WO2013089282A4 - 超精密複合加工装置における加工手段の判断方法および超精密複合加工装置 - Google Patents

超精密複合加工装置における加工手段の判断方法および超精密複合加工装置 Download PDF

Info

Publication number
WO2013089282A4
WO2013089282A4 PCT/JP2012/083174 JP2012083174W WO2013089282A4 WO 2013089282 A4 WO2013089282 A4 WO 2013089282A4 JP 2012083174 W JP2012083174 W JP 2012083174W WO 2013089282 A4 WO2013089282 A4 WO 2013089282A4
Authority
WO
WIPO (PCT)
Prior art keywords
processing
electromagnetic wave
workpiece
shape
data
Prior art date
Application number
PCT/JP2012/083174
Other languages
English (en)
French (fr)
Other versions
WO2013089282A1 (ja
Inventor
崇 進藤
内野々 良幸
奥川 公威
浦田 昇
黒木 昭二
成 福岡
篤史 坂口
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280043552.XA priority Critical patent/CN103781590B/zh
Priority to JP2013549349A priority patent/JP5695215B2/ja
Priority to DE112012003797.9T priority patent/DE112012003797B4/de
Priority to US14/343,428 priority patent/US9612594B2/en
Publication of WO2013089282A1 publication Critical patent/WO2013089282A1/ja
Publication of WO2013089282A4 publication Critical patent/WO2013089282A4/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P23/00Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
    • B23P23/04Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass for both machining and other metal-working operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q39/00Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation
    • B23Q39/02Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station
    • B23Q39/021Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like
    • B23Q39/022Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like with same working direction of toolheads on same workholder
    • B23Q39/024Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like with same working direction of toolheads on same workholder consecutive working of toolheads
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49376Select two machining types, milling or turning, complete machining with one tool
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50088Rough and finish machining simultaneously

Definitions

  • the present invention relates to a method of determining processing means in an ultra-precision combined processing apparatus and an ultra-precise combined processing apparatus. More particularly, the present invention relates to an ultra-precision composite processing apparatus for obtaining a microfabricated object from a workpiece by ultra-precision composite processing, and a method of determining the processing means of the apparatus.
  • an object of the present invention is to provide a method of judging a processing means in a processing apparatus suitable for manufacturing a small-sized product (in particular, a fine product provided with a microstructure part), and processing data that can make such judgment. It is an object of the present invention to provide an ultra-precise combined processing apparatus equipped with a system having:
  • the present invention is a method of judging a processing means in an ultraprecision combined processing apparatus which manufactures a minute processed material from a work material, Ultra-precision combined processing equipment Electromagnetic wave processing means (ie, electromagnetic wave processing device) for roughly cutting a workpiece; Precision machining means (i.e.
  • Shape measuring means (ie shape measuring device) Consists of In the judgment of processing means, Information of a three-dimensional shape model of a microfabricated object; Information on the removal volume removed from the work piece in the production of microfabricated products; "Data on removal processing time of electromagnetic wave processing means” and “Data on removal processing time of precision machining means” And determining whether to use an electromagnetic wave processing means or a precision machining means based on the above.
  • three-dimensional CAD data on the final shape of the workpiece is used to preprocess the judgment of the processing means, and in such preprocessing, Is it possible to create an offset surface offset by a specified amount from each surface of the final shape of the workpiece, and implement the electromagnetic wave processing means depending on whether the offset surface is located inside the outermost surface level of the workpiece? Decide whether or not.
  • the area surrounded by the offset surface located inside the outermost surface and the outermost surface level is "provisional electromagnetic wave processed part" It is preferable to extract as
  • the electromagnetic wave processing means it is preferable to judge whether the electromagnetic wave processing means should be implemented by comparing the shape of the obtained "provisional electromagnetic wave processed part" with the processable shape database of the electromagnetic wave processing means.
  • the volume of the obtained "provisional electromagnetic wave processed portion" is calculated, and the calculated volume is required processing time A based on the correlation data A between the removal volume and the removal processing time for the electromagnetic wave processing means
  • the required processing time B is required processing time A based on the correlation data B between the removal volume and the removal processing time for the precision machining means
  • comparing the processing time A with the processing time B It is preferable to determine whether the electromagnetic wave processing means should be implemented.
  • an indirect time condition such as a setup time required for switching from the electromagnetic wave processing means to the precision machining means.
  • the electromagnetic wave processing means may be a laser processing means.
  • a cutting tool selected from the group consisting of a planar processing tool, a shaper processing tool, a fly-cut processing tool, a diamond turning processing tool and a micro milling processing tool may be replaceable.
  • the ultra-precision combined processing apparatus further comprises means (that is, a control device) for controlling the electromagnetic wave processing means or the precision machining means based on the information on the shape of the workpiece measured by the shape measurement means. It may be one.
  • the fine part size of the microfabricated material is in the range of several tens of nm to several mm, that is, about 10 nm to about 15 mm to about 10 nm to about 3 mm (for example, about 10 nm to 500 ⁇ m or 50 nm to 1 ⁇ m, or in some cases 1 nm to 1 ⁇ m ).
  • an optical lens mold or an optical lens As an example of a microfabricated object having such micropart size, there can be mentioned an optical lens mold or an optical lens.
  • the present invention also provides an ultra-precision combined processing apparatus.
  • Such an ultra-precision composite processing apparatus is an ultra-precision composite processing apparatus for producing a microfabricated object from a workpiece, Electromagnetic wave processing means for roughly cutting a workpiece; Precision machining means for performing precision machining on the roughly cut workpiece; and shape measuring means for measuring the shape of the workpiece when using electromagnetic wave machining means and precision machining means
  • the ultra-precision combined processing apparatus further comprises a system including a storage unit in which processing data used for the ultra-precise combined processing apparatus is stored, Data for processing is information on a three-dimensional shape model of a microfabricated product; information on a removal volume removed from a workpiece when manufacturing a microfabricated product; and data on a removal processing time of an electromagnetic wave processing tool and a precision machining tool It is characterized in that it is processing data for determining whether to use the electromagnetic wave processing means or the precision machining means based on the data on the removal processing time.
  • the processing data is three-dimensional CAD data of the final shape of the workpiece, and an offset surface offset by a specified amount from each surface of the final shape is inside the outermost surface level of the workpiece
  • the processing data is used to determine whether to implement the electromagnetic wave processing means depending on whether or not it is positioned.
  • the processing data includes the offset surface located inside the outermost surface level of the workpiece when the offset surface is located and the outermost surface level of the workpiece.
  • the processing data is calculated based on correlation data A between the removal volume and the removal processing time for the electromagnetic wave processing means, by calculating the volume of the provisional electromagnetic wave processing unit and calculating the calculated volume.
  • the processing time A is calculated
  • the processing time B is calculated based on the correlation data B between the removal volume and the removal processing time on the precision machining means, and the electromagnetic wave is compared by comparing the processing time A with the processing time B. It is processing data for determining whether or not to perform the processing means.
  • rough cutting of the material to be processed is performed by non-contact electromagnetic wave processing as primary processing (especially, most of the parts to be processed by such rough cutting are removed and processed), and then a cutting tool which can be replaced as appropriate. Since precision machining is performed as secondary processing, tool life is extended and machining time is significantly reduced. For example, as compared with the conventional method such as the case where a microstructure is manufactured from a difficult-to-cut material using all cutting tools as in the prior art, the present invention can shorten the manufacturing time by about 50 to 80%.
  • the processing shape and processing can be suitably used according to the location, and the processing time can be effectively shortened. That is, based on using the electromagnetic wave processing means as the former stage and using the precision machining means as the latter stage, it is also possible to directly carry out the latter stage precise machining according to the actual machining shape and location. The total processing time can be effectively shortened. This means that the time required from the workpiece to the formation of the target shape is reduced in total.
  • FIG. 1 is a perspective view schematically showing the configuration of the ultra-precision combined processing apparatus.
  • FIG. 2 is a schematic view for explaining the features of ultra-precision composite processing.
  • FIG. 3 is a schematic view and an electron microscope photograph for explaining the size of a minute part of a microstructure.
  • FIG. 4 is a schematic view for explaining the arithmetic mean roughness Ra.
  • FIG. 5 is a perspective view schematically showing an aspect of precision machining means and precision machining.
  • FIG. 6 is a perspective view schematically showing a shaper processing tool and an aspect of the shaper processing.
  • FIG. 7 is a perspective view schematically showing an aspect of fly-cut processing tool / fly-cut processing.
  • FIG. 8 is a perspective view schematically showing an aspect of the diamond turning processing tool and the diamond turning processing.
  • FIG. 9 is a perspective view schematically showing an aspect of the micro milling process tool and the micro milling process.
  • FIG. 10 is a perspective view schematically showing an aspect of vibration cutting.
  • FIG. 11A is a perspective view schematically showing an aspect of the shape measuring means
  • FIG. 11B is a view showing an aspect of constructing data for correction processing.
  • FIG. 12 is a perspective view schematically showing an aspect of computing means configured by a computer.
  • FIG. 13 (a) is a perspective view schematically showing an aspect of measuring the shape, position and the like of the tool tip
  • FIG. 13 (b) is a schematic view of an aspect in which the shape measuring means is movably provided in the vertical direction. It is a perspective view shown.
  • FIG. 13 (a) is a perspective view schematically showing an aspect of measuring the shape, position and the like of the tool tip
  • FIG. 13 (b) is a schematic view of an aspect in which the shape measuring means is movably provided in the vertical direction. It is a perspective view shown.
  • FIG. 14 schematically shows an aspect in which “operation of at least one axis of the table on which the workpiece is placed” and “operation of at least one axis of the precision machining means and / or the electromagnetic wave processing means” are synchronously controlled. It is a perspective view.
  • FIG. 15 is a perspective view schematically showing an aspect in which the angle of the laser incident light with respect to the workpiece is adjustable.
  • FIG. 16 is a view showing an aspect in which the workpiece is movable along an axis in a rotational direction, a horizontal direction and / or a vertical direction (in the illustrated aspect, an aspect in which a maximum of six axes are movable).
  • FIG. 15 is a perspective view schematically showing an aspect in which the angle of the laser incident light with respect to the workpiece is adjustable.
  • FIG. 16 is a view showing an aspect in which the workpiece is movable along an axis in a rotational direction, a horizontal direction and / or a vertical direction (in the illustrated aspect,
  • FIG. 17 is a perspective view schematically showing an aspect in which the vertical plane of the workpiece is processed by adjusting the laser irradiation and / or the direction of the workpiece according to the spread angle and the convergence angle of the laser irradiation. is there.
  • FIG. 18 is a perspective view and a top view schematically showing an aspect in which “rough cutting process by electromagnetic wave processing” and “precise machining” are performed in parallel.
  • FIG. 19 is a flow showing the target range of the present invention.
  • FIG. 20 is a diagram conceptually showing “a removal volume removed from a workpiece in the production of a microfabricated product” and “a three-dimensional shape model of the microfabricated product”.
  • FIG. 21 is a diagram conceptually showing “data regarding removal processing time of electromagnetic wave processing means” and “data regarding removal processing time of precision machining means” (FIG. 21 (a): using electromagnetic wave processing means Correlation data A between “volume of removal processing” and “removal processing time”, FIG. 21 (b): between “volume of removal processing” and “removal processing time” when using precision machining means Correlation data B, FIG. 21 (c): Correlation data between “volume of removal processing” and “removal processing time” in consideration of additional time conditions such as setup time.
  • FIG. 22 is a view schematically showing an aspect of creating an offset surface.
  • FIG. 23 is a view showing an aspect before offset and an aspect of offset face (FIG.
  • FIG. 24 is a graph showing the relationship between the offset amount and the processing time.
  • FIG. 25 sequentially carries out "judgment through offset processing (provisional extraction of the electromagnetic wave processed portion)", “judgement of whether or not the shape can be processed by electromagnetic wave” and “judgement of whether or not the electromagnetic wave processing required amount or more It is the flow when you FIGS.
  • FIG. 26 (a) and 26 (b) are schematic diagrams for explaining "spot diameter" and "corner R". It is the figure which showed typically the structure of the system used for the ultra-precision compound processing apparatus of this invention.
  • FIG. 28 is a perspective view schematically showing an aspect of a grinding tool / grinding process.
  • FIG. 29 is an explanatory view of a mold manufactured in the example (FIG. 29 (a): case A, FIG. 29 (b): case B).
  • the ultra-precision combined processing apparatus is an apparatus for manufacturing a microfabricated object from a workpiece.
  • Electromagnetic wave processing means 10 for roughly cutting a workpiece
  • Precision machining means 30 for performing precision machining on the roughly cut workpiece
  • shape measuring means 50 for measuring the shape of the workpiece when using the electromagnetic wave processing means 10 and the precision machining means 30
  • the ultra-precision combined processing apparatus comprises an electromagnetic wave processing means 10 for rough cutting and a processing material after the rough cutting as “a cutting tool suitable for fine processing (in particular, for fine processing of the roughly cut processing material) Cutting tool), and shape measuring means 50 for measuring the shape of the workpiece during the processing (FIG. 2). See also).
  • ultra-precision composite processing refers to a microstructure (e.g., a minute part size La or Lb of several tens of nm to several mm as shown in FIG. 3) by the processing of "electromagnetic wave” and "precise machine”.
  • the term "ultra-precision” as used herein substantially means an embodiment in which the fine part size La or Lb is precisely processed to such a detail as to be in the range of several tens of nm to several mm as described above.
  • composite substantially refers to an embodiment in which two types of processing of "electromagnetic wave processing” and “precision machining” are combined.
  • the ultra-precision composite processing apparatus 100 has a fine part size in the range of several tens of nm to several mm, that is, about 10 nm to about 15 mm to about 10 nm to about 3 mm (for example, 10 nm to 500 ⁇ m to 50 nm to 1 ⁇ m) It is particularly suitable for the production of microstructures in the range of 10 nm to several tens of ⁇ m, or in some cases 1 nm to 1 ⁇ m).
  • the fine structure may have a complicated polyhedral shape or a curved shape.
  • the material to be processed is a metal material such as cemented carbide, hardened steel, non-ferrous (such as Bs, Cu and / or Al), and prehardened steel.
  • a mold for an optical lens for example, a micro lens array mold
  • a mold for a glass lens for precision injection molding
  • a mold for precision metal processing and the like can be mentioned.
  • products formed from such a mold can also be manufactured directly, and optical lenses (for example, microarray lenses), water repellent plates, mirrors, precision parts, etc.
  • the ultra-precision composite processing apparatus can perform ultra-precision composite processing on an inorganic (glass, metal, etc.) or organic (eg, polymer) material without particular limitations in terms of the material of the workpiece.
  • the electromagnetic wave processing means 10 of the ultra-precise combined processing apparatus 100 is for roughly cutting the material to be processed.
  • the term "roughing" as used herein means that the portion of the workpiece to be removed is roughly removed.
  • 70% by volume to 95% by volume, preferably 80% by volume to 95% by volume, and more preferably 90% by volume to 95% by volume of the portion of the workpiece to be removed is substantially removed. I mean.
  • the “electromagnetic wave processing means” is a means for heating and removing the workpiece using waves or light of a frequency of 10 kHz to 500 kHz.
  • a laser processing means is preferable, and therefore, it is preferable that the ultra-precise combined processing apparatus 100 includes a laser oscillator capable of irradiating a laser to a workpiece.
  • the electromagnetic wave processing means 10 is a laser processing means, a solid laser, a fiber laser, a gas laser or the like is preferable as the type of laser used.
  • the precision machining means 30 of the ultra-precise combined machining apparatus 100 is for precisely machining the material roughly cut by the electromagnetic wave processing means 10.
  • the term "precision processing” as used herein substantially means processing to obtain a desired microstructure by subjecting the roughly cut material to be cut in the nm order (for example, about 10 nm to 5000 nm or 50 nm to 1000 nm). To mean. Particularly preferably, such “precise processing” results in obtaining a microstructure having a surface roughness Ra of several nm to several hundreds nm (eg, about 2 nm to about 200 nm).
  • surface roughness Ra refers to arithmetic mean roughness, and a roughness curve as shown in FIG.
  • a cutting tool selected from the group consisting of a planar processing tool, a shaper processing tool, a fly-cut processing tool, a diamond turning processing tool and a micro milling processing tool be freely replaceable ( See Figure 5).
  • tools for at least one process, preferably at least two processes selected from the group consisting of planarizing, shaper processing, fly cutting, diamond turning and micro milling can be performed It is removably provided to the precision machining means 30.
  • a cutting tool selected from the group consisting of a shaper processing tool, a fly cutting processing tool, a diamond turning processing tool and a micro milling processing tool is replaceable.
  • the precision machining means 30 includes a slide base 31 capable of sliding in the horizontal direction, a vertical axis movable motor 32, a processing head 33, etc.
  • a fly-cut processing tool, a diamond turning processing tool, a micro milling processing tool, and the like are provided on the processing head 33 so as to be freely replaceable.
  • various processing tools may be attached to a processing head, a feed mechanism, a table or a spindle by screwing or fitting, or various processing tools previously mounted on a processing head may be processed. It may be selectively movable and movable to a possible state.
  • Planar processing tool A cutting tool for performing so-called “planar processing” (planing). That is, the planar processing tool is a cutting tool for shaving a workpiece to create a flat surface. Typically, using a bide as a planar processing tool, planar cutting can be performed by intermittently sending a cutting tool in a direction perpendicular to the movement direction of the table while moving the table on which the workpiece is attached horizontally.
  • Shaper processing tool A cutting tool for carrying out so-called “shaper processing” (mold cutting and shaping).
  • the shaper processing tool 34 is a cutting tool for shaving a workpiece and mainly creating a non-planar portion (for example, a groove or the like) (see FIG. 6).
  • a die is used as a shaper processing tool, and a cutting tool is brought into contact with a work piece while reciprocatingly sending a table on which the work material is attached in a direction perpendicular to the movement of the tool. ⁇
  • Fly-cutting tool A cutting tool for carrying out so-called "fly processing”.
  • a rotary tool is used as the fly-cut processing tool 35, and cutting of the work material is carried out by sending it to the work material (especially the work material fixed in position) while rotating the tool (Fig. 7).
  • Diamond turning processing tool A cutting tool for performing so-called “SPDT (Single Point Diamond Turning)" or “super precision turning processing”.
  • SPDT Single Point Diamond Turning
  • Micro milling tool A cutting tool for carrying out milling such as "micro-milling”.
  • a small-diameter rotary tool for example, a diamond rotary tool
  • the tip shape is transferred or various shapes are formed by bringing it into contact with the workpiece while rotating it. 9).
  • the precision machining means 30 may further function as a vibration cutting means. That is, the above-mentioned cutting tool can be attached to a vibration, for example, the cutting tool is connected with the drive piezoelectric element etc.
  • vibration cutting effects such as “the cutting resistance is reduced” / "the component cutting edge does not adhere” / "the distortion due to heat can be suppressed” are exhibited.
  • the vibration cutting particularly, “ultrasonic elliptical vibration cutting” is preferable. By making the cutting edge of the cutting tool elliptically vibrate (see FIG. 10), cutting resistance is significantly reduced, burr and chatter vibration suppression, and chip thickness Can be effectively reduced.
  • the ultra-precision combined processing apparatus 100 comprises shape measuring means 50.
  • the shape measuring means 50 is means for measuring the shape of the workpiece on the machine when the electromagnetic wave processing means 10 and the precision machining means 30 are used.
  • shape measurement substantially means to measure the shape and / or position of the workpiece at least one time before, during, and after processing.
  • the shape measuring means for example, “shooting means” and “detector using laser light” can be mentioned.
  • shooting means include CCD cameras, infrared cameras, near-infrared cameras, mid-infrared cameras, X-ray cameras, etc.
  • detectors using laser light laser microscopes (Laser microscope), a laser interferometer, etc.
  • a measurement method using a white light interference method, etc. may be mentioned.
  • “measurement means by contact” is also preferably used, and the shape measurement means may be a measurement device (three-dimensional measurement device) using a probe (eg, scanning with a scanning tunneling microscope, atomic force microscope, etc. Type probe microscope).
  • the shape measuring means 50 preferably comprises a combination of "image taking means 52" and “detector 54 utilizing laser light”.
  • the position of the workpiece is confirmed by the image pickup means 52, and then the shape of the workpiece (especially the shape of the portion to be processed) is confirmed by the "detector 54 using laser light”. Is preferred.
  • the ultra-precise combined machining apparatus is a unit (for example, "calculation unit” described later) for controlling the electromagnetic wave processing unit or the precision machining unit based on the information of the shape of the workpiece measured by the shape measuring unit. It has. To illustrate this, when performing electromagnetic wave processing and / or precision machining, the shape and / or position etc. of the workpiece are measured in real time by the shape measuring means 50, and the measured data is used in the processing means.
  • data for correction processing is constructed based on "data measured by shape measuring means” and “data of processing path of electromagnetic wave processing means and / or precision machining means obtained from model of microfabricated object", Based on the correction processing data, electromagnetic wave processing and / or precision machining is performed (see FIG. 11B). It is preferable that the ultra-precise combined processing apparatus 100 has an operation means for constructing such correction processing data.
  • the control means such as the arithmetic means may be constituted by the computer 90, and is constituted by a computer provided with at least a CPU and a primary storage unit and a secondary storage unit.
  • the difference between “data of processing path of electromagnetic wave processing means and / or precision machining means obtained from model of microfabricated object” in storage unit of such computer is compared with “data measured by shape measuring means”
  • Data for correction processing can be obtained by calculating (for example, the material / deformation (error) relationship is stored as a database by measuring the shape of the workpiece during or after processing.
  • a database for correction processing may be automatically constructed).
  • the processing path (especially the path for complex processing) of the electromagnetic wave processing means and / or the precision machining means can be automatically generated by numerical calculation from the model of the microfabricated object and the shape of the workpiece. It may be one.
  • the shape measuring means 50 may be measured by the shape measuring means 50 (see, for example, FIG. 13A). Even in such a case, the measured data and information are fed back to the electromagnetic wave processing means 10 and the precision machining means 30, and are utilized for performing desired electromagnetic wave processing and / or precision machining. Further, as shown in FIG. 13B, the shape measuring means 50 may be provided movably in the vertical direction for measurement on the machine.
  • the ultra-precision combined processing apparatus 100 can be realized in various aspects. A particularly preferred embodiment is illustrated.
  • the ultra-precision combined machining apparatus synchronously controls the movement of at least one axis of the table on which the workpiece is placed and the movement of at least one axis of the precision machining means and / or the electromagnetic wave processing means. It further comprises a control unit. That is, as shown in FIG. 14, the motion of at least one direction of the table 85 on which the workpiece is placed is controlled, and the motion of at least one direction of the precision machining means 30 and / or the electromagnetic wave processing means 10 And a controller capable of controlling Such a control unit may be included in the above-described calculation means, and may be configured by, for example, the computer 90 (see FIG. 12). By including such a control unit in the ultra-precision combined processing apparatus, it is possible to further shorten the processing time.
  • the table 85 on which the workpiece 80 is placed and / or the laser processing means 15 are movable, and the laser incident light 15a of the laser processing means 15 on the workpiece 80
  • the angle of is adjustable. This makes it possible to more suitably produce a microfabricated product of any shape.
  • Various movable mechanisms e.g., for example, FIG. 16
  • the table may be movable to tilt.
  • the movability of the laser processing means 15 is preferably provided with various movable mechanisms so that the laser head or the like can move, for example, in the rotational direction, horizontal direction and / or vertical direction.
  • the direction of the laser irradiation and / or the workpiece is adjusted in accordance with the spread angle ⁇ ′ and the focusing angle ⁇ of the laser irradiation, the vertical surface 80 a of the workpiece 80 (or a surface close to the vertical surface or a taper angle It becomes possible to process small faces) (see FIG. 17).
  • the laser processing means includes a plurality of laser oscillators having different laser wavelengths. That is, the ultra-precise combined processing apparatus is equipped with a plurality of laser devices, and the optimum laser wavelength can be selected according to the material of the workpiece. This increases the degree of freedom of the material of the workpiece. For example, when a microlens array mold is manufactured as a microfabricated object, a laser device generating a laser with a wavelength of 500 nm to 1100 nm and a laser device generating a laser with a wavelength of 200 nm to 400 nm are provided. Is preferred.
  • a laser device with a wavelength of 300 nm to 1100 nm and a pulse width of several tens ps to several hundreds fs is mounted. It may be
  • the “roughing by electromagnetic wave processing means” and “precision processing by precision machining” may be performed substantially in parallel. That is, the roughing process by electromagnetic wave processing and the precision machining may be performed substantially simultaneously. More specifically, as shown in FIG. 18, the rough cutting by electromagnetic wave processing is performed on a part A of the work material 80, and the other part B of the work material 80 already rough cut is Precision machining may be performed (as illustrated, for example, simultaneous machining may be performed through rotation of the worktable 85).
  • the present invention relates to a method of determining processing means suitable for the above-described ultra-precision combined processing apparatus 100. Specifically, it is determined whether to use the electromagnetic wave processing means or the precision machining means according to the actual processing shape and processing position.
  • the scope of the present invention is shown in FIG. As can be seen from FIG. 19, the determination of the processing method of the present invention is made prior to the production of a microfabricated product.
  • information on a three-dimensional shape model of a microfabricated object information on a removal volume to be removed from a workpiece in manufacturing a microfabricated object, and "data on removal processing time of electromagnetic wave processing means" Whether to use an electromagnetic wave processing means or to use a precision machining means is determined based on "data concerning removal processing time of the machining means" or the like.
  • the “information on a three-dimensional shape model of a microfabricated object” is information on a product shape to be obtained by processing using the ultra-precision combined processing apparatus, and is information on a target shape. That is, it is the information of the final shape obtained by removing processing from the workpiece as shown in FIG.
  • the “information on the removal volume removed from the workpiece in the production of the microfabricated product” is information on the volume of the workpiece to be removed by the processing of the ultra-precision combined processing apparatus. That is, as shown in FIG. 20, it is information on the volume of the workpiece to be partially removed when obtaining the “product shape (final shape)” from the “workpiece”.
  • Data on removal processing time of the electromagnetic wave processing means is correlation data on removal processing time of the electromagnetic wave processing means. For example, it may be correlation data A between “volume of removal process” and “time of removal process” when using an electromagnetic wave processing means (see FIG. 21A).
  • “data regarding removal processing time of precision machining means” is correlation data regarding removal processing time of precision machining means. For example, it may be correlation data B between the “volume of removal process” and the “time of removal process” when using the precision machining means (see FIG. 21B).
  • the present invention is characterized by using the information and data as described above to determine whether to use an electromagnetic wave processing means or a precision machining means. Such judgment is preferably made through the use of three-dimensional CAD data. In other words, it is preferable to perform offset processing as a pretreatment for manufacturing a microfabricated object using three-dimensional CAD data of the final shape of the workpiece.
  • an offset surface offset by a specified amount from each surface of the final shape of the workpiece is created, and the offset surface is inside the outermost surface level of the workpiece (the workpiece It is preferable to determine whether or not the electromagnetic wave processing means should be used depending on whether it is located on the outermost surface). That is, an offset surface is obtained by applying an offset of a specified amount ⁇ d to the shape surface of the final product, and a portion capable of electromagnetic wave processing is extracted depending on whether the offset surface protrudes beyond “the outermost surface of the workpiece”. Do.
  • offset refers to a process of shifting the surface by a fixed distance in computer processing (especially three-dimensional CAD), for example, to move the surface of the final shape of the workpiece in the normal direction of the surface. Processing means. From the point of view of actual processing operation, the offset surface is selected, for example, by using CAD software NX made by SIMENS, selecting the surface on the model, and executing the offset surface command installed in the CAD software. You can get it.
  • CAD software NX made by SIMENS, selecting the surface on the model, and executing the offset surface command installed in the CAD software. You can get it.
  • located inside the outermost surface level of the workpiece as used in the present specification refers to a mode located on the area side of the workpiece with respect to the surface level of the workpiece before removal processing.
  • FIGS. 23 (a) to 23 (c) three types as shown in FIGS. 23 (a) to 23 (c) can be considered.
  • a part of the offset surface is located inside the outermost surface level of the workpiece, while the other part is located outside the outermost surface level of the workpiece.
  • the region located inside the outermost surface level of the workpiece is judged as the "electromagnetic wave processable region", while the region located outside the outermost surface level of the workpiece is "non-electromagnetic wave impossible” Area is determined. More specifically, a region surrounded by "the offset surface located inside the outermost surface of the workpiece" and “the outermost surface level of the workpiece” is provisionally referred to as "the electromagnetic wave processable region".
  • a region surrounded by the "offset surface located outside the outermost surface of the workpiece" and the "upper surface level of the workpiece” is determined as a "non-electromagnetic wave processable region”.
  • all of the offset planes are located inside the outermost surface level of the workpiece. In such a case, all areas are tentatively determined as “electromagnetic wave processable areas”.
  • all the offset surfaces are located outside the outermost surface level of a workpiece. In such a case, it is determined that all the areas are "non-electromagnetic wave processable areas”.
  • the judgment as described above is judging whether it is a portion where electromagnetic wave processing can be performed according to "the thickness of the processed material of the portion to be removed", that is, the removal volume amount through offset processing.
  • the offset amount ⁇ d itself can be related to the electromagnetic wave processing conditions used, etc., in view of that point, the electromagnetic wave processing means according to the “processed material thickness and amount to be removed” in view of the electromagnetic wave processing conditions. It can be said that it is determined whether or not to use (see FIG. 24).
  • the determination as to whether or not the shape is capable of electromagnetic wave processing it is preferable to perform the determination based on the processable shape database regarding the electromagnetic wave processing means. That is, it is preferable to determine whether to implement the electromagnetic wave processing means by comparing the shape of the obtained "provisional electromagnetic wave processed portion" with the processable shape database. For example, as shown in FIG. 26, it is determined whether to implement the electromagnetic wave processing means by comparing it with a processable shape database in consideration of so-called “spot diameter” and "corner R".
  • the spot diameter corresponds to the laser beam diameter in the workpiece, but while the workpiece region larger than the spot diameter is judged as "electromagnetic wave processable", the workpiece region smaller than the spot diameter is It is determined that "the electromagnetic wave can not be processed” (see FIG. 26 (a)).
  • the corner R as shown in FIG. 26 (b), for a shape area such as a tapered work material area, which is excessively removed and processed by electromagnetic wave irradiation (for example, laser light irradiation) It is judged that the electromagnetic wave can not be processed.
  • the volume of the extracted "temporary electromagnetic wave processed portion” is calculated, and the calculated volume is processed time required based on the correlation data A between the removed volume and the removed processing time of the electromagnetic wave processing means.
  • the processing time A and the processing time B it is preferable to compare the processing time A and the processing time B to determine whether to perform the electromagnetic wave processing means.
  • additional time conditions such as setup time required for switching from the electromagnetic wave processing means to the precision machining means are also taken into consideration in such determination. That is, in the graph shown in FIG. 21C, if “volume of the provisional electromagnetic wave processed portion” is larger than Vx, the time for electromagnetic wave processing can be shortened in total, while it is smaller than Vx. If the precision machining is directly performed without performing the electromagnetic wave processing, the time can be shortened. This is due to the fact that the ultra-precision combined machining apparatus adopts two means of "electromagnetic wave processing means for roughing" and “precision machining means for precision processing", and the present invention The optimal processing can be performed in consideration of the switching operation of such means.
  • the judgment method of the processing means of the present invention is the above-mentioned "judgment based on offset processing (extraction of provisional electromagnetic wave processed part)", "judgement of whether or not the shape can be processed by electromagnetic wave” It is preferable to sequentially perform “determination of whether or not to That is, it is preferable that the following (a) to (c) be sequentially performed to determine whether the electromagnetic wave processing means should be used or the precision machining means should be used (see FIG. 25). (A) Perform offset processing, and determine whether there is a portion that can be processed by electromagnetic wave, depending on whether the offset surface protrudes beyond “the outermost surface of the workpiece” (provisional extraction of the electromagnetic wave processed portion ).
  • correlation data prepared for each material of the workpiece it is preferable to use correlation data prepared for each material of the workpiece.
  • the ultra-precision combined processing apparatus is Electromagnetic wave processing means for roughly cutting a workpiece; Precision machining means for performing precision machining on a roughly cut workpiece; and shape measuring means for measuring the shape of the workpiece when using electromagnetic wave machining means and precision machining means . Since the "electromagnetic wave processing means", the “precision machining means” and the “shape measurement means” are described above, the description will be omitted to avoid duplication.
  • the ultra-precision combined processing apparatus of the present invention is characterized by further including a system provided with a storage unit in which processing data used for the ultra-precise combined processing apparatus is stored.
  • the processing data included in the system includes information on a three-dimensional shape model of a microfabricated object, information on a removal volume to be removed from a workpiece when producing a microfabricated object, and data on removal processing time of the electromagnetic wave processing means and It is processing data for determining whether to use the electromagnetic wave processing means or the precision machining means based on the data on the removal processing time of the precision machining means.
  • a system 300 in the ultra-precision complex machining apparatus includes a primary storage unit and a secondary storage unit, such as a read only memory (ROM) and a random access memory (RAM).
  • ROM read only memory
  • RAM random access memory
  • a storage unit 310, a central processing unit (CPU) 320, an input device 330, a display device 340, an output device 350, and the like are provided, and these units have a computer form connected with one another via a bus 360.
  • the input device 330 includes a keyboard for inputting various instruction signals, and a pointing device such as a mouse or a touch panel, and the input various instruction signals are transmitted to the CPU 320.
  • the ROM stores various programs to be executed by the CPU 320 (various programs for performing ultra-precision combined machining).
  • the RAM deploys and stores the various programs read out from the ROM in an executable manner, and also temporarily stores various data temporarily generated when the program is executed.
  • the CPU 320 centrally controls the system 300 by executing various programs stored in the ROM.
  • the display device 340 includes a display device (not shown) such as a liquid crystal display (LCD) or a cathode ray tube (CRT), and displays various display information transmitted from the CPU 320.
  • LCD liquid crystal display
  • CRT cathode ray tube
  • the information on the three-dimensional shape model of the microfabricated object in the storage unit 310 such as the ROM and / or the RAM; information on the removal volume removed from the workpiece in manufacturing the microfabricated object; "Processing data for determining whether to use electromagnetic wave processing means or precision machining means" is stored based on data on removal processing time of processing means and data on removal processing time of precision machining means . Then, at the time of execution of the system 300, the super-precise combined processing apparatus program is executed through the utilization of processing data by the CPU, thereby implementing the ultra-precise combined processing apparatus 100 (specifically, the electromagnetic wave processing means Control of whether or not to use precision machining means.
  • the storage unit 310 in the system 300 stores processing data that can make the above-mentioned “determination of the processing method according to the present invention”. That is, “information of a three-dimensional shape model of a microfabricated object; information on a removal volume removed from a workpiece in manufacturing a microfabricated object; data on a removal processing time of the electromagnetic wave processing means and removal processing of the precision machining means Processing data (see FIGS. 19 to 25) for determining whether to use the electromagnetic wave processing means or the precision machining means is stored based on the data regarding time.
  • Such processing data is processing data used in the above-mentioned "determination of the processing method of the present invention", and therefore, may have the following features.
  • ⁇ Offset surfaces offset by a specified amount from each surface of the final shape using the 3D CAD data of the final shape of the workpiece are inside the outermost surface level of the workpiece (within the outermost surface of the workpiece)
  • Processing data for determining whether to implement the electromagnetic wave processing means depending on whether or not it is located in see FIGS. 22, 24 and 25).
  • provisional Processing data for determining whether or not to implement the electromagnetic wave processing means by comparing the shape in the electromagnetic wave processing unit with the processable shape database of the electromagnetic wave processing means (see FIGS. 23, 24 and 25).
  • Calculate the volume of the provisional electromagnetic wave processing part calculate the processing time A based on the correlation data A between the removal volume and the removal processing time for the electromagnetic wave processing means, and calculate the processing time A
  • the processing time B is calculated based on the correlation data B between the removal volume and the removal processing time, and the processing time A is compared with the processing time B to determine whether to implement the electromagnetic wave processing means.
  • Processing data for see FIGS. 21 and 25). Processing data for additionally considering setup time required to switch from the electromagnetic wave processing means to the precision machining means when comparing the processing time A and the processing time B (see FIGS. 21 and 25). ⁇ (a) extraction of the provisional electromagnetic wave processable portion described above, (b) comparison of the provisional electromagnetic wave processed portion shape with the processable shape database, and (c) processing time A and processing time B Processing data to be compared sequentially (see FIG. 25).
  • the storage unit in which the “processing data” is stored is not particularly limited to the ROM / RAM or the like incorporated in the computer, and is a removable disk (for example, an optical disk such as a CD-ROM) or the like. May be That is, “information of a three-dimensional shape model of a microfabricated object; information on a removal volume removed from a workpiece in manufacturing a microfabricated object; data on a removal processing time of the electromagnetic wave processing means and removal processing of the precision machining means The processing data for determining whether to use the electromagnetic wave processing means or the precision machining means may be stored in the removable disk based on the data regarding time.
  • the processing data stored in the removable disk can be read by a removable disk drive (RDD) or the like, stored in the ROM and / or RAM in the system, and used.
  • the storage unit in which the “processing data” is stored may be stored in another similar computer device. That is, “information of a three-dimensional shape model of a microfabricated object; information on a removal volume removed from a workpiece in manufacturing a microfabricated object; data on a removal processing time of the electromagnetic wave processing means and removal processing of the precision machining means "Processing data for determining whether to use electromagnetic wave processing means or precision machining means based on data regarding time" is a computer device other than that directly used in the ultra-precision complex processing apparatus.
  • ROM Read Only Memory
  • processing data transmitted from another computer device via a communication circuit such as a LAN or a removable disk is received or read by the system according to the present invention, whereby the ROM and / or the ROM in the system and / or the like. It can be stored and used in a RAM or the like.
  • First aspect a method for determining a processing device in an ultra-precision combined processing apparatus for producing a microfabricated object from a workpiece, Ultra-precision combined processing equipment An electromagnetic wave processing device for roughly cutting a workpiece; A precision machining device for performing precision machining on a roughly cut workpiece; and a shape measuring device for measuring the shape of the workpiece when using an electromagnetic wave machining device and the precision machining device ,
  • Information of a three-dimensional shape model of a microfabricated object Information on the removal volume removed from the workpiece in the production of the microfabricated object; and using the electromagnetic wave processing device based on the data on the removal processing time of the electromagnetic wave processing device and the data on the removal processing time of the precision machining device
  • Second aspect In the first aspect, pre-processing for judgment of a processing device is performed using three-dimensional CAD data of the final shape of the workpiece, and in such pre-processing, Create an offset surface offset by a specified amount from each surface of the final shape of the workpiece, Whether to implement the electromagnetic wave processing device is determined depending on whether the offset surface is positioned inside the outermost surface level of the workpiece.
  • a method characterized by Third aspect In the second aspect, when there is an offset surface located inside the outermost surface level of the workpiece, the offset surface located inside the outermost surface level and the outermost surface level of the workpiece are surrounded A method characterized in that the region is a provisional electromagnetic wave processing unit.
  • the shape of the provisional electromagnetic wave processing unit is compared with the processable shape database of the electromagnetic wave processing device to thereby judge whether or not the electromagnetic wave processing device is to be implemented. And how to.
  • Fifth aspect In the third aspect or the fourth aspect, the volume of the provisional electromagnetic wave processed portion is calculated, and the calculated volume is based on the correlation data A between the removal volume and the removal processing time for the electromagnetic wave processing device By calculating the processing time A based on the correlation data B between the removal volume and the removal processing time for the precision machining device and calculating the processing time B, the processing time A is compared with the processing time B.
  • a method characterized by Sixth aspect A method according to the fifth aspect, wherein the setup time required to switch from the electromagnetic wave processing device to the precision machining device is additionally taken into consideration when comparing the processing time A and the processing time B.
  • Seventh aspect In the fifth aspect subordinate to the fourth aspect, (a) extraction of a provisional electromagnetic wave processable portion, (b) comparison of a provisional electromagnetic wave processed portion shape with a machinable shape database, And (c) comparing the processing time A and the processing time B sequentially.
  • the ultra-precision composite processing device is an electromagnetic wave processing device or a precision machining device based on the information of the shape of the workpiece measured by the shape measuring device.
  • the method further comprising a controlling device to control.
  • the precision machining device is selected from the group consisting of a planar processing tool, a shaper processing tool, a fly-cut processing tool, a diamond turning processing tool and a micro milling processing tool A cutting tool that can be replaced.
  • the electromagnetic wave processing device is a laser processing device.
  • Eleventh aspect The method according to any one of the first to tenth aspects, wherein the micropart size of the microfabricated product is in the range of 10 nm to 15 mm.
  • Twelfth aspect The method according to the eleventh aspect, wherein the microfabricated product is an optical lens mold or an optical lens.
  • an ultra-precise combined processing apparatus for producing a microfabricated object from a workpiece, An electromagnetic wave processing device for roughly cutting a workpiece; A precision machining device for performing precision machining on a roughly cut workpiece; and a shape measuring device for measuring the shape of the workpiece when using an electromagnetic wave machining device and the precision machining device
  • the ultra-precise combined processing apparatus further comprises a system having a storage unit storing processing data used for the ultra-precise combined processing apparatus, Data for processing is information on a three-dimensional shape model of a microfabricated product; information on a removal volume removed from a workpiece in manufacturing a microfabricated product; and data on a removal processing time of an electromagnetic wave machining device and a precision machining device What is claimed is: 1.
  • a super-precise combined machining apparatus which is processing data for determining whether to use an electromagnetic wave processing device or a precision machining device based on data on removal processing time.
  • the processing data is an outermost surface of the workpiece, with an offset surface offset by a designated amount from each surface of the final shape using three-dimensional CAD data of the final shape of the workpiece
  • What is claimed is: 1.
  • a super-precise combined machining apparatus characterized in that it is processing data for determining whether to implement an electromagnetic wave processing device depending on whether or not it is positioned inside a level.
  • the processing data is surrounded by the offset surface located on the inner side of the workpiece and the outermost surface level when there is an offset surface located inside the outermost surface level of the workpiece.
  • the processing area to be a provisional electromagnetic wave processing unit, and it is processing data for determining whether to execute the electromagnetic wave processing device by comparing the shape in the provisional electromagnetic wave processing unit with the processable shape database of the electromagnetic wave processing device Ultra-precise combined processing equipment with features.
  • the processing data calculates a provisional volume of the electromagnetic wave processed portion, and the calculated volume corresponds to correlation data A between the removal volume and the removal processing time for the electromagnetic wave processing device.
  • An ultra-precise combined processing apparatus characterized in that it is processing data for determining whether to implement an electromagnetic wave processing device.
  • the cutting tool which is selected from the group consisting of planar processing tools, shaper processing tools, fly-cut processing tools, diamond turning processing tools and micro milling processing tools, is freely replaceable.
  • the precision machining means may be further replaceable to the grinding tool. That is, in addition to or instead of the above-mentioned cutting tool, the grinding tool may be replaced.
  • Higher precision precision machining can be realized by using a grinding tool.
  • the surface of the workpiece can be ground by using a grindstone as a grinding tool and bringing the rotationally moved grindstone into contact with the workpiece (see FIG. 28).
  • abrasive material materials that can be used for the grinding wheel include diamond, cubic boron nitride (cBN), alumina and silicon carbide (SiC).
  • cBN cubic boron nitride
  • SiC silicon carbide
  • a resin bonded grindstone, a metal bonded grindstone, a metal resin grindstone, or the like may be used.
  • the precision machining means may be replaceable with respect to a horn for ultrasonic processing, a tool for ultrasonic vibration cutting, a polishing tool for polishing, or a microdrill.
  • a cutting fluid that can exert a lubricating action may be supplied to the cutting edge of the tool for the purpose of improving the sharpness of the cutting tool and reducing tool wear.
  • the present invention can also provide a method of judging a processing step based on an ultra-precision composite processing method for producing a microfabricated object from a workpiece.
  • the method is (I) subjecting the workpiece to electromagnetic wave processing to roughly cut the workpiece; and (ii) subjecting the roughly cut workpiece to precision machining.
  • the shape of the material to be processed is measured, and in the determination method of the processing step, Information of a three-dimensional shape model of a microfabricated object; Information on the removal volume removed from the work piece in the production of microfabricated products; "Data on removal processing time of electromagnetic wave processing means” and “Data on removal processing time of precision machining means” It is determined whether to perform the electromagnetic wave processing (rough cutting process) of the step (i) or the precision machining of the step (ii) based on the above. The same applies to the effects of the method and the contents thereof, and the description is omitted to avoid duplication.
  • Case A A Fresnel lens mold as shown in FIG. 29 (a) was manufactured by carrying out the processing method of the prior art (Comparative Example 1) and the processing method of the present invention (Example 1).
  • Example 1 As an example of the present invention, a material to be processed was roughly cut by laser processing, and the material to be processed after the rough cut was subjected to fine machining to obtain a Fresnel lens mold.
  • the processing outline is shown in Table 2.
  • Example 1 the position measurement of the lens arrangement by the CCD camera as the shape measurement means and the shape measurement by the light interference using the laser light were performed.
  • a surface roughness measurement means it implemented by the white interference measurement which used optical interference.
  • the present invention when obtaining the same Fresnel lens mold, the present invention can reduce the manufacturing time by about 74% over the prior art (see Table 3).
  • Example 2 As an example of the present invention, a workpiece was roughly cut by laser processing, and the workpiece after the rough cutting was subjected to micromachining to obtain a multi-lens lens mold. The outline is shown in Table 5.
  • shape measurement by light interference was performed using laser light as the shape measurement means.
  • a surface roughness measurement means it implemented by the white interference measurement which used optical interference.
  • the present invention when obtaining the same multi-lens mold, the present invention can reduce the manufacturing time by about 82% over the prior art (see Table 6).
  • the manufacturing time can be reduced by 70 to 80% as compared with the case where a microstructure is manufactured from a difficult-to-cut material in the prior art. Therefore, it will be understood that the present invention has a very advantageous effect on the production of microstructures.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Laser Beam Processing (AREA)
  • Numerical Control (AREA)

Abstract

 被加工材から微細加工物を製造する超精密複合加工装置(100)において加工手段を判断する方法であって、超精密複合加工装置(100)が、被加工材を粗削りするための電磁波加工手段(10)、粗削りされた前記被加工材に対して精密加工を施すための精密機械加工手段(30)、ならびに、電磁波加工手段(10)および精密機械加工手段(30)の使用に際して被加工材の形状を測定するための形状測定手段(50)を有して成り、加工手段の判断においては、微細加工物の立体形状モデルの情報、微細加工物の製造に際して被加工材から除去される除去体積に関する情報;ならびに、電磁波加工手段(10)の除去加工時間に関するデータおよび精密機械加工手段(30)の除去加工時間に関するデータに基づいて、電磁波加工手段(10)を用いるか或いは精密機械加工手段(30)を用いるかの判断を行うことを特徴とする、方法。

Description

超精密複合加工装置における加工手段の判断方法および超精密複合加工装置
 本発明は、超精密複合加工装置において加工手段を判断する方法および超精密複合加工装置に関する。より詳細には、本発明は、被加工材から超精密複合加工によって微細加工物を得るための超精密複合加工装置およびその装置の加工手段を判断する方法に関する。
 一般工業分野においては、金属、木材またはプラスチックなどの素材を部分的に削り取って所望の形状を作り上げる工作機械加工が従前より行われている。例えば、旋削、フライス削り、平削りなどの切削加工を実施することによって所望の製品・部品を作り上げることができる。
 複雑な製品・部品を大量生産する必要がある場合、成形用の金型などを機械加工によって製造し、その金型を用いて各種成形品を製造することが一般に行われている。特に近年では、電気および電子機器が、年々小型化および高性能化しており、それらに使用される部品などに対して小型化・高性能化が当然に求められている。従って、そのような小型化・高性能化に対応した各種部品・製品を成形するための金型に対しても、かかる小型化に見合った精度が求められている。
特開平9−225947号公報 特開2001−79854
 しかしながら、近年の小型化に対応した金型製品を製造する場合、従来の機械加工を踏襲するだけでは十分に満足のいく対応ができているとはいえない。例えば、超硬材料や焼入れ鋼などの難削材を切削加工して金型製品を得る場合では、加工具の寿命は短く製造コストの増加が引き起こされるだけでなく、加工時間が長いものとなっていた。このことは、金型製品が小型化ないしは微細化すればするほど顕著となる。従って、現実的には、成形品の形状(即ち、型形状や目的となる商品形状)の変更を余儀なくされる。
 切削加工具の種類を好適に選択することも考えられるものの、切削加工はあくまでも被削材との接触に起因して削り取るものであるので、工具の寿命が短いことには変わりがなく、また、加工に膨大な時間を要してしまう。レーザ加工などの非接触加工を行うことも考えられるが、レーザ加工は、被削材がレーザ光を吸収することに起因した発熱加工に基づくので、高精度な加工に向かない(特に、面粗さ精度・形状精度が要求される微細製品に対しては一般に使用できないと考えられている)。
 ここで、切削加工に際しては複数の加工手段を順次用いることも考えられるが、加工すべき形状によっては、予め決められた加工順序を所定通り実施するだけでは効果的といえない場合が存在する。例えば、加工形状・加工箇所によっては、当初決められた前段の加工手段を実施せず、後段の加工手段を直接用いる方が加工時間の全体的な短縮が可能となる場合が考えられる。しかしながら、このような判断を人が介在して行うとなると煩雑である。加工データを予め作成することも考えられるが、種々の加工形状・加工箇所に依存し得る要素があるために同様に煩雑となり、データ作成に費やす時間は長くなってしまう。
 本発明は上記事情に鑑みて為されたものである。即ち、本発明の課題は、小型製品(特に微細構造部を備えた微細製品)の製造にとって好適な加工装置における加工手段の判断方法を提供すると共に、かかる判断を行うことができる加工用データを有するシステムを備えた超精密複合加工装置を提供することである。
 上記課題を解決するため、本発明では、被加工材から微細加工物を製造する超精密複合加工装置において加工手段を判断する方法であって、
超精密複合加工装置が、
 被加工材を粗削りするための電磁波加工手段(即ち、電磁波加工デバイス);
 粗削りされた被加工材に対して精密加工を施すための精密機械加工手段(即ち、精密機械加工デバイス);ならびに
 電磁波加工手段および精密機械加工手段の使用に際して被加工材の形状を測定するための形状測定手段(即ち、形状測定デバイス)
を有して成り、
加工手段の判断においては、
 微細加工物の立体形状モデルの情報;
 微細加工物の製造に際して被加工材から除去される除去体積に関する情報;ならびに
 「電磁波加工手段の除去加工時間に関するデータ」および「精密機械加工手段の除去加工時間に関するデータ」
に基づいて電磁波加工手段を用いるか或いは精密機械加工手段を用いるかの判断を行うことを特徴とする方法を提供する。
 ある好適な態様では、被加工材の最終形状についての3次元CADデータを用いて加工手段の判断の前処理を行っており、かかる前処理では、
 被加工材の最終形状の各面から指定量オフセットさせたオフセット面を作成し、そのオフセット面が被加工材の最表面レベルよりも内側に位置するか否かによって、電磁波加工手段を実施するか否かを判断する。
 被加工材の最表面レベルよりも内側に位置するオフセット面が存在する場合、その最表面よりも内側に位置するオフセット面と最表面レベルとで囲まれた領域を「暫定的な電磁波加工部」として抽出することが好ましい。
 また、得られた「暫定的な電磁波加工部」については、その形状を、電磁波加工手段の加工可能形状データベースと比較することによって、電磁波加工手段を実施すべきか否かを判断することが好ましい。
 更に、得られた「暫定的な電磁波加工部」の体積を算出し、その算出した体積について、電磁波加工手段に関する除去体積と除去加工時間との相関関係データAに基づき必要とされる加工時間Aを算出すると共に、精密機械加工手段に関する除去体積と除去加工時間との相関関係データBに基づき必要とされる加工時間Bを算出したうえで、かかる加工時間Aと加工時間Bとを比較して電磁波加工手段を実施すべきか否かを判断することが好ましい。尚、加工時間Aと加工時間Bとの比較に際しては、電磁波加工手段から精密機械加工手段へと切替える際に要する段取り時間などの間接的な時間条件を考慮することが好ましい。
 本発明に係る加工手段の判断方法では、上記の抽出および比較を順次行うことが好ましい。つまり、(a)暫定的な電磁波加工可能部の抽出、(b)暫定的な電磁波加工部の形状と電磁波加工の加工可能形状データベースとの比較、および(c)加工時間Aと加工時間Bとの比較を順次行うことが好ましい。
 尚、加工手段の判断方法の対象となる超精密複合加工装置についていえば、電磁波加工手段がレーザ加工手段であってよい。また、精密機械加工手段では、プレーナ加工具、シェーパ加工具、フライカット加工具、ダイヤモンドターニング加工具およびマイクロミーリング加工具から成る群から選択される切削加工具が取替え自在となっていてもよい。
 更に、超精密複合加工装置は、形状測定手段で測定された被加工材の形状の情報に基づき、電磁波加工手段または精密機械加工手段を制御する手段(即ち、制御装置)を更に有して成るものであってもよい。
 微細加工物の微細部寸法は、数十nm~数mmの範囲、即ち、約10nm~約15mmないしは約10nm~約3mm程度(例えば10nm~500μmもしくは50nm~1μm程度、あるいは場合によっては1nm~1μm)となっている。そのような微細部寸法を有する微細加工物を例示すると、光学レンズ用金型または光学レンズを挙げることができる。
 本発明では超精密複合加工装置も提供される。かかる超精密複合加工装置は、被加工材から微細加工物を製造する超精密複合加工装置であって、
 被加工材を粗削りするための電磁波加工手段;
 粗削りされた被加工材に対して精密加工を施すための精密機械加工手段;ならびに
 電磁波加工手段および精密機械加工手段の使用に際して被加工材の形状を測定するための形状測定手段
を有して成り、また
超精密複合加工装置が、その超精密複合加工装置に用いる加工用データが格納された記憶部を備えたシステムを更に有して成り、
 加工用データが、微細加工物の立体形状モデルの情報;微細加工物の製造に際して被加工材から除去される除去体積に関する情報;ならびに、電磁波加工手段の除去加工時間に関するデータおよび精密機械加工手段の除去加工時間に関するデータに基づいて、電磁波加工手段を用いるか或いは精密機械加工手段を用いるかの判断を行うための加工用データとなっていることを特徴とする。
 ある好適な態様では、加工用データは、被加工材の最終形状の3次元CADデータを用いて、最終形状の各面から指定量オフセットさせたオフセット面が被加工材の最表面レベルよりも内側に位置するか否かで電磁波加工手段を実施するか否かの判断を行う加工用データとなっている。
 別のある好適な態様では、加工用データは、被加工材の最表面レベルよりも内側に位置するオフセット面が存在する場合にその内側に位置するオフセット面と被加工材の最表面レベルとで囲まれた領域を暫定的な電磁波加工部とし、かかる暫定的な電磁波加工部における形状を電磁波加工手段の加工可能形状データベースと比較して電磁波加工手段を実施するか否かの判断を行う加工用データとなっている。
 更に別のある好適な態様では、加工用データは、暫定的な電磁波加工部の体積を算出し、その算出した体積について、電磁波加工手段に関する除去体積と除去加工時間との相関関係データAに基づいた加工時間Aを算出すると共に、精密機械加工手段に関する除去体積と除去加工時間との相関関係データBに基づいた加工時間Bを算出し、加工時間Aと加工時間Bとを比較することで電磁波加工手段を実施するか否かの判断を行う加工用データとなっている。
 まず、加工手段の判断方法が活用される超精密複合加工装置の効果についていえば、超硬材料や焼入れ鋼などの難削材から加工する場合であっても、短時間かつ高精度な条件で微細構造物を得ることができる。
 具体的に述べると、一次加工として非接触な電磁波加工でもって被加工材の粗削りを行い(特にかかる粗削りで加工すべき大部分を除去加工する)、その後、適宜交換可能な切削加工具でもって二次加工として精密機械加工を行なうので、工具の寿命は長くなり、かつ、加工時間が大幅に減じられる。例えば、従来技術のように全て切削加工具を用いて難削材から微細構造物を製造する場合等の従来工法と比較すると、本発明では50~80%程度製造時間を短縮することができる。また、そのように電磁波加工による粗削りで加工時間を大幅に短縮しつつも、機上測定を伴って適宜交換可能な加工具で精密機械加工を施すことに起因して面粗さ精度・形状精度などにつき高精度仕様を達成できる。従って、当初意図された成形品の形状(即ち、型形状、目的となる商品形状)を変更することなく金型製品などの小型化・微細化を好適に図ることができ、ひいては、電気および電子機器およびそれらに使用される各種部品の小型化・微細化に好適に対応できる。これは、製造プロセス自体が“障害”となることなく所望の小型微細品を設計できることを意味しており、更に高性能な小型電気・電子機器の設計・開発へとつながる。
 そして、本発明の加工手段の判断方法(また、その判断を行うことができる加工用データが格納された記憶部を備えたシステムを有して成る超精密複合加工装置)では、加工形状・加工箇所に応じて「電磁波加工手段」と「精密機械加工手段」とを好適に使い分けることができ、加工時間を効果的に短縮することができる。つまり、前段として電磁波加工手段を用い、後段として精密機械加工手段を用いることをベースにしつつも、実際の加工形状・加工箇所に応じて適宜、後段の精密加工を直接実施することも可能となり、総加工時間を効果的に短縮することができる。これは、被加工材から目的形状作製までの所要時間がトータルとして短縮されることを意味している。
 また、そもそも加工手段の使い分けでは人的判断を介しておらず、その観点でも効率的な加工を実現することができるといえる。つまり、本発明に従えば、実際の加工操作時や加工データ作成時における人的判断時間や人的作業時間などについて省略・短縮化を図ることが可能となる。
図1は、超精密複合加工装置の構成を模式的に示す斜視図である。 図2は、超精密複合加工の特徴を説明するための模式図である。 図3は、微細構造物の微細部寸法を説明するための模式図および電顕写真図である。 図4は、算術平均粗さRaの説明するための模式図である。 図5は、精密機械加工手段・精密機械加工の態様を模式的に示す斜視図である。 図6は、シェーパ加工具・シェーパ加工の態様を模式的に示す斜視図である。 図7は、フライカット加工具・フライカット加工の態様を模式的に示す斜視図である。 図8は、ダイヤモンドターニング加工具・ダイヤモンドターニング加工の態様を模式的に示す斜視図である。 図9は、マイクロミーリング加工具・マイクロミーリング加工の態様を模式的に示す斜視図である。 図10は、振動切削の態様を模式的に示す斜視図である。 図11(a)は形状測定手段の態様を模式的に示す斜視図であり、図11(b)は補正加工用データを構築する態様を示した図である。 図12は、コンピュータにより構成された演算手段の態様を模式的に示す斜視図である。 図13(a)は工具刃先の形状・位置などを測定する態様を模式的に示す斜視図であり、図13(b)は、形状測定手段が垂直方向に可動自在に設けられた態様を模式的に示す斜視図である。 図14は、「被加工材を載置させるテーブルの少なくとも1軸の動作」と「精密機械加工手段および/または電磁波加工手段の少なくとも1軸の動作」とを同期制御する態様を模式的に示す斜視図である。 図15は、被加工材に対するレーザ入射光の角度が調整可能となっている態様を模式的に示す斜視図である。 図16は、回転方向、水平方向および/または垂直方向の軸に沿って被加工材が可動となる態様(図示する態様では最大6軸可動となる態様)を示す図である。 図17は、レーザ照射の拡がり角や集束角に合わせて、レーザ照射および/または被加工材の向きを調整して被加工材の垂直面の加工を行う態様を模式的に示した斜視図である。 図18は、「電磁波加工による粗削り工程」と「精密機械加工」とを並行して行う態様を模式的に示した斜視図および上面図である。 図19は、本発明の対象範囲を示したフローである。 図20は、「微細加工物の製造に際して被加工材から除去される除去体積」および「微細加工物の立体形状モデル」を概念的に示した図である。 図21は、「電磁波加工手段の除去加工時間に関するデータ」および「精密機械加工手段の除去加工時間に関するデータ」を概念的に示した図である(図21(a):電磁波加工手段を用いた際の“除去加工の体積”と“除去加工時間”との相関関係データA、図21(b):精密機械加工手段を用いた際の“除去加工の体積”と“除去加工時間”との相関関係データB、図21(c):段取り時間などの付加的時間条件も加味した“除去加工の体積”と“除去加工時間”との相関関係データ)。 図22は、オフセット面を作成する態様を模式的に示した図である。 図23は、オフセット前の態様とオフセット面の態様とを示した図である(図23(a):オフセット面の一部が被加工材の最表面よりも内側に位置している態様、図23(b)オフセット面の全てが被加工材の最表面よりも内側に位置している態様、図23(c):オフセット面の全てが被加工材の最表面よりも外側に位置している態様)。 図24は、オフセット量と加工時間との関係を示したグラフ図である。 図25は、「オフセット処理を通じた判断(暫定的な電磁波加工部の抽出)」、「電磁波加工可能な形状か否かの判断」および「電磁波加工必要量以上か否かの判断」を順次実施する際のフローである。 図26(a)および(b)は、“スポット径”および“コーナR”を説明するための模式図である。 本発明の超精密複合加工装置に用いられるシステムの構成を模式的に示した図である。 図28は、研削加工具・研削加工の態様を模式的に示す斜視図である。 図29は、実施例で製造した金型に関する説明図である(図29(a):ケースA、図29(b):ケースB)。
 以下では、図面を参照して本発明をより詳細に説明する。
[超精密複合加工装置]
 まず、本発明のベースとなる超精密複合加工装置の基本構成について説明する。尚、図面に示す各種の要素は、本発明の理解のために模式的に示したにすぎず、寸法比や外観などは実物と異なり得ることに留意されたい。
 超精密複合加工装置は、被加工材から微細加工物を製造するための装置である。図1に模式的に示すように、超精密複合加工装置100は、
 被加工材を粗削りするための電磁波加工手段10;
 粗削りされた被加工材に対して精密加工を施すための精密機械加工手段30;および
 電磁波加工手段10および精密機械加工手段30の使用に際して被加工材の形状を測定するための形状測定手段50
を有して成る。
 超精密複合加工装置は、粗削りするための電磁波加工手段10と、その粗削りされた後の被加工材を「微細加工に好適な切削工具(特に、粗削りされた被加工材の微細加工にとって好適な切削工具)」でもって精密加工するための精密機械加工手段30と、それら加工に際して被加工材の形状を測定するための形状測定手段50と、を備えていることを特徴としている(図2を併せて参照のこと)。
 本明細書において「超精密複合加工」という用語は、「電磁波」と「精密機械」との加工によって微細構造物(例えば図3に示すような微細部寸法LaまたはLbが数十nm~数mmの範囲、即ち、約10nm~約15mmないしは約10nm~約3mm程度、例えば10nm~500μmないしは50nm~1μm程度の数十nm~数十μmの範囲、あるいは場合によっては1nm~1μmの微細構造物)を得る態様に鑑みて使用している。従って、ここでいう「超精密」とは、微細部寸法LaまたはLbが上記のような数十nm~数mmの範囲にあるような細部にいたるまで正確に加工する態様を実質的に意味しており、また、「複合」とは「電磁波加工」と「精密機械加工」との2種類の加工を組み合わせた態様を実質的に指している。
 このように超精密複合加工装置100は、微細部寸法が数十nm~数mmの範囲、即ち、約10nm~約15mmないしは約10nm~約3mm程度(例えば10nm~500μmないしは50nm~1μm程度の数十nm~数十μmの範囲、あるいは場合によっては1nm~1μm)の微細構造物の製造に対して特に適している。微細構造物が複雑な多面形状や曲面形状を有するものであってもかまわない。微細構造物(即ち、本発明の装置で製造できるもの)を例示すれば、被加工材が超硬材料、焼入れ鋼、非鉄(Bs、Cuおよび/またはAlなど)、プリハードン鋼などの金属材料から成る場合、光学レンズ用金型(例えばマイクロレンズアレイ金型)、ガラスレンズ用金型、精密射出成形用金型、精密金属加工用金型などを挙げることができる。また、そのような金型から形成される製品を直接製造することもでき、光学レンズ(例えばマイクロアレイレンズ)、撥水板、ミラー、精密部品などを製造できる(かかる場合、被加工材がプラスチック、アルミ・鋼材などの金属材料、シリコン、ガラス、鉱物、多結晶ダイヤなどの材料から成り得る)。このように超精密複合加工装置は、被加工材の材質の点で特に制限なく、無機質(ガラス、金属など)あるいは有機質(ポリマーなど)の素材に対して超精密複合加工を施すことができる。
 超精密複合加工装置100の電磁波加工手段10は、被加工材を粗削りするためのものである。ここでいう「粗削り」とは、被加工材の除去すべき部分を大まかに除去することを意味している。特に本発明では、被加工材の除去すべき部分の70体積%~95体積%、好ましくは80体積%~95体積%、更に好ましくは90体積%~95体積%を除去することを実質的に意味している。
 「電磁波加工手段」は、10kHz~500kHzの周波数の波または光を利用して被加工材を加熱除去する手段である。かかる「電磁波加工手段」としては、レーザ加工手段が好ましく、それゆえ、超精密複合加工装置100はレーザを被加工材へと照射することができるレーザ発振器を備えていることが好ましい。電磁波加工手段10がレーザ加工手段の場合、用いられるレーザの種類としては、固体レーザ、ファイバーレーザ、気体レーザなどが好ましい。
 超精密複合加工装置100の精密機械加工手段30は、電磁波加工手段10で粗削りされた被加工材を精密加工するためのものである。ここでいう「精密加工」とは、粗削りされた被加工材に対してnmオーダー(例えば10nm~5000nmあるいは50nm~1000nm程度)の切削を施して所望の微細構造物を得る加工のことを実質的に意味している。特に好ましくは、かかる「精密加工」によって、表面粗さRaが数nm~数百nm(例えば2nm~200nm程度)となった微細構造物が得られることになる。尚、ここでいう「表面粗さRa」は、算術平均粗さのことをであって、図4に示すような粗さ曲線(本発明でいうと「微細構造物の表面の断面形状プロファイル」)から、その平均線の方向に基準長さLだけ抜き取り、この抜き取り部分における平均線から測定曲線までの偏差の絶対値を合計して得られる値を平均化したものを実質的に意味している。また、別の表面粗さの観点でいうと、Rzが100nm以下(即ち、Rz=0~100nm)となった微細構造物が得られる態様をも包含している。
 精密機械加工手段30では、プレーナ加工具、シェーパ加工具、フライカット加工具、ダイヤモンドターニング加工具およびマイクロミーリング加工具から成る群から選択される切削加工具が取替え自在となっていることが好ましい(図5参照)。つまり、プレーナ加工、シェーパ加工、フライカット加工、ダイヤモンドターニング加工およびマイクロミーリング加工から成る群から選択される少なくとも1つの加工、好ましくは少なくとも2つの加工が実施できるように、それら加工のための工具が取外し可能に精密機械加工手段30に設けられる。
 特に好ましくは、シェーパ加工具、フライカット加工具、ダイヤモンドターニング加工具およびマイクロミーリング加工具から成る群から選択される切削加工具が取替え自在となっている。
 精密機械加工手段30は、図5に示すように、水平方向にスライド移動可能なスライド台31、垂直軸可動モータ32および加工ヘッド33などから構成されているところ、プレーナ加工具、シェーパ加工具、フライカット加工具、ダイヤモンドターニング加工具およびマイクロミーリング加工具などが取換え自在に加工ヘッド33に設けられる。かかる取り換え機構としては、各種加工具が螺子付けや嵌合によって加工ヘッド、送り機構、テーブルもしくは主軸などに取り付けられるものであってよく、あるいは、加工ヘッドなどに予め取り付けられた各種加工具が加工可能な状態へと選択的に移動・可動できるものであってもよい。
 精密機械加工手段30の各種加工具について詳述しておく。
プレーナ加工具:いわゆる“プレーナ−加工”(平削り)を実施するための切削工具である。つまり、プレーナ加工具は、被加工材を削って平面を作り出すための切削工具である。典型的には、プレーナ加工具としてバイドを用い、被加工材が取り付けられたテーブルを水平方向に運動させつつ、バイトをテーブルの運動方向と直角方向に間欠的に送ることによって平面削りを実施できる。
シェーパ加工具:いわゆる“シェーパ加工”(型削り・形削り)を実施するための切削工具である。つまり、シェーパ加工具34は、被加工材を削って主に非平面部(例えば溝など)を作り出すための切削工具である(図6参照)。典型的には、シェーパ加工具としてバイドを用い、被加工材が取り付けられたテーブルをバイトの運動と直角方向に間欠的に送りつつ、往復運動するバイトを被加工材に接触させることによって型削り・形削りを実施できる。
フライカット加工具:いわゆる“フライ加工”を実施するための切削工具である。典型的には、フライカット加工具35として回転工具を用い、それを回転運動させつつ被加工材(特に位置固定された被加工材)に対して送ることによって被加工材の切削を行う(図7参照)。ちなみに、“フライカット加工”という用語は、“フライ加工”と実質的に同義であるものの、本発明における精密機械加工を前提とすると、切れ刃を1つだけ使用して行う加工態様をも包含している。
ダイヤモンドターニング加工具:いわゆる“SPDT(Single Point Diamond Turning)”または“超精密旋削加工”を実施するための切削工具である。典型的には、被加工材81を回転運動させ、かかる被加工材81とダイヤモンド工具36とを接触させることによって、被加工材を回転中心形状に加工する(図8参照)。
マイクロミーリング加工具:“micro−milling”などのミーリング加工を実施するための切削工具である。典型的には、マイクロミーリング加工具37として小径の回転工具(例えばダイヤモンド回転工具)を用い、それを回転運動させつつ被加工材と接触させることによって刃先形状の転写や各種形状を形成する(図9参照)。
 また、超精密複合加工装置100では、精密機械加工手段30が振動切削手段として更に機能するものであってよい。つまり、上述の切削加工具を振動に付すことができるようになっており、例えば、切削加工具が駆動圧電素子などに連結されている。振動切削では、“切削抵抗が減少する”/“構成刃先が付着しない”/“熱による歪みを抑えることができる”といった効果が奏される。振動切削としては、特に“超音波楕円振動切削”が好ましく、切削工具の刃先を楕円振動させることによって(図10参照)、切削抵抗の大幅の低減、バリやびびり振動の抑制や切り屑厚さの低減を効果的に図ることができる。
 超精密複合加工装置100は形状測定手段50を有して成る。かかる形状測定手段50は、電磁波加工手段10および精密機械加工手段30の使用に際して被加工材の形状を機上測定するための手段である。ここでいう「形状測定」とは、加工前、加工中および加工後の少なくも1つの時点において被加工材の形状および/または位置を測定することを実質的に意味している。
 形状測定手段としては、例えば“撮取手段”および“レーザ光を利用した検出器”などを挙げることができる。“撮取手段”を例示すれば、CCDカメラ、赤外線カメラ、近赤外カメラ、中赤外カメラおよびX線カメラなどであり、“レーザ光を利用した検出器”を例示すれば、レーザマイクロスコープ(レーザ顕微鏡)、レーザ干渉計などであり、その他に白色干渉法を用いた計測方法などが挙げられる。また、“接触による計測手段”も好ましく用いられ、形状測定手段がプローブを用いた計測器(三次元測定器)などであってもよい(例えば、走査型トンネル顕微鏡や原子間力顕微鏡などの走査型プローブ顕微鏡であってよい)。
 図11(a)および図1に示すように、形状測定手段50は、好ましくは“撮取手段52”と“レーザ光を利用した検出器54”との組合せを有している。かかる場合、撮取手段52によって被加工材の位置を確認し、次いで、“レーザ光を利用した検出器54”によって被加工材の形状(特に加工が施される部分の形状)を確認することが好ましい。
 形状測定手段50で測定された被加工材の形状および/または位置などの情報は、電磁波加工手段10および精密機械加工手段30へとフィードバックされ、所望の電磁波加工および/または精密機械加工の実施に利用される。それゆえ、超精密複合加工装置は、形状測定手段で測定された被加工材の形状の情報に基づき、電磁波加工手段または精密機械加工手段を制御する手段(例えば、後述の“演算手段”)を有して成る。これにつき例示すると、電磁波加工および/または精密機械加工の実施に際して、被加工材の形状および/または位置などが形状測定手段50によってリアルタイムに測定され、測定されたデータが加工手段において利用される。例えば「形状測定手段によって測定されたデータ」と「微細加工物のモデルから得られる電磁波加工手段および/または精密機械加工手段の加工パスのデータ」とに基づいて補正加工用データを構築して、その補正加工用データに基づいて電磁波加工および/または精密機械加工を実施する(図11(b)参照)。超精密複合加工装置100は、そのような補正加工用データを構築する演算手段を有していることが好ましい。
 演算手段などの制御手段は、例えば図12に示すように、コンピュータ90により構成されたものであってよく、例えば少なくともCPUおよび一次記憶装置部や二次記憶装置部などを備えたコンピュータにより構成されることが好ましい。かかるコンピュータの記憶装置部における「微細加工物のモデルから得られる電磁波加工手段および/または精密機械加工手段の加工パスのデータ」を、「形状測定手段によって測定されたデータ」と比較してその差分を算出することによって、補正加工用データを得ることができる(例えば、加工途中もしくは加工終了後に被加工材の形状を測定することで材料/変形量(誤差)の関係をデータベースとして蓄積してゆき、それによって、補正加工用データベースを自動構築してよい)。尚、演算手段においては、微細加工物のモデルおよび被加工材の形状などから、数値演算にて電磁波加工手段および/または精密機械加工手段の加工パス(特に複合加工用のパス)を自動生成できるものであってもよい。
 尚、形状測定手段50によって、被加工材の形状および/または位置のみならず、工具刃先30aの形状および/または位置などを測定してもよい(例えば図13(a)参照)。かかる場合であっても、測定されたデータ・情報は電磁波加工手段10および精密機械加工手段30へとフィードバックされ、所望の電磁波加工および/または精密機械加工の実施に利用される。また、機上測定のため、図13(b)に示すように、形状測定手段50を垂直方向に可動自在に設けてもよい。
 超精密複合加工装置100は、種々の態様で実現可能である。特に好ましい態様を例示する。
(同軸制御の態様)
 かかる態様では、超精密複合加工装置が、被加工材を載置させるテーブルの少なくとも1軸の動作と、精密機械加工手段および/または電磁波加工手段の少なくとも1軸の動作とを同期制御するための制御部を更に有して成る。つまり、図14に示されるように、被加工材を載置させるテーブル85の少なくとも1つの方向の運動を制御すると共に、精密機械加工手段30および/または電磁波加工手段10の少なくとも1つの方向の運動を制御することができる制御部を更に有して成る。かかる制御部は、上記の演算手段に含まれていてよく、例えばコンピュータ90(図12参照)により構成されるものであってよい。このような制御部を超精密複合加工装置が有して成ることによって加工時間の更なる短縮を図ることができる。
(レーザ加工に関する可動自在な態様)
 かかる態様では、図15に示すように、被加工材80を載置させるテーブル85および/またはレーザ加工手段15が可動自在となっており、被加工材80に対するレーザ加工手段15のレーザ入射光15aの角度が調整可能となっている。これにより、任意の形状の微細加工物をより好適に製造することができる。被加工材80を載置させるテーブル85の可動には、被加工材80が例えば回転方向、水平方向および/または垂直方向などに動くことができるように(図16参照)、各種可動機構(例えば、カム機構などを利用した可動機構)が備わっている。尚、テーブルが傾くように可動するものであってもよい。同様に、レーザ加工手段15の可動には、そのレーザヘッドなどが例えば回転方向、水平方向および/または垂直方向などに動くことができるように各種可動機構が備わっていることが好ましい。ちなみに、レーザ照射の拡がり角α’や集束角αに合わせて、レーザ照射および/または被加工材の向きを調整すると、被加工材80の垂直面80a(または垂直面に近い面もしくはテーパ角の小さい面)の加工を行うことができるようになる(図17参照)。
(複数種のレーザ加工手段の態様)
 かかる態様では、レーザ加工手段として、レーザ波長がそれぞれ異なる複数のレーザ発振器を有して成る。つまり、超精密複合加工装置が、複数台のレーザ装置を搭載して成り、被加工材の材質に応じて最適なレーザ波長を選択できるようになっている。これによって、被加工材の材質の材料の自由度が増す。例えば、微細加工物としてマイクロレンズアレイ金型が製造される場合、波長が500nm~1100nmのレーザを発生するレーザ装置と、波長が200nm~400nmのレーザを発生するレーザ装置とが設けられていることが好ましい。また、微細加工物としてマイクロレンズアレイをガラスまたはプラスチックなどの材質の被加工材から直接的に製造する場合、波長が300nm~1100nm且つパルス幅が数十ps~数百fsのレーザ装置が搭載されていてもよい。
 (並行実施の態様)
 “電磁波加工手段による粗削り”と“精密機械加工による精密加工”とを実質的に並行して実施してもよい。つまり、電磁波加工による粗削り工程と精密機械加工とを実質的に同時に行ってよい。より具体的には、図18に示すように、被加工材80の一部Aに対して電磁波加工による粗削りを行うと共に、既に粗削りされた被加工材80の他の一部Bに対しては精密機械加工を施してよい(図示するように、例えば、被加工材を載置テーブル85を回転させることを通じて同時加工を行ってよい)。
[本発明の加工手段の判断方法]
 本発明は、上記のような超精密複合加工装置100に適した加工手段の判断方法に関する。具体的には、実際の加工形状・加工箇所に応じて、電磁波加工手段を用いるか或いは精密機械加工手段を用いるかの判断を行う。本発明の対象となる範囲を図19に示す。図19から分かるように、本発明の加工方式の判断は、微細加工物を製造するに先立って行うものである。
 具体的に詳述していく。本発明の方法では、微細加工物の立体形状モデルの情報、微細加工物の製造に際して被加工材から除去される除去体積に関する情報、ならびに、「電磁波加工手段の除去加工時間に関するデータ」および「精密機械加工手段の除去加工時間に関するデータ」等に基づいて、電磁波加工手段を用いるか或いは精密機械加工手段を用いるかの判断を行う。
 「微細加工物の立体形状モデルの情報」は、超精密複合加工装置を用いた加工によって得ようとする製品形状についての情報であり、目標とする形状の情報である。つまり、図20に示されるような被加工材から除去加工して得られる最終形状の情報である。
 「微細加工物の製造に際して被加工材から除去される除去体積に関する情報」は、超精密複合加工装置の加工によって除去される被加工材体積の情報である。つまり、図20に示すように“被加工材”から“製品形状(最終形状)”を得る際に部分的に除去されることになる被加工材体積の情報である。
 「電磁波加工手段の除去加工時間に関するデータ」は、電磁波加工手段の除去加工時間に関する相関関係データである。例えば、電磁波加工手段を用いた際の“除去加工の体積”と“除去加工時間”との相関関係データAであってよい(図21(a)参照)。同様にして、「精密機械加工手段の除去加工時間に関するデータ」とは、精密機械加工手段の除去加工時間に関する相関関係データである。例えば、精密機械加工手段を用いた際の“除去加工の体積”と“除去加工時間”との相関関係データBであってよい(図21(b)参照)。
 本発明では、上記のような情報およびデータを用いて電磁波加工手段を用いるべきか或いは精密機械加工手段を用いるべきかの判断を行うことを特徴としている。かかる判断は、3次元CADデータを用いることを通じて行うことが好ましい。換言すれば、被加工材の最終形状の3次元CADデータを用いて微細加工物製造の前処理としてオフセット処理を行うことが好ましい。
 例えば、図22に示されるように、被加工材の最終形状の各面から指定量オフセットさせたオフセット面を作成し、そのオフセット面が被加工材の最表面レベルよりも内側(被加工材の最表面内)に位置するか否かに応じて電磁波加工手段を用いるべきか否かを判断することが好ましい。つまり、最終製品の形状面に対して指定量Δdのオフセットをかけたオフセット面を出し、そのオフセット面が「被加工材の最表面」よりも飛び出しているか否かで、電磁波加工できる部分を抽出する。ここでいう「オフセット」とは、コンピュータ処理(特に3次元CAD)において表面を一定量の距離ずらす処理のことであり、例えば被加工材の最終形状の面をその面の法線方向に動かすような処理態様を意味している。実際の処理操作の観点でいうと、オフセット面は、例えば、SIMENS社製のCADソフトNXを用いて、モデル上のサーフェスを選択し、CADソフトに搭載されているオフセットサーフェスコマンドを実行することにより得ることができる。また、本明細書で用いる「被加工材の最表面レベルよりも内側に位置する」とは、除去加工する前の被加工材の面レベルに対して被加工材の領域側に位置する態様を意味しており、端的にいえば、被加工材の周囲の外側の領域ではなく、被加工材の内部に相当する領域に存在する態様を意味している(図22(b)参照)。
 得られるオフセット面の形態としては、図23(a)~(c)に示されるような3種類が考えられる。図23(a)では、オフセット面の一部が被加工材の最表面レベルよりも内側に位置しているが、他の部分は被加工材の最表面レベルよりも外側に位置している。かかる場合、被加工材の最表面レベルよりも内側に位置する領域を“電磁波加工可能な領域”と判断する一方、被加工材の最表面レベルよりも外側に位置する領域は“電磁波加工不可能な領域”と判断する。より具体的には、「被加工材の最表面よりも内側に位置するオフセット面」と「被加工材の最表面レベル」とで囲まれた領域を“電磁波加工可能な領域”と暫定的に判断する一方、「被加工材の最表面よりも外側に位置するオフセット面」と「被加工材の最表面レベル」とで囲まれた領域を“電磁波加工不可能な領域”と判断する。次に図23(b)であるが、これはオフセット面の全てが被加工材の最表面レベルよりも内側に位置している。かかる場合、全ての領域が“電磁波加工可能な領域”と暫定的に判断する。そして、図23(c)では、オフセット面の全てが被加工材の最表面レベルよりも外側に位置している。かかる場合、全ての領域が“電磁波加工不可能な領域”と判断する。
 上記のような判断は、オフセット処理を通じて、“除去される部分の被加工材厚さ”、即ち、除去体積量に応じて電磁波加工できる箇所か否かを判断していると考えることができる。また、オフセット量Δd自体は、用いられる電磁波加工条件などに関係し得るので、その点に鑑みれば、電磁波加工条件に鑑みつつ“除去される被加工材厚さ・量”に応じて電磁波加工手段を用いるべきか否かを判断しているともいえる(図24参照)。
 上記のようなオフセット処理を通じた判断に加えて、「電磁波加工可能な形状か否かの判断」および/または「電磁波加工必要量以上か否かの判断」を行うことが好ましい(図25参照)。つまり、オフセット処理を通じて暫定的に抽出された「電磁波加工可能な領域」に対して更に判断を加えていく。
 「電磁波加工可能な形状か否かの判断」では、電磁波加工手段に関する加工可能形状データベースに基づいた判断を行うことが好ましい。つまり、得られた「暫定的な電磁波加工部」について、その形状を、加工可能形状データベースと比較することによって、電磁波加工手段を実施するか否かを判断することが好ましい。例えば、図26に示すように、いわゆる“スポット径”や“コーナR”などに鑑みた加工可能形状データベースと比較することによって、電磁波加工手段を実施するか否かを判断する。スポット径は、被加工材におけるレーザ光径に相当するものであるが、かかるスポット径よりも大きい被加工材領域を“電磁波加工可能”と判断する一方、スポット径よりも小さい被加工材領域を“電磁波加工不可能”と判断する(図26(a)参照)。コーナRについては、図26(b)に示すように、先細り形状の被加工材領域など、電磁波照射(例えばレーザ光照射)すると過大に除去加工されてしまうことになる形状領域に対しては“電磁波加工不可能”と判断する。
 次に「電磁波加工必要量以上か否かの判断」においては、電磁波加工手段・精密機械加工手段の除去加工時間に関するデータに基づいた判断を行うことが好ましい。つまり、抽出された「暫定的な電磁波加工部」の体積を算出し、その算出した体積について、「電磁波加工手段に関する除去体積と除去加工時間との相関関係データAに基づき必要とされる加工時間A」を算出すると共に(図21(a)参照)、「精密機械加工手段に関する除去体積と除去加工時間との相関関係データBに基づき必要とされる加工時間B」を算出したうえで(図21(b)参照)、かかる加工時間Aと加工時間Bとを比較して電磁波加工手段を実施するか否かを判断することが好ましい。特にかかる判断では図21(c)に示すように、電磁波加工手段から精密機械加工手段へと切替える際に要する段取り時間等の付加的時間条件も考慮する。つまり、図21(c)に示すグラフにおいて、「暫定的な電磁波加工部」の体積」がVxよりも大きいと電磁波加工をした方がトータルで時間短縮を図ることができる一方、Vxよりも小さいと、電磁波加工を実施せずに、精密機械加工を直接実施した方が時間短縮を図ることができる。これは、超精密複合加工装置が「粗削りのための電磁波加工手段」と「精密加工のための精密機械加工手段」との2つの手段を採用していることに起因しており、本発明では、かかる手段の切替え作業なども考慮して最適加工実施を行うことができる。
 本発明の加工手段の判断方法は、上記のような「オフセット処理基づいた判断(暫定な電磁波加工部の抽出)」と「電磁波加工可能な形状か否かの判断」と「電磁波加工必要量以上か否かの判断」とを順次行うことが好ましい。つまり、以下の(a)~(c)を順次実施して電磁波加工手段を用いるべきか或いは精密機械加工手段を用いるべきかの判断を行うことが好ましい(図25参照)。
 (a)オフセット処理を行い、オフセット面が「被加工材の最表面」よりも飛び出しているか否かによって、電磁波加工できる部分が存在するか否かを判断する(暫定的な電磁波加工部の抽出)。
 (b)暫定的な電磁加工部の形状を「電磁波加工手段の加工可能形状データベース」と比較することによって、電磁波加工できるか否かを判断する。つまり、“形状”の観点から電磁波加工手段を用いるべきか否かを判断する。
 (c)手段の切替えに伴う段取り時間などを踏まえて電磁波加工手段の加工時間Aと精密機械加工手段の加工時間Bとを比較し、電磁波加工すべき除去体積量か否かを判断する。つまり、“段取り時間などを考慮した除去体積に基づく所要加工時間”の観点から電磁波加工手段を用いるべきか否かを判断する。
 ちなみに、本発明の加工判断方法の汎用性をより高めるべく、例えば上記(c)などにおいては、被加工材の材質毎に調製された相関関係データを用いることが好ましい。つまり、被加工材の材料毎に加工手段毎の除去加工体積/加工時間の関係をデータベースとして所有しておくことが好ましく、これによって、被加工材の材質が変更になった場合でも好適に対応することが可能となる。
[本発明の超精密複合加工装置]
 次に本発明の超精密複合加工装置について説明する。本発明に係る超精密複合加工装置は、
 被加工材を粗削りするための電磁波加工手段;
 粗削りされた被加工材に対して精密加工を施すための精密機械加工手段;ならびに
 電磁波加工手段および精密機械加工手段の使用に際して被加工材の形状を測定するための形状測定手段
を有して成る。かかる「電磁波加工手段」、「精密機械加工手段」および「形状測定手段」については上述しているので重複を避けるために説明を省略する。
 特に、本発明の超精密複合加工装置は、その超精密複合加工装置に用いる加工用データが格納された記憶部を備えたシステムを更に有していることを特徴としている。かかるシステムに含まれる加工用データは、微細加工物の立体形状モデルの情報、微細加工物の製造に際して被加工材から除去される除去体積に関する情報、ならびに、電磁波加工手段の除去加工時間に関するデータおよび精密機械加工手段の除去加工時間に関するデータに基づいて、電磁波加工手段を用いるか或いは精密機械加工手段を用いるかの判断を行うための加工用データとなっている。
 本発明の超精密複合加工装置におけるシステム300は、図27に示すように、ROM(Read Only Memory)およびRAM(Random Access Memory)などの一次記憶装置部や二次記憶装置部などから構成された記憶部310、CPU(Central Processing Unit)320、入力装置330、表示装置340、出力装置350等を備え、これら各部がバス360を介して互いに接続されたコンピュータ形態を有している。
 入力装置330は、各種指示信号の入力を行うためのキーボード、マウスまたはタッチパネル等のポインティングデバイスを備え、入力された各種指示信号はCPU320へと送信される。ROMは、CPU320によって実行される各種プログラム(超精密複合加工を実施するための各種プログラム)を格納している。RAMは、ROMから読み出された上記各種プログラムを実行可能に展開して格納するとともに、プログラムの実行時に一時的に生成される各種データを一時格納する。CPU320は、ROMに格納された各種プログラムを実行することによって、システム300を統括的に制御する。特にCPU320では、ROMに格納された超精密複合加工を実施するための各種プログラム(例えば、「電磁波加工手段」、「精密機械加工手段」、「形状測定手段」などの駆動に利用されるプログラム)が処理され得る。表示装置340は、LCD(Liquid Crystal Display)やCRT(Cathode Ray Tube)等の表示装置(図示せず)を備え、CPU320から送信される各種表示情報を表示する。
 本発明におけるシステム300では、ROMおよび/またはRAMなどの記憶部310に「微細加工物の立体形状モデルの情報;微細加工物の製造に際して被加工材から除去される除去体積に関する情報;ならびに、電磁波加工手段の除去加工時間に関するデータおよび精密機械加工手段の除去加工時間に関するデータに基づいて、電磁波加工手段を用いるか或いは精密機械加工手段を用いるかの判断を行う加工用データ」が格納されている。そして、システム300の実行時においてはCPUによって加工用データが利用されることを通じて超精密複合加工装置プログラムが実行され、それによって、超精密複合加工装置100の実施(具体的には、電磁波加工手段を用いるか或いは精密機械加工手段を用いるかの制御など)が行われる。
 かかるシステム300における記憶部310には、上述の“本発明の加工方式の判断”を行うことができる加工用データが格納されている。つまり、「微細加工物の立体形状モデルの情報;微細加工物の製造に際して被加工材から除去される除去体積に関する情報;ならびに、電磁波加工手段の除去加工時間に関するデータおよび精密機械加工手段の除去加工時間に関するデータに基づいて、電磁波加工手段を用いるか或いは精密機械加工手段を用いるかの判断を行うための加工用データ(図19~図25参照)」が格納されている。
 かかる加工用データは、上述の“本発明の加工方式の判断”に際して使用される加工用データであるので、以下の特徴を有し得る。
 ●被加工材の最終形状の3次元CADデータを用いて、その最終形状の各面から指定量オフセットさせたオフセット面が被加工材の最表面レベルよりも内側(被加工材の最表面内)に位置するか否かで電磁波加工手段を実施するか否かの判断を行う加工用データ(図22、図24および図25参照)。
 ●被加工材の最表面レベルよりも内側に位置するオフセット面が存在する場合にその内側に位置するオフセット面と最表面レベルとで囲まれた領域を暫定的な電磁波加工部とし、かかる暫定的な電磁波加工部における形状を電磁波加工手段の加工可能形状データベースと比較して電磁波加工手段を実施するか否かの判断を行う加工用データ(図23、図24および図25参照)。
 ●暫定的な電磁波加工部の体積を算出し、その算出した体積について、電磁波加工手段に関する除去体積と除去加工時間との相関関係データAに基づいた加工時間Aを算出すると共に、精密機械加工手段に関する除去体積と除去加工時間との相関関係データBに基づいた加工時間Bを算出し、加工時間Aと加工時間Bとを比較することで電磁波加工手段を実施するか否かの判断を行うための加工用データ(図21および図25参照)。
 ●加工時間Aと加工時間Bとの比較に際して、電磁波加工手段から精密機械加工手段への切替えに要する段取り時間を付加的に考慮する加工用データ(図21および図25参照)。
 ●(a)上記の暫定的な電磁波加工可能部の抽出、(b)その暫定的な電磁波加工部の形状と加工可能形状データベースとの比較、および(c)加工時間Aと加工時間Bとの比較を順次行う加工用データ(図25参照)。
 本発明において“加工用データ”が格納される記憶部は、コンピュータ内に組み込まれたROM/RAMなどに特に限定されるものでなく、リムーバブルディスク(例えば、CD−ROMなどの光ディスク)などであってもよい。つまり、「微細加工物の立体形状モデルの情報;微細加工物の製造に際して被加工材から除去される除去体積に関する情報;ならびに、電磁波加工手段の除去加工時間に関するデータおよび精密機械加工手段の除去加工時間に関するデータに基づいて、電磁波加工手段を用いるか或いは精密機械加工手段を用いるかの判断を行う加工用データ」がリムーバブルディスクに格納されていてもよい。かかる場合、リムーバブルディスクに格納されている加工用データを、リムーバブルディスクドライブ(RDD)などで読み取って、システム内のROMおよび/またはRAMなどに格納されて使用され得る。また、“加工用データ”が格納される記憶部は、別の同様のコンピュータ装置に保存されているものであってもよい。つまり、「微細加工物の立体形状モデルの情報;微細加工物の製造に際して被加工材から除去される除去体積に関する情報;ならびに、電磁波加工手段の除去加工時間に関するデータおよび精密機械加工手段の除去加工時間に関するデータに基づいて、電磁波加工手段を用いるか或いは精密機械加工手段を用いるかの判断を行う加工用データ」が、超精密複合加工装置に直接的に用いられるのとは別のコンピュータ装置のROMなどに記憶されているものであってもよい。かかる場合、LAN等の通信回路またはリムーバルディスクなどを介して別のコンピュータ装置から伝送された加工用データが、本発明におけるシステムで受信され又は読み取られ、それによって、かかるシステム内のROMおよび/またはRAMなどに格納されて使用され得る。
 尚、上述のような本発明は、次の態様を包含していることを確認的に述べておく:
 第1態様:被加工材から微細加工物を製造する超精密複合加工装置において加工デバイスを判断する方法であって、
超精密複合加工装置が、
 被加工材を粗削りするための電磁波加工デバイス;
 粗削りされた被加工材に対して精密加工を施すための精密機械加工デバイス;ならびに
 電磁波加工デバイスおよび精密機械加工デバイスの使用に際して被加工材の形状を測定するための形状測定デバイス
を有して成り、
加工デバイスの判断においては、
 微細加工物の立体形状モデルの情報;
 微細加工物の製造に際して被加工材から除去される除去体積に関する情報;ならびに
 電磁波加工デバイスの除去加工時間に関するデータおよび精密機械加工デバイスの除去加工時間に関するデータ
に基づいて、電磁波加工デバイスを用いるか或いは精密機械加工デバイスを用いるかの判断を行うことを特徴とする、方法。
 第2態様:上記第1態様において、被加工材の最終形状の3次元CADデータを用いて加工デバイスの判断の前処理を行っており、かかる前処理では、
 被加工材の最終形状の各面から指定量オフセットさせたオフセット面を作成し、
 オフセット面が被加工材の最表面レベルよりも内側に位置するか否かによって、電磁波加工デバイスを実施するか否かを判断する、
ことを特徴とする方法。
 第3態様:上記第2態様において、被加工材の最表面レベルよりも内側に位置するオフセット面が存在する場合、その内側に位置するオフセット面と被加工材の最表面レベルとで囲まれた領域を、暫定的な電磁波加工部とすることを特徴とする方法。
 第4態様:上記第3態様において、暫定的な電磁波加工部における形状を、電磁波加工デバイスの加工可能形状データベースと比較し、それによって、電磁波加工デバイスを実施するか否かを判断することを特徴とする方法。
 第5態様:上記第3態様または第4態様において、暫定的な電磁波加工部の体積を算出し、その算出した体積について、電磁波加工デバイスに関する除去体積と除去加工時間との相関関係データAに基づいた加工時間Aを算出すると共に、精密機械加工デバイスに関する除去体積と除去加工時間との相関関係データBに基づいた加工時間Bを算出し、加工時間Aと加工時間Bとを比較することによって、電磁波加工デバイスを実施するか否かを判断する、
ことを特徴とする方法。
 第6態様:上記第5態様において、加工時間Aと加工時間Bとの比較に際しては、電磁波加工デバイスから精密機械加工デバイスへの切替えに要する段取り時間を付加的に考慮することを特徴とする方法。
 第7態様:上記第4態様に従属する上記第5態様において、(a)暫定的な電磁波加工可能部の抽出、(b)暫定的な電磁波加工部の形状と加工可能形状データベースとの比較、および(c)加工時間Aと加工時間Bとの比較を順次行うことを特徴とする方法。
 第8態様:上記第1態様~第7態様のいずれかにおいて、超精密複合加工装置が、形状測定デバイスで測定された被加工材の形状の情報に基づき、電磁波加工デバイスまたは精密機械加工デバイスを制御する制御装置を更に有して成ることを特徴とする方法。
 第9態様:上記第1態様~第8態様のいずれかにおいて、精密機械加工デバイスでは、プレーナ加工具、シェーパ加工具、フライカット加工具、ダイヤモンドターニング加工具およびマイクロミーリング加工具から成る群から選択される切削加工具が取替え自在となっていることを特徴とする方法。
 第10態様:上記第1態様~第9態様のいずれかにおいて、電磁波加工デバイスがレーザ加工デバイスであることを特徴とする方法。
 第11態様:上記第1態様~第10態様のいずれかにおいて、微細加工物の微細部寸法が10nm~15mmの範囲にあることを特徴とする方法。
 第12態様:上記第11態様において、微細加工物が光学レンズ用金型または光学レンズであることを特徴とする方法。
 第13態様:被加工材から微細加工物を製造する超精密複合加工装置であって、
 被加工材を粗削りするための電磁波加工デバイス;
 粗削りされた被加工材に対して精密加工を施すための精密機械加工デバイス;ならびに
 電磁波加工デバイスおよび精密機械加工デバイスの使用に際して被加工材の形状を測定するための形状測定デバイス
を有して成り、
 超精密複合加工装置が、その超精密複合加工装置に用いる加工用データが格納された記憶部を備えたシステムを更に有して成り、
 加工用データが、微細加工物の立体形状モデルの情報;微細加工物の製造に際して被加工材から除去される除去体積に関する情報;ならびに、電磁波加工デバイスの除去加工時間に関するデータおよび精密機械加工デバイスの除去加工時間に関するデータに基づいて、電磁波加工デバイスを用いるか或いは精密機械加工デバイスを用いるかの判断を行うための加工用データであることを特徴とする超精密複合加工装置。
 第14態様:上記第13態様において、加工用データは、被加工材の最終形状の3次元CADデータを用いて、最終形状の各面から指定量オフセットさせたオフセット面が被加工材の最表面レベルよりも内側に位置するか否かで電磁波加工デバイスを実施するかの判断を行う加工用データであることを特徴とする超精密複合加工装置。
 第15態様:上記第14態様において、加工用データは、被加工材の最表面レベルよりも内側に位置するオフセット面が存在する場合にその内側に位置するオフセット面と最表面レベルとで囲まれた領域を暫定的な電磁波加工部とし、暫定的な電磁波加工部における形状を電磁波加工デバイスの加工可能形状データベースと比較して電磁波加工デバイスを実施するかの判断を行う加工用データであることを特徴とする超精密複合加工装置。
 第16態様:上記第14態様において、加工用データは、暫定的な電磁波加工部の体積を算出し、その算出した体積について、電磁波加工デバイスに関する除去体積と除去加工時間との相関関係データAに基づいた加工時間Aを算出すると共に、精密機械加工デバイスに関する除去体積と除去加工時間との相関関係データBに基づいた加工時間Bを算出し、加工時間Aと加工時間Bとを比較することで電磁波加工デバイスを実施するかの判断を行う加工用データであることを特徴とする超精密複合加工装置。
 以上、本発明の実施形態について説明してきたが、本発明はこれに限定されず、種々の改変がなされ得ることを当業者は容易に理解されよう。
● 精密機械加工手段が、プレーナ加工具、シェーパ加工具、フライカット加工具、ダイヤモンドターニング加工具およびマイクロミーリング加工具から成る群から選択される切削加工具が取替え自在となっている態様を主として説明したが、必ずしもかかる態様に限定されない。例えば精密機械加工手段が、研削加工具に対しても更に取替え自在となっていてよい。つまり、上述の切削加工具に加えて又はそれに代えて研削加工具も取替えられるようになっていてもよい。研削加工具を用いることによって、更に高精度な精密機械加工が実現され得る。典型的には、研削加工具としては砥石を用い、回転運動させた砥石を被加工材に接触させることによって、被加工材の面を研削できる(図28参照)。砥石に用いられ得る砥粒材料としては、例えば、ダイヤモンド、立方晶窒化ホウ素(cBN)、アルミナおよび炭化ケイ素(SiC)などを挙げることができる。また、レジンボンド砥石、メタルボンド砥石やメタルレジン砥石などを用いてもよい。更にいえば、精密機械加工手段は、超音波加工用ホーン、超音波振動切削用工具、ポリシング加工用磨き工具またはマイクロドリルなどに対しても取替え自在となっているものであってもよい。
● 切削工具の切れ味の向上や、工具摩耗の低減などを目的として、潤滑作用を奏し得る切削油剤を工具の刃先に供給してもよい。切削油剤の種類としては特に制限はなく、常套の切削加工に用いる切削油剤を使用してよい。
 最後に、本発明では、被加工材から微細加工物を製造するための超精密複合加工方法をベースにした加工工程の判断方法も提供され得ることを付言しておく。かかる方法は、
 (i)被加工材に対して電磁波加工を施して被加工材を粗削りする工程;および
 (ii)粗削りされた被加工材に対して精密機械加工を施す工程
を含んで成り、
 工程(i)および工程(ii)の少なくとも一方の実施に際して被加工材の形状を測定し、加工工程の判断方法においては、
 微細加工物の立体形状モデルの情報;
 微細加工物の製造に際して被加工材から除去される除去体積に関する情報;ならびに
 「電磁波加工手段の除去加工時間に関するデータ」および「精密機械加工手段の除去加工時間に関するデータ」
に基づいて工程(i)の電磁波加工(粗削り工程)を実施するか或いは工程(ii)の精密機械加工を実施するかの判断を行う。かかる方法についての効果およびその内容については、上記で既に説明した事項と同様のことが当てはまるので、重複を避けるために説明は省略する。
 本発明の加工手段の判断方法の対象となる超精密複合加工装置における効果を確認するために以下の試験を実施した。
《ケースA》
 従来技術の加工法(比較例1)および本発明の加工法(実施例1)を実施することによって、図29(a)に示すようなフレネルレンズ金型を製造した。
(比較例1)
 従来技術の加工法として、全ての加工を切削加工により行うことによって難削材からフレネルレンズ金型を製造した。概要を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の最右欄に示すように、従来技術の加工法では図29(a)に示すフレネルレンズ金型を得るのに『80時間』要した。
(実施例1)
 本発明の実施例として、レーザ加工によって被加工材を粗削りし、その粗削りされた後の被加工材に微細機械加工を施すことによってフレネルレンズ金型を得た。加工概要を表2に示す。尚、実施例1では、形状測定手段としCCDカメラによるレンズ配置の位置測定および、レーザ光を使用した光干渉による形状測定を実施した。また表面粗さ測定手段としては光干渉を使用した白色干渉測定により実施した。
Figure JPOXMLDOC01-appb-T000002
 表2の最右欄に示すように、本発明の加工法では図29(a)に示すフレネルレンズ金型を得るのに『21時間』要した。
 このように同一のフレネルレンズ金型を得る場合、本発明は従来技術よりも製造時間を約74%減じることができた(表3参照)。
Figure JPOXMLDOC01-appb-T000003
《ケースB》
 従来技術の加工法(比較例2)および本発明の加工法(実施例2)を実施することによって、図29(b)に示すような多眼レンズ金型を製造した。
(比較例1)
 従来技術の加工法として、放電加工を施した後に切削加工を施すことによって難削材から多眼レンズ金型を製造した。概要を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 上記の表4の最右欄に示すように、従来技術の加工法では図29(b)に示す多眼レンズ金型を得るのに『152時間』要した。
(実施例2)
 本発明の実施例として、レーザ加工によって被加工材を粗削りし、その粗削りされた後の被加工材に微細機械加工を施すことによって多眼レンズ金型を得た。概要を表5に示す。尚、実施例2では、形状測定手段としてレーザ光を使用した光干渉による形状測定を実施した。また表面粗さ測定手段としては光干渉を使用した白色干渉測定により実施した。
Figure JPOXMLDOC01-appb-T000005
 上記表5の最右欄に示すように、本発明の加工法では図29(b)に示す多眼レンズ金型を得るのに『28時間』要した。
 このように同一の多眼レンズ金型を得る場合、本発明は従来技術よりも製造時間を約82%減じることができた(表6参照)。
Figure JPOXMLDOC01-appb-T000006
《総括》
 ケースAおよびケースBから分かるように、本発明では、従来技術で難削材から微細構造物を製造する場合と比べて70~80%製造時間を短縮することができる。従って、本発明は、微細構造物の製造にとって極めて有利な効果を奏するものであることが理解できるであろう。
 本発明の実施により、被加工材から微細加工物を得ることができる。特に、本発明では「小型化・高性能化に対応した各種部品・製品を成形するための金型」を得ることができる。
関連出願の相互参照
 本出願は、日本国特許出願第2011−273089号(出願日:2011年12月14日、発明の名称:「超精密複合加工装置における加工手段の判断方法」)に基づくパリ条約上の優先権を主張する。当該出願に開示された内容は全て、この引用により、本明細書に含まれるものとする。
10  電磁波加工手段
15  レーザ加工手段
15a レーザ入射光
30  精密機械加工手段
30a 工具刃先
31  スライド台、
32  垂直軸可動モータ
33  加工ヘッド
34  シェーパ加工具
35  フライカット加工具
36  ダイヤモンドターニング加工具
36a 真空チャック
36b エア・スピンドル
36c 誘導電動機
36d サーボモータ
36e 切削油剤タンク
37  マイクロミーリング加工具
38  研削加工具
38a 研削加工具(ダイヤモンド砥石)
38b ツルーイング砥石
50  形状測定手段
52  撮取手段/撮画手段(形状測定手段)
54  レーザ光を利用した検出器(形状測定手段)
80  被加工材
81  粗削りされた被加工材
82  粗削り後に精密機械加工された被加工材(=微細構造物)
82a 微細構造物の微細部
85  被加工材を載置ためのテーブル
90  演算手段(例えばコンピュータ)
100 超精密複合加工装置
300 超精密複合加工装置におけるシステム
310 記憶部
320 CPU
330 入力装置
340 表示装置
350 出力装置
360 バス

Claims (16)

  1.  被加工材から微細加工物を製造する超精密複合加工装置において加工手段を判断する方法であって、
    前記超精密複合加工装置が、
     前記被加工材を粗削りするための電磁波加工手段;
     前記粗削りされた前記被加工材に対して精密加工を施すための精密機械加工手段;ならびに
     前記電磁波加工手段および前記精密機械加工手段の使用に際して前記被加工材の形状を測定するための形状測定手段
    を有して成り、
    前記加工手段の判断においては、
     前記微細加工物の立体形状モデルの情報;
     前記微細加工物の製造に際して前記被加工材から除去される除去体積に関する情報;ならびに
     前記電磁波加工手段の除去加工時間に関するデータおよび前記精密機械加工手段の除去加工時間に関するデータ
    に基づいて、前記電磁波加工手段を用いるか或いは前記精密機械加工手段を用いるかの判断を行うことを特徴とする、方法。
  2.  前記被加工材の最終形状の3次元CADデータを用いて前記加工手段の判断の前処理を行っており、該前処理では、
     前記最終形状の各面から指定量オフセットさせたオフセット面を作成し、
     該オフセット面が前記被加工材の最表面レベルよりも内側に位置するか否かによって、前記電磁波加工手段を実施するか否かを判断する、
    ことを特徴とする、請求項1に記載の方法。
  3.  前記被加工材の最表面レベルよりも内側に位置する前記オフセット面が存在する場合、該内側に位置する前記オフセット面と前記最表面レベルとで囲まれた領域を、暫定的な電磁波加工部とする、ことを特徴とする、請求項2に記載の方法。
  4.  前記暫定的な電磁波加工部における形状を、前記電磁波加工手段の加工可能形状データベースと比較し、それによって、前記電磁波加工手段を実施するか否かを判断することを特徴とする、請求項3に記載の方法。
  5.  前記暫定的な電磁波加工部の体積を算出し、該算出した体積について、前記電磁波加工手段に関する除去体積と除去加工時間との相関関係データAに基づいた加工時間Aを算出すると共に、前記精密機械加工手段に関する除去体積と除去加工時間との相関関係データBに基づいた加工時間Bを算出し、該加工時間Aと該加工時間Bとを比較することによって、前記電磁波加工手段を実施するか否かを判断する、
    ことを特徴とする、請求項3または4に記載の方法。
  6.  前記加工時間Aと前記加工時間Bとの比較に際しては、前記電磁波加工手段から前記精密機械加工手段への切替えに要する段取り時間を付加的に考慮することを特徴とする、請求項5に記載の方法。
  7.  (a)前記暫定的な電磁波加工可能部の抽出、(b)前記暫定的な電磁波加工部の形状と前記加工可能形状データベースとの比較、および(c)前記加工時間Aと前記加工時間Bとの比較を順次行うことを特徴とする、請求項4に従属する請求項5に記載の方法。
  8.  前記超精密複合加工装置が、前記形状測定手段で測定された前記被加工材の形状の情報に基づき、前記電磁波加工手段または前記精密機械加工手段を制御する手段を更に有して成ることを特徴とする、請求項1~7のいずれかに記載の方法。
  9.  前記精密機械加工手段では、プレーナ加工具、シェーパ加工具、フライカット加工具、ダイヤモンドターニング加工具およびマイクロミーリング加工具から成る群から選択される切削加工具が取替え自在となっていることを特徴とする、請求項1~8のいずれかに記載の方法。
  10. 前記電磁波加工手段がレーザ加工手段であることを特徴とする、請求項1~9のいずれかに記載の方法。
  11.  前記微細加工物の微細部寸法が10nm~15mmの範囲にあることを特徴とする、請求項1~10のいずれかに記載の方法。
  12.  前記微細加工物が光学レンズ用金型または光学レンズであることを特徴とする、請求項11に記載の方法。
  13. 被加工材から微細加工物を製造する超精密複合加工装置であって、
     前記被加工材を粗削りするための電磁波加工手段;
     前記粗削りされた前記被加工材に対して精密加工を施すための精密機械加工手段;ならびに
     前記電磁波加工手段および前記精密機械加工手段の使用に際して前記被加工材の形状を測定するための形状測定手段
    を有して成り、
     前記超精密複合加工装置が、該超精密複合加工装置に用いる加工用データが格納された記憶部を備えたシステムを更に有して成り、
     前記加工用データが、前記微細加工物の立体形状モデルの情報;前記微細加工物の製造に際して前記被加工材から除去される除去体積に関する情報;ならびに、前記電磁波加工手段の除去加工時間に関するデータおよび前記精密機械加工手段の除去加工時間に関するデータに基づいて、前記電磁波加工手段を用いるか或いは前記精密機械加工手段を用いるかの判断を行うための加工用データとなっていることを特徴とする、超精密複合加工装置。
  14.  前記加工用データは、前記被加工材の最終形状の3次元CADデータを用いて、前記最終形状の各面から指定量オフセットさせたオフセット面が前記被加工材の最表面レベルよりも内側に位置するか否かで前記電磁波加工手段を実施するかの判断を行う加工用データであることを特徴とする、請求項13に記載の超精密複合加工装置。
  15.  前記加工用データは、前記被加工材の最表面レベルよりも内側に位置する前記オフセット面が存在する場合に該内側に位置する前記オフセット面と前記最表面レベルとで囲まれた領域を暫定的な電磁波加工部とし、該暫定的な電磁波加工部における形状を前記電磁波加工手段の加工可能形状データベースと比較して前記電磁波加工手段を実施するかの判断を行う加工用データであることを特徴とする、請求項14に記載の超精密複合加工装置。
  16.  前記加工用データは、前記暫定的な電磁波加工部の体積を算出し、該算出した体積について、前記電磁波加工手段に関する除去体積と除去加工時間との相関関係データAに基づいた加工時間Aを算出すると共に、前記精密機械加工手段に関する除去体積と除去加工時間との相関関係データBに基づいた加工時間Bを算出し、該加工時間Aと該加工時間Bとを比較することで前記電磁波加工手段を実施するかの判断を行う加工用データであることを特徴とする、請求項14に記載の超精密複合加工装置。
PCT/JP2012/083174 2011-12-14 2012-12-14 超精密複合加工装置における加工手段の判断方法および超精密複合加工装置 WO2013089282A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280043552.XA CN103781590B (zh) 2011-12-14 2012-12-14 超精密复合加工装置中的加工机构的判断方法及超精密复合加工装置
JP2013549349A JP5695215B2 (ja) 2011-12-14 2012-12-14 超精密複合加工装置における加工手段の判断方法および超精密複合加工装置
DE112012003797.9T DE112012003797B4 (de) 2011-12-14 2012-12-14 Bearbeitungsmittelbestimmungsverfahren für eine kombinierte Ultrapräzisionsbearbeitungsvorrichtung und kombinierte Ultrapräzisionsbearbeitunsvorrichtung
US14/343,428 US9612594B2 (en) 2011-12-14 2012-12-14 Method for determining a machining means in hybrid ultraprecision machining device, and hybrid ultraprecision machining device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-273089 2011-12-14
JP2011273089 2011-12-14

Publications (2)

Publication Number Publication Date
WO2013089282A1 WO2013089282A1 (ja) 2013-06-20
WO2013089282A4 true WO2013089282A4 (ja) 2013-08-01

Family

ID=48612715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083174 WO2013089282A1 (ja) 2011-12-14 2012-12-14 超精密複合加工装置における加工手段の判断方法および超精密複合加工装置

Country Status (5)

Country Link
US (1) US9612594B2 (ja)
JP (1) JP5695215B2 (ja)
CN (1) CN103781590B (ja)
DE (1) DE112012003797B4 (ja)
WO (1) WO2013089282A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4891445B1 (ja) * 2011-03-17 2012-03-07 パナソニック電工株式会社 超精密複合加工装置および超精密複合加工方法
WO2013089282A1 (ja) * 2011-12-14 2013-06-20 パナソニック株式会社 超精密複合加工装置における加工手段の判断方法および超精密複合加工装置
US10642255B2 (en) * 2013-08-30 2020-05-05 Taiwan Semiconductor Manufacturing Company, Ltd. Component control in semiconductor performance processing with stable product offsets
WO2016037634A1 (en) * 2014-09-08 2016-03-17 Sonova Ag A method for producing a hearing device shell, a hearing device shell and a hearing device
JP6806984B2 (ja) * 2015-01-29 2021-01-06 株式会社不二越 マルテンサイト系ステンレス鋼製光学部品用金型の楕円振動切削加工方法
US10162331B2 (en) * 2015-03-02 2018-12-25 Rolls-Royce Corporation Removal of material from a surface of a dual walled component
KR102118312B1 (ko) * 2015-06-25 2020-06-03 파나소닉 아이피 매니지먼트 가부시키가이샤 삼차원 형상 조형물의 제조 방법
CN105382503B (zh) * 2015-12-17 2018-06-29 沈阳鼓风机集团齿轮压缩机有限公司 一种压缩机入口导叶的加工方法及装置
WO2023213538A1 (fr) * 2022-05-03 2023-11-09 Mimotec Sa Procede et equipement d'usinage correctif de pieces microtechniques

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4382215A (en) * 1981-07-16 1983-05-03 General Electric Company System and method of precision machining
JPH02109657A (ja) * 1988-10-17 1990-04-23 Fanuc Ltd 工具自動選択方式
JP2703616B2 (ja) 1989-03-28 1998-01-26 株式会社アマダ レーザ加工及びパンチ加工を行う複合加工機のicカードによる制御方法
JPH06210530A (ja) 1991-12-26 1994-08-02 I N R Kenkyusho:Kk 医療材料加工用複合加工装置
EP0664186A4 (en) * 1992-10-09 1995-09-20 SYSTEM AND METHOD FOR DETERMINING MACHINING INFORMATION, AND SYSTEM AND METHOD FOR DETERMINING MACHINING PROCESS INFORMATION.
JPH06126474A (ja) 1992-10-20 1994-05-10 Yamazaki Mazak Corp レーザ複合加工機における制御装置
DE29505985U1 (de) 1995-04-06 1995-07-20 Bestenlehrer, Alexander, 91074 Herzogenaurach Vorrichtung zum Bearbeiten, insbesondere zum Polieren und Strukturieren von beliebigen 3D-Formflächen mittels eines Laserstrahls
JPH09225947A (ja) 1996-02-26 1997-09-02 Matsushita Electric Works Ltd 成形金型の製作方法
JPH11285924A (ja) * 1998-04-03 1999-10-19 Akazawa Kikai Kk 金型用加工システム
JP3843676B2 (ja) 1999-07-15 2006-11-08 松下電工株式会社 光学パネル用金型及びその製造方法
JP2002189510A (ja) * 2000-12-22 2002-07-05 Mori Seiki Co Ltd 加工関連情報生成装置、及びこれを備えた数値制御装置
JP2003340652A (ja) * 2002-05-20 2003-12-02 Mitsubishi Electric Corp 放電加工装置
DE10393400B4 (de) * 2003-05-20 2009-02-26 Mitsubishi Denki K.K. Mit elektrischer Entladung arbeitendes Gerät
JP2005288563A (ja) 2004-03-31 2005-10-20 Yamazaki Mazak Corp 加工プログラム作成方法、及び加工プログラム作成装置
KR100600648B1 (ko) * 2004-10-08 2006-07-18 한국생산기술연구원 자동공작장치용 최적가공 컨트롤러와 상기 컨트롤러가설치된 자동공작장치
JP2006136923A (ja) * 2004-11-12 2006-06-01 Hitachi Via Mechanics Ltd レーザ加工機及びレーザ加工方法
JP4457962B2 (ja) 2005-05-02 2010-04-28 株式会社ジェイテクト 複合加工機によるワーク加工方法
JP4721844B2 (ja) * 2005-09-22 2011-07-13 株式会社牧野フライス製作所 複合加工機
US7767930B2 (en) * 2005-10-03 2010-08-03 Aradigm Corporation Method and system for LASER machining
JP4989950B2 (ja) * 2005-11-01 2012-08-01 本田技研工業株式会社 ワークの加工方法
EP2012957B1 (de) * 2006-04-12 2010-01-06 Sulzer Markets and Technology AG Zerspanverfahren
JP4819577B2 (ja) 2006-05-31 2011-11-24 キヤノン株式会社 パターン転写方法およびパターン転写装置
US20080177416A1 (en) * 2007-01-24 2008-07-24 Incs Inc. Method and apparatus for automatic construction of electrodes for rocking-motion electric discharge machining
JP2008200761A (ja) * 2007-02-16 2008-09-04 Matsushita Electric Ind Co Ltd 金型加工装置
JP4291382B2 (ja) 2007-07-31 2009-07-08 ファナック株式会社 接触検知による取り付け誤差の自動補正機能を有する工作機械
JP5355206B2 (ja) * 2009-04-30 2013-11-27 パナソニック株式会社 加工装置および加工方法
JP2011016220A (ja) * 2009-07-09 2011-01-27 Mori Seiki Co Ltd プログラミング装置
JP5441604B2 (ja) * 2009-10-13 2014-03-12 株式会社ジェイテクト 最適工程決定装置および最適工程決定方法
JP4891445B1 (ja) * 2011-03-17 2012-03-07 パナソニック電工株式会社 超精密複合加工装置および超精密複合加工方法
JP5886314B2 (ja) * 2011-11-14 2016-03-16 株式会社日立製作所 解析計算方法、解析計算プログラムおよび記録媒体
WO2013089282A1 (ja) * 2011-12-14 2013-06-20 パナソニック株式会社 超精密複合加工装置における加工手段の判断方法および超精密複合加工装置
JP5695214B2 (ja) * 2011-12-14 2015-04-01 パナソニックIpマネジメント株式会社 超精密複合加工装置の加工用データの作成方法および超精密複合加工装置

Also Published As

Publication number Publication date
DE112012003797T5 (de) 2014-05-28
JPWO2013089282A1 (ja) 2015-04-27
JP5695215B2 (ja) 2015-04-01
CN103781590A (zh) 2014-05-07
US20140316552A1 (en) 2014-10-23
WO2013089282A1 (ja) 2013-06-20
DE112012003797B4 (de) 2016-12-15
US9612594B2 (en) 2017-04-04
CN103781590B (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
JP4891445B1 (ja) 超精密複合加工装置および超精密複合加工方法
JP5695214B2 (ja) 超精密複合加工装置の加工用データの作成方法および超精密複合加工装置
WO2013089282A4 (ja) 超精密複合加工装置における加工手段の判断方法および超精密複合加工装置
US8961267B2 (en) Ophthalmic machine and method for machining and/or polishing a lens
US8790157B2 (en) Method and device for machining workpieces
Zhu et al. Rotary spatial vibration-assisted diamond cutting of brittle materials
Arif et al. An experimental investigation into micro ball end-milling of silicon
JP5213442B2 (ja) 眼科用レンズのラスタ切削技術
Riemer Advances in ultra precision manufacturing
CN109514181B (zh) 用于制造切削工具的方法和机器设备
JP2019107763A5 (ja)
Shanshan et al. Theoretical and experimental investigation of a tool path control strategy for uniform surface generation in ultra-precision grinding
Suzuki et al. Precision cutting of ceramics with milling tool of single crystalline diamond
Zhan An improved polishing method by force controlling and its application in aspheric surfaces ballonet polishing
Chang Development of hybrid micro machining approaches and test-bed
JP2004344957A (ja) レーザー複合加工機および精密加工製品の製造方法
Wang et al. A zone-layered trimming method for ceramic core of aero-engine blade based on an advanced reconfigurable laser processing system
Beaucamp et al. Shape adaptive grinding (SAG) of complex additively manufactured parts
Baek et al. A Study on the Grinding to Improve Profile Accuracy of Aspheric Lens
Venkatesh et al. 6 Precision Micro-and Nanogrinding
JP2002166301A (ja) 切削加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549349

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14343428

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012003797

Country of ref document: DE

Ref document number: 1120120037979

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857241

Country of ref document: EP

Kind code of ref document: A1