WO2013118355A1 - 非可逆回路素子 - Google Patents

非可逆回路素子 Download PDF

Info

Publication number
WO2013118355A1
WO2013118355A1 PCT/JP2012/078318 JP2012078318W WO2013118355A1 WO 2013118355 A1 WO2013118355 A1 WO 2013118355A1 JP 2012078318 W JP2012078318 W JP 2012078318W WO 2013118355 A1 WO2013118355 A1 WO 2013118355A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
input port
capacitor
output port
capacitance
Prior art date
Application number
PCT/JP2012/078318
Other languages
English (en)
French (fr)
Inventor
和田 貴也
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2013557365A priority Critical patent/JP5672394B2/ja
Priority to CN201280068557.8A priority patent/CN104081579B/zh
Publication of WO2013118355A1 publication Critical patent/WO2013118355A1/ja
Priority to US14/447,776 priority patent/US9748624B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/36Isolators
    • H01P1/365Resonance absorption isolators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/36Isolators

Definitions

  • the present invention relates to non-reciprocal circuit elements, and more particularly to non-reciprocal circuit elements such as isolators and circulators used in the microwave band.
  • nonreciprocal circuit elements such as isolators and circulators have a characteristic of transmitting a signal only in a predetermined specific direction and not transmitting in a reverse direction. Utilizing this characteristic, for example, an isolator is used in a transmission circuit unit of a mobile communication device such as a mobile phone.
  • a 2-port type isolator having a low insertion loss as described in Patent Document 1 is known.
  • the first and second center electrodes 135 and 136 are arranged on the surface of the ferrite 132 so as to be insulated from each other, and permanent magnets (see FIG.
  • the first and second center electrodes 135 and 136 are magnetically coupled by applying a DC magnetic field from (not shown), one end of the first center electrode 135 is set as the input port P1, the other end as the output port P2, and the second One end of the center electrode 136 is an output port P2, the other end is a ground port P3, a termination resistor R11 and a capacitor C11 connected in parallel to each other are connected between the input port P1 and the output port P2, and a second A capacitor C12 is connected in parallel with the center electrode 136.
  • the first center electrode 135 and the capacitor C11 form a resonance circuit
  • the second center electrode 136 and the capacitor C12 form a resonance circuit.
  • impedance adjusting capacitors CS11 and CS12 are connected to the input port P1 side and the output port P2 side.
  • external connection terminals IN, OUT, and GND are provided.
  • This isolator 100 is incorporated in a transmission circuit of a mobile phone. That is, the input-side external connection terminal IN is connected to the transmission-side power amplifier PA via the matching circuits 60 and 70, and the output-side external connection terminal OUT is connected to the antenna via a duplexer or the like.
  • the output impedance of the power amplifier PA is as low as about 5 ⁇
  • the input impedance as the isolator 100 is as high as about 50 ⁇ .
  • the impedance is gradually increased by interposing the matching circuit 60 including the capacitor C14 and the inductor L13 and the matching circuit 70 including the capacitor C15 and the inductor L14 between the isolator 100 and the power amplifier PA.
  • the impedance is matched.
  • interposing the matching circuits 60 and 70 increases the insertion loss, and increases the number of parts and cost of the transmission circuit.
  • the insertion loss as shown in FIG. 14, the insertion loss of 0.7 dB of the matching circuits 60 and 70 is added to the insertion loss of 0.5 dB of the isolator 100, resulting in convenience of 1.2 dB.
  • this non-reciprocal circuit device has a problem that insertion loss is inevitably increased because the high-frequency current passes through the first variable matching mechanism when a high-frequency current is input from the forward direction. .
  • An object of the present invention is to provide a non-reciprocal circuit element capable of realizing a low input impedance, suppressing an increase in the number of parts and cost of a transmission side circuit as much as possible, and adjusting an isolation frequency without deteriorating insertion loss. It is to provide.
  • the nonreciprocal circuit device is A magnetic material for microwaves; A first central electrode and a second central electrode disposed in an insulated state and intersecting with the microwave magnetic body; A permanent magnet that applies a DC magnetic field to the intersection of the first and second center electrodes; With One end of the first center electrode is an input port and the other end is an output port; One end of the second center electrode is an input port and the other end is a ground port; Between the input port and the output port, a resistive element and a capacitive element connected in parallel with each other are connected in series, Capacitance means capable of switching capacitance is connected in parallel with the resistance element between the input port and the output port; It is characterized by.
  • the non-reciprocal circuit device is A magnetic material for microwaves; A first central electrode and a second central electrode disposed in an insulated state and intersecting with the microwave magnetic body; A permanent magnet that applies a DC magnetic field to the intersection of the first and second center electrodes; With One end of the first center electrode is an input port and the other end is an output port; One end of the second center electrode is an input port and the other end is a ground port; Between the input port and the output port, a resistive element and a capacitive element connected in parallel with each other are connected in series, The capacitance element has a variable capacitance; It is characterized by.
  • a high frequency signal is input (forward input) from the input port by setting the inductance of the second center electrode to be larger than the inductance of the first center electrode. Then, both ends of the first center electrode have the same potential due to the gyrator operation, and almost no current flows through the first center electrode and the terminal resistor, and the current is output to the output port.
  • a high-frequency signal is input from the output port (reverse direction input)
  • the high-frequency signal flows through the resistance element without passing through the first center electrode due to an irreversible action and is consumed as heat. That is, the current is attenuated (isolated).
  • the inductance of the second center electrode When the inductance of the second center electrode is relatively large, the input impedance is lowered and can be reduced to about half of that of the conventional one. Therefore, the matching circuit interposed between the power amplifier and the power amplifier can be omitted or reduced. Accordingly, the insertion loss as the transmission side circuit is reduced, and the number of parts and the cost are reduced.
  • the capacitance value of the capacitive means is switched, and in the non-reciprocal circuit element of the second form, the capacitance value of the capacitive element is switched.
  • the isolation frequency for the input is adjusted.
  • the attenuation is adjusted by selecting the impedance of the resistance element.
  • the present invention it is possible to realize a low input impedance in a non-reciprocal circuit element, suppress an increase in the number of parts and cost of a transmission side circuit as much as possible, and adjust an isolation frequency without deteriorating insertion loss. It is.
  • the nonreciprocal circuit element (2-port type lumped constant isolator 1A) according to the first embodiment is formed on the surface of a microwave magnetic body (hereinafter referred to as a ferrite 32) as shown in the equivalent circuit of FIG.
  • the first and second center electrodes 35 and 36 are arranged so as to cross each other in an insulated state, and a first magnetic field is applied to the intersecting portion from a permanent magnet 41 (see FIGS. 2 and 3).
  • the second center electrodes 35 and 36 are magnetically coupled, one end of the first center electrode 35 is an input port P1 and the other end is an output port P2, and one end of the second center electrode 36 is an input port P1 and the other end is As a ground port P3, a termination resistor R and a capacitor C1 connected in parallel with each other are connected between the input port P1 and the output port P2. Further, an adjustment capacitor C12 and a semiconductor switch S12 connected in series are connected in parallel to the termination resistor R and the capacitor C1 between the input port P1 and the output port P2.
  • the semiconductor switch S12 is a well-known SPST switch including a diode D15, a resistor R15, and a capacitor C15.
  • an SPDT switch, a MEMS switch, or the like may be used as the semiconductor switch S12.
  • the first center electrode 35, the capacitors C1 and C12, and the termination resistor R form a resonance circuit. Further, impedance adjusting capacitors CS1 and CS2 are connected to the input port P1 side and the output port P2 side. In addition, external connection terminals IN, OUT, and GND are provided.
  • This isolator 1A is incorporated in a transmission circuit of a mobile phone. That is, the input side external connection terminal IN is connected to the transmission side power amplifier PA via the matching circuit 60, and the output side external connection terminal OUT is connected to the antenna via a duplexer or the like.
  • the isolator 1A by setting the inductance of the second center electrode 36 to be larger than the inductance of the first center electrode 35, when a high frequency signal is input from the input port P1, the gyrator operation causes the first center electrode 35 to Both ends have the same potential, and almost no current flows through the first center electrode 35 and the termination resistor R, and is output to the output port P2.
  • the high-frequency signal flows to the terminating resistor R without passing through the first center electrode 35 due to an irreversible action and is consumed as heat. That is, the current is attenuated (isolated).
  • the matching circuit interposed between the power amplifier PA can be omitted or reduced.
  • the matching circuit 70 shown in FIG. 14 can be omitted. Accordingly, the insertion loss as a transmission side circuit is reduced, and the number of parts and cost are reduced. Further, it is not necessary to forcibly reduce the crossing angle of the first and second center electrodes 35 and 36 in order to reduce the input impedance.
  • the isolation frequency is adjusted by switching the adjustment capacitor C12 on and off by the semiconductor switch S12. Further, the attenuation amount is adjusted by selecting the impedance of the termination resistor R.
  • the attenuation amount is adjusted by selecting the impedance of the termination resistor R.
  • the isolator 1A includes a ferrite 32 in which first and second center electrodes 35 and 36 (first inductor L1 and second inductor L2) are formed of a conductor film on a circuit board 20.
  • first and second center electrodes 35 and 36 are formed of a conductor film on a circuit board 20.
  • a ferrite / magnet element 30 fixed with a pair of permanent magnets 41 via an adhesive layer 42, and the periphery of the ferrite / magnet element 30 is surrounded by a yoke 45.
  • Capacitors C1, CS1, CS2, C12 and termination resistor R constituting the matching circuit and the resonance circuit are each configured as a chip type, and are mounted on the circuit board 20 together with the semiconductor switch S12.
  • the first center electrode 35 is wound around the ferrite 32 by one turn, and one end electrode 35a is used as the input port P1, and the other end electrode 35b is used as the output port P2.
  • the second center electrode 36 is wound four turns (the number of turns is arbitrary) with the ferrite 32 intersecting the first center electrode 35 at a predetermined angle.
  • One end electrode 35a (first center electrode 35) is wound.
  • the other end electrode 36a is the ground port P3.
  • the illustration of the electrode on the back side of the ferrite 32 is omitted to avoid complication.
  • the circuit board 20 is a resin board in which a resin base material and a conductive foil are laminated, and terminal electrodes 21 to 27 are formed on the upper surface thereof, and these terminal electrodes 21 to 27 are formed on the lower surface of the circuit board 20.
  • the external connection terminals IN, OUT, and GND are connected via via hole conductors (not shown).
  • the electrode 35a (input port P1) formed on the ferrite 32 is connected to the terminal electrode 21, the electrode 35b (output port P2) is connected to the terminal electrode 22, and the electrode 36a (ground port P3) is connected to the terminal electrode 23. Yes.
  • the capacitor C1 is connected between the terminal electrodes 21 and 22, the capacitor CS1 is connected between the terminal electrodes 21 and 24, and the capacitor CS2 is connected between the terminal electrodes 22 and 25. Further, the terminating resistor R is connected between the terminal electrodes 21 and 22, the capacitor C12 is connected between the terminal electrodes 22 and 26, the semiconductor switch S12 is connected between the terminal electrodes 26 and 27, and the equivalent circuit shown in FIG. Is forming.
  • the impedance conversion amount between the ports P1 and P2 of the isolator 1A and the inductance ratio L2 / L1 of the first and second center electrodes 35 and 36 will be described.
  • Table 1 and FIG. 5 below show the relationship between the inductance ratio L2 / L1 and the amount of impedance conversion between the ports P1 and P2.
  • the inductance ratio L2 / L1 corresponds to the turn ratio of the first and second center electrodes 35 and 36.
  • the characteristic curve A shows the real part of the impedance
  • the characteristic curve B shows the imaginary part of the impedance.
  • the intersection of the straight line C and the real part characteristic curve A indicates the impedance conversion amount 25 ⁇ (input 25 ⁇ , output 50 ⁇ ) of the real part in FIG.
  • the impedance conversion amount increases in both the real part and the imaginary part, and the impedance conversion amount is set by appropriately setting the number of turns of the first and second center electrodes 35 and 36. Can be adjusted.
  • the imaginary part of the impedance is adjusted from an arbitrary value to 0 ⁇ by the capacitors CS1 and CS2.
  • the impedance conversion characteristics of 25 to 50 ⁇ are as shown in the Smith chart of FIG.
  • the output impedance characteristics are as shown in the Smith chart of FIG.
  • FIG. 8 shows the isolation characteristic in the reverse direction
  • FIG. 9 shows the insertion loss characteristic in the forward direction.
  • the curve X shows the characteristics when the adjustment capacitor C12 is turned off and only the capacitor C1 is acting, and the curve Y is turned on and works together with the capacitor C1 (capacitors C1, C12). Is acting as an equilibrium capacity).
  • the isolation frequency is shifted to the low frequency band by turning on the adjustment capacitor C12. That is, the isolation characteristic is Band 8 (880-915 MHz) when the capacitor C12 is turned off, but shifts to Band 5 (824-849 MHz) when the capacitor C12 is turned on.
  • the characteristic curves X and Y due to the off and on of the adjustment capacitor C12 almost overlap each other, and the insertion loss is not deteriorated by inserting the capacitor C12.
  • the isolator 1A according to the first embodiment has an impedance conversion function of 25-50 ⁇ , and its insertion loss is as low as 0.5 dB. . Therefore, as shown in FIG. 1, it is only necessary to provide one matching circuit 60 for the power amplifier PA having an output impedance of 5 ⁇ . In other words, the matching circuit 70 shown in FIG. 14 can be omitted. The total insertion loss is 0.83 dB.
  • the nonreciprocal circuit device (2-port type lumped constant isolator 1B) according to the second embodiment is one in which the capacitor C1 is a variable capacitor as shown in the equivalent circuit of FIG.
  • the variable capacitance capacitor C1 may be capable of changing the capacitance value stepwise or changing the capacitance value steplessly.
  • variable capacitor C1 is provided in place of the adjustment capacitor C12 and the semiconductor switch S12 in the first embodiment, and the other configuration is the same as that of the first embodiment. Is basically the same as the first embodiment.
  • the nonreciprocal circuit element (2 port type lumped constant isolator 1C) according to the third embodiment is different from the semiconductor switch S12 according to the first embodiment as a mechanical switching element S11. It is a thing.
  • other configurations are the same as those of the first embodiment, and the operation and effects thereof are basically the same as those of the first embodiment.
  • the fourth embodiment In the non-reciprocal circuit device (2-port type lumped constant isolator 1D) of the fourth embodiment, as shown in the equivalent circuit of FIG. 12, another adjustment capacitor C13 is added in parallel to the adjustment capacitor C12.
  • the switching element S13 that selectively switches on and off the two adjustment capacitors C12 and C13 is connected.
  • the switching element S13 can individually switch on and off the capacitors C12 and 13 and can also select a neutral position.
  • An SPDT switch or a MEMS switch may be used as the switching element.
  • the adjustment capacitance value can be switched to three stages, and the number of stages may be switched to a higher number.
  • the nonreciprocal circuit element (2-port type lumped constant isolator 1E) of the fifth embodiment is configured so that the capacitors C1 and C16 are switched on and off by the switching element S14 as shown in the equivalent circuit of FIG. It is a thing.
  • the capacitor C1 in FIG. 13 corresponds to the capacitor C1 shown in the first embodiment, and the capacitor C16 has a capacity corresponding to the combined capacity of the capacitors C1 and C12 connected in parallel.
  • the nonreciprocal circuit device according to the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the gist thereof.
  • the configuration of the ferrite / magnet element 30 and the shapes of the first and second center electrodes 35 and 36 can be variously changed.
  • the capacitive element and the resistive element may be incorporated in a circuit board which is a laminated body, instead of a chip component externally attached on the circuit board.
  • the present invention is useful for non-reciprocal circuit elements, and in particular, can realize low input impedance, can suppress an increase in the number of parts and cost of a transmission side circuit as much as possible, and degrades insertion loss. It is excellent in that the isolation frequency can be adjusted without any problems.

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Abstract

 非可逆回路素子において、低入力インピーダンスを実現でき、送信側回路の部品点数やコストの増加を極力抑えるとともに、挿入損失を劣化させることなくアイソレーション周波数を調整可能とすること。 フェライト32と、フェライト32に互いに絶縁状態で交差して配置された第1及び第2中心電極35,36と、第1及び第2中心電極35,36の交差部分に直流磁界を印加する永久磁石と、を備えた非可逆回路素子(アイソレータ)。第1中心電極35の一端を入力ポートP1とし他端を出力ポートP2とし、第2中心電極36の一端を入力ポートP1とし他端をグランドポートP3とし、入力ポートP1と出力ポートP2との間に、互いに並列に接続された抵抗素子Rと容量素子C1とが直列に接続されており、入力ポートP1と出力ポートP2との間に、容量を切り替え可能な容量手段C12が抵抗素子Rと並列に接続されている。

Description

非可逆回路素子
 本発明は、非可逆回路素子、特に、マイクロ波帯で使用されるアイソレータやサーキュレータなどの非可逆回路素子に関する。
 従来、アイソレータやサーキュレータなどの非可逆回路素子は、予め定められた特定方向にのみ信号を伝送し、逆方向には伝送しない特性を有している。この特性を利用して、例えば、アイソレータは、携帯電話などの移動体通信機器の送信回路部に使用されている。
 この種の非可逆回路素子として、特許文献1に記載のように低挿入損失とした2ポートタイプのアイソレータが知られている。図14に示すように、このアイソレータ100はフェライト132の表面に第1及び第2中心電極135,136(インダクタL11,L12)を互いに絶縁状態で交差して配置し、交差部分に永久磁石(図示せず)から直流磁界を印加することにより第1及び第2中心電極135,136を磁気的に結合させ、第1中心電極135の一端を入力ポートP1とし他端を出力ポートP2とし、第2中心電極136の一端を出力ポートP2とし他端をグランドポートP3とし、入力ポートP1と出力ポートP2との間に互いに並列に接続された終端抵抗R11とコンデンサC11とを接続し、かつ、第2中心電極136と並列にコンデンサC12を接続したものである。第1中心電極135とコンデンサC11とが共振回路を形成し、第2中心電極136とコンデンサC12とが共振回路を形成している。さらに、入力ポートP1側及び出力ポートP2側にはインピーダンス調整用のコンデンサCS11,CS12が接続されている。また、外部接続用端子IN,OUT,GNDを備えている。
 本アイソレータ100は携帯電話の送信用回路に組み込まれる。即ち、入力側外部接続用端子INが送信側パワーアンプPAに整合回路60,70を介して接続され、出力側外部接続用端子OUTがデュープレクサなどを介してアンテナに接続される。
 通常、パワーアンプPAの出力インピーダンスは5Ω程度と低く、アイソレータ100としての入力インピーダンスは50Ω程度と高い。アイソレータ100としての入力インピーダンスを低くするには、特許文献1に記載のように、第1及び第2中心電極135,136の交差角度を小さくすることによって可能であり、かつ、コンデンサCS11を挿入することでも可能あるが、アイソレータ100の小型化の要請により交差角度を小さくすること(入力インピーダンスを小さくすること)に限界を生じている。
 そこで、アイソレータ100とパワーアンプPAとの間にコンデンサC14とインダクタL13とからなる整合回路60、及び、コンデンサC15とインダクタL14とからなる整合回路70を介在させてインピーダンスを徐々に高くし、アイソレータ100のインピーダンスに整合させている。しかしながら、整合回路60,70を介在させることは、挿入損失が増加し、かつ、送信用回路の部品点数やコストも増加することになる。挿入損失については、図14に示すように、アイソレータ100の挿入損失0.5dBに整合回路60,70の挿入損失0.7dBが加わり、都合1.2dBとなってしまう。
 一方、この種の非可逆回路素子としては、特許文献2に記載のように、任意の周波数帯域において十分なアイソレーション特性を得るために、複数の整合用コンデンサそれぞれに第1可変整合機構を直列接続し、該第1可変整合機構のリアクタンスを変化させるようにしたものが記載されている。
 しかしながら、この非可逆回路素子では、順方向から高周波電流が入力された際に該高周波電流が前記第1可変整合機構を通過するために、どうしても挿入損失が大きくなるという問題点を有している。
特開2007-208943号公報 特開2008-85981号公報
 本発明の目的は、低入力インピーダンスを実現でき、送信側回路の部品点数やコストの増加を極力抑えることができるとともに、挿入損失を劣化させることなくアイソレーション周波数を調整可能な非可逆回路素子を提供することにある。
 本発明の第1の形態である非可逆回路素子は、
 マイクロ波用磁性体と、
 前記マイクロ波用磁性体に互いに絶縁状態で交差して配置された第1及び第2中心電極と、
 前記第1及び第2中心電極の交差部分に直流磁界を印加する永久磁石と、
 を備え、
 前記第1中心電極の一端を入力ポートとし他端を出力ポートとし、
 前記第2中心電極の一端を入力ポートとし他端をグランドポートとし、
 入力ポートと出力ポートとの間に、互いに並列に接続された抵抗素子と容量素子とが直列に接続されており、
 入力ポートと出力ポートとの間に、容量を切り替え可能な容量手段が前記抵抗素子と並列に接続されていること、
 を特徴とする。
 本発明の第2の形態である非可逆回路素子は、
 マイクロ波用磁性体と、
 前記マイクロ波用磁性体に互いに絶縁状態で交差して配置された第1及び第2中心電極と、
 前記第1及び第2中心電極の交差部分に直流磁界を印加する永久磁石と、
 を備え、
 前記第1中心電極の一端を入力ポートとし他端を出力ポートとし、
 前記第2中心電極の一端を入力ポートとし他端をグランドポートとし、
 入力ポートと出力ポートとの間に、互いに並列に接続された抵抗素子と容量素子とが直列に接続されており、
 前記容量素子はその容量が可変であること、
 を特徴とする。
 第1及び第2の形態である非可逆回路素子においては、第2中心電極のインダクタンスを第1中心電極のインダクタンスよりも大きく設定することにより、入力ポートから高周波信号が入力(順方向入力)されると、ジャイレータ動作により第1中心電極の両端が同電位となり、第1中心電極や終端抵抗にはほとんど電流が流れず、出力ポートに出力される。一方、出力ポートから高周波信号が入力(逆方向入力)されると、高周波信号は非可逆作用によって第1中心電極を通過することなく抵抗素子に流れて熱として消費される。即ち、電流が減衰(アイソレーション)される。第2中心電極のインダクタンスが相対的に大きいことによって入力インピーダンスが低下し、従来の半分程度に低くすることが可能である。それゆえ、パワーアンプとの間に介在される整合回路を省略あるいは少なくすることができ、それに伴って、送信側回路としての挿入損失が小さくなるとともに、部品点数やコストが低減される。
 また、第1の形態である非可逆回路素子においては容量手段の容量値を切り替えることにより、第2の形態である非可逆回路素子においては容量素子の容量値を切り替えることにより、いずれも逆方向入力に対するアイソレーション周波数が調整される。また、抵抗素子のインピーダンスを選択することにより、減衰量が調整される。一方、順方向から高周波信号が入力されると、抵抗素子や容量手段又は容量素子にはほとんど高周波電流が流れないため、容量手段や容量素子が追加されていてもそれによる損失は無視でき、挿入損失が増大することはない。
 本発明によれば、非可逆回路素子での低入力インピーダンスを実現でき、送信側回路の部品点数やコストの増加を極力抑えることができるとともに、挿入損失を劣化させることなくアイソレーション周波数を調整可能である。
第1実施例であるアイソレータを含む送信側回路の等価回路図である。 第1実施例であるアイソレータの分解斜視図である。 第1実施例であるアイソレータの斜視図である。 第1実施例であるアイソレータを構成するフェライト・磁石素子を示す分解斜視図である。 第1実施例であるアイソレータによるインピーダンス変換量を示すグラフである。 第1実施例であるアイソレータの入力整合特性を示すスミス図である。 第1実施例であるアイソレータの出力整合特性を示すスミス図である。 第1実施例であるアイソレータのアイソレーション特性を示すグラフである。 第1実施例であるアイソレータの挿入損失を示すグラフである。 第2実施例であるアイソレータを含む送信側回路の等価回路図である。 第3実施例であるアイソレータを含む送信側回路の等価回路図である。 第4実施例であるアイソレータを含む送信側回路の等価回路図である。 第5実施例であるアイソレータを含む送信側回路の等価回路図である。 従来のアイソレータを含む送信側回路の等価回路図である。
 以下、本発明に係る非可逆回路素子の実施例について添付図面を参照して説明する。なお、各図において、同じ部材、部分については共通する符号を付し、重複する説明は省略する。
 (第1実施例、図1~図9参照)
 第1実施例である非可逆回路素子(2ポートタイプの集中定数型アイソレータ1A)は、図1の等価回路に示すように、マイクロ波用磁性体(以下、フェライト32と称する)の表面に第1及び第2中心電極35,36(インダクタL1,L2)を互いに絶縁状態で交差して配置し、交差部分に永久磁石41(図2、図3参照)から直流磁界を印加することにより第1及び第2中心電極35,36を磁気的に結合させ、第1中心電極35の一端を入力ポートP1とし他端を出力ポートP2とし、第2中心電極36の一端を入力ポートP1とし他端をグランドポートP3とし、入力ポートP1と出力ポートP2との間に互いに並列に接続された終端抵抗RとコンデンサC1とを接続したものである。さらに、入力ポートP1と出力ポートP2との間に、直列に接続された調整用コンデンサC12と半導体スイッチS12が終端抵抗R及びコンデンサC1に対して並列に接続されている。
 半導体スイッチS12は、ダイオードD15、抵抗R15及びコンデンサC15からなるSPSTスイッチとして周知のものである。なお、半導体スイッチS12としては、SPDTスイッチやMEMSスイッチなどを用いてもよい。
 第1中心電極35とコンデンサC1,C12、終端抵抗Rとで共振回路を形成している。さらに、入力ポートP1側及び出力ポートP2側にはインピーダンス調整用のコンデンサCS1,CS2が接続されている。また、外部接続用端子IN,OUT,GNDを備えている。
 本アイソレータ1Aは携帯電話の送信用回路に組み込まれる。即ち、入力側外部接続用端子INが送信側パワーアンプPAに整合回路60を介して接続され、出力側外部接続用端子OUTがデュープレクサなどを介してアンテナに接続される。
 前記アイソレータ1Aにおいては、第2中心電極36のインダクタンスを第1中心電極35のインダクタンスよりも大きく設定することにより、入力ポートP1から高周波信号が入力されると、ジャイレータ動作により第1中心電極35の両端が同電位となり、第1中心電極35や終端抵抗Rにはほとんど電流が流れず、出力ポートP2に出力される。一方、出力ポートP2から高周波信号が入力されると、高周波信号は非可逆作用によって第1中心電極35を通過することなく終端抵抗Rに流れて熱として消費される。即ち、電流が減衰(アイソレーション)される。第2中心電極36のインダクタンスが相対的に大きいことによって入力インピーダンスが低下し、従来の半分程度に低くすることが可能である。それゆえ、パワーアンプPAとの間に介在される整合回路を省略あるいは少なくすることができる。具体的には、図14に示した整合回路70を省略することができる。それに伴って、送信側回路としての挿入損失が小さくなるとともに、部品点数やコストが低減される。また、入力インピーダンスを低くするために第1及び第2中心電極35,36の交差角度を無理に小さくする必要もなくなる。
 そして、半導体スイッチS12によって調整用コンデンサC12のオン、オフを切り替えることによりアイソレーション周波数が調整される。また、終端抵抗Rのインピーダンスを選択することにより、減衰量が調整される。一方、入力ポートP1から出力ポートP2へ高周波電流が流れる動作時には、終端抵抗RやコンデンサC1,C12にはほとんど高周波電流が流れないため、コンデンサC12やスイッチング素子S11が追加されていてもそれによる損失は無視でき、挿入損失が増大することはない。
 以下に、アイソレータ1Aの構成について具体的に説明する。アイソレータ1Aは、図2~図4に示すように、回路基板20上に、第1及び第2中心電極35,36(第1インダクタL1、第2インダクタL2)を導体膜にて形成したフェライト32の左右を一対の永久磁石41で接着剤層42を介して固定したフェライト・磁石素子30を実装したもので、フェライト・磁石素子30の周囲はヨーク45で囲われている。整合回路や共振回路を構成するコンデンサC1,CS1,CS2,C12や終端抵抗Rは、それぞれ、チップタイプとして構成され、半導体スイッチS12とともに、回路基板20上に実装されている。
 図4に示すように、第1中心電極35はフェライト32に1ターン巻回されており、一端電極35aが入力ポートP1とされ、他端電極35bが出力ポートP2とされている。第2中心電極36はフェライト32に第1中心電極35と所定の角度で交差した状態で4ターン(なお、ターン数は任意である)巻回されており、一端電極35a(第1中心電極35と共用)が入力ポートP1とされ、他端電極36aがグランドポートP3とされている。なお、図4では煩雑さを避けるためフェライト32の背面側の電極は図示を省略している。
 回路基板20は、樹脂基材と導体箔を積層した樹脂基板であり、その上面には、端子電極21~27が形成されており、これらの端子電極21~27は回路基板20の下面に形成した外部接続用端子IN,OUT,GND(図1参照)にビアホール導体(図示せず)を介して接続されている。フェライト32に形成した電極35a(入力ポートP1)は端子電極21に接続され、電極35b(出力ポートP2)は端子電極22に接続され、電極36a(グランドポートP3)は端子電極23に接続されている。コンデンサC1は端子電極21,22間に接続され、コンデンサCS1は端子電極21,24間に接続され、コンデンサCS2は端子電極22,25間に接続されている。さらに、終端抵抗Rは端子電極21,22間に接続され、コンデンサC12は端子電極22,26間に接続され、半導体スイッチS12は端子電極26,27間に接続され、図1に示した等価回路を形成している。
 ここで、前記アイソレータ1AのポートP1-P2間におけるインピーダンス変換量と、第1及び第2中心電極35,36のインダクタンス比L2/L1について述べる。以下に示す表1及び図5に、インダクタンス比L2/L1とポートP1-P2間のインピーダンス変換量との関係を示す。インダクタンス比L2/L1は第1及び第2中心電極35,36の巻数比に対応する。図5において、特性曲線Aはインピーダンスの実部を示し、特性曲線Bはインピーダンスの虚部を示している。直線Cと実部特性曲線Aとの交点は図1における実部のインピーダンス変換量25Ω(入力25Ω、出力50Ω)を示している。
Figure JPOXMLDOC01-appb-T000001
 つまり、インダクタンス比L2/L1が増加することに伴って、インピーダンス変換量は実部、虚部ともに増加し、第1及び第2中心電極35,36の巻数を適切に設定することでインピーダンス変換量を調整することが可能になる。インピーダンスの虚部に関してはコンデンサCS1,CS2にて任意の値から0Ωに調整している。25~50Ωのインピーダンス変換特性は図6のスミスチャートに示すとおりである。また、出力インピーダンス特性は図7のスミスチャートに示すとおりである。図8は逆方向のアイソレーション特性を示し、図9は順方向の挿入損失特性を示している。これらの電気特性は、UMTS Band5_Tx 824-849MHz帯、及び、Band8_Tx 880-915MHz帯に関するものである。
 図8及び図9において、曲線Xは調整用コンデンサC12をオフしてコンデンサC1のみが作用している場合の特性を示し、曲線YはコンデンサC12をオンしてコンデンサC1とともに作用(コンデンサC1,C12が平衡容量として作用)している場合の特性を示している。図8から明らかなように、調整用コンデンサC12をオンすることによりアイソレーション周波数が低周波数帯域へシフトしている。即ち、アイソレーション特性はコンデンサC12をオフした場合にBand8(880-915MHz)であったものが、コンデンサC12をオンするとBand5(824-849MHz)にシフトする。一方、図9から明らかなように、調整用コンデンサC12のオフ、オンによる特性曲線X,Yはほとんど重なっており、コンデンサC12を挿入したことにより挿入損失が劣化することはない。
 図6~図9に示されているように、本第1実施例であるアイソレータ1Aでは25-50Ωのインピーダンス変換機能を備えているとともに、その挿入損失は0.5dBと非常に低損失である。従って、図1に示すように、出力インピーダンスが5ΩのパワーアンプPAに対して一つの整合回路60を介在させるだけでよく、換言すれば、図14に示した整合回路70を省略することができ、トータルとしての挿入損失は0.83dBとなる。
 (第2実施例、図10参照)
 第2実施例である非可逆回路素子(2ポートタイプの集中定数型アイソレータ1B)は、図10の等価回路に示すように、コンデンサC1を可変容量コンデンサとしたものである。この可変容量コンデンサC1は容量値が段階的に変更可能、あるいは、容量値が無段階に変更可能のいずれであってもよい。
 本第2実施例は、前記第1実施例における調整用コンデンサC12及び半導体スイッチS12に代えて可変容量コンデンサC1を設けたもので、他の構成は第1実施例と同様であり、その作用効果も第1実施例と基本的に同様である。
 (第3実施例、図11参照)
 第3実施例である非可逆回路素子(2ポートタイプの集中定数型アイソレータ1C)は、図11の等価回路に示すように、前記第1実施例における半導体スイッチS12を機械的なスイッチング素子S11としたものである。本第3実施例において、他の構成は第1実施例と同様であり、その作用効果も第1実施例と基本的に同様である。
 (第4実施例、図12参照)
 第4実施例である非可逆回路素子(2ポートタイプの集中定数型アイソレータ1D)は、図12の等価回路に示すように、調整用コンデンサC12にいま一つの調整用コンデンサC13を並列に追加し、二つの調整用コンデンサC12,13のオン、オフを選択的に切り替えるスイッチング素子S13を接続したものである。スイッチング素子S13は、コンデンサC12,13のオン、オフを個別に切り替えるとともに、中立位置をも選択できる。スイッチング素子としては、SPDTスイッチやMEMSスイッチを用いてもよい。本第4実施例では調整用の容量値を3段階に切り替え可能であり、それ以上の段数に切り換え可能であってもよい。
 本第4実施例における他の構成は、前記第1実施例と同様であり、その作用効果も基本的には第1実施例と同様である。
 (第5実施例、図13参照)
 第5実施例である非可逆回路素子(2ポートタイプの集中定数型アイソレータ1E)は、図13の等価回路に示すように、スイッチング素子S14にてコンデンサC1,C16のオン、オフを切り替えるようにしたものである。図13におけるコンデンサC1は前記第1実施例に示したコンデンサC1に相当し、コンデンサC16は並列接続されたコンデンサC1,C12の合成容量に相当する容量を有している。
 本第5実施例における他の構成は、前記第1実施例と同様であり、その作用効果も基本的には第1実施例と同様である。なお、スイッチング素子S14にて切り替えられるコンデンサは3以上であってもよい。
 (他の実施例)
 なお、本発明に係る非可逆回路素子は前記実施例に限定するものではなく、その要旨の範囲内で種々に変更することができる。
 例えば、フェライト・磁石素子30の構成や第1及び第2中心電極35,36の形状は種々に変更することができる。さらに、容量素子や抵抗素子は回路基板上に外付けしたチップ部品ではなく積層体である回路基板に内蔵されたものであってもよい。
 以上のように、本発明は、非可逆回路素子に有用であり、特に、低入力インピーダンスを実現でき、送信側回路の部品点数やコストの増加を極力抑えることができるとともに、挿入損失を劣化させることなくアイソレーション周波数を調整可能である点で優れている。
  1A~1E…アイソレータ
  30…フェライト・磁石素子
  32…フェライト
  35…第1中心電極
  36…第2中心電極
  41…永久磁石
  P1…入力ポート
  P2…出力ポート
  P3…グランドポート
  C1…コンデンサ
  C12,C13,C16…調整用コンデンサ
  S11,S13,S14…スイッチング素子
  S12…半導体スイッチ
  R…終端抵抗

Claims (6)

  1.  マイクロ波用磁性体と、
     前記マイクロ波用磁性体に互いに絶縁状態で交差して配置された第1及び第2中心電極と、
     前記第1及び第2中心電極の交差部分に直流磁界を印加する永久磁石と、
     を備え、
     前記第1中心電極の一端を入力ポートとし他端を出力ポートとし、
     前記第2中心電極の一端を入力ポートとし他端をグランドポートとし、
     入力ポートと出力ポートとの間に、互いに並列に接続された抵抗素子と容量素子とが直列に接続されており、
     入力ポートと出力ポートとの間に、容量を切り替え可能な容量手段が前記抵抗素子と並列に接続されていること、
     を特徴とする非可逆回路素子。
  2.  前記容量手段は、少なくとも一つのコンデンサと該コンデンサのオン、オフを切り替えるスイッチング素子とを有していること、を特徴とする請求項1に記載の非可逆回路素子。
  3.  前記容量手段は、並列に接続された複数のコンデンサとそれぞれのコンデンサのオン、オフを切り替えるスイッチング素子とを有していること、を特徴とする請求項1に記載の非可逆回路素子。
  4.  マイクロ波用磁性体と、
     前記マイクロ波用磁性体に互いに絶縁状態で交差して配置された第1及び第2中心電極と、
     前記第1及び第2中心電極の交差部分に直流磁界を印加する永久磁石と、
     を備え、
     前記第1中心電極の一端を入力ポートとし他端を出力ポートとし、
     前記第2中心電極の一端を入力ポートとし他端をグランドポートとし、
     入力ポートと出力ポートとの間に、互いに並列に接続された抵抗素子と容量素子とが直列に接続されており、
     前記容量素子はその容量が可変であること、
     を特徴とする非可逆回路素子。
  5.  前記容量素子は容量可変コンデンサであること、を特徴とする請求項4に記載の非可逆回路素子。
  6.  前記容量素子はスイッチング素子によってオン、オフを切り替えられる少なくとも二つの素子からなること、を特徴とする請求項4に記載の非可逆回路素子。
PCT/JP2012/078318 2012-02-06 2012-11-01 非可逆回路素子 WO2013118355A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013557365A JP5672394B2 (ja) 2012-02-06 2012-11-01 非可逆回路素子
CN201280068557.8A CN104081579B (zh) 2012-02-06 2012-11-01 不可逆电路元件
US14/447,776 US9748624B2 (en) 2012-02-06 2014-07-31 Non-reciprocal circuit element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-022858 2012-02-06
JP2012022858 2012-02-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/447,776 Continuation US9748624B2 (en) 2012-02-06 2014-07-31 Non-reciprocal circuit element

Publications (1)

Publication Number Publication Date
WO2013118355A1 true WO2013118355A1 (ja) 2013-08-15

Family

ID=48947142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078318 WO2013118355A1 (ja) 2012-02-06 2012-11-01 非可逆回路素子

Country Status (4)

Country Link
US (1) US9748624B2 (ja)
JP (1) JP5672394B2 (ja)
CN (1) CN104081579B (ja)
WO (1) WO2013118355A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079792A1 (ja) * 2013-11-29 2015-06-04 株式会社村田製作所 非可逆回路素子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105493341A (zh) * 2013-09-02 2016-04-13 株式会社村田制作所 隔离器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913893B1 (ja) * 1967-09-29 1974-04-03
JP2006050543A (ja) * 2004-07-07 2006-02-16 Hitachi Metals Ltd 非可逆回路素子
WO2012020613A1 (ja) * 2010-08-09 2012-02-16 株式会社村田製作所 非可逆回路素子
WO2012172882A1 (ja) * 2011-06-16 2012-12-20 株式会社村田製作所 非可逆回路素子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1591565C3 (de) 1967-09-29 1975-12-11 Siemens Ag, 1000 Berlin Und 8000 Muenchen Nichtreziproker Vierpol
JPH10327003A (ja) * 1997-03-21 1998-12-08 Murata Mfg Co Ltd 非可逆回路素子及び複合電子部品
CN100555739C (zh) * 2004-08-03 2009-10-28 日立金属株式会社 非可逆电路元件
WO2006080172A1 (ja) * 2005-01-28 2006-08-03 Murata Manufacturing Co., Ltd. 2ポート型非可逆回路素子及び通信装置
JP4665786B2 (ja) 2006-02-06 2011-04-06 株式会社村田製作所 非可逆回路素子及び通信装置
JP4724152B2 (ja) * 2006-08-31 2011-07-13 株式会社エヌ・ティ・ティ・ドコモ 非可逆回路素子
JP4858542B2 (ja) 2007-01-18 2012-01-18 株式会社村田製作所 非可逆回路素子
JP4692679B2 (ja) * 2007-06-22 2011-06-01 株式会社村田製作所 非可逆回路素子
CN201117776Y (zh) * 2007-08-27 2008-09-17 武汉虹信通信技术有限责任公司 增益可调射频衰减器
US7532084B2 (en) * 2007-08-31 2009-05-12 Murata Manufacturing Co., Ltd Nonreciprocal circuit element
JP5024384B2 (ja) * 2008-06-18 2012-09-12 株式会社村田製作所 非可逆回路素子
US8130054B1 (en) * 2008-10-14 2012-03-06 Rf Micro Devices, Inc. Frequency-adjustable radio frequency isolator circuitry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913893B1 (ja) * 1967-09-29 1974-04-03
JP2006050543A (ja) * 2004-07-07 2006-02-16 Hitachi Metals Ltd 非可逆回路素子
WO2012020613A1 (ja) * 2010-08-09 2012-02-16 株式会社村田製作所 非可逆回路素子
WO2012172882A1 (ja) * 2011-06-16 2012-12-20 株式会社村田製作所 非可逆回路素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079792A1 (ja) * 2013-11-29 2015-06-04 株式会社村田製作所 非可逆回路素子
US9634368B2 (en) 2013-11-29 2017-04-25 Murata Manufacturing Co., Ltd. Non-reciprocal circuit element

Also Published As

Publication number Publication date
US9748624B2 (en) 2017-08-29
JPWO2013118355A1 (ja) 2015-05-11
CN104081579B (zh) 2016-02-24
JP5672394B2 (ja) 2015-02-18
US20140340166A1 (en) 2014-11-20
CN104081579A (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5679056B2 (ja) 非可逆回路素子
JP5418682B2 (ja) 非可逆回路素子
EP1772926A1 (en) 2 port type isolator and communication unit
US8253510B2 (en) Non-reciprocal circuit element
JP5843007B2 (ja) 非可逆回路素子
JP5983859B2 (ja) 非可逆回路素子及びモジュール
JP5672394B2 (ja) 非可逆回路素子
JP4724152B2 (ja) 非可逆回路素子
JP5748025B2 (ja) 非可逆回路素子
JP4548384B2 (ja) 非可逆回路素子及び通信装置
JP5655990B2 (ja) 非可逆回路素子
US20170373364A1 (en) Circulator, front-end circuit, antenna circuit, and communication apparatus
JP2012095068A (ja) 非可逆回路素子
JP6152896B2 (ja) 非可逆回路素子
JP5652116B2 (ja) 非可逆回路素子
WO2014112460A1 (ja) 非可逆回路素子
WO2014115595A1 (ja) 非可逆回路素子
JP2012090141A (ja) 非可逆回路素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280068557.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867754

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013557365

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867754

Country of ref document: EP

Kind code of ref document: A1