 i+1 对应的转动角度 θ(i+1), θ(i+1)= Angle_Alpha/m +(i+1)*2π/m; 计算 θ(i+1)与 θ’的差值的绝对值 Δ(i+1),Δ(i+1)= abs(θ’– θ(i+1)),判断 Δ(i+1)是否比给定的容差范围 Δθ 小,若 Δ(i+1)比 Δθ 小,输出转动角度 θ,否则计算 i-1 对应的转动角度 θ(i-1),θ(i-1)= Angle_Alpha/m + (i-1)*2π/m;计算θ(i-1)与 θ’的差值的绝对值 Δ(i-1),Δ(i-1)= abs(θ’– θ(i-1)),判断 Δ(i-1)是否比给定的容差范围 Δθ 小,若 Δ(i-1)比 Δθ 小,输出转动角度 θ,否则***故障无法输出正确转动角度 θ。最终输出的绝对角度将由 0 到量程 A 的角度输出转化为-A/2到+A/2 的角度 θ 输出。
本发明的实施方式
如图 7 所示,与实施例 1 不同的是,本发明所涉及的一种绝对式多圈转动角度的检测装置的二级减速装置 6 包括圈数齿轮 61 和齿轮齿条 63,齿轮齿条63 包含上下两层齿轮,分别为大齿轮 631 和小齿轮 632,其中大齿轮 631 与从动小齿轮 52 外啮合,从动小齿轮 52 齿数小于大齿轮 631 齿数,将转动速度进行第一步减速。小齿轮 632 与圈数齿轮 61 外啮合,小齿轮 632 齿数小于圈数齿轮 61 齿数,将转动速度进行第二步减速。旋转轴多圈转动减速到圈数齿轮 61且圈数齿轮 61 只旋转一圈。
本发明的实施方式
如图 8 所示,与实施例 1 不同的是本发明所涉及的一种绝对式多圈转动角度的检测装置的二级减速装置 6 为圈数齿轮 61,从动小齿轮 52 与圈数齿轮 61内啮合。从动小齿轮 52 齿数小于圈数齿轮 61 齿数。旋转轴多圈转动减速到圈数齿轮 61,且圈数齿轮 61 只旋转一圈。
工业实用性
序列表自由内容

Claims (11)

  1. 一种绝对式多圈转动角度的检测装置,包括壳体,盖板,旋转轴,旋转轴置于壳体内,其特征在于旋转轴上固定有主齿轮,主齿轮与齿数比其小的从动齿轮啮合,从动齿轮包括从动大齿轮和从动小齿轮,主齿轮与从动大齿轮外啮合,从动齿轮上连接有使旋转轴多圈转动减速到圈数齿轮且圈数齿轮只旋转一圈的二级减速装置,在从动齿轮和圈数齿轮上均设有轴承,轴承内均设有磁铁,两磁铁分别与从动齿轮和圈数齿轮相对固定,轴承上边缘与 PCB 板相贴合,固定于 PCB 板上的角度感应芯片位于磁铁上方,角度感应芯片与磁铁上表面相隔固定距离,盖板固定于壳体上,壳体与盖板配合固定 PCB 板位置。
  2. 根据权利要求 1 所述的一种绝对式多圈转动角度的检测装置,其特征在于所述的二级减速装置包括中间过渡齿轮和圈数齿轮,中间过渡齿轮中间过渡大齿轮和中间过渡小齿轮,中间过渡大齿轮与从动小齿轮外啮合,中间过渡小齿轮与圈数齿轮外啮合。
  3. 根据权利要求 1 所述的一种绝对式多圈转动角度的检测装置,其特征在于所述的二级减速装置为齿轮齿条和圈数齿轮,齿轮齿条包含上下两层齿轮,分别为大齿轮和小齿轮,其中大齿轮与从动小齿轮外啮合,小齿轮与圈数齿轮外啮合。
  4. 根据权利要求 1 所述的一种绝对式多圈转动角度的检测装置,其特征在于所述的二级减速装置为圈数齿轮,从动小齿轮与圈数齿轮内啮合。
  5. 根据权利要求 1 或 2 所述的一种绝对式多圈转动角度的检测装置,其特征在于所述的壳体内设有轴承套,主齿轮、从动齿轮、中间过度齿轮、圈数齿轮均固定于轴承套中,壳体内设有肋板,盖板上也设有肋板,盖板设有肋板一面朝向壳体内部。
  6. 根据权利要求 1 所述的一种绝对式多圈转动角度的检测装置,其特征在于所述的主齿轮上还设有阶梯结构。
  7. 根据权利要求 1 所述的一种绝对式多圈转动角度的检测装置,其特征在于所述磁铁的冲磁方向为径向,仅有一对 N/S 磁极,磁铁轴向末端为凸台结构。
  8. 根据权利要求 1 所述的一种绝对式多圈转动角度的检测装置,其特征在于所述的角度感应芯片与磁铁上表面相隔的固定距离在 0.2mm 至 3mm 之间。
  9. 根据权利要求 1 所述的一种绝对式多圈转动角度的检测装置,其特征在于所述的角度感应芯片输出的角度范围为 0 度-360 度。
  10. 一种绝对式多圈转动角度的检测方法,特别是待检测的实际转动的角度对象超过 360 度, 其特征在于包括下述步骤:
    (1) 确定检测装置中的定值,其中主齿轮数为 Z1,从动小齿轮齿数为 Z21,从动大齿轮齿数为 Z22,中间小齿轮齿数为 Z31,中间大齿轮齿数为 Z32,圈数齿轮齿数为 Z34;
    (2) 根据以上定值,确定主齿轮与从动齿轮的传动比为 m=Z1/Z22,从动齿轮与中间齿轮的传动比为 n= Z32/Z21*Z34/Z31, 满量程 A=(n/m)* 2π;
    (3) 进行标定,指定零点位置,读取标定时角度感应芯片的输出角度Angle_Alpha 0 和 Cycle_phi 0,并进行存储记录;
    (4) 通过设置在从动齿轮上和圈数齿轮上的角度感应芯片,分别检测从动齿轮和圈数齿轮的转动角度,读取相应芯片输出的原始角度信号后,进行补偿,即将读取的原始角度信号分别减去存储标定时记录的 Angle_Alpha 0 和 Cycle_phi 0;补偿后相应地输出转动角度信号为 Angle_Alpha 和 Cycle_phi;
    (5) 根据以下公式计算从动齿轮 32 转动圈数 i, i=floor(Cycle_phi/Cyclestep), 其中 CycleStep=2π/n,imax =A/ 2π*(n-1);
    (6) 根据角度感应芯片输出的转动角度信号 Angle_Alpha 与从动齿轮转动圈数 i,计算主齿轮转动角度 θ= Angle_Alpha/m + i*2π/m;
    (7) 将由 0 到量程 A 的角度输出转化为-A/2 到+A/2 的角度 θ 输出。
  11. 根据权利要求 1 所述的绝对式多圈转动角度的检测方法, 其特征在于还包括对于计算所得的主齿轮转动角度进行校验的步骤,其特征在于该校验步骤主要包括:
    (1) 给定容差范围 Δθ;
    (2) 根据圈数齿轮上角度感应芯片输出的转动角度信号 Cycle_phi,计算主齿轮转动角度 θ’ =Cycle_Phi*n/m,用 θ’来检验 θ 的可信程度;
    (3) 计算 θ 与 θ’的差值的绝对值 Δi,Δi=abs(θ’– θ)。判断 Δi 是否比给定的容差范围 Δθ 小;若 Δi 比 Δθ 小,输出转动角度 θ,否则计算 i+1 对应的转动角度θ(i+1), θ(i+1)= Angle_Alpha/m + (i+1)*2π/m; 计算θ(i+1)与θ’ 的差值的绝对值 Δ(i+1),Δ(i+1)= abs(θ’– θ(i+1)),判断 Δ(i+1)是否比给定的容差范围 Δθ 小,若 Δ(i+1)比 Δθ 小,输出转动角度 θ,否则计算i-1 对应的转动角度 θ(i-1),θ(i-1)= Angle_Alpha/m + (i-1)*2π/m;计算θ(i-1)与 θ’的差值的绝对值 Δ(i-1),Δ(i-1)= abs(θ’– θ(i-1)),判断 Δ(i-1)是否比给定的容差范围 Δθ 小,若 Δ(i-1)比 Δθ 小,输出转动角度 θ,否则***故障无法输出正确转动角度 θ。
PCT/CN2012/084431 2012-07-10 2012-11-11 一种绝对式多圈转动角度的检测装置及方法 WO2014008728A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/125,933 US9903703B2 (en) 2012-07-10 2012-11-11 Device and method for detecting absolute multi-turn rotation angle
EP12874921.5A EP2873945B1 (en) 2012-07-10 2012-11-11 Device and method for detecting multi-turn absolute rotation angle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210238062.7A CN102749026B (zh) 2012-07-10 2012-07-10 一种绝对式多圈转动角度的检测装置及方法
CN201210238062.7 2012-07-10

Publications (1)

Publication Number Publication Date
WO2014008728A1 true WO2014008728A1 (zh) 2014-01-16

Family

ID=47029408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084431 WO2014008728A1 (zh) 2012-07-10 2012-11-11 一种绝对式多圈转动角度的检测装置及方法

Country Status (4)

Country Link
US (1) US9903703B2 (zh)
EP (1) EP2873945B1 (zh)
CN (1) CN102749026B (zh)
WO (1) WO2014008728A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110582684A (zh) * 2017-06-15 2019-12-17 阿尔卑斯阿尔派株式会社 旋转检测装置
CN115059852A (zh) * 2022-06-10 2022-09-16 李品 一种便于移动的道路桥梁基坑检测装置
CN115884524A (zh) * 2023-01-05 2023-03-31 安徽百强科技有限公司 一种印刷电路板镭射曝光设备及曝光方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749026B (zh) * 2012-07-10 2015-01-21 万向钱潮(上海)汽车***有限公司 一种绝对式多圈转动角度的检测装置及方法
CN103868439B (zh) * 2012-12-17 2016-06-01 南京欧控自动化有限公司 多圈角位移测量装置及其测量多圈角位移的方法
CN103234504B (zh) * 2013-04-18 2017-10-13 上海翱翼汽车电子有限公司 一种误差标定、补偿方法及其计算机程序、可读介质
GB2540599B (en) * 2015-07-22 2021-04-14 Cmr Surgical Ltd Rotary encoder.
DE102015115686B4 (de) * 2015-09-17 2022-11-17 Bourns, Inc. Lenkwinkelsensor mit funktioneller Sicherheit
CN105698828A (zh) * 2016-03-11 2016-06-22 桂林数联汽车科技有限公司 并列齿轮结构多圈绝对值编码器
CN107263445A (zh) * 2017-06-20 2017-10-20 成都黑盒子电子技术有限公司 一种用于服务型机器人的复合型传动机构
JP6829663B2 (ja) 2017-07-04 2021-02-10 ミネベアミツミ株式会社 アブソリュートエンコーダ
EP3534121B1 (de) * 2018-03-02 2021-01-27 Dr. Johannes Heidenhain GmbH Multiturn-drehgeber
CN108458921B (zh) * 2018-04-25 2024-02-06 山东科技大学 一种钻孔内旋转角度复测装置及复测方法
CN108844453A (zh) * 2018-06-06 2018-11-20 苏州博睿测控设备有限公司 一种磁电式多圈角位移绝对编码器
CN109834668A (zh) * 2019-03-26 2019-06-04 珠海罗西尼表业有限公司 旋转夹具
JP7414398B2 (ja) * 2019-03-29 2024-01-16 ミネベアミツミ株式会社 アブソリュートエンコーダ
CN110044252A (zh) * 2019-04-02 2019-07-23 武汉理岩控制技术有限公司 一种用于检测轴转动角度的测量装置及测量方法
JP7272075B2 (ja) * 2019-04-08 2023-05-12 セイコーエプソン株式会社 エンコーダー、モーター及びロボット
CN110263902A (zh) * 2019-06-06 2019-09-20 重庆长江轴承股份有限公司 一种abs齿圈的齿数检测装置
CN110242131B (zh) * 2019-06-14 2021-07-16 庆安集团有限公司 一种行程限位保护装置的机械角度调整机构
CN110934425A (zh) * 2019-11-22 2020-03-31 潘新祥 一种智能旋转餐桌及其工作方法
NL2024705B1 (nl) * 2020-01-20 2021-09-08 Ridder Drive Systems B V Schakelinrichting, elektrische aandrijving en werkwijze voor het instellen van een schakelinrichting
WO2022037377A1 (zh) * 2020-08-17 2022-02-24 京源中科科技股份有限公司 阀门旋转角度检测装置及相关设备
CN113410171B (zh) * 2021-06-21 2022-10-14 深圳国融智能科技有限公司 一种适用于柔性电子制造的双翻转头芯片转移装置
CN113607040B (zh) * 2021-08-13 2023-08-01 中国科学院新疆天文台 一种天线俯仰机构误差识别与测量平台及方法
KR20230105057A (ko) * 2022-01-03 2023-07-11 엘지이노텍 주식회사 센싱 장치
CN114440941B (zh) * 2022-01-26 2022-10-28 宜科(天津)电子有限公司 一种磁电多圈编码装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1090315C (zh) 1995-02-28 2002-09-04 罗伯特·博施有限公司 检测可转动物体之转角的方法和装置
JP2004361212A (ja) * 2003-06-04 2004-12-24 Matsushita Electric Ind Co Ltd 回転角度検出装置
JP2005031011A (ja) * 2003-07-10 2005-02-03 Okuma Corp 位置検出装置
CN201522288U (zh) * 2009-09-22 2010-07-07 张永生 旋转体多圈绝对角度测量装置
CN102012210A (zh) * 2009-09-08 2011-04-13 比亚迪股份有限公司 机动车转向轴转角扭矩传感装置及其测定方法
CN201917351U (zh) * 2010-12-15 2011-08-03 天津埃柯特阀门控制设备有限公司 一种多转圈绝对位置检测装置
CN102749026A (zh) * 2012-07-10 2012-10-24 万向钱潮(上海)汽车***有限公司 一种绝对式多圈转动角度的检测装置及方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526760A (ja) * 1991-07-17 1993-02-02 Nagahama Seisakusho:Kk 距離測定装置およびその装置を利用した不釣合い修正装置
EP1485673A4 (en) * 2002-02-14 2007-05-09 Bvr Technologies Company METHODS AND APPARATUS FOR DETECTING THE ANGULAR POSITION OF A ROTATING SHAFT
JP2004184264A (ja) * 2002-12-04 2004-07-02 Matsushita Electric Ind Co Ltd 回転角度検出装置
DE102004004023A1 (de) * 2004-01-20 2004-11-25 Valeo Schalter Und Sensoren Gmbh Lenkwinkelsensor
US7583080B2 (en) * 2005-02-10 2009-09-01 Panasonic Corporation Rotation angle detection device and rotation angle correction method
FR2899862B1 (fr) * 2006-04-13 2009-06-05 Siemens Vdo Automotive Sas Procede et dispositif de mesure de la position angulaire, entre deux butees de braquage,d'un volant de direction d'un vehicule
EP1910155B1 (en) * 2006-07-25 2013-05-01 LG Innotek Co., Ltd Steering angle sensing apparatus and method thereof
JP2008051668A (ja) * 2006-08-25 2008-03-06 Niles Co Ltd 回転角度検出装置
KR100856749B1 (ko) * 2006-11-15 2008-09-05 대성전기공업 주식회사 차량용 조향휠 각도 감지장치
US20100235054A1 (en) * 2009-03-11 2010-09-16 Kostal Of America Steering angle sensor
JP2010269667A (ja) * 2009-05-20 2010-12-02 Alps Electric Co Ltd 多回転角度検出装置
CN101706250A (zh) * 2009-09-22 2010-05-12 张永生 一种大范围高精度绝对转角测量装置
FR2971585B1 (fr) * 2011-02-16 2013-02-22 Thyssenkrupp System Engineering Procede de controle dynamique de la denture d'une piece et dispositif mettant en oeuvre ledit procede
CN202709991U (zh) * 2012-07-10 2013-01-30 万向钱潮(上海)汽车***有限公司 一种绝对式多圈转动角度的检测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1090315C (zh) 1995-02-28 2002-09-04 罗伯特·博施有限公司 检测可转动物体之转角的方法和装置
JP2004361212A (ja) * 2003-06-04 2004-12-24 Matsushita Electric Ind Co Ltd 回転角度検出装置
JP2005031011A (ja) * 2003-07-10 2005-02-03 Okuma Corp 位置検出装置
CN102012210A (zh) * 2009-09-08 2011-04-13 比亚迪股份有限公司 机动车转向轴转角扭矩传感装置及其测定方法
CN201522288U (zh) * 2009-09-22 2010-07-07 张永生 旋转体多圈绝对角度测量装置
CN201917351U (zh) * 2010-12-15 2011-08-03 天津埃柯特阀门控制设备有限公司 一种多转圈绝对位置检测装置
CN102749026A (zh) * 2012-07-10 2012-10-24 万向钱潮(上海)汽车***有限公司 一种绝对式多圈转动角度的检测装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2873945A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110582684A (zh) * 2017-06-15 2019-12-17 阿尔卑斯阿尔派株式会社 旋转检测装置
CN110582684B (zh) * 2017-06-15 2021-12-10 阿尔卑斯阿尔派株式会社 旋转检测装置
CN115059852A (zh) * 2022-06-10 2022-09-16 李品 一种便于移动的道路桥梁基坑检测装置
CN115884524A (zh) * 2023-01-05 2023-03-31 安徽百强科技有限公司 一种印刷电路板镭射曝光设备及曝光方法

Also Published As

Publication number Publication date
CN102749026B (zh) 2015-01-21
EP2873945A1 (en) 2015-05-20
EP2873945B1 (en) 2019-07-31
CN102749026A (zh) 2012-10-24
US20140278223A1 (en) 2014-09-18
EP2873945A4 (en) 2016-03-09
US9903703B2 (en) 2018-02-27

Similar Documents

Publication Publication Date Title
WO2014008728A1 (zh) 一种绝对式多圈转动角度的检测装置及方法
US7711508B2 (en) Position detector
US20080157705A1 (en) Magnetic Absolute Encoder
US10175066B2 (en) Sensor system for detecting absolute rotational angle of a shaft
US8265897B2 (en) Rotation angle detector and process for detecting rotation angle
US20160231150A1 (en) Test indicator
JP2006220530A (ja) 絶対回転角度検出装置
JP5288320B2 (ja) 高速回転体の回転バランス計測装置及び方法
WO2006085569A1 (ja) 回転角度検出装置及び回転角度補正方法
US8810239B2 (en) Angle sensor
JP2006220529A (ja) 絶対回転角度およびトルク検出装置
WO2004081490A1 (ja) 回転角度検出装置
US8836262B2 (en) Method and arrangement for determining the dynamic state of an electric motor
JP2005140557A (ja) 舵角検出装置
JP2009276137A (ja) デジタル表示式変位測定器
JP2007064771A (ja) エンコーダの誤差補正装置
US20050022613A1 (en) Angle sensor
CN114636387A (zh) 一种圆光栅编码器双读数头非对称安装偏心误差补偿方法
US9134143B2 (en) Absolute position detector with abnormality detection function
JP2016186475A (ja) 位置予測装置及び位置検出装置
CN210014751U (zh) 一种用于检测轴转动角度的测量装置
JPH0662322U (ja) アブソリュートエンコーダ装置
WO2006013622A1 (ja) 絶対角度センサ付軸受装置
JP2006090982A (ja) 回転角度検出装置
JP2015165217A (ja) 回転検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012874921

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14125933

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE