WO2013109033A1 - 딥 성형용 라텍스 조성물 - Google Patents

딥 성형용 라텍스 조성물 Download PDF

Info

Publication number
WO2013109033A1
WO2013109033A1 PCT/KR2013/000301 KR2013000301W WO2013109033A1 WO 2013109033 A1 WO2013109033 A1 WO 2013109033A1 KR 2013000301 W KR2013000301 W KR 2013000301W WO 2013109033 A1 WO2013109033 A1 WO 2013109033A1
Authority
WO
WIPO (PCT)
Prior art keywords
dip molding
latex
weight
dip
latex composition
Prior art date
Application number
PCT/KR2013/000301
Other languages
English (en)
French (fr)
Inventor
김정은
한정수
여승욱
Original Assignee
(주)엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지화학 filed Critical (주)엘지화학
Priority to CN201380003264.6A priority Critical patent/CN104053716B/zh
Priority to JP2014539888A priority patent/JP6006326B2/ja
Priority to US14/355,060 priority patent/US9353243B2/en
Publication of WO2013109033A1 publication Critical patent/WO2013109033A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/02Shutters, movable grilles, or other safety closing devices, e.g. against burglary
    • E06B9/08Roll-type closures
    • E06B9/11Roller shutters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/12Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • C08L9/04Latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0064Producing wearing apparel
    • B29D99/0067Gloves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0077Yield strength; Tensile strength
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/56Operating, guiding or securing devices or arrangements for roll-type closures; Spring drums; Tape drums; Counterweighting arrangements therefor
    • E06B9/68Operating devices or mechanisms, e.g. with electric drive
    • E06B2009/6809Control
    • E06B2009/6818Control using sensors
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • E06B5/10Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes
    • E06B5/11Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes against burglary
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/56Operating, guiding or securing devices or arrangements for roll-type closures; Spring drums; Tape drums; Counterweighting arrangements therefor
    • E06B9/68Operating devices or mechanisms, e.g. with electric drive

Definitions

  • the present invention relates to a latex composition for dip molding and a dip molded nitrile glove prepared therefrom, and more particularly, by including zinc oxide of nanoparticles, the glove making workability is excellent and the 300% modulus is low, so the wearability is excellent and the tensile strength is increased.
  • the present invention relates to a dip molded latex composition having a high strength and a thin tear resistance, and a dip molded nitrile glove prepared therefrom.
  • natural rubber has been mainly used as a raw material for products requiring elasticity, such as industrial gloves, medical gloves, food gloves, balloons, and condoms.
  • natural rubber has recently been replaced by nitrile rubber due to the side effects of serious protein allergy to some users.
  • nitrile rubber has high oil resistance, and thus is widely used in work gloves used in workers dealing with organic solvents, medical gloves, and food gloves.
  • nitrile rubber products are more difficult to penetrate by needles than natural rubber products, so they are suitable for use by medical workers who handle sharp scalpels or needles.
  • glove manufacturers aim to produce thin, yet tear-resistant gloves to increase the productivity of glove production, and they want a deep forming latex to make gloves with high tensile strength. .
  • a dip molding composition for the manufacture of gloves
  • low concentrations of sodium hydroxide, potassium hydroxide, ammonia water may be additionally added to the latex as a pH adjuster to meet the high pH range of about pH 9-11.
  • the pH of the dip molding composition it affects the tensile strength, elongation, touch and the like of the gloves produced.
  • the pH of the dip molding composition is not kept constant in the process of making a glove falls, which is inconvenient to additionally add a pH adjuster.
  • the object of the present invention is good glove manufacturing workability of the dip molding composition while having a low 300% modulus is excellent in wearing comfort, high tensile strength thin well It is to provide a nitrile latex composition for gloves that does not tear.
  • Another object of the present invention is to provide a latex composition for dip molding to increase the efficiency of the glove manufacturing process to maintain a stable pH of the dip molding composition while using a small amount of pH adjuster.
  • the present invention provides a latex composition for dip molding comprising zinc oxide of nanoparticles.
  • 1 is a graph showing the pH change of the latex composition for dip molding according to the present invention.
  • the present invention for achieving the above object is a dip molding latex; And zinc oxide of less than 1500nm; provides a latex composition for dip molding comprising a.
  • the present invention provides a dip molding latex composition and a dip molding nitrile glove prepared using the dip molding latex composition, characterized in that the dip molding latex composition further comprises a vulcanizing agent and a vulcanization accelerator. do.
  • Dip molding latex composition according to the present invention is 100 parts by weight of the latex for dip molding; And 0.1 to 2 parts by weight of zinc oxide of less than 1500 nm.
  • the latex composition for dip molding of the present invention contains 40 to 80% by weight of conjugated diene monomer, 10 to 50% by weight of ethylenically unsaturated nitrile monomer, and 0.1 to 10% by weight of ethylenically unsaturated acid monomer.
  • conjugated diene monomers examples include 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene or isoprene, and the like. It can be used individually or in combination of 2 or more types. Of these, 1,3-butadiene and isoprene are preferable, and 1,3-butadiene is particularly preferably used.
  • the amount of conjugated diene monomer used is 40 to 80% by weight, preferably 45 to 70% by weight of the monomer mixture. If the amount of conjugated diene monomer is less than 40% by weight, the latex resin molded article becomes hard and the touch is bad. On the contrary, when it exceeds 80 weight%, the tensile strength of a latex resin molded article falls.
  • ethylenically unsaturated nitrile monomers examples include acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ -chloronitrile or ⁇ -cyano ethyl acrylonitrile, and the like. It can use combining a species or more. Among them, acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is particularly preferably used.
  • the amount of ethylenically unsaturated nitrile monomer used is 10 to 50% by weight, preferably 15 to 45% by weight of the monomer mixture. If the amount of the ethylenically unsaturated nitrile monomer is less than 10% by weight, the tensile strength of the latex resin molded article is lowered, and if it is more than 50% by weight, the latex resin molded article becomes hard and the touch is bad.
  • the ethylenically unsaturated acid monomers are ethylenically unsaturated acid monomers containing acidic groups such as carboxyl groups, sulfonic acid groups, and acid anhydride groups.
  • acidic groups such as carboxyl groups, sulfonic acid groups, and acid anhydride groups.
  • ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid and fumaric acid.
  • Monomers Polycarboxylic anhydrides such as maleic anhydride and citraconic anhydride; Ethylenically unsaturated sulfonic acid monomers such as styrene sulfonic acid; And ethylenically unsaturated polycarboxylic acid partial ester monomers such as monobutyl fumarate, monobutyl maleate, and mono-2-hydroxypropyl maleate. It is preferable to use an ethylenic unsaturated carboxylic monomer among these, and methacrylic acid is especially preferable. Such ethylenically unsaturated acid monomers may be used in the form of alkali metal salts or ammonium salts. Ethylenic unsaturated acid monomer can be used individually or in combination of 2 or more types.
  • the amount of the ethylenically unsaturated acid monomer used is 0.1 to 10% by weight, preferably 0.5 to 9% by weight, more preferably 2 to 8% by weight of the monomer mixture. If the amount of the ethylenically unsaturated acid monomer is less than 0.1% by weight, the tensile strength of the latex resin molded article is lowered, and if it is more than 10% by weight, the latex resin molded article becomes hard and feels poor.
  • the latex for dip molding of the present invention can be prepared by emulsion polymerization by adding an emulsifier, a polymerization initiator, a molecular weight regulator, and the like to the monomer.
  • anionic surfactant nonionic surfactant, cationic surfactant, amphoteric surfactant, etc.
  • anionic surfactants selected from the group consisting of alkylbenzene sulfonates, aliphatic sulfonates, sulfuric acid ester salts of higher alcohols, ⁇ -olefin sulfonate salts and alkyl ester sulfuric acid ester salts may be particularly preferably used.
  • the amount of the emulsifier is preferably used in an amount of 0.3 to 10% by weight, more preferably 0.8 to 8% by weight, and most preferably 1.5 to 6% by weight, based on the monomer mixture constituting the latex.
  • a radical initiator can be used preferably.
  • inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, hydrogen peroxide; t-butyl peroxide, cumene hydroperoxide, p-mentanehydro peroxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyl peroxide, octanoyl peroxide, dibenzoyl peroxide Organic peroxides such as oxides, 3,5, -trimethylhexanol peroxide and t-butyl peroxy isobutylate; At least one selected from the group consisting of azobis isobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile
  • the activating agent may be selected from the group consisting of sodium formaldehyde, sulfoxylate, sodium ethylenediamine tetraacetate, ferrous sulfate, dextrose, sodium pyrrolate and sodium sulfite.
  • mercaptans such as (alpha) -methylstyrene dimer, t-dodecyl mercaptan, n-dodecyl mercaptan, octyl mercaptan; Halogenated hydrocarbons such as carbon tetrachloride, methylene chloride and methylene bromide; Sulfur-containing compounds such as tetraethyl thiuram disulfide, dipentamethylene thiuram disulfide, and diisopropylquixanthogen disulfide; and the like can be given.
  • molecular weight modifiers may be used alone or in combination of two or more thereof.
  • mercaptans are preferable, and t-dodecyl mercaptan can be used more preferably.
  • usage-amount of a molecular weight modifier changes with the kind, Preferably it is 0.1-2.0 weight%, More preferably, it is 0.2-1.5 weight%, Most preferably 0.3-1.0 weight% with respect to the whole monomer mixture which comprises the said latex to be.
  • additives such as chelating agent, dispersing agent, pH adjusting agent, deoxygenating agent, particle size adjusting agent, anti-aging agent, oxygen scavenger and the like can be added.
  • the method of injecting the monomer mixture constituting the latex is not particularly limited, but a method of simultaneously introducing the monomer mixture into the polymerization reactor, a method of continuously introducing the monomer mixture into the polymerization reactor, a part of the monomer mixture into the polymerization reactor, and the rest Any method of continuously supplying a monomer to the polymerization reactor may be used.
  • the polymerization temperature at the time of the said emulsion polymerization is not specifically limited, Usually, 10-90 degreeC, Preferably it is 25-75 degreeC.
  • the conversion rate at the time of stopping a polymerization reaction becomes like this. Preferably it is 90% or more, More preferably, it is 93% or more.
  • the latex for dip molding can be obtained by removing the unreacted monomer and adjusting the solid content concentration and pH.
  • Solid concentration of the latex for dip molding may be 40 to 50% by weight. Too low solids concentration lowers the efficiency of latex transport, and too high solids concentration may cause an increase in viscosity, which may cause problems with storage stability and the like.
  • zinc oxide of nanoparticles is added at 0.1 to 2 parts by weight.
  • the particle size of zinc oxide is 50 ⁇ 900nm, should be well dispersed with a dispersant.
  • gloves of high tensile strength can be obtained in a small amount.
  • the particle size exceeds 900nm the amount of added nanoparticle zinc oxide must be increased to obtain a certain level of tensile strength, so that the particle size of zinc oxide is less than 900nm.
  • the particle size of the zinc oxide of the nanoparticles is too large may cause a problem that the zinc oxide particles precipitate.
  • the pH of the zinc oxide dispersion liquid of nanoparticles uses 8 or more. If the pH is lower than this, the stability of the latex for dip molding may be broken.
  • a sufficient level of tensile strength can be obtained with only 0.1 to 2% by weight, especially 1.0% by weight. If the amount of nanoparticle zinc oxide is less than 0.1% by weight, the desired level of tensile strength may not be obtained. If the amount of the nanoparticle zinc oxide is more than 2% by weight, excess zinc oxide may settle, causing stability of the composition and excessively stiff gloves. .
  • a predetermined amount of pH regulator is added to the dip molding latex to adjust the pH of the dip molding composition to a range of 9-11.
  • the pH adjusting agent mainly 1-5% aqueous potassium hydroxide solution or 1-5% ammonia water is used.
  • the aqueous ammonia can raise the pH in a smaller amount than the aqueous potassium hydroxide solution, but with time, the width of the dip molding composition is large.
  • the dip molding composition of the present invention may be further formulated with a vulcanizing agent and a vulcanizing accelerator.
  • a vulcanizing agent which is normally used for dip molding
  • sulfur such as powder emulsification, sedimentation sulfur, colloidal sulfur, surface-treated sulfur, and insoluble sulfur
  • the amount of the vulcanizing agent is preferably 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight based on 100 parts by weight of the latex solid content.
  • the vulcanization accelerators are commonly used for dip molding, for example, MBT (2-mercaptobenzothiazole), MBTS (2,2-dithiobisbenzothiozole-2-sulfenamide), CBS (N-cyclohexylbenzothiasole-2-sufenamide), MBS (2- orpholinothiobenzothiazole), TMTM (tetramethylthiuram monosulfide), TMTD (tetramethylthiuram disulfide), ZDEC (zinc diehtyldithiocarbamate), ZDBC (zinc dibutyldithiocarbamate), DPG (diphenylguanidine), DOTG (di-o-tolyguanidine), and the like.
  • MBT 2-mercaptobenzothiazole
  • MBTS 2,2-dithiobisbenzothiozole-2-sulfenamide
  • CBS N-cyclohexylbenzothiasole-2-sufenamide
  • Vulcanization accelerator can be used individually or in combination of 2 or more types.
  • the amount of the vulcanization accelerator to be used is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight based on 100 parts by weight of the latex solid content.
  • the dip molding composition may use subsidiary materials such as pigments, thickeners, chelating agents, dispersing agents, deoxygenating agents, particle size adjusting agents, anti-aging agents and oxygen scavengers.
  • a conventional method can be used, and examples thereof include a direct dipping method, an anode adhesion dipping method, and a Teague adhesion dipping method.
  • an anode adhesion dipping method is preferable because of the advantage that a dip molded article having a uniform thickness can be easily obtained.
  • coagulants include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride, aluminum chloride and the like; Nitrates such as barium nitrate, calcium nitrate and zinc nitrate; Acetates such as barium acetate, calcium acetate and zinc acetate; Sulfates such as calcium sulfate, magnesium sulfate and aluminum sulfate. Of these, calcium chloride and calcium nitrate are preferred.
  • the coagulant solution is a solution in which such coagulant is dissolved in water, alcohol or a mixture thereof.
  • concentration of the coagulant in the coagulant solution is usually 5 to 75% by weight, preferably 15 to 55% by weight.
  • the dip molding mold to which a coagulant is stuck is immersed in the latex composition for dip molding made from the latex resin composition of the present invention, and then the dip molding mold is taken out to form a dip molding layer on the dip molding mold.
  • the water component evaporates first and curing through crosslinking is performed. Subsequently, the dip molding layer crosslinked by heat treatment is peeled off from the dip mold to obtain a dip molded product.
  • a dumbbell-shaped test piece is produced from the obtained dip molded product in accordance with ASTM D-412.
  • the specimen is then pulled at a rate of elongation of 500 mm / min using a UTM (Universal Testing Machine), the tensile strength and elongation at break are measured, and the touch is measured by stress at 300% elongation.
  • UTM Universal Testing Machine
  • Agitator, thermometer, cooler, nitrogen inlet and 10L high pressure reactor equipped with a monomer, emulsifier, and polymerization initiator can be continuously added with nitrogen, followed by 32% by weight of acrylonitrile, 1,4-butadiene 61.5 2 weight part of sodium alkyl benzene sulfonate, 0.5 weight part of t-dodecyl mercaptans, and 140 weight part of ion-exchange water were added with respect to 100 weight part of monomer mixtures of the weight% and 6.5 weight% of methacrylic acid, and it heated up to 40 degreeC.
  • a coagulant solution was made by mixing 22 wt% calcium nitrate, 69.5 wt% water, 8 wt% calcium carbonate, and 0.5 wt% wetting agent (Teric 320 produced by Huntsman Corporation, Australia).
  • the hand-shaped ceramic mold was immersed in this solution for 1 minute, taken out, and dried at 80 ° C. for 3 minutes to apply a coagulant to the hand-shaped mold.
  • the mold to which the coagulant was applied was immersed in the dip molding composition for 1 minute, pulled up, dried at 80 ° C for 1 minute, and then immersed in water or hot water for 3 minutes.
  • the mold was dried at 80 ° C. for 3 minutes and crosslinked at 125 ° C. for 20 minutes.
  • the crosslinked dip molding layer was peeled off from the hand-shaped mold to obtain a dip molded article in the form of a glove.
  • the physical properties of this dip molded article are shown in Table 2.
  • Example 1 1.0 parts by weight of 120 nm zinc oxide was added to the latex prepared in the same manner as in Example 1, followed by stirring for 2 hours. Others were manufactured similarly to Example 1.
  • Zinc oxide of the nanoparticles was not added to the latex prepared in the same manner as in Example 1. Instead of sulfur, 1.5 parts by weight of general zinc oxide (particle size is 1.5 ⁇ 2.0 ⁇ m) was added.
  • Dumbbell-shaped test piece was produced from the obtained dip molded product in accordance with ASTM D-412. Subsequently, the specimen was pulled at a stretching speed of 500 mm / min using a UTM (Universal Testing Machine), and the tensile strength and elongation at break were measured, and the stress at 300% elongation and the stress at 500% elongation were measured. The measurement is shown in Table 2 below.
  • Examples 1 and 2 which are dip molded products using dip latex added with zinc oxide of nanoparticles having a particle size of 50 to 900 nm, are compared to latex for dip molding without adding zinc oxide of nanoparticles. It can be seen that the tensile strength, elongation and physical properties of the stress is excellent.
  • a smaller amount of pH adjusting agent may be used to increase the pH of the dip molding composition, and as shown in FIG. 1, the width of the dip molding composition according to Example 1 is lowered. Less than Comparative Example 2 can be produced stably gloves, can also reduce the cost.
  • the glove manufacturing workability of the dip molding composition is good and 300% modulus is low, the wearing comfort is excellent and the tensile strength is high, even if thin, there is an effect that does not tear well.
  • the pH of the dip molding composition can be stably maintained while using a small amount of the pH regulator, thereby increasing the efficiency of the glove manufacturing process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Gloves (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

본 발명에 의한 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형 니트릴 장갑은 딥 성형용 라텍스에 나노 입자의 산화아연을 포함함으로써 장갑 제작 작업성이 좋으면서 300% 모듈러스가 낮아 착용감이 우수하고 인장강도는 높아 얇아도 잘 찢어지지 않는 효과를 가진다. 또한 pH 조절제의 양을 적게 사용하면서도 딥 성형용 조성물의 pH를 안정적으로 유지할 수 있어 장갑 제작 공정의 효율을 높일 수 있다.

Description

딥 성형용 라텍스 조성물
본 발명은 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형 니트릴 장갑에 관한 것으로서, 더욱 상세하게는 나노 입자의 산화아연을 포함함으로써 장갑 제작 작업성이 좋으면서 300% 모듈러스가 낮아 착용감이 우수하고 인장강도는 높아 얇아도 잘 찢어지지 않는 효과를 가진 딥 성형품 라텍스 조성물, 및 이로부터 제조된 딥 성형 니트릴 장갑에 관한 것이다.
전통적으로 산업용, 의료용, 식품용 장갑 및 풍선, 콘돔 등 신축성을 필요로 하는 제품들의 원료로는 천연고무가 주로 사용되어 왔다. 하지만 최근 천연고무가 일부 사용자들에게 심각한 단백질 알레르기를 일으키는 부작용이 일어남으로 인해 그 재료가 빠르게 니트릴 고무로 대체되어 가고 있는 상황이다. 또한 니트릴 고무는 높은 내유성을 가지고 있어 특히 유기용제를 다루는 작업자에서 사용되는 작업용 장갑이나, 의료용, 식품용 장갑에서 많이 사용되고 있다. 또한, 니트릴 고무 제품은 천연고무제품에 비해 주사 바늘 등에 의해 잘 뚫리지 않는다는 특성을 가지고 있어 날카로운 메스나 주사바늘을 취급하는 의료인들에게 사용이 적합하다.
최근에는 천연고무의 불안정한 수급으로 인해 많은 장갑 제조 회사들이 천연고무 장갑 생산 라인을 니트릴 장갑 생산 라인으로 전환해 나가고 있으며, 안전에 대한 인식이 높아지면서 니트릴 일회용 장갑의 사용이 늘어나고 있는 추세이다.
이런 추세에 맞추어 장갑 제조 회사들은 장갑 생산의 생산성을 높이기 위해 얇으면서도 잘 찢어지지 않는 장갑을 제조하는 것을 목표로 하고 있어, 높은 인장강도의 장갑을 만들 수 있는 딥 성형용 라텍스를 원하고 있는 실정이다.
그러나 인장강도를 높이기 위해 라텍스의 겔을 높이는 경우, 300% 모듈러스 값의 상승으로 장갑 착용시 뻣뻣함을 느낄 수 있다.
따라서 딥 성형용 조성물의 장갑 제작 작업성을 해치지 않으며 300% 모듈러스는 낮아 장갑 착용시의 뻣뻣함은 없고, 인장강도는 높아 얇은 장갑이더라도 잘 찢어지지 않는 장갑을 만드는 기술이 요구되고 있다.
한편, 라텍스를 제조할 때 반응 완료 시점의 pH는 매우 낮기 때문에 pH를 높이기 위해 추가적으로 pH 조절제를 첨가해야 한다. pH 조절제를 다량 투입할 경우 라텍스의 고형분 함량이 떨어져 탈취를 더 실시해야 해 라텍스 제조 원가의 상승을 가져 온다.
또한 장갑 제작을 위해 딥 성형용 조성물을 제작할 경우 pH 9~11 정도의 높은 pH 범위를 맞추기 위해 추가적으로 라텍스에 pH 조절제로서 낮은 농도의 수산화나트륨, 수산화 칼륨, 암모니아수를 첨가하기도 한다. 이렇게 딥 성형용 조성물의 pH에 따라, 제작되는 장갑의 인장강도와 신율, 촉감 등에 영향을 미치게 된다. 그런데 딥 성형용 조성물의 pH는 장갑을 만드는 과정에서 일정하게 유지되지 않고 떨어지게 되는데 이에 추가적으로 pH 조절제를 투입해야 하는 불편함이 따르게 된다.
라텍스 제조 과정에서 pH의 조절과 유지는 장갑의 물성에 영향을 미치는 주요한 요인으로 투입량을 최소화하면서 일정하게 pH를 유지할 수 있으면 생산 공정 상의 비용을 줄일 수 있다.
이에 본 발명에서는 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 딥 성형용 조성물의 장갑 제작 작업성은 좋으면서 300% 모듈러스는 낮아 착용감이 우수하고, 인장강도는 높아 얇아도 잘 찢어지지 않는 장갑용 니트릴 라텍스 조성물을 제공하는 데 있다.
또한 본 발명의 다른 목적은 pH 조절제의 양을 적게 사용하면서도 딥 성형용 조성물의 pH를 안정적으로 유지할 수 있어 장갑 제작 공정의 효율을 높이는 딥 성형용 라텍스 조성물을 제공하기 위한 것이다.
본 발명의 상기 목적은 하기 설명되는 본 발명에 의하여 모두 달성 될 수 있다.
상기 목적을 달성하기 위하여, 본 발명은 나노 입자의 산화아연을 포함한 딥 성형용 라텍스 조성물을 제공한다.
또한, 상기 딥 성형용 라텍스 조성물을 이용하여 제조한 딥 성형 니트릴 장갑을 제공한다.
그리고 pH 조절제의 양을 적게 사용하면서도 딥 성형용 조성물의 pH를 안정적으로 유지할 수 있어 장갑 제작 공정의 효율을 높일 수 있다.
도 1은 본 발명에 의한 딥 성형용 라텍스 조성물의 pH 변화를 도시한 그래프이다.
상기와 같은 목적을 달성하기 위한 본 발명은 딥 성형용 라텍스; 및 1500nm 미만의 산화아연;을 포함하여 이루어지는 것을 특징으로 하는 딥 성형용 라텍스 조성물을 제공한다.
또한, 본 발명은 상기한 딥 성형용 라텍스 조성물에 가황제 및 가황촉진제를 더 포함하여 이루어지는 것을 특징으로 하는 딥 성형용 라텍스 조성물 그리고 상기 딥 성형용 라텍스 조성물을 이용하여 제조한 딥 성형 니트릴 장갑을 제공한다.
이하, 본 발명을 더욱 상세하게 설명하면 다음과 같다.
본 발명에 의한 딥 성형용 라텍스 조성물은 딥 성형용 라텍스 100중량부; 및 1500nm 미만의 산화아연 0.1 내지 2중량부;를 포함하여 이루어지는 것을 특징으로 한다.
본 발명의 딥 성형용 라텍스 조성물은 공액디엔 단량체 40~80중량%, 에틸렌성 불포화 니트릴 단량체 10~50중량%, 에틸렌성 불포화산 단량체 0.1~10중량%를 포함하고 있다.
상기 공액디엔 단량체는 예를 들어 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 1,3-펜타디엔 또는 이소프렌 등을 들 수 있으며, 단독으로 또는 2종 이상을 조합하여 사용할 수 있다. 이들 중 1,3-부타디엔과 이소프렌이 바람직하며, 특별히 1,3-부타디엔이 바람직하게 사용된다.
공액디엔 단량체의 사용량은 단량체 혼합물의 40~80중량%, 바람직하게는 45~70중량%이다. 공액디엔 단량체의 양이 40중량% 미만이면 라텍스 수지 성형품이 딱딱해지고 촉감이 나빠진다. 반대로 80중량%를 초과하면 라텍스 수지 성형품의 인장강도가 저하된다.
상기 에틸렌성 불포화 니트릴 단량체는 아크릴로니트릴, 메타크릴로니트릴, 후마로니트릴, α-클로로니트릴 또는 α-시아노 에틸 아크릴로니트릴 등을 들 수 있으며, 이러한 에틸렌성 불포화 니트릴 단량체는 단독으로 또는 2종 이상을 조합하여 사용할 수 있다. 이들 가운데, 아크릴로니트릴과 메타크릴로니트릴이 바람직하고, 특별히 아크릴로니트릴이 바람직하게 사용된다.
에틸렌성 불포화 니트릴 단량체의 사용량은 단량체 혼합물의 10~50중량%, 바람직하게는 15~45중량%이다. 에틸렌성 불포화 니트릴 단량체의 양이 10중량% 미만이면, 라텍스 수지 성형품의 인장강도가 저하되고, 50중량%를 초과하면 라텍스 수지 성형품이 딱딱해지고 촉감이 나빠진다.
상기 에틸렌성 불포화산 단량체는 카르복실기, 술폰산기, 산무수물기 등의 산성기를 함유하는 에틸렌성 불포화산 단량체로서 예를 들면, 아크릴산, 메타크릴산, 이타콘산, 말레인산, 푸마르산 등의 에틸렌성 불포화 카르본산 단량체; 무수말레산, 무수시트라콘산 등의 폴리 카르본산 무수물; 스티렌 술폰산 등의 에틸렌성 불포화 술폰산 단량체; 푸마르산 모노부틸, 말레인산 모노부틸, 말레인산 모노-2-히드록시 프로필 등의 에틸렌성 불포화 폴리카르본산 부분 에스테르(partial ester) 단량체 등을 들 수 있다. 이들 중 에틸렌성 불포화 카르본산 단량체를 사용하는 것이 바람직하고, 특별히 메타크릴산이 바람직하다. 이러한 에틸렌성 불포화산 단량체는 알칼리 금속염 또는 암모늄염 같은 형태로 사용될 수 있다. 에틸렌성 불포화산 단량체 단독 또는 2종 이상을 조합하여 사용할 수 있다.
에틸렌성 불포화산 단량체의 사용량은 단량체 혼합물의 0.1~10중량%, 바람직하게는 0.5~9중량%, 더욱 바람직하게는 2~8중량%이다. 에틸렌성 불포화산 단량체의 양이 0.1중량% 미만이면, 라텍스 수지 성형품의 인장강도가 저하되고, 10중량%를 초과하면 라텍스 수지 성형품의 딱딱해지고 촉감이 나빠진다.
다음으로 본 발명의 딥 성형용 라텍스의 제조방법을 설명한다.
본 발명의 딥 성형용 라텍스는 상기 단량체에 유화제, 중합개시제, 분자량 조절제 등을 첨가하여 유화 중합하여 제조할 수 있다.
유화제로서는 특별히 한정되진 않지만, 예를 들어 음이온성 계면활성제, 비이온성 계면활성제, 양이온성 계면활성제, 양성계면활성제 등을 사용할 수 있다. 이 중에서 알킬벤젠 술폰산염, 지방족 술폰산염, 고급 알코올의 황산 에스테르염, α-올레핀 술폰산염 및 알킬 에스테르 황산 에스테르염으로 이루어진 군으로부터 선택된 음이온성 계면활성제가 특히 바람직하게 사용될 수 있다. 유화제의 사용량은 상기 라텍스를 구성하는 단량체 혼합물에 대하여 바람직하게는 0.3~10중량%, 보다 바람직하게는 0.8~8중량%, 가장 바람직하게는 1.5~6중량%로 사용된다.
중합개시제로서는 특별히 한정되진 않지만, 라디칼 개시제가 바람직하게 사용될 수 있다. 라디칼 개시제로서는 과황산나트륨, 과황산칼륨, 과황산암모늄, 과인산칼륨, 과산화수소 등의 무기과산화물; t-부틸 퍼옥사이드, 큐멘 하이드로 퍼옥사이드, p-멘탄하이드로 퍼옥사이드, 디-t-부틸 퍼옥사이드, t-부틸쿠밀 퍼옥사이드, 아세틸 퍼옥사이드, 이소부틸 퍼옥사이드, 옥타노일 퍼옥사이드, 디벤조일 퍼옥사이드, 3,5,-트리메틸헥산올 퍼옥사이드, t-부틸 퍼옥시 이소 부틸레이트 등의 유기 과산화물; 아조비스 이소부티로니트릴, 아조비스-2,4-디메틸발레로니트릴, 아조비스시클로헥산카르보니트릴, 및 아조비스 이소 낙산(부틸산)메틸로 이루어진 군으로부터 선택된 1종 이상의 것이며, 이러한 라디칼 개시제 중에서 무기 과산화물이 보다 바람직하고, 이 중에서도 과황산염도 특별히 바람직하게 사용될 수 있다. 중합개시제의 사용량은 상기 라텍스를 구성하는 전 단량체 혼합물에 대하여 바람직하게는 0.01~2중량%, 보다 바람직하게는 0.02~1.5중량%로 포함된다.
활성화제는 소디움포름알데히드, 설폭실레이트, 소디움에틸렌디아민 테트라아세테이트, 황산 제1철, 덱스트로오스, 피롤린산나트륨 및 아황산나트륨으로 이루어진 군으로부터 1종 이상 선택될 수 있다.
분자량 조절제로서는 특별히 한정되진 않지만, 예를 들면, α-메틸스티렌다이머, t-도데실 머캅탄, n-도데실 머캅탄, 옥틸 머캅탄 등의 머캅탄류; 사염화탄소, 염화메틸렌, 브롬화메틸렌 등의 할로겐화 탄화수소; 테트라 에틸 티우람 다이 설파이드, 디펜타메틸렌 티우람 다이 설파이드, 디이소프로필키산토겐 다이 설파이드 등의 황 함유 화합물 등을 들 수 있다. 이러한 분자량 조절제는 단독으로 또는 2종 이상을 조합시켜 사용할 수 있다. 이들 중에서 머캅탄류가 바람직하고, t-도데실 머캅탄이 보다 바람직하게 사용될 수 있다. 분자량 조절제의 사용량은, 그 종류에 따라서 다르지만, 상기 라텍스를 구성하는 전 단량체 혼합물에 대하여 바람직하게는 0.1~2.0중량%, 더욱 바람직하게는 0.2~1.5중량%, 가장 바람직하게는 0.3~1.0중량%이다.
또한 본 발명의 라텍스의 중합 시에, 필요에 따라 킬레이트제, 분산제, pH 조절제, 탈산소제, 입경조정제, 노화방지제, 산소포착제(oxygen scavenger) 등의 부재료를 첨가할 수 있음은 물론이다.
상기 라텍스를 구성하는 단량체 혼합물의 투입 방법은 특별히 한정되지 않고 단량체 혼합물을 중합 반응기에 한꺼번에 투입하는 방법, 단량체 혼합물을 중합 반응기에 연속적으로 투입하는 방법, 단량체 혼합물의 일부를 중합 반응기에 투입하고, 나머지 단량체를 중합 반응기에 연속적으로 공급하는 방법 중 어느 방법을 해도 무방하다.
상기 유화 중합 시 중합 온도는 특별히 한정되진 않지만 보통 10~90℃, 바람직하게는 25~75℃이다. 중합 반응을 정지할 때의 전환율은 바람직하게는 90% 이상, 더욱 바람직하게는 93% 이상이다. 미반응 단량체를 제거하고 고형분 농도와 pH를 조절하여 딥 성형용 라텍스를 얻을 수 있다.
딥 성형용 라텍스의 고형분 농도는 40~50중량%일 수 있다. 너무 낮은 고형분 농도는 라텍스 운송의 효율을 저하하고, 너무 높은 고형분 농도는 점도의 상승을 일으켜 저장안정성 등에 문제가 될 수 있다.
상기 딥 성형용 라텍스 100중량부에 나노 입자의 산화아연을 0.1~2중량부로 첨가한다. 이 때 산화아연의 입자 크기는 50~900nm로서, 분산제로 잘 분산되어 있어야 한다.
나노 입자의 산화아연을 사용할 경우 작은 양만으로는 높은 인장강도의 장갑을 얻을 수 있다. 산화아연의 입자크기는 작을수록 높은 인장강도를 얻을 수 있으나 입자 크기가 작을수록 분산 효율이 떨어져 딥 성형용 조성물의 안정성이 떨어질 수 있으므로 50nm 이상의 산화아연을 사용하도록 한다. 입자 크기가 900nm 초과할 경우는 나노 입자 산화아연의 첨가량은 많아져야 일정 수준의 인장강도를 얻을 수 있으므로 산화아연의 입자크기는 900nm 이하의 것을 사용한다. 또한 나노 입자의 산화아연의 입자크기가 너무 클 경우 산화아연 입자가 침전되는 문제가 발생할 수 있다.
나노 입자의 산화아연 분산액의 pH는 8 이상인 것을 사용한다. pH가 이보다 낮은 경우 딥 성형용 라텍스의 안정성이 깨질 수 있다.
나노 입자의 산화아연을 사용할 경우 0.1~2중량%, 특히 1.0중량%만으로도 충분한 수준의 인장강도를 얻을 수 있다. 나노 입자 산화아연의 양이 0.1중량% 미만일 경우 원하는 수준의 인장강도를 얻을 수 없고 2중량% 초과할 경우에는 여분의 산화아연이 침전하여 조성물의 안정성이 깨질 수 있고 장갑이 지나치게 뻣뻣해 질 수 있다.
딥 성형용 라텍스에 나노 입자 산화아연을 사전에 첨가함으로써 장갑 회사에서 분산된 산화아연을 첨가해야 하는 필요성이 없어지며, 산화아연의 사용으로 인한 침전물의 발생 가능성을 억제할 수 있다.
딥 성형용 조성물을 만들기 위해 딥 성형용 라텍스에 일정량의 pH 조절제를 투입하여 딥 성형용 조성물의 pH를 9~11의 범위로 맞춘다. pH 조절제로는 주로 1~5% 수산화 칼륨 수용액 또는 1~5% 암모니아수를 사용한다. 암모니아수는 수산화 칼륨 수용액 대비 적은 양으로 pH를 올릴 수 있으나 시간이 지날수록 딥 성형용 조성물의 pH가 떨어지는 폭이 크다.
pH를 조절한 본 발명의 딥 성형용 조성물은 가황제 및 가황촉진제를 더 배합할 수 있다.
가황제로는 딥 성형에 통상 사용되는 것으로서, 예를 들면 분말 유화, 침강 유황, 콜로이드 유황, 표면처리 유황, 불용성 유황 등의 유황이 바람직하다. 가황제의 사용량은 라텍스 고형분 100중량부에 대하여 바람직하게는 0.1~10중량부, 더욱 바람직하게는 1~5중량부이다.
가황촉진제로는 딥 성형에 통상 사용되는 것으로서, 예를 들면 MBT (2-mercaptobenzothiazole), MBTS(2,2-dithiobisbenzothiozole-2-sulfenamide), CBS (N-cyclohexylbenzothiasole-2-sufenamide), MBS (2-orpholinothiobenzothiazole), TMTM (tetramethylthiuram monosulfide), TMTD (tetramethylthiuram disulfide), ZDEC (zinc diehtyldithiocarbamate), ZDBC (zinc dibutyldithiocarbamate), DPG (diphenylguanidine), DOTG (di-o-tolyguanidine) 등이 바람직하다. 가황촉진제는 단독 또는 2종 이상을 조합하여 사용할 수 있다. 가황촉진제의 사용량은 라텍스 고형분 100중량부에 대하여 바람직하게는 0.1~10중량부, 더욱 바람직하게는 0.5~5중량부이다.
또한 딥 성형용 조성물은 필요에 따라 안료, 증점제, 킬레이트제, 분산제, 탈산소제, 입경조정제, 노화방지제, 산소포착제(oxygen scavenger) 등의 부재료를 사용할 수 있다.
딥 성형용 조성물을 이용하여 딥 성형품을 제조하는 방법으로서 통상의 방법을 사용할 수 있고, 예를 들면 직접 침지법, 양극(anode) 응착 침지법, 티그(Teague) 응착 침지법 등을 들 수 있다. 이들 중에서 균일한 두께의 딥 성형품을 쉽게 얻을 수 있다는 장점 때문에 양극 응착 침지법이 바람직하다.
이하, 본 발명의 라텍스 조성물을 이용하여 딥 성형품을 제조하는 방법에 대하여 상세하게 설명한다.
(a) 손 모양의 딥 성형틀을 응고제 용액에 담가 딥 성형틀의 표면에 응고제를 부착시키는 단계
응고제의 예로서는 바륨 클로라이드, 칼슘 클로라이드, 마그네슘 클로라이드, 징크 클로라이드 및 알루미늄 클로라이드 등과 같음 금속 할라이드(halide); 바륨 나이트레이트, 칼슘 나이트레이트 및 징크 나이트레이트와 같은 질산염; 바륨 아세테이트, 칼슘 아세테이트 및 징크 아세테이트와 같은 아세트산염; 칼슘 설페이트, 마그네슘 설페이트 및 알루미늄 설페이트와 같은 황산염 등이 있다. 이들 중 칼슘 클로라이드와 칼슘 나이트레이트가 바람직하다.
응고제 용액은 상기와 같은 응고제를 물, 알코올 혹은 그 혼합물에 녹인 용액이다. 응고제 용액 내의 응고제의 농도는 보통 5~75중량%, 바람직하게는 15~55중량%이다.
(b) 응고제가 부착된 딥 성형틀을 본 발명의 라텍스 수지 조성물에 침지하여 딥 성형층을 형성시키는 단계
응고제를 부착시킨 딥 성형틀을 본 발명의 라텍스 수지 조성물로 만든 딥 성형용 라텍스 조성물에 침지하고, 그리고 나서 딥 성형틀을 꺼내어 딥 성형틀에 딥 성형층을 형성시킨다.
(c) 딥 성형틀에 형성된 딥 성형층을 가열 처리하여 라텍스 수지를 가교시키는 단계
상기 가열 처리시에는 물 성분이 먼저 증발하고 가교를 통한 경화가 행해진다. 뒤이어, 가열 처리에 의하여 가교한 딥 성형층을 딥 성형틀로부터 벗겨내어 딥 성형품을 얻는다.
(d) 얻어진 딥 성형품의 물리적 성질 측정하는 단계
얻어진 딥 성형품으로부터 ASTM D-412에 준하여 덤벨 형상의 시험편을 제작한다. 뒤이어 이 시험편을 UTM (Universal Testing Machine)을 이용하여 신장속도 500mm/분으로 끌어당기고, 파단시의 인장 강도 및 신율을 측정하고 신장율이 300%일 때의 응력으로 촉감을 측정한다. 인장 강도와 신율은 높을수록 딥 성형품의 품질이 우수하고 신장율이 300%일 때의 응력 값이 낮을수록 딥 성형품의 촉감이 좋아져 품질이 우수하다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
실시예 1: 딥 성형용 라텍스의 제조
교반기, 온도계, 냉각기, 질소가스의 인입구 및 단량체, 유화제, 중합반응 개시제를 연속적으로 투입할 수 있도록 장치된 10L 고압 반응기를 질소로 치환한 후, 아크릴로니트릴 32중량%, 1,4-부타디엔 61.5중량%, 메타크릴산 6.5중량%의 단량체 혼합물 100중량부에 대하여 알킬 벤젠 술폰산 나트륨 2중량부, t-도데실 머캅탄 0.5중량부 및 이온교환수 140중량부를 투입하고 40℃까지 승온시켰다. 승온한 후 중합개시제인 과황산칼륨 0.3중량부를 넣고 전환율이 95%에 이르면 소디움 디메틸 디티오 카바메이트 0.1중량부를 투입하여 중합을 정지시켰다. 탈취공정을 통하여 미반응 단량체를 제거하고 암모니아수, 산화방지제, 소포제 등을 첨가하여 고형분 농도 42%와 pH 8.0의 라텍스를 얻었다.
상기 라텍스 100중량부에 입자크기가 120nm인 산화아연 0.7중량부를 첨가하여 2시간 동안 교반하였다.
딥 성형용 조성물의 제조
상기 라텍스에 유황 1중량%, ZDBC 0.5중량% 및 3% 수산화칼륨 용액 및 적정량의 2차 증류수를 더하여 고형분 농도 20%, pH 10.0의 딥 성형용 조성물을 얻었다. 이 때 pH를 10까지 올리는데 필요한 수산화칼륨 수용액의 당량을 표 1에 표시하였다. 또한 pH 10의 딥 성형용 조성물의 pH 변화를 도 1에 표시하였다.
딥 성형용 조성물의 제조
상기 라텍스에 유황 1중량%, ZDBC 0.5중량% 및 3% 수산화칼륨 용액 및 적정량의 2차 증류수를 더하여 고형분 농도 20%, pH 10.0의 딥 성형용 조성물을 얻었다.
딥 성형품 제조
22중량%의 칼슘 나이트레이트, 69.5중량%의 물, 8중량%의 칼슘 카보네이트, 0.5중량%의 습윤제(wetting agent) (Teric 320 produced by Huntsman Corporation, Australia)를 혼합하여 응고제 용액을 만들었다. 이 용액에 손 모양의 세라믹 몰드를 1분간 담그고, 끄집어 낸 후 80℃에서 3분간 건조하여 응고제를 손 모양의 몰드에 도포하였다.
다음에 응고제가 도포된 몰드를 상기의 딥 성형용 조성물에 1분간 담그고, 끌어올린 뒤, 80℃에서 1분간 건조한 후 물 또는 온수에 3분간 담갔다. 다시 몰드를 80℃에서 3분간 건조한 후 125℃에서 20분간 가교시켰다. 가교된 딥 성형층을 손 모양의 몰드로부터 벗겨내어 장갑 형태의 딥 성형품을 얻었다. 이 딥 성형품의 물성을 표 2에 나타내었다.
실시예 2
상기 실시예 1과 동일하게 제조된 라텍스에 120nm의 산화아연 1.0중량부를 첨가하여 2시간 동안 교반하였다. 그 외에는 실시예 1과 동일하게 제조하였다.
비교예 1
상기 실시예 1과 동일하게 제조된 라텍스에 1.05㎛의 산화아연 1.0중량부를 첨가하여 2시간 동안 교반하였다.
비교예 2
상기 실시예 1과 동일하게 제조된 라텍스에 나노 입자의 산화아연을 첨가하지 않았다. 대신 유황 첨가 시에 일반 산화아연(입자 사이즈는 1.5~2.0㎛) 1.5중량부를 첨가하였다.
[실험예]
* 얻어진 딥 성형품으로부터 ASTM D-412에 준하여 덤벨 형상의 시험편을 제작하였다. 뒤이어 이 시험편을 UTM(Universal Testing Machine)을 이용하여 신장속도 500mm/분으로 끌어당기고, 파단시의 인장 강도 및 신율을 측정하고 신장율이 300%일 때의 응력, 신장율이 500%일 때의 응력을 측정하여 하기 표 2에 기재하였다.
* 교반한 라텍스를 3일 동안 교반하지 않고 가만히 둔 후 침전물이 발생하는지 관찰하였다. 실시예 1 및 2의 딥 성형용 라텍스와 비교예 1 및 2의 라텍스의 침전물 발생 여부를 표 2에 표기하였다. 침전물이 있으면 ○, 없으면 X로 표시하였다.
* 덤벨 형상의 시험편을 100℃의 오븐에서 22시간 동안 보관한 후 마찬가지 방법으로 물성을 측정하여 에이징 후의 물성을 얻었고, 하기 표 3에 기재하였다.
표 1 딥 성형용 조성물의 pH를 10으로 맞추는데 필요한 KOH의 당량
실시예 1 비교예 2
나노 산화아연 + KOH 일반 산화아연 + KOH
1.53 2.36
표 2
인장강도(MPa) 신율(%) 300%에서의 응력(MPa) 500%에서의 응력(MPa) 침전 발생
실시예 1 39.8 603 5.45 16.9 X
실시예 2 43.4 587 6.29 21.7 X
비교예 1 - - - -
비교예 2 41.8 555 7.80 29.7
표 3
인장강도(MPa) 신율(%) 300%에서의 응력(MPa) 500%에서의 응력(MPa)
실시예 1 37.1 572 6.15 21.1
실시예 2 40.6 563 6.70 25.1
비교예 2 38.0 514 9.08 34.5
상기 표의 결과를 토대로 50~900nm 입자 크기를 가진 나노 입자의 산화아연을 첨가한 딥 성형용 라텍스를 이용한 딥 성형품인 실시예 1 및 2는 나노입자의 산화아연을 첨가하지 않는 딥 성형용 라텍스에 비하여 인장강도, 신율 및 응력의 물성이 우수한 것을 확인할 수 있다. 또한 나노입자의 산화아연을 사용할 경우 딥 성형용 조성물의 pH를 높이기 위해 더 적은 양의 pH 조절제를 사용할 수 있고, 도 1에 도시된 바와 같이 실시예 1에 의한 딥 성형용 조성물의 pH가 떨어지는 폭도 비교예 2보다 적어 안정적으로 장갑을 제조할 수 있고, 비용도 줄일 수 있다.
본 발명에 따르면, 딥 성형용 조성물의 장갑 제작 작업성이 좋으면서 300% 모듈러스는 낮아 착용감이 우수하고 인장강도는 높아 얇아도 잘 찢어지지 않는 효과가 있다.
또한 pH 조절제의 양을 적게 사용하면서도 딥 성형용 조성물의 pH를 안정적으로 유지할 수 있어 장갑 제작 공정의 효율을 높일 수 있다.

Claims (11)

  1. 딥 성형용 라텍스; 및
    1500nm 미만의 산화아연;을 포함하여 이루어지는 것을 특징으로 하는
    딥 성형용 라텍스 조성물.
  2. 제 1항에 있어서,
    상기 딥 성형용 라텍스 100중량부에 대하여 상기 산화아연이 0.1 내지 2중량부로 포함되는 것을 특징으로 하는
    딥 성형용 라텍스 조성물.
  3. 제 1항에 있어서,
    상기 나노 입자의 산화아연의 입자 크기는 50~900nm인 것을 특징으로 하는
    딥 성형용 라텍스 조성물.
  4. 제 1항에 있어서,
    상기 라텍스는 공액디엔 단량체 40~80중량%, 에틸렌성 불포화 니트릴 단량체 10~50중량%, 에틸렌성 불포화산 단량체 0.1~10중량%를 포함하여 이루어지는 것을 특징으로 하는
    딥 성형용 라텍스 조성물.
  5. 제 4항에 있어서,
    상기 공액디엔 단량체는 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 1,3-펜타디엔 및 이소프렌으로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는
    딥 성형용 라텍스 조성물.
  6. 제 1항에 있어서,
    상기 에틸렌성 불포화 니트릴 단량체는 아크릴로니트릴, 메타크릴로니트릴, 후마로니트릴, α-클로로니트릴 및 α-시아노 에틸 아크릴로니트릴로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는
    딥 성형용 라텍스 조성물.
  7. 제 1항에 있어서,
    상기 에틸렌성 불포화산 단량체는 아크릴산, 메타크릴산, 이타콘산, 말레인산, 푸마르산, 무수말레산, 무수시트라콘산, 스티렌 술폰산, 푸마르산 모노부틸, 말레인산 모노부틸 및 말레인산 모노-2-히드록시 프로필로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는
    딥 성형용 라텍스 조성물.
  8. 제 1항에 있어서,
    상기 딥 성형용 라텍스 조성물은 가황제 및 가황촉진제를 더 포함하여 이루어지는 것을 특징으로 하는
    딥 성형용 라텍스 조성물.
  9. 제 8항에 있어서,
    상기 가황제는 딥 성형용 라텍스 100중량부에 대하여 0.1~10중량부인 것을 특징으로 하는
    딥 성형용 라텍스 조성물.
  10. 제 8항에 있어서,
    상기 가황촉진제는 딥 성형용 라텍스 100중량부에 대하여 0.1~10중량부인 것을 특징으로 하는
    딥 성형용 라텍스 조성물.
  11. 제 8항에 의한 딥 성형용 라텍스 조성물로부터 제조된 딥 성형 니트릴 장갑.
PCT/KR2013/000301 2012-01-18 2013-01-15 딥 성형용 라텍스 조성물 WO2013109033A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380003264.6A CN104053716B (zh) 2012-01-18 2013-01-15 用于浸渍成型的胶乳组合物
JP2014539888A JP6006326B2 (ja) 2012-01-18 2013-01-15 ディップ成形用ラテックス組成物
US14/355,060 US9353243B2 (en) 2012-01-18 2013-01-15 Latex composition for dip-forming

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120005493 2012-01-18
KR10-2012-0005493 2012-01-18

Publications (1)

Publication Number Publication Date
WO2013109033A1 true WO2013109033A1 (ko) 2013-07-25

Family

ID=48799415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000301 WO2013109033A1 (ko) 2012-01-18 2013-01-15 딥 성형용 라텍스 조성물

Country Status (6)

Country Link
US (1) US9353243B2 (ko)
JP (1) JP6006326B2 (ko)
KR (1) KR101444577B1 (ko)
CN (1) CN104053716B (ko)
MY (1) MY166638A (ko)
WO (1) WO2013109033A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196740A (ja) * 2014-03-31 2015-11-09 株式会社日本触媒 加熱乾燥用エマルション組成物、加熱乾燥用塗料及び塗膜

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101599583B1 (ko) * 2013-08-29 2016-03-03 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스 조성물 및 이를 포함하는 딥 성형품
CN104957810B (zh) * 2015-06-29 2017-01-11 山东星宇手套有限公司 一种环保型乳胶防滑手套及其制备工艺
CN105054415A (zh) * 2015-09-08 2015-11-18 河北鸿森塑胶科技有限公司 一种食品接触丁腈手套的制作方法
CN106418819A (zh) * 2016-11-15 2017-02-22 中国工程物理研究院材料研究所 一种乳胶手套免烘烤定型的方法
JP7163924B2 (ja) * 2017-09-22 2022-11-01 日本ゼオン株式会社 ラテックス組成物の製造方法
KR102451333B1 (ko) * 2018-10-22 2022-10-06 주식회사 엘지화학 마이크로비드 및 그 제조방법
CN114685922B (zh) * 2020-12-25 2023-06-13 北京化工大学 一种生物基衣康酸酯橡胶手套及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566435B1 (en) * 1998-10-13 2003-05-20 Lrc Products Limited Elastomeric gloves
JP2003246891A (ja) * 2002-02-27 2003-09-05 Nippon Zeon Co Ltd ディップ成形用組成物およびディップ成形品
KR20080007352A (ko) * 2005-05-13 2008-01-18 킴벌리-클라크 월드와이드, 인크. 천연 고무 특성을 갖는 니트릴 고무 물품
KR20100014945A (ko) * 2007-02-08 2010-02-11 얼리젼스 코포레이션 장갑 코팅 및 제조 방법
KR20100069621A (ko) * 2008-12-16 2010-06-24 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279639A (ja) * 1992-04-02 1993-10-26 Shin Etsu Chem Co Ltd カバーレイフィルム用接着剤組成物
DE19618006A1 (de) 1996-05-04 1997-11-06 Basf Ag Verfahren zur Herstellung von Tauchartikeln
JP3957384B2 (ja) * 1998-01-21 2007-08-15 電気化学工業株式会社 クロロプレンラテックス組成物及び接着剤組成物
JP2002155167A (ja) 2000-11-20 2002-05-28 Denki Kagaku Kogyo Kk ポリクロロプレンラテックス組成物及び水系接着剤
ES2601463T3 (es) * 2002-04-22 2017-02-15 The Procter & Gamble Company Composiciones para la higiene personal que comprenden un material que contiene cinc en una composición tensioactiva acuosa
TWI257918B (en) * 2005-03-29 2006-07-11 Headway Advanced Materials Inc A preparation method for nanometer grade zinc oxide crystalline (zincite) sol
KR100648133B1 (ko) 2005-04-25 2006-11-23 일동제약주식회사 펩티드 데포르밀라제 저해제로서 신규의 히드록사믹 산유도체 및 그 제조방법
US8309063B2 (en) * 2005-06-10 2012-11-13 Amcol International Corporation Stable sunscreen compositions containing zinc oxide
JP4860252B2 (ja) 2005-12-01 2012-01-25 日本エイアンドエル株式会社 ディップ成形用組成物およびディップ成形品
CN101293976A (zh) * 2007-04-25 2008-10-29 中科纳米涂料技术(苏州)有限公司 纳米复合乳胶制品及其制备方法
US8058339B2 (en) * 2007-05-15 2011-11-15 Sumitomo Rubber Industries, Ltd. Rubber composition for tire and pneumatic tire
FR2918269B1 (fr) 2007-07-06 2016-11-25 Oreal Composition de protection solaire contenant l'association d'un polymere semi-cristallin et de particules de latex creuses.
CN101838360A (zh) * 2009-03-19 2010-09-22 上海生大医保股份有限公司 一种聚异戊二烯水性乳液及用来制备手套和相关产品的方法
JP5565833B2 (ja) 2010-02-12 2014-08-06 住友大阪セメント株式会社 集合体粒子の製造方法
JP2012180437A (ja) 2011-03-01 2012-09-20 Denki Kagaku Kogyo Kk ポリクロロプレンラテックス組成物
CN103717663B (zh) * 2011-07-25 2016-01-20 电化株式会社 聚氯丁二烯胶乳组合物以及浸渍成型品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566435B1 (en) * 1998-10-13 2003-05-20 Lrc Products Limited Elastomeric gloves
JP2003246891A (ja) * 2002-02-27 2003-09-05 Nippon Zeon Co Ltd ディップ成形用組成物およびディップ成形品
KR20080007352A (ko) * 2005-05-13 2008-01-18 킴벌리-클라크 월드와이드, 인크. 천연 고무 특성을 갖는 니트릴 고무 물품
KR20100014945A (ko) * 2007-02-08 2010-02-11 얼리젼스 코포레이션 장갑 코팅 및 제조 방법
KR20100069621A (ko) * 2008-12-16 2010-06-24 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196740A (ja) * 2014-03-31 2015-11-09 株式会社日本触媒 加熱乾燥用エマルション組成物、加熱乾燥用塗料及び塗膜

Also Published As

Publication number Publication date
CN104053716A (zh) 2014-09-17
KR20130085015A (ko) 2013-07-26
JP6006326B2 (ja) 2016-10-12
MY166638A (en) 2018-07-17
US20140323634A1 (en) 2014-10-30
JP2015501366A (ja) 2015-01-15
CN104053716B (zh) 2017-03-08
KR101444577B1 (ko) 2014-10-28
US9353243B2 (en) 2016-05-31

Similar Documents

Publication Publication Date Title
WO2013109033A1 (ko) 딥 성형용 라텍스 조성물
WO2010143912A2 (ko) 딥 성형용 라텍스, 딥 성형용 조성물, 딥 성형물 제조방법 및 그 방법에 의해 제조된 딥 성형물
WO2013077585A1 (ko) 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2019172539A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스 조성물, 이의 제조방법, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 성형된 성형품
WO2010035955A2 (ko) 황 및 가황 촉진제를 포함하지 않는 고무장갑용 라텍스 수지 조성물 및 그 조성물을 이용한 딥 성형물 제조방법
WO2018048121A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2018048122A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2019112312A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스, 이의 제조방법, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 성형된 성형품
WO2015030533A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스 조성물 및 이를 포함하는 딥 성형품
WO2018043984A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2016064173A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품
WO2016105112A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품
WO2014142424A1 (ko) 카르본산 변성 니트릴계 공중합체 조성물 및 이로부터 제조된 딥 성형품
WO2017090882A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스, 이의 제조방법, 이를 포함하는 딥 성형용 라텍스 조성물 및 딥 성형품
KR20120086927A (ko) 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2017069433A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2014142425A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
KR101192276B1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스와 이를 포함하는 딥 성형용 라텍스 조성물
WO2021071078A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스의 제조방법
WO2019112306A1 (ko) 딥 성형품, 딥 성형용 라텍스 조성물 및 이들의 제조방법
WO2021071086A1 (ko) 딥 성형용 라텍스 조성물, 이의 제조방법 및 이를 이용하여 제조된 딥 성형품
WO2020130330A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스 조성물, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 성형된 성형품
WO2017090881A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품
KR102068791B1 (ko) 딥 성형용 라텍스, 딥 성형용 조성물, 딥 성형물 제조방법 및 그 방법에 의해 제조된 딥 성형물
KR101602527B1 (ko) 딥 성형용 조성물의 제조방법, 딥 성형품 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738439

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14355060

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014539888

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13738439

Country of ref document: EP

Kind code of ref document: A1