WO2013178691A1 - Brennkraftmaschine mit abgasaufladung und abgasrückführung - Google Patents

Brennkraftmaschine mit abgasaufladung und abgasrückführung Download PDF

Info

Publication number
WO2013178691A1
WO2013178691A1 PCT/EP2013/061090 EP2013061090W WO2013178691A1 WO 2013178691 A1 WO2013178691 A1 WO 2013178691A1 EP 2013061090 W EP2013061090 W EP 2013061090W WO 2013178691 A1 WO2013178691 A1 WO 2013178691A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
fixed bed
internal combustion
combustion engine
adsorbent
Prior art date
Application number
PCT/EP2013/061090
Other languages
English (en)
French (fr)
Inventor
Plamen TOSHEV
Stephan SCHLÜTER
Original Assignee
Man Diesel & Turbo Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Man Diesel & Turbo Se filed Critical Man Diesel & Turbo Se
Priority to CN201380028817.3A priority Critical patent/CN104411960B/zh
Priority to FI20146158A priority patent/FI127439B/en
Priority to KR1020147036366A priority patent/KR101687093B1/ko
Publication of WO2013178691A1 publication Critical patent/WO2013178691A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/82Solid phase processes with stationary reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/34Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with compressors, turbines or the like in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an internal combustion engine, in particular a large diesel engine such as a marine diesel engine, according to the preamble of claim 1. Furthermore, the invention relates to a method for operating such an internal combustion engine.
  • the internal combustion engine known from this prior art comprises an exhaust gas charge with two exhaust gas turbochargers, wherein each exhaust gas turbocharger comprises a compressor and a turbine.
  • the two turbochargers are connected in series in series.
  • the exhaust gas recirculation of the internal combustion engine according to DE 10 2008 061 399 A1 serves for the diversion of exhaust gas from the exhaust gas flow immediately after the internal combustion engine and the mixture of the exhaust gas with compressed charge air between the two compressors of the two exhaust gas turbochargers connected in series, according to this prior art exhaust gas recirculation a desulphurisation device is assigned in order to remove sulfur and other acidic components from the exhaust gas flow.
  • the desulfurization device is an exhaust gas scrubber in which scrubbing water treated with sodium hydroxide or with other chemicals is used for exhaust gas desulfurization.
  • Such scrubbers require a complex water treatment and a high water use.
  • exhaust scrubbers can only be used in 2-stroke internal combustion engines.
  • the invention is based on the object to provide a novel internal combustion engine and a method for operating the same.
  • This object is achieved by an internal combustion engine according to claim 1.
  • the desulfurization device is designed as a fixed bed adsorber.
  • the invention it is proposed for the first time to carry out a desulphurisation of the exhaust gas in the region of the exhaust gas recirculation with a desulphurisation device designed as a fixed bed adsorber.
  • a desulphurisation device designed as a fixed bed adsorber.
  • This has the advantage that it can be dispensed with a required for waste gas scrubbers water treatment. Furthermore, the required water consumption can be drastically reduced.
  • the invention can be used both in 2-stroke internal combustion engines and in 4-stroke internal combustion engines.
  • An exhaust gas recirculation cooler is preferably provided upstream of the fixed bed top in order to cool the exhaust gas to be conducted via the fixed bed top. Cooling the exhaust gas in the area of the exhaust gas recirculation with the exhaust gas recirculation cooler before passing the exhaust gas over the fixed bed adsorber allows operation of the fixed bed adsorber under optimum operating conditions.
  • the fixed bed adsorber in an operating mode of the desulfurization of exhaust gas and in a regeneration mode of the regeneration of the adsorbent of Festbettadsorbers.
  • a condensate collector is associated with the exhaust gas recirculation cooler, wherein condensate collected in the regeneration mode for regeneration of the adsorbent in the condensate collector can be used for washing the adsorbent.
  • highly efficient desulphurization of the exhaust gas in the region of the exhaust gas recirculation can be ensured by regeneration of the fixed bed adsorber without the need for replacing the adsorbent.
  • the regeneration of the adsorbent of the fixed-bed adsorber with the aid of condensed water is process-technically simple and inexpensive.
  • the inventive method for operating an internal combustion engine is defined in claim 8.
  • Fig. 1 a diagram of an internal combustion engine according to the invention.
  • the present invention relates to an internal combustion engine, in particular a large diesel engine such as a marine diesel engine.
  • a large diesel engine such as a marine diesel engine.
  • Such an internal combustion engine is described with heavy oil or marine diesel.
  • Such fuels usually have a high sulfur content.
  • Fig. 1 shows a schematic representation of an internal combustion engine 10, which comprises a plurality of cylinders 1 1, in which fuel is burned.
  • the internal combustion engine 10 furthermore comprises an exhaust gas charge 12, in which exhaust gas is expanded in the exhaust gas charge and energy recovered thereby is used for the compression of charge air.
  • the internal combustion engine includes exhaust gas recirculation 13 to mix exhaust gas with charge air.
  • the exhaust gas charge 12 comprises two exhaust gas turbochargers 14 and 15, wherein each of the exhaust gas turbochargers 14 and 15 comprises a compressor 16 or 17 and a turbine 18 or 19.
  • the turbine 18 of the exhaust gas turbocharger 14 of the exhaust gas charging 12 according to FIG. 1 acts as a high-pressure turbine and the turbine 19 of the exhaust gas turbocharger 15 as a low-pressure turbine.
  • the compressor 17 of the exhaust gas turbocharger 15 acts as a low pressure compressor and the compressor 16 of the exhaust gas turbocharger 14 acts as a high pressure compressor.
  • Exhaust gas which leaves the cylinder 1 1 of the internal combustion engine 10, is first expanded in the region of the exhaust gas charge 12 in the region of the high-pressure turbine 18 and then in the region of the low-pressure turbine 19.
  • This energy is used to drive the respective compressor 16 and 17, wherein the high pressure turbine 18, the high pressure compressor 16 and the low pressure turbine 19 drives the low pressure compressor 17.
  • the charge air is first compressed in the region of the low-pressure compressor 17 and then the high-pressure compressor 16. 1, downstream of the compressor 17 of the exhaust-gas turbocharger 15 and downstream of the compressor 16 of the exhaust-gas turbocharger 14, a charge-air cooler 20 or 21 is respectively positioned in order to cool the respectively compressed charge air.
  • FIG. 1 engages downstream of the compressor 16 of the turbocharger 14 and upstream of the intercooler 20, a bypass line 22 with a bypass valve associated therewith 23, wherein via the bypass line 22 with open bypass valve 23 charge air to the internal combustion engine 10 over in the direction of the turbine 18 of the exhaust gas turbocharger 14 can be passed.
  • the exhaust gas charge 12 in the exemplary embodiment shown comprises two exhaust gas turbochargers 14 and 15.
  • a single-stage exhaust gas charge with only a single exhaust gas turbocharger can also be used.
  • the internal combustion engine 10 comprises, in addition to the exhaust charging 12, the exhaust gas recirculation 13, whereby exhaust gas is branched off via the exhaust gas recirculation 13 immediately after the internal combustion engine 10 and therefore upstream of the turbine 18 of the exhaust gas turbocharger 14, and via a desulfurization device 24 associated with the exhaust gas recirculation 13 to desulfurize the exhaust gas before it is mixed in the embodiment of FIG. 1 downstream of the charge air cooler 20 and therefore immediately before the internal combustion engine 10 with the compressed charge air.
  • the transport of the exhaust gas through the exhaust gas recirculation 13 on the one hand depends on the open position of an exhaust gas recirculation valve 25 and on the other hand on the rotational speed of an exhaust gas recirculation fan 26.
  • the fixed bed adsorber 27 preferably has the adsorbent in a bulk density of between 100 kg / m 3 and 800 kg / m 3 and / or with an active surface of between 100 m 2 / g and 1200 m 2 / g.
  • the fixed bed adsorber 27 is preceded by an exhaust gas recirculation cooler 28.
  • the exhaust gas recirculation cooler 28 serves to cool the exhaust gas conducted via the exhaust gas recirculation 13 when the exhaust gas recirculation valve 25 is open, before it is supplied to the fixed bed adsorber 27.
  • the fixed-bed adsorber 27 serves in a desulphurisation operating mode, which is routed via the exhaust gas recirculation 13, and regeneration of the adsorbent of the fixed-bed adsorber 27 in the regeneration mode.
  • regeneration of the fixed-bed adsorber 27 is effected by means of condensed water.
  • Fig. 1 shows that the exhaust gas recirculation cooler 28 is associated with a condensate collector 29, in which condensate forming during operation mode can be collected.
  • this condensed water can be removed from the condensate collector 29 by means of a feed pump 30 and passed over the adsorbent of the fixed-bed adsorber 27 in order to regenerate the adsorbent thereof.
  • the exhaust gas which is passed through the exhaust gas recirculation 13, cooled by means of exhaust gas recirculation cooler 28, namely such that the exhaust gas at a temperature between 30 ° C and 200 ° C, in particular a temperature between 30 ° C and 150 ° C, preferably at a temperature of about 90 ° C, over the fixed bed adsorber 27 can be performed, wherein the residence time of the exhaust gas in the region of the fixed bed adsorber 27 less than 10 seconds, preferably less than 5 seconds.
  • the regeneration mode of the fixed bed adsorber 17, which serves to regenerate the adsorbent thereof, is preferably carried out at fixed time intervals, for example once a day or even several times a day, depending on the sulfur load and the dimension of the absorber.
  • the regeneration mode lasts between 5 minutes and 10 minutes.
  • the internal combustion engine according to the invention allows a completely novel desulfurization de exhaust gas, which is guided over the exhaust gas recirculation 13. Desulphurisation takes place by means of a fixed-bed adsorber 27, the adsorbent preferably being activated carbon and / or zeolites.
  • Desulphurisation requires little water. On a complex water treatment, which is required in the prior art, can be dispensed with. Condensation and / or wastewater can be dusted in accordance with FIG. 1 downstream of the last turbine 19 into the exhaust or atomized in the corresponding exhaust pipe and disposed of.
  • the invention can be used both in 2-stroke internal combustion engines as well as in 4-stroke internal combustion engines.
  • the invention can be used both in internal combustion engines with a single-stage exhaust gas charge and in internal combustion engines with a multi-stage exhaust gas charge.
  • the invention is preferably used in large diesel engines, such as marine diesel engines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Supercharger (AREA)

Abstract

Brennkraftmaschine (10), insbesondere Großdieselmotor wie eine Schiffdieselbrennkraftmaschine, mit einer mindestens einstufigen Abgasaufladung (12), die mindestens einen Abgasturbolader (14, 15) mit jeweils einem Verdichter (16, 17) und jeweils einer Turbine (18, 19) aufweist, und mit einer Abgasrückführung (13), die Abgas vom Abgasstrom abzweigt und mit verdichteter Ladeluft mischt, wobei die Abgasrückführung (13) eine Entschwefelungseinrichtung (24) umfasst, die der Entschwefelung des über die Abgasrückführung (13) geleiteten Abgases dient, und wobei die Entschwefelungseinrichtung (24) als Festbettadsorber (27) ausgebildet ist.

Description

Brennkraftmaschine mit Abgasaufladung und Abgasrückführung
Die Erfindung betrifft eine Brennkraftmaschine, insbesondere einen Großdieselmotor wie eine Schiffdieselbrennkraftmaschine, nach dem Oberbegriff des Anspruchs 1 . Des Weiteren betrifft die Erfindung ein Verfahren zum Betreiben einer solchen Brennkraftmaschine.
Aus der DE 10 2008 061 399 A1 ist eine Brennkraftmaschine mit Abgasaufladung und Abgasrückführung bekannt. So umfasst die aus diesem Stand der Technik bekannte Brennkraftmaschine eine Abgasaufladung mit zwei Abgasturboladern, wobei jeder Abgasturbolader einen Verdichter und eine Turbine umfasst. Die beiden Abgasturbolader sind dabei in Serie hintereinander geschaltet. Die Abgas- rückführung der Brennkraftmaschine gemäß DE 10 2008 061 399 A1 dient der Abzweigung von Abgas vom Abgasstrom unmittelbar nach der Brennkraftmaschine und der Mischung des Abgases mit verdichteter Ladeluft zwischen den beiden Verdichtern der beiden hintereinander geschalteten Abgasturbolader, wobei nach diesem Stand der Technik der Abgasrückführung eine Entschwefelungseinrich- tung zugeordnet ist, um aus dem Abgasstrom Schwefel sowie andere saure Komponenten zu entfernen. Bei der Entschwefelungseinrichtung handelt sich dabei nach diesem Stand der Technik um einen Abgaswäscher, bei welchem mit Natronlauge oder mit anderen Chemikalien versetztes Waschwasser zur Abgasentschwefelung eingesetzt wird. Solche Abgaswäscher erfordern eine aufwendige Wasseraufbereitung und einen hohen Wassereinsatz. Ferner sind solche Abgaswäscher nur bei 2-Takt-Brennkraftmaschinen einsetzbar.
Hievon ausgehend liegt der Erfindung die Aufgabe zu Grunde, eine neuartige Brennkraftmaschine und ein Verfahren zum Betreiben derselben zu schaffen. Diese Aufgabe wird durch eine Brenn kraftmasch ine gemäß Anspruch 1 gelöst. Erfindungsgemäß ist die Entschwefelungseinrichtung als Festbettadsorber ausgebildet.
Mit der Erfindung wird erstmals vorgeschlagen, eine Entschwefelung des Abgases im Bereich der Abgasrückführung mit einer als Festbettadsorber ausgebildeten Entschwefelungseinrichtung durchzuführen. Dies hat den Vorteil, dass auf eine bei Abgaswäschern erforderliche Wasseraufbereitung verzichtet werden kann. Ferner kann der erforderliche Wasserverbrauch drastisch reduziert werden. Darüber hi- naus kann die Erfindung sowohl bei 2-Takt-Brennkraftmaschinen als auch bei 4- Takt-Brennkraftmaschinen genutzt werden.
Vorzugsweise ist dem Festbettadsober ein Abgasrückführkühler vorgelagert, um das über den Festbettadsober zu leitende Abgas zu kühlen. Die Kühlung des Ab- gases im Bereich der Abgasrückführung mithilfe des Abgasrückführkühlers vor Leitung des Abgases über den Festbettadsorber erlaubt einen Betrieb des Fest- bettadsorbers unter optimalen Betriebsbedingungen.
Nach einer vorteilhaften Weiterbildung dient der Festbettadsorber in einem Be- triebsmodus der Entschwefelung von Abgas und in einem Regenerationsmodus der Regeneration des Adsorbens des Festbettadsorbers. Vorzugsweise ist dem Abgasrückführkühler ein Kondenswassersammler zugeordnet, wobei im Regenerationsmodus zur Regeneration des Adsorbens im Kondenswassersammler gesammeltes Kondenswasser zum Waschen des Adsorbens nutzbar ist. Dann, wenn der Festbettadsorber sowohl in einem Betriebsmodus als auch einem Regenerationsmodus betrieben werden kann, kann durch Regeneration des Festbettadsorbers ohne die Notwendigkeit eines Austausche des Adsorbens eine hocheffektive Entschwefelung des Abgases im Bereich der Abgasrückführung gewährleistet werden. Die Regeneration des Adsorbens des Festbettadsorbers mithilfe des Kondenswassers ist dabei prozesstechnisch einfach und kostengünstig. Das erfindungsgemäße Verfahren zum Betreiben einer Brenn kraftmasch ine ist in Anspruch 8 definiert.
Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprü- chen und der nachfolgenden Beschreibung. Ausführungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. Dabei zeigt:
Fig. 1 : ein Schema einer erfindungsgemäßen Brennkraftmaschine.
Die hier vorliegende Erfindung betrifft eine Brennkraftmaschine, insbesondere einen Großdieselmotor wie eine Schiffsdieselbrennkraftmaschine. Eine solche Brennkraftmaschine wird mit Schweröl bzw. Schiffsdiesel beschrieben. Solche Kraftstoffe weisen in der Regel einen hohen Schwefelgehalt auf.
Fig. 1 zeigt eine schematisierte Darstellung einer Brennkraftmaschine 10, die mehrere Zylinder 1 1 umfasst, in welchen Kraftstoff verbrannt wird. Die Brennkraftmaschine 10 umfasst weiterhin eine Abgasaufladung 12, wobei in der Abgasaufladung Abgas entspannt und hierbei gewonnene Energie zur Verdichtung von Ladeluft genutzt wird. Zusätzlich zur Abgasaufladung 12 umfasst die Brennkraftmaschine eine Abgasrückführung 13, um Abgas mit Ladeluft zu mischen.
Im gezeigten Ausführungsbeispiel umfasst die Abgasaufladung 12 zwei Abgasturbolader 14 und 15, wobei jeder der Abgasturbolader 14 und 15 einen Verdichter 16 bzw. 17 und eine Turbine 18 bzw. 19 umfasst. Die Turbine 18 des Abgasturboladers 14 der Abgasaufladung 12 gemäß Fig. 1 wirkt dabei als Hochdruckturbine und die Turbine 19 des Abgasturboladers 15 als Niederdruckturbine. Der Verdichter 17 des Abgasturboladers 15 wirkt als Niederdruckverdichter und der Verdichter 16 des Abgasturboladers 14 wirkt als Hochdruckverdichter. Abgas, welches die Zylinder 1 1 der Brennkraftmaschine 10 verlässt, wird im Bereich der Abgasaufladung 12 zunächst im Bereich der Hochdruckturbine 18 und anschließend im Bereich der Niederdruckturbine 19 entspannt. Hierbei gewonnene Energie wird zum Antreiben des jeweiligen Verdichters 16 bzw. 17 genutzt, wobei die Hochdruckturbine 18 den Hochdruckverdichter 16 und die Niederdruckturbine 19 den Niederdruckverdichter 17 antreibt. Die Ladeluft wird zunächst im Bereich des Niederdruckverdichters 17 und anschließend des Hochdruckverdichters 16 verdichtet. Wie Fig. 1 entnommen werden kann, ist stromabwärts des Verdichters 17 des Abgasturboladers 15 sowie stromabwärts des Verdichters 16 des Abgasturboladers 14 jeweils ein Ladeluftkühler 20 bzw. 21 positioniert, um die jeweils verdichtete Ladeluft zu kühlen.
Im Ausführungsbeispiel der Fig. 1 greift stromabwärts des Verdichters 16 des Turboladers 14 und stromaufwärts des Ladeluftkühlers 20 eine Bypassleitung 22 mit einem derselben zugeordneten Bypassventil 23 an, wobei über die Bypassleitung 22 bei geöffnetem Bypassventil 23 Ladeluft an der Brennkraftmaschine 10 vorbei in Richtung auf die Turbine 18 des Abgasturboladers 14 geleitet werden kann.
Wie bereits ausgeführt, umfasst die Abgasaufladung 12 im gezeigten Ausfüh- rungsbeispiel zwei Abgasturbolader 14 und 15. Anstelle einer solchen 2-stufigen Abgasaufladung kann auch eine einstufige Abgasaufladung mit lediglich einem einzigen Abgasturbolader zum Einsatz kommen.
Die Brennkraftmaschine 10 umfasst neben der Abgasaufladung 12 die Abgasrück- führung 13, wobei gemäß Fig. 1 über die Abgasrückführung 13 unmittelbar nach der Brennkraftmaschine 10 und demnach stromaufwärts der Turbine 18 des Abgasturboladers 14 Abgas abgezweigt und über eine der Abgasrückführung 13 zugeordnete Entschwefelungseinrichtung 24 geführt wird, um das Abgas zu entschwefeln, bevor dasselbe im Ausführungsbeispiel der Fig. 1 stromabwärts des Ladeluftkühlers 20 und demnach unmittelbar vor der Brennkraftmaschine 10 mit der verdichteten Ladeluft gemischt wird. Im Unterschied zum gezeigten Ausführungsbeispiel ist es auch möglich, das entschwefelte Abgas, welches über die Abgasrückführung 13 geführt wird, stromabwärts des Ladeluftkühlers 21 und stromaufwärts des Verdichters 16 mit der ver- dichteten Ladeluft zu mischen.
Der Transport des Abgases durch die Abgasrückführung 13 ist einerseits von der Öffnungsstellung eines Abgasrückführventils 25 und andererseits von der Drehzahl eines Abgasrückführgebläses 26 abhängig.
Bei der Entschwefelungseinrichtung 24, die der Entschwefelung des über die Abgasrückführung 13 geleiteten Abgases dient, handelt es sich erfindungsgemäß um einen Festbettadsorber 27, der als Adsorbens vorzugsweise Aktivkohle und/oder Zeolite aufweist. Vorzugsweise weist der Festbettadsorber 27 das Adsorbens in einer Schüttdichte zwischen 100 kg/m3 und 800 kg/m3 und/oder mit einer aktiven Oberfläche zwischen 100 m2/g und 1200 m2/g auf.
Im gezeigten Ausführungsbeispiel ist dem Festbettadsorber 27 ein Abgasrückführ- kühler 28 vorgelagert. Der Abgasrückführkühler 28 dient der Kühlung des bei ge- öffnetem Abgasrückführventil 25 über die Abgasrückführung 13 geleiteten Abgases, bevor dasselbe dem Festbettadsorber 27 zugeführt wird.
Beim Führen des zu entschwefelnden Abgases durch die als Festbettadsorber 27 ausgebildete Entschwefelungseinrichtung 24 wird Schwefel des Abgases mit ho- her Effektivität im Adsorbens gebunden, wobei zur Aufrechterhaltung einer hohen Effektivität der Entschweflung nach einer definierten Prozessdauer entweder das Adsorbens des Festbettadsorbers 27 erneuert oder alternativ regeneriert werden muss. Im bevorzugten Ausführungsbeispiel dient der Festbettadsorber 27 in einem Betriebsmodus der Entschwefelung des Abgases, welches über die Abgasrückführung 13 geleitet wird, und in einem Regenerationsmodus der Regeneration des Adsorbens des Festbettadsorbers 27, wobei im bevorzugten Ausführungsbeispiel die Regeneration des Festbettadsorbers 27 mithilfe von Kondenswasser erfolgt.
So zeigt Fig. 1 , dass dem Abgasrückführkühler 28 ein Kondenswassersammler 29 zugeordnet ist, in welchem sich während des Betriebsmodus bildendes Kondenswasser gesammelt werden kann. Im Regenerationsmodus kann dieses Kondens- wasser aus dem Kondenswassersammler 29 mithilfe einer Förderpumpe 30 entnommen und über das Adsorbens des Festbettadsorbers 27 geführt werden, um das Adsorbens desselben zu regenerieren.
Im Betriebsmodus des Festbettadsorbers 27 wird, wie bereits erwähnt, das Abgas, welches über die Abgasrückführung 13 geleitet wird, mithilfe des Abgasrückführ- kühlers 28 gekühlt, nämlich derart, dass das Abgas mit einer Temperatur zwischen 30°C und 200°C, insbesondere mit einer Temperatur zwischen 30°C und 150°C, vorzugsweise mit einer Temperatur von in etwa 90°C, über den Festbettadsorber 27 geführt werden kann, wobei die Verweildauer des Abgases im Be- reich des Festbettadsorbers 27 weniger als 10 Sekunden, vorzugsweise weniger als 5 Sekunden, beträgt.
Der Regernationsmodus des Festbettadsorbers 17, welcher der Regeneration des Adsorbens desselben dient, wird vorzugsweise in festen Zeitintervallen ausge- führt, zum Beispiel jeden Tag einmal oder auch mehrmals am Tag, je nach der Schwefelbelastung und der Dimension des Absorbers. Der Regenerationsmodus dauert dabei zwischen 5 Minuten und 10 Minuten.
Die erfindungsgemäße Brennkraftmaschine erlaubt eine völlig neuartige Entschwefelung de Abgases, welches über die Abgasrückführung 13 geführt wird. Entschwefelung erfolgt mithilfe eines Festbettadsorbers 27, wobei es sich beim Adsorbens vorzugsweise um Aktivkohle und/oder Zeolite handelt.
Bei der Entschwefelung wird nur wenig Wasser benötigt. Auf eine aufwendige Wasseraufbereitung, die nach dem Stand der Technik erforderlich ist, kann verzichtet werden. Kondenswasser und/oder Abwasser kann gemäß Fig. 1 stromabwärts der letzten Turbine 19 ins Abgas eingestäubt bzw. in der entsprechenden Abgasleitung zerstäubt und so entsorgt werden.
Die Erfindung kann sowohl bei 2-Takt-Brennkraftmaschinen als auch bei 4-Takt- Brennkraftmaschinen zum Einsatz kommen.
Die Erfindung kann sowohl bei Brennkraftmaschinen mit einer einstufigen Abgasaufladung als auch bei Brennkraftmaschinen mit einer mehrstufigen Abgasaufla- dung Verwendung finden.
Vorzugsweise findet die Erfindung bei Großdieselmotoren wie Schiffdieselbrenn- kraftmaschinen Verwendung.
Bezugszeichenliste
10 Brennkraftmaschine
1 1 Zylinder
12 Abgasaufladung
13 Abgasrückführung
14 Abgasturbolader
15 Abgasturbolader
16 Verdichter
17 Verdichter
18 Turbine
19 Turbine
20 Ladeluftkühler
21 Ladeluftkühler
22 Bypassleitung
23 Bypassventil
24 Entschwefelungseinrichtung
25 Abgasrückführventil
26 Abgasrückführgebläse
27 Festbettadsorber
28 Abgasrückführkühler
29 Kondenswassersannnnler
30 Förderpumpe

Claims

Ansprüche
1 . Brennkraftmaschine, insbesondere Großdieselmotor wie eine Schiffdiesel- brennkraftmaschine, mit einer mindestens einstufigen Abgasaufladung (12), die mindestens einen Abgasturbolader (14, 15) mit jeweils einem Verdichter (16, 17) und jeweils einer Turbine (18, 19) aufweist, und mit einer Abgasrückführung (13), die Abgas vom Abgasstrom abzweigt und mit verdichteter Ladeluft mischt, wobei die Abgasrückführung (13) eine Entschwefelungseinrichtung (24) umfasst, die der Entschwefelung des über die Abgasrückführung (13) ge- leiteten Abgases dient, dadurch gekennzeichnet, dass die Entschwefelungseinrichtung (24) als Festbettadsorber (27) ausgebildet ist.
2. Brennkraftmaschine nach Anspruch 1 , dadurch gekennzeichnet, dass der
Festbettadsorber (27) als Adsorbens Aktivkohle und/oder Zeolite aufweist.
3. Brennkraftmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Festbettadsorber (27) das Adsorbens mit einer Schüttdichte zwischen 100 kg/m3 und 800 kg/m3 und/oder mit einer aktiven Oberfläche zwischen 100 m2/g und 1200 m2/g aufweist.
4. Brennkraftmaschine nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass dem Festbettadsober (27) ein Abgasrückführkühler (28) vorgelagert ist, um das über den Festbettadsober zu leitende Abgas zu kühlen.
5. Brennkraftmaschine nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Festbettadsorber (27) in einem Betriebsmodus der Entschwefelung von Abgas und in einem Regenerationsmodus der Regeneration des Adsorbens des Festbettadsorbers (27) dient. Brennkraftmaschine nach Anspruch 5, dadurch gekennzeichnet, dass dem
Abgasrückführkühler (28) ein Kondenswassersammler (29) zugeordnet ist, wobei im Regenerationsmodus zur Regeneration des Adsorbens des Festbet- tadsobers (27) im Kondenswassersammler (29) gesammeltes Kondenswasser zum Waschen des Adsorbens nutzbar ist.
7. Brennkraftmaschine nach Anspruch 6, gekennzeichnet durch eine Förderpumpe (30), über die im Regenerationsmodus Kondenswasser aus dem Kon- denswassersammler (29) entnehmbar und dem Festbettadsobers (27) zur Regeneration des Adsorbens zuführbar ist.
8. Verfahren zum Betrieben einer Brennkraftmaschine nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass in einem Betriebsmodus des Festbettadsorbers das Abgas stromaufwärts des Festbettadsorbers auf eine Temperatur zwischen 30°C und 200°C gekühlt wird, wobei die Verweildauer des Abgases im Festbettadsorber weniger als 10 Sekunden beträgt.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass in einem Rege- nerationsmodus des Festbettadsorbers ein Adsorbens desselben mit Kondenswasser gespült wird, wobei eine Dauer des Regenerationsmodus zwischen 5 Minuten und 10 Minuten beträgt.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Regenerati- onsmodus des Festbettadsorbers in festen Zeitintervallen durchgeführt wird.
PCT/EP2013/061090 2012-06-01 2013-05-29 Brennkraftmaschine mit abgasaufladung und abgasrückführung WO2013178691A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380028817.3A CN104411960B (zh) 2012-06-01 2013-05-29 具有废气增压***和废气再循环***的内燃机
FI20146158A FI127439B (en) 2012-06-01 2013-05-29 Internal combustion engine and method of operating the internal combustion engine
KR1020147036366A KR101687093B1 (ko) 2012-06-01 2013-05-29 배기가스 과급 시스템 및 배기가스 재순환 시스템을 포함한 내연기관

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012209286A DE102012209286A1 (de) 2012-06-01 2012-06-01 Brennkraftmaschine mit Abgasaufladung und Abgasrückführung
DE102012209286.2 2012-06-01

Publications (1)

Publication Number Publication Date
WO2013178691A1 true WO2013178691A1 (de) 2013-12-05

Family

ID=48625997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/061090 WO2013178691A1 (de) 2012-06-01 2013-05-29 Brennkraftmaschine mit abgasaufladung und abgasrückführung

Country Status (5)

Country Link
KR (1) KR101687093B1 (de)
CN (1) CN104411960B (de)
DE (1) DE102012209286A1 (de)
FI (1) FI127439B (de)
WO (1) WO2013178691A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015081388A1 (en) * 2013-12-06 2015-06-11 Vapour Draw Systems Pty Ltd System and method for improving combustion efficiency
CN104763502A (zh) * 2015-03-08 2015-07-08 北京工业大学 一种车用吸附器进气温度控制***
EP3001022A1 (de) * 2014-07-11 2016-03-30 Robert Bosch Gmbh Niederdruckabgasrückführsystem für einen Verbrennungsmotor
KR20160067047A (ko) * 2014-12-03 2016-06-13 만 트럭 운트 버스 악티엔게젤샤프트 연소 엔진에 의해 작동되는 차량용, 특히 선박용 배기 가스 후처리 시스템
CN105849375A (zh) * 2014-01-09 2016-08-10 三菱重工业株式会社 排气处理装置、船舶、水供给方法
EP3081790A1 (de) * 2015-02-20 2016-10-19 Winterthur Gas & Diesel Ltd. Bivalenter schiffsverbrennungsmotor mit abgasrückführung zur unterdrückung von frühzündungen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104819034B (zh) * 2015-04-22 2017-08-04 江苏大学 一种柴油机egr***可重复利用脱硫颗粒过滤装置
CN106481484A (zh) * 2016-12-09 2017-03-08 中国船舶重工集团公司第七研究所 一种废气再循环增压***及两级增压内燃机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027128A1 (en) * 1994-04-04 1995-10-12 William Galen Ii Brown Three-way catalytic oxidizer for diesel engines
WO2002022239A1 (en) * 2000-09-12 2002-03-21 Emerachem Llc Removal of sulfur oxides from exhaust gases of combustion processes
JP2006112313A (ja) * 2004-10-14 2006-04-27 Yanmar Co Ltd 排気ガス浄化装置及びその制御方法
WO2008002339A1 (en) * 2006-06-27 2008-01-03 Caterpillar Inc. System for removing sulfur oxides from recycled exhaust
EP2011558A1 (de) * 2007-05-16 2009-01-07 Babcock Noell GmbH Anlage und Verfahren zum Entfernen von Schadstoffen aus Abgas
DE102008061399A1 (de) 2008-12-10 2010-06-17 Man Diesel Se Brennkraftmaschine mit zwei in Reihe geschalteten Abgasturboladern

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19960430B4 (de) * 1999-12-15 2005-04-14 Daimlerchrysler Ag Abgasreinigungsanlage mit Stickoxid-Speicherkatalysator und Schwefeloxid-Falle und Betriebsverfahren hierfür
JP2003135930A (ja) * 2001-11-06 2003-05-13 Mitsubishi Heavy Ind Ltd 排煙脱硫装置
US6851414B2 (en) * 2002-07-30 2005-02-08 Exxonmobil Research And Engineering Company Method and system to extend lubricant life in internal combustion EGR systems
WO2005054126A1 (ja) * 2003-12-05 2005-06-16 Mitsubishi Heavy Industries, Ltd. 炭素材料及び排煙処理装置
JP5787500B2 (ja) * 2010-08-24 2015-09-30 三菱重工業株式会社 エンジン排気ガス浄化装置及び船舶
CN102179130B (zh) * 2011-05-05 2013-05-22 西安建筑科技大学 循环固定床烟气脱硫装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027128A1 (en) * 1994-04-04 1995-10-12 William Galen Ii Brown Three-way catalytic oxidizer for diesel engines
WO2002022239A1 (en) * 2000-09-12 2002-03-21 Emerachem Llc Removal of sulfur oxides from exhaust gases of combustion processes
JP2006112313A (ja) * 2004-10-14 2006-04-27 Yanmar Co Ltd 排気ガス浄化装置及びその制御方法
WO2008002339A1 (en) * 2006-06-27 2008-01-03 Caterpillar Inc. System for removing sulfur oxides from recycled exhaust
EP2011558A1 (de) * 2007-05-16 2009-01-07 Babcock Noell GmbH Anlage und Verfahren zum Entfernen von Schadstoffen aus Abgas
DE102008061399A1 (de) 2008-12-10 2010-06-17 Man Diesel Se Brennkraftmaschine mit zwei in Reihe geschalteten Abgasturboladern

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015081388A1 (en) * 2013-12-06 2015-06-11 Vapour Draw Systems Pty Ltd System and method for improving combustion efficiency
CN105849375A (zh) * 2014-01-09 2016-08-10 三菱重工业株式会社 排气处理装置、船舶、水供给方法
EP3098406A4 (de) * 2014-01-09 2017-07-05 Mitsubishi Heavy Industries, Ltd. Abgasbehandlungsvorrichtung, schiff und wasserversorgungsverfahren
EP3001022A1 (de) * 2014-07-11 2016-03-30 Robert Bosch Gmbh Niederdruckabgasrückführsystem für einen Verbrennungsmotor
KR20160067047A (ko) * 2014-12-03 2016-06-13 만 트럭 운트 버스 악티엔게젤샤프트 연소 엔진에 의해 작동되는 차량용, 특히 선박용 배기 가스 후처리 시스템
KR102373610B1 (ko) * 2014-12-03 2022-03-15 만 트럭 운트 버스 에스이 연소 엔진에 의해 작동되는 차량용, 특히 선박용 배기 가스 후처리 시스템
EP3081790A1 (de) * 2015-02-20 2016-10-19 Winterthur Gas & Diesel Ltd. Bivalenter schiffsverbrennungsmotor mit abgasrückführung zur unterdrückung von frühzündungen
CN114033565A (zh) * 2015-02-20 2022-02-11 温特图尔汽柴油公司 双燃料船用内燃发动机以及对应的方法和改装工具包
CN104763502A (zh) * 2015-03-08 2015-07-08 北京工业大学 一种车用吸附器进气温度控制***

Also Published As

Publication number Publication date
FI20146158A (fi) 2014-12-30
CN104411960A (zh) 2015-03-11
KR20150020604A (ko) 2015-02-26
DE102012209286A1 (de) 2013-12-05
CN104411960B (zh) 2018-02-13
FI127439B (en) 2018-06-15
KR101687093B1 (ko) 2016-12-15

Similar Documents

Publication Publication Date Title
WO2013178691A1 (de) Brennkraftmaschine mit abgasaufladung und abgasrückführung
DE4240239C2 (de) Verbrennungskraftmaschine
DE102009028354B4 (de) Gasführungssystem für eine Peripherie einer Brennkraftmaschine zur Führung von Gas der Brennkraftmaschine, Brennkraftsystem und Verfahren zum Betrieb der Brennkraftmaschine
DE102008037531A1 (de) System zum Verringern der Schwefeloxid-Emissionen, die durch eine Turbomaschine erzeugt werden
DE102018218665B4 (de) Sekundärlufteinspritzsystem
DE102011005654A1 (de) Brennkraftmaschine
DE102014007913A1 (de) Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung
DE102014200048A1 (de) Verwendung von Abgaskondensat für die NOx-Reduktion
WO2010057910A1 (de) Zweistufiges aufladesystem für abgasrezirkulation
DE102015120497A1 (de) Vorrichtung zum Herabkühlen einer Fahrzeugeinlasslufttemperatur und Verfahren, welches diese verwendet
DE102017118455A1 (de) Abgasnachbehandlungssystem für einen Verbrennungsmotor und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102008035553A1 (de) Brennkraftmaschine mit einer Abgasrückführeinrichtung
DE102013003001A1 (de) Brennkraftmaschine, Abgasrückführungsvorrichtung und Verfahren zur Abgasrückführung
DE102019201048A1 (de) System und Verfahren zur Abgasnachbehandlung
EP2888468A1 (de) Abgasrückführsystem für eine verbrennungskraftmaschine
WO2009115405A1 (de) Verfahren zur regeneration eines dieselpartikelfilters einer brennkraftmaschine sowie entsprechende vorrichtung
WO2014195345A1 (de) Brennkraftmaschine und verfahren zum betreiben derselben
WO2013017660A1 (de) Abgasrückführungssystem für eine brennkraftmaschine
DE102013008827A1 (de) Aufgeladene Brennkraftmaschine
DE102017128959B4 (de) Kombiniertes Verfahren zur Abgasnachbehandlung und Abgasrückführung eines druckaufgeladenen Brennkraftmotors
EP1666704A2 (de) Brennkraftmaschine mit Abgasaufladung
DE102020103897B4 (de) Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors und Abgasnachbehandlungssystem
DE102017212308A1 (de) Brennkraftmaschine mit einem Abgasturbolader
DE102011107120A1 (de) Aufladeeinrichtung für eine Verbrennungskraftmaschine
DE102019120234B4 (de) Abgasrückführungsanordnung einer Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Abgasrückführungsanordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13728689

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147036366

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 20146158

Country of ref document: FI

122 Ep: pct application non-entry in european phase

Ref document number: 13728689

Country of ref document: EP

Kind code of ref document: A1