WO2013042837A1 - 방식성 및 pH 완충성이 향상된 부동액 또는 냉각액 조성물 - Google Patents

방식성 및 pH 완충성이 향상된 부동액 또는 냉각액 조성물 Download PDF

Info

Publication number
WO2013042837A1
WO2013042837A1 PCT/KR2012/000753 KR2012000753W WO2013042837A1 WO 2013042837 A1 WO2013042837 A1 WO 2013042837A1 KR 2012000753 W KR2012000753 W KR 2012000753W WO 2013042837 A1 WO2013042837 A1 WO 2013042837A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composition
corrosion
present
antifreeze
Prior art date
Application number
PCT/KR2012/000753
Other languages
English (en)
French (fr)
Inventor
하영주
조창열
최동열
Original Assignee
극동제연공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 극동제연공업 주식회사 filed Critical 극동제연공업 주식회사
Priority to US14/346,716 priority Critical patent/US9193896B2/en
Priority to CN201280045995.2A priority patent/CN103842467B/zh
Priority to EP12832969.5A priority patent/EP2759582B1/en
Publication of WO2013042837A1 publication Critical patent/WO2013042837A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/20Antifreeze additives therefor, e.g. for radiator liquids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids

Definitions

  • the present invention (a) cyclo nucleic acid dicarboxylic acid (cyclo hexane dicarboxylic acid); (b) Azole or Thiazole inhibitors; And (c) an antifreeze or shell liquid composition comprising a metal of Group 2, Group 5, Group 6 or Group 7 elements.
  • the composition is mainly composed of carboxylic acid-type additives and organic substances.
  • Aliphatic polybasic acid surfactants Japanese Patent Laid-Open Publication No. 2002-38137
  • dicarboxylic acids or tricarboxylic acids having an alkyl group of C 10 _C 20 Japanese Patent Laid-Open Publication No. 2000-219981
  • Flavone derivatives Japanese Patent Laid-Open No. 2001-98258
  • polymaleic acid, polyacrylic acid or copolymers thereof Japanese Patent Laid-Open No. 2001-279235
  • lithium compounds Japanese Patent Laid-Open No. 9-263976
  • the combination of carboxylic acid and organic additive alone can not have a long-term anticorrosion durability at low concentrations of less than 30% concentration, additionally using phosphate or silicate (US Pat. Nos. 4,873,011, 5,422,026, 4,598,205).
  • No. 4, No. 65, No. 689, No. 4,647, 392, No. 5,064,552) additives are used as supplements, but the phosphate and silicate additives have the disadvantages of fast depletion rate and poor stability.
  • Phosphate additives can react with these ions when they are present in antifreeze or coolant lime water to form calcium phosphate and magnesium phosphate that do not dissolve in water, causing clogging due to scale and corrosion.
  • the present inventors made diligent research efforts to develop antifreeze or coolant having excellent corrosion resistance at low concentration and excellent pH buffering at high temperature. Specifically, efforts were made to solve the problem of sharply falling corrosion resistance at low concentrations without the use of phosphates and silicates, and to prevent rapid pH reduction due to long-term thermal oxidation at high temperatures. As a result, the present inventors have anticorrosive and complete pH when using a composition comprising a cyclo nucleic acid dicarboxylic acid, an Azole or Thiazole-based inhibitor and a metal of Group 2, 5, 6 or 7 elements. The present invention has been completed by identifying that it has an excellent effect on sex. It is therefore an object of the present invention to provide an antifreeze or coolant composition. Other objects and advantages of the present invention will become apparent from the following detailed description, claims and drawings.
  • the present invention is ( a ) cyclo nucleic acid dicarboxylic acid (cyclo hexane dicarboxylic acid); (b) Azole or Thiazole-based inhibitors; And ( c ) an antifreeze or nucleus liquid composition comprising a metal of Group 2, Group 5, Group 6 or Group 7 elements.
  • the present inventors made diligent research efforts to develop antifreeze or shell liquid having excellent corrosion resistance at low concentration and excellent pH stiffness at high temperature. Specifically, efforts have been made to solve the problem of rapidly decreasing corrosion resistance at low concentrations without the use of phosphates and silicates, and to prevent a sudden decrease in pH due to prolonged thermal oxidation at high temperatures.
  • the inventors of the present invention have anticorrosive and complete pH when using a composition comprising a cyclo nucleic acid dicarboxylic acid, an Azole or thiazole-based inhibitor and a metal of Group 2, 5, 6 or 7 elements. It was found to have an excellent effect on sex.
  • compositions of the present invention comprise (a) cyclo nucleic acid dicarboxylic acids; (b) azole or thiazole-based inhibitors; And (c) metals of Group 2, 5, 6 or 7 elements.
  • the content of the components is not particularly limited, preferably 5-50 parts by weight of an azole or thiazole-based inhibitor and metals of Group 2, 5, 6 or 7 elements with respect to 100 parts by weight of the cyclo nucleic acid dicarboxylic acid. 5 parts by weight.
  • the composition of the present invention comprises glycols which are commonly used as cryoprotectants.
  • the content of the components in the composition of the present invention comprising glycols is preferably 70-98% by weight (more preferably 85-98% by weight ) of glycols, 0.1-20% by weight of cyclo nucleic acid dicarboxylic acid (more Preferably 0.1-14.0 weight%), 0.01-10 weight% of azole or thiazole-based inhibitors (more preferably 0.01-1.0 weight%) and metals of elements of Group 2, 5, 6 or 7 0.6 weight 3 ⁇ 4.
  • Glycols used as a cryoprotectant in the composition of the present invention serves to prevent the freezing and freezing of the engine and the shell, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, glycerin, triethylene glycol, tripropylene
  • One kind or two or more kinds thereof are used from the group consisting of glycol, 1, 3-butylene glycol and nuylene glycol.
  • the use range of the glycols is preferably 70-98% by weight, More preferably 85-98% by weight.
  • the content of the glycols is less than 70% by weight may cause the phenomenon of freezing and freezing of the engine and the indentation device at a temperature below zero in winter, the boiling water of the cooling water may occur in the engine at a high outside temperature in summer.
  • it exceeds 98% by weight it may be difficult to play a role of corrosion protection for a long time due to the lack of a content of a corrosion inhibitor.
  • the cyclonucleic acid dicarboxylic acid used in the composition of the present invention as an anti-corrosion agent of aluminum and iron materials serves to protect various metal parts from corrosion in the system for a long time
  • 1,4—cyclo One or two or more kinds of mixtures from the group consisting of nucleic acid dicarboxylic acid, 1,3-cyclo nucleic acid dicarboxylic acid and 1, 2-cyclo nucleic acid dicarboxylic acid are used.
  • the use range of the cyclo nucleic acid dicarboxylic acid included in the composition of the present invention is preferably 0.1-20% by weight, more preferably 0.1-14.0% by weight).
  • the content of the cyclo nucleic acid dicarboxylic acid is less than 0.1% by weight, the amount of use is small, so that the anticorrosive effect on the parts such as aluminum and iron-based materials cannot be expected, and when it exceeds 20% by weight, It may lead to poor stability, excessive dissolution time and poor economics.
  • the azole (Azole) or thiazole-based inhibitor used in the composition of the present invention as a corrosion inhibitor for materials such as copper and brass is used to prevent corrosion of the copper alloy material in the corner system.
  • 1 type from the group consisting of tolyltriazole, benzotriazole, 4-phenyl-1,2,3-triazole, 2-naphthotriazole, 4-nitrobenzotriazole and 2-mercaptobenzothiazole
  • two or more mixtures are selected, more preferably one or two or more mixtures are selected from the group consisting of ryltriazole or benzotriazole.
  • the use range of the azole or thiazole-based inhibitor included in the composition of the present invention is preferably 0.01-10.0% by weight, more preferably 0.01-1.0 weight 3 ⁇ 4. If the content of the azole or thiazole-based inhibitor is less than 0.01% by weight can not play a role of corrosion protection for parts made of copper and brass, if it exceeds 10.0% by weight it is economical and may cause corrosion to the iron-based material .
  • the element used to increase the anticorrosiveness at low concentrations is an inorganic element ion exhibits a synergistic effect when used in combination with cyclo nucleic acid dicarboxylic acid.
  • the inorganic element ion is preferably a Group 2, 5, 6 or 7 element, more preferably barium, strontium, magnesium, vanadium, niobium, molybdenum, chromium and manganese, and even more preferably a Group 2 element.
  • Phosphorus barium, strontium, magnesium; And group 7 elements manganese, most preferably barium, strontium and manganese.
  • the preferred range of use is 0.001-0.6% by weight, and less than 0.001% by weight 3 ⁇ 4>, the use amount is small, and anticorrosive effect cannot be expected. When it exceeds 0.6% by weight, the stability of the liquid is lowered and the iron and solder materials Corrosion may cause adverse effects on long term corrosion protection.
  • the alkali metal hydroxide used to adjust the pH range to a range of 7-9 so that the composition of the present invention has excellent pH buffering property at high temperature is potassium hydroxide or sodium hydroxide, more preferably potassium hydroxide.
  • the above-mentioned alkali metal hydroxide is included in an amount of 0.5-4.5 weight 3 ⁇ 4 with respect to the total weight of the composition, more preferably 1.0-4.0 weight 3 ⁇ 4>, most preferably 1.5-3.5 weight%.
  • it may be prepared by adding an antifoaming agent, a dye and ion-exchanged water.
  • the greatest feature of the present invention is the cyclonucleic acid dicarboxylic acid, azole or thiazole-based inhibitors and group 2, 5, 6 or 7 contained in the antifreeze or coolant composition of the present invention.
  • the group elements have solved the problem of a sharp drop in corrosion resistance at low concentrations and prevented a sharp decrease in pH due to prolonged thermal oxidation at high temperatures.
  • the present invention provides an antifreeze or shell liquid composition
  • Phosphates and silicates which are organic additives added to carboxylic acid, which are generally anticorrosive, have a fast depletion rate and poor stability, which may cause scale blockage and corrosion and overheating due to blocking the radiator core.
  • the composition of the present invention does not include an organic additive and improves corrosion resistance at low concentration by using inorganic element ions and improves thermal oxidation stability at high temperature, thereby improving pH stiffness. .
  • composition of the present invention maintains anti-corrosion performance even after long-term operation of 200,000 km or more, and the appearance inside the radiator tube made of water pump impeller and aluminum is good, preventing corrosion of the internal metal parts even during long-term vehicle operation. It is excellent in the effect and can use a long life antifreeze or a shell liquid composition.
  • Example 1 is an image showing the appearance of the internal parts after Example 20 driving test vehicle 200,000 km in 10 test vehicles.
  • glycol eg, ethylene glycol
  • ethylene glycol ethylene glycol
  • Cyclohexane dicarboxylic acid cyclohexane dicarboxylic acid
  • azole azole
  • Thiazole thiazole
  • an important element of the present invention is 0.02-0.04% by weight of inorganic element ions in combination with cyclohexanedicarboxylic acid [strontium (Tokyo Chemical Industries, Japan), manganese (BASF) , Germany), barium (Sigma-Aldrich, Canada)].
  • cyclohexanedicarboxylic acid cyclohexanedicarboxylic acid
  • 0.5-4.0% by weight of potassium hydroxide was used in order to have pH completeness.
  • Specific compositions of Examples and Comparative Examples of the present invention weigh the contents of the ingredients shown in the following Table 1 to the balance and put the ethylene glycol in the container and heated to a temperature of 40-60 ° C. Prepared by stirring until
  • the metal corrosiveness test was performed using the combination water specified in KS M2142 metal corrosiveness test (a solution of 148 rag of anhydrous sodium sulfate, 165 rag of sodium chloride, and 138 rag of sodium bicarbonate in distilled water 1 «). Place a set of solution 750 and one metal test specimen in a frame beaker with 30% and 20% mixed solution, respectively, and attach a thermometer, vent pipe and tube to the heating device, and then dry air at a flow rate of 100 ⁇ 10 per minute. The metal corrosion was evaluated for 336 hours and 672 hours at an antifreeze temperature of 98 ⁇ 2 ° C. After the test was finished, the specimens were pickled, and the weight change was measured to 0.1 nig. The results are shown in Table 2 below:
  • the composition was distilled in distilled water so that the concentration of the composition was 20% and 25%, respectively, and sodium chloride 165 rag was dissolved.
  • 500 m £ was aliquoted and injected into the apparatus in which the heat-resistant glass cell was assembled using an O-ring between the specimen and the upper assembly plate. Heated with 150 Kpa of compressed air, the final pressure was 193 Kpa when the test temperature reached 135 ⁇ 2 ° C and maintained at 168 ⁇ 2 hours and 336 ⁇ 2 hours, respectively.
  • the specimens were treated to measure the weight of the specimens to 0.1 rag. The results are shown in Table 3 below.
  • Cyclic corrosion test was performed by circulating three sets of metal specimens using the combination water specified in KS M2142 metal corrosion test (solution dissolved in distilled water 148 mg anhydrous sodium sulfate, 165 rag sodium chloride and 138 rag sodium bicarbonate). In the tank, the radiator, the heater core and the water pump were attached and the flow rate was 60 i / min. 1,000 hours and 2,000 hours were performed respectively.
  • KS M2142 Metal Parts Using aluminum combination and cast iron at a low concentration of 203 ⁇ 4 below the normal use concentration using the combination water specified in the dietary test (a solution of 148 rag of anhydrous sodium sulfate, 165 mg of sodium chloride, and 138 mg of sodium bicarbonate in 1 £ distilled water).
  • test When the test piece was opened, the test was conducted for 144 hours with a heating surface temperature of 140 ° C and a heating block temperature of 215 ° C at a flow rate of 300 m / sec, and a pressure of 1.2 Kpa to the system.
  • the test results were pickled on each heat transfer specimen, weighed in 0.1 rag, and the results are shown in Table 7 below:
  • the antifreeze or coolant composition Example 5 of the present invention was mixed with tap water to be 50% so that the evaluation can be made at the actual concentration of use of the vehicle.
  • General properties of the alkalinity change rate (%) were measured.
  • the long-term durability was evaluated by measuring the concentration change of metal ions such as Al and Zn and evaluating the corrosion ion dissolution of the antifreeze.
  • antifreeze was taken from the vehicle after the end of the actual vehicle, and the metal corrosion test and the aluminum heat-resistant corrosion test were conducted to evaluate whether the antifreeze maintains the anti-corrosion durability even after 200,000 km. It was set as a test item. After driving more than 200,000 km, the dismantling device of the test vehicle was disassembled, and the durability was evaluated by observing the corrosion degree of each part. The 200,000 km actual vehicle test results are shown in Table 8 below:
  • both the water pump impeller and the radiator tube made of aluminum are excellent in appearance, and thus, the corrosion protection effect on the internal metal parts is excellent even in long-term actual vehicle driving.
  • the composition of the present invention was excellent in corrosion protection against metals at low concentrations when cyclo nucleic acid dicarboxylic acid and inorganic element ions (eg strontium, barium and manganese) were used at the same time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

본 발명은 부동액 또는 냉각액 조성물에 관한 것이다. 본 발명은 사이클로 헥산 디카복실산(cyclo hexane dicarboxylic acid); (b) 아졸(Azole) 또는 티아졸(Thiazole)계 억제제; 및 (c) 2족, 5족, 6족 또는 7족 원소의 금속을 포함하는 부동액 또는 냉각액 조성물을 제공한다. 일반적으로 방식제인 카복실산에 첨가되는 유기물 첨가제인 인산염과 규산염은 고갈속도가 빠르고 안정성이 좋지 않아 오히려 스케일로 인한 막힘 현상 및 부식현상 및 라디에이터 코어를 막음으로 인한 오버히트 현상을 일으킬 수 있으며, 알루미늄과 철 재질의 부품에 대해 장기간 방식 어렵지만, 본 발명의 조성물은 유기물 첨가제를 포함하지 않아 저농도에서 방식성을 높이고, 고온에서의 열산화 안정성이 향상되어 pH 완충성을 높였다. 본 발명의 조성물은 20만 km 이상 장기간 운행한 후에도 금속부식 방지성능이 유지되고, 워터펌프 임펠러 및 알루미늄으로 이루어진 라디에이터 튜브 내의 외관 모두 양호하여 장기간의 실차 주행에서도 내부 금속 부품에 대한 부식 방지 효과가 뛰어나 장수명 부동액 또는 냉각액 조성물 이용할 수 있다.

Description

【명세서】
【발명의 명칭】
방식성 및 pH 완층성이 향상된 부동액 또는 넁각액 조성물
【기술분야】
본 발명은 (a) 사이클로 핵산 디카복실산 (cyclo hexane dicarboxylic acid); (b) 아졸 (Azole) 또는 티아졸 (Thiazole)계 억제제; 및 (c) 2 족, 5족, 6족 또는 7족 원소의 금속을 포함하는 부동액 또는 넁각액 조성물에 관한 것이다.
【배경기술】
일반적으로 부동액 또는 넁각액 조성물로서 에틸렌글리콜 또는 프로필렌글리콜을 주재로 하여 알루미늄과 철계 부품의 부식을 방지하기 위하여 카복실산 형태의 첨가제와 유기물을 주성분으로 하여 조성물을 구성하고 있다. 이러한 알루미늄과 철계 부품의 부식의 방지제로 지방족 다염기산형 계면활성제 (일본공개특허 제 2002-38137호), C10_C20의 알킬기를 가진 디카복실산 또는 트리카복실산 (일본공개특허 제 2000-219981 호), 플라본 유도체 (일본공개특허 제 2001-98258 호), 폴리말레인산, 폴리아크릴산 또는 그 단위체의 공중합체 (일본공개특허 제 2001-279235 호) 또는 리튬화합물 (일본공개특허 평 제 9-263976호) 등이 보고되고 있다.
한편, 카복실산과 유기물 첨가제의 조합만으로는 30% 농도 이하의 저농도에서 장기간 방식내구성을 가질 수 없으므로 추가적으로 인산염이나 규산염사용 (미국특허 제 4,873,011 호, 제 5,422,026 호, 제 4,598,205 호, 제 4, 65그 689 호, 제 4,647,392 호, 제 5,064,552 호) 첨가제를 보완제로 사용하고 있으나, 인산염과 규산염 첨가제는 고갈속도가 빠르고 안정성이 나쁜 단점을 가지고 있다. 인산염 첨가제는 부동액 또는 냉각액 회석수에 함유된 칼슴 및 마그네슘 이온이 존재할 경우 이 이온들과 서로 반응하여 물에 용해되지 않는 인산칼슘 및 인산마그네슘을 형성하여 스케일로 인한 막힘 현상 및 부식현상을 일으킬 수 있으며 알루미늄과 철 재질의 부품에 대해 장기간 방식을 어렵게 하는 원인이 되기도 한다. 규산염은 안정성이 떨어져 쉽게 겔화되거나 Si02 의 연마성 입자를 생성하여 방식성을 잃고 워터펌프의 메카니컬 씰의 마모를 촉진하여 누액을 일으키거나 침전으로 인해 라디에이터 코어를 막아 오버히트 현상을 일으키는 문제점이 있다. 본 명세서 전체에 걸쳐 다수의 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다. 【발명의 내용】
【해결하고자 하는 과제】
본 발명자들은 저농도에서 방식성이 우수하고, 고온에서 pH 완충성이 우수한 부동액 또는 냉각액을 개발하고자 예의 연구 노력하였다. 구체적으로는 인산염과 규산염을 사용하지 않고도 저농도에서 방식성이 급격히 떨어지는 문제점을 해결하고자 노력하였고, 고온에서 장기간 열산화에 의한 급격한 pH 감소를 방지하고자 노력하였다. 그 결과 본 발명자들은 사이클로 핵산 디카복실산, 아졸 (Azole) 또는 티아졸 (Thiazole)계 억제제 및 2 족, 5 족, 6 족 또는 7 족 원소의 금속을 포함하는 조성물을 사용하는 경우 방식성 및 pH 완층성에 탁월한 효과를 나타내는 것을 규명함으로써, 본 발명올 완성하게 되었다. 따라서 본 발명의 목적은 부동액 또는 냉각액 조성물 제공하는 데 있다. 본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
【과제 해결 수단】
본 발명의 일 양태에 따르면 본 발명은 (a) 사이클로 핵산 디카복실산 (cyclo hexane dicarboxylic acid); (b) 아졸 (Azole) 또는 티아졸 (Thiazole)계 억제제; 및 (c) 2 족, 5 족, 6 족 또는 7 족 원소의 금속을 포함하는 부동액 또는 넁각액 조성물을 제공한다. 본 발명자들은 저농도에서 방식성이 우수하고, 고온에서 pH 완층성이 우수한 부동액 또는 넁각액을 개발하고자 예의 연구 노력하였다. 구체적으로는 인산염과 규산염을 사용하지 않고도 저농도에서 방식성이 급격히 떨어지는 문제점올 해결하고자 노력하였고, 고온에서 장기간 열산화에 의한 급격한 pH 감소를 방지하고자 노력하였다. 그 결과 본 발명자들은 사이클로 핵산 디카복실산, 아졸 (Azole) 또는 티아졸 (Thiazole)계 억제제 및 2 족, 5 족, 6 족 또는 7 족 원소의 금속을 포함하는 조성물을 사용하는 경우 방식성 및 pH 완층성에 탁월한 효과를 나타내는 것을 규명하였다.
본 발명의 조성물은 (a) 사이클로 핵산 디카복실산; (b) 아졸 또는 티아졸계 억제제; 및 (c) 2 족, 5 족, 6 족 또는 7 족 원소의 금속을 포함한다. 상기 성분들의 함량은 특별하게 제한되지 않으며, 바람직하게는 사이클로 핵산 디카복실산 100 중량부에 대하여 아졸 또는 티아졸계 억제제 5-50 중량부 및 2 족, 5 족, 6 족 또는 7 족 원소의 금속 0.5-5 중량부를 포함한다.
본 발명의 조성물은 통상적으로 동결방지제로 사용되는 글리콜류를 포함한다 . 글리콜류를 포함하는 본 발명의 조성물에서 성분들의 함량은, 바람직하게는 글리콜류 70-98 중량 % (보다 바람직하게는, 85-98 중량¾;), 사이클로 핵산 디카복실산 0.1-20 중량 % (보다 바람직하게는, 0.1—14.0 중량 %), 아졸 또는 티아졸계 억제제 0.01-10 중량 % (보다 바람직하게는, 0.01-1.0 중량 %) 및 2 족, 5 족, 6 족 또는 7 족 원소의 금속 0.001-0.6 중량 ¾을 포함한다.
본 발명의 조성물에 동결방지제로 사용되는 글리콜류는 엔진 및 넁각장치의 동결 및 동파를 방지하는 역할을 하며, 에틸렌글리콜, 프로필렌글리콜, 디에틸렌글리콜, 디프로필렌글리콜, 글리세린, 트리에틸렌글리콜, 트리프로필렌글리콜, 1, 3-부틸렌글리콜 및 핵실렌글리콜로 구성된 군으로부터 1 종 또는 2 종 이상의 흔합물올 사용한다. 상기 글리콜류의 사용 범위는 바람직하게는 70-98 중량 %이고, 보다 바람직하게는 85-98 중량 % 이다. 상기 글리콜류의 함량이 70 중량 % 미만인 경우에는 겨울철 영하의 기온에서 엔진 및 넁각장치의 동결 및 동파의 현상을 일으킬 수 있으며, 여름철 높은 외기의 온도에서는 엔진에서 냉각수의 끓어 넘치는 현상이 발생할 수 있다. 또한 98 중량 %를 초과할 때는 부식방지제의 함량 부족으로 장기간 부식방지 역할을 하기 어려워 질 수 있다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 조성물에 알루미늄과 철계 재질의 부식방지제로 사용하는 사이클로 핵산 디카복실산은 넁각 시스템 내의 각종 금속 부품류를 부식으로부터 장기간 보호하는 역할을 하며, 1,4—사이클로 핵산 디카복실산, 1,3-사이클로 핵산 디카복실산 및 1, 2-사이클로 핵산 디카복실산으로 구성된 군으로부터 1 종 또는 2 종 이상의 흔합물을 사용한다. 본 발명의 조성물에 포함되는 상기 사이클로 핵산 디카복실산의 사용 범위는 바람직하게는 0.1-20 중량 % 이고, 보다 바람직하게는 0.1-14.0 중량)이다. 상기 사이클로 핵산 디카복실산의 함량이 0.1 중량 % 미만인 경우에는 사용 함량이 적어 알루미늄과 철계 재질 등의 부품에 대해 층분한 방식효과를 기대할 수가 없으며, 20 중량 %를 초과한 경우에는 과량 사용으로 인하여 액의 안정성이 떨어지고 용해시간의 과다 소요와 경제성이 떨어질 수가 있다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 조성물에 동과 황동 등의 재질에 대한 부식방지제로 사용하는 아졸 (Azole) 또는 티아졸 (Thiazole)계 억제제는 넁각시스템 내의 구리 합금재질에 대한 부식방지 역할을 하며 토릴트리아졸, 벤조트리아졸, 4-페닐 -1,2,3-트리아졸, 2-나프토트리아졸, 4-니트로벤조트리아졸 및 2-메르캅토벤조티아졸로 구성된 군으로부터 1 종 또는 2 종 이상의 흔합물이 선택되며, 보다 바람직하게는 를릴트리아졸 또는 벤조트리아졸로 구성된 군으로부터 1 종 또는 2 종 이상의 흔합물이 선택된다. 본 발명의 조성물에 포함되는 상기 아졸 또는 티아졸계 억제제의 사용 범위는 바람직하게는 0.01-10.0 중량 %이며, 보다 바람직하게는 0.01-1.0 중량 ¾이다. 상기 아졸 또는 티아졸계 억제제의 함량이 0.01 중량 % 미만인 경우에는 동 및 황동 재질의 부품에 대한 부식방지 역할을 할 수 없으며, 10.0 중량 % 초과한 경우에는 경제성이 떨어지며 철계 재질에 대한 부식을 일으킬 수 있다. 본 발명의 바람직한 구현예에 따르면, 저농도에서 방식성을 높이기 위해 사용된 원소는 무기원소 이온으로 사이클로 핵산 디카복실산과 병행하여 사용 시 상승효과가 나타난다. 무기원소 이온은 바람직하게는 2족, 5 족, 6 족 또는 7 족 원소이고, 보다 바람직하게는 바륨, 스트론튬, 마그네슘, 바나듐, 니오븀, 몰리브덴, 크롬 및 망간이고, 보다 더 바람직하게는 2 족 원소인 바륨, 스트론튬, 마그네슘; 및 7 족 원소인 망간이고, 가장 바람직하게는 바륨, 스트론튬 및 망간이다. 바람직한 사용 범위는 0.001-0.6 중량 % 이며, 0.001 중량 ¾> 미만인 경우에는 사용함량이 적어 층분한 방식효과를 기대할 수 없으며, 0.6 중량 %를 초과한 경우에는 액의 안정성이 떨어지고 철계 재질과 땜납 재질에 대한 부식을 일으켜 장기간의 부식방지에 역효과를 줄 수 있다.
본 발명의 조성물이 고온에서 우수한 pH 완충성을 갖게 하기 위하여 pH범위를 7-9의 범위로 조절하기 위하여 이용되는 알칼리 금속 수산화물은 수산화칼륨 또는 수산화나트륨이고, 보다 바람직하게는 수산화칼륨이다. 상술한 알칼리금속 수산화물은 조성물 전체 중량에 대하여 0.5-4.5 중량 ¾로 포함되고, 보다 바람직하게는 1.0—4.0 증량 ¾>, 가장 바람직하게는 1.5-3.5 중량 %이다. 상술한 조성 성분 외에 소포제, 염료 및 이온교환수를 추가적으로 첨가하여 제조할 수 있다. 상술한 바와 같이, 본 발명의 가장 큰 특징은 본 발명의 부동액 또는 냉각액 조성물에 포함된 사이클로 핵산 디카복실산, 아졸 (Azole) 또는 티아졸 (Thiazole)계 억제제 및 2 족, 5 족, 6 족 또는 7 족 원소들이, 저농도에서 방식성이 급격히 떨어지는 문제점을 해결하고 고온에서 장기간 열산화에 의한 급격한 pH 감소를 방지한 것이다.
【효과】
본 발명의 특징 및 이점을 요약하면 다음과 같다:
(a) 본 발명은 사이클로 핵산 디카복실산, 아졸 (Azole) 또는 티아졸 (Thiazole)계 억제제 및 2 족, 5 족, 6 족 또는 7 족 원소의 금속을 포함하는 부동액 또는 넁각액 조성물을 제공한다. (b) 일반적으로 방식제인 카복실산에 첨가되는 유기물 첨가제인 인산염과 규산염은 고갈속도가 빠르고 안정성이 좋지 않아 오히려 스케일로 인한 막힘 현상 및 부식현상 및 라디에이터 코어를 막음으로 인한 오버히트 현상을 일으킬 수 있으며, 알루미늄과 철 재질의 부품에 대해 장기간 방식 어렵지만, 본 발명의 조성물은 유기물 첨가제를 포함하지 않고 무기원소 이온을 사용함으로써 저농도에서 방식성을 높이고, 고온에서의 열산화 안정성이 향상되어 pH 완층성을 높였다.
(c) 본 발명의 조성물은 20 만 km 이상 장기간 운행한 후에도 금속부식 방지성능이 유지되고, 워터펌프 임펠러 및 알루미늄으로 이루어진 라디에이터 튜브 내의 외관 모두 양호하여 장기간의 실차 주행에서도 내부 금속 부품에 대한 부식 방지 효과가 뛰어나 장수명 부동액 또는 넁각액 조성물 이용할 있다.
【도면의 간단한 설명】
도 1 은 시험차량 10 대에서 실시예 5 를 20 만 km 실차 주행 시험 후 내부부품 외관 사진 보여주는 이미지이다.
【발명의 실시를 위한 구체적인 내용】
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이 들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다 는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다. 실시예
본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되 는 " "는 별도의 언급이 없는 경우, 고체 /고체는 (중량 /중량) , 고체 /액 체는 (중량 /부피) %, 그리고 액체 /액체는 (부피 /부피) ¾이다. 제조예 1. 실시예 1 내지 5의 부동액, 넁각액의 제조
본 발명자들은 부동액, 냉각액 제조를 위해 주성분으로는 글리콜 (예 컨대, 에틸렌글리콜)을 90-95 중량 % 사용하였다. 알루미늄과 철계 재질 등 의 부식방지제로 사이클로 핵산 디카복실산 (cyclo hexane dicarboxylic acid)은 1.0-5.0 중량 % 사용하였고, 동 및 황동 재질의 부식방지제로 아졸 (Azole) 또는 티아졸 (Thiazole) 0.1-0.5 중량 % 사용하였다. 본 발명에서 주 요한 특징으로 저농도에서 부동액 또는 냉각액의 방식성을 높이기 위해 사 이클로 핵산 디카복실산과 병행하여 무기원소 이온을 0.02-0.04 중량 % [스트 론륨 (도쿄 케미칼 인더스트리, 일본), 망간 (바스프, 독일), 바륨 (시그마-알 드리치, 캐나다)] 사용하였다. 또한 pH 완층성을 갖게 하기 위하여 수산화 칼륨 을 0.5-4.0 중량 % 사용하였다. 본 발명의 실시예 및 비교예의 구체적 인 조성물은 다음 표 1 에 기재된 성분의 함량을 저울로 칭량하여 에틸렌글 리콜을 용기에 넣고 용액의 온도가 40-60 °C가 되도톡 가열하여 균일한 용액 이 될 때 까지 교반하여 제조하였다:
【표 1】
본 발명의 실시예 및 비교예 조성물
Figure imgf000009_0001
시험예 1. 금속 부식성 시험
금속 부식성 시험은 KS M2142 금속 부식성 시험에 규정된 조합수 (증 류수 1 «에 무수황산나트륨 148 rag, 염화나트륨 165 rag 및 탄산수소나트륨 138 rag을 용해한 용액)를 사용하여 실시예 및 비교예 조성물의 농도를 각각 30%와 20%가 되도톡 흔합한 용액 750 와 금속시험편 1 세트를 틀 비이커 에 넣고 온도계, 통기관 및 넁각관을 가열장치 위에 부착시킨 다음 건조공 기를 매 분당 100±10 의 유량으로 액 중에 흘려보내면서 부동액의 온도 98±2°C에서 336 시간 및 672시간 금속 부식성을 평가하였다. 시험 종료 후 시험편을 산세척하여 무게변화를 0.1 nig 까지 측정하여 그 결과를 다음 표 2에 나타내었다:
【표 2]
속 부식성 시험결과
Figure imgf000010_0001
Figure imgf000011_0001
상기 표 2 에서 확인할 수 있듯이, 일반적으로 사용하는 30% 농도의 금속 부식성 결과에서는 실시예와 비교예 조성물 모두 부식 없이 양호하였 으나, 20% 저농도의 금속 부식성 결과에서는 본 발명의 실시예 조성물이 양 호한 방식성능을 나타내었으나, 비교예 조성물은 알루미늄과 주철에서 무게 변화량이 높거나 부식이 발생하였고, 저농도에 대한 금속부식 방지 성능이 약함을 알 수 있었다. 시험예 2. 알루미늄 주물 전열면 부식성 시험
고온의 엔진헤드와 실린더 블록 부위에서 발생하기 쉬운 알루미늄 주 물 재질에 대한 방식성을 비교하기 위하여, 조성물의 농도가 각각 20%와 25% 농도가 되도록 증류수에 회석 하였고, 염화나트륨 165 rag을 각각 용해 시킨 후 균일하게 흔합시켜 500 m£를 분취하여, 시험편과 상부조립판 사이 에 오링을 이용하여 내열성 유리셀을 조립한 장치에 주입하였다. 압축공기 150 Kpa 압력을 가한 상태에서 가열하여 시험온도가 135±2°C에 도달하였을 때 최종압력이 193 Kpa 이 되도록 하여 이 상태에서 각각 168 ±2 시간 및 336±2 시간 동안 유지하였다. 시험 종료 후 시험편 처리를 하여 시험편의 무게를 0.1 rag 단위까지 측정하여 그 결과를 다음 표 3에 나타내었다: 【표 3】
알루미늄 전열면 부식성 시험결과
Figure imgf000011_0002
Figure imgf000012_0001
상기 표 3 에서 확인할 수 있듯이, 실시예의 경우 일반농도 및 저농도 에서 모두 부식 없었고 무게변화율도 우수하였으나, 비교예 조성물의 경우 무게변화율이 상대적으로 높았으며, 저농도에서는 부식으로 인한 무게변화 율이 높았다. 시험예 3. 순환 부식성 시험
순환 부식성 시험은 KS M2142 금속 부식성 시험에 규정된 조합수 (증 류수 1 에 무수황산나트륨 148 mg, 염화나트륨 165 rag 및 탄산수소나트륨 138 rag을 용해한 용액)를 사용하여 금속시험편 3 세트를 순환 부식성 시험 기 순환 탱크에 넣고 라디에이터, 히터코어 및 워터펌프를 부착하여 유속을 60 i /min 로 하였고, 본 발명의 실시예와 비교예의 조성물을 각각 30% 및 20%의 농도로 회석한 후 시험온도 98°C에서 각각 1,000 시간 및 2,000 시간 을 진행하였다. 시험 결과 금속시험편 3 세트의 평균을 0.1 rag 단위까지 측 정하여 그 결과를 다음 표 4에 나타내었다: 【표 4] 순환 부식성 시험 결과
Figure imgf000013_0001
Figure imgf000014_0001
상기 표 4 에서 확인할 수 있듯이, 일반적으로 사용하는 농도인 30%에 서의 순환 부식성 시험 결과에는 실시예 및 비교예의 조성물 모두 부식은 일어나지 않았고 무게변화율도 우수하였으나, 비교예 조성물에는 알루미늄, 황동 및 땜납에서 무게변화율이 높게 관찰되었다. 20% 저농도 시험에서는 실시예 조성물은 우수한 방식성능을 나타내고 있으나, 비교예 조성물은 알 루미늄 및 주철에 부식이 발생하였고, 땜납 및 황동은 무게변화율이 높아 저농도에서 방식성이 현저히 떨어짐올 알 수 있었다. 시험예 4. 고은에서 pH 완충성 시험
이 시험은 일정 희석 비율의 부동액이 어느 정도의 pH 완층성과 항산 화력을 평가하기 위한 시험으로써, PSA 표준 D55 5345 에 따른 고온에서의 열안정성 시험을 바탕으로 진행하였다. 잘 세척한 알루미늄 압력용기에 증 류수로 40¾>로 회석된 부동액 650 m와 주철링시험편을 설치하여 384시간 동 안 160 °C의 온도에서 500 rpm 으로 교반하여 일정 시간별로 액상을 채취한 후 pH 를 측정하여 그 완층성을 평가하였다. 그 결과는 다음 표 5 및 표 6 에 나타내었다:
【표 5】
고온에서의 pH 완충성 시험결과
Figure imgf000014_0002
Figure imgf000015_0002
【표 6】
시 간별 pH 완층성 변화도표
Figure imgf000015_0001
Figure imgf000016_0001
상기 표 5 에서 확인할 수 있듯이, 실시예의 경우 고온에서 시간경과 에 따른 pH 변화율이 상대적으로 낮아 pH 완층효과가 우수함을 알 수 있으 며, 알루미늄 및 주철 금속재질의 부식을 방지하는 성능도 뛰어남을 알 수 있었다. 비교예의 경우 pH 변화가 많아 시간의 흐름에 따라 pH 완층성이 떨 어지고, 고온에서의 알루미늄과 주철에 대한 부식방지 능력도 현저히 떨어 졌다. 실시예에 비해 비교예가 pH 변화의 기울기가 가파름을 볼 수 있었다 (표 6에서 X축은 진행시간이며, Y축은 해당 시간에서의 pH다) . 시험예 5. 저농도에서의 금속 방식성 시험
일반 사용 농도 보다 낮은 저농도에서의 철계 및 알루미늄 재질에 대 한 본 발명의 조성물의 방식성을 관찰하기 위하여 PSA 표준에 규정되어 있 는 금속 방식성 (Dynamic corrosion) 시험을 활용하였다. KS M2142 금속 부 식성 시험에 규정된 조합수 (증류수 1 £에 무수황산나트륨 148 rag, 염화나 트륨 165 mg 및 탄산수소나트륨 138 mg을 용해한 용액)를 사용하여 일반 사 용 농도 보다 낮은 20¾의 저농도로 알루미늄 주물 및 주철 전열면 시험편을 설치하여 300 m/sec 의 유속으로 전열면 온도를 140°C, 히팅 블록 온도를 215°C로 하여, 1.2 Kpa 의 압력을 시스템에 주어 144시간 동안 시험을 실시 하였다. 시험 결과는 각 전열면 시험편을 산세척하여 0.1 rag 단위로 무게를 측정하여 그 결과를 다음 표 7에 나타내었다:
【표 7]
저농도에서의 금속 방식성 시험
Figure imgf000017_0001
표 7 의 결과에서 확인 할 수 있듯이, 조성물의 경우 알루미늄 및 주 철의 무게변화가 우수하여 알루미늄 및 주철의 방식효과가 우수함을 알 수 있었다. 비교예 조성물의 경우 알루미늄 및 주철의 무게변화가 많았고 부식 이 발생하여 고온의 저농도에서 방식성이 본 발명의 조성물에 비해 현저히 떨어짐을 알 수 있었다. 시험예 6. 20만 km실차주행 시험
본 발명의 부동액 또는 냉각액 조성물 실시예 5를 수도수와 50%가 되 도록 흔합하여 실제 차량의 사용농도에서 평가가 이루어 질 수 있도록 하였 으며, 실차 부동액의 물성변화를 비교하기 위해 외관, pH 및 예비 알칼리도 변화율 (%)의 일반물성을 측정하였다. 부동액과 접촉하는 각종 넁각장치 부 품과 물리 화학적으로 반웅하여 부식반웅이 이루어 질 때 발생하는 Fe, Cu, Al 및 Zn 등의 금속이온의 농도변화를 측정하여 부동액의 부식이온 용출정 도를 평가하여 장기내구성을 평가하였다.
부동액의 부식방지제의 고갈정도를 평가하기 위해 실차종료 후 차량 에서 부동액을 채취하여 금속 부식성 시험과 알루미늄 전열면 부식성 시험 을 실시하여 20 만 km 실차주행 후에도 부동액이 부식방지 내구성을 유지하 고 있는지 평가하기 위한 시험항목으로 설정하였다. 20만 km 이상 실차주행 후 실차시험 차량의 넁각장치를 분해하여 부품별 부식정도를 관찰하여 내구 성을 평가하였다. 20만 km 실차주행 시험결과를 다음 표 8에 나타내었다:
【표 8】
20만 Km 실차주행시험 결과
Figure imgf000018_0001
Figure imgf000019_0001
상기 표 8 에서 확인할 수 있듯이 조성물의 pH 변화나 예비알칼리도 변화율 및 실차주행 중 용출된 금속이온 농도는 전반적으로 현저히 낮고, 실차 주행시험 완료 후 조성물에 대한 금속 부식성 시험에서도 알루미늄 및 땜납 시험편의 무게변화가 현저히 낮아, 20 만 km 이상 장기간 운행한 후에 도 금속부식 방지성능이 유지되고 있음을 알 수 있다. 실차 주행 후 각종 쿨링시스템 부품 모두 부식 없이 양호하였다. 실차 주행시험 후 내부 부품 의 상태는 도 1에서 나타내었다.
도 1 의 결과에서 볼 수 있듯이 워터펌프 임펠러 및 알루미늄으로 이 루어진 라디에이터 튜브 내의 외관 모두 양호하여 장기간의 실차 주행에서 도 내부 금속 부품에 대한 부식 방지 효과가 뛰어남을 알 수 있다. 본 발명의 조성물은 사이클로 핵산 디카복실산과 무기원소 이온 (예컨 대 스트론튬, 바륨 및 망간)을 동시에 사용하였을 경우, 저농도에서 금속에 대한 부식방지효과가 우수하였다. 또한 고온 열산화 능력이 우수하여 장기 간 시험에도 pH 변화가 적었으며, 무기원소 이온이 알루미늄 및 땜납 금속 표면의 이온용출 작용을 억제시켜 저농도에서 부식방지 능력을 향상시켰고, 고온에서의 pH 완층성이 향상되어 장기간 부동액의 내구성능이 유지됨을 알 수 있었다. 이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하 다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의 하여 정의된다고 할 것이다.

Claims

【특허 청구범위】
【청구항 1】
서 열목록 (a) 사이클로 핵산 디카복실산 (cyclo hexane dicarboxyl ic acid) ; (b) 아졸 (Azole) 또는 티 아졸 (Thi azole)계 억 제제 ; 및 (c) 2 족, 5 족, 6 족 또는 7 족 원소의 금속을 포함하는 부동액 또는 넁각액 조성물 .
【청구항 2】
제 1 항에 있어서, 상기 사이클로 핵산 디카복실산은 1,4-사이클로 헥산 디카복실산, 1, 3—사이클로 핵산 디카복실산 및 1, 2-사이클로 핵산 디카복실산으로 구성된 군으로부터 1 종 또는 2 종 이상 흔합물이 선택되는 것을 특징으로 하는 부동액 또는 냉각액 조성물 .
【청구항 3]
제 1 항에 있어서, 상기 아졸 (Azole) 또는 티 아졸 (Thiazole)계 억제제는 토릴트리아졸, 벤조트리아졸, 4-페닐 -1 ,2,3-트리아졸, 2- 나프토트리아졸, 4-니트로벤조트리아졸 및 2-메르갑토벤조티 아졸로 구성된 군으로부터 선택되는 것을 특징으로 하는 부동액 또는 냉각액 조성물 .
【청구항 4】
제 1 항에 있어서, 상기 2 족 원소는 바륨 (Ba) , 스트론튬 (Sr) 및 마그네슘 (Mg)으로 구성 된 군으로부터 선택되는 것을 특징으로 하는 부동액 또는 냉각액 조성물 .
【청구항 5】
제 1 항에 있어서, 상기 5 족 원소는 바나듐 (V) 및 니오붐 (Nb)으로 구성된 군으로부터 선택되는 것을 특징으로 하는 부동액 또는 냉각액 조성물 .
【청구항 6]
제 1 항에 있어서, 상기 6 족 원소는 몰리브덴 (Mo) 및 크롬 (Cr)으로 구성된 군으로부터 선택되는 것을 특징으로 하는 부동액 또는 냉각액 조성물.
【청구항 7】
제 1 항에 있어서, 상기 7족 원소는 망간 (Mn)인 것을 특징으로 하는 부동액 또는 넁각액 조성물.
PCT/KR2012/000753 2011-09-23 2012-01-31 방식성 및 pH 완충성이 향상된 부동액 또는 냉각액 조성물 WO2013042837A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/346,716 US9193896B2 (en) 2011-09-23 2012-01-31 Composition having enhanced corrosion resistance and pH buffering property for antifreeze liquid or coolant
CN201280045995.2A CN103842467B (zh) 2011-09-23 2012-01-31 抗蚀性及pH缓冲性得到提高的防冻液或冷却液组合物
EP12832969.5A EP2759582B1 (en) 2011-09-23 2012-01-31 Composition having enhanced corrosion resistance and ph buffering property for antifreeze liquid or coolant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0096239 2011-09-23
KR1020110096239A KR101300238B1 (ko) 2011-09-23 2011-09-23 방식성 및 pH 완충성이 향상된 부동액 또는 냉각액 조성물

Publications (1)

Publication Number Publication Date
WO2013042837A1 true WO2013042837A1 (ko) 2013-03-28

Family

ID=47914578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000753 WO2013042837A1 (ko) 2011-09-23 2012-01-31 방식성 및 pH 완충성이 향상된 부동액 또는 냉각액 조성물

Country Status (6)

Country Link
US (1) US9193896B2 (ko)
EP (1) EP2759582B1 (ko)
KR (1) KR101300238B1 (ko)
CN (1) CN103842467B (ko)
TR (1) TR201908254T4 (ko)
WO (1) WO2013042837A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107629764A (zh) * 2017-09-04 2018-01-26 可附特汽车零部件制造(北京)有限公司 一种用于四季的防冻液组合物
KR102400637B1 (ko) * 2019-11-04 2022-05-23 주식회사 케이디파인켐 열전달 유체용 착색제 및 이를 포함하는 조성물
CN113913163B (zh) * 2020-07-07 2024-03-19 中国石油化工股份有限公司 一种热传导介质及其制备方法与应用
KR102476566B1 (ko) * 2020-08-21 2022-12-13 김교훈 자동차 냉각수 첨가용 조성물

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4598205A (en) 1980-05-30 1986-07-01 Gao Gesellschaft Fur Automation Und Organisation Mbh Security paper with authenticity features in the form of substances luminescing only in the invisible region of the optical spectrum and process for testing the same
JPS624774A (ja) * 1985-06-28 1987-01-10 Ube Ind Ltd 蓄熱用液体組成物および蓄熱方法
US4647392A (en) 1985-12-27 1987-03-03 Texaco Inc. Monobasic-dibasic acid/salt antifreeze corrosion inhibitor
US4657689A (en) 1986-04-01 1987-04-14 Texaco Inc. Corrosion-inhibited antifreeze/coolant composition containing hydrocarbyl sulfonate
US4873011A (en) 1988-01-27 1989-10-10 Korea Advanced Institute Of Science And Technology Antifreeze corrosion inhibitor composition for aluminum engines and radiators
US5064552A (en) 1988-09-24 1991-11-12 Basf Aktiengesellschaft Nitrite- and phosphate-free antifreeze based on glycol
JPH0641584B2 (ja) * 1986-06-24 1994-06-01 宇部興産株式会社 蓄熱用液体組成物および蓄熱方法
US5422026A (en) 1990-12-14 1995-06-06 Arco Chemical Technology, L.P. Phosphate-free antifreeze formulation
JPH09263976A (ja) 1996-03-29 1997-10-07 Cci Corp 冷却液中におけるアルミニウムまたはアルミニウム合金の黒変防止剤、及びそれを含む冷却液組成物
JP2000219981A (ja) 1999-01-29 2000-08-08 Nippon Chem Kogyo Kk 不凍液組成物
JP2001098258A (ja) 1999-09-29 2001-04-10 Nippon Chem Kogyo Kk 不凍液組成物
JP2001279235A (ja) 2000-03-29 2001-10-10 Cci Corp 不凍液/冷却液組成物
JP2002038137A (ja) 2000-07-31 2002-02-06 Nippon Chem Kogyo Kk 不凍液組成物
US20070007489A1 (en) * 2003-12-25 2007-01-11 Hiroshi Egawa Heat transfer medium composition
JP2007269834A (ja) * 2006-03-30 2007-10-18 Honda Motor Co Ltd マグネシウムまたはマグネシウム合金用不凍液/冷却液組成物
US20080141900A1 (en) * 2004-01-08 2008-06-19 China International Marine Containers (Group) Co., Chrome-Free Passivating Solution
KR20100018754A (ko) * 2008-08-07 2010-02-18 극동제연공업 주식회사 흑변방지 및 장기간(10년/20만 km) 내식성이 우수한부동액/냉각액 조성물

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2653933A1 (de) * 1976-11-27 1978-06-01 Henkel Kgaa Verwendung von cyclohexanhexacarbonsaeure als korrosionsinhibitor fuer brauchwassersysteme
US5085791A (en) * 1990-10-01 1992-02-04 Texaco Chemical Company Corrosion-inhibited antifreeze/coolant composition containing cyclohexane acid(s)
MXPA02003473A (es) * 1999-10-29 2002-08-20 Basf Ag Concentrados anticongelantes basados en acidos dicarboxilicos, molibdato y triazoles o tiazoles, y composiciones refrigerantes que los comprenden.
JP4796507B2 (ja) * 2004-11-26 2011-10-19 シーシーアイ株式会社 熱媒体組成物
US8696927B2 (en) * 2008-03-03 2014-04-15 Prestone Products Corporation Heat transfer system comprising brazed aluminum, method, heat transfer fluid, and additive package

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4598205A (en) 1980-05-30 1986-07-01 Gao Gesellschaft Fur Automation Und Organisation Mbh Security paper with authenticity features in the form of substances luminescing only in the invisible region of the optical spectrum and process for testing the same
JPS624774A (ja) * 1985-06-28 1987-01-10 Ube Ind Ltd 蓄熱用液体組成物および蓄熱方法
US4647392A (en) 1985-12-27 1987-03-03 Texaco Inc. Monobasic-dibasic acid/salt antifreeze corrosion inhibitor
US4657689A (en) 1986-04-01 1987-04-14 Texaco Inc. Corrosion-inhibited antifreeze/coolant composition containing hydrocarbyl sulfonate
JPH0641584B2 (ja) * 1986-06-24 1994-06-01 宇部興産株式会社 蓄熱用液体組成物および蓄熱方法
US4873011A (en) 1988-01-27 1989-10-10 Korea Advanced Institute Of Science And Technology Antifreeze corrosion inhibitor composition for aluminum engines and radiators
US5064552A (en) 1988-09-24 1991-11-12 Basf Aktiengesellschaft Nitrite- and phosphate-free antifreeze based on glycol
US5422026A (en) 1990-12-14 1995-06-06 Arco Chemical Technology, L.P. Phosphate-free antifreeze formulation
JPH09263976A (ja) 1996-03-29 1997-10-07 Cci Corp 冷却液中におけるアルミニウムまたはアルミニウム合金の黒変防止剤、及びそれを含む冷却液組成物
JP2000219981A (ja) 1999-01-29 2000-08-08 Nippon Chem Kogyo Kk 不凍液組成物
JP2001098258A (ja) 1999-09-29 2001-04-10 Nippon Chem Kogyo Kk 不凍液組成物
JP2001279235A (ja) 2000-03-29 2001-10-10 Cci Corp 不凍液/冷却液組成物
JP2002038137A (ja) 2000-07-31 2002-02-06 Nippon Chem Kogyo Kk 不凍液組成物
US20070007489A1 (en) * 2003-12-25 2007-01-11 Hiroshi Egawa Heat transfer medium composition
US20080141900A1 (en) * 2004-01-08 2008-06-19 China International Marine Containers (Group) Co., Chrome-Free Passivating Solution
JP2007269834A (ja) * 2006-03-30 2007-10-18 Honda Motor Co Ltd マグネシウムまたはマグネシウム合金用不凍液/冷却液組成物
KR20100018754A (ko) * 2008-08-07 2010-02-18 극동제연공업 주식회사 흑변방지 및 장기간(10년/20만 km) 내식성이 우수한부동액/냉각액 조성물

Also Published As

Publication number Publication date
TR201908254T4 (tr) 2019-06-21
EP2759582B1 (en) 2019-03-06
KR101300238B1 (ko) 2013-08-26
EP2759582A4 (en) 2015-07-08
US20140223929A1 (en) 2014-08-14
CN103842467A (zh) 2014-06-04
EP2759582A1 (en) 2014-07-30
CN103842467B (zh) 2016-08-17
KR20130032567A (ko) 2013-04-02
US9193896B2 (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP4980534B2 (ja) ジカルボン酸、モリブデン酸塩およびトリアゾールまたはチアゾールを基礎とする凍結防止剤濃縮物ならびにこの凍結防止剤濃縮物を含有する冷媒組成物
EP3138889B1 (en) Heat transfer fluids and corrosion inhibitor formulations for use thereof
JPH0195179A (ja) 腐食抑制不凍液配合物
KR101106126B1 (ko) 흑변방지 및 장기간(10년/20만km) 내식성이 우수한 부동액/냉각액 조성물
JP2007162124A (ja) 不凍液組成物
AU2019204001B2 (en) Extended operation engine coolant composition
CA2171013C (en) Nonaqueous heat transfer fluid
WO2013042837A1 (ko) 방식성 및 pH 완충성이 향상된 부동액 또는 냉각액 조성물
WO2004038193A2 (en) Method for cooling high temperature engines
WO2013042838A1 (ko) 캐비테이션 에로젼 및 틈 부식방지 효과가 우수한 부동액 또는 냉각액 조성물
BRPI0112642B1 (pt) fluido de transferência de calor não aquoso de toxidade reduzida; método para reduzir a toxidade de um fluido de transferência de calor não aquoso
AU2001280645A1 (en) Non-aqueous heat transfer fluid and use thereof
KR100962792B1 (ko) 열산화 안정성이 우수한 부동액 조성물
JPH04117481A (ja) 不凍液
JP4119622B2 (ja) 冷却液組成物
JP2011074181A (ja) 冷却液組成物
JP2008088242A (ja) 冷却液組成物
US9540558B2 (en) Extended operation engine coolant composition
JP2001098258A (ja) 不凍液組成物
JP2003327957A (ja) 伝熱媒体組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832969

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14346716

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE