WO2013187454A1 - エチレン-ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材 - Google Patents

エチレン-ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材 Download PDF

Info

Publication number
WO2013187454A1
WO2013187454A1 PCT/JP2013/066277 JP2013066277W WO2013187454A1 WO 2013187454 A1 WO2013187454 A1 WO 2013187454A1 JP 2013066277 W JP2013066277 W JP 2013066277W WO 2013187454 A1 WO2013187454 A1 WO 2013187454A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
content
ppm
ethylene
Prior art date
Application number
PCT/JP2013/066277
Other languages
English (en)
French (fr)
Inventor
中澤 省吾
河合 宏
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to ES13804755.0T priority Critical patent/ES2613648T3/es
Priority to CN201380030857.1A priority patent/CN104350102B/zh
Priority to JP2014521390A priority patent/JP6113723B2/ja
Priority to US14/407,136 priority patent/US10066095B2/en
Priority to EP13804755.0A priority patent/EP2862898B1/en
Publication of WO2013187454A1 publication Critical patent/WO2013187454A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/06Copolymers of allyl alcohol
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/10Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating materials in packages which are not progressively transported through the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/22Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0065Permeability to gases
    • B29K2995/0067Permeability to gases non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0068Permeability to liquids; Adsorption
    • B29K2995/0069Permeability to liquids; Adsorption non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2274/00Thermoplastic elastomer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1379Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
    • Y10T428/1383Vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit is sandwiched between layers [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide

Definitions

  • the present invention relates to an ethylene-vinyl alcohol copolymer, a polyamide resin, a resin composition containing a carboxylic acid metal salt and an unsaturated aldehyde, a multilayer structure and a multilayer sheet using the resin composition, and a container using the multilayer sheet. And the packaging material.
  • EVOH ethylene-vinyl alcohol copolymer
  • gas shielding properties such as oxygen, oil resistance, non-charging property, mechanical strength, etc. It is formed into a film, a sheet, a container, a packaging material and the like and widely used as various packaging materials.
  • a laminate comprising an EVOH layer and another thermoplastic resin layer is useful as a packaging material for boil sterilization of food or for retort sterilization.
  • a method of laminating a moisture-permeable thermoplastic resin (see Japanese Patent Application Laid-Open No. 10-80981), a method of containing a metal compound or a boric acid compound in an intermediate layer composed of a composition containing EVOH and PA (Japanese Patent Application Laid-Open 131237) and a method using a composition comprising two types of EVOH and PA (see Japanese Patent Application Laid-Open No. 6-23924) has been developed.
  • the resin composition containing EVOH and PA undergoes a crosslinking reaction between the hydroxyl group or terminal carboxyl group of EVOH and the amide group, terminal amino group or terminal carboxyl group of PA, and the resin viscosity is uneven. As a result, the occurrence of kogation in the extruder, screw and die becomes remarkable during long-time melt molding.
  • Such a kogation in the extruder, screw and die may be mixed into the molded product during a long continuous operation after staying for a certain period of time.
  • the kogation mixed into the molded product not only impairs the appearance, but also causes defects, resulting in a decrease in various mechanical properties.
  • the increase in the frequency of this work leads not only to an increase in manufacturing cost, but also to consumption of materials and a loss of manufacturing time required for stopping and restarting, and improvements are required from both resource and cost viewpoints.
  • the crotonaldehyde added at the time of polymerization is consumed in the polymerization step and the subsequent saponification step, and further washed with water in the washing step or the like, so that the EVOH-containing resin composition finally obtained Almost no residue in the product. Therefore, it is considered that the obtained EVOH-containing resin composition does not exhibit the above-described reduction effect.
  • the present invention has been made based on the above circumstances, and an object thereof is to provide a resin composition that is excellent in both retort resistance and suppression of kogation during long-time operation.
  • Ethylene-vinyl alcohol copolymer (A) (hereinafter also referred to as “EVOH (A)”) having an ethylene content of 20 mol% or more and 60 mol% or less, polyamide resin (B) (hereinafter referred to as “PA (B)”) Also contains carboxylic acid metal salt (C) and unsaturated aldehyde (D),
  • the mass ratio (A / B) of the ethylene-vinyl alcohol copolymer (A) to the polyamide resin (B) is from 60/40 to 95/5
  • the content of the carboxylic acid metal salt (C) with respect to the resin content is 1 ppm to 500 ppm in terms of metal element, It is a resin composition whose content with respect to the resin content of the said unsaturated aldehyde (D) is 0.05 ppm or more and 50 ppm or less.
  • the resin composition of the present invention contains the above components (A) to (D), the content ratio of the ethylene-vinyl alcohol copolymer (A) and the polyamide resin (B), and the carboxylic acid metal salt (C).
  • content and unsaturated aldehyde (D) content are excellent in both retort resistance and the suppression property of the kogation at the time of long-time driving
  • the reason why the resin composition has the above-mentioned effects is not necessarily clear.
  • the content of the carboxylic acid metal salt (C) with respect to the resin content is preferably 5 ppm or more in terms of metal element.
  • the content of the carboxylic acid metal salt (C) is within the above specific range, so that it is possible to further suppress the occurrence of gels and blisters during long-time operation. The generation of kogation can be further suppressed, and the retort resistance can be further improved.
  • the metal element of the carboxylic acid metal salt (C) is preferably at least one selected from the group consisting of magnesium, calcium and zinc.
  • carboxylic acid metal salt (C) the thing of the said specific metal element, it can further suppress the generation of gels and blisters during long-time operation, and as a result, further suppress the generation of kogation.
  • the retort resistance can be further improved.
  • the unsaturated aldehyde (D) is preferably an unsaturated aliphatic aldehyde, more preferably at least one selected from the group consisting of crotonaldehyde, 2,4-hexadienal and 2,4,6-octatrienal. .
  • the said resin composition can further improve the above-mentioned kogation inhibitory property and retort resistance by using the said specific aldehyde as unsaturated aldehyde (D).
  • the multilayer structure of the present invention is A barrier layer formed from the resin composition; And a thermoplastic resin layer laminated on at least one surface of the barrier layer.
  • the multilayer sheet of the present invention comprises the multilayer structure.
  • the multilayer structure and the multilayer sheet are excellent in appearance, retort resistance, and processing characteristics by including a barrier layer formed from the resin composition having the above-described characteristics and a thermoplastic resin layer.
  • the barrier layer and the thermoplastic resin layer may be laminated by a coextrusion molding method.
  • the multilayer sheet can be easily and reliably manufactured by laminating the two types of layers by the coextrusion molding method, and as a result, the high appearance, retort resistance, and processing characteristics are effectively improved. Can be achieved.
  • the container of the present invention is formed by forming the multilayer sheet by a vacuum / pressure forming method.
  • the container can be easily and reliably manufactured by forming the above-described multilayer sheet by a vacuum / pressure forming method, and as a result, is excellent in appearance and retort resistance.
  • the container may be for boil sterilization or retort sterilization. Since the said container uses the resin composition which has the above-mentioned property, it can be used suitably for the said use.
  • the packaging material of the present invention is formed by molding the multilayer sheet by a hot stretch molding method.
  • the packaging material can be easily and reliably manufactured by using the above-described multilayer sheet by a heat stretch molding method.
  • the packaging material composed of the stretched multilayer sheet has excellent appearance. Moreover, the occurrence of stretch spots is suppressed.
  • the resin composition of the present invention can effectively suppress the occurrence of kogation in the molding machine during long-time operation, and therefore, a molded article having excellent appearance, retort resistance, and mechanical strength is produced. Can do.
  • the multilayer structure and multilayer sheet of the present invention are excellent in appearance, retort resistance and processing characteristics.
  • the container of the present invention is excellent in appearance and retort resistance.
  • the packaging material of the present invention is excellent in appearance and the occurrence of stretch spots is suppressed. Therefore, the resin composition, multilayer structure, multilayer sheet, container and packaging material are suitable as various packaging materials for boil sterilization or retort sterilization.
  • the resin composition of the present invention contains EVOH (A), PA (B), carboxylic acid metal salt (C) and unsaturated aldehyde (D),
  • the mass ratio (A / B) of EVOH (A) to PA (B) is 60/40 or more and 95/5 or less
  • the content of the carboxylic acid metal salt (C) with respect to the resin content is 1 ppm to 500 ppm in terms of metal element, It is a resin composition whose content with respect to the resin content of the said unsaturated aldehyde (D) is 0.05 ppm or more and 50 ppm or less.
  • the “resin component” refers to the total resin component composed of EVOH (A) and PA (B) and other resins that may be contained as optional components described later.
  • the resin composition may contain optional components such as a boron compound, a conjugated polyene compound, and a phosphorus compound as long as the effects of the present invention are not impaired.
  • each component will be described.
  • EVOH (A) is an ethylene-vinyl alcohol copolymer obtained by saponifying an ethylene-vinyl ester copolymer.
  • the ethylene content of EVOH (A) is 20 to 60 mol%, preferably 20 to 50 mol%, more preferably 24 to 45 mol%, more preferably 27 to 42 mol%. % Or less is more preferable, and 27 mol% or more and 38 mol% or less is particularly preferable.
  • the resin composition tends to be gelled due to a decrease in thermal stability during melt molding and the like, and defects such as streaks and fish eyes are likely to occur.
  • the resin composition is operated for a long time at a higher temperature or at a higher speed than the conditions at the time of general melt extrusion, the gelation of the resin composition becomes remarkable.
  • the ethylene content exceeds the above upper limit, the gas barrier property of the resin composition is lowered, and there is a possibility that the original characteristics of EVOH cannot be maintained.
  • the saponification degree of the vinyl ester unit in EVOH (A) 85 mol% is preferable, 90 mol% is more preferable, 95 mol% is further more preferable, 98 mol% is especially preferable, 99 mol% is further Particularly preferred.
  • the saponification degree is less than the lower limit, the thermal stability of the resin composition may be insufficient.
  • the vinyl ester used for the production of EVOH (A) is typically vinyl acetate, but other examples include other fatty acid vinyl esters such as vinyl propionate and vinyl pivalate. .
  • EVOH (A) can be produced by polymerizing ethylene and vinyl ester, but in addition to these, a vinylsilane compound can be used as a copolymerization component.
  • the content of units derived from the vinylsilane compound in EVOH (A) is usually 0.0002 mol% to 0.2 mol% with respect to all structural units constituting EVOH (A).
  • vinylsilane compound examples include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropylmethoxysilane, and the like. Of these, vinyltrimethoxysilane and vinyltriethoxysilane are preferred.
  • Examples of the other monomers include unsaturated hydrocarbons such as propylene and butylene; Unsaturated carboxylic acids such as (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate or esters thereof; And vinyl pyrrolidone such as N-vinyl pyrrolidone.
  • PA (B) is a resin containing an amide bond.
  • PA (B) can be obtained by ring-opening polymerization of a lactam having three or more members, polycondensation of a polymerizable ⁇ -amino acid, polycondensation of a dibasic acid and a diamine, and the like.
  • PA (B) examples include polycapramide (nylon 6), poly- ⁇ -aminoheptanoic acid (nylon 7), poly- ⁇ -aminononanoic acid (nylon 9), polyundecanamide (nylon 11), polylauryl lactam ( Nylon 12), polyethylenediamine adipamide (nylon 26), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), polyhexamethylene sebacamide (nylon 610), polyhexamethylene Dodecamide (nylon 612), polyoctamethylene adipamide (nylon 86), polydecamethylene adipamide (nylon 106), caprolactam / lauryl lactam copolymer (nylon 6/12), caprolactam / ⁇ -aminononanoic acid co Polymer (nylon 6/9), Prolactam / hexamethylene diammonium adipate copolymer (nylon 6/66),
  • aromatic diamines such as aliphatic diamines, methylbenzylamines and metaxylylenediamines introduced with substituents such as 2,2,4- and 2,4,4-trimethylhexamethylenediamine as diamines.
  • Amines or the like may be used, and these may be used to modify the polyamide resin.
  • aliphatic carboxylic acids introduced with substituents such as 2,2,4- and 2,4,4-trimethyladipic acid as dicarboxylic acids aliphatic carboxylic acids introduced with substituents such as 2,2,4- and 2,4,4-trimethyladipic acid as dicarboxylic acids
  • alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid
  • phthalic acid Aromatic dicarboxylic acids such as xylylene dicarboxylic acid, alkyl-substituted terephthalic acid, alkyl-substituted isophthalic acid, and naphthalene dicarboxylic acid may be used, and modification to polyamide resin may be performed using these. .
  • PA (B) may be used in the form of one or a mixture of two or more.
  • polycapramide nylon 6
  • a caprolactam / lauryl lactam copolymer nylon 6/12
  • the content ratio of 6 units to 12 units is not particularly limited, but the content of 12 units is preferably 5% by mass to 60% by mass, and more preferably 5% by mass to 50% by mass.
  • the content ratio of EVOH (A) and PA (B) in the resin composition is 60/40 as the lower limit of the mass ratio of EVOH (A) to PA (B), preferably 65/35, and 70 / 30 is more preferable, and 75/25 is particularly preferable. Moreover, as an upper limit of this mass ratio, it is 95/5, 90/10 is preferable and 85/15 is more preferable. When this mass ratio is less than the above lower limit, there is a risk that characteristics such as various gas shielding properties and oil resistance inherent to EVOH (A) may be impaired. Conversely, when the mass ratio exceeds the upper limit, the retort resistance of the resin composition may be reduced.
  • the total mass of EVOH (A) and PA (B) with respect to the resin content in the resin composition is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, and 100% by mass. Particularly preferred.
  • the resin composition contains a carboxylic acid metal salt (C).
  • the resin composition can suppress the occurrence of gels and blisters during long-time operation.
  • the metal element which forms bivalent metal salts such as magnesium, calcium, barium, beryllium, zinc, copper, is Among these, magnesium, calcium, and zinc are more preferable.
  • the anion of the carboxylic acid metal salt (C) is not particularly limited as long as it is a carboxylic acid anion, but formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, Examples include undecanoic acid, dodecanoic acid, stearic acid, dimethyldithiocarbamic acid, palmitic acid, 2-ethylhexanoic acid, neodecanoic acid, linoleic acid, toluic acid, oleic acid, capric acid, and carboxylic acid anions of naphthenic acid. Among these, acetate anion is more preferable.
  • carboxylic acid metal salt (C) As a minimum of content of carboxylic acid metal salt (C), it is 1 ppm in conversion of a metallic element to a resin part, 3 ppm is preferred, 5 ppm is more preferred, and 10 ppm is still more preferred. As an upper limit of content of carboxylic acid metal salt (C), it is 500 ppm in conversion of a metal element with respect to a resin part, 350 ppm is preferable, 200 ppm is more preferable, 150 ppm is further more preferable. When the content is less than the above lower limit, the effect of suppressing gel / pouring during long-time operation of the resin composition becomes insufficient.
  • the content of the carboxylic acid metal salt (C) in the resin composition is a ratio with respect to the resin content in the resin composition, that is, a mass ratio in terms of metal element with respect to the total mass of the resin components, Specifically, it refers to the ratio to the resin content in the dried resin composition.
  • the said resin composition may use carboxylic acid metal salt (C) individually by 1 type or in combination of 2 or more types.
  • the resin composition contains an unsaturated aldehyde (D).
  • the unsaturated aldehyde (D) is an aldehyde having a carbon-carbon double bond or a carbon-carbon triple bond in the molecule.
  • the said resin composition can suppress the kogation generation
  • Examples of the unsaturated aldehyde (D) include acrylic aldehyde (acrolein), crotonaldehyde, methacrylaldehyde, 2-methyl-2-butenal, 2-butenal, 2-hexenal, 2,6-nonadienal, 2,4- Unsaturated aliphatic aldehydes having a carbon-carbon double bond in the molecule such as hexadienal, 2,4,6-octatrienal, 2-hexenal, 5-methyl-2-hexenal; propiolaldehyde, 2- Examples thereof include unsaturated aliphatic aldehydes having a carbon-carbon triple bond such as butyne-1-al and 2-pentyn-1-al; aromatic unsaturated aldehydes such as benzylaldehyde and phenethylaldehyde.
  • unsaturated aliphatic aldehydes are preferable, unsaturated aliphatic aldehydes having a linear or branched carbon-carbon double bond are more preferable, crotonaldehyde, 2,4-hexadienal and 2, At least one selected from the group consisting of 4,6-octatrienal is more preferable.
  • crotonaldehyde has high water solubility and a boiling point of around 100 ° C., for example, EVOH (A) It is particularly preferable because it is easy to remove or add an excess as necessary in the washing process and the drying process in the manufacturing process.
  • the number of carbon atoms including the aldehyde part of the unsaturated aldehyde (D) is preferably 3 to 10, more preferably 4 to 8, and still more preferably 4, 6, and 8.
  • the lower limit of the content of the unsaturated aldehyde (D) is 0.05 ppm, preferably 0.1 ppm, more preferably 0.15 ppm relative to the resin content.
  • an upper limit of content of unsaturated aldehyde (D) it is 50 ppm with respect to a resin part, 30 ppm is preferable and 20 ppm is more preferable.
  • the content is less than the lower limit, the suppression of kogation in the molding machine is insufficient. If the content exceeds the above upper limit, the resin composition may be crosslinked by the unsaturated aldehyde (D) during melt molding, which may induce the generation of gels and blisters, and is easily colored.
  • the content of the unsaturated aldehyde (D) in the resin composition is a ratio to the resin content in the resin composition, that is, a mass ratio with respect to the total mass of the resin components. It refers to the ratio of unsaturated aldehyde (D) to the resin content in the dried resin composition.
  • the resin composition can further contain a boron compound.
  • a boron compound When the resin composition further contains a boron compound, it is difficult to cause gelation at the time of melt molding, and torque fluctuations of an extrusion molding machine or the like can be suppressed. As a result, the appearance of the obtained molded body Can be improved.
  • boron compound examples include: Boric acids such as orthoboric acid, metaboric acid, tetraboric acid; Borate esters such as triethyl borate and trimethyl borate; Borate salts such as alkali metal salts or alkaline earth metal salts of borates, borax; Examples thereof include borohydrides. Of these, boric acids are preferred, and orthoboric acid is more preferred.
  • the content of the boron compound in the resin composition is preferably from 100 ppm to 5,000 ppm, more preferably from 100 ppm to 4,000 ppm, and even more preferably from 150 ppm to 3,000 ppm.
  • the content of the boron compound in the resin composition is preferably from 100 ppm to 5,000 ppm, more preferably from 100 ppm to 4,000 ppm, and even more preferably from 150 ppm to 3,000 ppm.
  • the resin composition can further contain a conjugated polyene compound.
  • the resin composition further contains a conjugated polyene compound, thereby suppressing oxidative deterioration during melt molding, and as a result, the occurrence and coloring of defects such as fish eyes are further suppressed, and the appearance is superior.
  • a molded body such as a container can be obtained, and the long run property can be improved.
  • the conjugated polyene compound is a compound having a so-called conjugated double bond having a structure in which two or more carbon-carbon double bonds are conjugated.
  • the conjugated polyene compound may be a conjugated diene having two conjugated double bonds, a conjugated triene having three, or a conjugated polyene having a larger number.
  • a plurality of sets of the conjugated double bonds may be present in one molecule without being conjugated with each other.
  • a compound having three sets of conjugated triene structures in the same molecule such as tung oil is also included in the conjugated polyene compound.
  • the number of conjugated double bonds is preferably 7 or less.
  • the resin composition contains a conjugated polyene compound having 8 or more conjugated double bonds
  • the molded product may be colored.
  • the carbon number of the conjugated polyene compound is preferably 4 to 30, and more preferably 4 to 10.
  • the conjugated polyene compounds include carboxyl groups and salts thereof, hydroxyl groups, ester groups, carbonyl groups, ether groups, amino groups, imino groups, amide groups, cyano groups, diazo groups, nitro groups, sulfones.
  • Other functional groups such as acid groups and salts thereof, sulfonyl groups, sulfoxide groups, sulfide groups, thiol groups, phosphate groups and salts thereof, phenyl groups, halogen atoms, double bonds, triple bonds, etc.
  • conjugated polyene compound examples include isoprene, 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-t-butyl-1,3-butadiene, 1,3- Pentadiene, 2,3-dimethyl-1,3-pentadiene, 2,4-dimethyl-1,3-pentadiene, 3,4-dimethyl-1,3-pentadiene, 3-ethyl-1,3-pentadiene, 2- Methyl-1,3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, 2,4-hexadiene, 2,5-dimethyl-2,4- Hexadiene, 1,3-octadiene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1-phenyl-1,3-butadiene, 1,4-dip
  • sorbic acid, sorbic acid ester, sorbate, myrcene and a mixture of any two or more thereof are preferable, and sorbic acid, sorbate and a mixture thereof are more preferable.
  • Sorbic acid, sorbate and a mixture thereof are highly effective in suppressing oxidative degradation at high temperatures, and are also widely used industrially as food additives, and thus are preferable from the viewpoint of hygiene and availability.
  • the molecular weight of the conjugated polyene compound is usually 1,000 or less, preferably 500 or less, and more preferably 300 or less.
  • the molecular weight of the conjugated polyene compound exceeds 1,000, the dispersion state in EVOH (A) may be deteriorated, and the appearance after melt molding may be deteriorated.
  • the content of the conjugated polyene compound is preferably 0.01 ppm to 1,000 ppm, more preferably 0.1 ppm to 1,000 ppm, further preferably 0.5 ppm to 800 ppm, and particularly preferably 1 ppm to 500 ppm.
  • the content of the conjugated polyene compound is less than 0.01 ppm, the resin composition may not sufficiently obtain an effect of suppressing oxidative deterioration during melt molding. On the other hand, if it exceeds 1,000 ppm, gelation of the resin composition is promoted, and the appearance of the molded product tends to be poor.
  • JP-A-9-71620 discloses that by adding a conjugated polyene compound in a post-polymerization step, a resin composition with less generation of gel-like spots at the time of molding is disclosed in JP-A-9-71620.
  • unsaturated aldehyde (D) in addition to the polyene compound, the generation of defects such as fish eyes and coloring can be further suppressed, and the appearance of the molded product can be improved.
  • an excellent resin composition can be obtained.
  • the resin composition can further contain a phosphorus compound.
  • a phosphorus compound When the resin composition further contains a phosphorus compound, the occurrence of defects such as gels and blisters and coloring are further suppressed, and as a result, the appearance can be improved.
  • Examples of the phosphorus compound include various phosphoric acids such as phosphoric acid and phosphorous acid, and phosphates.
  • the phosphate may be in any form of a first phosphate, a second phosphate and a third phosphate. Further, the cationic species is not particularly limited.
  • the phosphate is preferably an alkali metal salt or alkaline earth metal salt, more preferably sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate, or dipotassium hydrogen phosphate, sodium dihydrogen phosphate. More preferred is dipotassium hydrogen phosphate.
  • the content of the phosphorus compound is preferably 1 ppm to 200 ppm, more preferably 2 ppm to 200 ppm, still more preferably 3 ppm to 150 ppm, and particularly preferably 5 ppm to 100 ppm.
  • the content of the phosphorus compound is less than the above lower limit and exceeds the above upper limit, the thermal stability in the production process of the resin composition is lowered, the occurrence of gels and blisters and coloration easily occur, and the appearance is improved. May be insufficient.
  • the resin composition includes, as other optional components, carboxylic acids such as acetic acid, antioxidants, ultraviolet absorbers, plasticizers, antistatic agents, lubricants, colorants, fillers, heat stabilizers, other resins, hydro A talcite compound or the like may be contained.
  • the resin composition may contain one or more of each of the other optional components. The total content of these optional components is usually 1% by mass or less.
  • antioxidants examples include 2,5-di-t-butylhydroquinone, 2,6-di-t-butyl-p-cresol, 4,4′-thiobis- (6-t-butylphenol), 2 2,2′-methylene-bis- (4-methyl-6-tert-butylphenol), octadecyl-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate, and the like.
  • ultraviolet absorber examples include ethylene-2-cyano-3,3′-diphenyl acrylate, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, and 2- (2′-hydroxy-3 ′).
  • plasticizer examples include dimethyl phthalate, diethyl phthalate, dioctyl phthalate, wax, liquid paraffin, and phosphate ester.
  • antistatic agent examples include pentaerythritol monostearate, sorbitan monopalmitate, sulfated polyolefins, polyethylene oxide, carbowax (trade name), and the like.
  • Examples of the lubricant include ethylene bisstearamide and butyl stearate.
  • Examples of the colorant include carbon black, phthalocyanine, quinacridone, indoline, azo pigment, and bengara.
  • Examples of the filler include glass fiber, wollastonite, calcium silicate, talc, and montmorillonite.
  • Examples of the heat stabilizer include hindered phenol compounds and hindered amine compounds. As said other resin, polyester, polyolefin, etc. are mentioned, for example.
  • thermal stabilizers such as the hydrotalcite compound, hindered phenol compound, hindered amine compound and the like is used. % Can be added.
  • the method for producing the resin composition is not particularly limited as long as EVOH (A), PA (B), carboxylic acid metal salt (C) and unsaturated aldehyde (D) can be blended uniformly.
  • a specific amount of the unsaturated aldehyde (D) is added to the EVOH obtained in the step (2).
  • the method of adding the method of adding a specific amount of unsaturated aldehyde (D) when blending the EVOH obtained in step (2) and the polyamide resin is preferred, and the specific amount in the EVOH obtained in step (2)
  • the method of adding the unsaturated aldehyde (D) is more preferable.
  • Examples of the method of adding a specific amount of unsaturated aldehyde (D) to EVOH include, for example, a method of previously blending unsaturated aldehyde (D) in EVOH and granulating pellets, saponification of ethylene-vinyl ester copolymer The method of impregnating the unsaturated aldehyde (D) into the strand precipitated in the step of depositing the paste later, the method of impregnating the unsaturated aldehyde (D) after cutting the precipitated strand, and the dry resin composition chip again A method of adding an unsaturated aldehyde (D) to a dissolved one, a method of melt-kneading a blend of two components of EVOH and an unsaturated aldehyde (D), and an unsaturated aldehyde (D ), And a master prepared by blending a portion of EVOH with unsaturated aldehyde (D) at a high concentration and granul
  • a method in which the unsaturated aldehyde (D) is previously blended in EVOH and pellets are granulated is preferable. Specifically, an unsaturated aldehyde (D) is added to a solution in which EVOH is dissolved in a good solvent such as a water / methanol mixed solvent, and the mixed solution is extruded into a poor solvent from a nozzle or the like to precipitate and / or. By solidifying and washing and / or drying, pellets in which the unsaturated aldehyde (D) is uniformly mixed with EVOH can be obtained.
  • a good solvent such as a water / methanol mixed solvent
  • the resin composition is prepared by, for example, melt-kneading each component using a melt-kneader, for example, by a method of mixing a resin composition containing EVOH and unsaturated aldehyde (D), PA, and a carboxylic acid metal salt. Can be obtained.
  • the method for blending is not particularly limited, and a ribbon blender, a high-speed mixer kneader, a mixing roll, an extruder, an intensive mixer, and the like can be used.
  • a single-screw or twin-screw extruder used when melt blending a resin is most preferable.
  • the order of addition is not particularly limited, and a method in which EVOH and unsaturated aldehyde (D) -containing resin component, PA, and carboxylic acid metal salt are introduced into an extruder simultaneously or in an appropriate order and melt-kneaded is suitably employed. Is done.
  • the resin composition is molded into various molded products such as films, sheets, containers, pipes, hoses, fibers, and packaging materials by melt molding or the like.
  • melt molding method include extrusion molding, inflation extrusion, blow molding, melt spinning, injection molding, injection blow molding, and the like.
  • the melt molding temperature varies depending on the melting point of EVOH (A) and the melting point of polyamide (B), but is preferably about 150 ° C. to 270 ° C.
  • the molded body obtained by the above melt molding or the like may be subjected to secondary processing molding such as bending, vacuum molding, blow molding, press molding or the like, if necessary, to obtain a target molded body.
  • the molded body may be a molded body having a single-layer structure consisting only of a barrier layer formed from the resin composition (hereinafter, also referred to as “barrier layer”). It is preferable to provide a multilayer structure including another layer laminated on at least one surface of the barrier layer.
  • a multilayer structure is excellent in external appearance property, retort resistance, and a processing characteristic by providing a barrier layer and a thermoplastic resin layer.
  • the multilayer structure examples include a multilayer sheet, a multilayer pipe, and a multilayer fiber.
  • the thermoplastic resin layer formed from a thermoplastic resin is preferable, for example.
  • the multilayer structure is excellent in appearance and heat stretchability by including a barrier layer and a thermoplastic resin layer.
  • thermoplastic resin layer As a resin for forming the thermoplastic resin layer, High density, medium density or low density polyethylene; Polyethylene copolymerized with vinyl acetate, acrylic acid ester, or ⁇ -olefins such as butene and hexene; Ionomer resin; Polypropylene homopolymer; Polypropylene copolymerized with ⁇ -olefins such as ethylene, butene and hexene; Polyolefins such as modified polypropylene blended with rubber polymers; Resins obtained by adding or grafting maleic anhydride to these resins; Polyamide resin, polyester resin, polystyrene resin, polyvinyl chloride resin, acrylic resin, polyurethane resin, polycarbonate resin, polyvinyl acetate resin, and the like can be used.
  • thermoplastic resin layer polyethylene, polypropylene, polyamide resin, and polyester resin are preferable.
  • resin material for forming the thermoplastic resin layer an unstretched polypropylene film and a nylon 6 film are preferable.
  • the layer structure of the multilayer structure is not particularly limited, but from the viewpoint of moldability, cost, etc., thermoplastic resin layer / barrier layer / thermoplastic resin layer, barrier layer / adhesive resin layer / thermoplasticity.
  • Typical examples include resin layers, thermoplastic resin layers / adhesive resin layers / barrier layers / adhesive resin layers / thermoplastic resin layers.
  • thermoplastic resin layer / barrier layer / thermoplastic resin layer, thermoplastic resin layer / adhesive resin layer / barrier layer / adhesive resin layer / thermoplastic resin layer are preferable.
  • the thermoplastic resin layers of both outer layers may be layers made of different resins or may be layers made of the same resin.
  • the method for producing the multilayer structure is not particularly limited.
  • an extrusion lamination method a dry lamination method, an extrusion blow molding method, a coextrusion lamination method, a coextrusion molding method, a coextrusion pipe molding method
  • examples include a coextrusion blow molding method, a co-injection molding method, and a solution coating method.
  • a coextrusion laminating method and a coextrusion molding method are preferable, and a coextrusion molding method is more preferable.
  • Examples of a method for forming a molded body using the multilayer sheet include a heat stretch forming method, a vacuum forming method, a pressure forming method, a vacuum pressure forming method, and a blow forming method. These moldings are usually performed in a temperature range below the melting point of EVOH. Among these, the heat stretch molding method and the vacuum / pressure forming method are preferable.
  • the heat stretch molding method is a method in which a multilayer sheet is heated and stretched in one direction or a plurality of directions.
  • the vacuum / pressure forming method is a method in which a multilayer sheet is heated and formed using both vacuum and compressed air.
  • a packaging material obtained by molding the above-described multilayer sheet by a heat stretch molding method can be easily and reliably manufactured, has excellent appearance, and stretch spots are suppressed. it can.
  • a container formed by forming the above-mentioned multilayer sheet by a vacuum / pressure forming method can be easily and reliably manufactured, and can be excellent in appearance and retort resistance.
  • these packaging materials and containers can have flow marks suppressed.
  • the extruded multilayer sheet is rapidly cooled immediately after extrusion to be as amorphous as possible.
  • the multilayer sheet is reheated within the range of not higher than the melting point of EVOH, and uniaxially or biaxially stretched by a roll stretching method, a pantograph stretching method, an inflation stretching method, or the like.
  • the draw ratio is 1.3 to 9 times, preferably 1.5 to 4 times in the longitudinal and / or transverse directions, and the heating temperature is 50 ° C. to 140 ° C., preferably 60 ° C. to 100 ° C.
  • the heating temperature is less than 50 ° C., the stretchability is deteriorated and the dimensional change is also increased.
  • the above-mentioned resin can be used as a thermoplastic resin to further improve the appearance and to suppress defects such as cracks. can do.
  • the molded body can also be molded by a co-injection stretch blow molding method using the above-described resin composition and another resin composition.
  • the co-injection stretch blow molding method is a method in which, for example, a preform having a multilayer structure is obtained by co-injection molding using two or more resin compositions, and then this preform is subjected to heat stretch blow molding.
  • the molded body can be easily and reliably produced, has excellent appearance, and suppresses flow marks. Can be.
  • the said thermoplastic resin etc. are mentioned, for example.
  • scrap generated when performing thermoforming such as extrusion molding and blow molding may be reused by blending with the thermoplastic resin layer, or may be used as a separate recovery layer.
  • a multilayer sheet is heated and softened, and then formed into a mold shape.
  • Various molding conditions such as the molding temperature, the degree of vacuum, the pressure of compressed air, and the molding speed are appropriately set depending on the plug shape, mold shape, raw material film and sheet properties, and the like.
  • the molding temperature is not particularly limited, and may be a temperature at which the resin softens to a sufficient degree for molding.
  • the multilayer sheet is not melted by heating, and the metal surface of the heater plate is not heated to such a high temperature that it is transferred to the multilayer sheet. It is desirable that the temperature is not too low.
  • the temperature of the multilayer sheet is 50 ° C. to 180 ° C., preferably 60 ° C. to 160 ° C.
  • the container is manufactured by thermoforming into a three-dimensional shape in which a concave portion is formed in the plane of the multilayer sheet.
  • the container is suitably formed by the vacuum / pressure forming method described above.
  • the shape of the recess is determined in accordance with the shape of the contents. In particular, as the depth of the recess is deeper and the shape of the recess is not smooth, the normal EVOH laminate is likely to cause uneven thickness, such as a corner portion. Is extremely thin, so the improvement effect of the present invention is great.
  • the draw ratio (S) is preferably 0.2 or more, more preferably 0.3 or more, and even more preferably.
  • the drawing ratio (S) is preferably 0.3 or more, more preferably 0.5 or more, The effect of the present invention is more effectively exhibited when it is preferably 0.8 or more.
  • the aperture ratio (S) refers to a value calculated by the following equation (1).
  • S (depth of container) / (diameter of the largest circle inscribed in the opening of the container) (1) That is, the drawing ratio (S) is the value of the depth of the deepest part of the container, the value of the diameter of the largest inscribed circle that touches the shape of the recess (opening) formed in the plane of the multilayer sheet. It is the value divided.
  • the diameter of the circle is, for example, the diameter of the concave portion when the shape is a circle, the short diameter when the shape is an ellipse, and the length of the short side when the shape is a rectangle. The value of the diameter of the circle.
  • Unsaturated aldehyde (D) was quantified by quantitatively analyzing the extracted sample by high performance liquid chromatography under the following conditions. In the determination, a calibration curve prepared by reacting each of the unsaturated aldehyde (D) samples with a DNPH solution was used. In addition, the detection lower limit of unsaturated aldehyde (D) was 0.01 ppm.
  • Column: TSKgel 80Ts (manufactured by Tosoh) Mobile phase: water / acetonitrile 52: 48 (volume ratio) Detector: PDA (360 nm), TOF-MS
  • methanol was added to adjust the copolymer concentration to 20% by mass.
  • This solution was heated to 60 ° C. and reacted for about 4 hours while blowing nitrogen gas into the reactor.
  • the solution was extruded into water from a metal plate having a circular opening, precipitated, and cut to obtain pellets having a diameter of about 3 mm and a length of about 5 mm.
  • the pellets were drained with a centrifuge and then washed with repeated operations of adding a large amount of water and then draining to obtain EVOH (A) pellets.
  • the degree of saponification of the obtained EVOH (A) was 99.95 mol%.
  • EVOH (A) degree of saponification: 99.95 mol%) having a predetermined ethylene content shown in Table 1 below was synthesized.
  • Table 1 shows the crotonaldehyde-containing EVOH pellets prepared above, polyamide resin (manufactured by Ube Industries, Ny1018A (nylon 6)), magnesium acetate tetrahydrate, zinc acetate dihydrate or calcium acetate dihydrate.
  • polyamide resin manufactured by Ube Industries, Ny1018A (nylon 6)
  • magnesium acetate tetrahydrate magnesium acetate tetrahydrate
  • zinc acetate dihydrate or calcium acetate dihydrate After mixing, dry blending, and using a twin screw extruder (manufactured by Toyo Seiki Seisakusho, 2D25W, 25 mm ⁇ ) under extrusion conditions of a die temperature of 250 ° C. and a screw rotation speed of 100 rpm) under a nitrogen atmosphere Extrusion pelletization was performed below to obtain the desired resin composition pellets.
  • twin screw extruder manufactured by Toyo Seiki Seisakusho, 2D25W, 25 mm ⁇
  • Example 13 As an unsaturated aldehyde (D), 2,4-hexadienal was used in Example 13 instead of crotonaldehyde, and 2,4 in Example 14 as the unsaturated aldehyde (D). , 6-octatrienal was used to prepare resin compositions in the same manner as in Examples 1 to 12 to obtain unsaturated aldehyde-containing EVOH pellets. In addition, content of unsaturated aldehyde (D) in the obtained pellet was quantified by the said quantification method, and the unsaturated aldehyde containing EVOH pellet was prepared so that it might become as as described in Table 1.
  • polyamide resin manufactured by Ube Industries, Ny1018A (nylon 6)
  • magnesium acetate tetrahydrate were mixed so as to have the contents shown in Table 1, and after dry blending, a twin-screw extruder (manufactured by Toyo Seiki Seisakusho) 2D25W, 25 mm ⁇ ), and extrusion pelletization was performed in a nitrogen atmosphere under extrusion conditions of a die temperature of 250 ° C. and a screw rotation speed of 100 rpm, to obtain the desired resin composition pellets.
  • the EVOH pellets prepared above, polyamide resin (manufactured by Ube Industries, Ny1018A (nylon 6)), and magnesium acetate tetrahydrate are mixed so as to have each content shown in Table 1, and after dry blending, twin screw extrusion Using a machine (Toyo Seiki Seisakusho, 2D25W, 25 mm ⁇ ), extrusion pelletization was performed in a nitrogen atmosphere under extrusion conditions of a die temperature of 250 ° C. and a screw rotation speed of 100 rpm to obtain the desired resin composition pellets.
  • “Takelac A-385” (manufactured by Takeda Pharmaceutical Co., Ltd.) is the main agent
  • “Takenet A-50” manufactured by Takeda Pharmaceutical Co., Ltd.
  • ethyl acetate is used as the diluent. I used something.
  • the application amount of this adhesive was 4.0 g / m. After lamination, curing was performed at 40 ° C. for 3 days.
  • the film was formed. Thereafter, the die was disassembled to remove the low-density polyethylene, the amount of koge adhering to the surface of the dice channel was measured, and the kogation inhibitory property was evaluated according to the following evaluation criteria. “A (good)”: less than 0.01 g “B (slightly good)”: 0.01 g or more and less than 1.0 g “C (bad)”: 1.0 g or more
  • the resin compositions and multilayer sheets of the examples are excellent in the suppression of kogation generation and retort resistance in the molding machine during long-time operation.
  • the resin composition and multilayer sheet of the comparative example in which the crotonaldehyde (D) content, the carboxylic acid metal salt (C) content, or the EVOH / PA mass ratio is out of the specified range are used to suppress the formation of kogation in the molding machine. Or it turned out that it is inferior to retort resistance.
  • Example 15 Under the following extrusion molding conditions, the resin composition obtained in Example 4, polyolefin (a), polyolefin (a ′), and carboxylic acid-modified polyolefin (b) were charged into separate extruders, and (a) / ( a ′) / (b) / resin composition / (b) / (a ′) / (a) (each layer thickness: 200 ⁇ m / 225 ⁇ m / 25 ⁇ m / 100 ⁇ m / 25 ⁇ m / 225 ⁇ m / 200 ⁇ m) A multilayer sheet of 4 types and 7 layers of 000 ⁇ m was obtained by a coextrusion sheet forming apparatus.
  • Example 17 The multilayer sheet obtained in Example 15 was subjected to a pantograph-type biaxial stretching machine and subjected to simultaneous biaxial stretching at a stretching ratio of 3 ⁇ 3 at 70 ° C. No stretch spots were observed on the stretched multilayer sheet.
  • the obtained multilayer sheet was heated for 1.5 seconds in a thermoforming machine (R530 manufactured by Mulchback Co., Ltd.) having a heater plate temperature of 100 ° C., and the sheet temperature was about 85 ° C.
  • a thermoforming machine manufactured by Asano Seisakusho
  • Comparative Example 11 The multilayer sheet obtained in Comparative Example 9 was subjected to a pantograph-type biaxial stretching machine and subjected to simultaneous biaxial stretching at a stretching ratio of 3 ⁇ 3 at 70 ° C. Stretch spots were observed on the stretched multilayer sheet.
  • the resin composition of the present invention can effectively suppress the occurrence of kogation in the molding machine during a long-time operation, and can produce a molded article excellent in appearance, retort resistance and mechanical strength.
  • the multilayer sheet of the present invention is excellent in appearance, retort resistance and processing characteristics.
  • the container of the present invention is excellent in appearance and retort resistance.
  • the packaging material of the present invention is excellent in appearance and the occurrence of stretch spots is suppressed. Therefore, the resin composition, the multilayer sheet, the container and the packaging material are suitable for boil sterilization or retort sterilization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Packages (AREA)

Abstract

 耐レトルト性と、長時間運転時のコゲ発生の抑制性とに共に優れる樹脂組成物を提供することを目的とする。本発明は、エチレン含有量が20モル%以上60モル%以下のエチレン-ビニルアルコール共重合体(A)、ポリアミド樹脂(B)、カルボン酸金属塩(C)及び不飽和アルデヒド(D)を含有し、上記エチレン-ビニルアルコール共重合体(A)のポリアミド樹脂(B)に対する質量比(A/B)が60/40以上95/5以下であり、上記カルボン酸金属塩(C)の樹脂分に対する含有量が金属元素換算で1ppm以上500ppm以下であり、上記不飽和アルデヒド(D)の樹脂分に対する含有量が0.05ppm以上50ppm以下である樹脂組成物である。

Description

エチレン-ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
 本発明は、エチレン-ビニルアルコール共重合体、ポリアミド樹脂、カルボン酸金属塩及び不飽和アルデヒドを含有する樹脂組成物、この樹脂組成物を用いる多層構造体及び多層シート、並びにこの多層シートを用いる容器及び包装材に関する。
 エチレン-ビニルアルコール共重合体(以下、「EVOH」と略すことがある)は、酸素等の各種ガス遮蔽性、耐油性、非帯電性、機械強度等に優れた有用な高分子材料であり、フィルム、シート、容器、包装材等に成形され、各種包装材料等として広く用いられる。特に、EVOH層と他の熱可塑性樹脂層とからなる積層体は、食品のボイル殺菌用又はレトルト殺菌用の包装材料として有用であることが知られている。
 但し、一般に使用される熱水式のボイル・レトルト処理に用いた場合、処理時にEVOH層へ水が浸入し、EVOH層の機械物性が低下する。改善方法としては、従来EVOHに高い耐熱水性を有するポリアミド樹脂(以下、「PA」と略すことがある)をブレンドする方法が採用されており、(以下、かかるボイル・レトルト処理への適性を「耐レトルト性」ともいう)、今日では、さらに耐レトルト性を向上する方法として、EVOH/PAの質量比が55/45以上97/3以下の樹脂組成物の層を最外層とし、内層に低透湿性の熱可塑性樹脂を積層する方法(特開平10-80981号公報参照)、EVOHとPAとを含有する組成物からなる中間層に金属化合物やホウ酸化合物を含有させる方法(特開平4-131237号公報参照)及び中間層に2種のEVOHとPAとからなる組成物を用いる方法(特開平6-23924号公報参照)が開発されている。
 しかしながら、EVOHとPAとを含有する樹脂組成物は、EVOHの水酸基又は末端カルボキシル基と、PAのアミド基、末端アミノ基又は末端カルボキシル基との間で架橋反応が進行し、樹脂粘度が不均一になり、それに起因して、長時間の溶融成形時等に、押出機、スクリュー及びダイス内におけるコゲの発生が顕著になる。
 このような押出機、スクリュー及びダイス内のコゲは、一定時間滞留した後、長時間の連続運転時に成形物へ混入する可能性がある。このように成形物へ混入したコゲは、外観を阻害するだけでなく、これに起因して欠陥が発生し、その結果、種々の機械物性の低下を引き起こす。このようなコゲの成形物への混入を防ぐため、通常、定期的に運転を停止し、一連の押出機器の分解・掃除を実施する必要がある。しかし、本作業の頻度の増加は、製造コストの上昇のみならず、停止及び再立ち上げに要する材料の消費・製造時間ロスにも繋がり、資源及びコストの両観点から改善が求められている。
 しかし、上記文献の技術では、耐レトルト性は向上するものの、長時間運転時の成形機内のコゲ発生の抑制という観点では未だ不十分である。
 また、EVOHの製造方法において、エチレンと酢酸ビニルとの重合工程においてクロトンアルデヒドを共存させることが知られている(特開2007-31725号公報参照)。このように、重合工程でクロトンアルデヒドを共存させると重合反応器内部のスケール付着を抑制することができ、その結果、スケールが剥離して重合体中に混入することに起因するEVOHのフィルム中のフィッシュアイ等を低減できるとされている。
 しかし、上記文献の製造方法では、重合時に添加したクロトンアルデヒドは、重合工程及びその後のケン化工程で消費され、さらには洗浄工程等で水洗されてしまうため、最終的に得られるEVOH含有樹脂組成物中にはほとんど残存しない。従って、得られるEVOH含有樹脂組成物は上述のような低減効果を奏さないと考えられる。
 以上のように、樹脂組成物の耐レトルト性と、長時間運転時のコゲを起因とした外観不良の改善とを共に向上させることは従来技術では困難である。
特開平10-80981号公報 特開平4-131237号公報 特開平6-23924号公報 特開2007-31725号公報
 本発明は以上のような事情に基づいてなされたものであり、その目的は、耐レトルト性と、長時間運転時のコゲ発生の抑制性とに共に優れる樹脂組成物を提供することにある。
 上記課題を解決するためになされた発明は、
 エチレン含有量が20モル%以上60モル%以下のエチレン-ビニルアルコール共重合体(A)(以下、「EVOH(A)」ともいう)、ポリアミド樹脂(B)(以下、「PA(B)」ともいう)、カルボン酸金属塩(C)及び不飽和アルデヒド(D)を含有し、
 上記エチレン-ビニルアルコール共重合体(A)のポリアミド樹脂(B)に対する質量比(A/B)が60/40以上95/5以下であり、
 上記カルボン酸金属塩(C)の樹脂分に対する含有量が金属元素換算で1ppm以上500ppm以下であり、
 上記不飽和アルデヒド(D)の樹脂分に対する含有量が0.05ppm以上50ppm以下である樹脂組成物である。
 本発明の樹脂組成物は、上記(A)~(D)成分を含有し、エチレン-ビニルアルコール共重合体(A)とポリアミド樹脂(B)との含有比、カルボン酸金属塩(C)の含有量及び不飽和アルデヒド(D)の含有量をそれぞれ上記特定範囲とすることで、耐レトルト性と、長時間運転時のコゲ発生の抑制性とに共に優れる。当該樹脂組成物が上記効果を奏する理由については必ずしも明確ではないが、例えば、エチレン-ビニルアルコール共重合体(A)と、耐熱水性を向上させるポリアミド樹脂(B)と、長時間運転時のゲル・ブツ発生を抑制するカルボン酸金属塩(C)と、長時間運転時の成形機内におけるコゲ発生を抑制する不飽和アルデヒド(D)とを、上記特定含有量でそれぞれ含有させることで、これら各成分の含有効果が相乗的に発揮され、結果として、耐レトルト性を維持・向上させつつ、長時間運転時の成形機内におけるコゲ発生を効果的に抑制でき、連続製造運転時間を延長させることが可能となる。
 上記カルボン酸金属塩(C)の樹脂分に対する含有量としては金属元素換算で5ppm以上が好ましい。
 当該樹脂組成物は、カルボン酸金属塩(C)の含有量を上記特定範囲とすることで、長時間運転時のゲル・ブツ発生をより抑制することができ、その結果、長時間運転時のコゲの発生をより抑制でき、耐レトルト性をより向上させることができる。
 上記カルボン酸金属塩(C)の金属元素は、マグネシウム、カルシウム及び亜鉛からなる群より選ばれる少なくとも1種であることが好ましい。
 このようにカルボン酸金属塩(C)を上記特定の金属元素のものとすることで、長時間運転時のゲル・ブツ発生をさらに抑制することができ、その結果、コゲの発生をさらに抑制することができ、また、耐レトルト性をさらに向上させることができる。
 上記不飽和アルデヒド(D)としては、不飽和脂肪族アルデヒドが好ましく、クロトンアルデヒド、2,4-ヘキサジエナール及び2,4,6-オクタトリエナールからなる群より選ばれる少なくとも1種がさらに好ましい。当該樹脂組成物は、不飽和アルデヒド(D)として上記特定のアルデヒドを用いることで、上述のコゲ発生抑制性と耐レトルト性とをさらに向上させることができる。
 本発明の多層構造体は、
 当該樹脂組成物から形成されるバリア層と、
 このバリア層の少なくとも一方の面に積層される熱可塑性樹脂層と
を備える。
 また、本発明の多層シートは、当該多層構造体からなる。
 当該多層構造体及び当該多層シートは、上述の特性を有する樹脂組成物から形成したバリア層と、熱可塑性樹脂層とを備えることで、外観性、耐レトルト性及び加工特性に優れる。
 当該多層シートは、上記バリア層と熱可塑性樹脂層とが共押出成形法により積層されるとよい。
 当該多層シートは、上記2種の層が共押出成形法により積層されることで、容易かつ確実に製造することができ、その結果、上記高い外観性、耐レトルト性及び加工特性を効果的に達成することができる。
 本発明の容器は、当該多層シートを真空圧空成形法により成形してなる。
 当該容器は、上述の多層シートを用いて、真空圧空成形法により成形することで、容易かつ確実に製造することができ、その結果、外観性及び耐レトルト性に優れる。
 当該容器は、ボイル殺菌用又はレトルト殺菌用であるとよい。当該容器は、上述の性質を有する樹脂組成物を用いているので、上記用途に好適に用いることができる。
 本発明の包装材は、当該多層シートを加熱延伸成形法により成形してなる。
 当該包装材は、上述の多層シートを用いて、加熱延伸成形法により成形することで、容易かつ確実に製造することができ、その結果、延伸後の多層シートからなる包装材は外観性に優れ、また延伸斑の発生が抑制されている。
 以上説明したように、本発明の樹脂組成物は、長時間運転時の成形機内におけるコゲ発生を効果的に抑制できるため、外観性、耐レトルト性及び機械的強度に優れる成形体を製造することができる。本発明の多層構造体及び多層シートは、外観性、耐レトルト性及び加工特性に優れる。本発明の容器は、外観性及び耐レトルト性に優れる。本発明の包装材は、外観性に優れ、延伸斑の発生が抑制されている。従って、当該樹脂組成物、多層構造体、多層シート、容器及び包装材は、ボイル殺菌用又はレトルト殺菌用等の各種包装材料として好適である。
 以下、本発明の実施の形態について説明するが、本発明はこれらに限定されない。また、例示される材料は、特に記載がない限り、1種を単独で用いてもよいし、2種以上を併用してもよい。
<樹脂組成物>
 本発明の樹脂組成物は、EVOH(A)、PA(B)、カルボン酸金属塩(C)及び不飽和アルデヒド(D)を含有し、
 上記EVOH(A)のPA(B)に対する質量比(A/B)が60/40以上95/5以下であり、
 上記カルボン酸金属塩(C)の樹脂分に対する含有量が金属元素換算で1ppm以上500ppm以下であり、
 上記不飽和アルデヒド(D)の樹脂分に対する含有量が0.05ppm以上50ppm以下である樹脂組成物である。
 なお、「樹脂分」とは、EVOH(A)とPA(B)と後述する任意成分として含有していてもよい他の樹脂とからなる全樹脂成分をいう。
 当該樹脂組成物は、本発明の効果を損なわない範囲において、ホウ素化合物、共役ポリエン化合物、リン化合物等の任意成分を含有していてもよい。以下、各成分について説明する。
<EVOH(A)>
 EVOH(A)は、エチレン-ビニルエステル共重合体をケン化して得られるエチレン-ビニルアルコール共重合体である。
 EVOH(A)のエチレン含有量としては20モル%以上60モル%以下であり、20モル%以上50モル%以下が好ましく、24モル%以上45モル%以下がより好ましく、27モル%以上42モル%以下がさらに好ましく、27モル%以上38モル%以下が特に好ましい。エチレン含有量が上記下限未満だと、当該樹脂組成物は、溶融成形等の際に熱安定性が低下してゲル化しやすくなり、ストリーク、フィッシュアイ等の欠陥を発生し易くなる。特に、一般的な溶融押出時の条件よりも高温又は高速の条件下で長時間運転を行うと、当該樹脂組成物のゲル化は顕著となる。一方、エチレン含有量が上記上限を超えると、当該樹脂組成物のガスバリア性が低下し、EVOH本来の特性を保持できないおそれがある。
 EVOH(A)中のビニルエステル単位のケン化度の下限としては、85モル%が好ましく、90モル%がより好ましく、95モル%がさらに好ましく、98モル%が特に好ましく、99モル%がさらに特に好ましい。上記ケン化度が上記下限未満だと、当該樹脂組成物の熱安定性が不十分となるおそれがある。
 EVOH(A)の製造に用いるビニルエステルとしては、酢酸ビニルが代表的なものとして挙げられるが、それ以外にも、例えば、プロピオン酸ビニル、ピバリン酸ビニル等のその他の脂肪酸ビニルエステル等が挙げられる。
 EVOH(A)は、エチレン及びビニルエステルを重合させて製造することができるが、これらに加えて、さらにビニルシラン系化合物を共重合成分として使用することができる。EVOH(A)におけるビニルシラン系化合物に由来する単位の含有率としては、EVOH(A)を構成する全構造単位に対して、通常、0.0002モル%~0.2モル%である。
 上記ビニルシラン系化合物としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(β-メトキシエトキシ)シラン、γ-メタクリルオキシプロピルメトキシシラン等が挙げられる。これらの中で、ビニルトリメトキシシラン、ビニルトリエトキシシランが好ましい。
 さらに、EVOH(A)の製造においては、本発明の効果を損なわない範囲で、エチレン、ビニルエステル及びビニルシラン系化合物以外のその他の単量体を共重合成分として使用してもよい。
 上記その他の単量体としては、例えば
 プロピレン、ブチレン等の不飽和炭化水素;
 (メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等の不飽和カルボン酸又はそのエステル;
 N-ビニルピロリドン等のビニルピロリドン等が挙げられる。
<PA(B)>
 PA(B)は、アミド結合を含む樹脂である。PA(B)は、3員環以上のラクタムの開環重合、重合可能なω-アミノ酸の重縮合、二塩基酸とジアミンとの重縮合等によって得られる。PA(B)としては、例えば、ポリカプラミド(ナイロン6)、ポリ-ω-アミノヘプタン酸(ナイロン7)、ポリ-ω-アミノノナン酸(ナイロン9)、ポリウンデカンアミド(ナイロン11)、ポリラウリルラクタム(ナイロン12)、ポリエチレンジアミンアジパミド(ナイロン26)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリオクタメチレンアジパミド(ナイロン86)、ポリデカメチレンアジパミド(ナイロン106)、カプロラクタム/ラウリルラクタム共重合体(ナイロン6/12)、カプロラクタム/ω-アミノノナン酸共重合体(ナイロン6/9)、カプロラクタム/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン6/66)、ラウリルラクタム/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン12/66)、ヘキサメチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムセバケート共重合体(ナイロン66/610)、エチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン26/66)、カプロラクタム/ヘキサメチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムセバケート共重合体(ナイロン6/66/610)、ポリヘキサメチレンイソフタルアミド(ナイロン6I)、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ヘキサメチレンイソフタルアミド/テレフタルアミド共重合体(ナイロン6I/6T)等が挙げられる。
 また、PA(B)において、ジアミンとして2,2,4-及び2,4,4-トリメチルヘキサメチレンジアミン等の置換基を導入した脂肪族ジアミン、メチルベンジルアミン、メタキシリレンジアミン等の芳香族アミン等を使用してもよく、また、これらを用いてポリアミド樹脂への変性を行っても構わない。さらに、ジカルボン酸として2,2,4-及び2,4,4-トリメチルアジピン酸等の置換基を導入した脂肪族カルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸、フタル酸、キシリレンジカルボン酸、アルキル置換テレフタル酸、アルキル置換イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸等を使用してもよく、また、これらを用いてポリアミド樹脂への変性を行っても構わない。
 これらのPA(B)は1種又は2種以上混合した形で使用しても構わない。これらのPA(B)の中では、ポリカプラミド(ナイロン6)が好ましい。その他にも、カプロラクタム/ラウリルラクタム共重合体(ナイロン6/12)も好ましい。この場合、6単位と12単位の含有比は特に限定されないが、12単位の含有率として5質量%~60質量%が好ましく、5質量%~50質量%がより好ましい。
 当該樹脂組成物中のEVOH(A)及びPA(B)の含有比は、EVOH(A)のPA(B)に対する質量比の下限としては、60/40であり、65/35が好ましく、70/30がより好ましく、75/25が特に好ましい。また、この質量比の上限としては、95/5であり、90/10が好ましく、85/15がより好ましい。この質量比が上記下限未満だと、EVOH(A)が本来有する各種ガス遮蔽性や耐油性といった特性が損なわれるおそれがある。逆に、この質量比が上記上限を超えると、当該樹脂組成物の耐レトルト性が低下するおそれがある。
 当該樹脂組成物における樹脂分に対するEVOH(A)及びPA(B)の合計質量としては、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、100質量%が特に好ましい。
<カルボン酸金属塩(C)>
 当該樹脂組成物は、カルボン酸金属塩(C)を含有する。当該樹脂組成物は、カルボン酸金属塩(C)を含有することで、長時間運転時のゲル・ブツの発生を抑制することができる。
 カルボン酸金属塩(C)の金属元素としては特に限定されないが、ゲル・ブツの抑制効果の観点から、マグネシウム、カルシウム、バリウム、ベリリウム、亜鉛、銅など2価の金属塩を形成する金属元素が好ましく、それらの中でも、マグネシウム、カルシウム、亜鉛がより好ましい。
 カルボン酸金属塩(C)のアニオンとしては、カルボン酸アニオンであれば特に限定されないが、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、ステアリン酸、ジメチルジチオカルバミン酸、パルミチン酸、2-エチルへキサン酸、ネオデカン酸、リノール酸、トール酸、オレイン酸、カプリン酸、ナフテン酸のカルボン酸アニオン等が挙げられる。これらの中で、酢酸アニオンがより好ましい。
 カルボン酸金属塩(C)の含有量の下限としては、樹脂分に対して、金属元素換算で1ppmであり、3ppmが好ましく、5ppmがより好ましく、10ppmがさらに好ましい。カルボン酸金属塩(C)の含有量の上限としては、樹脂分に対して、金属元素換算で500ppmであり、350ppmが好ましく、200ppmがより好ましく、150ppmがさらに好ましい。上記含有量が上記下限未満だと、当該樹脂組成物の長時間運転時におけるゲル・ブツの抑制効果が不十分となる。上記含有量が上記上限を超えると、当該樹脂組成物の着色が顕著になり、また分解反応による劣化が促進され、適度な溶融粘度を有するEVOHが得られないため、得られる成形体の外観性が低下し、かつ所望の成形体を得ることが困難になるおそれがある。ここで、当該樹脂組成物中のカルボン酸金属塩(C)の含有量とは、当該樹脂組成物中の樹脂分に対する割合、すなわち、樹脂成分の合計質量に対する金属元素換算の質量割合であり、具体的には、乾燥させた当該樹脂組成物中の樹脂分に対する割合をいう。当該樹脂組成物は、カルボン酸金属塩(C)を1種単独で又は2種以上を併用して用いてもよい。
<不飽和アルデヒド(D)>
 当該樹脂組成物は、不飽和アルデヒド(D)を含有する。不飽和アルデヒド(D)は、分子内に炭素-炭素二重結合又は炭素-炭素三重結合を有するアルデヒドである。当該樹脂組成物は、不飽和アルデヒド(D)を含有することで、長時間運転時の成形機内におけるコゲ発生を抑制することができる。
 上記不飽和アルデヒド(D)としては、例えば、アクリルアルデヒド(アクロレイン)、クロトンアルデヒド、メタクリルアルデヒド、2-メチル-2-ブテナール、2-ブテナール、2-ヘキセナール、2,6-ノナジエナール、2,4-ヘキサジエナール、2,4,6-オクタトリエナール、2-ヘキセナール、5-メチル-2-ヘキセナール等の分子内に炭素-炭素二重結合を有する不飽和脂肪族アルデヒド;プロピオルアルデヒド、2-ブチン-1-アール、2-ペンチン-1-アール等の炭素-炭素三重結合を有する不飽和脂肪族アルデヒド;ベンジルアルデヒド、フェネチルアルデヒド等の芳香族不飽和アルデヒドなどが挙げられる。これらの中で、不飽和脂肪族アルデヒドが好ましく、直鎖状又は分岐状の炭素-炭素二重結合を有する不飽和脂肪族アルデヒドがより好ましく、クロトンアルデヒド、2,4-ヘキサジエナール及び2,4,6-オクタトリエナールからなる群より選ばれる少なくとも1種がさらに好ましく、これらの中でも、クロトンアルデヒドが、水への溶解性が高く、沸点が100℃付近であり、例えば、EVOH(A)の製造工程における洗浄工程や乾燥工程で必要に応じて過剰分を除去又は不足分を追加することが容易であるので特に好ましい。不飽和アルデヒド(D)のアルデヒド部分を含めた炭素数としては、3~10が好ましく、4~8がより好ましく、4、6、8がさらに好ましい。
 不飽和アルデヒド(D)の含有量の下限としては、樹脂分に対して、0.05ppmであり、0.1ppmが好ましく、0.15ppmがより好ましい。また、不飽和アルデヒド(D)の含有量の上限としては、樹脂分に対して、50ppmであり、30ppmが好ましく、20ppmがより好ましい。上記含有量が上記下限未満だと、成形機内におけるコゲ発生の抑制が不十分となる。上記含有量が上記上限を超えると、溶融成形時に、当該樹脂組成物が不飽和アルデヒド(D)により架橋を起こし、ゲル・ブツの発生を誘発するおそれがあり、また、着色し易くなる。ここで、当該樹脂組成物中の不飽和アルデヒド(D)の含有量とは、当該樹脂組成物中の樹脂分に対する割合、すなわち、樹脂成分の合計質量に対する質量割合であり、具体的には、乾燥させた当該樹脂組成物中の樹脂分に対する不飽和アルデヒド(D)の割合をいう。
<任意成分>
[ホウ素化合物]
 当該樹脂組成物は、ホウ素化合物をさらに含有することができる。当該樹脂組成物は、ホウ素化合物をさらに含有すると、溶融成形の際にゲル化を起こし難くなると共に、押出成形機等のトルク変動を抑制することができ、その結果、得られる成形体の外観性を向上させることができる。
 上記ホウ素化合物としては、例えば、
 オルトホウ酸、メタホウ酸、四ホウ酸等のホウ酸類;
 ホウ酸トリエチル、ホウ酸トリメチル等のホウ酸エステル;
 上記ホウ酸類のアルカリ金属塩又はアルカリ土類金属塩、ホウ砂等のホウ酸塩;
 水素化ホウ素類等が挙げられる。
 これらのうち、ホウ酸類が好ましく、オルトホウ酸がより好ましい。
 当該樹脂組成物におけるホウ素化合物の含有量としては、100ppm以上5,000ppm以下が好ましく、100ppm以上4,000ppm以下がより好ましく、150ppm以上3,000ppm以下がさらに好ましい。ホウ素化合物の含有量を上記範囲とすることで、製造工程における加熱溶融時の押出成形機等のトルク変動をより効果的に抑制することができる。ホウ素化合物の含有量が上記下限未満だと上記効果が不十分になるおそれがあり、逆に、上記上限を超えると、当該樹脂組成物がゲル化し易くなり、外観性が不十分となるおそれがある。
[共役ポリエン化合物]
 当該樹脂組成物は、共役ポリエン化合物をさらに含有することができる。当該樹脂組成物は、共役ポリエン化合物をさらに含有することで、溶融成形時の酸化劣化を抑制することができ、その結果、フィッシュアイ等の欠陥の発生及び着色をより抑制し、外観性により優れる容器等の成形体を得ることができ、ロングラン性も向上させることができる。
 上記共役ポリエン化合物とは、2個以上の炭素-炭素二重結合が共役している構造を有する、いわゆる共役二重結合を有する化合物である。上記共役ポリエン化合物は、共役している二重結合を2個有する共役ジエン、3個有する共役トリエン、それ以上の数を有する共役ポリエンであってもよい。また、上記共役二重結合同士が互いに共役せずに1分子中に複数組あってもよい。例えば、桐油のように共役トリエン構造を同一分子内に3組有する化合物も上記共役ポリエン化合物に含まれる。
 上記共役ポリエン化合物としては、共役二重結合の数が7個以下であることが好ましい。当該樹脂組成物が、共役二重結合を8個以上有する共役ポリエン化合物を含有すると、成形体の着色が起こる可能性がある。共役ポリエン化合物の炭素数としては、4~30が好ましく、4~10が好ましい。
 上記共役ポリエン化合物は、共役二重結合に加えて、カルボキシル基及びその塩、水酸基、エステル基、カルボニル基、エーテル基、アミノ基、イミノ基、アミド基、シアノ基、ジアゾ基、ニトロ基、スルホン酸基及びその塩、スルホニル基、スルホキシド基、スルフィド基、チオール基、リン酸基及びその塩、フェニル基、ハロゲン原子、二重結合、三重結合等のその他の官能基を有していてもよい。
 上記共役ポリエン化合物としては、例えば
 イソプレン、2,3-ジメチル-1,3-ブタジエン、2,3-ジエチル-1,3-ブタジエン、2-t-ブチル-1,3-ブタジエン、1,3-ペンタジエン、2,3-ジメチル-1,3-ペンタジエン、2,4-ジメチル-1,3-ペンタジエン、3,4-ジメチル-1,3-ペンタジエン、3-エチル-1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、4-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、2,4-ヘキサジエン、2,5-ジメチル-2,4-ヘキサジエン、1,3-オクタジエン、1,3-シクロペンタジエン、1,3-シクロヘキサジエン、1-フェニル-1,3-ブタジエン、1,4-ジフェニル-1,3-ブタジエン、1-メトキシ-1,3-ブタジエン、2-メトキシ-1,3-ブタジエン、1-エトキシ-1,3-ブタジエン、2-エトキシ-1,3-ブタジエン、2-ニトロ-1,3-ブタジエン、クロロプレン、1-クロロ-1,3-ブタジエン、1-ブロモ-1,3-ブタジエン、2-ブロモ-1,3-ブタジエン、フルベン、トロポン、オシメン、フェランドレン、ミルセン、ファルネセン、センブレン、ソルビン酸、ソルビン酸エステル、ソルビン酸塩、アビエチン酸等の共役ジエン化合物;
 1,3,5-ヘキサトリエン、2,4,6-オクタトリエン-1-カルボン酸、エレオステアリン酸、桐油、コレカルシフェロール等の共役トリエン化合物;
 シクロオクタテトラエン、2,4,6,8-デカテトラエン-1-カルボン酸、レチノール、レチノイン酸等の共役ポリエン化合物等が挙げられる。上記共役ポリエン化合物は1種単独で用いてもよいし、2種以上を併用することもできる。
 これらのうち、ソルビン酸、ソルビン酸エステル、ソルビン酸塩、ミルセン及びこれらのうちのいずれか2種以上の混合物が好ましく、ソルビン酸、ソルビン酸塩及びこれらの混合物がより好ましい。ソルビン酸、ソルビン酸塩及びこれらの混合物は、高温での酸化劣化の抑制効果が高く、また、食品添加剤としても広く工業的に使用されているため衛生性や入手性の観点からも好ましい。
 上記共役ポリエン化合物の分子量としては、通常1,000以下であり、500以下が好ましく、300以下がより好ましい。上記共役ポリエン化合物の分子量が1,000を超えると、EVOH(A)中への分散状態が悪くなり、溶融成形後の外観性が不良になるおそれがある。
 上記共役ポリエン化合物の含有量は、0.01ppm以上1,000ppm以下が好ましく、0.1ppm以上1,000ppm以下がより好ましく、0.5ppm以上800ppm以下がさらに好ましく、1ppm以上500ppm以下が特に好ましい。当該樹脂組成物は、共役ポリエン化合物の含有量が0.01ppm未満であると、溶融成形時の酸化劣化を抑制する効果を十分に得られない場合がある。一方、1,000ppmを超えると、樹脂組成物のゲル化を促進し、成形体の外観性が不良となり易い。
 重合の後工程で共役ポリエン化合物を添加することにより成形時にゲル状ブツの発生の少ない樹脂組成物が得られることは特開平9-71620号公報に開示されているが、本発明においては、共役ポリエン化合物に加えて不飽和アルデヒド(D)を併せて添加することで、フィッシュアイ等の欠陥の発生及び着色をより抑制し、成形体の外観性を向上させることができることに加えて、ロングラン性にも優れる樹脂組成物が得られる。
[リン化合物]
 当該樹脂組成物は、リン化合物をさらに含有することができる。当該樹脂組成物は、リン化合物をさらに含有すると、ゲル・ブツ等の欠陥の発生及び着色がより抑制され、その結果、外観性を向上させることができる。
 上記リン化合物としては、例えば、リン酸、亜リン酸等の各種リン酸、リン酸塩等が挙げられる。
 上記リン酸塩としては、第1リン酸塩、第2リン酸塩及び第3リン酸塩のいずれの形でもよい。また、そのカチオン種も特に限定されない。リン酸塩としては、アルカリ金属塩、アルカリ土類金属塩が好ましく、リン酸2水素ナトリウム、リン酸2水素カリウム、リン酸水素2ナトリウム、リン酸水素2カリウムがより好ましく、リン酸2水素ナトリウム、リン酸水素2カリウムがさらに好ましい。
 上記リン化合物の含有量としては、1ppm以上200ppm以下が好ましく、2ppm以上200ppm以下がより好ましく、3ppm以上150ppm以下がさらに好ましく、5ppm以上100ppm以下が特に好ましい。リン化合物の含有量が上記下限未満の場合及び上記上限を超える場合には、当該樹脂組成物の製造工程における熱安定性が低下し、ゲル・ブツの発生や着色が起こり易くなり、外観性が不十分となるおそれがある。
[その他の任意成分]
 当該樹脂組成物は、その他の任意成分として、酢酸等のカルボン酸、酸化防止剤、紫外線吸収剤、可塑剤、帯電防止剤、滑剤、着色剤、充填剤、熱安定剤、他の樹脂、ハイドロタルサイト化合物等を含有してもよい。当該樹脂組成物は、上記その他の任意成分のそれぞれを1種又は2種以上含有してもよい。上記これらの任意成分の合計含有量としては、通常、1質量%以下である。
 上記酸化防止剤としては、例えば、2,5-ジ-t-ブチルハイドロキノン、2,6-ジ-t-ブチル-p-クレゾール、4,4’-チオビス-(6-t-ブチルフェノール)、2,2’-メチレン-ビス-(4-メチル-6-t-ブチルフェノール)、オクタデシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート等が挙げられる。
 上記紫外線吸収剤としては、例えば、エチレン-2-シアノ-3,3’-ジフェニルアクリレート、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-ヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オキトシキベンゾフェノン等が挙げられる。
 上記可塑剤としては、例えば、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジオクチル、ワックス、流動パラフィン、リン酸エステル等が挙げられる。
 上記帯電防止剤としては、例えば、ペンタエリスリットモノステアレート、ソルビタンモノパルミテート、硫酸化ポリオレフィン類、ポリエチレンオキシド、カーボワックス(商品名)等が挙げられる。
 上記滑剤としては、例えば、エチレンビスステアロアミド、ブチルステアレート等が挙げられる。
 上記着色剤としては、例えば、カーボンブラック、フタロシアニン、キナクリドン、インドリン、アゾ系顔料、ベンガラ等が挙げられる。
 上記充填剤としては、例えば、グラスファイバー、ウォラストナイト、ケイ酸カルシウム、タルク、モンモリロナイト等が挙げられる。
 上記熱安定剤としては、例えば、ヒンダードフェノール系化合物、ヒンダードアミン系化合物等が挙げられる。
 上記他の樹脂としては、例えば、ポリエステル、ポリオレフィン等が挙げられる。
 なお、当該樹脂組成物のゲル発生防止対策として、上記ハイドロタルサイト系化合物、ヒンダードフェノール系化合物、ヒンダードアミン系化合物等の熱安定剤の1種又は2種以上を0.01質量%~1質量%添加することができる。
<樹脂組成物の製造方法>
 当該樹脂組成物の製造方法としては、EVOH(A)、PA(B)、カルボン酸金属塩(C)及び不飽和アルデヒド(D)を均一にブレンドできる方法であれば特に限定されない。
 不飽和アルデヒド(D)を樹脂分に対して上記特定の含有量で、樹脂組成物中に均一にブレンドさせる方法としては、
 エチレン-ビニルアルコール共重合体を製造する方法における
 (1)エチレンとビニルエステルとを共重合させる工程、及び
 (2)工程(1)により得られた共重合体をケン化する工程
において、例えば、
 上記工程(1)において特定量の不飽和アルデヒド(D)を添加する方法、
 上記工程(2)において特定量の不飽和アルデヒド(D)を添加する方法、
 上記工程(2)により得られたEVOHに特定量の不飽和アルデヒド(D)を添加する方法、
 上記工程(2)により得られたEVOHとポリアミド樹脂とをブレンドする際に特定量の不飽和アルデヒド(D)を添加する方法、
 上記工程(1)において、エチレン、ビニルエステル等の単量体の使用量、重合開始剤の種類及び量、重合温度、重合時間等の各種条件を調節することにより、上記単量体の分解物等として生成し得る不飽和アルデヒド(D)の量を調整する方法、
 上記工程(2)において、エチレン-ビニルエステル共重合体のケン化の際に、添加するアルカリの種類及び量、反応温度、反応時間等の各種条件を調節することにより、重合体主鎖の分解等により生成し得る不飽和アルデヒド(D)の量を調整する方法、
 これらの方法を併用する方法等が挙げられる。
 なお、上記工程(1)において特定量の不飽和アルデヒド(D)を添加する方法、又は上記工程(2)において特定量の不飽和アルデヒド(D)を添加する方法を採用する場合には、上記工程(1)における重合反応、上記工程(2)におけるケン化反応を阻害しない範囲で添加する必要がある。
 これらの方法の中で、樹脂組成物中の不飽和アルデヒド(D)の含有量調節の容易性の観点からは、工程(2)により得られたEVOHに特定量の不飽和アルデヒド(D)を添加する方法、工程(2)により得られたEVOHとポリアミド樹脂とをブレンドする際に特定量の不飽和アルデヒド(D)を添加する方法が好ましく、工程(2)により得られたEVOHに特定量の不飽和アルデヒド(D)を添加する方法がより好ましい。
 上記EVOHに特定量の不飽和アルデヒド(D)を添加する方法としては、例えば不飽和アルデヒド(D)を予めEVOHに配合してペレットを造粒する方法、エチレン-ビニルエステル共重合体のケン化後にペーストを析出させる工程で析出させたストランドに不飽和アルデヒド(D)を含浸させる方法、析出させたストランドをカットした後に不飽和アルデヒド(D)を含浸させる方法、乾燥樹脂組成物のチップを再溶解したものに不飽和アルデヒド(D)を添加する方法、EVOH及び不飽和アルデヒド(D)の2成分をブレンドしたものを溶融混練する方法、押出機の途中からEVOH溶融物に不飽和アルデヒド(D)をフィードし含有させる方法、EVOHの一部に不飽和アルデヒド(D)を高濃度で配合して造粒したマスターバッチを作成しEVOHとドライブレンドして溶融混練する方法等が挙げられる。
 これらのうち、EVOH中に微量の不飽和アルデヒド(D)をより均一に分散することができる観点からは、不飽和アルデヒド(D)を予めEVOHに配合してペレットを造粒する方法が好ましい。具体的には、EVOHを水/メタノール混合溶媒等の良溶媒に溶解させた溶液に、不飽和アルデヒド(D)を添加し、その混合溶液をノズル等から貧溶媒中に押出して析出及び/又は凝固させ、それを洗浄及び/又は乾燥することにより、EVOHに不飽和アルデヒド(D)が均一に混合されたペレットを得ることができる。
 当該樹脂組成物は、例えば、EVOH及び不飽和アルデヒド(D)を含有する樹脂組成物と、PA及びカルボン酸金属塩を混合する方法により、例えば、溶融混練装置を用いて、各成分を溶融混練することにより得ることができる。ブレンドの方法は、特に限定されないが、リボンブレンダー、高速ミキサーコニーダー、ミキシングロール、押出機、インテンシブミキサー等を用いることができる。
 これらの中でも、後述する実施例で示しているように、一般的には、樹脂を溶融ブレンドする際に用いられる単軸又は二軸スクリュー押出機が最も好適である。添加順序としては、特に限定されず、EVOH及び不飽和アルデヒド(D)を含有する樹脂成分、PA及びカルボン酸金属塩を同時に又は適当な順序で押出機へ投入し溶融混練させる方法が好適に採用される。
<成形体>
 当該樹脂組成物は、溶融成形等により、フィルム、シート、容器、パイプ、ホース、繊維、包装材等の各種の成形体に成形される。溶融成形の方法としては、例えば、押出成形、インフレーション押出、ブロー成形、溶融紡糸、射出成形、射出ブロー成形等が挙げられる。溶融成形温度としては、EVOH(A)の融点及びポリアミド(B)の融点等により異なるが、150℃~270℃程度が好ましい。
 上記溶融成形等により得られた成形体は、必要に応じて、曲げ加工、真空成形、ブロー成形、プレス成形等の二次加工成形を行って、目的とする成形体にしてもよい。
 上記成形体としては、当該樹脂組成物から形成されるバリア層(以下、「バリア層」ともいう)のみからなる単層構造の成形体としてもよいが、機能向上の観点から、バリア層と、このバリア層の少なくとも一方の面に積層される他の層とを備える多層構造体とすることが好ましい。多層構造体は、バリア層と熱可塑性樹脂層とを備えることで、外観性、耐レトルト性及び加工特性に優れる。
 多層構造体としては、例えば、多層シート、多層パイプ、多層繊維等が挙げられる。
 上記多層構造体を構成する他の層としては、例えば、熱可塑性樹脂から形成される熱可塑性樹脂層が好ましい。上記多層構造体は、バリア層と熱可塑性樹脂層とを備えることで、外観性及び加熱延伸性に優れる。
 上記熱可塑性樹脂層を形成する樹脂としては、
 高密度、中密度又は低密度のポリエチレン;
 酢酸ビニル、アクリル酸エステル、又はブテン、ヘキセン等のα-オレフィン類を共重合したポリエチレン;
 アイオノマー樹脂;
 ポリプロピレンホモポリマー;
 エチレン、ブテン、ヘキセン等のα-オレフィン類を共重合したポリプロピレン;
 ゴム系ポリマーをブレンドした変性ポリプロピレン等のポリオレフィン類;
 これらの樹脂に無水マレイン酸を付加又はグラフトした樹脂;
 ポリアミド樹脂、ポリエステル樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、アクリル系樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリ酢酸ビニル樹脂等を用いることができる。
 熱可塑性樹脂層を形成する樹脂としては、これらの中で、ポリエチレン、ポリプロピレン、ポリアミド樹脂、ポリエステル樹脂が好ましい。熱可塑性樹脂層を形成する具体的樹脂材としては、無延伸ポリプロピレンフィルム、ナイロン6フィルムが好ましい。
 上記多層構造体の層構成に関しては特に限定されるものではないが、成形性及びコスト等の観点から、熱可塑性樹脂層/バリア層/熱可塑性樹脂層、バリア層/接着性樹脂層/熱可塑性樹脂層、熱可塑性樹脂層/接着性樹脂層/バリア層/接着性樹脂層/熱可塑性樹脂層が代表的なものとして挙げられる。これらの層構成の中で、熱可塑性樹脂層/バリア層/熱可塑性樹脂層、熱可塑性樹脂層/接着性樹脂層/バリア層/接着性樹脂層/熱可塑性樹脂層が好ましい。バリア層の両外層に熱可塑性樹脂層を設ける場合は、両外層の熱可塑性樹脂層は互いに異なる樹脂からなる層であってもよいし、同一の樹脂からなる層であってもよい。
 上記多層構造体を製造する方法としては、特に限定されるものではないが、例えば押出ラミネート法、ドライラミネート法、押出ブロー成形法、共押出ラミネート法、共押出成形法、共押出パイプ成形法、共押出ブロー成形法、共射出成形法、溶液コート法等が挙げられる。
 多層シートを製造する方法としては、これらの中で、共押出ラミネート法、共押出成形法が好ましく、共押出成形法がより好ましい。上記バリア層と熱可塑性樹脂層とが上記方法により積層されることで、容易かつ確実に製造することができ、その結果、高い外観性、耐レトルト性及び加工特性を効果的に達成することができる。
 上記多層シートを用いて成形体を成形する方法としては、例えば、加熱延伸成形法、真空成形法、圧空成形法、真空圧空成形法、ブロー成形法等が挙げられる。これらの成形は、通常、EVOHの融点以下の温度範囲で行われる。これらの中で、加熱延伸成形法、真空圧空成形法が好ましい。加熱延伸成形法は、多層シートを加熱し、一方向又は複数方向に延伸して成形する方法である。真空圧空成形法は、多層シートを加熱し、真空と圧空を併用して成形する方法である。上記成形体として、上述の多層シートを加熱延伸成形法により成形してなる包装材は、容易かつ確実に製造することができ、また外観性に優れ、延伸斑が抑制されたものとすることができる。また、上述の多層シートを真空圧空成形法により成形してなる容器は、容易かつ確実に製造することができ、また外観性及び耐レトルト性により優れるものとすることができる。また、これらの包装材及び容器は、フローマークが抑制されたものとすることができる。
 上記加熱延伸成形法において、押出成形された多層シートは、押出成形後直ちに急冷し実質上可能な限り非晶質にすることが好ましい。次いで、この多層シートをEVOHの融点以下の範囲で再加熱し、ロール延伸法、パンタグラフ式延伸法又はインフレ延伸法等により一軸又は二軸延伸する。延伸倍率としては縦又は/及び横にそれぞれ1.3~9倍、好ましくは1.5~4倍であり、加熱温度としては、50℃~140℃、好ましくは60℃~100℃である。加熱温度が50℃以下未満では延伸性が悪くなり、寸法変化も大きくなる。
 上記包装材は、多層シートから加熱延伸成形法を用いて製造する場合、熱可塑性樹脂として上記樹脂を用いることで、外観性をより優れるものにすることができ、またクラック等の欠陥をより抑制することができる。
 また、上記成形体は、上述した当該樹脂組成物と他の樹脂組成物とを用いた共射出延伸ブロー成形法によって成形することもできる。共射出延伸ブロー成形法は、例えば2種以上の樹脂組成物を用いる共射出成形により多層構造を有する予備成形体を得た後、この予備成形体を加熱延伸ブロー成形する方法である。上述の特性を有する樹脂組成物から共射出延伸ブロー成形法を用いて成形されることで、上記成形体は、容易かつ確実に製造することができ、外観性に優れ、フローマークが抑制されたものとすることができる。上記他の樹脂組成物としては、例えば、上記熱可塑性樹脂等が挙げられる。
 なお、押出成形、ブロー成形等の熱成形等を行う際に発生するスクラップは、上記熱可塑性樹脂層にブレンドして再利用してもよいし、別途回収層として用いてもよい。
 上述の真空圧空成形法では、例えば多層シートを加熱して軟化させた後に、金型形状に成形される。成形方法としては、真空又は圧空(圧縮空気)を用い、必要によりさらにプラグを併せ用いて金型形状に成形する方法(ストレート法、ドレープ法、エアスリップ法、スナップバック法、プラグアシスト法など)、プレス成形する方法等が挙げられる。成形温度、真空度、圧空の圧力、成形速度等の各種成形条件は、プラグ形状や金型形状、原料フィルムやシートの性質等により適切に設定される。
 成形温度は特に限定されるものではなく、成形するのに十分な程度に樹脂が軟化する温度であればよい。例えば、多層シートを熱成形する際には、加熱による多層シートの融解が生じたり、ヒーター板の金属面の凹凸が多層シートに転写したりする程度の高温にはせず、かつ賦形が十分でない程度の低温にしないことが望ましい。具体的に、多層シートの温度としては、50℃~180℃、好適には60℃~160℃である。
 上記容器は、当該多層シートの平面に凹部を形成した形の3次元状に熱成形されて製造される。上記容器は、上述の真空圧空成形法により、好適に成形される。凹部の形状は内容物の形状に対応して決定されるが、特に凹部の深さが深いほど、また凹部の形状が滑らかでないほど通常のEVOH積層体では厚みムラを発生しやすく、コーナー部等が極端に薄くなるので、本発明による改善効果が大きい。上記容器が全層厚み300μm程度未満の多層シートを成形してなるものである場合、絞り比(S)は、好適には0.2以上、より好適には0.3以上、さらに好適には0.4以上のときに本発明の効果はより有効に発揮される。また、上記容器が全層厚みが300μm程度以上の多層シートを成形してなるものである場合、絞り比(S)は、好適には0.3以上、より好適には0.5以上、さらに好適には0.8以上のときに本発明の効果はより有効に発揮される。
 ここで、絞り比(S)とは、下記式(1)により算出される値をいう。
 
  S=(容器の深さ)/(容器の開口部に内接する最大径の円の直径)
                       ・・・ (1)
 
 すなわち、絞り比(S)とは、容器の最深部の深さの値を、多層シートの平面に形成された凹部(開口部)の形状に接する最も大きい内接円の円の直径の値で除した値である。この円の直径は、例えば、凹部の形状が円である場合にはその直径、楕円である場合にはその短径、長方形である場合にはその短辺の長さがそれぞれ内接する最大径の円の直径の値である。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、本実施例における各定量は、以下の方法を用いて行った。
[EVOH(A)のエチレン含有量及びケン化度]
 核磁気共鳴装置(「JNM-GX-500型」、日本電子株式会社製)を用い、DMSO-dを測定溶媒として、H-NMRにより求めた。
[不飽和アルデヒド(D)の定量]
 50質量%の2,4-ジニトロフェニルヒドラジン(DNPH)の水溶液200mgに、1,1,1,3,3,3-ヘキサフルオロイソプロパノール(HFIP)50mL、酢酸11.5mL及びイオン交換水8mLを加え、DNPH溶液を調製した。測定ペレット1gをこのDNPH溶液20mLに加え、35℃にて1時間攪拌し溶解させた。この溶液にアセトニトリルを加えて樹脂分を析出させ沈降させた後、濾過して得られた溶液を濃縮し、抽出サンプルを得た。この抽出サンプルを下記条件の高速液体クロマトグラフィーにて定量分析することで、不飽和アルデヒド(D)を定量した。なお、定量に際しては、それぞれの不飽和アルデヒド(D)の標品をDNPH溶液と反応させて作成した検量線を使用した。なお、不飽和アルデヒド(D)の検出下限は、0.01ppmであった。
 カラム:TSKgel 80Ts(東ソー製)
 移動相:水/アセトニトリル=52:48(体積比)
 検出器:PDA(360nm)、TOF-MS
<EVOH(A)の合成>
[合成例1]
 250Lの加圧反応槽を用いて以下の条件で重合を実施し、エチレン-酢酸ビニル共重合体を合成した。
(仕込み量)
 酢酸ビニル:83.0kg
 メタノール:17.4kg
 2,2’-アゾビスイソブチルニトリル:66.4g
(重合条件)
 重合温度 :60℃
 重合槽エチレン圧力:3.9MPa
 重合時間 :3.5時間
 上記重合における酢酸ビニルの重合率は36%であった。得られた共重合反応液にソルビン酸を添加した後、追出塔に供給し、塔下部からのメタノール蒸気の導入により未反応酢酸ビニルを塔頂より除去して、エチレン-酢酸ビニル共重合体の41質量%メタノール溶液を得た。このエチレン-酢酸ビニル共重合体のエチレン含有量は32モル%であった。このエチレン-酢酸ビニル共重合体のメタノール溶液をケン化反応器に仕込み、苛性ソーダ/メタノール溶液(80g/L)を、共重合体中のビニルエステル単位に対して0.4当量となるように添加し、さらにメタノールを加えて共重合体濃度が20質量%になるように調整した。この溶液を60℃に昇温し、反応器内に窒素ガスを吹き込みながら約4時間反応させた。この溶液を円形の開口部を有する金板から水中に押し出して析出させ、切断することで、直径約3mm、長さ約5mmのペレットを得た。このペレットを遠心分離機で脱液した後、さらに大量の水を加えてから脱液する操作を繰り返し行って洗浄し、EVOH(A)のペレットを得た。得られたEVOH(A)のケン化度は99.95モル%であった。
 また、上記同様にして、下記表1に示す所定のエチレン含有量のEVOH(A)(ケン化度:99.95モル%)を合成した。
[合成例2]
 クロトンアルデヒドを、EVOH(A)に対して0.5ppm含有されるように、上記重合時に供給した以外は合成例1と同様にして重合、ケン化、ペレット化及び洗浄を行ってペレットを得た。得られたEVOH(A)のケン化度は99.95モル%であった。
<樹脂組成物の調製>
[実施例1~12及び比較例2~8]
 上記合成例1で得られたペレット20kgを、180kgの水/メタノール=40/60(質量比)の混合溶媒中に加え、60℃で6時間攪拌し完全に溶解させた。得られた溶液に所定量のクロトンアルデヒド及びソルビン酸を添加し、さらに1時間攪拌してクロトンアルデヒドを完全に溶解させて樹脂溶液を得た。この樹脂溶液を直径4mmのノズルより、0℃に調整した水/メタノール=90/10(質量比)の凝固浴中に連続的に押出してストランド状に凝固させた。このストランドをペレタイザーに導入して多孔質の樹脂チップを得た。得られたチップを酢酸水溶液及びイオン交換水を用いて洗浄した。この洗浄液とチップとを分離して脱液した後、熱風乾燥機を用いて80℃で4時間乾燥を行い、さらに100℃で16時間乾燥を行い、クロトンアルデヒド含有EVOHペレットを得た。得られたペレットにおけるクロトンアルデヒドの含有量を上記定量方法により定量した。クロトンアルデヒドの添加量を調節することにより、クロトンアルデヒドの含有量が表1に記載の通りとなるようにクロトンアルデヒド含有EVOHペレットを調製した。
 上記調製したクロトンアルデヒド含有EVOHペレット、ポリアミド樹脂(宇部興産製、Ny1018A(ナイロン6))、及び酢酸マグネシウム・4水和物、酢酸亜鉛・2水和物又は酢酸カルシウム・2水和物を表1に示す各含有量になるように混合し、ドライブレンド後、二軸押出機(東洋精機製作所製、2D25W、25mmφ)を用い、ダイ温度250℃,スクリュー回転数100rpm)の押出条件で、窒素雰囲気下で押出しペレット化を行い、目的の樹脂組成物ペレットを得た。
[実施例13及び14]
 上記合成例1で得られたペレットに対し、不飽和アルデヒド(D)として、クロトンアルデヒドの代わりに、実施例13においては、2,4-ヘキサジエナールを、実施例14においては、2,4,6-オクタトリエナールを使用して、実施例1~12と同様に樹脂組成物の調製を行い不飽和アルデヒド含有EVOHペレットを得た。なお、得られたペレットにおける不飽和アルデヒド(D)の含有量を上記定量方法により定量し、表1に記載の通りとなるように不飽和アルデヒド含有EVOHペレットを調製した。さらにポリアミド樹脂(宇部興産製、Ny1018A(ナイロン6))、及び酢酸マグネシウム・4水和物を表1に示す含有量になるように混合し、ドライブレンド後、二軸押出機(東洋精機製作所製、2D25W、25mmφ)を用い、ダイ温度250℃、スクリュー回転数100rpmの押出条件で、窒素雰囲気下で押出しペレット化を行い、目的の樹脂組成物ペレットを得た。
[比較例1]
 上記合成例2で得られたペレット20kgを酢酸水溶液及びイオン交換水を用いて洗浄した。この洗浄液とチップとを分離して脱液した後、熱風乾燥機を用いて80℃で4時間乾燥を行い、さらに100℃で16時間乾燥を行って、EVOHペレットを得た。
 上記調製したEVOHペレット、ポリアミド樹脂(宇部興産製、Ny1018A(ナイロン6))、及び酢酸マグネシウム・4水和物を表1に示す各含有量になるように混合し、ドライブレンド後、二軸押出機(東洋精機製作所製、2D25W、25mmφ)を用い、ダイ温度250℃、スクリュー回転数100rpmの押出条件で、窒素雰囲気下で押出しペレット化を行い、目的の樹脂組成物ペレットを得た。
<多層シートの製造>
 単軸押出装置(東洋精機製作所製、D2020、(D(mm)=20、L/D=20、圧縮比=2.0、スクリュー:フルフライト))を用い、上記得られた各樹脂組成物ペレットから厚さ20μmの単層フィルムを作製した。このときの各押出条件は以下に示す通りである。
 押出温度:250℃
 スクリュー回転数:40rpm
 ダイス幅:30cm
 引取りロール温度:80℃
 引取りロール速度:3.1m/分
 上記作製した単層フィルム、市販されている二軸延伸ナイロン6フィルム(ユニチカ製、エンブレムON、厚み15μm)及び市販されている無延伸ポリプロピレンフィルム(三井化学東セロ製、ト-セロCP、厚み60μm)をそれぞれA4サイズにカットし、単層フィルムの両面にドライラミネート用接着剤を塗布し、外層がナイロン6フィルム、内層が無延伸ポリプロピレンフィルムとなるようドライラミネ-トを実施し、得られたラミネートフィルムを80℃で3分間乾燥させて希釈液を蒸発させ、3層からなる透明な多層シートを得た。上記ドライラミネ-ト用接着剤としては「タケラックA-385」(武田薬品工業製)を主剤、「タケネ-トA-50」(武田薬品工業製)を硬化剤、希釈液として酢酸エチルを用いたものを使用した。この接着剤の塗布量は4.0g/mとした。ラミネ-ト後、40℃で3日間養生を実施した。
<評価>
 上記得られた樹脂組成物及び多層シートについて、以下の評価を行った。評価結果を表1に合わせて示す。
[コゲ発生抑制性]
 単軸押出装置(「D2020」、東洋精機製作所製;D(mm)=20、L/D=20、圧縮比=2.0、スクリュー:フルフライト)を用い、各乾燥樹脂組成物ペレットから厚さ20μmの単層フィルムを作製した。このときの各条件は以下に示す通りである。
 押出温度:250℃
 スクリュー回転数:40rpm
 ダイス幅:30cm
 引取りロール温度:80℃
 引取りロール速度:3.1m/分
 上記条件で連続運転して単層フィルムを作製し、運転開始から8時間後に低密度ポリエチレン(日本ポリエチレン製 ノバテックLF128)に樹脂を切り替え、30分間、同条件で製膜を行った。その後、ダイスを分解して低密度ポリエチレンを除去し、ダイス流路表面に付着しているコゲ量を測定し、コゲ発生抑制性を下記評価基準により評価した。
 「A(良好)」  :0.01g未満
 「B(やや良好)」:0.01g以上1.0g未満
 「C(不良)」  :1.0g以上
[成形体の耐レトルト性]
 上記得られた多層シートを用いて、12×12cm内寸の四方シ-ルしたパウチを作製した。内容物は水とした。これをレトルト装置(日坂製作所製、高温高圧調理殺菌試験機、RCS-40RTGN)を使用して、120℃で20分のレトルト処理を実施した。レトルト処理後、表面水を拭き20℃、65%RHの高温高湿の部屋で1日放置してから耐レトルト性を評価した。耐レトルト性は、透明性が確保されている場合は「A(良好)」と、まだらに白化している場合は「B(不良)」と評価した。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、実施例の樹脂組成物及び多層シートは、長時間運転時の成形機内におけるコゲ発生抑制性及び耐レトルト性に優れる。一方、クロトンアルデヒド(D)含有量、カルボン酸金属塩(C)含有量、又はEVOH/PA質量比が規定範囲外である比較例の樹脂組成物及び多層シートは、成形機内におけるコゲ発生抑制性又は耐レトルト性に劣ることがわかった。
<容器の製造>
[実施例15]
 以下の押出成形の条件で、実施例4で得られた樹脂組成物、ポリオレフィン(a)、ポリオレフィン(a’)、カルボン酸変性ポリオレフィン(b)を別々の押出機に仕込み、(a)/(a’)/(b)/樹脂組成物/(b)/(a’)/(a)(各層厚み:200μm/225μm/25μm/100μm/25μm/225μm/200μm)の構成を有する全層厚み1,000μmの4種7層の多層シートを共押出シート成形装置により得た。
 各押出機及び押出条件
 ポリオレフィン(a)の押出機:一軸、スクリュー直径65mm、L/D=22、温度200℃~240℃
 実施例4で得られた樹脂組成物の押出機:一軸、スクリュー直径40mm、L/D=26、温度170℃~210℃
 カルボン酸変性ポリオレフィン(b)の押出機:一軸、スクリュー直径40mm、L/D=26、温度160℃~220℃
 ポリオレフィン(a’)の押出機:一軸、スクリュー直径40mm、L/D=22、温度160℃~210℃
 共押出シート成形装置の成形条件
  フィードブロック型ダイ(巾600mm)、温度240℃
 得られた多層シートを、ヒーター板温度を100℃にした熱成形機(ムルチバック社製R530)にて、1.5秒間加熱し、シート温度を約85℃にしたのちに、金型形状(縦:130mm、横:110mm、深さ:50mmの直方体形状、絞り比S=0.45)に挟み、圧縮空気(圧力5kgf/cm(0.5MPa))を吹き込んで成形し、容器を得た。得られた容器は外観性に優れ、コゲのない良好な成形体であった。
[実施例16]
 実施例15で得られた多層シートを熱成形機(浅野製作所製)にて、多層シートの温度を150℃にして、カップ形状(金型形状70φ×70mm、絞り比S=1.0)に熱成形(圧縮空気:5kgf/cm(0.5MPa)、プラグ:45φ×65mm、シンタックスフォーム、プラグ温度:150℃、金型温度:70℃)を行った。得られたカップ容器は、外観性に優れ、溶融斑のない良好な成形体であった。
<包装材の製造>
[実施例17]
 実施例15で得られた多層シートをパンタグラフ式二軸延伸機にかけ、70℃で延伸倍率3×3倍で同時二軸延伸を行った。延伸後の多層シートには、延伸斑を認めなかった。
[比較例9]
 以下の押出成形の条件で、比較例1で得られた樹脂組成物、ポリオレフィン(a)、ポリオレフィン(a’)、カルボン酸変性ポリオレフィン(b)を別々の押出機に仕込み(a)/(a’)/(b)/樹脂組成物/(b)/(a’)/(a)(各層厚み:200μm/225μm/25μm/100μm/25μm/225μm/200μm)の構成を有する全層厚み1,000μmの4種7層の多層シートを共押出シート成形装置により得た。
 各押出機及び押出条件
 ポリオレフィン(a)の押出機:一軸、スクリュー直径65mm、L/D=22、温度200~240℃
 比較例1で得られた樹脂組成物の押出機:一軸、スクリュー直径40mm、L/D=26、温度170~210℃
 カルボン酸変性ポリオレフィン(b)の押出機:一軸、スクリュー直径40mm、L/D=26、温度160~220℃
 ポリオレフィン(a’)の押出機:一軸、スクリュー直径40mm、L/D=22、温度160~210℃
 共押出シート成形機の成形条件
  フィードブロック型ダイ(巾600mm)、温度240℃
 得られた多層シートを、ヒーター板温度を100℃にした熱成形機(ムルチバック社製R530)にて、1.5秒間加熱し、シート温度を約85℃にしたのちに、金型形状(タテ:130mm、ヨコ:110mm、深さ:50mmの直方体形状、絞り比S=0.45)に挟み、圧縮空気(圧力5kgf/cm(0.5MPa))を吹き込んで成形し、容器を得た。得られた容器にはコゲが認められた。
[比較例10]
 比較例9で得られた多層シートを熱成形機(浅野製作所製)にて、多層シート温度を150℃にして、カップ形状(金型形状70φ×70mm、絞り比S=1.0)に熱成形(圧縮空気:5kg/cm(0.5MPa)、プラグ:45φ×65mm、シンタックスフォーム、プラグ温度:150℃、金型温度:70℃)を行った。得られたカップ容器には、溶融斑を認めた。
[比較例11]
 比較例9で得られた多層シートをパンタグラフ式二軸延伸機にかけ、70℃で延伸倍率3×3倍で同時二軸延伸を行った。延伸後の多層シートには、延伸斑を認めた。
 本発明の樹脂組成物は、長時間運転時の成形機内におけるコゲ発生を効果的に抑制することができ、外観性及び耐レトルト性及び機械的強度に優れる成形体を製造することができる。本発明の多層シートは、外観性、耐レトルト性及び加工特性に優れる。本発明の容器は、外観性及び耐レトルト性に優れる。本発明の包装材は、外観性に優れ、延伸斑の発生が抑制されている。従って、当該樹脂組成物、多層シート、容器及び包装材は、ボイル殺菌用又はレトルト殺菌用等として好適である。

Claims (11)

  1.  エチレン含有量が20モル%以上60モル%以下のエチレン-ビニルアルコール共重合体(A)、ポリアミド樹脂(B)、カルボン酸金属塩(C)及び不飽和アルデヒド(D)を含有し、
     上記エチレン-ビニルアルコール共重合体(A)のポリアミド樹脂(B)に対する質量比(A/B)が60/40以上95/5以下であり、
     上記カルボン酸金属塩(C)の樹脂分に対する含有量が金属元素換算で1ppm以上500ppm以下であり、
     上記不飽和アルデヒド(D)の樹脂分に対する含有量が0.05ppm以上50ppm以下である樹脂組成物。
  2.  上記カルボン酸金属塩(C)の樹脂分に対する含有量が金属元素換算で5ppm以上である請求項1に記載の樹脂組成物。
  3.  上記カルボン酸金属塩(C)の金属元素が、マグネシウム、カルシウム及び亜鉛からなる群より選ばれる少なくとも1種である請求項1又は請求項2に記載の樹脂組成物。
  4.  上記不飽和アルデヒド(D)が不飽和脂肪族アルデヒドである請求項1、請求項2又は請求項3に記載の樹脂組成物。
  5.  上記不飽和脂肪族アルデヒドが、クロトンアルデヒド、2,4-ヘキサジエナール及び2,4,6-オクタトリエナールからなる群より選ばれる少なくとも1種である請求項4に記載の樹脂組成物。
  6.  請求項1から請求項5のいずれか1項に記載の樹脂組成物から形成されるバリア層と、
     このバリア層の少なくとも一方の面に積層される熱可塑性樹脂層と
    を備える多層構造体。
  7.  請求項6に記載の多層構造体からなる多層シート。
  8.  上記バリア層と熱可塑性樹脂層とが共押出成形法により積層される請求項7に記載の多層シート。
  9.  請求項7又は請求項8に記載の多層シートを真空圧空成形法により成形してなる容器。
  10.  ボイル殺菌用又はレトルト殺菌用である請求項9に記載の容器。
  11.  請求項7又は請求項8に記載の多層シートを加熱延伸成形法により成形してなる包装材。
PCT/JP2013/066277 2012-06-13 2013-06-12 エチレン-ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材 WO2013187454A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES13804755.0T ES2613648T3 (es) 2012-06-13 2013-06-12 Composición de resina de etileno-alcohol vinílico, estructura multi-capa, lámina multi-capa, recipiente y material de envasado
CN201380030857.1A CN104350102B (zh) 2012-06-13 2013-06-12 乙烯‑乙烯醇树脂组合物、多层结构体、多层片材、容器和包装材料
JP2014521390A JP6113723B2 (ja) 2012-06-13 2013-06-12 エチレン−ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
US14/407,136 US10066095B2 (en) 2012-06-13 2013-06-12 Ethylene-vinyl alcohol resin composition, multilayer structure, multilayer sheet, container, and packaging material
EP13804755.0A EP2862898B1 (en) 2012-06-13 2013-06-12 Ethylene-vinyl alcohol resin composition, multilayer structure, multilayer sheet, container, and packaging material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-134308 2012-06-13
JP2012134308 2012-06-13

Publications (1)

Publication Number Publication Date
WO2013187454A1 true WO2013187454A1 (ja) 2013-12-19

Family

ID=49758272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066277 WO2013187454A1 (ja) 2012-06-13 2013-06-12 エチレン-ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材

Country Status (8)

Country Link
US (1) US10066095B2 (ja)
EP (1) EP2862898B1 (ja)
JP (1) JP6113723B2 (ja)
CN (1) CN104350102B (ja)
ES (1) ES2613648T3 (ja)
MY (1) MY171467A (ja)
TW (1) TWI563025B (ja)
WO (1) WO2013187454A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192838A1 (ja) * 2013-05-29 2014-12-04 株式会社クラレ エチレン-ビニルアルコール共重合体含有樹脂組成物、フィルム、積層体、包装材料、真空断熱体、フィルムの製造方法及び積層体の製造方法
JP2015054878A (ja) * 2013-09-10 2015-03-23 株式会社クラレ エチレン−ビニルアルコール共重合体含有樹脂組成物、フィルム、積層体、包装材料及びフィルムの製造方法
JP2015059217A (ja) * 2013-09-20 2015-03-30 株式会社クラレ エチレン−ビニルアルコール共重合体含有樹脂組成物、フィルム、積層体、包装材料及びフィルムの製造方法
WO2015050224A1 (ja) * 2013-10-02 2015-04-09 株式会社クラレ エチレン-ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
JP2015071695A (ja) * 2013-10-02 2015-04-16 株式会社クラレ エチレン−ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
JP2015071696A (ja) * 2013-10-02 2015-04-16 株式会社クラレ エチレン−ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
EP3168242A4 (en) * 2014-07-11 2018-03-07 Kuraray Co., Ltd. Ethylene-vinyl alcohol copolymer, resin composition, and molded article using same
WO2018124234A1 (ja) * 2016-12-28 2018-07-05 日本合成化学工業株式会社 エチレン-ビニルアルコール系共重合体ペレットおよび、共役ポリエンおよびアルカリ土類金属を含有するエチレン-ビニルアルコール系共重合体ペレットの製造方法
JPWO2019103074A1 (ja) * 2017-11-22 2020-10-01 三菱ケミカル株式会社 樹脂組成物、溶融成形用材料、多層構造体および熱水殺菌用包装材料
WO2023054506A1 (ja) * 2021-09-29 2023-04-06 株式会社クラレ 樹脂組成物、成形体、多層構造体、熱成形容器、ブロー成形容器及び蒸着フィルム

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146961A1 (ja) 2012-03-28 2013-10-03 株式会社クラレ エチレン-ビニルアルコール共重合体含有樹脂組成物
WO2015174396A1 (ja) 2014-05-12 2015-11-19 株式会社クラレ エチレン-ビニルアルコール樹脂組成物ペレット
JP6703753B2 (ja) 2015-11-13 2020-06-03 三菱ケミカル株式会社 エチレン−ビニルエステル系共重合体ケン化物ペレット及びその製造方法
SG11201805019XA (en) * 2015-12-25 2018-07-30 Nippon Synthetic Chem Ind Co Ltd Resin composition and multilayer structure using same
SG11201809807SA (en) * 2016-05-26 2018-12-28 Nippon Synthetic Chem Ind Co Ltd Resin composition, product comprising the same, and multilayer structure
EP3564294B1 (en) * 2016-12-28 2022-04-13 Mitsubishi Chemical Corporation Ethylene-vinyl alcohol copolymer composition pellets, and production method for ethylene-vinyl alcohol copolymer composition pellets
CN110050017B (zh) * 2016-12-28 2022-07-22 三菱化学株式会社 乙烯-乙烯醇系共聚物组合物粒料、及乙烯-乙烯醇系共聚物组合物粒料的制造方法
US20200108987A1 (en) * 2017-03-31 2020-04-09 Bemis Company, Inc. Films with retort-shock recovery
CN110637059B (zh) * 2017-06-27 2022-11-04 三菱化学株式会社 乙烯-乙烯醇系共聚物组合物、粒料及多层结构体
SG11201910484WA (en) * 2017-06-27 2020-01-30 Mitsubishi Chem Corp Ethylene-vinyl alcohol copolymer composition, pellets, and multilayer structure
CN111344349A (zh) * 2017-11-22 2020-06-26 三菱化学株式会社 树脂组合物、熔融成形用材料、多层结构体及液体包装用材料
JP7251144B2 (ja) * 2017-11-22 2023-04-04 三菱ケミカル株式会社 エチレン-ビニルアルコール系共重合体組成物、溶融成形用材料および多層構造体
EP3715418B1 (en) * 2017-11-22 2021-10-20 Mitsubishi Chemical Corporation Resin composition, material for melt molding, multilayer structure, and material for packaging liquid
WO2019103079A1 (ja) 2017-11-22 2019-05-31 日本合成化学工業株式会社 エチレン-ビニルアルコール系共重合体組成物、多層構造体および包装体
CN113226759B (zh) * 2018-12-26 2023-05-05 三菱化学株式会社 乙烯-乙烯醇系共聚物树脂组合物、多层结构体和包装体
WO2020184523A1 (ja) * 2019-03-11 2020-09-17 株式会社クラレ 多層構造体及びそれを用いたレトルト用包装材料
CN115362219B (zh) * 2020-03-25 2023-10-13 三菱化学株式会社 树脂组合物和树脂组合物的制造方法、成型体、多层结构体和包装体

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238345A (ja) * 1984-05-10 1985-11-27 Kuraray Co Ltd 樹脂組成物
JPH04131237A (ja) 1990-09-21 1992-05-01 Kuraray Co Ltd 多層包装体
JPH0623924A (ja) 1992-07-10 1994-02-01 Kuraray Co Ltd 多層包装体
JPH06345920A (ja) * 1993-06-08 1994-12-20 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体ケン化物系樹脂組成物および該組成物の層を含む共押出積層体
JPH06345919A (ja) * 1993-06-08 1994-12-20 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体ケン化物系樹脂組成物および該組成物の層を含む共押出積層体
JPH0797491A (ja) * 1993-09-29 1995-04-11 Kuraray Co Ltd 樹脂組成物および包装体
JPH08239528A (ja) * 1994-12-07 1996-09-17 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体ケン化物系樹脂組成物及びその用途
JPH08253649A (ja) * 1995-01-18 1996-10-01 Toray Ind Inc 樹脂組成物、フィルムおよびフィルムの製造方法
JPH0971620A (ja) 1995-06-26 1997-03-18 Kuraray Co Ltd 酢酸ビニル系重合体の製法、酢酸ビニル系重合体ケン化物の製法および樹脂組成物
JPH1080981A (ja) 1997-07-24 1998-03-31 Kuraray Co Ltd ガスバリヤー性に優れた多層包装体
JP2002146135A (ja) * 2000-11-15 2002-05-22 Nippon Synthetic Chem Ind Co Ltd:The 樹脂組成物
WO2005061224A1 (ja) * 2003-12-24 2005-07-07 The Nippon Synthetic Chemical Industry Co., Ltd. 積層体
JP2007031725A (ja) 2006-11-09 2007-02-08 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体ケン化物の製造法
JP2009242645A (ja) * 2008-03-31 2009-10-22 Kuraray Co Ltd エチレン−酢酸ビニル共重合体ケン化物の製造方法
JP2010077352A (ja) * 2008-09-29 2010-04-08 Kuraray Co Ltd エチレン−酢酸ビニル共重合体ケン化物の製造方法
JP2012036341A (ja) * 2010-08-11 2012-02-23 Nippon Synthetic Chem Ind Co Ltd:The 樹脂組成物およびそれを用いた多層構造体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725360A (en) * 1971-03-11 1973-04-03 Dow Chemical Co Process for polymerizing styrene and maleic anhydride
US4387191A (en) * 1982-03-25 1983-06-07 Monsanto Company Heat stabilized polymers
JPH0686497B2 (ja) * 1983-12-27 1994-11-02 三井東圧化学株式会社 スチレン系共重合体
US4613644A (en) * 1984-03-23 1986-09-23 Kuraray Co., Ltd. Resinous composition
JP3895022B2 (ja) 1997-11-05 2007-03-22 日本合成化学工業株式会社 エチレン−酢酸ビニル共重合体の重合法
WO2010079920A2 (ko) * 2009-01-06 2010-07-15 주식회사 엘지화학 광학 필름 및 이를 포함하는 액정 표시 장치
WO2013146962A1 (ja) 2012-03-28 2013-10-03 株式会社クラレ ブロー成形容器及び燃料容器、並びにブロー成形容器の製造方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238345A (ja) * 1984-05-10 1985-11-27 Kuraray Co Ltd 樹脂組成物
JPH04131237A (ja) 1990-09-21 1992-05-01 Kuraray Co Ltd 多層包装体
JPH0623924A (ja) 1992-07-10 1994-02-01 Kuraray Co Ltd 多層包装体
JPH06345920A (ja) * 1993-06-08 1994-12-20 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体ケン化物系樹脂組成物および該組成物の層を含む共押出積層体
JPH06345919A (ja) * 1993-06-08 1994-12-20 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体ケン化物系樹脂組成物および該組成物の層を含む共押出積層体
JPH0797491A (ja) * 1993-09-29 1995-04-11 Kuraray Co Ltd 樹脂組成物および包装体
JPH08239528A (ja) * 1994-12-07 1996-09-17 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体ケン化物系樹脂組成物及びその用途
JPH08253649A (ja) * 1995-01-18 1996-10-01 Toray Ind Inc 樹脂組成物、フィルムおよびフィルムの製造方法
JPH0971620A (ja) 1995-06-26 1997-03-18 Kuraray Co Ltd 酢酸ビニル系重合体の製法、酢酸ビニル系重合体ケン化物の製法および樹脂組成物
JPH1080981A (ja) 1997-07-24 1998-03-31 Kuraray Co Ltd ガスバリヤー性に優れた多層包装体
JP2002146135A (ja) * 2000-11-15 2002-05-22 Nippon Synthetic Chem Ind Co Ltd:The 樹脂組成物
WO2005061224A1 (ja) * 2003-12-24 2005-07-07 The Nippon Synthetic Chemical Industry Co., Ltd. 積層体
JP2007031725A (ja) 2006-11-09 2007-02-08 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体ケン化物の製造法
JP2009242645A (ja) * 2008-03-31 2009-10-22 Kuraray Co Ltd エチレン−酢酸ビニル共重合体ケン化物の製造方法
JP2010077352A (ja) * 2008-09-29 2010-04-08 Kuraray Co Ltd エチレン−酢酸ビニル共重合体ケン化物の製造方法
JP2012036341A (ja) * 2010-08-11 2012-02-23 Nippon Synthetic Chem Ind Co Ltd:The 樹脂組成物およびそれを用いた多層構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2862898A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192838A1 (ja) * 2013-05-29 2014-12-04 株式会社クラレ エチレン-ビニルアルコール共重合体含有樹脂組成物、フィルム、積層体、包装材料、真空断熱体、フィルムの製造方法及び積層体の製造方法
US10047204B2 (en) 2013-05-29 2018-08-14 Kuraray Co., Ltd. Ethylene-vinyl alcohol copolymer-containing resin composition, film, laminate, packaging material, vacuum thermal insulator, film production method, and laminate production method
JP2015054878A (ja) * 2013-09-10 2015-03-23 株式会社クラレ エチレン−ビニルアルコール共重合体含有樹脂組成物、フィルム、積層体、包装材料及びフィルムの製造方法
JP2015059217A (ja) * 2013-09-20 2015-03-30 株式会社クラレ エチレン−ビニルアルコール共重合体含有樹脂組成物、フィルム、積層体、包装材料及びフィルムの製造方法
JP2015071695A (ja) * 2013-10-02 2015-04-16 株式会社クラレ エチレン−ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
JP2015071696A (ja) * 2013-10-02 2015-04-16 株式会社クラレ エチレン−ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
WO2015050224A1 (ja) * 2013-10-02 2015-04-09 株式会社クラレ エチレン-ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
US10081167B2 (en) 2013-10-02 2018-09-25 Kuraray Co., Ltd. Ethylene-vinyl alcohol resin composition, multilayer structure, multilayer sheet, container and packaging material
EP3168242A4 (en) * 2014-07-11 2018-03-07 Kuraray Co., Ltd. Ethylene-vinyl alcohol copolymer, resin composition, and molded article using same
EP3587460A1 (en) * 2014-07-11 2020-01-01 Kuraray Co., Ltd. Ethylene-vinyl alcohol copolymer and resin composition, and molded product obtained using the same
WO2018124234A1 (ja) * 2016-12-28 2018-07-05 日本合成化学工業株式会社 エチレン-ビニルアルコール系共重合体ペレットおよび、共役ポリエンおよびアルカリ土類金属を含有するエチレン-ビニルアルコール系共重合体ペレットの製造方法
JPWO2018124234A1 (ja) * 2016-12-28 2019-11-21 三菱ケミカル株式会社 エチレン−ビニルアルコール系共重合体ペレットおよび、共役ポリエンおよびアルカリ土類金属を含有するエチレン−ビニルアルコール系共重合体ペレットの製造方法
US11015038B2 (en) 2016-12-28 2021-05-25 Mitsubishi Chemical Corporation Ethylene-vinyl alcohol copolymer pellets, and production method for ethylene-vinyl alcohol copolymer pellets containing conjugated polyene and alkali earth metal
JP7047384B2 (ja) 2016-12-28 2022-04-05 三菱ケミカル株式会社 エチレン-ビニルアルコール系共重合体ペレットおよび、共役ポリエンおよびアルカリ土類金属を含有するエチレン-ビニルアルコール系共重合体ペレットの製造方法
JPWO2019103074A1 (ja) * 2017-11-22 2020-10-01 三菱ケミカル株式会社 樹脂組成物、溶融成形用材料、多層構造体および熱水殺菌用包装材料
JP7419654B2 (ja) 2017-11-22 2024-01-23 三菱ケミカル株式会社 樹脂組成物、溶融成形用材料、多層構造体および熱水殺菌用包装材料
WO2023054506A1 (ja) * 2021-09-29 2023-04-06 株式会社クラレ 樹脂組成物、成形体、多層構造体、熱成形容器、ブロー成形容器及び蒸着フィルム

Also Published As

Publication number Publication date
TW201402682A (zh) 2014-01-16
JP6113723B2 (ja) 2017-04-12
TWI563025B (en) 2016-12-21
JPWO2013187454A1 (ja) 2016-02-08
CN104350102A (zh) 2015-02-11
EP2862898B1 (en) 2016-12-28
US20150159005A1 (en) 2015-06-11
MY171467A (en) 2019-10-15
US10066095B2 (en) 2018-09-04
EP2862898A4 (en) 2016-01-20
CN104350102B (zh) 2017-02-22
EP2862898A1 (en) 2015-04-22
ES2613648T3 (es) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6113723B2 (ja) エチレン−ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
JP6148669B2 (ja) エチレン−ビニルアルコール樹脂組成物、多層シート、包装材及び容器
JP6073860B2 (ja) エチレン−ビニルアルコール共重合体含有樹脂組成物
WO2015050224A1 (ja) エチレン-ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
JP5730582B2 (ja) 樹脂組成物およびそれを用いた多層構造体
JP4580043B2 (ja) 樹脂組成物およびそれを用いた多層構造体
WO2013146962A1 (ja) ブロー成形容器及び燃料容器、並びにブロー成形容器の製造方法
JP6454464B2 (ja) エチレン−ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
JP2015071711A (ja) 樹脂組成物、多層構造体及びそれからなる熱成形容器
JP6454463B2 (ja) エチレン−ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
JP6454461B2 (ja) 樹脂組成物、樹脂成形体及び多層構造体
JP5095664B2 (ja) 樹脂組成物およびそれを用いた多層構造体
JP6473563B2 (ja) 樹脂組成物、多層シート、包装材及び容器
JP2021181548A (ja) 樹脂組成物、成形体及び多層パイプ
JP6454462B2 (ja) 樹脂組成物、多層シート、包装材及び容器
JP6653728B2 (ja) 樹脂組成物、多層構造体、熱成形容器及びその製造方法
JP6653726B2 (ja) 樹脂組成物、多層構造体、熱成形容器及びその製造方法
JP2023104870A (ja) 樹脂組成物、成形体、積層体、パイプ、温水循環用パイプ、断熱多層パイプ、及び燃料用パイプ
JP2020105509A (ja) エチレン−ビニルアルコール系共重合体樹脂組成物、多層構造体および包装体
JP2020105510A (ja) エチレン−ビニルアルコール系共重合体樹脂組成物、多層構造体および包装体
JP2023053942A (ja) 樹脂組成物、多層構造体、一軸延伸多層構造体、二軸延伸多層構造体、包装材及び容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804755

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521390

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14407136

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013804755

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013804755

Country of ref document: EP