WO2013058174A1 - スイッチング電源装置 - Google Patents

スイッチング電源装置 Download PDF

Info

Publication number
WO2013058174A1
WO2013058174A1 PCT/JP2012/076396 JP2012076396W WO2013058174A1 WO 2013058174 A1 WO2013058174 A1 WO 2013058174A1 JP 2012076396 W JP2012076396 W JP 2012076396W WO 2013058174 A1 WO2013058174 A1 WO 2013058174A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
resonance
primary
power supply
supply device
Prior art date
Application number
PCT/JP2012/076396
Other languages
English (en)
French (fr)
Inventor
細谷達也
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2013539621A priority Critical patent/JP5817835B2/ja
Priority to CN201280051372.6A priority patent/CN103891120B/zh
Priority to GB1405424.1A priority patent/GB2508774B/en
Publication of WO2013058174A1 publication Critical patent/WO2013058174A1/ja
Priority to US14/256,679 priority patent/US9130467B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • H02M3/33553Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4826Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode operating from a resonant DC source, i.e. the DC input voltage varies periodically, e.g. resonant DC-link inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a switching power supply device, and more particularly to a switching power supply device that performs power transmission by a multiple resonance circuit.
  • Patent Document 1 is disclosed as an LC series resonance type DC-DC converter.
  • FIG. 13 is a basic circuit diagram of the switching power supply device of Patent Document 1.
  • This switching power supply device is a current resonance type half-bridge DC-DC converter, and an LC resonance circuit composed of an inductor Lr and a capacitor Cr and two switching elements Q1 and Q2 are connected to a primary winding np of a transformer T. ing.
  • a rectifying and smoothing circuit including diodes Ds1 and Ds2 and a capacitor Co is formed in the secondary windings ns1 and ns2 of the transformer T.
  • the switching elements Q1 and Q2 are complementarily turned on and off with a dead time therebetween, and the current waveform flowing through the transformer T becomes a sinusoidal resonance waveform.
  • power is transmitted from the primary side to the secondary side in both the on-period / off-period of the two switching elements Q1, Q2.
  • An LC resonance circuit is formed only on the primary side (or the secondary side), and a mutual inductance Lm is equivalently formed by magnetic coupling between the primary winding and the secondary winding. Is transmitted.
  • the leakage magnetic flux not involved in the magnetic coupling forms an equivalent leakage inductance, and the magnetic energy of the secondary leakage inductance becomes a power loss as a switching loss of the rectifier diode.
  • the leakage inductance of the secondary winding increases and the power loss increases.
  • the output power can be controlled by changing the switching frequency fs.
  • the switching frequency fs is controlled to be high at a light load and low at a heavy load.
  • the switching frequency fs becomes too high to control the output power, causing problems such as intermittent oscillation operation and output voltage jumping.
  • an object of the present invention is to provide a switching power supply device that improves power conversion efficiency while improving output stability.
  • the switching power supply device of the present invention is configured as follows. (1) a transformer having at least a primary winding and a secondary winding; A primary resonant inductor Lr configured in series with the primary winding equivalently; A primary side resonance capacitor Cr which forms a primary side resonance circuit together with the primary side resonance inductor Lr; A primary AC voltage generation circuit including at least two switching elements, and generating a trapezoidal AC voltage from an input DC power supply voltage and applying the trapezoidal AC voltage to the primary resonance circuit; A primary circuit comprising: A secondary resonance inductor Ls configured equivalently in series with the secondary winding; A secondary side resonance capacitor Cs which forms a secondary side resonance circuit together with the secondary side resonance inductor Ls; A secondary rectifier circuit having a rectifier element and rectifying an alternating current output from the secondary resonant circuit to obtain a direct current voltage; A secondary circuit comprising: A mutual inductance Lm is equivalently formed by magnetic resonance coupling between the primary winding and the secondary winding, and a plurality of LC resonance
  • a double resonant circuit is constructed, By the double resonance circuit, The primary side resonance circuit and the secondary side resonance circuit resonate, and electric power is transmitted from the primary side circuit to the secondary side circuit by magnetic field resonance coupling in which a current flows through the mutual inductance Lm.
  • the secondary side resonance circuit forms a current path (ns1 (Lms1) -Ls1-Cs1 path and ns2 (Lms2) -Ls2-Cs2 path) different from the current path in which the rectifying elements are configured in series. Transmitting power from the primary winding to the secondary winding, It is characterized by that.
  • an equivalent mutual inductance is formed by mutual induction between the primary winding and the secondary winding, and the primary side resonance circuit and the secondary side resonance circuit are formed by the double resonance circuit.
  • the primary side AC voltage generation circuit represents the switching frequency represented by fs, and the complex connected to the primary side AC voltage generation circuit with a load connected to the output of the secondary side circuit.
  • fa the resonance frequency at which the input impedance viewed from the input of the resonance circuit is minimized.
  • the switching element constituting the primary side AC voltage generation circuit since the input impedance of the multiple resonance circuit viewed from the primary side AC voltage generation circuit is an inductive impedance in any load state, the switching element constituting the primary side AC voltage generation circuit.
  • a zero voltage switching operation can be realized and a desired output power can be controlled with respect to a load state change.
  • ZVS zero voltage switching
  • ZCS zero current switching
  • Operation is possible and switching loss is reduced. High efficiency can be achieved.
  • a predetermined frequency fc that operates while maintaining the resonance operation even in a no-load state where no load is connected to the output is set, It is preferable to operate within the range of fa ⁇ fs ⁇ fc to control transmission power.
  • the output power can be controlled within a desired operating frequency range.
  • the secondary side resonance capacitor Cs is connected in parallel to the secondary winding, and the secondary side rectifier circuit is configured to rectify the voltage of the secondary side resonance capacitor Cs. It is preferable.
  • the secondary side resonance capacitor Cs is connected in series with the secondary winding, and the secondary side rectifier circuit is configured to rectify the current of the secondary side resonance capacitor Cs. .
  • the secondary side resonance capacitor Cs is connected in parallel to the rectifier element that constitutes the secondary side rectifier circuit.
  • the rectifying element According to the above configuration, ZVS and ZCS operations of the rectifying element are possible, switching loss is reduced, and high efficiency can be achieved.
  • the junction capacitance of the rectifying element as a resonance capacitor, the number of components can be reduced, and the power supply device can be reduced in size and weight.
  • the secondary side rectifier circuit is, for example, a bridge rectifier circuit.
  • the withstand voltage required for the rectifying element can be lowered.
  • the secondary side rectifier circuit is, for example, a center tap rectifier circuit.
  • the output current can be supplied by the two rectifying elements and the two secondary windings, and the efficiency can be improved in the application where the output current is large.
  • the secondary side rectifier circuit is, for example, a voltage doubler rectifier circuit.
  • a high voltage can be supplied by one secondary winding, and high efficiency can be achieved in applications where the output voltage is high.
  • the switching element is turned on when the voltage across the terminal drops to zero voltage to perform a zero voltage switching operation.
  • the resonant inductor component is unnecessary, and the switching power supply device can be reduced in size and weight.
  • the primary side resonant inductor Lr or the secondary side resonant inductor Ls is preferably a leakage inductance of the primary winding or the secondary winding.
  • the number of parts can be reduced, and the power supply device can be reduced in size and weight.
  • the stray capacitance of the primary winding together with the primary side resonance capacitor Cr constitutes the primary side resonance circuit, or the stray capacitance of the secondary winding together with the secondary side resonance capacitor Cs is 2 It is preferable to configure a secondary resonance circuit.
  • the number of parts can be reduced, and the power supply device can be reduced in size and weight.
  • the number of parts can be reduced, and the power supply device can be reduced in size and weight.
  • the switching element is a FET
  • the diode connected in parallel is a parasitic diode of the FET
  • the parasitic capacitance of the FET is used as a parallel capacitor.
  • the number of parts can be reduced, and the power supply device can be reduced in size and weight.
  • the resonance frequency of the primary side resonance circuit and the resonance frequency of the secondary side resonance circuit are substantially equal.
  • the resonance frequency band of magnetic resonance coupling can be widened.
  • the primary AC voltage generating circuit is preferably a circuit in which four switching elements are connected in a full bridge.
  • the breakdown voltage required for the switching element can be lowered.
  • the secondary rectifier circuit is a synchronous rectifier circuit that rectifies in synchronization with the operation of the switching circuit of the primary AC voltage generating circuit.
  • the power receiving circuit can be used as a power transmission circuit. In this way, for example, bidirectional power transmission is possible.
  • the present invention has the following effects.
  • An equivalent mutual inductance is formed by magnetic resonance coupling between the primary winding np and the secondary windings (ns, ns1, ns2), and the primary side resonance circuit and the secondary side are formed by the double resonance circuit. Resonating with the side resonance circuit, power can be efficiently transmitted from the primary side circuit to the secondary side circuit.
  • FIG. 1 is a circuit diagram of a switching power supply apparatus 101 according to the first embodiment.
  • FIG. 2 is a waveform diagram of each part of the switching power supply device 101 shown in FIG.
  • FIG. 3 is a circuit diagram of the switching power supply apparatus 102 according to the second embodiment.
  • FIG. 4 is a circuit diagram of the switching power supply apparatus 103 according to the third embodiment.
  • FIG. 5 is a circuit diagram of the switching power supply device 104 of the fourth embodiment.
  • FIG. 6 is a circuit diagram of the switching power supply device 105 of the fifth embodiment.
  • FIG. 7 is a circuit diagram of the switching power supply device 106 of the sixth embodiment.
  • FIG. 8 is a circuit diagram of the switching power supply device 107 of the seventh embodiment.
  • FIG. 9 is a circuit diagram of the switching power supply device 108 of the eighth embodiment.
  • FIG. 10 is a circuit diagram of the switching power supply device 109 of the ninth embodiment.
  • FIG. 11 is a circuit diagram of the switching power supply device 110 of the tenth embodiment.
  • FIG. 12 is a circuit diagram of the switching power supply device 111 of the eleventh embodiment.
  • FIG. 13 is a basic circuit diagram of the switching power supply device of Patent Document 1. In FIG.
  • FIG. 1 is a circuit diagram of a switching power supply apparatus 101 according to the first embodiment.
  • the switching power supply device 101 is a circuit in which an input power supply Vi is input to an input unit and supplies a stable DC voltage from an output unit to a load Ro.
  • the switching power supply apparatus 101 includes the following units.
  • a transformer T having a primary winding np and secondary windings ns1 and ns2 ⁇ Primary resonance inductor Lr configured in series with primary winding np equivalently ⁇ At least one primary resonance capacitor Cr that forms a primary resonance circuit together with the resonance inductor Lr ⁇
  • Two switching circuits each consisting of switching elements Q1 and Q2, antiparallel diodes Dds1 and Dds2 and parallel capacitors Cds1 and Cds2 ⁇
  • trapezoidal wave (square wave) AC voltage from input DC power supply voltage
  • Primary side AC voltage generation circuit that generates and applies to the primary side resonance circuit
  • Secondary side resonance inductors Ls1 and Ls2 configured in series with the secondary windings ns1 and ns2 ⁇
  • Secondary resonance capacitors Cs1 and Cs2 that form a secondary resonance circuit together with the resonant inductors Ls1 and Ls2 ⁇
  • Secondary rectifier circuit that has diodes Ds1 and Ds2 and obtains
  • an LC resonance circuit composed of Cs1, Ls1, and Lms1 and an LC resonance circuit composed of Cs2, Ls2, and Lms2 are provided.
  • -A multi-resonant circuit is composed of Cr, Lm, Lr, Cs1, Lr1, Lms1, Cs2, Lr2, and Lms2.
  • This switching power supply device 101 is as follows.
  • An equivalent mutual inductance Lm, Lms1, Lms2 is formed by mutual induction between the primary winding np and the secondary windings ns1, ns2, and Cr, Lr, Lm, Cs1, Ls1, Lms1, Cs2 , Ls2 and Lms2 cause the primary side resonance circuit and the secondary side resonance circuit to resonate, and the primary side circuit to the secondary side due to magnetic resonance coupling in which resonance current flows through the mutual inductances Lm, Lm1 and Lm2. Power is transmitted to the circuit.
  • the switching elements Q1 and Q2 are alternately turned on and off with a dead time therebetween, whereby a trapezoidal AC voltage waveform is generated from the DC voltage Vi.
  • This trapezoidal wave AC voltage waveform becomes a sine wave waveform or an AC current waveform that is a part of the sine wave waveform due to the resonance phenomenon by the double resonance circuit consisting of Cr, Lm, Lr, Cs1, Lr1, Lms1, Cs2, Lr2, and Lms2. .
  • the DC voltage is generated by being rectified by the rectifying elements Ds1 and Ds2.
  • the resonance frequency at which the input impedance viewed from the input of the multiple resonance circuit connected to the primary AC voltage generation circuit is minimized is represented by fa. fa ⁇ fs
  • the output power is controlled by operating within a certain range.
  • FIG. 2 is a waveform diagram of each part of the switching power supply device 101 shown in FIG. The operation of the switching power supply apparatus 101 will be described with reference to FIGS.
  • the gate-source voltages of the switching elements Q1, Q2 are vgs1, vgs2, the drain-source voltages are vds1, vds2, and the voltages across the diodes Ds1, Ds2, respectively, are vrs1, vrs2, and the secondary windings ns1, ns2, respectively.
  • the current flowing through the common ground is represented by is.
  • Switching elements Q1 and Q2 are alternately turned on and off with a short dead time when both switch elements are turned off, and the current flowing in Q1 and Q2 is commutated during the dead time period to perform the ZVS operation.
  • the operation in each period in one switching cycle is as follows.
  • Equivalent mutual inductances Lm, Lms1, and Lms2 are formed by mutual induction between the primary winding np and the secondary windings ns1 and ns2, and Cr, Lr, Lm, Cs1, Ls1, Lms1, Cs2, Ls2,
  • the primary side circuit and the secondary side circuit resonate, and the primary circuit from the primary circuit to the secondary circuit due to magnetic field resonance coupling in which resonance current flows through the mutual inductances Lm, Lms1, and Lms2. Power is transmitted to On the primary side, a resonance current flows through the capacitor Cr and the inductors Lr and Lm.
  • An equivalent mutual inductance Lm, Lms1, Lms2 is formed by mutual induction between the primary winding np and the secondary winding ns1, and from Cr, Lr, Lm, Cs1, Ls1, Lms1, Cs2, Ls2, Lms2
  • the primary side resonance circuit and the secondary side resonance circuit resonate, and power is transferred from the primary side circuit to the secondary side circuit by magnetic resonance coupling in which resonance current flows in the mutual inductances Lm, Lms1, and Lms2. Is transmitted.
  • a resonance current flows through the capacitor Cr and the inductors Lr and Lm.
  • FIG. 3 is a circuit diagram of the switching power supply apparatus 102 according to the second embodiment.
  • secondary resonance capacitors Cs1 and Cs2 are connected in parallel to the diodes Ds1 and Ds2.
  • the antiparallel diodes Dds1 and Dds2 shown in FIG. 1 are constituted by parasitic diodes of the switching elements Q1 and Q2.
  • junction capacitances of the diodes Ds1 and Ds2 can be used as the secondary resonance capacitors Cs1 and Cs2.
  • FIG. 4 is a circuit diagram of the switching power supply apparatus 103 according to the third embodiment.
  • the secondary side resonance capacitor is constituted by one capacitor Cs.
  • one secondary resonance capacitor Cs can be formed, and the number of parts can be reduced.
  • FIG. 5 is a circuit diagram of the switching power supply device 104 of the fourth embodiment.
  • the leakage inductance of the winding is used for the inductors Lr, Ls1, and Ls2, and the mutual inductance of the transformer T is used for the inductors Lm, Lm1, and Lm2.
  • FIG. 6 is a circuit diagram of the switching power supply device 105 of the fifth embodiment.
  • capacitors Cs1 and Cs2 are configured in series with inductors Ls1 and Ls2, respectively, and capacitors Cs3 and Cs4 are connected in parallel to the output.
  • the frequency fc can be set to a desired value by appropriately setting the values of the capacitors Cs1 to Cs4.
  • FIG. 7 is a circuit diagram of the switching power supply device 106 of the sixth embodiment.
  • a bridge rectifier circuit is configured as a rectifier circuit.
  • one secondary winding can be configured, and one capacitor Cs can be configured.
  • FIG. 8 is a circuit diagram of the switching power supply device 107 of the seventh embodiment.
  • a bridge rectifier circuit is configured as a rectifier circuit, and resonant capacitors Cs1, Cs2, Cs3, and Cs4 are provided in parallel to the rectifier diodes Ds1, Ds2, Ds3, and Ds4. It is composed.
  • the operational effects are the same as those shown in the first embodiment.
  • the junction capacitances of the diodes Ds1, Ds2, Ds3, and Ds4 can be used as the resonance capacitors Cs1, Cs2, Cs3, and Cs4, the number of components can be reduced.
  • FIG. 9 is a circuit diagram of the switching power supply device 108 of the eighth embodiment.
  • the capacitor Cs1 is connected in series to the inductor Ls, and the capacitor Cs2 is connected in parallel to the output.
  • the frequency fc can be set to a desired value, and the breakdown voltage required for the rectifying elements (diodes Ds1, Ds2, Ds3, and Ds4) can be reduced. Therefore, it is possible to use a rectifying element with a small conduction loss, which can reduce the loss.
  • FIG. 10 is a circuit diagram of the switching power supply device 109 of the ninth embodiment.
  • the rectifier circuit is a voltage doubler rectifier circuit
  • the capacitor Cs is connected in series with the inductor Ls
  • the resonant capacitor is connected in parallel with the rectifier diodes Ds1 and Ds2.
  • Cs1 and Cs2 are configured.
  • a high output voltage can be obtained by voltage doubler rectification, and the junction capacitances of the diodes Ds1 and Ds2 can be used as the resonance capacitors Cs1 and Cs2.
  • FIG. 11 is a circuit diagram of the switching power supply device 110 of the tenth embodiment.
  • the resonance capacitors Cr, Cs, mutual inductance (Lm, Lms), primary winding np and secondary winding ns are different from those of the ninth embodiment. Configured in position. Further, the leakage inductance of the windings is inductors Lr and Ls, and the secondary rectifier circuit is a synchronous rectifier circuit.
  • the operational effects are the same as those shown in the first embodiment.
  • the tenth embodiment has the following effects.
  • the component mounting area can be effectively utilized by appropriately arranging the resonant capacitors Cr, Cs, the primary winding np, and the secondary winding ns.
  • the resonance capacitor Cr By setting the resonance capacitor Cr to the ground potential on the input side, the voltage or current of the resonance capacitor Cr can be easily detected, and the power can be controlled by detecting this voltage and controlling the switching element. .
  • the current is detected by connecting a capacitor with a small capacity in parallel with the resonance capacitor Cr and detecting the current flowing through the capacitor with the small capacity, thereby detecting the current of the resonance capacitor Cr at a ratio according to the capacity ratio. It becomes possible.
  • the number of components can be reduced and the power supply device can be reduced in size and weight. Further, by using the mutual inductance between the windings as the resonant inductor (Lm, Lms), the number of components can be reduced, and the power supply device can be reduced in size and weight.
  • -Rectification loss can be reduced by using a secondary rectifier circuit as a synchronous rectifier circuit.
  • a secondary rectifier circuit as a synchronous rectifier circuit.
  • the switching elements constituting the synchronous rectifier circuit it is possible to transmit energy on the power receiving side, and the power receiving side circuit can be used as a power transmission circuit. In this way, for example, bidirectional power transmission is possible.
  • FIG. 12 is a circuit diagram of the switching power supply device 111 of the eleventh embodiment. This example is different from the switching power supply apparatus 101 of the first embodiment in the following points.
  • the primary AC voltage generator is a full bridge circuit.
  • a self-resonant coil is used for the primary winding np and the secondary winding ns.
  • -A magnetic core is not used for coupling the primary winding np and the secondary winding ns, and the core is empty.
  • the rectifier circuit on the secondary side is a synchronous rectifier bridge rectifier circuit.
  • the power transmission system can be simply configured by using self-resonant coils for the primary winding and the secondary winding.
  • the required withstand voltage of the switching element can be lowered, and a switching element with less conduction loss can be used. Therefore, it is possible to use a switching element with a small conduction loss, which can reduce the loss.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

 1次側共振インダクタ(Lr)と1次側共振キャパシタ(Cr)とで1次側共振回路が構成され、2次側共振インダクタ(Ls1,Ls2)と2次側共振キャパシタ(Cs1,Cs2)とで2次側共振回路が構成される。1次巻線(np)と2次巻線(ns1,ns2)との間で磁界共鳴結合により等価的に相互インダクタンス(Lms1,Lms2)が形成され、1次側回路および2次側回路により2つ以上のLC共振回路を備えた複共振回路が構成される。1次側回路から2次側回路へ電力は伝送され、1次巻線から送電されない共振エネルギー、および2次巻線が受電したエネルギーのうち出力に供給されない共振エネルギーは、それぞれ複共振回路に保存され、特に2次側では、整流素子が直列に構成されない電流経路にて共振エネルギーは保存される。

Description

スイッチング電源装置
 本発明は、スイッチング電源装置に関し、特に複共振回路により電力伝送を行うスイッチング電源装置に関するものである。
 近年、電子機器の小型軽量化は進み、スイッチング電源の高効率化、小型軽量化の市場要求はいっそう高まっている。例えばLC共振現象を利用してトランスに正弦波状の共振電流を流して動作をさせる電流共振形ハーフブリッジコンバータは、出力電流リップルの特性が比較的緩和される薄型テレビなどの市場において、高効率である特長を活かして実用化が進んでいる。
 例えばLC直列共振型DC-DCコンバータとして特許文献1が開示されている。図13は特許文献1のスイッチング電源装置の基本的な回路図である。このスイッチング電源装置は電流共振形のハーフブリッジDC-DCコンバータであり、トランスTの1次巻線npに、インダクタLrとキャパシタCrとからなるLC共振回路および二つのスイッチング素子Q1,Q2が接続されている。トランスTの2次巻線ns1,ns2にはダイオードDs1,Ds2およびキャパシタCoからなる整流平滑回路が構成されている。
 このような構成により、スイッチング素子Q1,Q2はデッドタイムを挟んで相補的にオン、オフされて、トランスTに流れる電流波形は正弦波状の共振波形となる。また、この二つのスイッチング素子Q1,Q2のオン期間/オフ期間の両期間ともに1次側から2次側に電力が伝送される。
特開平9-308243号公報
 しかしながら、特許文献1のスイッチング電源装置においては、次のような解決すべき課題があった。
(1)1次側(もしくは2次側)のみにLC共振回路が構成され、1次巻線と2次巻線との磁気結合により等価的に相互インダクタンスLmが形成され、電磁誘導によって電力は伝送される。しかし、磁気結合に関与しない漏れ磁束は等価的な漏れインダクタンスを形成し、2次側漏れインダクタンスの磁気エネルギーは、整流ダイオードのスイッチング損失として電力損失になる。特に、磁気結合が小さい場合は、2次巻線の漏れインダクタンスは大きくなって電力損失は増大する。
(2)1次巻線と2次巻線との磁気結合が小さい場合、2次側回路に共振回路が構成されていないことからインピーダンスは大きく、効率よく1次側から2次側に電力を伝送することができない。
(3)出力電力の制御はスイッチング周波数fsの変化により行うことができる。例えば、スイッチング周波数fsは、軽負荷で高く、重負荷で低くなるように制御される。しかし、軽負荷、無負荷ではスイッチング周波数fsは高くなりすぎて出力電力を制御しきれなくなり、間欠発振動作となる、出力電圧が跳ね上がる、などの問題が生じる。
 そこで本発明は、出力安定性を高めつつ電力変換効率を高めたスイッチング電源装置を提供することを目的としている。
 本発明のスイッチング電源装置は次のように構成される。
(1)少なくとも1次巻線と2次巻線を備えたトランスと、
 前記1次巻線に対して等価的に直列に構成される1次側共振インダクタLrと、
 前記1次側共振インダクタLrとともに1次側共振回路を構成する1次側共振キャパシタCrと、
 少なくとも2つのスイッチング素子を備え、入力直流電源電圧から台形波の交流電圧を生成して前記1次側共振回路へ与える1次側交流電圧発生回路と、
を備えた1次側回路と、
 前記2次巻線に対して等価的に直列に構成される2次側共振インダクタLsと、
 前記2次側共振インダクタLsとともに2次側共振回路を構成する2次側共振キャパシタCsと、
 整流素子を有し、前記2次側共振回路から出力される交流電流を整流して直流電圧を得る2次側整流回路と、
を備えた2次側回路と、
 前記1次巻線と前記2次巻線との間で磁界共鳴結合により等価的に相互インダクタンスLmが形成され、少なくとも前記1次側回路および前記2次側回路により複数のLC共振回路を備えた複共振回路が構成され、
 前記複共振回路により、
 前記1次側共振回路と前記2次側共振回路とが共鳴して、前記相互インダクタンスLmに電流が流れる磁界共鳴結合により前記1次側回路から前記2次側回路へ電力が伝送され、
 前記1次巻線から送電されないエネルギーは共振現象により前記1次側共振回路に共振エネルギーとして保存され、
 前記2次巻線が受電したエネルギーのうち、出力に供給されないエネルギーは共振現象により前記2次側共振回路に共振エネルギーとして保存され、
 前記2次側共振回路は、前記整流素子が直列に構成される電流経路とは異なる電流経路(ns1(Lms1)-Ls1-Cs1の経路およびns2(Lms2)-Ls2-Cs2の経路)を構成して、前記1次巻線から前記2次巻線へ電力を伝送する、
ことを特徴とする。
 上記の構成によれば、1次巻線と2次巻線との間に相互誘導によって等価的な相互インダクタンスを形成して、複共振回路によって1次側共振回路と2次側共振回路とを共鳴させて、磁界共振結合により1次側回路から2次側回路へ効率良く電力を伝送できる。また、整流素子が非導通となった際、インダクタLsとキャパシタCsは共振することで共振エネルギーとして保存され、電力損失を低減できる。
(2)前記1次側交流電圧発生回路は、スイッチング周波数をfsで表し、前記2次側回路の出力に負荷が接続された状態で、前記1次側交流電圧発生回路に接続される前記複共振回路の入力からみた入力インピーダンスが極小となる共振周波数をfaで表すと、
fa≦fs なる範囲で動作して、伝送電力を制御することが好ましい。
 上記の構成によれば、いかなる負荷の状態においても、1次側交流電圧発生回路から見た複共振回路の入力インピーダンスは誘導性インピーダンスとなるので、1次側交流電圧発生回路を構成するスイッチング素子においてゼロ電圧スイッチング動作を実現するとともに、負荷の状態変化に対して所望の出力電力に制御することが可能となる。また、整流素子の両端電圧または電流波形が正弦波の一部となって導通状態または非導通状態となる広義のゼロ電圧スイッチング(以下、「ZVS」)、またはゼロ電流スイッチング(以下、「ZCS」)動作が可能となり、スイッチング損失を低減する。高効率化を図ることができる。
(3)前記2次側共振回路を備えることにより、出力に負荷が接続されない無負荷状態においても共振動作を維持して動作する所定の周波数fcを設定し、
fa≦fs≦fc なる範囲で動作して、伝送電力を制御することが好ましい。
 上記構成によれば、所望の動作周波数の範囲において出力電力を制御できる。
(4)前記2次側共振キャパシタCsは、前記2次巻線に対して並列に接続され、前記2次側整流回路は前記2次側共振キャパシタCsの電圧を整流するように構成されていることが好ましい。
 上記の構成によれば、整流素子のZVS、ZCS動作が可能となり、スイッチング損失が低減し、高効率化が図れる。また、巻線の浮遊容量を共振キャパシタとして用いることにより、部品数が削減されて、電源装置の小型軽量化を図ることができる。
(5)前記2次側共振キャパシタCsは、前記2次巻線と直列に接続され、前記2次側整流回路は2次側共振キャパシタCsの電流を整流するように構成されていることが好ましい。
 上記の構成によれば、整流素子のZVS、ZCS動作が可能となり、スイッチング損失が低減され、高効率化を図ることができる。
(6)前記2次側共振キャパシタCsは、前記2次側整流回路を構成する整流素子に対して並列に接続されていることが好ましい。
 上記の構成によれば、整流素子のZVS、ZCS動作が可能となり、スイッチング損失が低減され、高効率化を図ることができる。また、整流素子の接合容量を共振キャパシタと利用することにより、部品数が削減されて、電源装置の小型軽量化を図ることができる。
(7)前記2次側整流回路は例えばブリッジ整流回路である。
 上記の構成によれば、整流素子に必要な耐圧を低くできる。
(8)前記2次側整流回路は例えばセンタータップ整流回路である。
 上記の構成によれば、出力電流を2つの整流素子、2つの2次巻線で供給することができ、出力電流が大きい用途において高効率化を図ることができる。
(9)前記2次側整流回路は例えば倍電圧整流回路である。
 上記の構成によれば、1つの2次巻線で高い電圧を供給することができ、出力電圧が高い用途において高効率化を図ることができる。
(10)前記スイッチング素子は、両端電圧がゼロ電圧に低下した際にターンオンしてゼロ電圧スイッチング動作を行うことが好ましい。
 上記の構成によれば、共振インダクタの部品が不要になり、スイッチング電源装置の小型軽量化を図ることができる。
(11)前記1次側共振インダクタLrまたは前記2次側共振インダクタLsは、前記1次巻線または2次巻線の漏れインダクタンスであることが好ましい。
 上記の構成によれば、部品数が削減されて、電源装置の小型軽量化を図ることができる。
(12)前記1次側共振キャパシタCrとともに前記1次巻線の浮遊容量は前記1次側共振回路を構成し、または前記2次側共振キャパシタCsとともに前記2次巻線の浮遊容量は前記2次側共振回路を構成することが好ましい。
 上記の構成によれば、部品数が削減されて、電源装置の小型軽量化を図ることができる。
(13)前記2次側共振キャパシタCsに前記整流素子の接合容量を利用することが好ましい。
 上記の構成によれば、部品数が削減されて、電源装置の小型軽量化を図ることができる。
(14)前記スイッチング素子に対して並列に接続されたダイオードを有することが好ましい。
(15)前記スイッチング素子はFETであり、前記並列に接続されたダイオードはFETの寄生ダイオードであり、FETの寄生容量を並列キャパシタとして用いることが好ましい。
 上記の構成によれば、部品数が削減されて、電源装置の小型軽量化を図ることができる。
(16)前記1次側共振回路の共振周波数と前記2次側共振回路の共振周波数とをほぼ等しくしたことが好ましい。
 上記の構成によれば電力伝送効率がより高まる。また磁界共鳴結合の共鳴周波数の帯域を広くすることができる.
(17)前記1次側交流電圧発生回路は、4つのスイッチング素子がフルブリッジ接続された回路であることが好ましい。
 上記の構成によれば、スイッチング素子に必要な耐圧を低くできる。
(18)前記2次側整流回路は、前記1次側交流電圧発生回路のスイッチング回路の動作に同期して整流する同期整流回路であることが好ましい。
 上記の構成によれば、同期整流回路を構成するスイッチング素子をスイッチング動作をさせることにより、受電側のエネルギーを送電することが可能となり、受電側回路を送電回路として用いることができる。このようにして、例えば、双方向の電力伝送が可能となる。
 本発明によれば次のような効果を奏する。
(a)1次巻線npと2次巻線(ns,ns1,ns2)との間に磁界共鳴結合によって等価的な相互インダクタンスが形成されて、複共振回路によって1次側共振回路と2次側共振回路とが共鳴して1次側回路から2次側回路へ効率良く電力を伝送できる。
(b)整流ダイオードが非導通となった際、共振インダクタ(Ls,Ls1,Ls2)とキャパシタ(Cs,Cs1,Cs2)は共振することで共振エネルギーとして保存され、電力損失を低減できる。
(c)複共振回路のインピーダンスを、1次側交流電圧発生回路の電圧の位相に対して電流の位相が遅れる誘導性インピーダンスとすることにより、全負荷範囲においてスイッチング素子Q1、Q2のZVS動作を行うことが可能となり、スイッチング損失を大幅に低減して高効率化を図ることができる。
(d)整流素子のZVS、ZCS動作が可能となり、スイッチング損失が低減され、高効率化を図ることができる。
図1は第1の実施形態のスイッチング電源装置101の回路図である。 図2は図1に示したスイッチング電源装置101の各部の波形図である。 図3は第2の実施形態のスイッチング電源装置102の回路図である。 図4は第3の実施形態のスイッチング電源装置103の回路図である。 図5は第4の実施形態のスイッチング電源装置104の回路図である。 図6は第5の実施形態のスイッチング電源装置105の回路図である。 図7は第6の実施形態のスイッチング電源装置106の回路図である。 図8は第7の実施形態のスイッチング電源装置107の回路図である。 図9は第8の実施形態のスイッチング電源装置108の回路図である。 図10は第9の実施形態のスイッチング電源装置109の回路図である。 図11は第10の実施形態のスイッチング電源装置110の回路図である。 図12は第11の実施形態のスイッチング電源装置111の回路図である。 図13は特許文献1のスイッチング電源装置の基本的な回路図である。
《第1の実施形態》
 図1は第1の実施形態のスイッチング電源装置101の回路図である。
 スイッチング電源装置101は、入力部に入力電源Viが入力され、出力部から負荷Roへ安定した直流電圧を供給する回路である。スイッチング電源装置101は次の各部を備えている。
 ・1次巻線npおよび2次巻線ns1,ns2を備えるトランスT
 ・1次巻線npに対して等価的に直列に構成される1次側共振インダクタLr
 ・共振インダクタLrとともに1次側共振回路を構成する少なくとも1つの1次側共振キャパシタCr
 ・スイッチング素子Q1,Q2、逆並列ダイオードDds1,Dds2および並列キャパシタCds1,Cds2でそれぞれ構成される、2つのスイッチング回路
 ・前記スイッチング回路により、入力直流電源電圧から台形波(方形波)の交流電圧を発生して1次側共振回路へ与える1次側交流電圧発生回路
 ・2次巻線ns1,ns2に対して等価的に直列に構成される2次側共振インダクタLs1,Ls2
 ・共振インダクタLs1,Ls2とともに2次側共振回路を構成する2次側共振キャパシタCs1,Cs2
 ・ダイオードDs1,Ds2を有し、2次側共振回路から出力される交流電流を整流して直流電圧を得る2次側整流回路
 ・1次巻線npと2次巻線ns1,ns2との間で相互誘導により等価的な相互インダクタンスLms1,Lms2が形成され、1次側回路および2次側回路により複数のLC共振回路を備えた複共振回路
 このスイッチング電源装置の特徴となる構成を端的に表せば、次のとおりである。
・1次側と2次側の双方にLC共振回路を備え、磁界共鳴結合により効率良く電力を伝送する。
・2次側にCs1、Ls1、Lms1からなるLC共振回路、およびCs2、Ls2、Lms2からなるLC共振回路を備える。
・1次側にLr、Cr、LmからなるLC共振回路を備える。
・Cr、Lm、Lr、Cs1、Lr1、Lms1、Cs2、Lr2、Lms2により複共振回路を構成する。
 このスイッチング電源装置101の作用は次のとおりである。
(1)1次巻線npと2次巻線ns1,ns2との間に相互誘導によって等価的な相互インダクタンスLm、Lms1、Lms2を形成し、Cr、Lr、Lm、Cs1、Ls1、Lms1、Cs2、Ls2、Lms2からなる複共振回路によって、1次側共振回路と2次側共振回路は共鳴し、相互インダクタンスLm、Lm1、Lm2に共振電流が流れる磁界共鳴結合により1次側回路から2次側回路へ電力が伝送される。
(2)ダイオードDs1が非導通または導通となる際に、インダクタLs1とキャパシタCs1は共振する。
(3)ダイオードDs2が非導通または導通となる際に、インダクタLs2とキャパシタCs2は共振する。
(4)スイッチング素子Q1とQ2はデッドタイムを挟んで交互にオンオフすることにより、直流電圧Viから台形波交流電圧波形が生成される。この台形波交流電圧波形はCr、Lm、Lr、Cs1、Lr1、Lms1、Cs2、Lr2、Lms2からなる複共振回路による共振現象により正弦波波形もしくは正弦波波形の一部とする交流電流波形となる。さらに整流素子Ds1、Ds2により整流されて直流電圧が生成される。
(5)2次側回路の出力に負荷が接続された状態で、1次側交流電圧発生回路に接続される複共振回路の入力からみた入力インピーダンスが極小となる共振周波数をfaで表すと、
 fa≦fs
なる範囲にて動作して出力電力が制御される。
 図2は図1に示したスイッチング電源装置101の各部の波形図である。図1および図2を参照して、スイッチング電源装置101の動作について述べる。
 ここで、スイッチング素子Q1、Q2のゲート・ソース間電圧をvgs1、vgs2、ドレイン・ソース間電圧をそれぞれvds1、vds2、ダイオードDs1,Ds2の両端電圧をそれぞれvrs1、vrs2、2次巻線ns1、ns2の共通グランドに流れる電流をisで表す。
 スイッチング素子Q1、Q2は、両スイッチ素子がオフとなる短いデットタイムを挟んで交互にオン、オフされ、デットタイム期間にQ1、Q2に流れる電流がそれぞれ転流されてZVS動作を行う。1スイッチング周期における各期間での動作は次のとおりである。
[1]State1 時刻t1~t2
 始め、ダイオードDds1は導通する。ダイオードDds1の導通期間においてスイッチング素子Q1をターンオンすることでZVS動作が行われ、スイッチング素子Q1は導通する。1次巻線npと2次巻線ns1,ns2との間に相互誘導によって等価的な相互インダクタンスLm、Lms1、Lms2が形成され、Cr、Lr、Lm、Cs1、Ls1、Lms1、Cs2、Ls2、Lms2からなる複共振回路において、1次側共振回路と2次側共振回路とが共鳴して、相互インダクタンスLm、Lms1、Lms2に共振電流が流れる磁界共鳴結合により1次側回路から2次側回路へ電力が伝送される。1次側では、キャパシタCr、インダクタLr、Lmに共振電流が流れる。2次側では、キャパシタCs1、インダクタLs1、Lms1、およびキャパシタCs2、インダクタLs2、Lms2に共振電流が流れる。キャパシタCs1は充電され、キャパシタCs2は放電される。負荷RoにはキャパシタCoから電流が供給される。電圧vs1と出力電圧voが等しくなり、電圧vs2が0VなるとダイオードDs1は導通して、State2となる。
[2]State2 時刻t2~t3
 1次巻線npと2次巻線ns1との間に相互誘導によって等価的な相互インダクタンスLm、Lms1が形成され、磁界結合により1次側回路から2次側回路へ電力が伝送される。1次側では、キャパシタCrとインダクタLr、Lmに共振電流が流れる。2次側では、インダクタLs1、Lms1に共振電流が流れ、ダイオードDs1を通って負荷Roに電流が供給される。スイッチング素子Q1がターンオフするとState3となる。
[3]State3 時刻t3~t4
 1次側では、インダクタLrに流れていた電流irにより、キャパシタCds1は充電され、キャパシタCds2は放電される。2次側では、インダクタLs1の電流により、ダイオードDs1を通って負荷Roに電流が供給される。電圧vds1が電圧Vi、電圧vds2が0VになるとダイオードDds2が導通してState4となる。
[4]State4 時刻t4~t5
 始め、ダイオードDds2は導通する。ダイオードDds2の導通期間においてスイッチング素子Q2をターンオンすることでZVS動作が行われ、スイッチング素子Q2は導通する。1次巻線npと2次巻線ns1との間に相互誘導によって等価的な相互インダクタンスLm、Lms1、Lms2が形成され、Cr、Lr、Lm、Cs1、Ls1、Lms1、Cs2、Ls2、Lms2からなる複共振回路において、1次側共振回路と2次側共振回路とが共鳴して、相互インダクタンスLm、Lms1、Lms2に共振電流が流れる磁界共鳴結合により1次側回路から2次側回路へ電力が伝送される。1次側では、キャパシタCr、インダクタLr、Lmに共振電流が流れる。2次側では、キャパシタCs1、インダクタLs1、Lms1、およびキャパシタCs2、インダクタLs2、Lms2に共振電流が流れる。キャパシタCs1は放電され、キャパシタCs2は充電される。負荷RoにはキャパシタCoから電流が供給される。電圧vs1が0V、電圧vs2が出力電圧voと等しくなるとダイオードDs2は導通してState5となる。
[5]State5 時刻t5~t6
 1次巻線npと2次巻線ns2との間に相互誘導によって等価的な相互インダクタンスLm、Lms2が形成され、磁界結合により1次側回路から2次側回路へ電力が伝送される。1次側では、キャパシタCrとインダクタLr、Lmに共振電流が流れる。2次側では、インダクタLs2、Lms2に共振電流が流れ、ダイオードDs2を通って負荷Roに電流を供給する。スイッチング素子Q2がターンオフするとState6となる。
[6]State6 時刻t6~t1
 1次側では、インダクタLrに流れていた電流irにより、キャパシタCds1は放電され、キャパシタCds2は充電される。2次側では、インダクタLs2の電流により、ダイオードDs2を通って負荷Roに電流が供給される。電圧vds1が0V、電圧vds2が電圧ViになるとダイオードDds1が導通して、再びState1となる。
 以後、State1~6を周期的に繰り返す。
 第1の実施形態によれば次のような効果を奏する。
(a)1次巻線npと2次巻線ns1との間に相互誘導によって等価的な相互インダクタンスが形成されて、複共振回路によって1次側共振回路と2次側共振回路とが共鳴して、磁界共鳴結合により1次側回路から2次側回路へ効率良く電力を伝送できる。
(b)ダイオードDs1が非導通となった際、インダクタLs1とキャパシタCs1は共振することで共振エネルギーとして保存され、電力損失を低減できる。
(c)ダイオードDs2が非導通となった際、インダクタLs2とキャパシタCs2は共振することで共振エネルギーとして保存され、電力損失を低減できる。
(d)複共振回路のインピーダンスを、1次側交流電圧発生回路の電圧の位相に対して電流の位相が遅れる誘導性インピーダンスとすることにより、全負荷範囲に亘ってスイッチング素子Q1、Q2のZVS動作が可能となる。そのため、スイッチング損失を大幅に低減して高効率化を図ることができる。
(e)整流ダイオードのZVS、ZCS動作が可能となり、スイッチング損失が低減され、高効率化を図ることができる。
(f)2次側にCs1、Ls1、Lms1、Cs2、Ls2、Lms2からなるLC共振回路を備えることにより、無負荷電力となる周波数fcを設定し、スイッチング周波数fsをfs≦fcなる範囲にて動作させることで所望の出力電力に制御することが可能となる。
(g)スイッチング素子Q1,Q2としてMOS-FETを用いることにより、寄生容量、逆並列ダイオードを用いてスイッチング回路を構成することが可能となり、部品数を削減して、電源装置の小型軽量化を図ることができる。
(h)巻線の漏れインダクタンスを共振インダクタLr、Ls1、Ls2として用いることにより、部品数を削減して、電源装置の小型軽量化を図ることができる。
(i)トランスTの相互インダクタンスを共振インダクタLm、Lms1、Lms2として用いることにより、部品数を削減して、電源装置の小型軽量化を図ることができる。
(j)巻線の浮遊容量を共振キャパシタCs1、Cs2として用いることにより、部品数を削減して、電源装置の小型軽量化を図ることができる。
(k)整流ダイオードDs1,Ds2の接合容量を共振キャパシタと利用することにより、部品数を削減して、電源装置の小型軽量化を図ることができる。
《第2の実施形態》
 図3は第2の実施形態のスイッチング電源装置102の回路図である。この例では第1の実施形態のスイッチング電源装置101と異なり、2次側共振キャパシタCs1、Cs2をダイオードDs1、Ds2に対し並列に接続している。また、図1に示した逆並列ダイオードDds1,Dds2をスイッチング素子Q1,Q2の寄生ダイオードで構成している。
 作用効果は第1の実施形態で示したものと同様である。特に第2の実施形態ではダイオードDs1,Ds2の接合容量を2次側共振キャパシタCs1、Cs2として用いることができる。
《第3の実施形態》
 図4は第3の実施形態のスイッチング電源装置103の回路図である。この例では第1の実施形態のスイッチング電源装置101と異なり、2次側共振キャパシタを1つのキャパシタCsで構成している。
 作用効果は第1の実施形態で示したものと同様である。特に、この第3の実施形態では2次側共振キャパシタCsが1つで構成でき、部品数が削減できる。
《第4の実施形態》
 図5は第4の実施形態のスイッチング電源装置104の回路図である。この例では第1の実施形態のスイッチング電源装置101と異なり、インダクタLr、Ls1、Ls2に巻線の漏れインダクタンスを利用し、インダクタLm、Lm1、Lm2にトランスTの相互インダクタンスを利用している。
 作用効果は第1の実施形態で示したものと同様である。特に、この第4の実施形態では部品数を削減できる。
《第5の実施形態》
 図6は第5の実施形態のスイッチング電源装置105の回路図である。この例では第1の実施形態のスイッチング電源装置101と異なり、キャパシタCs1とCs2をインダクタLs1とLs2に対してそれぞれ直列に構成し、キャパシタCs3とCs4を出力に対して並列に接続している。
 作用効果は第1の実施形態で示したものと同様である。特に、この第5の実施形態では、キャパシタCs1~Cs4の値を適宜設定することで、周波数fcを所望の値に設定できる。
《第6の実施形態》
 図7は第6の実施形態のスイッチング電源装置106の回路図である。この例では第1の実施形態のスイッチング電源装置101と異なり、整流回路としてブリッジ整流回路を構成している。
 作用効果は第1の実施形態で示したものと同様である。特に、この第6の実施形態では2次巻線を1つで構成することができ、また、キャパシタCsを1つで構成することができる。
《第7の実施形態》
 図8は第7の実施形態のスイッチング電源装置107の回路図である。この例では第1の実施形態のスイッチング電源装置101と異なり、整流回路としてブリッジ整流回路を構成し、整流ダイオードDs1、Ds2、Ds3、Ds4に対して並列に共振キャパシタCs1、Cs2、Cs3、Cs4を構成している。
 作用効果は第1の実施形態で示したものと同様である。特に、この第7の実施形態では、ダイオードDs1、Ds2、Ds3、Ds4の接合容量を共振キャパシタCs1、Cs2、Cs3、Cs4として用いることができるので部品数を削減できる。
《第8の実施形態》
 図9は第8の実施形態のスイッチング電源装置108の回路図である。この例では第1の実施形態のスイッチング電源装置101と異なり、キャパシタCs1をインダクタLsに対して直列に接続し、キャパシタCs2を出力に対して並列に接続している。
 作用効果は第1の実施形態で示したものと同様である。特に、この第8の実施形態では、周波数fcを所望の値とすることができ、また、整流素子(ダイオードDs1、Ds2、Ds3、Ds4)に要求される耐圧を低くすることができる。そのため、導通損失の少ない整流素子を用いることができ、そのことで低損失化が図れる。
《第9の実施形態》
 図10は第9の実施形態のスイッチング電源装置109の回路図である。この例では第1の実施形態のスイッチング電源装置101と異なり、整流回路を倍電圧整流回路とし、インダクタLsに対して直列にキャパシタCsを接続し、整流ダイオードDs1、Ds2に対して並列に共振キャパシタCs1、Cs2を構成している。
 作用効果は第1の実施形態で示したものと同様である。特に、この第9の実施形態では、倍電圧整流により高い出力電圧を得ることができ、また、ダイオードDs1、Ds2の接合容量を共振キャパシタCs1、Cs2として用いることができる。
《第10の実施形態》
 図11は第10の実施形態のスイッチング電源装置110の回路図である。この例では第1の実施形態のスイッチング電源装置101と異なり、共振キャパシタCr、Cs、相互インダクタンス(Lm、Lms)、1次巻線npおよび2次巻線nsを第9の実施形態とは異なる位置に構成している。また、巻線の漏れインダクタンスをインダクタLr、Lsとし、2次側整流回路を同期整流回路としている。
 作用効果は第1の実施形態で示したものと同様である。特に、この第10の実施形態では、次の効果を奏する。
・共振キャパシタCr、Cs、1次巻線np、2次巻線nsを適宜配置することにより、部品実装面積を効果的に活用できる。
・共振キャパシタCrを入力側のグランド電位とすることで、共振キャパシタCrの電圧または、電流の検出が容易になり、この電圧を検出してスイッチング素子を制御することで電力を制御することができる。電流の検出には、共振キャパシタCrと並列に小さな容量のキャパシタを接続して、この小さな容量のキャパシタに流れる電流を検出することにより、容量比に応じた比率で共振キャパシタCrの電流の検出が可能となる。
・巻線の漏れインダクタンスを共振インダクタLr、Lsとして用いることにより、部品数を削減して、電源装置の小型軽量化を図ることができる。また、巻線間の相互インダクタンスを共振インダクタ(Lm、Lms)として用いることにより、部品数を削減して、電源装置の小型軽量化を図ることができる。
・2次側の整流回路を同期整流回路とすることで整流損失を低減できる。また、同期整流回路を構成するスイッチング素子をスイッチング動作をさせることにより、受電側のエネルギーを送電することが可能となり、受電側回路を送電回路として用いることができる。このようにして、例えば、双方向の電力伝送が可能となる。
《第11の実施形態》
 図12は第11の実施形態のスイッチング電源装置111の回路図である。この例は次の点で第1の実施形態のスイッチング電源装置101と異なる。
・1次巻線npの漏れインダクタンスをインダクタLr、相互インダクタンスをインダクタLm、巻線容量をキャパシタCr1、2次巻線nsの漏れインダクタンスをインダクタLs、相互インダクタンスをインダクタLms、巻線容量をキャパシタCs1としている。
・1次側交流電圧発生回路をフルブリッジ回路で構成している。
・1次巻線np、2次巻線nsに自己共振コイルを用いている。
・1次巻線npと2次巻線nsの結合に磁心を用いないで、空心としている。
・2次側の整流回路を同期整流ブリッジ整流回路としている。
 作用効果は第1の実施形態で示したものと同様である。特に、この第11の実施形態では、1次巻線、2次巻線に自己共振コイルを用いることで電力伝送システムをシンプルに構成できる。また、1次側交流電圧発生回路や整流回路をフルブリッジ回路で構成することでスイッチング素子の必要な耐圧を低くして、導通損失の少ないスイッチング素子を用いることができる。そのため、導通損失の少ないスイッチング素子を用いることができ、そのことで低損失化が図れる。
Cds1,Cds2…並列キャパシタ
Cr…1次側共振キャパシタ
Cs…2次側共振キャパシタ
Cs1,Cs2…2次側共振キャパシタ
Dds1,Dds2…逆並列ダイオード
Lm…相互インダクタンス
Lms1,Lms2…相互インダクタンス
Lr…1次側共振インダクタ
Ls…2次側共振インダクタ
Ls1,Ls2…2次側共振インダクタ
np…1次巻線
ns…2次巻線
ns1,ns2…2次巻線
Q1,Q2…スイッチング素子
Ro…負荷
T…トランス
101~111…スイッチング電源装置

Claims (18)

  1.  少なくとも1次巻線と2次巻線を備えたトランスと、
     前記1次巻線に対して等価的に直列に構成される1次側共振インダクタと、
     前記1次側共振インダクタとともに1次側共振回路を構成する1次側共振キャパシタと、
     少なくとも2つのスイッチング素子を備え、入力直流電源電圧から台形波の交流電圧を生成して前記1次側共振回路へ与える1次側交流電圧発生回路と、
    を備えた1次側回路と、
     前記2次巻線に対して等価的に直列に構成される2次側共振インダクタと、
     前記2次側共振インダクタとともに2次側共振回路を構成する2次側共振キャパシタと、
     整流素子を有し、前記2次側共振回路から出力される交流電流を整流して直流電圧を得る2次側整流回路と、
    を備えた2次側回路と、
     前記1次巻線と前記2次巻線との間で相互誘導により等価的に相互インダクタンスが形成され、少なくとも前記1次側回路および前記2次側回路により複数のLC共振回路を備えた複共振回路が構成され、
     前記複共振回路により、
     前記1次側共振回路と前記2次側共振回路とが共鳴して、前記相互インダクタンスに電流が流れる磁界共鳴結合により前記1次側回路から前記2次側回路へ電力が伝送され、
     前記1次巻線から送電されないエネルギーは共振現象により前記1次側共振回路に共振エネルギーとして保存され、
     前記2次巻線が受電したエネルギーのうち、出力に供給されないエネルギーは共振現象により前記2次側共振回路に共振エネルギーとして保存され、
     前記2次側共振回路は、前記整流素子が直列に構成される電流経路とは異なる電流経路を構成して、前記1次巻線から前記2次巻線へ電力を伝送する、
    ことを特徴とするスイッチング電源装置。
  2.  前記1次側交流電圧発生回路は、スイッチング周波数をfsで表し、
     前記2次側回路の出力に負荷が接続された状態で、前記1次側交流電圧発生回路に接続される前記複共振回路の入力からみた入力インピーダンスが極小となる共振周波数をfaで表すと、
      fa≦fs
    なる範囲で動作して、伝送電力を制御する、請求項1に記載のスイッチング電源装置。
  3.  前記2次側共振回路を備えることにより、出力に負荷が接続されない無負荷状態においても共振動作を維持して動作する所定の周波数fcを設定し、
     fa≦fs≦fc
    なる範囲で動作して、伝送電力を制御する、請求項2に記載のスイッチング電源装置。
  4.  前記2次側共振キャパシタは、前記2次巻線に対して並列に接続され、前記2次側整流回路は前記2次側共振キャパシタの電圧を整流する、請求項1~3に記載のスイッチング電源装置。
  5.  前記2次側共振キャパシタは、前記2次巻線と直列に接続され、前記2次側整流回路は2次側共振キャパシタの電流を整流する、請求項1~3に記載のスイッチング電源装置。
  6.  前記2次側共振キャパシタは、前記2次側整流回路を構成する整流素子に対して並列に接続されている、請求項1~5のいずれかに記載のスイッチング電源装置。
  7.  前記2次側整流回路はブリッジ整流回路である、請求項1~6のいずれかに記載のスイッチング電源装置。
  8.  前記2次側整流回路はセンタータップ整流回路である、請求項1~6のいずれかに記載のスイッチング電源装置。
  9.  前記2次側整流回路は倍電圧整流回路である、請求項1~6のいずれかに記載のスイッチング電源装置。
  10.  前記スイッチング素子は、両端電圧がゼロ電圧に低下した際にターンオンしてゼロ電圧スイッチング動作を行う、請求項1~9のいずれかに記載のスイッチング電源装置。
  11.  前記1次側共振インダクタまたは前記2次側共振インダクタは、前記1次巻線または2次巻線の漏れインダクタンスである、請求項1~10のいずれかに記載のスイッチング電源装置。
  12.  前記1次側共振キャパシタとともに前記1次巻線の浮遊容量は前記1次側共振回路を構成し、または前記2次側共振キャパシタとともに前記2次巻線の浮遊容量は前記2次側共振回路を構成する、請求項1~11のいずれかに記載のスイッチング電源装置。
  13.  前記2次側共振キャパシタに前記整流素子の接合容量を利用する、請求項1~12のいずれかに記載のスイッチング電源装置。
  14.  前記スイッチング素子に対して並列に接続されたダイオードを有する、請求項1~13のいずれかに記載のスイッチング電源装置。
  15.  前記スイッチング素子はFETであり、前記並列に接続されたダイオードはFETの寄生ダイオードであり、FETの寄生容量を並列キャパシタとして用いる、請求項1~14のいずれかに記載のスイッチング電源装置。
  16.  前記1次側共振回路の共振周波数と前記2次側共振回路の共振周波数とをほぼ等しくした、請求項1~15のいずれかに記載のスイッチング電源装置。
  17.  前記1次側交流電圧発生回路は、4つのスイッチング素子がフルブリッジ接続された回路である、請求項1~16のいずれかに記載のスイッチング電源装置。
  18.  前記2次側整流回路は、前記1次側交流電圧発生回路のスイッチング動作に同期して整流する同期整流回路である、請求項1~17のいずれかに記載のスイッチング電源装置。
PCT/JP2012/076396 2011-10-21 2012-10-12 スイッチング電源装置 WO2013058174A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013539621A JP5817835B2 (ja) 2011-10-21 2012-10-12 スイッチング電源装置
CN201280051372.6A CN103891120B (zh) 2011-10-21 2012-10-12 开关电源装置
GB1405424.1A GB2508774B (en) 2011-10-21 2012-10-12 Switching power supply device
US14/256,679 US9130467B2 (en) 2011-10-21 2014-04-18 Switching power supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-232306 2011-10-21
JP2011232306 2011-10-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/256,679 Continuation US9130467B2 (en) 2011-10-21 2014-04-18 Switching power supply device

Publications (1)

Publication Number Publication Date
WO2013058174A1 true WO2013058174A1 (ja) 2013-04-25

Family

ID=48140822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076396 WO2013058174A1 (ja) 2011-10-21 2012-10-12 スイッチング電源装置

Country Status (5)

Country Link
US (1) US9130467B2 (ja)
JP (1) JP5817835B2 (ja)
CN (1) CN103891120B (ja)
GB (1) GB2508774B (ja)
WO (1) WO2013058174A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5847336B2 (ja) * 2013-11-15 2016-01-20 三菱電機エンジニアリング株式会社 高周波電源用整流回路
JP2016082715A (ja) * 2014-10-16 2016-05-16 東洋電機製造株式会社 直列共振電力転送装置
JP2019115186A (ja) * 2017-12-25 2019-07-11 Tdk株式会社 電力変換装置
US10566840B2 (en) 2014-11-17 2020-02-18 Murata Manufacturing Co., Ltd. Wireless power feeding system
WO2022074378A1 (en) * 2020-10-06 2022-04-14 Murata Manufacturing Co., Ltd. Isolated dc-dc converter

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101906A1 (ja) * 2011-01-26 2012-08-02 株式会社村田製作所 スイッチング電源装置
JP5804073B2 (ja) * 2011-10-21 2015-11-04 株式会社村田製作所 スイッチング電源装置
JP6477220B2 (ja) * 2015-05-12 2019-03-06 Tdk株式会社 共振コンバータおよびスイッチング電源装置
CN109478457B (zh) * 2016-07-14 2020-11-13 阿尔卑斯阿尔派株式会社 复合平滑电感器以及平滑化电路
CN109309456A (zh) * 2017-07-28 2019-02-05 兴澄股份有限公司 低谐度高效率的交流整流***
US10170974B1 (en) * 2017-07-28 2019-01-01 Apple Inc. Variable frequency and burst mode operation of primary resonant flyback converters
IL255948A (en) * 2017-11-27 2018-01-31 Abramovici Tal Direct current / constant frequency direct current converter
US10594205B2 (en) * 2018-08-01 2020-03-17 Newvastek Co., Ltd. High-frequency half-wave rectifier system of low-harmonicity and high-efficiency
CN109245543A (zh) * 2018-10-11 2019-01-18 亚瑞源科技(深圳)有限公司 半桥谐振直流对直流转换器及其操作方法
JP2020150570A (ja) * 2019-03-11 2020-09-17 Tdk株式会社 電源装置および医療システム
TWI711259B (zh) * 2019-05-30 2020-11-21 亞源科技股份有限公司 諧振轉換器
CN112087060B (zh) * 2020-07-23 2022-03-15 厦门大学 一种用于无线电能传输接收端的有源e类整流器
US11502613B2 (en) * 2020-08-18 2022-11-15 Lear Corporation DC-DC converter that applies a dual active bridge rectifier topology
CN112928926B (zh) * 2021-02-08 2023-05-16 昱能科技股份有限公司 一种直流变换器
TWI804154B (zh) * 2022-01-12 2023-06-01 大陸商美律電子(深圳)有限公司 儲能裝置及其溫度控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0591740A (ja) * 1991-09-25 1993-04-09 Yamaha Corp 電源回路
JPH05176531A (ja) * 1991-09-25 1993-07-13 Yamaha Corp 電源回路
JPH05176532A (ja) * 1991-09-25 1993-07-13 Yamaha Corp 電源回路
JPH08196074A (ja) * 1994-05-27 1996-07-30 Agence Spatiale Europ Dc−dc変換器
JPH09308243A (ja) * 1996-05-17 1997-11-28 Sanken Electric Co Ltd 共振型スイッチング電源装置
JP2006500889A (ja) * 2002-09-20 2006-01-05 クータン ラムダ リミテッド 複共振dc−dcコンバータ
JP2006197753A (ja) * 2005-01-14 2006-07-27 Sony Corp スイッチング電源回路
JP2008104295A (ja) * 2006-10-19 2008-05-01 Voltex:Kk 非接触電源装置
WO2012101906A1 (ja) * 2011-01-26 2012-08-02 株式会社村田製作所 スイッチング電源装置
WO2012101905A1 (ja) * 2011-01-26 2012-08-02 株式会社村田製作所 スイッチング電源装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3080128B2 (ja) 1994-03-11 2000-08-21 サンケン電気株式会社 共振型直流−直流変換器
US5748457A (en) * 1997-01-24 1998-05-05 Poon; Franki Ngai Kit Family of zero voltage switching DC to DC converters
US6184630B1 (en) * 1999-02-08 2001-02-06 Philips Electronics North America Corporation Electronic lamp ballast with voltage source power feedback to AC-side
US6301128B1 (en) * 2000-02-09 2001-10-09 Delta Electronics, Inc. Contactless electrical energy transmission system
US6246599B1 (en) * 2000-08-25 2001-06-12 Delta Electronics, Inc. Constant frequency resonant inverters with a pair of resonant inductors
JP2002159178A (ja) 2000-11-15 2002-05-31 Sony Corp スイッチング電源回路
JP3744525B2 (ja) * 2004-04-28 2006-02-15 サンケン電気株式会社 スイッチング電源装置
JP2006074897A (ja) 2004-09-01 2006-03-16 Sony Corp スイッチング電源回路
JP4099595B2 (ja) 2004-09-30 2008-06-11 ソニー株式会社 スイッチング電源回路
JP2007020391A (ja) 2005-07-07 2007-01-25 Samsung Electro Mech Co Ltd 高効率ハーフブリッジdc/dcコンバータ及びその制御方法
JP4525617B2 (ja) * 2006-03-03 2010-08-18 ソニー株式会社 スイッチング電源回路
JP2011526478A (ja) * 2008-07-02 2011-10-06 セテック・プロプライエタリー・リミテッド 共振型電力コンバータ
WO2010039967A1 (en) * 2008-10-01 2010-04-08 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
WO2012101907A1 (ja) 2011-01-26 2012-08-02 株式会社村田製作所 電力伝送システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0591740A (ja) * 1991-09-25 1993-04-09 Yamaha Corp 電源回路
JPH05176531A (ja) * 1991-09-25 1993-07-13 Yamaha Corp 電源回路
JPH05176532A (ja) * 1991-09-25 1993-07-13 Yamaha Corp 電源回路
JPH08196074A (ja) * 1994-05-27 1996-07-30 Agence Spatiale Europ Dc−dc変換器
JPH09308243A (ja) * 1996-05-17 1997-11-28 Sanken Electric Co Ltd 共振型スイッチング電源装置
JP2006500889A (ja) * 2002-09-20 2006-01-05 クータン ラムダ リミテッド 複共振dc−dcコンバータ
JP2006197753A (ja) * 2005-01-14 2006-07-27 Sony Corp スイッチング電源回路
JP2008104295A (ja) * 2006-10-19 2008-05-01 Voltex:Kk 非接触電源装置
WO2012101906A1 (ja) * 2011-01-26 2012-08-02 株式会社村田製作所 スイッチング電源装置
WO2012101905A1 (ja) * 2011-01-26 2012-08-02 株式会社村田製作所 スイッチング電源装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5847336B2 (ja) * 2013-11-15 2016-01-20 三菱電機エンジニアリング株式会社 高周波電源用整流回路
CN105745829A (zh) * 2013-11-15 2016-07-06 三菱电机工程技术株式会社 高频电源用整流电路
JPWO2015072015A1 (ja) * 2013-11-15 2017-03-09 三菱電機エンジニアリング株式会社 高周波電源用整流回路
US9979315B2 (en) 2013-11-15 2018-05-22 Mitsubishi Electric Engineering Company, Limited Rectifying circuit for high-frequency power supply
CN105745829B (zh) * 2013-11-15 2018-11-27 三菱电机工程技术株式会社 高频电源用整流电路
JP2016082715A (ja) * 2014-10-16 2016-05-16 東洋電機製造株式会社 直列共振電力転送装置
US10566840B2 (en) 2014-11-17 2020-02-18 Murata Manufacturing Co., Ltd. Wireless power feeding system
JP2019115186A (ja) * 2017-12-25 2019-07-11 Tdk株式会社 電力変換装置
JP7003636B2 (ja) 2017-12-25 2022-01-20 Tdk株式会社 電力変換装置
WO2022074378A1 (en) * 2020-10-06 2022-04-14 Murata Manufacturing Co., Ltd. Isolated dc-dc converter

Also Published As

Publication number Publication date
GB201405424D0 (en) 2014-05-07
JPWO2013058174A1 (ja) 2015-04-02
US20140247625A1 (en) 2014-09-04
CN103891120B (zh) 2016-08-24
GB2508774B (en) 2018-09-19
JP5817835B2 (ja) 2015-11-18
US9130467B2 (en) 2015-09-08
GB2508774A (en) 2014-06-11
CN103891120A (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5804073B2 (ja) スイッチング電源装置
JP5817835B2 (ja) スイッチング電源装置
JP5321758B2 (ja) スイッチング電源装置
KR101516988B1 (ko) 스위칭 전원 장치
KR101405878B1 (ko) 전력 전송 시스템
KR101685371B1 (ko) 전력 전송 시스템
US8705252B2 (en) Off line resonant converter with merged line rectification and power factor correction
JP4935499B2 (ja) 直流変換装置
US20110069513A1 (en) Current-Sharing Power Supply Apparatus With Bridge Rectifier Circuit
KR100966966B1 (ko) 다중출력 직류/직류 컨버터
JP2015042080A (ja) スイッチング電源装置
JP2015061342A (ja) 電源回路および画像形成装置
JP2015057028A (ja) 2石フォワード式スイッチング電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841438

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1405424

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20121012

WWE Wipo information: entry into national phase

Ref document number: 1405424.1

Country of ref document: GB

ENP Entry into the national phase

Ref document number: 2013539621

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12841438

Country of ref document: EP

Kind code of ref document: A1