WO2013121818A1 - レーザ加工機 - Google Patents

レーザ加工機 Download PDF

Info

Publication number
WO2013121818A1
WO2013121818A1 PCT/JP2013/050658 JP2013050658W WO2013121818A1 WO 2013121818 A1 WO2013121818 A1 WO 2013121818A1 JP 2013050658 W JP2013050658 W JP 2013050658W WO 2013121818 A1 WO2013121818 A1 WO 2013121818A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
optical system
cutting
laser beam
workpiece
Prior art date
Application number
PCT/JP2013/050658
Other languages
English (en)
French (fr)
Inventor
岡田卓也
Original Assignee
村田機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社 filed Critical 村田機械株式会社
Priority to CN201380009181.8A priority Critical patent/CN104114316B/zh
Priority to JP2014500126A priority patent/JP5928575B2/ja
Priority to US14/377,908 priority patent/US10005154B2/en
Publication of WO2013121818A1 publication Critical patent/WO2013121818A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting

Definitions

  • the present invention relates to a laser processing machine that cuts a workpiece with a laser beam, and more particularly to a machine that can finely adjust the irradiation position of the laser beam on the workpiece by deflecting the laser beam.
  • a laser processing machine includes an optical system such as a focusing lens that focuses an incident laser beam and irradiates the object to be processed, and a cutting nozzle that blows a cutting gas to the portion of the object to be irradiated with the laser beam.
  • a machining head is provided, and the machining head is moved in the three orthogonal directions relative to the workpiece to perform machining such as cutting with a laser beam.
  • the machining head is composed of many parts, so it is relatively heavy. For this reason, when the entire machining head is moved, a large inertial force acts and it is difficult to change direction and accelerate / decelerate quickly and accurately. Therefore, the optical system is provided with a deflection direction adjusting means capable of deflecting the laser beam about two orthogonal axes, and for a long distance section such as a straight section, the entire processing head is moved to process the corner section or curve. For a short distance section such as a part, a method of processing by adjusting the deflection angle of the laser beam has been proposed (for example, Patent Document 1).
  • An object of the present invention is to perform laser processing in which an optical system has a function of finely adjusting the irradiation position of a laser beam on a workpiece by deflecting the laser beam, and vibration of a cutting nozzle hardly affects the optical system. Is to provide a machine.
  • the laser beam machine deflects and focuses an incident laser beam to irradiate a workpiece, and adjusts the deflection direction of the laser beam by the focusing optical system at least about two orthogonal axes.
  • An optical system head having a deflection direction adjusting means, a cutting nozzle that blows a cutting gas onto a portion of the processing target irradiated with a laser beam, and a position of the cutting nozzle on a plane parallel to the processing target.
  • An optical system / nozzle support member that is individually provided with a nozzle holding head having nozzle position adjusting means that adjusts in synchronization with the operation of the deflection direction adjusting means, and that is movable back and forth in three orthogonal directions relative to the workpiece.
  • the optical system head and the nozzle holding head were separately supported.
  • the optical system head and the nozzle holding head can be separately supported by the optical system / nozzle support member, the vibration of the cutting nozzle of the nozzle holding head can be hardly transmitted to the focusing optical system of the optical system head.
  • it may be supported via a vibration isolator.
  • a support structure that increases the natural frequency may be used. Therefore, adverse effects on the deflection of the laser beam by the focusing optical system can be reduced. Therefore, highly accurate processing can be performed.
  • the nozzle position adjusting means is outside the region where the cutting nozzle is blown to the workpiece by cutting gas separately from the operation of adjusting the position of the cutting nozzle in synchronization with the operation of the deflection direction adjusting means.
  • An operation unit that determines whether the nozzle position adjusting unit performs the adjustment in synchronization or the operation to retreat out of the region may be provided.
  • the cutting nozzle when the processing is performed without blowing the cutting gas to the workpiece, the cutting nozzle can be moved out of the processing area so that the cutting nozzle does not get in the way.
  • the nozzle position adjusting means includes two rotating arms provided on a base member supported by the optical system / nozzle support member so as to be rotatable about an axis perpendicular to a workpiece.
  • Two rotation driving sources that respectively rotate these two rotation arms, and fixed to the cutting nozzle directly or indirectly so as to be parallel to and perpendicular to the workpiece, It is good also as a structure which has two guide rails which each guides a rotation end so that sliding is possible.
  • the position of the guide rail is changed in a direction orthogonal to the length direction while the rotation end of the rotation arm moves along the guide rail.
  • the position of the cutting nozzle fixed directly or indirectly to the guide rail is also changed. Since the two guide rails are orthogonal to each other, the position of the cutting nozzle is changed in the biaxial directions orthogonal to each other by the rotation of each rotation arm. Therefore, the cutting nozzle can be positioned at an arbitrary target position by rotating the two rotating arms by an appropriate angle.
  • the respective rotating arms are in parallel with each other, and the same amount of load is applied to the rotation driving source when either of the rotating arms is rotated.
  • the position conversion in one axial direction does not affect the position conversion in the other axial direction, and positioning in the two orthogonal axes can be performed with the same accuracy. That is, it is possible to eliminate the accumulation of errors in the case of a general series relationship (piggyback configuration).
  • FIG. 1 is an overall perspective view of a laser beam machine according to an embodiment of the present invention. It is a perspective view of the optical system head and nozzle holding head of the laser beam machine. It is sectional drawing which shows the internal structure of the optical system head. 2 is a perspective view of an X-axis direction scanning mirror, a Y-axis direction scanning mirror, and a scan lens of the optical system head.
  • this laser processing machine is provided with a table 2 on which a workpiece W made of a plate material is placed on a bed 1, and the workpiece W placed on this known table 2 is placed on the workpiece W.
  • the optical system head 3 and the nozzle holding head 4 perform processing such as cutting while moving in the three orthogonal axes.
  • the optical system head 3 and the nozzle holding head 4 are moved by an XYZ axis moving mechanism 5.
  • the XYZ-axis moving mechanism 5 includes a Y-axis moving body 7 that is movable back and forth in the front-rear direction (Y-axis direction) along a pair of left and right Y-axis rails 6 installed on the left and right sides of the upper surface of the bed 1, and this Y-axis movement.
  • An X-axis moving body 9 that can move back and forth in the left-right direction (X-axis direction) along an X-axis rail 8 installed on the front surface of the body 7 and a Z-axis rail 10 installed on the front surface of the X-axis moving body 9 And a Z-axis moving body 11 that can move forward and backward in the vertical direction (Z-axis direction).
  • the XYZ moving bodies 9, 7, and 11 are moved back and forth by, for example, a linear motor.
  • the optical system head 3 and the nozzle holding head 4 are individually provided by bolts 12a and the like at the upper part of the vertical surface of the optical system / nozzle support member 12 as a part of the Z-axis moving body 11, respectively.
  • the optical system head 3 and the nozzle holding head 4 are supported so as not to be connected.
  • the laser beam L oscillated by the laser oscillator 13 is incident on the optical system head 3 via the transmission optical fiber 14.
  • the laser oscillator 13 is composed of, for example, a solid laser oscillator.
  • the optical system head 3 deflects and focuses the incident laser beam L to irradiate the workpiece W, and the deflection direction of the laser beam L by the focusing optical system 15 is about two orthogonal axes. It has a deflection direction adjusting means 16 for adjusting to the above.
  • the focusing optical system 15 includes a plurality of lenses and mirrors provided inside an optical system head housing 17 fixed to the optical system / nozzle support member 12.
  • the collimating lens 18 converts the laser beam L emitted from the tip of the transmission optical fiber 14 into a parallel light beam.
  • the reflection mirror 19 reflects the laser beam L that has become a parallel light beam toward the X-axis direction scanning mirror 20.
  • the X-axis direction scanning mirror 20 is rotatable about the vertical axis (Z-axis direction) and reflects the laser beam L from the reflection mirror 19 toward the Y-axis direction scanning mirror 21 (FIG. 4).
  • the Y-axis direction scanning mirror 21 is rotatable about the axis in the left-right direction (X-axis direction) and reflects the laser beam L from the X-axis direction scanning mirror 20 toward the scan lens 22 (FIG. 4).
  • Such a scan lens 22 is referred to as a telecentric F- ⁇ scan lens.
  • the deflection direction adjusting unit 16 rotates the X-axis direction scanning mirror 20 forward and backward around the vertical axis (Z-axis direction) and the Y-axis direction scanning mirror 21 in the left-right direction (X-axis).
  • Direction a Y-axis direction scanning motor 24 that rotates forward and backward about the axis.
  • These motors 23 and 24 are provided outside the optical system head housing 17 and fixed to the housing.
  • the nozzle holding head 4 has a cutting nozzle 26 that blows a cutting gas on a portion of the workpiece W irradiated with the laser beam L, and a position of the cutting nozzle 26 on a plane parallel to the workpiece.
  • nozzle position adjusting means 27 for adjusting in synchronism with the operation of the deflection direction adjusting means 16.
  • the cutting nozzle 26 has a blowout port member 26b attached to the lower end of the nozzle body 26a.
  • the nozzle body 26a and the blowout port member 26b penetrate both of them vertically.
  • Upper and lower through holes 29 are formed.
  • the upper and lower through holes 29 are tapered toward the lower side as a whole, and the outlet port 29a at the lower end has a small diameter.
  • a hose connection pipe 30 is attached to the upper side surface portion of the nozzle body 26a, and a cutting gas supply source (not shown) provided outside via a hose 31 (FIG. 2) connected to the hose connection pipe 30.
  • the cutting gas is supplied to the cutting nozzle 26 from FIG.
  • the supplied cutting gas is uniformly injected from the lower part of the protective lens 35 toward the nozzle axis through the annular groove 32, the plurality of small diameter holes 33 and the circumferential gap 34, and is discharged into the upper and lower through holes 29. Furthermore, it sprays toward the workpiece from the blowout port 29a of the upper and lower through holes 29.
  • the nozzle position adjusting means 27 has a configuration shown in the plan view of FIG. That is, the two rotating arms 41X provided on the base portion 40 supported by the optical system / nozzle support member 12 so as to be rotatable around the vertical axes OX and OY perpendicular to the workpiece. , 41Y are provided. These two rotation arms 41X and 41Y are rotated by rotation drive sources 42X and 42Y, respectively.
  • the rotary arms 41X and 41Y are provided at the rotary ends with sliders 43X and 43Y that are rotatable around the vertical axis 43a and the axis 43b.
  • the sliders 43X and 43Y are arranged in the Y-axis direction and the X-axis.
  • the guide rails 44X and 44Y extending in the direction are slidably straddled.
  • the guide rails 44X and 44Y are installed on the upper surface of a plate 45 provided integrally with the cutting nozzle 26. That is, the guide rails 44X and 44Y are indirectly fixed to the cutting nozzle 26 so as to be parallel to the workpiece and orthogonal to each other.
  • the base portion 40 is formed with an opening 40a through which the lower portion of the cutting nozzle 26 is inserted.
  • the sliders 43X and 43Y of the rotation arms 41X and 41Y move along the guide rails 44X and 44Y, and the guide rails 44X and 44Y are moved.
  • the position is converted in a direction orthogonal to the length direction. Accordingly, the position of the cutting nozzle 26 fixed to the guide rails 44X and 44Y via the plate 45 is also changed. Since the two guide rails 44X, 44Y are orthogonal to each other, the position of the cutting nozzle 26 is changed in two axial directions orthogonal to each other by the rotation of the respective rotation arms 41X, 41Y. Therefore, the cutting nozzle 26 can be positioned at an arbitrary target position by rotating the two rotating arms 41X and 41Y by an appropriate angle.
  • the rotation drive sources 42X and 42Y are controlled based on the operation judgment by the calculation unit 46. That is, the calculation unit 46 performs an operation of adjusting the nozzle position adjusting unit 27 in synchronization with the operation of the deflection direction adjusting unit 16 and an operation of retracting the cutting nozzle 26 out of the processing region R (FIG. 8A). It is determined which one is performed, and the rotational drive sources 42X and 42Y are controlled.
  • the rotary arms 41X and 41Y are in a parallel relationship with each other, and the rotary drive sources 42X and 42Y are subjected to the same load when the rotary arms 41X and 41Y are rotated. Therefore, the position conversion in one axial direction does not affect the position conversion of the other axis, and positioning in two orthogonal axes can be performed with the same accuracy. That is, it is possible to eliminate the accumulation of errors in the case of a general series relationship (piggyback configuration).
  • the nozzle position adjusting means 27 is not limited to the configuration of this embodiment.
  • an X-axis slide body (not shown) that is slidable in the X-axis direction with respect to the base portion 40 is provided, and a Y-axis slide body (not shown) that is slidable in the Y-axis direction with respect to the X-axis slide body.
  • the cutting nozzle 26 may be provided on the Y-axis slide body.
  • the positional relationship between the X-axis slide body and the Y-axis slide body may be reversed. Even with this configuration, the cutting nozzle 26 can be positioned at an arbitrary target position. However, in this configuration, since the axes are in a serial relationship (piggyback configuration), errors accumulate.
  • FIG. 8A to 8J are views showing the relationship between the angular position of the rotating arms 41X and 41Y and the position on the plane of the cutting nozzle 26.
  • the cutting nozzle 26 is in the processing region R where the cutting gas is blown onto the processing object.
  • the processing region R is a region indicated by cross hatching in FIG. Further, when the rotation arm 41Y is set to a specific angular position and the rotation arm 41X is largely rotated, the cutting nozzle 26 is retracted to the retreat position T outside the processing region R as shown in FIG.
  • the laser beam L on the workpiece is irradiated.
  • the cutting nozzle 26 can blow the cutting gas to the spot.
  • the laser beam L deflected by the focusing optical system 15 of the laser beam L is irradiated to the workpiece W through the upper and lower through holes 29 of the cutting nozzle 26.
  • FIG. 1 An example of processing by this laser processing machine will be described with reference to FIG.
  • the figure shows an example in which a substantially rectangular plate material W1 having a right-angled corner portion and an arc-shaped corner portion is cut from the workpiece W, and a circular hole is formed in the plate material W1.
  • Processing is performed by placing the workpiece W on the table 2 in a fixed state.
  • the linear portion A having a long distance is processed while moving the irradiation position of the laser beam L on the workpiece W at a high speed by moving the optical system head 3 and the nozzle holding head 4 by the XYZ axis moving mechanism 5.
  • the deflection direction of the laser beam L is adjusted by the deflection direction adjusting means 16, whereby the irradiation position of the laser beam L on the workpiece. Machining with fine adjustment.
  • the optical system head 3 and the nozzle holding head 4 are composed of many parts and are relatively heavy. For this reason, it is difficult to move the optical system head 3 and the nozzle holding head 4 with the XYZ axis moving mechanism 5 due to a large inertial force and to change the direction and accelerate / decelerate with high accuracy.
  • the adjustment of the deflection angle of the laser beam L can be performed with a small output because the light-weight X and Y-axis direction scanning mirrors 20 and 21 are rotated, and an adjustment with good responsiveness is possible. is there. Therefore, it is possible to efficiently process complicated shapes.
  • the cutting nozzle 26 When the thickness of the workpiece W is equal to or greater than a certain thickness (for example, 0.8 mm when the output of the laser beam L is 2 kW), the cutting nozzle 26 is positioned in the machining area R, and the workpiece W A cutting gas is sprayed onto the portion irradiated with the laser beam L. Thereby, the molten metal is blown down so that the cutting process can be performed smoothly.
  • a certain thickness for example, 0.8 mm when the output of the laser beam L is 2 kW
  • the cutting nozzle 26 is retracted to the retracted position T (FIG. 8A).
  • the cutting nozzle 26 is retracted to the retracted position T also when performing welding processing or marking processing.
  • the vibration of the cutting nozzle 26 provided in the nozzle holding head 4 is affected by the optical system head. 3 can be made difficult to be transmitted to the focusing optical system 15 provided in FIG. Specifically, it may be supported via a vibration isolator. Further, a support structure that increases the natural frequency may be used. Therefore, adverse effects on the deflection of the laser beam L by the focusing optical system 15 can be reduced. Therefore, cutting with high accuracy can be performed.
  • the focusing optical system 15 of this embodiment adjusts the deflection direction of the laser beam L around two orthogonal axes, but may be configured to be adjustable around three orthogonal axes. Thereby, it is possible to process a workpiece W that is not a flat plate.
  • the workpiece W is fixed in position and the optical system head 3 and the nozzle holding head 4 are moved relative to the workpiece W.
  • the nozzle holding head 4 may be fixed in position, and the workpiece W may be moved relative to the optical system head 3 and the nozzle holding head 4.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

 切断ノズルの振動が光学系に影響を与えることが少ないレーザ加工機を提供することを課題とし、当該レーザ加工機は、入射されたレーザビームを偏向かつ集束して加工対象物に照射する合焦光学系(15)、およびレーザビームの偏向方向を少なくとも直交2軸回りに調整する偏向方向調整手段(16)を有する光学系ヘッド(3)と、加工対象物におけるレーザビームが照射された箇所に切断用ガスを吹き付ける切断ノズル(26)、およびこの切断ノズル(26)の加工対象物と平行な平面上の位置を、偏向方向調整手段(16)の動作と同期して調整するノズル位置調整手段(27)を有するノズル保持ヘッド(27)とを個別に備える。また、加工対象物に対して相対的に直交3軸方向に進退自在な光学系・ノズル支持部材(12)に、光学系ヘッド(3)およびノズル保持ヘッド(4)を別々に支持させる。

Description

レーザ加工機 関連出願
 この出願は、2012年2月14日出願の特願2012-029152の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、レーザビームで加工対象物を切断加工するレーザ加工機に関し、特にレーザビームを偏向させて加工対象物におけるレーザビームの照射位置を微調整することが可能なものに関する。
 一般に、レーザ加工機は、入射されたレーザビームを集束して加工対象物に照射する集束レンズ等の光学系と、加工対象物におけるレーザビームが照射された箇所に切断用ガスを吹き付ける切断ノズルを設けた加工ヘッドを有し、この加工ヘッドを加工対象物に対して相対的に直交3軸方向に移動させることにより、レーザビームにより切断等の加工を行う。
 ところで、上記加工ヘッドは多くの部品で構成されているため、比較的重量が重い。そのため、加工ヘッド全体を移動させる場合、大きな慣性力が作用して、迅速かつ精度良く方向転換や加減速することが難しい。そこで、光学系に、レーザビームを直交2軸回りに偏向可能な偏向方向調整手段を設け、直線部等の長い距離区間については、加工ヘッド全体を移動させることで加工を行い、コーナー部や曲線部等の短い距離区間については、レーザビームの偏向角度を調整することで加工を行う手法が提案されている(例えば特許文献1)。
WO2009/146697/A1号公報
 レーザ加工機において、高い加減速度の加工をするほど、切断ヘッドは大きな振動源になる。また、可動部重量を比較的軽くなるようにした、特許文献1においても、光学系と切断ノズルが同じ加工ヘッドに設けられていると、切断ノズルの振動が光学系に伝わり、光学系の偏向の精度に悪影響を与える可能性がある。
 この発明の目的は、光学系が、レーザビームを偏向させて加工対象物におけるレーザビームの照射位置を微調整する機能を有し、切断ノズルの振動が光学系に影響を与えることが少ないレーザ加工機を提供することである。
 この発明のレーザ加工機は、入射されたレーザビームを偏向かつ集束して加工対象物に照射する合焦光学系、およびこの合焦光学系によるレーザビームの偏向方向を少なくとも直交2軸回りに調整する偏向方向調整手段を有する光学系ヘッドと、加工対象物におけるレーザビームが照射された箇所に切断用ガスを吹き付ける切断ノズル、およびこの切断ノズルの加工対象物と平行な平面上の位置を、前記偏向方向調整手段の動作と同期して調整するノズル位置調整手段を有するノズル保持ヘッドとを個別に備え、加工対象物に対して相対的に直交3軸方向に進退自在な光学系・ノズル支持部材に、前記光学系ヘッドおよびノズル保持ヘッドを別々に支持させた。
 この構成であると、光学系ヘッドおよびノズル保持ヘッドが光学系・ノズル支持部材に別々に支持できるため、ノズル保持ヘッドの切断ノズルの振動が光学系ヘッドの合焦光学系に伝わり難くできる。具体的には、防振材を介して支持してもよい。また、固有振動数が高くなるような支持構成にしてもよい。よって、合焦光学系によるレーザビームの偏向に悪影響を与えることが少なくできる。そのため、精度の良い加工を行える。
 この発明において、前記ノズル位置調整手段は、前記切断ノズルの位置を前記偏向方向調整手段の動作と同期して調整する動作とは別に、前記切断ノズルを加工対象物に切断用ガスを吹き付ける領域外へ退避させる動作を行うものであり、このノズル位置調整手段が前記同期して調整する動作、および前記領域外へ退避させる動作のいずれを行うかを判断する演算部を設けてもよい。
 この構成であると、加工対象物に切断ガスを吹き付けずに加工を行う場合、切断ノズルを加工領域外に退避させることで、切断ノズルが邪魔にならないようにできる。
 また、前記ノズル位置調整手段は、前記光学系・ノズル支持部材に支持されたベース部材に、加工対象物に対して垂直な軸心回りに回動自在に設けられた2つの回動アームと、これら2つの回動アームをそれぞれ回動させる2つの回動駆動源と、加工対象物に対し平行かつ互いに直交するように前記切断ノズルに直接または間接的に固定され、前記2つの回動アームの回動端をそれぞれ摺動自在に案内する2本の案内レールとを有する構成としてもよい。
 回動駆動源により回動アームを回動させると、回動アームの回動端が案内レールに沿って移動しながら、案内レールをその長さ方向と直交する方向に位置変換させる。それにより、案内レールに直接または間接的に固定された切断ノズルも位置変換する。2本の案内レールは互いに直交しているため、各回動アームの回動により、切断ノズルは互いに直交する2軸方向に位置変換する。よって、2つの回動アームをそれぞれ適当な角度だけ回動させることで、切断ノズルを任意の目標位置に位置させることができる。各回動アームは互いに並列の関係であり、どちらの回動アームを回動させる場合も、回動駆動源に同程度の負荷がかかる。そのため、一方の軸方向の位置変換が他方の軸方向の位置変換に影響を与えることがなく、直交2軸方向の位置決めを同じ精度で行える。つまり、一般的な直列の関係(ピギーバック構成)にした場合の誤差の累積をなくすことができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一または相当部分を示す。
この発明の一実施形態にかかるレーザ加工機の全体斜視図である。 同レーザ加工機の光学系ヘッドおよびノズル保持ヘッドの斜視図である。 同光学系ヘッドの内部構造を示す断面図である。 同光学系ヘッドのX軸方向走査ミラー、Y軸方向走査ミラー、およびスキャンレンズの斜視図である。 同光学系ヘッドに設けられたスキャンレンズの作用を示す説明図である。 同ノズル保持ヘッドに設けられた切断ノズルの断面図である。 同ノズル保持ヘッドの平面図である。 (A)~(J)はそれぞれ切断ノズルの平面上位置が異なる状態を示すノズル保持ヘッドの平面図である。 加工対象物の切断加工の一例を示す図である。
 この発明の一実施形態を図面と共に説明する。図1の全体斜視図に示すように、このレーザ加工機は、ベッド1上に板材からなる加工対象物Wを載せるテーブル2が設けられ、この公知のテーブル2に載せられた加工対象物Wに対して、光学系ヘッド3およびノズル保持ヘッド4が直交3軸方向に移動しながら切断加工等の加工を行う。
 光学系ヘッド3およびノズル保持ヘッド4は、XYZ軸移動機構5により移動させられる。XYZ軸移動機構5は、ベッド1上面の左右両側部に設置された左右一対のY軸レール6に沿って前後方向(Y軸方向)に進退自在なY軸移動体7と、このY軸移動体7の前面に設置されたX軸レール8に沿って左右方向(X軸方向)に進退自在なX軸移動体9と、このX軸移動体9の前面に設置されたZ軸レール10に沿って上下方向(Z軸方向)に進退自在なZ軸移動体11とを有する。XYZ各移動体9,7,11の進退は、例えばリニアモータにより行なわれる。そして、図2のように、Z軸移動体11の一部分である光学系・ノズル支持部材12の立面の上部に光学系ヘッド3が、下部にノズル保持ヘッド4がそれぞれ個別にボルト12a等で連結し、かつ光学系ヘッド3とノズル保持ヘッド4は連結関係がないように支持されている。
 図3に示すように、レーザ発振器13で発振されたレーザビームLが、伝送用光ファイバ14を介して光学系ヘッド3に入射される。レーザ発振器13は、例えば固体レーザ発振器からなる。光学系ヘッド3は、入射されたレーザビームLを偏向かつ集束して加工対象物Wに照射する合焦光学系15、およびこの合焦光学系15によるレーザビームLの偏向方向を直交2軸回りに調整する偏向方向調整手段16を有する。
 合焦光学系15は、光学系・ノズル支持部材12に固定の光学系ヘッドハウジング17の内部に設けられた複数のレンズおよびミラーで構成される。コリメートレンズ18は、伝送用光ファイバ14の先端から発散して出射されるレーザビームLを平行光束にする。反射ミラー19は、平行光束になったレーザビームLをX軸方向走査ミラー20に向けて反射する。X軸方向走査ミラー20は、上下方向(Z軸方向)の軸心回りに回動自在で、反射ミラー19からのレーザビームLをY軸方向走査ミラー21に向けて反射する(図4)。Y軸方向走査ミラー21は、左右方向(X軸方向)の軸心回りに回動自在で、X軸方向走査ミラー20からのレーザビームLをスキャンレンズ22に向けて反射する(図4)。
 スキャンレンズ22は、複数のレンズ22a,22b,22c,22dを組み合わせたレンズ集合体であって、前記X軸方向走査ミラー20およびY軸方向走査ミラー21により偏向されたレーザビームLを集光して、加工対象物Wに照射する。その際、図5に示すように、入射角θの角度変化と加工対象物W上で走査距離Lが、X軸方向およびY軸方向のいずれについても比例するようになっている(L=fθ)。また、入射角θの大きさに関係なく、常に集光されたレーザビームLが加工対象物Wに対して垂直に照射するようになっている。このようなスキャンレンズ22のことを、テレセントリックF-θスキャンレンズと呼ぶ。
 偏向方向調整手段16は、X軸方向走査ミラー20を上下方向(Z軸方向)の軸心回りに正逆回転させるX軸方向走査モータ23と、Y軸方向走査ミラー21を左右方向(X軸方向)の軸心回りに正逆回転させるY軸方向走査モータ24とでなる。これらのモータ23,24は、光学系ヘッドハウジング17の外部に、同ハウジングに固定して設けられている。
 図2において、ノズル保持ヘッド4は、加工対象物WにおけるレーザビームLが照射された箇所に切断用ガスを吹き付ける切断ノズル26、およびこの切断ノズル26の加工対象物と平行な平面上の位置を、前記偏向方向調整手段16の動作と同期して調整するノズル位置調整手段27を有する。
 切断ノズル26は、図6の断面図に示すように、ノズル本体26aの下端に吹出し口部材26bを取付けたものであり、これらノズル本体26aおよび吹出し口部材26bには、両者を上下に貫通する上下貫通孔29が形成されている。この上下貫通孔29は、全体的に下側へ行くほど先細りの形状であり、下端の吹出し口29aは微小な口径とされている。ノズル本体26aの上部側面部には、ホース接続管30が取付けられ、このホース接続管30に接続されたホース31(図2)を介して、外部に設けた切断用ガス供給源(図示せず)から切断用ガスが切断ノズル26に供給される。供給された切断用ガスは、環状溝32、複数の小径穴33および円周隙間34を介して、保護レンズ35下部からノズル軸心に向かって均一に噴射され、上下貫通孔29に吐出され、さらに上下貫通孔29の吹出し口29aから加工対象物に向けて吹付けられる。
 ノズル位置調整手段27は、図7の平面図に示す構成である。すなわち、前記光学系・ノズル支持部材12に支持されたベース部40に、加工対象物に対して垂直な上下方向の軸心OX,OY回りに回動自在に設けられた2つの回動アーム41X,41Yが設けられている。これら2つの回動アーム41X,41Yは、回動駆動源42X,42Yによりそれぞれ回動させられる。回動アーム41X,41Yの回動端には、上下方向の軸43aおよび軸43b回りに回動自在なスライダ43X,43Yが設けられており、これらスライダ43X,43Yが、Y軸方向およびX軸方向に延びる案内レール44X,44Yにそれぞれ摺動自在に跨っている。
 案内レール44X,44Yは、切断ノズル26と一体に設けられたプレート45の上面に設置されている。つまり、案内レール44X,44Yは、加工対象物に対し平行かつ互いに直交するように切断ノズル26に間接的に固定されている。ベース部40には、切断ノズル26の下部が挿通される開口40aが形成されている。
 回動駆動源42X,42Yにより回動アーム41X,41Yを回動させると、回動アーム41X,41Yのスライダ43X,43Yが案内レール44X,44Yに沿って移動しながら、案内レール44X,44Yをその長さ方向と直交する方向に位置変換させる。それにより、案内レール44X,44Yにプレート45を介して固定された切断ノズル26も位置変換する。2本の案内レール44X,44Yは互いに直交しているため、各回動アーム41X,41Yの回動により、切断ノズル26は互いに直交する2軸方向に位置変換する。よって、2つの回動アーム41X,41Yをそれぞれ適当な角度だけ回動させることで、切断ノズル26を任意の目標位置に位置させることができる。
 上記回動駆動源42X,42Yは、演算部46による動作判断に基づいて制御される。つまり、演算部46は、ノズル位置調整手段27が前記偏向方向調整手段16の動作と同期して調整する動作、および切断ノズル26を加工領域R(図8(A))外へ退避させる動作のいずれを行うかを判断して、回動駆動源42X,42Yを制御する。
 各回動アーム41X,41Yは互いに並列の関係であり、どちらの回動アーム41X,41Yを回動させる場合も、回動駆動源42Xおよび42Yに同程度の負荷がかかる構造である。そのため、一方の軸方向の位置変換が他方の軸の位置変換に影響を与えることがなく、直交2軸方向の位置決めを同じ精度で行える。つまり、一般的な直列の関係(ピギーバック構成)にした場合の誤差の累積をなくすことができる。
 ノズル位置調整手段27は、この実施形態の構成には限定されない。例えば、ベース部40に対してX軸方向にスライド自在なX軸スライド体(図示せず)を設け、このX軸スライド体に対してY軸方向にスライド自在なY軸スライド体(図示せず)を設け、このY軸スライド体に切断ノズル26を設けた構成としてもよい。X軸スライド体とY軸スライド体の位置関係が逆であってもよい。この構成であっても、切断ノズル26を任意の目標位置に位置させることができる。ただし、この構成の場合、各軸が直列の関係(ピギーバック構成)になるため、誤差が累積する。
 図8(A)~(J)は、回動アーム41X,41Yの角度位置と切断ノズル26の平面上位置との関係を示す図である。同図(F)は、切断ノズル26が原点位置(X=0,Y=0)にある状態を示す。この状態から、回動アーム41Xが図の右方向に回動すると、同図(D),(G),(J)のように、切断ノズル26がX軸の正方向へ移動し、回動アーム41Xが図の左方向に回動すると、同図(B),(E),(H)のように、切断ノズル26がX軸の負方向へ移動する。また、回動アーム41Yが図の上方向に回動すると、同図(B),(C),(D)のように、切断ノズル26がY軸の正方向へ移動し、回動アーム41Yが図の下方向に回動すると、同図(H),(I),(J)のように、切断ノズル26がY軸の負方向へ移動する。
 以上の図8(B)~(J)では、切断ノズル26が、加工対象物に切断用ガスを吹き付ける加工領域R内にある。加工領域Rは、図8(A)においてクロスハッチングで示す領域である。さらに、回動アーム41Yを特定の角度位置にし、かつ回動アーム41Xを大きく回動させると、図8(A)のように、切断ノズル26が加工領域R外の退避位置Tへ退避する。
 上記ノズル位置調整手段27による切断ノズル26の平面位置の調整を、前記偏向方向調整手段16によるレーザビームLの偏向方向の調整と同期して行うことにより、加工対象物におけるレーザビームLが照射された箇所に、切断ノズル26が切断用ガスを吹き付けるようにできる。このとき、レーザビームLの合焦光学系15で偏向されたレーザビームLは、切断ノズル26の上下貫通孔29を通って加工対象物Wに照射される。
 このレーザ加工機による加工の一例を、図9と共に説明する。図は、加工対象物Wから直角のコーナー部と円弧状のコーナー部を有する概略長方形の板材W1を切断加工し、その板材W1の内部に円形孔を開ける例を示す。テーブル2の上に加工対象物Wを固定状態に載せて、加工を行う。距離が長い直線部Aについては、XYZ軸移動機構5で光学系ヘッド3およびノズル保持ヘッド4を移動させることで、加工対象物WにおけるレーザビームLの照射位置を高速で移動させながら加工する。また、直角のコーナー部B、円弧状のコーナー部C、および円形孔Dについては、偏向方向調整手段16によりレーザビームLの偏向角度を調整することで、加工対象物におけるレーザビームLの照射位置を微調整しながら加工する。
 光学系ヘッド3およびノズル保持ヘッド4は、多くの部品で構成されていて、比較的重量が重い。そのため、XYZ軸移動機構5で光学系ヘッド3およびノズル保持ヘッド4を移動させるのは、大きな慣性力が作用して、精度良く方向転換や加減速することが難しい。これに対し、レーザビームLの偏向角度の調整は、軽量のX,Y軸方向走査ミラー20,21を回転させるだけであるため、小さな出力で行うことができ、応答性の良い調整が可能である。そのため、複雑な形状の加工も効率良く行える。よって、XYZ軸移動機構5による光学系ヘッド3およびノズル保持ヘッド4のXYZ3軸方向の移動と、偏向方向調整手段16によるレーザビームLの偏向方向の調整とを組み合わせることにより、単純形状の長い距離区間の加工、および複雑な形状の短い距離区間の加工の両方を効率良く行うことができる。
 加工対象物Wの板厚がある一定厚(例えば、レーザビームLの出力が2kWの場合、0.8mm)以上である場合は、切断ノズル26を加工領域Rに位置させて、加工対象物WにおけるレーザビームLが照射された箇所に切断用ガスを吹き付ける。それにより、溶けた金属を下方に吹き飛ばして、切断加工がスムーズに行えるようにする。
 加工対象物Wの板厚がある一定厚未満である場合は、加工時に発生する熱で切断箇所の金属が気化してしまい溶融金属が発生しない。そのため、切断ノズル26から切断用ガスを吹き付ける必要がない。したがって、この場合には、切断ノズル26を退避位置T(図8(A))に退避させておく。溶接加工やマーキング加工を行う場合も、切断ノズル26を退避位置Tに退避させておく。
 また、このレーザ加工機は、光学系ヘッド3およびノズル保持ヘッド4が、光学系・ノズル支持部材12に別々に支持できるため、ノズル保持ヘッド4に設けられた切断ノズル26の振動が光学系ヘッド3に設けられた合焦光学系15に伝わり難くできる。具体的には、防振材を介して支持してもよい。また、固有振動数が高くなるような支持構成にしてもよい。よって、合焦光学系15によるレーザビームLの偏向に悪影響を与えることが少なくできる。そのため、精度の良い切断加工を行える。
 この実施形態の合焦光学系15は、レーザビームLの偏向方向を直交2軸回りに調整するが、直交3軸回りに調整可能な構成としてもよい。それにより、平板でない加工対象物Wについても加工が可能になる。
 また、この実施形態では、加工対象物Wは位置固定して、光学系ヘッド3およびノズル保持ヘッド4を加工対象物Wに対して相対移動させる構成であるが、逆に、光学系ヘッド3およびノズル保持ヘッド4は位置固定して、加工対象物Wを光学系ヘッド3およびノズル保持ヘッド4に対して相対移動させる構成としてもよい。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、添付の特許請求の範囲から定まるこの発明の範囲内のものと解釈される。
3…光学系ヘッド
4…ノズル保持ヘッド
5…XYZ軸移動機構
12…光学系・ノズル支持部材
15…合焦光学系
16…偏向方向調整手段
26…切断ノズル
27…ノズル位置調整手段
40…ベース部
41X,41Y…回動アーム
42X,42Y…回動駆動源
44X,44Y…案内レール
46…演算部
L…レーザビーム
R…加工領域
T…退避位置
W…加工対象物

Claims (4)

  1.  入射されたレーザビームを偏向かつ集束して加工対象物に照射する合焦光学系、およびこの合焦光学系によるレーザビームの偏向方向を少なくとも直交2軸回りに調整する偏向方向調整手段を有する光学系ヘッドと、
     加工対象物におけるレーザビームが照射された箇所に切断用ガスを吹き付ける切断ノズル、およびこの切断ノズルの加工対象物と平行な平面上の位置を、前記偏向方向調整手段の動作と同期して調整するノズル位置調整手段を有するノズル保持ヘッドとを個別に備え、
     加工対象物に対して相対的に直交3軸方向に進退自在な光学系・ノズル支持部材に、前記光学系ヘッドおよびノズル保持ヘッドを別々に支持させたレーザ加工機。
  2.  前記ノズル位置調整手段は、前記切断ノズルの位置を前記偏向方向調整手段の動作と同期して調整する動作とは別に、前記切断ノズルを加工対象物に切断用ガスを吹き付ける領域外へ退避させる動作を行うものであり、このノズル位置調整手段が前記同期して調整する動作、および前記領域外へ退避させる動作のいずれを行うかを判断する演算部を設けた請求項1記載のレーザ加工機。
  3.  前記ノズル位置調整手段は、前記光学系・ノズル支持部材に支持されたベース部材に、加工対象物に対して垂直な軸心回りに回動自在に設けられた2つの回動アームと、これら2つの回動アームをそれぞれ回動させる2つの回動駆動源と、加工対象物に対し平行かつ互いに直交するように前記切断ノズルに直接または間接的に固定され、前記2つの回動アームの回動端をそれぞれ摺動自在に案内する2本の案内レールとを有する請求項1記載のレーザ加工機。
  4.  前記ノズル位置調整手段は、前記光学系・ノズル支持部材に支持されたベース部材に、加工対象物に対して垂直な軸心回りに回動自在に設けられた2つの回動アームと、これら2つの回動アームをそれぞれ回動させる2つの回動駆動源と、加工対象物に対し平行かつ互いに直交するように前記切断ノズルに直接または間接的に固定され、前記2つの回動アームの回動端をそれぞれ摺動自在に案内する2本の案内レールとを有する請求項2記載のレーザ加工機。
PCT/JP2013/050658 2012-02-14 2013-01-16 レーザ加工機 WO2013121818A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380009181.8A CN104114316B (zh) 2012-02-14 2013-01-16 激光加工机
JP2014500126A JP5928575B2 (ja) 2012-02-14 2013-01-16 レーザ加工機
US14/377,908 US10005154B2 (en) 2012-02-14 2013-01-16 Laser processing machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-029152 2012-02-14
JP2012029152 2012-02-14

Publications (1)

Publication Number Publication Date
WO2013121818A1 true WO2013121818A1 (ja) 2013-08-22

Family

ID=48983944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050658 WO2013121818A1 (ja) 2012-02-14 2013-01-16 レーザ加工機

Country Status (4)

Country Link
US (1) US10005154B2 (ja)
JP (1) JP5928575B2 (ja)
CN (1) CN104114316B (ja)
WO (1) WO2013121818A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105414768B (zh) * 2015-10-30 2017-05-10 中信戴卡股份有限公司 一种激光切割铝车轮毛坯去浇口的装置及方法
CN105171250B (zh) * 2015-10-30 2017-07-04 中信戴卡股份有限公司 一种激光切割铝合金车轮毛坯飞边的装置和方法
USD870166S1 (en) * 2016-08-31 2019-12-17 Trumpf Gmbh + Co. Kg Laser processing machine
CN106238926A (zh) * 2016-09-19 2016-12-21 东莞市力星激光科技有限公司 一种激光切割机等长光路结构
CN106141455A (zh) * 2016-09-19 2016-11-23 东莞市力星激光科技有限公司 一种高速高精度激光切割机
CN107756521A (zh) * 2017-10-31 2018-03-06 上海御渡半导体科技有限公司 一种pcb板打孔机构
CN109663836B (zh) * 2019-02-21 2024-03-01 苏州凌创电子***有限公司 传感器引脚的自动整形结构
JP7332149B2 (ja) * 2019-09-27 2023-08-23 株式会社トヨコー レーザ照射装置
TWI787756B (zh) * 2021-03-15 2022-12-21 高聖精密機電股份有限公司 三軸加工機
CN113695754A (zh) * 2021-08-30 2021-11-26 南京惠镭光电科技有限公司 一种利用飞秒激光制备纳米带的方法
CN114309982A (zh) * 2021-12-31 2022-04-12 西安中科微精光子制造科技有限公司 一种激光切割装置
CN114985914A (zh) * 2022-05-30 2022-09-02 西南大学 十字滑台激光切割头
CN116944695B (zh) * 2023-08-08 2024-07-02 昆山陆新新材料科技有限公司 一种板材切割定距装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238687A (ja) * 1991-01-08 1992-08-26 Nec Corp レーザ加工装置
JPH0574995A (ja) * 1990-12-03 1993-03-26 Nec Corp 樹脂封止型半導体装置の製造方法
JPH0732183A (ja) * 1993-07-16 1995-02-03 Matsushita Electric Ind Co Ltd Co2レーザ加工装置
JPH07236987A (ja) * 1994-02-28 1995-09-12 Mitsubishi Electric Corp レーザ切断方法及びその装置
JPH0817985A (ja) * 1994-06-27 1996-01-19 Raitetsuku Kk 集積回路リードフレームタイバーのレーザ除去装置
JPH10305376A (ja) * 1997-05-12 1998-11-17 Sumitomo Heavy Ind Ltd レーザ処理装置と塗装除去方法
JP2001219289A (ja) * 2000-02-09 2001-08-14 Nec Corp レーザマーカ装置およびレーザマーカ方法
JP2003285178A (ja) * 2002-03-26 2003-10-07 Sumitomo Heavy Ind Ltd レーザ加工装置及び加工方法
JP2007136471A (ja) * 2005-11-15 2007-06-07 Toyota Motor Corp 孔あけ加工方法および孔あけ加工装置
JP2010162561A (ja) * 2009-01-14 2010-07-29 Nippon Steel Corp レーザ切断方法および装置
JP2011025295A (ja) * 2009-07-28 2011-02-10 Saito Kogyo:Kk レーザ反応表面処理方法およびレーザ反応成形加工方法

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332999A (en) * 1980-10-09 1982-06-01 Rca Corporation Method for machining a workpiece with a beam of radiant energy assisted by a chemically-reactive gas
DE3339318C2 (de) * 1983-10-29 1995-05-24 Trumpf Gmbh & Co Laser-Bearbeitungsmaschine
JPS61123493A (ja) * 1984-11-20 1986-06-11 Mitsubishi Electric Corp レ−ザ加工装置
US4892992A (en) * 1988-11-03 1990-01-09 Gmf Robotics Corporation Industrial laser robot system
JPH03180413A (ja) * 1989-12-08 1991-08-06 Nkk Corp 竪型炉の装入物傾斜角制御装置
JPH03258479A (ja) * 1990-03-06 1991-11-18 Mitsubishi Electric Corp レーザ加工装置
FR2666530A1 (fr) * 1990-09-07 1992-03-13 Commissariat Energie Atomique Laser utilise pour des usinages de pieces mecaniques.
US5902445A (en) * 1995-09-11 1999-05-11 Ast Holding, Ltd. Apparatus for bonding with a meltable composition
JP3292021B2 (ja) * 1996-01-30 2002-06-17 三菱電機株式会社 レーザ加工方法およびレーザ加工装置
JPH1128900A (ja) * 1997-05-12 1999-02-02 Sumitomo Heavy Ind Ltd レーザ光を用いた塗装除去方法及びレーザ処理装置
JP3664904B2 (ja) * 1999-01-14 2005-06-29 三菱重工業株式会社 レーザ加工ヘッド
JP3500071B2 (ja) * 1998-07-23 2004-02-23 株式会社日平トヤマ レーザ加工方法及びレーザ加工装置
JP4162772B2 (ja) * 1998-09-09 2008-10-08 日酸Tanaka株式会社 レーザピアシング方法およびレーザ切断装置
JP3484994B2 (ja) * 1998-10-12 2004-01-06 スズキ株式会社 レーザ溶接装置
FR2787363B1 (fr) * 1998-12-22 2001-01-19 Soudure Autogene Francaise Procede d'oxycoupage avec prechauffage par plasma de materiaux ferreux, tels les aciers de construction
US6204473B1 (en) * 1999-04-30 2001-03-20 W.A. Whitney Co. Laser-equipped machine tool cutting head with pressurized counterbalance
AU1679301A (en) * 1999-11-19 2001-06-04 Fronius Schweissmaschinen Produktion Gmbh & Co. Kg Device for a laser hybrid welding process
JP2001287076A (ja) * 2000-04-10 2001-10-16 Tanaka Engineering Works Ltd レーザ切断機のピアシング装置
US20060091126A1 (en) * 2001-01-31 2006-05-04 Baird Brian W Ultraviolet laser ablative patterning of microstructures in semiconductors
DE10138866B4 (de) * 2001-08-08 2007-05-16 Bosch Gmbh Robert Verfahren zum Bohren eines Lochs in ein Werkstück mittels Laserstrahls
JP3859543B2 (ja) * 2002-05-22 2006-12-20 レーザーフロントテクノロジーズ株式会社 レーザ加工装置
GB2390319B (en) * 2002-07-03 2005-07-27 Rolls Royce Plc Method and apparatus for laser welding
JP2004074254A (ja) * 2002-08-21 2004-03-11 Komatsu Sanki Kk プラズマアークまたはレーザによる切断加工機、およびその切断方法
US7232715B2 (en) * 2002-11-15 2007-06-19 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating semiconductor film and semiconductor device and laser processing apparatus
JP2005334926A (ja) * 2004-05-26 2005-12-08 Yamazaki Mazak Corp レーザ加工機におけるレーザ加工工具のノズルプリセッタ
US20060011592A1 (en) * 2004-07-14 2006-01-19 Pei-Chung Wang Laser welding control
EP1632305A1 (de) * 2004-09-04 2006-03-08 Trumpf Werkzeugmaschinen GmbH + Co. KG Verfahren zur Ermittlung und Verfahren zur Einstellung der gegenseitigen Lage der Achse eines Laserbearbeitungsstrahls und der Achse eines Prozessgasstrahls an einer Laserbearbeitungsmaschine sowie Laserbearbeitungsmaschine mit Einrichtungen zur Umsetzung der Verfahren
EP1658921B1 (de) * 2004-11-17 2017-01-18 TRUMPF Laser GmbH Laserschweissvorrichtung für Hochleistungslaser mit hoher Strahlqualität und Fokussieroptiken mit langer Brennweite
WO2006132229A1 (ja) * 2005-06-07 2006-12-14 Nissan Tanaka Corporation レーザピアシング方法及び加工装置
JP4776034B2 (ja) * 2005-10-27 2011-09-21 コマツ産機株式会社 自動切断装置及び開先加工品の製造方法
GB2433459B (en) * 2005-12-22 2008-01-16 Sony Corp Laser processing apparatus and laser processing method as well as debris extraction mechanism and debris extraction method
JP4840110B2 (ja) * 2006-03-09 2011-12-21 日産自動車株式会社 レーザ溶接装置およびレーザ溶接方法
JP2007245189A (ja) * 2006-03-16 2007-09-27 Tdk Corp 接合装置及びそのノズルユニット
SE532695C2 (sv) * 2008-02-25 2010-03-16 Igems Software Ab Verktygshållare
DE102008027524B3 (de) 2008-06-04 2009-09-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum schneidenden Bearbeiten von Werkstücken mit einem Laserstrahl
DE102008030079B3 (de) * 2008-06-25 2009-08-20 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Reduzieren der Anhaftung von Schlacke beim Einstechen eines Laserstrahls in ein Werkstück und Laserbearbeitungskopf
DE102008047760B4 (de) * 2008-09-17 2011-08-25 TRUMPF Laser- und Systemtechnik GmbH, 71254 Laserbearbeitungseinrichtung und Verfahren zum Laserbearbeiten
JP4611411B2 (ja) * 2008-10-20 2011-01-12 ヤマザキマザック株式会社 プログラマブルの焦点位置決め機能を備えたレーザ加工機
EP2253413A1 (en) * 2009-05-15 2010-11-24 National University of Ireland Galway Method for laser ablation
TWI395630B (zh) 2009-06-30 2013-05-11 Mitsuboshi Diamond Ind Co Ltd 使用雷射光之玻璃基板加工裝置
CH700111B1 (fr) * 2009-09-25 2010-06-30 Agie Sa Machine d'usinage par laser.
US9511448B2 (en) * 2009-12-30 2016-12-06 Resonetics, LLC Laser machining system and method for machining three-dimensional objects from a plurality of directions
DE102010011508B4 (de) * 2010-03-15 2015-12-10 Ewag Ag Verfahren zur Herstellung zumindest einer Spannut und zumindest einer Schneidkante und Laserbearbeitungsvorrichtung
CN202062327U (zh) * 2011-03-17 2011-12-07 上海温瑞实业有限公司 新型电缆无胶套管加工的专用拉套管工装
JP5276699B2 (ja) * 2011-07-29 2013-08-28 ファナック株式会社 ピアシングを行うレーザ加工方法及びレーザ加工装置
CN202591845U (zh) * 2012-05-09 2012-12-12 武汉奥森迪科智能电控科技有限公司 激光切割头喷嘴自动控制***

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574995A (ja) * 1990-12-03 1993-03-26 Nec Corp 樹脂封止型半導体装置の製造方法
JPH04238687A (ja) * 1991-01-08 1992-08-26 Nec Corp レーザ加工装置
JPH0732183A (ja) * 1993-07-16 1995-02-03 Matsushita Electric Ind Co Ltd Co2レーザ加工装置
JPH07236987A (ja) * 1994-02-28 1995-09-12 Mitsubishi Electric Corp レーザ切断方法及びその装置
JPH0817985A (ja) * 1994-06-27 1996-01-19 Raitetsuku Kk 集積回路リードフレームタイバーのレーザ除去装置
JPH10305376A (ja) * 1997-05-12 1998-11-17 Sumitomo Heavy Ind Ltd レーザ処理装置と塗装除去方法
JP2001219289A (ja) * 2000-02-09 2001-08-14 Nec Corp レーザマーカ装置およびレーザマーカ方法
JP2003285178A (ja) * 2002-03-26 2003-10-07 Sumitomo Heavy Ind Ltd レーザ加工装置及び加工方法
JP2007136471A (ja) * 2005-11-15 2007-06-07 Toyota Motor Corp 孔あけ加工方法および孔あけ加工装置
JP2010162561A (ja) * 2009-01-14 2010-07-29 Nippon Steel Corp レーザ切断方法および装置
JP2011025295A (ja) * 2009-07-28 2011-02-10 Saito Kogyo:Kk レーザ反応表面処理方法およびレーザ反応成形加工方法

Also Published As

Publication number Publication date
JP5928575B2 (ja) 2016-06-01
JPWO2013121818A1 (ja) 2015-05-11
US10005154B2 (en) 2018-06-26
CN104114316A (zh) 2014-10-22
CN104114316B (zh) 2015-11-25
US20150001195A1 (en) 2015-01-01

Similar Documents

Publication Publication Date Title
JP5928575B2 (ja) レーザ加工機
TWI714792B (zh) 對金屬材料進行加工處理的方法以及用於實施該方法之機器及電腦程式
US20210276125A1 (en) Multi-axis machine tool, methods of controlling the same and related arragements
CA2917563C (en) Laser machining systems and methods
JP4934762B2 (ja) 位置決め方法及び装置
JP6361846B1 (ja) レーザ溶接装置、レーザ加工装置、レーザ溶接方法、軸受の製造方法、機械の製造方法、及び車両の製造方法
WO2017047785A1 (ja) レーザー加工方法、及び、レーザー加工装置
WO2018179632A1 (ja) レーザ溶接装置、レーザ加工装置、レーザ溶接方法、軸受の製造方法、機械の製造方法、車両の製造方法、軸受、機械、及び車両
JP6928711B2 (ja) レーザ加工機のレーザビームに対して工作物を整列させて位置決めする装置
KR101796198B1 (ko) 레이저 가공장치 및 이를 이용한 레이저 가공방법
JP5147317B2 (ja) レーザ・パンチ複合加工機
JP6422182B2 (ja) レーザー加工装置
CN112218736B (zh) 激光加工头和激光加工机
KR20180131917A (ko) 레이저 가공 모듈 및 레이저 가공 장치
KR20220045806A (ko) 레이저 가공 장치
KR102607645B1 (ko) 레이저 빔에 의해 공작물을 가공하기 위한 장치 및 방법
JP4376221B2 (ja) スキャン光学ユニット及びその制御方法並びにレーザ加工装置
JP2004001038A (ja) レーザ加工機
KR20170096414A (ko) 레이저 가공장치 및 이를 이용한 레이저 가공방법
JP6403457B2 (ja) レーザ加工機
JP2011255405A (ja) レーザ照射方法および装置
WO2018008170A1 (ja) 多軸制御の容易なレーザ加工装置
JPH09168883A (ja) レーザ加工機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500126

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14377908

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13749620

Country of ref document: EP

Kind code of ref document: A1