WO2013080715A1 - 伸縮軸 - Google Patents

伸縮軸 Download PDF

Info

Publication number
WO2013080715A1
WO2013080715A1 PCT/JP2012/077507 JP2012077507W WO2013080715A1 WO 2013080715 A1 WO2013080715 A1 WO 2013080715A1 JP 2012077507 W JP2012077507 W JP 2012077507W WO 2013080715 A1 WO2013080715 A1 WO 2013080715A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
male
male shaft
female
protruding teeth
Prior art date
Application number
PCT/JP2012/077507
Other languages
English (en)
French (fr)
Inventor
祥史 黒川
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US14/239,626 priority Critical patent/US20140200086A1/en
Priority to JP2012550230A priority patent/JP5590149B2/ja
Priority to CN201280001801.9A priority patent/CN103282682B/zh
Priority to EP12852627.4A priority patent/EP2787235B1/en
Publication of WO2013080715A1 publication Critical patent/WO2013080715A1/ja
Priority to US15/063,726 priority patent/US9951806B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/03Shafts; Axles telescopic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/20Connecting steering column to steering gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D1/101Quick-acting couplings in which the parts are connected by simply bringing them together axially without axial retaining means rotating with the coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/02Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
    • F16D3/06Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted to allow axial displacement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/20Land vehicles
    • F16C2326/24Steering systems, e.g. steering rods or columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D2001/103Quick-acting couplings in which the parts are connected by simply bringing them together axially the torque is transmitted via splined connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/70Interfitted members
    • Y10T403/7026Longitudinally splined or fluted rod

Definitions

  • the present invention relates to a telescopic shaft having a male shaft and a female shaft that can transmit rotational torque and can slide relative to each other in the axial direction.
  • the steering device includes a telescopic shaft such as an intermediate shaft or a steering shaft, which has a male shaft and a female shaft that are connected to be able to transmit rotational torque and are relatively slidable in the axial direction.
  • a telescopic shaft such as an intermediate shaft or a steering shaft, which has a male shaft and a female shaft that are connected to be able to transmit rotational torque and are relatively slidable in the axial direction.
  • the steering shaft transmits the steering force of the steering wheel to the wheel, and adjusts the position of the steering wheel in the axial direction according to the driver's physique and driving posture, so that the telescopic function is required.
  • FIG. 6 is a cross-sectional view of a conventional male shaft and a female shaft fitted on the male shaft, and shows a surface pressure applied to a covering portion of the male shaft.
  • a conventional male shaft 16A male spline shaft
  • a female shaft 16B female spline cylinder
  • the solid teeth 61 of the male shaft 16A are coated with a resin coating 61 that reduces the sliding resistance between the teeth 61 and the tooth grooves 41 of the female shaft 16B.
  • the surface and the covering portion 61 are fitted in the tooth gap 41 so as to have a small fastening allowance.
  • the male and female shafts have large surface pressures acting on both ends in the axial direction of the region where the protruding teeth 51 and the tooth grooves 41 of the intermediate shaft mesh with each other due to the couple generated in the universal joint. There is a high possibility of rattling between the two.
  • Patent Document 1 suppresses backlash between the male shaft and the female shaft by covering the male shaft with a resin layer containing a plate-like filler such as mica, thereby suppressing the backlash between the male shaft and the female shaft. is doing.
  • Patent Document 1 does not consider the surface pressure applied to the resin layer at both axial ends of the male shaft.
  • the telescopic shaft of Patent Document 2 includes a ball provided between a male shaft and a female shaft.
  • a deformation promoting portion that is easily elastically deformed is formed in a predetermined region in the circumferential direction of the female shaft, As a result, the female shaft is easily bent, and the stress applied to the female shaft and the ball is relieved.
  • Patent Document 2 does not consider the difference in surface pressure in the axial direction.
  • the telescopic shaft has a male shaft having an outer periphery on which a plurality of protruding teeth are formed and an inner periphery on which a plurality of tooth grooves are formed, and is externally fitted to the male shaft.
  • a female shaft The protruding teeth and the tooth grooves mesh so that the male shaft and the female shaft can slide relative to each other in the axial direction, and the rotational torque can be transmitted between the male shaft and the female shaft.
  • At least one of the male shaft and the female shaft has a radial rigidity of the at least one portion of the male shaft and the female shaft in an axial range of a region where the protruding teeth and the tooth groove mesh with each other.
  • One of the other portions is configured to be smaller than the radial rigidity.
  • the male shaft is at least partially a solid shaft, and a portion of the male shaft corresponding to one end or both ends in the axial direction of the protruding teeth may be formed along the axial direction. Good.
  • the male shaft may be at least partially a solid shaft, and the male shaft may be formed with a hole along the axial direction and over the entire length of the protruding tooth in the axial direction. .
  • the male shaft may have a reduced diameter portion in the axial range of the ridge tooth.
  • the outer diameter of the reduced diameter portion is smaller than the outer diameter of the other portion of the male shaft in the axial range of the protruding teeth.
  • the male shaft may be a hollow shaft, and an inner diameter of the male shaft portion corresponding to one end or both ends in the axial direction of the protruding teeth may be larger than an inner diameter of the other portion of the male shaft.
  • the male shaft may be a hollow shaft, and the inner diameter of the male shaft portion extending over the entire axial length of the protruding teeth may be larger than the inner diameter of the other portion of the male shaft.
  • the male shaft may have a reduced diameter portion in the axial range of the ridge tooth.
  • the outer diameter of the reduced diameter portion is smaller than the outer diameter of the other portion of the male shaft in the axial range of the protruding teeth.
  • the female shaft may have a reduced diameter portion in the axial range of the tooth gap.
  • the outer diameter of the reduced diameter portion is smaller than the outer diameter of the other portion of the female shaft in the axial range of the tooth gap.
  • the female shaft may have a reduced diameter portion over the entire axial length of the tooth gap.
  • the outer diameter of the reduced diameter portion is smaller than the outer diameter of the other portion of the female shaft.
  • the tooth gap of the female shaft may be externally fitted to the protruding teeth of the male shaft by an interference fit.
  • the tooth surface of the protruding tooth of the male shaft may be provided with a covering portion that reduces sliding resistance between the protruding tooth and the tooth groove of the female shaft.
  • the radial rigidity of at least one portion of the male shaft and the female shaft in the axial range of the region where the protruding teeth and the tooth groove mesh with each other is determined by the at least one of the male shaft and the female shaft. Smaller than other parts. Therefore, the backlash between the male shaft and the female shaft can be suppressed without causing a large surface pressure in the axial direction.
  • FIG. 2 is a side view of the telescopic shaft (intermediate shaft) of the steering device of FIG. It is an expanded sectional view of the expansion-contraction shaft of FIG. 2, and shows the example by which the male shaft of the expansion-contraction shaft was coat
  • FIG. 5 is a cross-sectional view of the male shaft of FIG.
  • FIG. 10 is a cross-sectional view of the male shaft of FIG. 9 and a female shaft fitted on the male shaft, showing a surface pressure applied to a covering portion of the male shaft.
  • FIG. 1 shows a column assist type rack and pinion type power steering device as an example of a steering device.
  • the power steering device includes a steering assist unit 20 (electric assist device) in order to reduce the operating force of the steering wheel 11.
  • the steering assist unit 20 is attached to the column 13.
  • the steering assist force from the steering assist unit 20 is applied to the steering shaft, reciprocates the rack of the steering gear 30 via the intermediate shaft 16, and steers the steered wheel via the tie rod 32.
  • the output shaft 23 protruding from the front end surface of the steering assisting portion 20 is connected to the rear end portion of the female intermediate shaft 16 ⁇ / b> B (hereinafter, female shaft) of the intermediate shaft 16 via the universal joint 15. It is connected.
  • An input shaft 31 of the steering gear 30 is connected to a front end portion of a male intermediate shaft 16 ⁇ / b> A (hereinafter referred to as a male shaft) of the intermediate shaft 16 via another universal joint 17.
  • a female spline is formed on the female shaft 16B
  • a male spline is formed on the male shaft 16A
  • the female shaft 16B and the male shaft 16A are in spline engagement.
  • the male shaft 16A is coupled to the female shaft 16B so as to be relatively slidable in the axial direction and capable of transmitting rotational torque.
  • a pinion is formed at the front end of the input shaft 31.
  • the rack is engaged with the pinion, and the rotation of the steering wheel 11 moves the tie rod 32 to steer the wheel.
  • the telescopic shaft according to the embodiment of the present invention is preferably applied to the intermediate shaft 16, but can be applied to any telescopic shaft of the steering device.
  • the female shaft 16B is formed in a hollow cylindrical shape.
  • a plurality of axial tooth grooves 41 are formed at equal intervals over the entire length of the expansion / contraction range (extension stroke), radially from the axis of the female shaft 16B.
  • the male shaft 16A and the female shaft 16B are formed of, for example, carbon steel or aluminum alloy.
  • FIG. 3A shows an example in which the protruding teeth 51 of the male shaft 16A are covered with a sleeve.
  • the sleeve is an example of the covering portion 61 that reduces the sliding resistance between the protruding teeth 51 of the male shaft 16A and the tooth grooves 41 of the female shaft 16B.
  • the male shaft 16 ⁇ / b> A has four axial protruding teeth 51 as a non-circular outer peripheral shape for transmitting rotational torque.
  • the protruding teeth 51 of the male shaft 16 ⁇ / b> A are in the axial direction of the protruding teeth 51. The entire length is covered with a sleeve.
  • FIG. 3B shows an example in which the protruding teeth 51 of the male shaft 16A (male spline shaft) are coated with the covering portion 61.
  • the male shaft 16A has 18 axial protruding teeth 51 as a non-circular outer peripheral shape for transmitting rotational torque.
  • the protruding teeth 51 of the male shaft 16A are coated with the covering portion 61 over the entire axial length of the protruding teeth 51, and the protruding teeth 51 and the axial tooth grooves 41 of the female shaft 16B (female spline cylinder)
  • the sliding resistance during is reduced.
  • the covering portion 61 is preferably composed of rubber, for example, natural rubber, synthetic rubber, or a mixture of natural rubber and synthetic rubber.
  • the present invention can be applied to a telescopic shaft having a male shaft and a female shaft of arbitrary shapes that are relatively slidable and capable of transmitting rotational torque.
  • FIG. 4 is a cross-sectional view of the male shaft of the telescopic shaft according to Embodiment 1 of the present invention.
  • the male shaft 16A of the first embodiment is a solid shaft.
  • a covering portion 61 that reduces the sliding resistance between the protruding teeth 51 and the tooth grooves 41 of the female shaft 16B is formed on the protruding teeth 51 of the male shaft 16A over the entire length of the protruding teeth 51 in the axial direction.
  • a hole 71 is formed along the axial direction at one end of the male shaft 16A corresponding to one end (left end in FIG. 4) of the protruding teeth 51 in the axial direction, and the thickness of one end of the male shaft 16A is the male shaft.
  • Radial stiffness is expressed as the radial force required to cause unit deformation in the radial direction.
  • the male shaft 16A shown in FIG. 4 is fitted so that the tooth surface of the tooth gap 41 and the covering portion 61 have a small allowance, can be slid relative to each other in the axial direction, and has a rotational torque.
  • the fitting between the tooth surface of the tooth gap 41 and the covering portion 61 is not limited to the interference fitting, and may be a gap fitting or a dead fitting.
  • the telescopic shaft according to the first embodiment even if a large bending moment acts on both ends in the axial direction of the region where the protruding teeth 51 and the tooth grooves 41 are engaged, An increase in the surface pressure applied to the one end portion in the axial direction is suppressed in the axial range of the hole 71, and the back end of the covering portion 61 in the axial direction and the play between the male shaft 16A and the female shaft 16B are suppressed.
  • Embodiment 2 of the present invention will be described with reference to FIG. 7A.
  • structural parts different from the above embodiment will be described, and redundant description will be omitted.
  • the male shaft 16A according to the second embodiment is partially a solid shaft.
  • a covering portion 61 that reduces the sliding resistance between the protruding teeth 51 and the tooth grooves 41 of the female shaft 16B is formed on the protruding teeth 51 of the male shaft 16A over the entire length of the protruding teeth 51 in the axial direction.
  • a hole 71 is formed along the axial direction at one end of the male shaft 16A corresponding to one end (left end in FIG. 7A) of the protruding tooth 51 in the axial direction, and the thickness of one end of the male shaft 16A is reduced. ing.
  • the male shaft 16A has an axial direction from the other end of the male shaft 16A (the right end in FIG. 7A) to the portion of the male shaft 16A corresponding to the other end in the axial direction of the protruding teeth 51 (the right end in FIG. 7A).
  • a hole 72 is formed along the surface of the male shaft 16A to reduce the thickness of the portion of the male shaft 16A. Therefore, the radial rigidity of the portion of the male shaft 16A in the axial range of the hole 71 and the axial range of the hole 72 is smaller than the radial rigidity of the other portion of the male shaft 16A.
  • the diameter of the hole 72 may be the same as the diameter of the hole 71.
  • the telescopic shaft according to the second embodiment even if a large bending moment is applied to both ends in the axial direction of the region where the protruding teeth 51 and the tooth grooves 41 are engaged, they are applied to both ends in the axial direction of the protruding teeth 51.
  • the increase of the surface pressure is suppressed in the axial range of the hole 71 and the axial range of the hole 72, and the back end of the covering portion 61 in the axial direction and the backlash between the male shaft 16A and the female shaft 16B are suppressed.
  • Embodiment 3 of the present invention will be described with reference to FIG. 7B.
  • structural parts different from the above embodiment will be described, and redundant description will be omitted.
  • the male shaft 16A is a hollow shaft in which a hole 73 is formed over the entire length of the male shaft 16A in the axial direction.
  • a covering portion 61 that reduces the sliding resistance between the protruding teeth 51 and the tooth grooves 41 of the female shaft 16B is formed on the protruding teeth 51 of the male shaft 16A over the entire length of the protruding teeth 51 in the axial direction.
  • a hole 71 is formed by expanding the hole 73, and the thickness of one end portion of the male shaft 16A is reduced. Yes. That is, the inner diameter of one end of the male shaft 16A is larger than the inner diameter of the other part of the male shaft 16A.
  • the radial rigidity of one end of the male shaft 16A in the axial range of the hole 71 is smaller than the radial rigidity of the other part of the male shaft 16A.
  • the telescopic shaft according to the third embodiment even if a large bending moment is applied to both ends in the axial direction of the region where the protruding teeth 51 and the tooth grooves 41 are engaged with each other, it is applied to one axial end of the protruding teeth 51.
  • the increase in the surface pressure is suppressed in the axial range of the hole 71, and the back end of the covering portion 61 in the axial direction and the play between the male shaft 16A and the female shaft 16B are suppressed.
  • Embodiment 4 of the present invention will be described with reference to FIG. 8A.
  • structural parts different from the above embodiment will be described, and redundant description will be omitted.
  • the male shaft 16A is a hollow shaft in which a hole 73 is formed over the entire axial length of the male shaft 16A.
  • a covering portion 61 that reduces the sliding resistance between the protruding teeth 51 and the tooth grooves 41 of the female shaft 16B over the entire axial length of the protruding teeth 51. Is formed.
  • a hole 71 is formed by expanding the hole 73 at one end portion of the male shaft 16A corresponding to one end (left end in FIG. 8A) of the protruding tooth 51 in the axial direction, and one end portion of the male shaft 16A. The wall thickness is reduced.
  • the hole 73 is expanded to form a hole 74, and the thickness of the portion of the male shaft 16A is reduced. is doing. That is, the inner diameter of the portion of the male shaft 16A corresponding to both axial ends of the protruding teeth 51 is larger than the inner diameter of the other portion of the male shaft 16A. Therefore, the radial rigidity of the portion of the male shaft 16A in the axial range of the hole 71 and the axial range of the hole 74 is smaller than the radial rigidity of the other portion of the male shaft 16A.
  • the telescopic shaft according to the fourth embodiment even if a large bending moment is applied to both ends in the axial direction of the region where the protruding teeth 51 and the tooth grooves 41 are engaged, they are applied to both ends in the axial direction of the protruding teeth 51.
  • the surface pressure is suppressed in the axial range of the hole 71 and the axial range of the hole 74, and the sag at both ends in the axial direction of the covering 61 and between the male shaft 16A and the female shaft 16B is suppressed.
  • Embodiment 5 of the present invention will be described with reference to FIG. 8B.
  • structural parts different from the above embodiment will be described, and redundant description will be omitted.
  • the male shaft 16A according to the fifth embodiment is partially a solid shaft.
  • a covering portion 61 that reduces the sliding resistance between the protruding teeth 51 and the tooth grooves 41 of the female shaft 16B is formed on the protruding teeth 51 of the male shaft 16A over the entire length of the protruding teeth 51 in the axial direction.
  • a hole 75 is formed in the male shaft 16 ⁇ / b> A over the entire length in the axial direction of the protruding teeth 51, and the thickness of the male shaft 16 ⁇ / b> A is made thin in the entire axial range of the protruding teeth 51.
  • the radial rigidity of the portion of the male shaft 16A in the entire axial range of the protruding teeth 51 is smaller than the radial rigidity of other portions of the male shaft 16A.
  • the telescopic shaft according to the fifth embodiment even if a large bending moment acts on both ends in the axial direction of the region where the protruding teeth 51 and the tooth grooves 41 are engaged, the surface pressure applied to the entire protruding teeth 51 is increased. Suppression of the covering 61 and backlash between the male shaft 16A and the female shaft 16B is suppressed.
  • Embodiment 6 of the present invention will be described with reference to FIGS.
  • structural parts different from the above embodiment will be described, and redundant description will be omitted.
  • the male shaft 16A is a hollow shaft in which a hole 73 is formed over the entire axial length of the male shaft 16A.
  • a covering portion 61 that reduces the sliding resistance between the protruding teeth 51 and the tooth grooves 41 of the female shaft 16B is formed on the protruding teeth 51 of the male shaft 16A over the entire length of the protruding teeth 51 in the axial direction.
  • the male shaft 16 ⁇ / b> A is formed with a hole 76 by extending the hole 73 over the entire axial length of the protruding teeth 51, and the thickness of the male shaft 16 ⁇ / b> A is made thin in the entire axial range of the protruding teeth 51. . That is, the inner diameter of the portion of the male shaft 16A in the entire axial range of the protruding teeth 51 is larger than the inner diameter of the other portion of the male shaft 16A.
  • the radial rigidity of the portion of the male shaft 16A in the axial range of the hole 76 is smaller than the radial rigidity of the other portion of the male shaft 16A.
  • Embodiment 7 of the present invention will be described with reference to FIG. In the following description, structural parts different from the above embodiment will be described, and redundant description will be omitted.
  • the male shaft 16A according to the seventh embodiment is a solid shaft having the same configuration as that of the first embodiment. That is, a hole 71 is formed along the axial direction at one end of the male shaft 16A corresponding to one axial end (left end in FIG. 11) of the protruding teeth 51 of the male shaft 16A, and one end of the male shaft 16A. The wall thickness is reduced.
  • the female shaft 16B is formed with a reduced diameter portion 81 by reducing the outer diameter of one end portion of the female shaft 16B corresponding to one end of the tooth groove 41 in the axial direction, and the thickness of one end portion of the female shaft 16B is increased. It is thin. Accordingly, the radial rigidity of one end of the male shaft 16A in the axial range of the hole 71 is smaller than the radial rigidity of the other part of the male shaft 16A, and the female in the axial range of the reduced diameter portion 81 is smaller. The rigidity in the radial direction at one end of the shaft 16B is smaller than the rigidity in the radial direction at the other part of the female shaft 16B.
  • the telescopic shaft according to the seventh embodiment even if a large bending moment acts on both ends in the axial direction of the region where the protruding teeth 51 and the tooth grooves 41 are engaged, the surfaces applied to both ends of the protruding teeth 51 in the axial direction.
  • the increase in pressure is suppressed in the axial range of the hole 71 and the axial range of the reduced diameter portion 81, and the backlash between both axial ends of the covering portion 61 and the play between the male shaft 16 ⁇ / b> A and the female shaft 16 ⁇ / b> B are suppressed. Is done.
  • the male shaft 16A according to the eighth embodiment is partially a solid shaft and has the same configuration as that of the fifth embodiment.
  • a hole 75 is formed in the protruding tooth 51 of the male shaft 16A over the entire length of the protruding tooth 51 in the axial direction, and the thickness of the male shaft 16A is reduced in the entire axial range of the protruding tooth 51. Yes.
  • the female shaft 16B is formed with a reduced diameter portion 82 by reducing the outer diameter of the female shaft 16B over the entire length of the tooth groove 41 in the axial direction, and the wall thickness of the female shaft 16B is reduced in the axial direction of the tooth groove 41. It is thin in the whole range. Accordingly, the radial rigidity of the portion of the male shaft 16A in the entire axial range of the protruding teeth 51 (the axial range of the hole 75) is greater than the radial rigidity of other portions of the male shaft 16A in the axial direction.
  • the radial rigidity of the portion of the female shaft 16B in the entire axial range of the tooth groove 41 is the other of the total axial length of the female shaft 16B. Less than the radial stiffness of the part.
  • the telescopic shaft of the eighth embodiment even if a large bending moment acts on both ends in the axial direction of the region where the protruding teeth 51 and the tooth grooves 41 are engaged, an increase in the surface pressure applied to the entire protruding teeth 51 is suppressed. Thus, the sag of the covering portion 61 and the play between the male shaft 16A and the female shaft 16B are suppressed.
  • Embodiment 9 of the present invention will be described with reference to FIG. In the following description, structural parts different from the above embodiment will be described, and redundant description will be omitted.
  • the male shaft 16A is a hollow shaft in which a hollow hole 73 is formed over the entire axial length of the male shaft 16A.
  • the male shaft 16 ⁇ / b> A is formed with a hole 76 by expanding the hole 73 over the entire axial length of the protruding tooth 51, and the thickness of the male shaft 16 ⁇ / b> A is made thin in the entire axial range of the protruding tooth 51.
  • a hole 76 is expanded to form a hole 77, and the thickness of one end portion of the male shaft 16A is further increased.
  • the inner diameter of one end of the male shaft 16A corresponding to one axial end of the protruding tooth 51 is larger than the inner diameter of the other portion of the male shaft 16A in the axial range of the protruding tooth 51.
  • the inner diameter of the other portion of the male shaft 16 ⁇ / b> A in the 51 axial range is larger than the inner diameter of the protruding teeth 51 outside the axial range.
  • the female shaft 16B is formed with a reduced diameter portion 83 by reducing the outer diameter of the portion of the female shaft 16B corresponding to the portion of the tooth groove 41 other than one end (the right end in FIG. 9) of the tooth groove 41 in the axial direction.
  • the thickness of the portion of the female shaft 16B is reduced. Therefore, the radial rigidity of the portion of the male shaft 16A in the axial range of the hole 76, in particular, the radial rigidity of the portion of the male shaft 16A in the axial range of the hole 77 is equal to the other portion of the male shaft 16A.
  • the rigidity in the radial direction of the portion of the female shaft 16B in the axial range of the reduced diameter portion 83 is smaller than the rigidity in the radial direction of other portions in the axial direction of the female shaft 16B.
  • the telescopic shaft according to the ninth embodiment even if a large bending moment acts on both end portions in the axial direction of the region where the protruding teeth 51 and the tooth grooves 41 are engaged, the surface pressure applied to the entire protruding teeth 51 is increased. Suppression of the covering 61 and backlash between the male shaft 16A and the female shaft 16B is suppressed.
  • Embodiment 10 of the present invention will be described with reference to FIG. In the following description, structural parts different from the above embodiment will be described, and redundant description will be omitted.
  • the male shaft 16A of Example 10 is a hollow shaft in which a hole 73 is formed over the entire axial length of the male shaft 16A.
  • the male shaft 16 ⁇ / b> A is formed with a hole 76 by expanding the hole 73 over the entire axial length of the protruding tooth 51, and the thickness of the male shaft 16 ⁇ / b> A is made thin in the entire axial range of the protruding tooth 51.
  • a hole 76 is expanded to form a hole 77, and the thickness of the one end portion of the male shaft 16A is further increased. It is thin.
  • the hole 76 is expanded to form a hole 78, and the thickness of the portion of the male shaft 16A is increased. It is even thinner.
  • the female shaft 16B is formed with a reduced diameter portion 84 by reducing the outer diameter of the portion of the female shaft 16B corresponding to the intermediate portion of the tooth groove 41 in the axial direction, and the thickness of the portion of the female shaft 16B is increased. It is thin. Accordingly, the radial rigidity of the portion of the male shaft 16A in the axial range of the hole 76, the axial range of the hole 77, and the axial range of the hole 78 is the radial direction of the other portion of the male shaft 16A. The radial rigidity of the portion of the female shaft 16B in the axial range of the reduced diameter portion 84 is smaller than the rigidity of the other portion of the female shaft 16B.
  • the telescopic shaft according to the tenth embodiment even if a large bending moment acts on both ends in the axial direction of the region where the protruding teeth 51 and the tooth grooves 41 are engaged, both ends of the protruding teeth 51 and the shaft The increase in the surface pressure applied to the intermediate portion in the direction is suppressed, and the back of the covering portion 61 and the play between the male shaft 16A and the female shaft 16B are suppressed.
  • Embodiment 11 of the present invention will be described with reference to FIG. In the following description, structural parts different from the above embodiment will be described, and redundant description will be omitted.
  • the male shaft 16A according to Example 11 is partially a solid shaft.
  • a hole 75 is formed in the male shaft 16 ⁇ / b> A over the entire length in the axial direction of the protruding teeth 51, and the thickness of the male shaft 16 ⁇ / b> A is made thin in the entire axial range of the protruding teeth 51.
  • the male shaft 16A has an outer diameter at one end of the male shaft 16A corresponding to one axial end of the protruding teeth 51 (left end in FIG. 15) and the other axial end of the protruding teeth 51 (in FIG. 15).
  • the outer diameter of the portion of the male shaft 16A corresponding to the right end) is reduced to form the reduced diameter portions 91 and 92, and the thickness of the portion of the male shaft 16A corresponding to both axial ends of the protruding teeth 51 is reduced. ing.
  • the female shaft 16B is formed with a reduced diameter portion 82 by reducing the outer diameter of the female shaft 16B over the entire length of the tooth groove 41 in the axial direction, and the female shaft 16B is formed in the entire axial range of the tooth groove 41.
  • the wall thickness is reduced. Therefore, the radial rigidity of the portion of the male shaft 16A in the axial range of the reduced diameter portion 91 and the axial range of the reduced diameter portion 92 is smaller than that of the male shaft 16A and is smaller in the axial direction of the reduced diameter portion 82.
  • the radial rigidity of the part of the range female shaft 16B is smaller than the radial rigidity of the other part of the female shaft 16B.
  • the telescopic shaft according to the eleventh embodiment even if a large bending moment acts on both ends in the axial direction of the region where the protruding teeth 51 and the tooth grooves 41 are engaged, the surface pressure applied to the entire protruding teeth 51 is increased. Suppression of the covering 61 and backlash between the male shaft 16A and the female shaft 16B is suppressed.
  • the male shaft 16A according to Example 12 is partially a solid shaft.
  • a hole 75 is formed in the male shaft 16 ⁇ / b> A over the entire length in the axial direction of the protruding teeth 51, and the thickness of the male shaft 16 ⁇ / b> A is made thin in the entire axial range of the protruding teeth 51.
  • the male shaft 16A is formed with a reduced diameter portion 93 by reducing the outer diameter of the portion of the male shaft 16A corresponding to the axial middle portion of the protruding teeth 51, and the thickness of the portion of the male shaft 16A is increased. Is thinly formed.
  • the female shaft 16B is formed with a reduced diameter portion 82 by reducing the outer diameter of the female shaft 16B over the entire length of the tooth groove 41 in the axial direction, and the female shaft 16B in the entire axial direction of the tooth groove 41.
  • the wall thickness is reduced. Accordingly, the radial stiffness of the portion of the male shaft 16A in the axial range of the reduced diameter portion 93 is smaller than the radial stiffness of the other portion of the male shaft 16A, and in the axial range of the reduced diameter portion 82.
  • the rigidity in the radial direction of the portion of the female shaft 16B is smaller than the rigidity in the radial direction of the other portion of the female shaft 16B.
  • the surface pressure applied to the entire protruding teeth 51 is increased. Suppression of the covering 61 and backlash between the male shaft 16A and the female shaft 16B is suppressed.
  • the male shaft 16A according to Example 13 is partially a solid shaft.
  • a hole 75 is formed in the male shaft 16 ⁇ / b> A over the entire length in the axial direction of the protruding teeth 51, and the thickness of the male shaft 16 ⁇ / b> A in the entire axial range of the protruding teeth 51 is reduced.
  • the male shaft 16A is formed with a reduced diameter portion 91 by reducing the outer diameter of one end portion of the male shaft 16A corresponding to one axial end (left end in FIG. 17) of the protruding teeth 51, and the male shaft 16A. The wall thickness at one end is reduced.
  • the female shaft 16B is formed with a reduced diameter portion 82 by reducing the outer diameter of the female shaft 16B over the entire length of the tooth groove 41 in the axial direction, and the female shaft 16B is formed in the entire axial range of the tooth groove 41.
  • the wall thickness is reduced. Therefore, the radial rigidity of one end portion of the male shaft 16A in the axial range of the reduced diameter portion 91 is smaller than the radial rigidity of the other portion of the male shaft 16A, and the axial range of the reduced diameter portion 82 is small.
  • the radial rigidity of the portion of the female shaft 16B is smaller than the radial rigidity of the other portion of the female shaft 16B.
  • the telescopic shaft according to the thirteenth embodiment even if a large bending moment acts on both ends in the axial direction of the region where the protruding teeth 51 and the tooth grooves 41 are engaged, the surface pressure applied to the entire protruding teeth 51 is increased. Suppression of the covering 61 and backlash between the male shaft 16A and the female shaft 16B is suppressed.
  • the reduced diameter portions 91 to 93 of Examples 11 to 13 may be formed on a hollow male shaft 16A as shown in FIG. 9, for example.
  • the covering portion 61 for reducing the sliding resistance is formed on the protruding teeth 51 of the male shaft 16A, but the covering portion 61 may be formed on the tooth groove 41 of the female shaft 16B.
  • the entire male shaft 16 ⁇ / b> A or female shaft 16 ⁇ / b> B may be formed of the same material as the covering portion 61.
  • the covering portion 61 may not be formed on either the male shaft 16A or the female shaft 16B.
  • the present invention can be applied to any telescopic shaft constituting a steering device such as a steering shaft.
  • the example in which the present invention is applied to the steering device having the electric assist device 20 has been described.
  • the present invention may be applied to a steering device that does not have the electric assist device.
  • the present invention is based on Japanese Patent Application No. 2011-263121 filed on November 30, 2011, the contents of which are incorporated herein by reference.
  • the present invention is applicable to a telescopic shaft having a male shaft and a female shaft that are relatively slidable and capable of transmitting rotational torque.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Ocean & Marine Engineering (AREA)
  • Steering Controls (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

 伸縮軸は、複数の突条歯が形成された外周を有する雄シャフトと、複数の歯溝が形成された内周を有し、雄シャフトに外嵌された雌シャフトと、を備える。雄シャフトと雌シャフトが軸方向に相対摺動可能、且つ、雄シャフトと雌シャフトの間で回転トルクを伝達可能に、突条歯と歯溝が噛み合う。雄シャフトと雌シャフトの少なくとも一方は、突条歯と歯溝が噛み合う領域の軸方向範囲における部分の半径方向の剛性が、他の部分の半径方向の剛性よりも小さくなるように構成されている。

Description

伸縮軸
 本発明は、回転トルクを伝達可能で軸方向に相対摺動可能な雄シャフトと雌シャフトを有する伸縮軸に関する。
 ステアリング装置は、回転トルクを伝達可能に、且つ、軸方向に相対摺動可能に連結された雄シャフトと雌シャフトを有する、中間シャフトやステアリングシャフト等の伸縮軸を備える。中間シャフトは、ステアリングギヤのラック軸に噛合うピニオンシャフトに、自在継手を締結する際に、一旦縮めてからピニオンシャフトに嵌合させて締結するためや、車体フレームとの間の相対変位を吸収するために、伸縮機能が必要である。
 ステアリングシャフトは、ステアリングホイールの操舵力を車輪に伝達すると共に、運転者の体格や運転姿勢に応じて、ステアリングホイールの位置を軸方向に調整するため、伸縮機能が要求される。
 近年、車体全体の剛性と走行安定性が向上したために、ステアリングホイールを操作した時に、伸縮軸の回転方向のガタツキを運転者が感じやすくなった。そこで、回転方向のガタツキと摺動抵抗が小さく、潤滑性と耐久性に優れた伸縮軸が望まれている。
 そのために、雄シャフトの歯面の外周を摺動抵抗の小さな樹脂等で被覆し、潤滑剤を塗布した後に、当該雄シャフトを雌シャフトに嵌合した伸縮軸がある。図6は、従来の雄シャフトと当該雄シャフトに外嵌された雌シャフトの断面図であり、雄シャフトの被覆部に加わる面圧を示す。図6に示すように、従来の雄シャフト16A(雄スプライン軸)は、軸方向に相対摺動可能に、かつ、回転トルクを伝達可能に雌シャフト16B(雌スプライン筒)に嵌合している。中実の雄シャフト16Aの突条歯61は、突条歯61と雌シャフト16Bの歯溝41との間の摺動抵抗を減少させる樹脂製の被覆部61でコーティングされ、歯溝41の歯面と被覆部61が小さな締め代を有するように歯溝41に嵌合している。
 このような従来の伸縮軸では、図6に示すように、突条歯51と歯溝41が噛み合う領域の軸方向の両端部に作用する曲げモーメントが大きくなるため、当該両端部における面圧が大きい。従って、被覆部61の軸方向両端部がへたり、雄シャフトと雌シャフトとの間でガタが発生する。被覆部61が設けられていない場合であっても、同様の理由により、雄シャフトと雌シャフトとの間でガタが発生する可能性がある。特に、コラムアシスト型パワーステアリング装置では、自在継手に生じる偶力によって、中間シャフトの突条歯51と歯溝41が噛み合う領域の軸方向の両端部に作用する面圧が大きく雄シャフトと雌シャフトとの間でガタが発生する可能性が大きい。
 特許文献1の伸縮軸は、マイカ等の板状充填剤を含有した樹脂層で雄シャフトを被覆することによって、樹脂層のへたりを抑制して、雄シャフトと雌シャフトの間のガタを抑制している。しかし、特許文献1は、雄シャフトの軸方向両端部における樹脂層に加わる面圧を考慮していない。
 特許文献2の伸縮軸は、雄シャフトと雌シャフトの間に設けられたボールを備えている。ボールへの予圧力を長期に渡って維持し、長期間使用しても遊びが生じ難くするために、雌シャフトの周方向の所定領域には、弾性変形が容易な変形促進部が形成され、これによって雌シャフトを撓みやすくして、雌シャフトやボールに負荷される応力を緩和している。しかし、特許文献2は、軸方向における面圧の違いを考慮していない。
日本国特開2008-222016号公報 日本国特開2006-112623号公報
 本発明は、雄シャフトと雌シャフトが噛み合う領域における面圧が軸方向において局部的に大きくなることを抑制し、雄シャフトと雌シャフトの間のガタを抑制した伸縮軸を提供することを課題とする。
 本発明の一態様によれば、伸縮軸は、複数の突条歯が形成された外周を有する雄シャフトと、複数の歯溝が形成された内周を有し、雄シャフトに外嵌された雌シャフトと、を備える。雄シャフトと雌シャフトが軸方向に相対摺動可能、且つ、雄シャフトと雌シャフトの間で回転トルクを伝達可能に、突条歯と歯溝が噛み合う。雄シャフトと雌シャフトの少なくとも一方は、突条歯と歯溝が噛み合う領域の軸方向範囲における雄シャフトと雌シャフトの前記少なくとも一方の部分の半径方向の剛性が、雄シャフトと雌シャフトの前記少なくとも一方の他の部分の半径方向の剛性よりも小さくなるように構成されている。
 前記雄シャフトは、少なくとも部分的に中実シャフトであり、前記突条歯の軸方向の一端または両端に対応する前記雄シャフトの部分には、前記軸方向に沿って孔が形成されていてもよい。
 前記雄シャフトは、少なくとも部分的に中実シャフトであり、前記雄シャフトには、前記軸方向に沿って、且つ、前記突条歯の軸方向の全長に亘って孔が形成されていてもよい。
 前記雄シャフトは、前記突条歯の軸方向範囲において縮径部を有していてもよい。当該縮径部の外径は、前記突条歯の軸方向範囲における前記雄シャフトの他の部分の外径よりも小さい。
 前記雄シャフトは、中空シャフトであり、前記突条歯の軸方向の一端または両端に対応する前記雄シャフトの部分の内径は、前記雄シャフトの他の部分の内径よりも大きくてもよい。
 前記雄シャフトは、中空シャフトであり、前記突条歯の軸方向の全長に亘る前記雄シャフトの部分の内径は、前記雄シャフトの他の部分の内径よりも大きくてもよい。
 前記雄シャフトは、前記突条歯の軸方向範囲において縮径部を有していてもよい。当該縮径部の外径は、前記突条歯の軸方向範囲における前記雄シャフトの他の部分の外径よりも小さい。
 前記雌シャフトは、前記歯溝の軸方向範囲において縮径部を有してもよい。当該縮径部の外径は、前記歯溝の軸方向範囲における前記雌シャフトの他の部分の外径よりも小さい。
 前記雌シャフトは、前記歯溝の軸方向の全長に亘って縮径部を有していてもよい。当該縮径部の外径は、前記雌シャフトの他の部分の外径よりも小さい。
 前記雌シャフトの歯溝は、締まり嵌めにより前記雄シャフトの突条歯に外嵌していてもよい。前記雄シャフトの突条歯の歯面には、当該突条歯と前記雌シャフトの歯溝の間の摺動抵抗を減少させる被覆部が形成されていてもよい。
 本発明の一態様によれば、突条歯と歯溝が噛み合う領域の軸方向範囲における雄シャフトと雌シャフトの少なくとも一方の部分の半径方向の剛性が、雄シャフトと雌シャフトの前記少なくとも一方の他の部分よりも小さい。従って、軸方向において局部的に大きな面圧が生じないようにして、雄シャフトと雌シャフトとの間のガタを抑制できる。
ステアリング装置の斜視図である。 図1のステアリング装置の伸縮軸(中間シャフト)であって、一部が切り欠かれた伸縮軸の側面図である。 図2の伸縮軸の拡大断面図であり、伸縮軸の雄シャフトがスリーブで被覆された例を示す。 図2の伸縮軸の拡大断面図であり、伸縮軸の雄シャフトが被覆部でコーティングされた例を示す。 本発明の実施例1に係る伸縮軸の雄シャフトの断面図である。 図4の雄シャフトと当該雄シャフトに外嵌された雌シャフトの断面図であり、雄シャフトの被覆部に加わる面圧を示す。 従来の雄シャフトと当該雄シャフトに外嵌された雌シャフトの断面図であり、雄シャフトの被覆部に加わる面圧を示す。 本発明の実施例2に係る伸縮軸の雄シャフトの断面図である。 本発明の実施例3に係る伸縮軸の雄シャフトの断面図である。 本発明の実施例4に係る伸縮軸の雄シャフトの断面図である。 本発明の実施例5に係る伸縮軸の雄シャフトの断面図である。 本発明の実施例6に係る伸縮軸の雄シャフトの断面図である。 図9の雄シャフトと当該雄シャフトに外嵌された雌シャフトの断面図であり、雄シャフトの被覆部に加わる面圧を示す。 本発明の実施例7に係る伸縮軸の断面図である。 本発明の実施例8に係る伸縮軸の断面図である。 本発明の実施例9に係る伸縮軸の断面図である。 本発明の実施例10に係る伸縮軸の断面図である。 本発明の実施例11に係る伸縮軸の断面図である。 本発明の実施例12に係る伸縮軸の断面図である。 本発明の実施例13に係る伸縮軸の断面図である。
 以下、図面を参照して本発明の実施例について詳細に説明する。
 図1は、ステアリング装置の一例として、コラムアシスト型ラックピニオン式パワーステアリング装置を示す。このパワーステアリング装置は、ステアリングホイール11の操作力を軽減するために、操舵補助部20(電動アシスト装置)を有する。操舵補助部20は、コラム13に取付けられている。操舵補助部20からの操舵補助力は、ステアリングシャフトに付与され、中間シャフト16を介して、ステアリングギヤ30のラックを往復移動させ、タイロッド32を介して舵輪を操舵する。
 図1及び2に示すように、操舵補助部20の前端面から突出した出力軸23は、自在継手15を介して、中間シャフト16の雌中間シャフト16B(以下、雌シャフト)の後端部に連結されている。中間シャフト16の雄中間シャフト16A(以下、雄シャフト)の前端部には、別の自在継手17を介して、ステアリングギヤ30の入力軸31が連結されている。雌シャフト16Bには雌スプラインが形成され、雄シャフト16Aには雄スプラインが形成されて、雌シャフト16Bと雄シャフト16Aがスプライン係合されている。
 雄シャフト16Aは、雌シャフト16Bに対して、軸方向に相対摺動可能に、且つ、回転トルクを伝達可能に結合されている。入力軸31の前端部には、ピニオンが形成されている。ラックがこのピニオンに噛み合っており、ステアリングホイール11の回転が、タイロッド32を移動させて、車輪を操舵する。本発明の実施例係る伸縮軸は、中間シャフト16に適用するのが好ましいが、ステアリング装置の任意の伸縮軸に適用することができる。
 図2乃至3Bに示すように、雌シャフト16Bは、中空筒状に形成されている。雌シャフト16Bの内周には、雌シャフト16Bの軸心から放射状に、複数の軸方向の歯溝41が、伸縮範囲(伸縮ストローク)の全長にわたって、等間隔に形成されている。雄シャフト16Aと雌シャフト16Bは、例えば、炭素鋼またはアルミニウム合金で成形されている。
 図3Aは、雄シャフト16Aの突条歯51が、スリーブで被覆された例を示す。スリーブは、雄シャフト16Aの突条歯51と雌シャフト16Bの歯溝41との間の摺動抵抗を減少させる被覆部61の例である。
 雄シャフト16Aは、回転トルクを伝達するための非円形の外周形状として、4個の軸方向の突条歯51を有する、雄シャフト16Aの突条歯51は、突条歯51の軸方向の全長に亘って、スリーブで被覆されている。
 図3Bは、雄シャフト16A(雄スプライン軸)の突条歯51が、被覆部61でコーティングされた例を示す。雄シャフト16Aは、回転トルクを伝達するための非円形の外周形状として、18個の軸方向の突条歯51を有する。雄シャフト16Aの突条歯51は、突条歯51の軸方向の全長に亘って被覆部61でコーティングされ、突条歯51と雌シャフト16B(雌スプライン筒)の軸方向の歯溝41との間の摺動抵抗が減少されてる。被覆部61は、ゴム、例えば、天然ゴム、合成ゴム、または、天然ゴムと合成ゴムの混合物で構成することが好ましい。本発明は、相対的に摺動可能で、回転トルクを伝達可能な任意形状の雄シャフトと雌シャフトを有する伸縮軸に適用することができる。
 図4は、本発明の実施例1に係る伸縮軸の雄シャフトの断面図である。図4に示すように、実施例1の雄シャフト16Aは、中実シャフトである。雄シャフト16Aの突条歯51には、突条歯51の軸方向の全長に亘って、突条歯51と雌シャフト16Bの歯溝41の間の摺動抵抗を減少させる被覆部61が形成されている。突条歯51の軸方向の一端(図4における左端)に対応する雄シャフト16Aの一端部には、軸方向に沿って孔71が形成され、雄シャフト16Aの一端部の肉厚が雄シャフト16Aの他の部分の肉厚よりも薄くなっている。従って、孔71の軸方向の範囲における雄シャフト16Aの一端部の半径方向の剛性は、雄シャフト16Aの他の部分の半径方向の剛性よりも小さい。半径方向の剛性とは、半径方向の単位変形を起こすのに必要な半径方向の力で表される。
 図5に示すように、図4の雄シャフト16Aは、歯溝41の歯面と被覆部61が小さな締め代を有するように嵌合し、軸方向に相対摺動可能に、且つ、回転トルクを伝達可能に雌シャフト16Bに嵌合している。歯溝41の歯面と被覆部61との嵌合は、締まり嵌めに限定されず、隙間嵌めや止まり嵌めでもよい。
 実施例1に係る伸縮軸によれば、図5に示すように、突条歯51と歯溝41が噛み合う領域の軸方向の両端部に大きな曲げモーメントが作用しても、突条歯51の軸方向の一端部加わる面圧の増加が孔71の軸方向の範囲において抑制され、被覆部61の軸方向の一端のへたりや雄シャフト16Aと雌シャフト16Bの間のガタが抑制される。
 次に、図7Aを参照して本発明の実施例2について説明する。以下の説明では、上記実施例と異なる構造部分について説明し、重複する説明は省略する。
 図7Aに示すように、実施例2係る雄シャフト16Aは、部分的に中実シャフトでる。雄シャフト16Aの突条歯51には、突条歯51の軸方向の全長に亘って、突条歯51と雌シャフト16Bの歯溝41の間の摺動抵抗を減少させる被覆部61が形成されている。突条歯51の軸方向の一端(図7Aにおける左端)に対応する雄シャフト16Aの一端部には、軸方向に沿って孔71が形成され、雄シャフト16Aの一端部の肉厚を薄くしている。
 また、雄シャフト16Aには、雄シャフト16Aの他端(図7Aにおける右端)から、突条歯51の軸方向の他端(図7Aにおける右端)に対応する雄シャフト16Aの部分まで、軸方向に沿って孔72が形成され、雄シャフト16Aの当該部分の肉厚を薄くしている。従って、孔71の軸方向の範囲と孔72の軸方向の範囲における雄シャフト16Aの部分の半径方向の剛性は、雄シャフト16Aの他の部分の半径方向の剛性よりも小さい。孔72の径は、孔71と径と同じであってもよい。
 実施例2に係る伸縮軸によれば、突条歯51と歯溝41が噛み合う領域の軸方向の両端部に大きな曲げモーメントが作用しても、突条歯51の軸方向の両端部に加わる面圧の増加が孔71の軸方向の範囲と孔72の軸方向の範囲において抑制され、被覆部61の軸方向両端部のへたりや雄シャフト16Aと雌シャフト16Bの間のガタが抑制される。
 次に、図7Bを参照して本発明の実施例3について説明する。以下の説明では、上記実施例と異なる構造部分について説明し、重複する説明は省略する。
 図7Bに示すように、実施例3に係る雄シャフト16Aは、雄シャフト16Aの軸方向の全長に亘って孔73が形成された中空シャフトである。雄シャフト16Aの突条歯51には、突条歯51の軸方向の全長に亘って、突条歯51と雌シャフト16Bの歯溝41の間の摺動抵抗を減少させる被覆部61が形成されている。突条歯51の軸方向の一端(図7Bにおける左端)に対応する雄シャフト16Aの一端部において、孔73を拡げて孔71が形成され、雄シャフト16Aの一端部の肉厚を薄くしている。即ち、雄シャフト16Aの一端部の内径は、雄シャフト16Aの他の部分の内径よりも大きい。
 従って、孔71の軸方向の範囲における雄シャフト16Aの一端部の半径方向の剛性は、雄シャフト16Aの他の部分の半径方向の剛性よりも小さい。実施例3に係る伸縮軸によれば、突条歯51と歯溝41が噛み合う領域の軸方向の両端部に大きな曲げモーメントが作用しても、突条歯51の軸方向の一端部に加わる面圧の増加が孔71の軸方向の範囲において抑制され、被覆部61の軸方向の一端のへたりや雄シャフト16Aと雌シャフト16Bの間のガタが抑制される。
 次に、図8Aを参照して本発明の実施例4について説明する。以下の説明では、上記実施例と異なる構造部分について説明し、重複する説明は省略する。
 図8Aに示すように、実施例4に係る雄シャフト16Aは、雄シャフト16Aの軸方向の全長に亘って孔73が形成された中空シャフトである。雄シャフト16Aの突条歯51には、突条歯51の軸方向の全長に亘って、突条歯51と雌シャフト16Bの歯溝41との間の摺動抵抗を減少させる被覆部61が形成されている。実施例3と同様に、突条歯51の軸方向の一端(図8Aにおける左端)に対応する雄シャフト16Aの一端部において、孔73を拡げて孔71が形成され、雄シャフト16Aの一端部の肉厚を薄くしている。
 また、突条歯51の軸方向の他端(図8Aにおける右端)に対応する雄シャフト16Aの部分において、孔73を拡げて孔74が形成され、雄シャフト16Aの当該部分の肉厚を薄くしている。即ち、突条歯51の軸方向の両端に対応する雄シャフト16Aの部分の内径は、雄シャフト16Aの他の部分の内径よりも大きい。従って孔71の軸方向の範囲と孔74の軸方向の範囲における雄シャフト16Aの部分の半径方向の剛性は、雄シャフト16Aの他の部分の半径方向の剛性よりも小さい。実施例4に係る伸縮軸によれば、突条歯51と歯溝41が噛み合う領域の軸方向の両端部に大きな曲げモーメントが作用しても、突条歯51の軸方向の両端部に加わる面圧が孔71の軸方向の範囲と孔74の軸方向の範囲において抑制され、被覆部61の軸方向両端部のへたりや雄シャフト16Aと雌シャフト16Bの間のガタが抑制される。
 次に、図8Bを参照して本発明の実施例5について説明する。以下の説明では、上記実施例と異なる構造部分について説明し、重複する説明は省略する。
 図8Bに示すように、実施例5に係る雄シャフト16Aは、部分的に中実シャフトである。雄シャフト16Aの突条歯51には、突条歯51の軸方向の全長に亘って、突条歯51と雌シャフト16Bの歯溝41の間の摺動抵抗を減少させる被覆部61が形成されている。雄シャフト16Aには、突条歯51の軸方向の全長に亘って孔75が形成され、雄シャフト16Aの肉厚を突条歯51の軸方向の全範囲において薄くしている。
 従って、突条歯51の軸方向の全範囲における雄シャフト16Aの部分の半径方向の剛性は、雄シャフト16Aの他の部分の半径方向の剛性よりも小さい。実施例5に係る伸縮軸によれば、突条歯51と歯溝41が噛み合う領域の軸方向の両端部に大きな曲げモーメントが作用しても、突条歯51全体に加わる面圧の増加が抑制され、被覆部61のへたりや雄シャフト16Aと雌シャフト16Bの間のガタが抑制される。
 次に、図9と10を参照して本発明の実施例6について説明する。以下の説明では、上記実施例と異なる構造部分について説明し、重複する説明は省略する。
 図9に示すように、実施例6に係る雄シャフト16Aは、雄シャフト16Aの軸方向の全長に亘って孔73が形成された中空シャフトである。雄シャフト16Aの突条歯51には、突条歯51の軸方向の全長に亘って、突条歯51と雌シャフト16Bの歯溝41の間の摺動抵抗を減少させる被覆部61が形成されている。雄シャフト16Aは、突条歯51の軸方向の全長に亘って孔73を拡げて孔76が形成され、雄シャフト16Aの肉厚を突条歯51の軸方向の全範囲において薄くしている。即ち、突条歯51の軸方向の全範囲における雄シャフト16Aの部分の内径は、雄シャフト16Aの他の部分の内径よりも大きい。
 従って、孔76の軸方向の範囲における雄シャフト16Aの部分の半径方向の剛性が、雄シャフト16Aの他の部分の半径方向の剛性よりも小さい。実施例6に係る伸縮軸によれば、突条歯51と歯溝41が噛み合う領域の軸方向の両端部に大きな曲げモーメントが作用しても、図10に示すように、突条歯51全体に加わる面圧の増加が抑制され、被覆部61のへたりや雄シャフト16Aと雌シャフト16Bの間のガタが抑制される。
 次に、図11を参照して本発明の実施例7について説明する。以下の説明では、上記実施例と異なる構造部分について説明し、重複する説明は省略する。
 図11に示すように、実施例7に係る雄シャフト16Aは、実施例1と同様の構成を有する中実シャフトである。即ち、雄シャフト16Aの突条歯51の軸方向の一端(図11における左端)に対応する雄シャフト16Aの一端部には、軸方向に沿って孔71が形成され、雄シャフト16Aの一端部の肉厚を薄くしている。
 また、雌シャフト16Bには、歯溝41の軸方向の一端に対応する雌シャフト16Bの一端部の外径を小さくして縮径部81が形成され、雌シャフト16Bの一端部の肉厚を薄くしている。従って、孔71の軸方向の範囲における雄シャフト16Aの一端部の半径方向の剛性は、雄シャフト16Aの他の部分の半径方向の剛性よりも小さく、縮径部81の軸方向の範囲における雌シャフト16Bの一端部の半径方向の剛性は、雌シャフト16Bの他の部分の半径方向の剛性よりも小さい。
 実施例7に係る伸縮軸によれば、突条歯51と歯溝41が噛み合う領域の軸方向の両端部に大きな曲げモーメントが作用しても、突条歯51の軸方向の両端に加わる面圧の増加が孔71の軸方向の範囲と縮径部81の軸方向の範囲において抑制され、被覆部61の軸方向両端部のへたりや雄シャフト16Aと雌シャフト16Bの間のガタが抑制される。
 次に、図12を参照して本発明の実施例8について説明する。以下の説明では、上記実施例と異なる構造部分について説明し、重複する説明は省略する。
 図12に示すように、実施例8に係る雄シャフト16Aは、部分的に中実シャフトで、実施例5と同様の構成を有する。雄シャフト16Aの突条歯51には、突条歯51の軸方向の全長に亘って孔75が形成され、雄シャフト16Aの肉厚を突条歯51の軸方向の全範囲において薄くしている。
 また、雌シャフト16Bには、歯溝41の軸方向の全長に亘って雌シャフト16Bの外径を小さくして縮径部82が形成され、雌シャフト16Bの肉厚を歯溝41の軸方向の全範囲において薄くしている。従って、突条歯51の軸方向の全範囲(孔75の軸方向の範囲)における雄シャフト16Aの部分の半径方向の剛性は、雄シャフト16Aの軸方向の他の部分の半径方向の剛性よりも小さく、歯溝41の軸方向の全範囲(縮径部82の軸方向の範囲)における、雌シャフト16Bの部分の半径方向の剛性は、雌シャフト16Bの軸方向の全長のうちの他の部分の半径方向の剛性よりも小さい。
 実施例8の伸縮軸によれば、突条歯51と歯溝41が噛み合う領域の軸方向の両端部に大きな曲げモーメントが作用しても、突条歯51全体に加わる面圧の増加が抑制され、被覆部61のへたりや雄シャフト16Aと雌シャフト16Bの間のガタが抑制される。
 次に、図13を参照して本発明の実施例9について説明する。以下の説明では、上記実施例と異なる構造部分について説明し、重複する説明は省略する。
 図13に示すように、実施例9に係る雄シャフト16Aは、雄シャフト16Aの軸方向の全長に亘って中空孔73が形成された中空シャフトである。雄シャフト16Aには、突条歯51の軸方向の全長に亘って孔73を拡げて孔76が形成され、雄シャフト16Aの肉厚を突条歯51の軸方向の全範囲において薄くしている。さらに、突条歯51の軸方向の一端(図13における左端)に対応する雄シャフト16Aの一端部において、孔76を拡げて孔77が形成され、雄シャフト16Aの一端部の肉厚を更に薄くしている。即ち、突条歯51の軸方向の一端に対応する雄シャフト16Aの一端部の内径は、突条歯51の軸方向の範囲における雄シャフト16Aの他の部分の内径よりも大きく、突条歯51の軸方向の範囲における雄シャフト16Aの他の部分の内径は、突条歯51の軸方向の範囲外における内径よりも大きい。
 また、雌シャフト16Bには、歯溝41の軸方向の一端(図9における右端)以外の歯溝41の部分に対応する雌シャフト16Bの部分の外径を小さくして縮径部83が形成され、雌シャフト16Bの当該部分の肉厚を薄くしている。従って、孔76の軸方向の範囲における雄シャフト16Aの部分の半径方向の剛性、特に、孔77の軸方向の範囲における雄シャフト16Aの部分の半径方向の剛性は、雄シャフト16Aの他の部分の半径方向の剛性よりも小さく、縮径部83の軸方向の範囲における雌シャフト16Bの部分の半径方向の剛性は、雌シャフト16Bの軸方向の他の部分の半径方向の剛性よりも小さい。
 実施例9に係る伸縮軸によれば、突条歯51と歯溝41が噛み合う領域の軸方向の両端部に大きな曲げモーメントが作用しても、突条歯51全体に加わる面圧の増加が抑制され、被覆部61のへたりや雄シャフト16Aと雌シャフト16Bの間のガタが抑制される。
 次に、図14を参照して、本発明の実施例10について説明する。以下の説明では、上記実施例と異なる構造部分について説明し、重複する説明は省略する。
 図14に示すように、実施例10雄シャフト16Aは、雄シャフト16Aの軸方向の全長に亘って孔73が形成された中空シャフトである。雄シャフト16Aには、突条歯51の軸方向の全長に亘って孔73を拡げて孔76が形成され、雄シャフト16Aの肉厚を突条歯51の軸方向の全範囲において薄くしている。さらに、突条歯51の軸方向の一端(図14における左端)に対応する雄シャフト16Aの一端部において、孔76を拡げて孔77を形成し、雄シャフト16Aの一端部の肉厚を更に薄くしている。また、突条歯51の軸方向の他端(図14における右端)に対応する雄シャフト16Aの部分においても、孔76を拡げて孔78が形成され、雄シャフト16Aの当該部分の肉厚を更に薄くしている。
 また、雌シャフト16Bには、歯溝41の軸方向の中間部分に対応する雌シャフト16Bの部分の外径を小さくして縮径部84が形成され、雌シャフト16Bの当該部分の肉厚を薄くしている。従って、孔76の軸方向の範囲、孔77の軸方向の範囲、及び、孔78の軸方向の範囲における雄シャフト16Aの部分の半径方向の剛性は、雄シャフト16Aの他の部分の半径方向の剛性よりも小さく、縮径部84の軸方向の範囲における雌シャフト16Bの部分の半径方向の剛性は、雌シャフト16Bの他の部分の半径方向の剛性よりも小さい。
 実施例10にかかる伸縮軸によれば、突条歯51と歯溝41が噛み合う領域の軸方向の両端部に大きな曲げモーメントが作用しても、突条歯51の軸方向の両端部及び軸方向の中間部に加わる面圧の増加が抑制され、被覆部61のへたりや雄シャフト16Aと雌シャフト16Bの間のガタが抑制される。
 次に、図15を参照して本発明の実施例11について説明する。以下の説明では、上記実施例と異なる構造部分について説明し、重複する説明は省略する。
 図15に示すように、実施例11に係る雄シャフト16Aは、部分的に中実シャフトである。雄シャフト16Aには、突条歯51の軸方向の全長に亘って孔75が形成され、雄シャフト16Aの肉厚を突条歯51の軸方向の全範囲において薄くしている。さらに、雄シャフト16Aには、突条歯51の軸方向の一端(図15における左端)に対応する雄シャフト16Aの一端部の外径と突条歯51の軸方向の他端(図15の右端)に対応する雄シャフト16Aの部分の外径を小さくして縮径部91、92が形成され、突条歯51の軸方向の両端に対応する雄シャフト16Aの部分の肉厚を薄くしている。
 また、雌シャフト16Bには、歯溝41の軸方向の全長に亘って雌シャフト16Bの外径を小さくして縮径部82が形成され、歯溝41の軸方向の全範囲において雌シャフト16Bの肉厚を薄くしている。従って、縮径部91の軸方向の範囲と縮径部92の軸方向の範囲における雄シャフト16Aの部分の半径方向の剛性は、雄シャフト16Aのよりも小さく、縮径部82の軸方向の範囲雌シャフト16Bの部分の半径方向の剛性は、雌シャフト16Bの他の部分の半径方向の剛性よりも小さい。
 実施例11に係る伸縮軸によれば、突条歯51と歯溝41が噛み合う領域の軸方向の両端部に大きな曲げモーメントが作用しても、突条歯51全体に加わる面圧の増加が抑制され、被覆部61のへたりや雄シャフト16Aと雌シャフト16Bの間のガタが抑制される。
 次に、図16を参照して本発明の実施例12について説明する。以下の説明では、上記実施例と異なる構造部分について説明し、重複する説明は省略する。
 図16に示すように、実施例12に係る雄シャフト16Aは、部分的に中実シャフトである。雄シャフト16Aには、突条歯51の軸方向の全長に亘って孔75が形成され、突条歯51の軸方向の全範囲において雄シャフト16Aの肉厚を薄くしている。さらに、雄シャフト16Aには、突条歯51の軸方向の中間部分に対応する雄シャフト16Aの部分の外径を小さくして縮径部93が形成され、雄シャフト16Aの当該部分の肉厚を薄く形成している。
 また、雌シャフト16Bには、歯溝41の軸方向の全長に亘って雌シャフト16Bの外径を小さくして縮径部82が形成され、歯溝41の軸方向の全範囲において雌シャフト16Bの肉厚を薄くしている。従って、縮径部93の軸方向の範囲における雄シャフト16Aの部分の半径方向の剛性は、雄シャフト16Aの他の部分の半径方向の剛性よりも小さく、縮径部82の軸方向の範囲における雌シャフト16Bの部分の半径方向の剛性は、雌シャフト16Bの他の部分の半径方向の剛性よりも小さい。
 実施例12に係る伸縮軸によれば、突条歯51と歯溝41が噛み合う領域の軸方向の両端部に大きな曲げモーメントが作用しても、突条歯51全体に加わる面圧の増加が抑制され、被覆部61のへたりや雄シャフト16Aと雌シャフト16Bの間のガタが抑制される。
 次に、図17を参照して本発明の実施例13について説明する。以下の説明では、上記実施例と異なる構造部分について説明し、重複する説明は省略する。
 図17に示すように、実施例13に係る雄シャフト16Aは、部分的に中実シャフトである。雄シャフト16Aには、突条歯51の軸方向の全長に亘って孔75が形成され、突条歯51の軸方向の全範囲においての雄シャフト16Aの肉厚を薄くしている。さらに、雄シャフト16Aには、突条歯51の軸方向の一端(図17における左端)に対応する雄シャフト16Aの一端部の外径を小さくして縮径部91が形成され、雄シャフト16Aの一端部の肉厚を薄くしている。
 また、雌シャフト16Bには、歯溝41の軸方向の全長に亘って雌シャフト16Bの外径を小さくして縮径部82が形成され、歯溝41の軸方向の全範囲において雌シャフト16Bの肉厚を薄くしている。従って、縮径部91の軸方向の範囲における雄シャフト16Aの一端部の半径方向の剛性は、雄シャフト16Aの他の部分の半径方向の剛性よりも小さく、縮径部82の軸方向の範囲における雌シャフト16Bの部分の半径方向の剛性は、雌シャフト16Bの他の部分の半径方向の剛性よりも小さい。
 実施例13に係る伸縮軸によれば、突条歯51と歯溝41が噛み合う領域の軸方向の両端部に大きな曲げモーメントが作用しても、突条歯51全体に加わる面圧の増加が抑制され、被覆部61のへたりや雄シャフト16Aと雌シャフト16Bの間のガタが抑制される。上記実施例11~13の縮径部91~93は、例えば図9に示されるような中空の雄シャフト16Aに形成されてもよい。
 上記実施例では、スプラインを有する伸縮軸に本発明を適用した例について説明したが、本発明は、セレーションを有する伸縮軸に適用してもよい。上記実施例では、雄シャフト16Aの突条歯51に摺動抵抗を減少させる被覆部61が形成されているが、雌シャフト16Bの歯溝41に被覆部61を形成してもよい。また、雄シャフト16Aの突条歯51と雌シャフト16Bの歯溝41の両方に、被覆部61を形成してもよい。さらに、雄シャフト16Aまたは雌シャフト16B全体を、被覆部61と同一の材質で成形してもよい。或いは、雄シャフト16Aと雌シャフト16Bのいずれにも被覆部61を形成しなくてもよい。
 また、上記実施例では、中間シャフト16に本発明を適用した例について説明したが、本発明は、ステアリングシャフト等、ステアリング装置を構成する任意の伸縮軸に適用することができる。また、上記実施例では、電動アシスト装置20を有するステアリング装置に本発明を適用した例について説明したが、本発明は、電動アシスト装置を有さないステアリング装置に適用してもよい。
 本発明は、2011年11月30日出願の日本特許出願2011-263121号に基づき、その内容は参照としてここに取り込まれる。
 本発明は、相対的に摺動可能で、回転トルクを伝達可能な雄シャフトと雌シャフトを有する伸縮軸に適用可能である。
 16 中間シャフト
 16A 雄中間シャフト(雄シャフト)
 16B 雌中間シャフト(雌シャフト)
 41 歯溝
 51 突条歯
 61 被覆部
 71~78 孔
 81~84,91~93 縮径部

Claims (11)

  1.  複数の突条歯が形成された外周を有する雄シャフトと、
     複数の歯溝が形成された内周を有し、前記雄シャフトに外嵌された雌シャフトと、を備え、
     前記雄シャフトと前記雌シャフトが軸方向に相対摺動可能、且つ、前記雄シャフトと前記雌シャフトの間で回転トルクを伝達可能に、前記突条歯と前記歯溝が噛み合い、
     前記雄シャフトと雌シャフトの少なくとも一方は、前記突条歯と歯溝が噛み合う領域の軸方向範囲における前記雄シャフトと雌シャフトの前記少なくとも一方の部分の半径方向の剛性が、前記雄シャフトと雌シャフトの前記少なくとも一方の他の部分の半径方向の剛性よりも小さくなるように構成されている、伸縮軸。
  2.  前記雄シャフトは、少なくとも部分的に中実シャフトであり、
     前記突条歯の軸方向の一端または両端に対応する前記雄シャフトの部分には、前記軸方向に沿って孔が形成されている、請求項1に記載の伸縮軸。
  3.  前記雄シャフトは、少なくとも部分的に中実シャフトであり、
     前記雄シャフトには、前記軸方向に沿って、且つ、前記突条歯の軸方向の全長に亘って孔が形成されている、請求項1に記載の伸縮軸。
  4.  前記雄シャフトは、前記突条歯の軸方向範囲において縮径部を有し、当該縮径部の外径は、前記突条歯の軸方向範囲における前記雄シャフトの他の部分の外径よりも小さい、請求項3に記載の伸縮軸。
  5.  前記雄シャフトは、中空シャフトであり、
     前記突条歯の軸方向の一端または両端に対応する前記雄シャフトの部分の内径は、前記雄シャフトの他の部分の内径よりも大きい、請求項1に記載の伸縮軸。
  6.  前記雄シャフトは、中空シャフトであり、
     前記突条歯の軸方向の全長に亘る前記雄シャフトの部分の内径は、前記雄シャフトの他の部分の内径よりも大きい、請求項1に記載の伸縮軸。
  7.  前記雄シャフトは、前記突条歯の軸方向範囲において縮径部を有し、当該縮径部の外径は、前記突条歯の軸方向範囲における前記雄シャフトの他の部分の外径よりも小さい、請求項6に記載の伸縮軸。
  8.  前記雌シャフトは、前記歯溝の軸方向範囲において縮径部を有し、当該縮径部の外径は、前記歯溝の軸方向範囲における前記雌シャフトの他の部分の外径よりも小さい、請求項1に記載の伸縮軸。
  9.  前記雌シャフトは、前記歯溝の軸方向の全長に亘って縮径部を有し、当該縮径部の外径は、前記雌シャフトの他の部分の外径よりも小さい、請求項1に記載の伸縮軸。
  10.  前記雌シャフトの歯溝は、締まり嵌めにより前記雄シャフトの突条歯に外嵌している、請求項1に記載の伸縮軸。
  11.  前記雄シャフトの突条歯の歯面には、当該突条歯と前記雌シャフトの歯溝の間の摺動抵抗を減少させる被覆部が形成されている、請求項1に記載の伸縮軸。
PCT/JP2012/077507 2011-11-30 2012-10-24 伸縮軸 WO2013080715A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/239,626 US20140200086A1 (en) 2011-11-30 2012-10-24 Telescopic shaft
JP2012550230A JP5590149B2 (ja) 2011-11-30 2012-10-24 伸縮軸
CN201280001801.9A CN103282682B (zh) 2011-11-30 2012-10-24 伸缩轴
EP12852627.4A EP2787235B1 (en) 2011-11-30 2012-10-24 Telescopic shaft
US15/063,726 US9951806B2 (en) 2011-11-30 2016-03-08 Telescopic shaft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-263121 2011-11-30
JP2011263121 2011-11-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/239,626 A-371-Of-International US20140200086A1 (en) 2011-11-30 2012-10-24 Telescopic shaft
US15/063,726 Division US9951806B2 (en) 2011-11-30 2016-03-08 Telescopic shaft

Publications (1)

Publication Number Publication Date
WO2013080715A1 true WO2013080715A1 (ja) 2013-06-06

Family

ID=48535186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077507 WO2013080715A1 (ja) 2011-11-30 2012-10-24 伸縮軸

Country Status (4)

Country Link
US (2) US20140200086A1 (ja)
EP (1) EP2787235B1 (ja)
JP (3) JP5590149B2 (ja)
WO (1) WO2013080715A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223519A (ja) * 2015-05-29 2016-12-28 日本精工株式会社 伸縮自在シャフト及びその製造方法
JP2017106566A (ja) * 2015-12-10 2017-06-15 日本精工株式会社 伸縮自在シャフト用雄軸の製造方法
JP2017106565A (ja) * 2015-12-10 2017-06-15 日本精工株式会社 伸縮自在シャフト

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9422986B2 (en) * 2011-12-01 2016-08-23 Nsk Ltd. Telescopic shaft
GB201604738D0 (en) * 2016-03-04 2016-05-04 Trw Steering Systems Poland Sp Z O O A steering column assembly
US10914338B2 (en) 2016-07-26 2021-02-09 Nsk Ltd. Telescopic shaft
DE102017201709A1 (de) 2017-02-02 2018-08-02 Thyssenkrupp Ag Längsverstellbare Lenkwelle für ein Kraftfahrzeug und Profilhülse für eine Lenkwelle
EP3603845B1 (en) * 2017-03-27 2023-10-18 NSK Ltd. Method for producing shaft for steering device
US11891112B2 (en) * 2020-06-30 2024-02-06 Steering Solutions Ip Holding Corporation Intermediate shaft axial retention device
JP7484565B2 (ja) 2020-08-24 2024-05-16 日本精工株式会社 シャフト及びシャフトの製造方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120829U (ja) * 1979-02-19 1980-08-27
JPH0519661U (ja) * 1991-08-22 1993-03-12 株式会社松井製作所 軸継手
JPH0522143U (ja) * 1991-09-10 1993-03-23 三菱自動車工業株式会社 異種金属の動力伝達結合構造
JPH0575524U (ja) * 1992-03-13 1993-10-15 光洋精工株式会社 ドライブシャフト
JPH07248025A (ja) * 1994-03-11 1995-09-26 Nissan Diesel Motor Co Ltd プロペラシャフト
JP2000356225A (ja) * 1999-06-16 2000-12-26 Koyo Seiko Co Ltd スプライン装置
JP2003306152A (ja) * 2002-04-11 2003-10-28 Nsk Ltd 車両ステアリング用中間シャフト
JP2004324863A (ja) * 2003-04-28 2004-11-18 Koyo Seiko Co Ltd 伸縮自在シャフト
JP2005282711A (ja) * 2004-03-30 2005-10-13 Aichi Mach Ind Co Ltd 回転軸の防塵接続構造
JP2006046498A (ja) * 2004-08-04 2006-02-16 Toyota Motor Corp 伸縮シャフト
JP2006112623A (ja) 2004-09-16 2006-04-27 Jtekt Corp 伸縮自在シャフト
JP2007155009A (ja) * 2005-12-06 2007-06-21 Nsk Ltd スリット付きスライドジョイント及びその製造方法
JP2008222016A (ja) 2007-03-13 2008-09-25 Nsk Ltd 車両ステアリング用伸縮軸
JP2010096308A (ja) * 2008-10-17 2010-04-30 Nsk Ltd 伸縮式回転伝達軸
JP2011174607A (ja) * 2009-12-25 2011-09-08 Nsk Ltd スプライン加工方法及びスプラインシャフト

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL36945A (en) * 1971-05-28 1974-11-29 Abrahamer S Sliding coupling for propeller shafts
JPS5166651U (ja) * 1974-11-20 1976-05-26
JPS5733322A (en) 1980-08-06 1982-02-23 Nissan Motor Co Ltd Flowmeter
JPS5733322U (ja) * 1980-08-06 1982-02-22
JPS607330U (ja) * 1983-06-23 1985-01-19 三菱自動車工業株式会社 プロペラシヤフト
JPS607330A (ja) 1983-06-27 1985-01-16 Shimadzu Corp 分光光度計
JPS6079094U (ja) * 1983-11-04 1985-06-01 ダイハツ工業株式会社 推進軸とヨ−クの摺動嵌合部におけるシ−ル構造
JPS61184222A (ja) * 1985-02-07 1986-08-16 Toyota Motor Corp スライドスプライン装置及びその製造方法
FR2589537B1 (fr) * 1985-10-30 1990-03-16 Peugeot Cycles Arbre de transmission telescopique a rattrapage de jeu angulaire
US4819755A (en) * 1988-03-14 1989-04-11 Deere & Company Telescoping drive shaft having lubricating passage
JPH0659630U (ja) * 1993-01-29 1994-08-19 光洋精工株式会社 ドライブシャフト
FR2701915B1 (fr) * 1993-02-24 1995-05-24 Ecia Equip Composants Ind Auto Arbre de direction télescopique notamment pour véhicule automobile.
JPH11311256A (ja) * 1998-04-24 1999-11-09 Nippon Seiko Kk 衝撃吸収式ステアリングシャフト
JP3797304B2 (ja) 2002-09-13 2006-07-19 日本精工株式会社 車両ステアリング用伸縮軸
JP4196642B2 (ja) 2002-10-24 2008-12-17 日本精工株式会社 車両ステアリング用伸縮軸
JP2005042761A (ja) * 2003-07-23 2005-02-17 Koyo Seiko Co Ltd 伸縮自在シャフト
US7713131B2 (en) * 2007-08-27 2010-05-11 Gkn Driveline North America, Inc. Drive assembly and sleeve assembly therefor

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120829U (ja) * 1979-02-19 1980-08-27
JPH0519661U (ja) * 1991-08-22 1993-03-12 株式会社松井製作所 軸継手
JPH0522143U (ja) * 1991-09-10 1993-03-23 三菱自動車工業株式会社 異種金属の動力伝達結合構造
JPH0575524U (ja) * 1992-03-13 1993-10-15 光洋精工株式会社 ドライブシャフト
JPH07248025A (ja) * 1994-03-11 1995-09-26 Nissan Diesel Motor Co Ltd プロペラシャフト
JP2000356225A (ja) * 1999-06-16 2000-12-26 Koyo Seiko Co Ltd スプライン装置
JP2003306152A (ja) * 2002-04-11 2003-10-28 Nsk Ltd 車両ステアリング用中間シャフト
JP2004324863A (ja) * 2003-04-28 2004-11-18 Koyo Seiko Co Ltd 伸縮自在シャフト
JP2005282711A (ja) * 2004-03-30 2005-10-13 Aichi Mach Ind Co Ltd 回転軸の防塵接続構造
JP2006046498A (ja) * 2004-08-04 2006-02-16 Toyota Motor Corp 伸縮シャフト
JP2006112623A (ja) 2004-09-16 2006-04-27 Jtekt Corp 伸縮自在シャフト
JP2007155009A (ja) * 2005-12-06 2007-06-21 Nsk Ltd スリット付きスライドジョイント及びその製造方法
JP2008222016A (ja) 2007-03-13 2008-09-25 Nsk Ltd 車両ステアリング用伸縮軸
JP2010096308A (ja) * 2008-10-17 2010-04-30 Nsk Ltd 伸縮式回転伝達軸
JP2011174607A (ja) * 2009-12-25 2011-09-08 Nsk Ltd スプライン加工方法及びスプラインシャフト

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223519A (ja) * 2015-05-29 2016-12-28 日本精工株式会社 伸縮自在シャフト及びその製造方法
JP2017106566A (ja) * 2015-12-10 2017-06-15 日本精工株式会社 伸縮自在シャフト用雄軸の製造方法
JP2017106565A (ja) * 2015-12-10 2017-06-15 日本精工株式会社 伸縮自在シャフト

Also Published As

Publication number Publication date
JP5962818B2 (ja) 2016-08-03
JP2014222109A (ja) 2014-11-27
US20140200086A1 (en) 2014-07-17
EP2787235B1 (en) 2018-04-25
JP5590149B2 (ja) 2014-09-17
EP2787235A1 (en) 2014-10-08
CN103282682A (zh) 2013-09-04
JP2015180837A (ja) 2015-10-15
EP2787235A4 (en) 2015-08-19
US20160186798A1 (en) 2016-06-30
US9951806B2 (en) 2018-04-24
JPWO2013080715A1 (ja) 2015-04-27
JP5835429B2 (ja) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5962818B2 (ja) 伸縮軸
JP5447694B2 (ja) ステアリング装置用伸縮軸
JP6354761B2 (ja) 自在継手用ヨーク付トルク伝達軸
US10035534B2 (en) Steering shaft for a motor vehicle
EP3085603B1 (en) Telescoping spline shaft and steering device
WO2014192653A1 (ja) 伸縮軸用インナーシャフトおよびその製造方法
JP2005042761A (ja) 伸縮自在シャフト
JP5125742B2 (ja) ステアリング装置
JP5273103B2 (ja) 雄シャフトと雌シャフトの結合構造
JP2008261424A (ja) 伸縮軸
JP6939427B2 (ja) シールリング及び伸縮シャフト
JP5034881B2 (ja) 伸縮軸の製造方法、及び、この製造方法によって製造した伸縮軸
EP3835173A1 (en) Telescopic shaft and steering system
JP2009156438A (ja) 伸縮軸及び伸縮軸を備えたステアリング装置
JP2013117268A (ja) 伸縮軸
JP2009190423A (ja) ステアリング装置用伸縮軸
JP2011073543A5 (ja)
JP5553105B2 (ja) 電動式パワーステアリング装置
JP4842673B2 (ja) 伸縮自在シャフト
JP2008261423A (ja) 伸縮式回転伝達軸
JP2013142437A (ja) 伸縮軸
JP2008196688A (ja) 伸縮軸及び伸縮軸を備えたステアリング装置
CN103282682B (zh) 伸缩轴
JP2018053939A (ja) スプライン伸縮軸
JP2009250282A (ja) 伸縮軸及び伸縮軸を備えたステアリング装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012550230

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852627

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14239626

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE