WO2013046250A1 - バッテリの処理装置、車両、バッテリの処理方法及びバッテリの処理プログラム - Google Patents

バッテリの処理装置、車両、バッテリの処理方法及びバッテリの処理プログラム Download PDF

Info

Publication number
WO2013046250A1
WO2013046250A1 PCT/JP2011/005399 JP2011005399W WO2013046250A1 WO 2013046250 A1 WO2013046250 A1 WO 2013046250A1 JP 2011005399 W JP2011005399 W JP 2011005399W WO 2013046250 A1 WO2013046250 A1 WO 2013046250A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
discharge
state
amount
controller
Prior art date
Application number
PCT/JP2011/005399
Other languages
English (en)
French (fr)
Inventor
對馬 学
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP11873268.4A priority Critical patent/EP2762346A1/en
Priority to PCT/JP2011/005399 priority patent/WO2013046250A1/ja
Priority to US14/343,659 priority patent/US20140232302A1/en
Priority to CN201180073566.1A priority patent/CN103813928A/zh
Publication of WO2013046250A1 publication Critical patent/WO2013046250A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/526Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a processing technique for processing a battery that has been overcharged.
  • a chargeable / dischargeable battery in which a plurality of single cells are electrically connected is known as a driving power source or auxiliary power source for electric vehicles, hybrid vehicles, and the like.
  • the ECU that controls charging / discharging of the battery controls charging of the battery so that the voltage of the battery does not become a value higher than the upper limit value, and turns off the SMR when a charge end voltage higher than the upper limit value is reached.
  • the control which prohibits charging / discharging by this is performed. As a result, traveling of the vehicle using the battery is prohibited.
  • the battery that has been overcharged is collected by a dealer or the like.
  • Patent Document 1 when it is determined that the battery is overcharged, the power generation voltage of the alternator is controlled so as to inhibit the regenerative power generation control by reducing the power generation voltage of the alternator to a voltage value at which the battery is not charged / discharged until the fuel cut control is completed.
  • Disclosed is a control method that suppresses deterioration of the image.
  • an object of the present invention is to reduce the processing load of a battery that has been overcharged.
  • a battery processing apparatus is a battery processing apparatus mounted on a vehicle, and stores electric power supplied to a motor that drives wheels. In the overcharged state where the chargeable / dischargeable battery and the charged amount of the battery are suppressed from being charged to the battery, the battery from the second state that does not allow discharge from the battery to the load based on a discharge permission signal And a controller that executes a discharge permissible process for switching to a first state permitting a discharge to the load.
  • the controller may execute the discharge permission process by controlling a switch element that switches between the first state and the second state.
  • the switch element is a relay
  • the controller sets the relay to the second state in the overcharge state before receiving the discharge permission signal.
  • vehicle travel using the battery is prohibited.
  • the battery mounted on the vehicle prohibited from traveling by the overcharge of the battery can be discharged while being mounted on the vehicle.
  • the controller can perform the discharge permissible process and discharge the battery. According to the structure of (4), since discharge of a battery is performed with a discharge permission process, the overcharge state of a battery can be eliminated rapidly.
  • the controller discharges the battery according to an operation of an accelerator pedal of a vehicle after executing the discharge permission process.
  • a discharge process can be performed at the timing which the processor who processes a battery likes.
  • the battery includes an equalization circuit having a resistance as the load and the switch element, and the controller causes the switch element to move from the second state to the first state.
  • the battery power is discharged to the equalization circuit.
  • the configuration of (6) it is possible to eliminate the overcharged state of the battery using the equalization circuit that suppresses the variation in the charged amount between the batteries.
  • the controller has an acquisition unit that acquires information related to the storage amount of the battery, and the controller reduces the storage amount during the discharge process based on the discharge permission process.
  • the amount is less than or equal to a predetermined value, the amount of discharge can be suppressed.
  • it can suppress that the electrical storage amount of a battery falls below a lower limit control value.
  • the controller can stop the discharge when the storage amount becomes less than a predetermined value during the discharge process based on the discharge permission process. .
  • the overdischarge of a battery can be suppressed.
  • the controller suppresses charging when the amount of charge of the battery becomes higher than a control upper limit during charging of the battery, and the amount of charge of the battery is reduced.
  • the storage amount corresponding to the overcharge state higher than the control upper limit value is reached, charging / discharging can be prohibited.
  • the battery processing device according to any one of (1) to (9) above can be mounted on a vehicle.
  • a battery processing method is a battery mounted on a vehicle, which processes the chargeable / dischargeable battery that stores electric power supplied to a motor that drives a wheel.
  • the processing method in the overcharged state in which the charged amount of the battery is suppressed from being charged to the battery, the discharge from the battery to the load from the second state that does not allow the battery to discharge to the load.
  • a discharge permissive process is performed to switch to a permissible first state.
  • a battery processing program is a battery mounted on a vehicle, which processes the battery that can be charged and discharged and stores electric power supplied to a motor that drives a wheel.
  • a battery processing program for causing a computer to execute an operation, wherein the battery is charged from a second state that does not allow discharge from the battery to the load in an overcharged state in which the charged amount of the battery is suppressed.
  • a discharge permission processing step for switching to a first state in which discharge to the load is permitted.
  • FIG. 1 is a block diagram showing a hardware configuration of a part of a vehicle according to an embodiment of the present invention.
  • a solid arrow indicates a power supply direction
  • a dotted arrow indicates a signal flow direction.
  • the vehicle 1 is a hybrid vehicle having a drive path for driving a motor using the output of a battery and a drive path for an engine.
  • the present invention can also be applied to an electric vehicle having only a drive path for driving a motor using the output of a battery.
  • vehicle 1 includes a high voltage battery 11, smoothing capacitors C1 and C2, a voltage converter 12, an inverter 13, a motor generator MG1, a motor generator MG2, and a power split planetary gear P1.
  • Vehicle 1 further includes a power supply line PL1 and a ground line SL.
  • the high voltage battery 11 is connected to the voltage converter 12 via system main relays SMR-G, SMR-B, and SMR-P constituting the relay 15.
  • the system main relay SMR-G is connected to the plus terminal of the high voltage battery 11, and the system main relay SMR-B is connected to the minus terminal of the high voltage battery 11.
  • the system main relay SMR-P and the precharge resistor 17 are connected in parallel to the system main relay SMR-B.
  • SMR-G, SMR-B, and SMR-P are relays whose contacts close when the coil is energized. SMR being on means an energized state, and SMR being off means a non-energized state.
  • the ECU 30 turns off all the system main relays SMR-G, SMR-B, and SMR-P when the current is interrupted, that is, when the ignition switch is in the OFF position. That is, the exciting current for the coils of the system main relays SMR-G, SMR-B, and SMR-P is turned off. Note that the position of the ignition switch is switched from the OFF position to the ON position in this order.
  • the ECU 30 may be a CPU or an MPU, or may include an ASIC circuit that executes at least a part of processes executed in these CPUs. The ECU 30 is activated when power is supplied from the low voltage battery 22.
  • the ECU 30 When the hybrid system is started (when the main power supply is connected), that is, for example, when the driver depresses the brake pedal and pushes the push-type start switch, the ECU 30 first turns on the system main relay SMR-G. Next, the ECU 30 turns on the system main relay SMR-P to perform precharging.
  • the precharge resistor 17 is connected to the system main relay SMR-P. For this reason, even when the system main relay SMR-P is turned on, the input voltage to the inverter 13 rises gently, and the occurrence of an inrush current can be prevented.
  • the ECU 30 When the ignition switch is switched from the ON position to the OFF position, the ECU 30 first turns off the system main relay SMR-B, and then turns off the system main relay SMR-G. Thereby, the electrical connection between the high voltage battery 11 and the inverter 13 is cut off, and the power supply is cut off.
  • System main relays SMR-B, SMR-G, and SMR-P are controlled to be in a conductive / non-conductive state in accordance with a control signal supplied from ECU 30.
  • the capacitor C1 is connected between the power supply line PL1 and the ground line SL, and smoothes the voltage between the lines.
  • a DC / DC converter 21 and an air conditioner 23 are connected in parallel between the power supply line PL1 and the ground line SL.
  • the DC / DC converter 21 steps down the power supplied from the high voltage battery 11 and charges the low voltage battery 22 or supplies power to the auxiliary load 24.
  • the auxiliary machine load 24 includes electronic devices such as a vehicle lamp and an audio device (not shown).
  • the voltage converter 12 boosts the voltage across the terminals of the capacitor C1.
  • Capacitor C2 smoothes the voltage boosted by voltage converter 12.
  • Inverter 13 converts the DC voltage applied from voltage converter 12 into a three-phase AC and outputs the same to motor generator MG2.
  • Reduction planetary gear P2 transmits the power obtained by motor generator MG2 to reduction gear D, and drives the vehicle.
  • the power split planetary gear P1 splits the power obtained by the engine 14 into two paths, one of which is transmitted to the wheels via the speed reducer D, and the other drives the motor generator MG1 to generate power.
  • the electric power generated in the motor generator MG1 assists the engine 14 by being used for driving the motor generator MG2.
  • Reduction planetary gear P2 transmits the power transmitted through speed reducer D to motor generator MG2 during vehicle deceleration, and drives motor generator MG2 as a generator.
  • the electric power obtained by motor generator MG2 is converted from a three-phase AC to a DC voltage in inverter 13 and transmitted to voltage converter 12.
  • the ECU 30 controls the voltage converter 12 to operate as a step-down circuit.
  • the electric power stepped down by the voltage converter 12 is stored in the high voltage battery 11.
  • the monitoring unit 31 acquires information on the voltage, current, and temperature of the high-voltage battery 11.
  • the monitoring unit 31 is unitized together with the high voltage battery 11.
  • the voltage value acquired by the monitoring unit 31 may be the voltage value of each battery cell (unit cell).
  • the voltage value detected by the monitoring unit 31 is the voltage value of each battery module (single battery in which a plurality of battery cells are connected in series) when the secondary battery constituting the high voltage battery 11 is a nickel metal hydride battery. Also good.
  • the temperature of the high voltage battery 11 may be acquired via a thermistor (not shown).
  • the memory 32 stores information regarding the control upper limit value and the control lower limit value of the storage amount used for charge / discharge control of the high-voltage battery 11.
  • the ECU 30 controls the amount of power stored in the high voltage battery 11 to be maintained within a control range defined by the control upper limit value and the control lower limit value. Further, the ECU 30 suppresses charging when the charged amount of the high voltage battery 11 becomes higher than the control upper limit value. Further, the ECU 30 prohibits charging / discharging of the high voltage battery 11 when the charged amount of the high voltage battery 11 reaches the charged amount corresponding to the charge end voltage higher than the control upper limit value. A state where the amount of power stored in the high voltage battery 11 has reached the end-of-charge voltage or exceeded the end-of-charge voltage is referred to as an overcharge state.
  • the ECU 30 suppresses the discharge when the stored amount of the high voltage battery 11 becomes lower than the control lower limit value. Further, the ECU 30 prohibits charging / discharging of the high-voltage battery 11 when the amount of electricity stored in the high-voltage battery 11 reaches the amount of electricity stored corresponding to the discharge end voltage lower than the control lower limit value.
  • a state where the amount of power stored in the high voltage battery 11 reaches the discharge end voltage or exceeds the discharge end voltage is referred to as an overdischarge state.
  • the high voltage battery 11 deteriorates when it is overcharged or overdischarged. Therefore, the ECU 30 calculates the storage amount based on the information on the voltage, current, and temperature acquired by the monitoring unit 31, and determines that at least one unit cell included in the high voltage battery 11 is in an overcharge or overdischarge state. In this case, the electrical connection between the high voltage battery 11 and the inverter 13 is cut off by turning off the system main relay SMR-B and the system main relay SMR-G.
  • the ECU 30 does not turn off the system main relay SMR-B and the system main relay SMR-G when it is determined that at least one unit cell included in the high voltage battery 11 is overcharged or overdischarged.
  • the inverter 13 By controlling the inverter 13, charging / discharging of the high voltage battery 11 may be prohibited.
  • the vehicle 1 is in a travel impossible state in which travel using the high voltage battery 11 is impossible.
  • the ECU 30 is provided at a position separated from the high voltage battery 11. However, the ECU 30 and the high voltage battery 11 may be unitized.
  • the battery processing device 2 includes a battery 81, a switch element 82, a controller 83, a load 84, and an acquisition unit 85.
  • the battery 81 is chargeable / dischargeable and stores electric power supplied to a motor that drives the wheels.
  • the battery 81 corresponds to the high voltage battery 11
  • the motor corresponds to the motor generator MG2.
  • Switch element 82 switches between a first state in which discharge from battery 81 to load 84 is allowed and a second state in which discharge from battery 81 to load 84 is not allowed.
  • the switch element 82 corresponds to the relay 15.
  • the controller 83 performs a discharge permission process for switching the switch element 82 from the second state to the first state by receiving a discharge permission signal in the overcharged state of the battery 81. However, when the battery 83 reaches an overcharged state, the controller 83 prohibits discharging by controlling the inverter 13 without switching the switch element 82 from the first state to the second state.
  • the controller 83 may execute the discharge allowance process by outputting a command signal for performing the discharge process to the inverter 13 based on the received discharge allowance signal.
  • the controller 83 corresponds to the ECU 30.
  • the discharge permission signal is generated by operating the external device 41 of FIG. 1 at a dealer or the like.
  • the controller 83 supplies the power of the battery 81 to the load 84 by executing the discharge permissible process and controlling the voltage converter 12 and the inverter 13.
  • load 84 may be motor generator MG2.
  • the amount of power stored in battery 81 decreases in accordance with the rotational operation of motor generator MG2.
  • the load 84 may be the air conditioner 23.
  • the amount of power stored in the battery 81 decreases in accordance with the temperature adjustment operation by the air conditioner 23.
  • the load 84 may be the auxiliary machine load 24.
  • the amount of power stored in the battery 81 decreases according to the audio output operation and video output operation of the audio constituting the auxiliary load 24 or the lighting operation of the light.
  • motor generator MG2 when motor generator MG2 is selected as load 84, it is preferable to discharge battery 81 while vehicle 1 is jacked up.
  • the air conditioner 23 or the auxiliary machine load 24 as the load 84, it is possible to save the trouble of jacking up the vehicle 1.
  • the acquisition unit 85 acquires information related to the amount of stored electricity from the battery 81.
  • the information regarding the amount of stored electricity is information regarding the voltage and temperature of the battery 81.
  • the acquisition unit 85 corresponds to the monitoring unit 31.
  • the controller 83 suppresses the discharge process when the degree of decrease in the amount of stored electricity during the discharge process becomes equal to or less than a predetermined value.
  • the degree of decrease in the storage amount includes a decrease rate of the storage amount, a change amount of the storage amount, or other parameters (for example, voltage) correlated with the decrease in the storage amount.
  • the predetermined value may be a fixed value determined in advance by design, or an arithmetic value calculated when performing battery discharge processing.
  • Information about the predetermined value is stored in the memory 32, and the data format may be a map format.
  • step S ⁇ b> 101 the ECU 30 is activated when power is supplied from the low voltage battery 22 that is turned on by operating the external device 41.
  • step S102 the ECU 30 determines whether or not the discharge allowable signal generated by operating the external device 41 is received. If the ECU 30 receives the discharge allowable signal, the process proceeds to step S103, where the ECU 30 discharges. If no permission signal has been received, the process returns to step S101.
  • the external device 41 may be operated by a specialist such as a dealer, or may be operated by a user according to a predetermined manual.
  • step S103 the ECU 30 switches the relay 15 from OFF to ON based on the received discharge permission signal, and sets the state of the high-voltage battery 11 to a discharge permission state that allows the discharge process.
  • step S104 ECU 30 controls voltage converter 12 and inverter 13 to drive motor generator MG2. Since the high voltage battery 11 can be discharged in a state where the vehicle 1 is jacked up, the amount of charge stored in the high voltage battery 11 can be lowered to a level that is easy to handle while the vehicle 1 is stopped.
  • step S105 the ECU 30 determines whether or not the rate of decrease in the stored amount of the high voltage battery 11 is equal to or less than a predetermined value. If the rate of decrease in the stored amount is equal to or less than the predetermined value, the ECU 30 proceeds to step S106. If the descent rate is not less than or equal to the predetermined value, the process returns to step S104 to continue driving the motor generator MG2. Note that when the amount of electricity stored in the high-voltage battery 11 approaches the control lower limit value, the discharge is limited, and the rate of decrease in the amount of electricity stored decreases. Therefore, by determining whether or not to continue discharging based on the rate of decrease in the amount of stored electricity, it is possible to suppress the stored amount of high voltage battery 11 from becoming lower than the control lower limit value.
  • step S106 the ECU 30 switches the relay 15 from on to off, and stops the discharge process of the high voltage battery 11.
  • step S ⁇ b> 107 a specialist such as a dealer removes the high voltage battery 11 from the vehicle and replaces it with a new high voltage battery 11. Since the high voltage battery 11 can be collected in a state where the amount of stored electricity is reduced, the handling of the high voltage battery 11 is facilitated. In addition, the high-voltage battery 11 that has reached the overcharged state can be discharged in a state of being mounted on the vehicle.
  • This flowchart may be executed by the ECU 30 reading a processing program for performing the processing from the memory 32.
  • the memory 32 operates as a storage device, and the ECU 30 executes this flowchart by reading the processing program stored in the storage device into a memory (not shown) and decoding it.
  • the processing program may be stored in the memory 32 in advance, or may be downloaded via the Internet. Alternatively, the processing program may be installed by being stored in a computer-readable recording medium.
  • the discharging process is continued until the rate of decrease in the stored amount of the high-voltage battery 11 becomes a predetermined value or less, but the present invention is not limited to this.
  • control may be performed so that the discharge process of the high-voltage battery 11 is stopped when the charged amount becomes less than a predetermined value.
  • the predetermined value is the amount of power stored in the high voltage battery 11 when the voltage of at least one single cell included in the high voltage battery 11 has dropped to the discharge end voltage.
  • the ECU 30 detects when the voltage of at least one single cell included in the high voltage battery 11 has dropped to a discharge end voltage (that is, when the high voltage battery 11 is in an overdischarged state). It is assumed that the amount of stored electricity has decreased below a predetermined value, and the discharge process is stopped.
  • the ECU 30 may stop the discharging process by switching the relay 15 from the first state to the second state, or the discharging process of the high-voltage battery 11 while the relay 15 is set to the second state.
  • the discharging process may be stopped by outputting a prohibiting signal for prohibiting the switching to the inverter 13.
  • ECU 30 may execute the discharge process by driving motor generator MG2 and the like for a certain period of time with reference to the discharge time.
  • the predetermined time may be a predetermined time or a time determined by examining the state of the high voltage battery 11 that has reached an overcharged state.
  • the discharge allowable signal is generated by operating the external device 41, but the present invention is not limited to this.
  • the discharge permission signal may be generated by a special operation of the vehicle element.
  • the special operation may be an operation that a normal driver does not perform, such as, for example, depressing the brake of the vehicle 1 for a predetermined time or more and depressing the accelerator for a predetermined time or more. Good.
  • the ECU 30 After the ECU 30 sets the state of the high voltage battery 11 to the discharge allowable state in step S103, the ECU 30 immediately executes the discharge process for the high voltage battery 11 in step S104. It is not something that can be done. For example, after ECU30 sets the state of the high voltage battery 11 to a discharge allowable state, the method of performing a discharge process by a dealer etc. stepping on an accelerator may be sufficient. Thereby, the discharge process can be executed at an arbitrary timing.
  • the “discharge permissible process” in the present invention means that the ECU 30 controls the entire battery processing apparatus 2 so as to permit the discharge of the high voltage battery 11, and whether or not the discharge process is actually performed. Does not matter. Therefore, for example, the discharge process of the high voltage battery 11 may be performed by performing a special operation after the discharge allowable process is executed.
  • the special operation may be an operation that a normal driver does not perform, such as, for example, depressing the brake of the vehicle 1 for a predetermined time or more and depressing the accelerator for a predetermined number of times or more. Good.
  • the discharge process is performed on the load 84 connected to the high voltage battery 11 via the relay 15 and the voltage converter 12 to reduce the amount of stored electricity by discharging the power of the high voltage battery 11.
  • the discharging process is executed by discharging to an equalization circuit provided in the high voltage battery 11.
  • the high voltage battery 11 includes a plurality of single cells 111 electrically connected in series. Since the single cell 111 is the same as that of the above-mentioned embodiment, description is abbreviate
  • the basic configuration other than the high voltage battery 11 is the same as that of the first embodiment.
  • a voltage monitoring IC (voltage sensor) 42 is electrically connected in parallel to each unit cell 111.
  • the voltage monitoring IC 42 detects the voltage of the unit cell 111 and outputs the detection result to the ECU 30.
  • the voltage monitoring IC 42 operates by receiving power from the corresponding unit cell 111.
  • the voltage monitoring IC 42 is included in the monitoring unit 31 of FIG.
  • an equalization circuit 43 is electrically connected in parallel to each unit cell 111, and the equalization circuit 43 is used to equalize the voltage (or storage amount) in the plurality of unit cells 111. .
  • the operation of the equalization circuit 43 is controlled by the ECU 30.
  • the ECU 30 determines that the voltage of a specific unit cell 111 is higher than the voltages of other unit cells 111 based on the output of the voltage monitoring IC 42, only the equalization circuit 43 corresponding to the specific unit cell 111 is used. By operating the, only the specific unit cell 111 is discharged. Thereby, the voltage of the specific single battery 111 falls and can be made substantially equal to the voltage of the other single battery 11.
  • FIG. 5 is a circuit diagram showing the configuration of the unit cell 111 and the equalization circuit 43.
  • the equalization circuit 43 includes a resistor 43a and a switch element 43b.
  • the switch element 43b is switched between on and off in accordance with a control signal from the ECU 30.
  • the switch element 43b is switched from OFF to ON, the current of the unit cell 111 flows through the resistor 43a, and the unit cell 111 can be discharged. Thereby, the voltage of each single battery 111 can be adjusted, and the voltage in the some single battery 111 can be equalized.
  • the equalization circuit 43 is provided to equalize the voltages in the plurality of single cells 111.
  • the equalization circuit 43 is used for another purpose, that is, a high-voltage battery that has been overcharged.
  • 11 is also used for the purpose of facilitating the processing of the high-voltage battery 11 by reducing the amount of stored electricity.
  • the ECU 30 receives the discharge permission signal in an overcharged state in which the charged amount of the high voltage battery 11 is suppressed from being charged to the high voltage battery 11, thereby turning the switch element 43b from off (second state) to on (second state). 1), the discharge allowable process is performed.
  • the switch element 43b that performs the switching operation may be only the switch element 43b corresponding to the specific unit cell 111 determined to be overcharged, or may be all the switch elements 43b.
  • the equalization circuit 43 and the voltage monitoring IC 42 are provided with respect to each cell 111, it is not restricted to this.
  • one battery block is configured by the plurality of single cells 111 electrically connected in series, and the assembled battery 10 can be configured by electrically connecting the plurality of battery blocks in series.
  • an equalization circuit 43 and a voltage monitoring IC 42 can be provided for each battery block.
  • the voltage monitoring IC 42 detects the voltage of the corresponding battery block, and the equalization circuit 43 is used for discharge processing of the corresponding battery block.
  • a circulating current flows from the unit cell 111 that has been overcharged to another unit cell 111 that has not been overcharged, so that the discharge process is performed and the overcharge state is eliminated. Thereby, the process of the high voltage battery 11 can be facilitated.
  • the unit cell 111 that has been overcharged corresponds to the battery 81
  • the unit cell 111 charged by the circulating current corresponds to the load 84
  • the switching circuit corresponds to the switch element 82 (See FIG. 2).
  • the discharge process is performed by starting the ECU 30 after the low voltage battery 22 is turned on in the external device 41.
  • the present invention is not limited to this, and for example, using a diagnostic diagnosis tool May be.
  • the ECU 30 is activated by turning on the low voltage battery 22 using the external device 41 and supplying power from the low voltage battery 22.
  • the ECU 30 receives an overcharge signal from the monitoring unit 31 and stores it in the memory 32. Subsequently, by operating the external device 41, a diagnostic diagnosis tool by the ECU 30 is executed.
  • the ECU 30 starts diagnostic diagnosis based on a command from the external device 41, and executes the discharge permission process when it is determined that the information indicating the overcharge signal is stored in the memory 32. To do.
  • information indicating the overcharge signal transmitted from the memory 32 to the ECU 30 corresponds to the discharge permission signal.
  • the state in which the high voltage battery 11 has reached the end-of-charge voltage or the state in which the end-of-charge voltage is exceeded is defined as the overcharge state, but the control upper limit value has been reached without providing the end-of-charge voltage.
  • a state where the amount of stored electricity is higher than the state or the control upper limit value may be set as an overcharged state.
  • a state where charging / discharging of the high voltage battery 11 is prohibited may be defined as an overcharged state. The setting of the overcharge state may be changed as appropriate.
  • the state in which the high voltage battery 11 has reached the end-of-discharge voltage or the state in which the end-of-discharge voltage has been exceeded is defined as the overdischarge state.
  • a state in which the amount of stored power is lower than the state or the control lower limit value may be referred to as an overdischarge state.
  • a state where charging / discharging of the high voltage battery 11 is prohibited may be defined as an overdischarge state.
  • the setting of the overdischarge state may be changed as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】バッテリの処理負担を軽減することを目的とする。 【解決手段】車輪を駆動するモータに供給される電力を蓄電する充放電可能なバッテリと、前記バッテリの蓄電量が前記バッテリに対する充電が抑制される過充電状態において、放電許容信号を受信することにより、前記バッテリから前記負荷への放電を許容しない第2の状態から前記バッテリから負荷への放電を許容する第1の状態に切り替える放電許容処理を実行するコントローラと、を有することを特徴とするバッテリ処理装置。

Description

バッテリの処理装置、車両、バッテリの処理方法及びバッテリの処理プログラム
 本発明は、過充電に至ったバッテリを処理する処理技術に関するものである。
 電気自動車、ハイブリッド自動車などの駆動電源又は補助電源として複数の単電池を電気的に接続した充放電可能なバッテリが知られている。バッテリの充放電を制御するECUは、バッテリの電圧が上限値よりも高い値にならないようにバッテリの充電を制御しており、この上限値よりも高い充電終止電圧に達した時にSMRをオフすることにより充放電を禁止する制御を行う。これにより、バッテリを用いた車両の走行が禁止される。過充電に至ったバッテリは、ディーラ等において回収される。
 特許文献1は、バッテリ過充電と判定した時には燃料カット制御が終了するまでオルタネータの発電電圧をバッテリが充放電しない電圧値に下げて回生発電制御を禁止するようオルタネータの発電電圧を制御してバッテリの劣化を抑制する制御方法を開示する。
特開2008-255913号公報 特開2004-319304号公報 特開平8-205304号公報
 過充電に至ったバッテリは取扱が困難であり、ディーラ等において処理負担が大きかった。そこで、本願発明は、過充電に至ったバッテリの処理負担を軽減することを目的とする。
 上記課題を解決するために、本発明に係るバッテリ処理装置は、一つの観点として、(1)車両に搭載されたバッテリ処理装置であって、車輪を駆動するモータに供給される電力を蓄電する充放電可能なバッテリと、前記バッテリの蓄電量が前記バッテリに対する充電が抑制される過充電状態において、放電許容信号に基づき、前記バッテリから前記負荷への放電を許容しない第2の状態から前記バッテリから前記負荷への放電を許容する第1の状態に切り替える放電許容処理を実行するコントローラと、を有することを特徴とする。
 (2)上記(1)の構成において、前記コントローラは、前記第1の状態と前記第2の状態との間で切り替わるスイッチ素子を制御することにより、前記放電許容処理を実行してもよい。
 (3)上記(2)の構成において、前記スイッチ素子は、リレーであり、前記コントローラは、前記放電許容信号を受信する前の前記過充電状態において、前記リレーを前記第2の状態に設定することにより、前記バッテリを用いた車両走行を禁止している。(3)の構成によれば、バッテリの過充電により車両走行が禁止された車両に搭載された前記バッテリを、車両に搭載したままで放電処理することができる
 (4)上記(3)の構成において、前記コントローラは、前記放電許容処理を実行するとともに、前記バッテリを放電させることができる。(4)の構成によれば、放電許容処理とともに、バッテリの放電が実行されるため、バッテリの過充電状態を速やかに解消することができる。
 (5)上記(3)の構成において、前記コントローラは、前記放電許容処理を実行した後に、車両のアクセルペダルの操作に応じて前記バッテリを放電させる。(5)の構成によれば、バッテリを処理する処理者の好きなタイミングで放電処理を行うことができる。
 (6)上記(2)の構成において、前記バッテリは、前記負荷としての抵抗と、前記スイッチ素子とを有する均等化回路を備え、前記コントローラにより前記スイッチ素子が前記第2の状態から前記第1の状態に切り替わると、前記バッテリの電力が前記均等化回路に放電される。(6)の構成によれば、電池間の蓄電量のバラツキを抑制する均等化回路を用いて、バッテリの過充電状態を解消することができる。
 (7)上記(1)~(6)の構成において、前記バッテリの蓄電量に関する情報を取得する取得部を有し、前記コントローラは、前記放電許容処理に基づく放電処理中に、蓄電量の降下量の度合いが所定値以下である場合には、放電量を抑制することができる。(7)の構成によれば、バッテリの蓄電量が下限制御値以下に低下することを抑制できる。
 (8)上記(1)~(6)の構成において、前記コントローラは、前記放電許容処理に基づく放電処理中に、蓄電量が所定値未満となった場合には、放電を停止することができる。(7)の構成によれば、バッテリの過放電を抑制することができる。
 (9)上記(1)~(8)の構成において、前記コントローラは、前記バッテリの充電時に、前記バッテリの蓄電量が制御上限値よりも高くなると、充電を抑制し、前記バッテリの蓄電量が前記制御上限値よりも高い過充電状態に対応した蓄電量に達すると、充放電を禁止することができる。
 (10)上記(1)~(9)のうちいずれか一つに記載のバッテリ処理装置は、車両に搭載することができる。
 上記課題を解決するために、本願発明に係るバッテリ処理方法は、車両に搭載されたバッテリであって、車輪を駆動するモータに供給される電力を蓄電する充放電可能な前記バッテリを処理するバッテリ処理方法であって、前記バッテリの蓄電量が前記バッテリに対する充電が抑制される過充電状態において、前記バッテリから前記負荷への放電を許容しない第2の状態から前記バッテリから前記負荷への放電を許容する第1の状態に切り替える放電許容処理を行うことを特徴とする。
 上記課題を解決するために、本願発明に係るバッテリ処理プログラムは、車両に搭載されたバッテリであって、車輪を駆動するモータに供給される電力を蓄電する充放電可能な前記バッテリを処理する処理動作をコンピュータに実行させるバッテリ処理プラグラムであって、前記バッテリの蓄電量が前記バッテリに対する充電が抑制される過充電状態において、前記バッテリから前記負荷への放電を許容しない第2の状態から前記バッテリから前記負荷への放電を許容する第1の状態に切り替える放電許容処理ステップを有することを特徴とする。
 本発明によれば、過充電に至ったバッテリの処理負担を軽減することができる。
車両の一部におけるハード構成を示すブロック図である。 車両の一部における機能ブロック図である。 高圧バッテリの処理手順を示したフローチャートである。 均等化回路を含む高圧バッテリの回路図である。 均等化回路の回路図である。
(実施形態1)
 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。図1は、本発明の一実施形態である車両の一部におけるハード構成を示すブロック図である。同図において、実線の矢印は電力の供給方向を示しており、点線の矢印は信号の流れる方向を示している。車両1は、バッテリの出力を用いてモータを駆動する駆動経路とエンジンによる駆動経路とを有するハイブリッド自動車である。なお、本発明はバッテリの出力を用いてモータを駆動する駆動経路のみ有する電気自動車にも適用することができる。
 同図を参照して、車両1は、高圧バッテリ11と、平滑用コンデンサC1、C2と、電圧コンバータ12と、インバータ13と、モータジェネレータMG1と、モータジェネレータMG2と、動力分割プラネタリーギヤP1と、リダクションプラネタリーギヤP2と、減速機Dと、エンジン14と、リレー15と、DC/DCコンバータ21と、低圧バッテリ22と、エアコン23と、補機負荷24と、ECU30と、監視ユニット31と、メモリ32とを含む。
 高圧バッテリ11には、複数の二次電池を直列に接続した組電池を用いることができる。二次電池には、例えばニッケル水素電池、リチウムイオン電池等を用いることができる。車両1は、さらに、電源ラインPL1と、接地ラインSLとを含む。高圧バッテリ11は、リレー15を構成するシステムメインリレーSMR-G,SMR-B,SMR-Pを介して、電圧コンバータ12に接続されている。
 高圧バッテリ11のプラス端子には、システムメインリレーSMR-Gが接続され、高圧バッテリ11のマイナス端子には、システムメインリレーSMR-Bが接続されている。また、システムメインリレーSMR-Pおよびプリチャージ抵抗17は、システムメインリレーSMR-Bに対して並列に接続されている。
 これらのシステムメインリレーSMR-G,SMR-B,SMR-Pは、コイルに対して通電したときに接点が閉じるリレーである。SMRがオンとは通電状態を意味し、SMRがオフとは非通電状態を意味する。
 ECU30は、電流遮断時、すなわちイグニッションスイッチのポジションがOFF位置になるときには、全てのシステムメインリレーSMR-G,SMR-B,SMR-Pをオフする。すなわち、システムメインリレーSMR-G,SMR-B,SMR-Pのコイルに対する励磁電流をオフにする。なお、イグニッションスイッチのポジションは、OFF位置→ON位置の順に切り替わる。ECU30は、CPU、MPUであってもよいし、これらのCPUなどにおいて実行される処理の少なくとも一部を回路的に実行するASIC回路を含んでも良い。ECU30は、低圧バッテリ22から電源が供給されることにより、起動する。
 ハイブリッドシステム起動時(メイン電源接続時)、すなわち、たとえば運転者がブレーキペダルを踏み込んでプッシュ式のスタートスイッチを押し込むと、ECU30は、最初にシステムメインリレーSMR-Gをオンにする。次に、ECU30は、システムメインリレーSMR-Pをオンしてプリチャージを実行する。
 システムメインリレーSMR-Pにはプリチャージ抵抗17が接続されている。このため、システムメインリレーSMR-Pをオンしてもインバータ13への入力電圧は緩やかに上昇し、突入電流の発生を防止できる。
 イグニッションスイッチのポジションがON位置からOFF位置に切り替わると、ECU30は、先ずシステムメインリレーSMR-Bをオフし、続いてシステムメインリレーSMR-Gをオフする。これにより、高圧バッテリ11とインバータ13との間の電気的な接続が遮断され、電源遮断状態となる。システムメインリレーSMR-B,SMR-G,SMR-Pは、ECU30から与えられる制御信号に応じて導通/非導通状態が制御される。
 コンデンサC1は、電源ラインPL1と接地ラインSL間に接続され、ライン間電圧を平滑化する。また、電源ラインPL1と接地ラインSL間には、DC/DCコンバータ21と、エアコン23とが並列に接続されている。DC/DCコンバータ21は、高圧バッテリ11から供給される電力を降圧して、低圧バッテリ22を充電したり、或いは補機負荷24に電力を供給する。ここで、補機負荷24には、図示しない車両のランプ、オーディオ機器等の電子機器が含まれる。
 電圧コンバータ12は、コンデンサC1の端子間電圧を昇圧する。コンデンサC2は、電圧コンバータ12によって昇圧された電圧を平滑化する。インバータ13は、電圧コンバータ12から与えられる直流電圧を三相交流に変換してモータジェネレータMG2に出力する。リダクションプラネタリーギヤP2は、モータジェネレータMG2で得られた動力を減速機Dに伝達して、車両を駆動する。動力分割プラネタリーギヤP1は、エンジン14で得られた動力を二経路に分割し、一方は減速機Dを介して車輪に伝達され、他方はモータジェネレータMG1を駆動して発電を行う。
 このモータジェネレータMG1において発電された電力は、モータジェネレータMG2の駆動に用いられることでエンジン14を補助する。また、リダクションプラネタリーギヤP2は、車両減速時に、減速機Dを介して伝達される動力をモータジェネレータMG2に伝達し、モータジェネレータMG2を発電機として駆動する。このモータジェネレータMG2で得られた電力は、インバータ13において三相交流から直流電圧に変換され、電圧コンバータ12に伝達される。このとき、ECU30は、電圧コンバータ12が降圧回路として動作するように制御する。電圧コンバータ12で降圧された電力は、高圧バッテリ11に蓄電される。
 監視ユニット31は、高圧バッテリ11の電圧、電流及び温度に関する情報を取得する。監視ユニット31は、高圧バッテリ11とともにユニット化されている。監視ユニット31により取得される電圧値は、高圧バッテリ11を構成する二次電池がリチウムイオン電池である場合、各電池セル(単電池)の電圧値であってもよい。監視ユニット31により検出される電圧値は、高圧バッテリ11を構成する二次電池がニッケル水素電池である場合、各電池モジュール(複数の電池セルを直列に接続した単電池)の電圧値であってもよい。高圧バッテリ11の温度は、図示しないサーミスタを介して取得してもよい。
 メモリ32は、高圧バッテリ11の充放電制御に用いられる、蓄電量の制御上限値及び制御下限値に関する情報を記憶する。ECU30は、高圧バッテリ11の蓄電量を制御上限値及び制御下限値により規定される制御範囲に維持されるように制御する。また、ECU30は、高圧バッテリ11の蓄電量が制御上限値よりも高くなると、充電を抑制する。また、ECU30は、高圧バッテリ11の蓄電量が、制御上限値よりも高い充電終止電圧に対応した蓄電量に達すると、高圧バッテリ11の充放電を禁止する。高圧バッテリ11の蓄電量が、充電終止電圧に達した状態、または充電終止電圧を超えた状態を、過充電状態という。
 ECU30は、高圧バッテリ11の蓄電量が制御下限値よりも低くなると、放電を抑制する。また、ECU30は、高圧バッテリ11の蓄電量が、制御下限値よりも低い放電終止電圧に対応した蓄電量に達すると、高圧バッテリ11の充放電を禁止する。高圧バッテリ11の蓄電量が、放電終止電圧に達した状態、または放電終止電圧を超えた状態を、過放電状態という。
 高圧バッテリ11は、過充電状態、或いは過放電状態になると劣化する。そこで、ECU30は、監視ユニット31が取得した電圧、電流及び温度に関する情報に基づき、蓄電量を算出し、高圧バッテリ11に含まれる少なくとも一つの単電池が過充電又は過放電状態であると判別した場合には、システムメインリレーSMR-B及びシステムメインリレーSMR-Gをオフすることにより、高圧バッテリ11とインバータ13との間の電気的な接続を遮断する。
 ただし、ECU30は、高圧バッテリ11に含まれる少なくとも一つの単電池が過充電又は過放電状態であると判別した場合に、システムメインリレーSMR-B及びシステムメインリレーSMR-Gをオフせずに、インバータ13を制御することにより、高圧バッテリ11の充放電を禁止してもよい。これにより、車両1は、高圧バッテリ11を用いての走行が不可能となる走行不能状態になる。ECU30は、高圧バッテリ11から離間した位置に設けられている。ただし、ECU30及び高圧バッテリ11は、ユニット化されていてもよい。
 次に、図2の機能ブロック図を用いて、バッテリ処理装置の構成について説明する。同図において、実線の矢印は電力の供給方向を示しており、点線の矢印は信号の流れる方向を示している。バッテリ処理装置2は、バッテリ81、スイッチ素子82、コントローラ83、負荷84及び取得部85を含む。バッテリ81は、充放電可能であって、車輪を駆動するモータに供給される電力を蓄電する。ここで、図1及び図2を比較参照して、バッテリ81は、高圧バッテリ11に相当し、モータは、モータジェネレータMG2に相当する。スイッチ素子82は、バッテリ81から負荷84への放電を許容する第1の状態と、バッテリ81から負荷84への放電を許容しない第2の状態との間で切り替わる。ここで、図1及び図2を比較参照して、スイッチ素子82は、リレー15に相当する。
 コントローラ83は、バッテリ81の過充電状態において、放電許容信号を受信することにより、スイッチ素子82を前記第2の状態から前記第1の状態に切り替える放電許容処理を実行する。ただし、バッテリ81が過充電状態に至った際に、コントローラ83がスイッチ素子82を第1の状態から第2の状態に切り替えずに、インバータ13を制御することによって放電を禁止している場合には、コントローラ83は、受信した放電許容信号に基づきインバータ13に対して放電処理を行うコマンド信号を出力することにより、放電許容処理を実行してもよい。ここで、図1及び図2を比較参照して、コントローラ83は、ECU30に相当する。放電許容信号は、ディーラ等において図1の外部装置41を操作することにより生成される。
 コントローラ83は、放電許容処理を実行するとともに、電圧コンバータ12、インバータ13を制御することにより、バッテリ81の電力を負荷84に供給する。図1及び図2を比較参照して、負荷84は、モータジェネレータMG2であってもよい。この場合、モータジェネレータMG2の回転動作に応じてバッテリ81の蓄電量は低下する。電力消費量の大きなモータジェネレータMG2を負荷84として選択することにより、バッテリ81の放電処理を速やかに行うことができる。
 図1及び図2を比較参照して、負荷84は、エアコン23であってもよい。この場合、エアコン23による温度調節動作に応じてバッテリ81の蓄電量は低下する。電力消費量の大きなエアコン23を負荷84として選択することにより、バッテリ81の放電処理を速やかに行うことができる。図1及び図2を比較参照して、負荷84は、補機負荷24であってもよい。この場合、補機負荷24を構成するオーディオの音声出力動作及び映像出力動作、或いはライトの点灯動作に応じてバッテリ81の蓄電量は低下する。後述するように、負荷84としてモータジェネレータMG2を選択した場合、車両1をジャッキアップした状態でバッテリ81を放電処理させることが好ましい。なお、エアコン23又は補機負荷24が負荷84として選択されることにより、車両1をジャッキアップする手間を省くことができる。
 取得部85は、バッテリ81から蓄電量に関する情報を取得する。ここで、蓄電量に関する情報とは、バッテリ81の電圧、温度に関する情報のことである。図1及び図2を比較参照して、取得部85は、監視ユニット31に相当する。コントローラ83は、放電処理中における蓄電量の降下の度合いが所定値以下になった場合には、放電処理を抑制する。ここで、蓄電量の降下の度合いは、蓄電量の低下率、蓄電量の変化量、或いは蓄電量の降下と相関関係がある他のパラメータ(例えば、電圧)を含む。また、所定値は、予め設計的に定められた固定値、或いはバッテリの放電処理を行う際に算出した演算値であってもよい。所定値に関する情報は、メモリ32に記憶されており、そのデータ形式はマップ形式であってもよい。
 次に、図3のフローチャートを参照しながら、過充電状態に至った高圧バッテリ11の放電処理方法について説明する。なお、本フローチャートでは、負荷84としてモータジェネレータMG2が選択されているものとする。また、高圧バッテリ11が過充電状態に至ることにより、リレー15はオフされているものとする。
 本フローチャートは、過充電状態に至った高圧バッテリ11を搭載した車両1がジャッキアップされた状態で実行してもよい。ステップS101において、ECU30は、外部装置41を操作することによりONされた低圧バッテリ22から電源が供給されることにより、起動する。ステップS102において、ECU30は、外部装置41を操作することにより生成された放電許容信号を受信したか否かを判別し、ECU30が放電許容信号を受信した場合にはステップS103に進み、ECU30が放電許容信号を受信しなかった場合にはステップS101に戻る。なお、外部装置41はディーラ等の専門家が操作してもよいし、或いは、ユーザが所定のマニアルに従って操作してもよい。
 ステップS103において、ECU30は、受信した放電許容信号に基づきリレー15をオフからオンに切り替え、高圧バッテリ11の状態を、放電処理を許容する放電許容状態に設定する。ステップS104において、ECU30は、電圧コンバータ12及びインバータ13を制御することにより、モータジェネレータMG2を駆動する。車両1がジャッキアップされた状態で高圧バッテリ11を放電処理できるため、車両1の走行を停止した状態で高圧バッテリ11の蓄電量を取り扱い容易なレベルにまで引き下げることができる。
 ステップS105において、ECU30は、高圧バッテリ11の蓄電量の降下率が所定値以下であるか否かを判定し、蓄電量の降下率が所定値以下である場合にはステップS106に進み、蓄電量の降下率が所定値以下でない場合にはステップS104に戻り、モータジェネレータMG2の駆動を継続する。なお、高圧バッテリ11の蓄電量は制御下限値に近づくと放電が制限され、蓄電量の降下率が低下する。したがって、蓄電量の降下率に基づき、放電を継続するか否かを決定することにより、高圧バッテリ11の蓄電量が制御下限値よりも低くなることを抑制できる。
 ステップS106において、ECU30は、リレー15をオンからオフに切り換えて、高圧バッテリ11の放電処理を停止する。ステップS107において、ディーラ等の専門家は、車両から高圧バッテリ11を取り外し、新しい高圧バッテリ11に交換する。蓄電量が下がった状態で高圧バッテリ11を回収できるため、高圧バッテリ11の取り扱いが容易化される。また、過充電状態に至った高圧バッテリ11を車両に搭載した状態で放電処理することができる。
 本フローチャートは、ECU30がメモリ32から当該処理を行う処理プログラムを読み出すことにより実行してもよい。この場合、メモリ32は記憶装置として動作し、ECU30は、記憶装置に記憶された前記処理プログラムを図示しないメモリに読み出して、解読することにより、本フローチャートを実行する。処理プログラムは、予めメモリ32に記憶されていてもよいし、インターネットを介してダウンロードしてもよい。また、コンピュータ読取可能な記録媒体に記憶させ前記処理プログラムをインストールすることにより実装してもよい。
 (変形例1)
 上述の実施形態では、高圧バッテリ11の蓄電量の降下率が所定値以下となるまで放電処理を継続したが、本発明はこれに限られるものではない。例えば、蓄電量が所定値未満となったときに、高圧バッテリ11の放電処理を停止させるように制御してもよい。ここで、所定値とは、高圧バッテリ11に含まれる少なくとも一つの単電池の電圧が放電終止電圧に降下した時の高圧バッテリ11の蓄電量のことである。具体的には、ECU30は、高圧バッテリ11に含まれる少なくとも一つの単電池の電圧が放電終止電圧に降下したときに(つまり、高圧バッテリ11が過放電状態になったときに)、高圧バッテリ11の蓄電量が所定値未満に低下したとみなして、放電処理を停止する。
 この場合、ECU30は、リレー15を第1の状態から第2の状態に切り替えることにより放電処理を停止してもよいし、或いはリレー15を第2の状態に設定したまま高圧バッテリ11の放電処理を禁止する禁止信号をインバータ13に出力することにより放電処理を停止してもよい。また、ECU30は、放電時間を基準として、一定時間、モータジェネレータMG2等を駆動することにより放電処理を実行してもよい。当該一定時間は、予め定められた時間、或いは過充電状態に至った高圧バッテリ11の状態を調べることにより定められた時間であってもよい。
 (変形例2)
 上述の実施形態では、外部装置41を操作することにより放電許容信号を生成したが、本発明はこれに限られるものではない。例えば、車両要素が特殊な動作をすることにより放電許容信号を生成してもよい。ここで、特殊な操作とは、例えば、車両1のブレーキを所定時間以上踏みながら、アクセルの所定時間以上の踏み込みを所定回数以上行う等、通常の運転者が行わないような操作であってもよい。
 (変形例3)
 上述の実施形態では、ステップS103において、ECU30が高圧バッテリ11の状態を放電許容状態に設定した後、ステップS104において、ECU30が直ちに高圧バッテリ11に対する放電処理を実行したが、本発明はこれに限られるものではない。例えば、ECU30が高圧バッテリ11の状態を放電許容状態に設定した後、ディーラ等がアクセルを踏む込むことにより、放電処理を行う方法であってもよい。これにより、任意のタイミングで放電処理を実行することができる。
 つまり、本発明における「放電許容処理」とは、ECU30が、高圧バッテリ11の放電を許容する状態にバッテリ処理装置2全体を制御することを意味しており、実際に放電処理が行われるか否かについては問わない。したがって、例えば、放電許容処理が実行された後、特殊な操作をすることにより高圧バッテリ11の放電処理が行われても良い。ここで、特殊な操作とは、例えば、車両1のブレーキを所定時間以上踏みながら、アクセルの所定時間以上の踏み込みを所定回数以上行う等、通常の運転者が行わないような操作であってもよい。
 (実施形態2)
 上述の実施形態では、リレー15及び電圧コンバータ12を介して高圧バッテリ11に接続される負荷84に対して、高圧バッテリ11の電力を放電することにより蓄電量を下げる放電処理を実行したが、本実施形態では高圧バッテリ11に設けられる均等化回路に放電することにより放電処理を実行する。
 図4に示すように、高圧バッテリ11は、電気的に直列に接続された複数の単電池111を有する。単電池111は、上述の実施形態と同様であるため説明を省略する。また、高圧バッテリ11以外の基本構成は、実施形態1と同様である。
 各単電池111には、電圧監視IC(電圧センサ)42が電気的に並列に接続されており、電圧監視IC42は、単電池111の電圧を検出し、検出結果をECU30に出力する。電圧監視IC42は、対応する単電池111からの電力を受けて動作する。なお、電圧監視IC42は、図1の監視ユニット31に含まれている。
 また、各単電池111には、均等化回路43が電気的に並列に接続されており、均等化回路43は、複数の単電池111における電圧(又は蓄電量)を均等化させるために用いられる。均等化回路43の動作は、ECU30によって制御される。
 例えば、ECU30は、電圧監視IC42の出力に基づいて、特定の単電池111の電圧が他の単電池111の電圧よりも高いと判断したときには、特定の単電池111に対応した均等化回路43だけを動作させることにより、特定の単電池111だけを放電させる。これにより、特定の単電池111の電圧が低下し、他の単電池11の電圧と略等しくすることができる。
 均等化回路43の具体的な構成(例示)について、図5を用いて説明する。図5は、単電池111および均等化回路43の構成を示す回路図である。
 均等化回路43は、抵抗43aおよびスイッチ素子43bを有する。スイッチ素子43bは、ECU30からの制御信号に応じて、オンおよびオフの間で切り替わる。スイッチ素子43bがオフからオンに切り替われば、単電池111の電流が抵抗43aに流れることになり、単電池111の放電を行うことができる。これにより、各単電池111の電圧を調整して、複数の単電池111における電圧を均等化させることができる。
 このように均等化回路43は、複数の単電池111における電圧を均等化させるために設けられるが、本実施形態では、この均等化回路43を別の目的、つまり、過充電に至った高圧バッテリ11の蓄電量を下げて、高圧バッテリ11の処理を容易化する目的に兼用している。
 すなわち、ECU30は、高圧バッテリ11の蓄電量が高圧バッテリ11に対する充電が抑制される過充電状態において、放電許容信号を受信することにより、スイッチ素子43bをオフ(第2の状態)からオン(第1の状態)に切り替える放電許容処理を実行する。
 これにより、単電池111に蓄電された電力が抵抗43aに放電され、高圧バッテリ11の過充電状態を解消する放電処理を実行することができる。切り替え動作を行うスイッチ素子43bは、過充電と判別された特定の単電池111に対応するスイッチ素子43bのみであってもよいし、或いは全てのスイッチ素子43bであってもよい。
 なお、本実施形態では、各単電池111に対して均等化回路43や電圧監視IC42を設けているが、これに限るものではない。ここで、電気的に直列に接続された複数の単電池111によって1つの電池ブロックを構成するとともに、複数の電池ブロックを電気的に直列に接続することにより、組電池10を構成することができる。この場合には、各電池ブロックに対して、均等化回路43や電圧監視IC42を設けることができる。電圧監視IC42は、対応する電池ブロックの電圧を検出し、均等化回路43は、対応する電池ブロックの放電処理に用いられる。
(変形例4)
 上述の実施形態2では、単電池111に蓄電された電力を均等化回路43に放電することにより、高圧バッテリ11の過充電状態を解消する放電処理を実行したが、本発明はこれに限られるものではない。例えば、各単電池111を直列に接続する直列回路と、各単電池111を並列に接続する並列回路とを切り替える切り替え回路を設けるとともに、高圧バッテリ11の放電処理時に高圧バッテリ11の接続状態を直列回路から並列回路に切り替えることにより過充電状態を解消してもよい。並列回路の場合、過充電に至った単電池111から過充電に至っていない他の単電池111に循環電流が流れることにより、放電処理が実行され、過充電状態が解消される。これにより、高圧バッテリ11の処理を容易化することができる。本変形例の構成においては、過充電に至った単電池111がバッテリ81に相当し、循環電流により充電される単電池111が負荷84に相当し、前記切り替え回路がスイッチ素子82に相当する(図2参照)。
 (変形例5)
 上述の実施形態では、外部装置41において低圧バッテリ22をONした後、ECU30を起動することにより、放電処理を行ったが、本発明はこれら限られるものではなく、例えば、ダイアグ診断ツールを利用してもよい。この場合、外部装置41を用いて低圧バッテリ22をONし、この低圧バッテリ22から電力を供給することにより、ECU30を起動する。なお、過充電状態において、ECU30は、監視ユニット31から過充電信号を受信し、これをメモリ32に記憶しているものとする。続いて、外部装置41を操作することにより、ECU30によるダイアグ診断ツールを実行する。具体的には、ECU30は、外部装置41からの指令に基づき、ダイアグ診断を開始し、メモリ32に過充電信号を示す情報が記憶されていると判別した場合には、上記放電許容処理を実行する。この場合、メモリ32からECU30に送信される過充電信号を示す情報が、放電許容信号に相当する。
(変形例6)
 上述の実施形態では、高圧バッテリ11が充電終止電圧に達した状態、または充電終止電圧を超えた状態を、過充電状態と定義したが、充電終止電圧を設けずに、制御上限値に達した状態あるいは制御上限値よりも蓄電量が高くなった状態を過充電状態としてもよい。また、高圧バッテリ11の充放電が禁止された状態を過充電状態と定義してもよい。過充電状態の設定は、適宜変更してもよい。
 上述の実施形態では、高圧バッテリ11が放電終止電圧に達した状態、または放電終止電圧を超えた状態を、過放電状態と定義したが、放電終止電圧を設けずに、制御下限値に達した状態あるいは制御下限値よりも蓄電量が低くなった状態を過放電状態としてもよい。また、高圧バッテリ11の充放電が禁止された状態を過放電状態と定義してもよい。過放電状態の設定は、適宜変更してもよい。
1 車両  2 バッテリ処理装置  11 高圧バッテリ
12 電圧コンバータ  13 インバータ  14 エンジン
15 リレー  MG1(MG2) モータジェネレータ
D 減速機  P1 動力分割プラネタリーギヤ
P2 リダクションプラネタリーギヤ  21 DC/DCコンバータ
22 低圧バッテリ  23 エアコン  24 補機負荷
30 ECU  31 監視ユニット  32 メモリ
41 外部装置  42 電圧監視IC  43 均等化回路
81 バッテリ  82 スイッチ素子  83 コントローラ
84 負荷  85 取得部  111 単電池
 
 

Claims (12)

  1.  車両に搭載されたバッテリ処理装置であって、
     車輪を駆動するモータに供給される電力を蓄電する充放電可能なバッテリと、
     前記バッテリの蓄電量が前記バッテリに対する充電が抑制される過充電状態において、放電許容信号に基づき、前記バッテリから前記負荷への放電を許容しない第2の状態から前記バッテリから負荷への放電を許容する第1の状態に切り替える放電許容処理を実行するコントローラと、を有することを特徴とするバッテリ処理装置。
  2.  前記コントローラは、前記第1の状態と前記第2の状態との間で切り替わるスイッチ素子を制御することにより、前記放電許容処理を実行することを特徴とする請求項1に記載のバッテリ処理装置。
  3.  前記スイッチ素子は、リレーであり、
     前記コントローラは、前記放電許容信号を受信する前の前記過充電状態において、前記リレーを前記第2の状態に設定することにより、前記バッテリを用いた車両走行を禁止することを特徴とする請求項2に記載のバッテリ処理装置。
  4.  前記コントローラは、前記放電許容処理を実行するとともに、前記バッテリを放電させることを特徴とする請求項3に記載のバッテリ処理装置。
  5.  前記コントローラは、前記放電許容処理を実行した後に、車両のアクセルペダルの操作に応じて前記バッテリを放電させることを特徴とする請求項3に記載のバッテリ処理装置。
  6.  前記バッテリは、前記負荷としての抵抗と、前記スイッチ素子とを有する均等化回路を備え、
     前記コントローラにより前記スイッチ素子が前記第2の状態から前記第1の状態に切り替わると、前記バッテリの電力が前記均等化回路に放電されることを特徴とする請求項2に記載のバッテリ処理装置。
  7.  前記バッテリの蓄電量に関する情報を取得する取得部を有し、
     前記コントローラは、前記放電許容処理に基づく放電処理中に、蓄電量の降下量の度合いが所定値以下である場合には、放電量を抑制することを特徴とする請求項1乃至6のうちいずれか一つに記載のバッテリ処理装置。
  8.  前記コントローラは、前記放電許容処理に基づく放電処理中に、蓄電量が所定値未満となった場合には、放電を停止することを特徴とする請求項1乃至6のうちいずれか一つに記載のバッテリ処理装置。
  9.  前記コントローラは、前記バッテリの充電時に、前記バッテリの蓄電量が制御上限値よりも高くなると、充電を抑制し、前記バッテリの蓄電量が前記制御上限値よりも高い過充電状態に対応した蓄電量に達すると、充放電を禁止することを特徴とする請求項1乃至8のうちいずれか一つに記載のバッテリ処理装置。
  10.  請求項1乃至9のうちいずれか一つに記載のバッテリ処理装置を備えた車両。
  11.  車両に搭載されたバッテリであって、車輪を駆動するモータに供給される電力を蓄電する充放電可能な前記バッテリを処理するバッテリ処理方法であって、
     前記バッテリの蓄電量が前記バッテリに対する充電が抑制される過充電状態において、
     前記バッテリから前記負荷への放電を許容しない第2の状態から前記バッテリから負荷への放電を許容する第1の状態に切り替える放電許容処理を行うことを特徴とするバッテリ処理方法。
  12.  車両に搭載されたバッテリであって、車輪を駆動するモータに供給される電力を蓄電する充放電可能な前記バッテリを処理する処理動作をコンピュータに実行させるバッテリ処理プラグラムであって、
     前記バッテリの蓄電量が前記バッテリに対する充電が抑制される過充電状態において、
     前記バッテリから前記負荷への放電を許容しない第2の状態から前記バッテリから負荷への放電を許容する第1の状態に切り替える放電許容処理ステップを有することを特徴とするバッテリ処理プログラム。
     
     
PCT/JP2011/005399 2011-09-26 2011-09-26 バッテリの処理装置、車両、バッテリの処理方法及びバッテリの処理プログラム WO2013046250A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11873268.4A EP2762346A1 (en) 2011-09-26 2011-09-26 Battery processing device, vehicle, battery processing method, and battery processing program
PCT/JP2011/005399 WO2013046250A1 (ja) 2011-09-26 2011-09-26 バッテリの処理装置、車両、バッテリの処理方法及びバッテリの処理プログラム
US14/343,659 US20140232302A1 (en) 2011-09-26 2011-09-26 Battery processing apparatus, vehicle, battery processing method, and battery processing program
CN201180073566.1A CN103813928A (zh) 2011-09-26 2011-09-26 电池的处理装置、车辆、电池的处理方法及电池的处理程序

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/005399 WO2013046250A1 (ja) 2011-09-26 2011-09-26 バッテリの処理装置、車両、バッテリの処理方法及びバッテリの処理プログラム

Publications (1)

Publication Number Publication Date
WO2013046250A1 true WO2013046250A1 (ja) 2013-04-04

Family

ID=47994381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005399 WO2013046250A1 (ja) 2011-09-26 2011-09-26 バッテリの処理装置、車両、バッテリの処理方法及びバッテリの処理プログラム

Country Status (4)

Country Link
US (1) US20140232302A1 (ja)
EP (1) EP2762346A1 (ja)
CN (1) CN103813928A (ja)
WO (1) WO2013046250A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014225988A (ja) * 2013-05-16 2014-12-04 トヨタ自動車株式会社 充電装置
JP2015527854A (ja) * 2012-06-22 2015-09-17 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング バッテリのための安全構想
JP2018129209A (ja) * 2017-02-09 2018-08-16 株式会社ケーヒン 電源装置
JP2019208338A (ja) * 2018-05-30 2019-12-05 トヨタ自動車株式会社 電動車両
CN110549858A (zh) * 2018-06-01 2019-12-10 丰田自动车株式会社 车辆

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX365569B (es) * 2013-08-09 2019-06-07 Hitachi Automotive Systems Ltd Sistema de control de bateria y sistema de control de vehiculo.
CN105467324B (zh) * 2014-09-30 2020-03-03 株式会社杰士汤浅国际 电池劣化判定装置、电池劣化判定方法以及电池组
CN105984353B (zh) * 2015-02-09 2018-12-25 台达电子工业股份有限公司 电池电源整合装置以及具有该装置的油电混合车电源***
KR20170060499A (ko) * 2015-11-24 2017-06-01 현대자동차주식회사 배터리의 출력을 제어하는 방법
US11018380B2 (en) 2016-05-09 2021-05-25 Spiers New Technologies, Inc. Reconditioned battery pack and method of making same
KR20180005008A (ko) * 2016-07-05 2018-01-15 현대자동차주식회사 환경차량용 배터리 과충전 방지장치
KR101866063B1 (ko) * 2016-10-07 2018-06-08 현대자동차주식회사 보조배터리의 릴레이 제어 시스템 및 그 방법
KR102123048B1 (ko) * 2017-01-10 2020-06-15 주식회사 엘지화학 에너지 절약 및 빠른 셀 밸런싱이 가능한 충전 제어 장치 및 방법
JP2018117438A (ja) * 2017-01-17 2018-07-26 太陽誘電株式会社 リチウムイオンキャパシタを備えた電源モジュール
US20180233929A1 (en) * 2017-02-13 2018-08-16 Spiers New Technologies, Inc. Battery to battery charger using asymmetric batteries
KR20180133018A (ko) * 2017-06-02 2018-12-13 현대자동차주식회사 차량용 배터리 시스템 및 제어방법
JP7284710B2 (ja) * 2017-12-25 2023-05-31 三洋電機株式会社 電源装置及び電源装置を備える車両並びに蓄電装置
JP6965830B2 (ja) * 2018-05-24 2021-11-10 トヨタ自動車株式会社 車両用電源装置
JP6961548B2 (ja) * 2018-07-19 2021-11-05 日立建機株式会社 建設機械
KR102443667B1 (ko) * 2018-10-26 2022-09-14 주식회사 엘지에너지솔루션 밸런싱 장치, 및 그것을 포함하는 배터리 관리 시스템과 배터리팩
JP7252807B2 (ja) * 2019-03-27 2023-04-05 株式会社Subaru 電源システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205304A (ja) 1995-01-27 1996-08-09 Toyota Motor Corp 電気自動車用バッテリ放電装置
JP2000152419A (ja) * 1998-11-17 2000-05-30 Toyota Motor Corp 電動車両用電源制御装置
JP2004319304A (ja) 2003-04-17 2004-11-11 Shin Kobe Electric Mach Co Ltd 組電池
JP2006067688A (ja) * 2004-08-26 2006-03-09 Nec Lamilion Energy Ltd 車載用電池制御装置および車載用電池制御方法
JP2007212298A (ja) * 2006-02-09 2007-08-23 Toyota Motor Corp 二次電池の残存容量推定装置
JP2008255913A (ja) 2007-04-06 2008-10-23 Nissan Motor Co Ltd 車両の発電制御装置
JP2011130551A (ja) * 2009-12-16 2011-06-30 Sanyo Electric Co Ltd 電源装置及びこれを備える車両

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065486C (zh) * 1996-05-24 2001-05-09 日野自动车工业株式会社 车载电池的控制装置
US6882129B2 (en) * 2003-03-26 2005-04-19 General Motors Corporation Battery pack for a battery-powered vehicle
US7944169B2 (en) * 2004-03-31 2011-05-17 Tsukasa Shirai Solar-panel apparatus for a vehicle
US20070216360A1 (en) * 2006-03-15 2007-09-20 Taiken Matsui Battery control system and method
US7872443B2 (en) * 2007-02-23 2011-01-18 Ward Thomas A Current limiting parallel battery charging system to enable plug-in or solar power to supplement regenerative braking in hybrid or electric vehicle
KR20100033509A (ko) * 2007-06-08 2010-03-30 파나소닉 주식회사 전원 시스템 및 전지 팩의 제어 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205304A (ja) 1995-01-27 1996-08-09 Toyota Motor Corp 電気自動車用バッテリ放電装置
JP2000152419A (ja) * 1998-11-17 2000-05-30 Toyota Motor Corp 電動車両用電源制御装置
JP2004319304A (ja) 2003-04-17 2004-11-11 Shin Kobe Electric Mach Co Ltd 組電池
JP2006067688A (ja) * 2004-08-26 2006-03-09 Nec Lamilion Energy Ltd 車載用電池制御装置および車載用電池制御方法
JP2007212298A (ja) * 2006-02-09 2007-08-23 Toyota Motor Corp 二次電池の残存容量推定装置
JP2008255913A (ja) 2007-04-06 2008-10-23 Nissan Motor Co Ltd 車両の発電制御装置
JP2011130551A (ja) * 2009-12-16 2011-06-30 Sanyo Electric Co Ltd 電源装置及びこれを備える車両

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015527854A (ja) * 2012-06-22 2015-09-17 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング バッテリのための安全構想
JP2014225988A (ja) * 2013-05-16 2014-12-04 トヨタ自動車株式会社 充電装置
JP2018129209A (ja) * 2017-02-09 2018-08-16 株式会社ケーヒン 電源装置
JP2019208338A (ja) * 2018-05-30 2019-12-05 トヨタ自動車株式会社 電動車両
CN110549903A (zh) * 2018-05-30 2019-12-10 丰田自动车株式会社 电动车辆
JP7187822B2 (ja) 2018-05-30 2022-12-13 トヨタ自動車株式会社 電動車両
US11535119B2 (en) 2018-05-30 2022-12-27 Toyota Jidosha Kabushiki Kaisha Control of the state of charge of an electrically powered vehicle when traveling on a hill
CN110549903B (zh) * 2018-05-30 2023-03-07 丰田自动车株式会社 电动车辆
CN110549858A (zh) * 2018-06-01 2019-12-10 丰田自动车株式会社 车辆
JP2019213319A (ja) * 2018-06-01 2019-12-12 トヨタ自動車株式会社 車両
JP7047603B2 (ja) 2018-06-01 2022-04-05 トヨタ自動車株式会社 車両
CN110549858B (zh) * 2018-06-01 2023-01-31 丰田自动车株式会社 车辆

Also Published As

Publication number Publication date
EP2762346A1 (en) 2014-08-06
US20140232302A1 (en) 2014-08-21
CN103813928A (zh) 2014-05-21

Similar Documents

Publication Publication Date Title
WO2013046250A1 (ja) バッテリの処理装置、車両、バッテリの処理方法及びバッテリの処理プログラム
CN110014996B (zh) 电动车辆及电动车辆的控制方法
KR101863737B1 (ko) 축전 시스템
JP5867483B2 (ja) 蓄電システム
US7816804B2 (en) Power supply device and control method of the power supply device
JP5201273B2 (ja) 電源管理装置
JP5729401B2 (ja) 電動車両
US10377246B2 (en) Vehicle power source
JP5835136B2 (ja) 車載充電制御装置
US20100305793A1 (en) Method for starting a hybrid electric vehicle
JP5783129B2 (ja) 電動車両
JP2004320877A (ja) 駆動装置用の電力装置およびこれを備える自動車並びに電力装置の制御方法
JP2010213503A (ja) 電力供給装置および方法
JP2009296820A (ja) 二次電池の充電制御装置および充電制御方法ならびに電動車両
JP2013110912A (ja) 蓄電システム及び蓄電システムを搭載した車両の制御装置
JP5141417B2 (ja) 蓄電装置充放電制御システム
US9735454B2 (en) Apparatus for controlling lithium-ion battery and method of recovering lithium-ion battery
JP2012050281A (ja) 電動車両のバッテリ充電システム
JP2018098954A (ja) 電動車両の制御装置
JP5092903B2 (ja) 車両用電池の充放電制御装置
JP2014087243A (ja) 蓄電システム
JP2000217206A (ja) 電気自動車の充電制御装置
JP6269434B2 (ja) 車両
JP6333161B2 (ja) 電動車両
JP7332287B2 (ja) 車載電気システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013535623

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14343659

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011873268

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE