WO2013040918A1 - 一种集成电路缺陷的光学检测方法和装置 - Google Patents

一种集成电路缺陷的光学检测方法和装置 Download PDF

Info

Publication number
WO2013040918A1
WO2013040918A1 PCT/CN2012/077087 CN2012077087W WO2013040918A1 WO 2013040918 A1 WO2013040918 A1 WO 2013040918A1 CN 2012077087 W CN2012077087 W CN 2012077087W WO 2013040918 A1 WO2013040918 A1 WO 2013040918A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
light
integrated circuit
reflected light
image
Prior art date
Application number
PCT/CN2012/077087
Other languages
English (en)
French (fr)
Inventor
陈鲁
Original Assignee
中国科学院微电子研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院微电子研究所 filed Critical 中国科学院微电子研究所
Publication of WO2013040918A1 publication Critical patent/WO2013040918A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/50Optics for phase object visualisation

Definitions

  • the present invention relates to the field of integrated circuit fabrication, and more particularly to an optical detection method and apparatus for integrated circuit defects.
  • Edge roughness is a must in the chip fabrication process and is determined by lithography accuracy and photoresist etch process. Due to errors in the lithography process, line width and edge errors can reach several nanometers. In the 22 nm process, the feature size of the pattern is small, and severe edge roughness can form edge protrusions, and even form a short circuit break, which directly causes the performance degradation of the chip. Defects are more likely to occur in processes of 22 nm and below. Therefore, nanometer-scale defect detection is an indispensable part of the integrated circuit fabrication process.
  • non-destructive non-contact optical detection technology has become an important defect detection method.
  • the wavelength is generally above 260 nm. This is because the high-power laser below 260 nm has a long life and short life, and it is difficult to use in the detection equipment. Moreover, below the wavelength of 200 nm, it enters the vacuum UV band, that is, the light is quickly attenuated by the air absorption. Unless optical inspection is in a vacuum environment Completed in the middle, otherwise the detector below 200 nm wavelength can not be realized. In such cases, with the limitation of a numerical aperture of less than one (usually the detection system cannot use immersion technology, otherwise the wafer surface is easily damaged), the resolution of the ideal optical system is greater than 0.35 microns.
  • the detection signal in the conventional optical system is the light intensity information of the spatial distribution of the imaging plane.
  • the prior art improves the defect detection signal of certain chip portions by adjusting the intensity of the reference light.
  • the intensity of the scattered light is weaker than that of the reflected light (a 20 nm diameter Si0 2 particle is illuminated by a grazing angle of a 5 x 15 micron spot)
  • the scattering intensity in the omnidirectional angle is only 0.01334 ppm), and the defect scattering signal is easily submerged in the background noise of the reflected light and the CCD. Summary of the invention
  • embodiments of the present invention provide an optical detection method and apparatus for integrated circuit defects, which improves the accuracy of defect detection in an integrated circuit.
  • Embodiments of the present invention provide an optical detection method for a defect of an integrated circuit, including:
  • a category of a defect on the integrated circuit is determined based on the spot image.
  • the spiral phase modulation system has a spiral phase adjustment range of (0, 2 ⁇ ).
  • the method further comprises: adjusting a ratio of the scattered light and the reflected light of the defect such that the intensity of the reflected light does not exceed 10 times the intensity of the scattered light.
  • the ratio of the scattered light and the reflected light of the defect is adjusted such that the intensity of the reflected light does not exceed 10 times the intensity of the scattered light, including:
  • the light-attenuating sheet is configured to adjust the intensity of the reflected light by the adjustable light-attenuating sheet such that the reflected light intensity of the defect does not exceed 10 times the intensity of the scattered light.
  • the ratio of the scattered light and the reflected light of the defect is adjusted such that the intensity of the reflected light does not exceed 10 times the intensity of the scattered light, including:
  • a filter disposed on the optical path before the reflected light of the defect enters the spiral phase modulation system, and the transmittance of the reflected light is adjusted by the filter, so that the reflected light intensity of the defect does not exceed the scattering 10 times stronger than light.
  • determining the category of the defect on the integrated circuit according to the spot image comprises: determining a category of the defect on the integrated circuit according to a distribution attribute of the bright spot and the dark spot in the spot image.
  • An optical detecting device for an integrated circuit defect comprising: an optical signal collecting unit disposed along an optical path, a spiral phase modulation system, an image receiving unit, and a defect determining unit; the optical signal collecting unit collecting scattered light from a defect on the integrated circuit and Reflecting light, the scattered light and the reflected light forming a circular shape image through a receiving plane in the image receiving unit by the spiral phase modulation system; wherein the reflected light passes through a center of the spiral phase modulation system, and is received at an image
  • the plane forms a homogeneous phase uniform background light; the circular dome shape image and the in-phase uniform background light phase interfere with each other on the image receiving plane to form a spot image including bright spots and dark spots; and the defect determining unit is configured according to the spot image Determining the type of defect on the integrated circuit.
  • the spiral phase modulation system has a spiral phase range of (0, 2 ⁇ ).
  • the method further includes:
  • the light intensity adjusting unit is configured to adjust a ratio of the scattered light and the reflected light of the defect such that the intensity of the reflected light does not exceed 10 times of the intensity of the scattered light.
  • the light intensity adjusting unit comprises: an adjustable light attenuating sheet disposed on an optical path before the reflected light of the defect enters the spiral phase plate.
  • the light intensity adjusting unit comprises: a filter disposed on an optical path before the reflected light of the defect enters the spiral phase plate.
  • the defect determining unit determines a category of a defect on the integrated circuit according to a distribution property of a bright spot and a dark spot in the spot image.
  • the technical solution provided by the present invention has the following advantages:
  • the spiral phase technology is applied to the detection of integrated circuit defects, and a spiral phase modulation system is disposed in the optical system, and the scattered and reflected light of the defects on the integrated circuit are transmitted to the spiral phase modulation system. Then, the output is performed, wherein the scattered light passes through the spiral phase modulation system, and a phase change from 0 to 2 ⁇ occurs due to the difference in the direction angle, and a circular shape image is formed on the image receiving plane; the reflected light passes through the center of the spiral phase modulation system, and the phase Basically, there is no change, and the same background light is formed in the image receiving plane.
  • the circular ⁇ shape image and the same phase uniform background light interfere with each other in the image receiving plane. At a certain position, the interference will be completely interfered to form a bright spot. In the opposite position, Completely offset to form dark spots, so that the final spot image produces maximum brightness contrast, achieving higher defect detection accuracy.
  • FIG. 1 is a flow chart showing the steps of an optical detection method for an integrated circuit defect according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing a phase distribution of a spiral phase plate according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a spiral phase 4f imaging system according to an embodiment of the present invention.
  • FIG. 4( a ) is a schematic diagram of the contrast of the defect detection signal under the conventional bright field microscope
  • FIG. 4 ( b ) is a schematic diagram of the contrast of the defect detection signal in the embodiment of the present invention
  • FIG. 5 is a schematic diagram of the effect of adding different spiral phases to an interference pattern according to an embodiment of the present invention
  • FIG. 6 is a light spot image corresponding to a short defect according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a specific application example of applying a spiral phase technology to perform integrated circuit defect detection according to an embodiment of the present invention.
  • circuit defects can affect or even destroy the normal function of the chip, directly causing the device to fail. Therefore, the detection of defects in integrated circuits is critical in integrated circuit fabrication processes.
  • Embodiments of the present invention apply spiral phase techniques to the detection of integrated circuit defects in which a spiral phase modulation system is provided.
  • An optical detection method for an integrated circuit defect provided by an embodiment of the present invention is first described below. Referring to FIG. 1, the following steps are included:
  • Step 101 Receive, by a spiral phase modulation system, scattered light and reflected light from a defect on an integrated circuit, wherein the scattered light passes through the spiral phase modulation system to form a circular shape image on an image receiving plane; Through the center of the spiral phase modulation system, the same phase uniform background light is formed on the image receiving plane; the circular shape image and the in-phase uniform background light interfere with each other in the image receiving plane to form a spot containing bright spots and dark spots.
  • Step 102 Determine, according to the spot image, a category of a defect on the integrated circuit.
  • the spiral phase technique is applied to the detection of integrated circuit defects, and a spiral phase modulation system is disposed in the optical system, and the scattered light and reflected light of the defects on the integrated circuit are transmitted to the spiral phase modulation system.
  • the scattered light passes through the spiral phase modulation system, and a phase change from 0 to 2 ⁇ occurs due to the difference in the direction angle, forming a circular shape image on the image receiving plane;
  • the reflected light passes through the center of the spiral phase plate, that is, the optical system At the center, the phase does not change substantially, and the same phase uniform background light is formed on the image receiving plane.
  • the circular ⁇ shape image and the homogeneous phase uniform background light interfere with each other in the image receiving plane, and at a certain position, the interference is completely interfered to form a bright spot.
  • the opposite position will completely offset the formation of dark spots, resulting in a maximum brightness contrast of the final spot image for higher defect detection accuracy.
  • the distribution of the different azimuthal angles of the scattered light of the particles is spatially separated at the aperture stop in the imaging system, or at a position close to the Fourier plane, so that it can be processed independently.
  • the spiral phase modulation system may be a spiral phase plate, and the spiral phase plate may be disposed in the aperture stop, and its phase relationship is exp ( ⁇ ⁇ ) , where ⁇ is the azimuth angle in the Fourier plane perpendicular to the optical axis.
  • the phase of the light changes, and the phase change range is 0. To 2 ⁇ , the value is linear with the azimuth.
  • the imaging of a point source is the result of its convolution with the clear aperture of the Fourier plane.
  • the imaging of a point source is its convolution with the spiral phase plate, that is, the image of the circular shape, which is the point spread function (PSF) of the spiral phase system.
  • the phase of the point imaging PSF of the spiral phase system varies from 0 to 2 ⁇ along the circumferential direction of the imaging circle.
  • the size of defects on an integrated circuit is much smaller than the wavelength of light, which can be on the order of 2 ⁇ nanometers or less. Therefore, it can be regarded as a point source in an imaging system, and the scattered light of the point source is distributed in a solid angle, and the scattered light is specifically The distribution angle is determined by the specific shape and size of the defect and the nature of the incident light.
  • the scattered light of the defect passes through the spiral phase plate, and the phase change from 0 to 2 ⁇ occurs due to the difference in azimuth angle, and is then imaged on the CCD through the lens system.
  • the reflected light on the surface of the integrated circuit also passes through the center of the spiral phase plate, and the phase does not change substantially, and is uniformly irradiated on the CCD through the lens system to form a uniform in-phase background light intensity.
  • the shape of the circle is imaged on the CCD due to the scattering of the defect, and phase interference occurs with the surrounding background of the reflected light. Since the phase of the defect scattered pupil varies from 0 to 2 ⁇ , it will completely interfere with the background of the reflected light at a certain position to form a bright spot, and the dark spot will be completely canceled at the opposite position. The complete additive interference of the defect scattered pupil and the complete cancellation of the interference form the greatest degree of brightness contrast.
  • the contrast of the signal for defect detection in the embodiment of the present invention is much higher than that under the conventional bright field microscope under the same conditions (see Fig. 4(a)).
  • the signal contrast of the defect detection in the embodiment of the present invention is nearly ten times that of the signal contrast under the bright field microscope imaging.
  • any defect scattered light must form a phase change of 0 to 2 ⁇ in the imaging, and will definitely form in the background of the reflected light of the same phase.
  • Fully enhanced interference and fully offset interference resulting in maximum image contrast.
  • the light and dark spots in the interference pattern are increased.
  • the contrast between the two is usually adjusted to the intensity of the reflected light.
  • the reflected light intensity does not exceed 10 times the intensity of the scattered light.
  • the specific implementation may be: attenuating the reflected light of the defect, and adjusting the intensity of the scattered light of the defect and the reflected light by attenuation.
  • an adjustable light attenuating sheet may be disposed on the optical path before the reflected light of the defect enters the spiral phase plate, and the light intensity of the scattered light and the reflected light adjusted by the adjustable light attenuating sheet is equivalent.
  • a filter may be disposed on the optical path before the reflected light of the defect enters the spiral phase modulation system, and the transmittance of the reflected light is adjusted by the filter to make the reflected light of the defect Strongly no more than 10 times the intensity of the scattered light.
  • the specific imaging of the above interference pattern is related to the spiral phase range of the spiral phase plate, that is, the number of spots in the interference pattern is proportional to the ⁇ position of the added spiral phase, as shown in FIG. 5, the added spiral phase is respectively For (0, ⁇ ), (0, 2 ⁇ ), (0, 3 ⁇ ) and (0, 4 ⁇ ), it can be seen that it is easier to see the rotation pattern of the spot by adding 2 ⁇ phase, thereby distinguishing the defect type. Therefore, preferably, the spiral phase adjustment range of the spiral phase modulation system can be selected to be (0, 2 ⁇ ).
  • the shape of the spot formed by the interference scattering through the spiral phase plate is closely related to the intensity and phase distribution of the defect scattering in the solid angle, and the scattered light intensity and phase distribution of each defect are different, reflecting Information on the shape, material and size of each defect. Therefore, the type of defect can be judged by the distribution properties of bright and dark spots in defect imaging.
  • the distribution attribute of the spot mainly refers to the position of the brightest part and the darkest part of the spot relative to the center of the image, for example: the brightest spot of the spot or the bright spot is located at 90 degrees with respect to the center of the spot in the image.
  • the position of the corner, and the dark spot is located at azimuth of 270 degrees with respect to the center of the spot; or, the bright spot is located at a position azimuth of 180 degrees with respect to the center of the spot, and the dark spot is located at an azimuth of 0 degrees with respect to the center of the spot.
  • There are many possible distributions of the distribution properties of the spot and different distributions correspond to different defect categories.
  • the defect is a short defect, As shown in FIG. 6; when the spot image is a left-right dark spot, that is, the bright spot is at a 180-degree azimuth angle with respect to the center of the spot, and the dark spot is at an azimuth angle of 0 degrees with respect to the center of the spot, the defect is Open circuit defects, as shown in Figure 7.
  • An embodiment of the present invention further provides an optical detecting device for an integrated circuit defect, comprising: an optical signal collecting unit disposed along an optical path, a spiral phase modulation system, an image receiving unit, and a defect determining unit; and the optical signal collecting unit is collected from the integrated a scattered light and reflected light of a defect on the circuit, the scattered light and the reflected light forming a circular shape image through a receiving plane in the image receiving unit by the spiral phase modulation system; wherein the reflected light passes through the spiral phase modulation a center of the system, forming a homogeneous phase uniform background light in the image receiving plane; the circular dome shape image and the in-phase uniform background light phase interference in the image receiving plane to form a spot image including bright spots and dark spots; The unit determines a category of the defect on the integrated circuit based on the spot image.
  • the spiral phase modulation system may be a spiral phase plate, which may be disposed at an aperture stop in the imaging system, or at a position close to the Fourier plane.
  • the defects on the integrated circuit can be regarded as a point source in the imaging system.
  • the scattered light of the defect is collected by the microscope lens, and the phase of the phase change from 0 to 2 ⁇ occurs due to the difference in azimuth angle. Imaging on the CCD through a lens system.
  • the reflected light on the surface of the integrated circuit also passes through the center of the spiral phase plate, and the phase does not change substantially, and is uniformly irradiated on the CCD through the lens system to form a uniform in-phase background light intensity.
  • incident light is generated by a laser light source (for example, arc lamp).
  • the shape of the circle is imaged on the CCD due to the scattering of the defect, and phase interference occurs with the surrounding reflected light background. Since the phase of the defect scattered pupil varies from 0 to 2 ⁇ , it will completely interfere with the background of the reflected light at a certain position to form a bright spot, and in the opposite position, the dark spot will be completely canceled.
  • the complete additive interference of the defect scattered pupil and the complete cancellation of the interference form the greatest degree of brightness contrast. It can be seen that the use of the spiral phase technique in the defect detection can greatly increase the brightness contrast of the defect, thereby greatly increasing the defect detection signal.
  • the light intensity adjusting unit is configured to adjust a ratio of the scattered light and the reflected light of the defect such that the reflected light intensity does not exceed 10 times of the scattered light intensity.
  • the specific implementation may be: attenuating the reflected light of the defect by the light intensity adjusting unit, and adjusting the intensity of the reflected light of the defect by the attenuation does not exceed 10 times of the light intensity of the scattered light.
  • the light intensity adjusting unit may include an adjustable light attenuating sheet disposed on an optical path before the reflected light of the defect enters the spiral phase plate, and the light intensity of the scattered light and the reflected light is adjusted by the adjustable light attenuating sheet proportion.
  • the light intensity adjusting unit may further include a filter disposed on the optical path before the reflected light of the defect enters the spiral phase plate, and the transmittance of the reflected light is adjusted by the filter, so that the The reflected light intensity of the defect does not exceed 10 times the intensity of the scattered light.
  • the spiral phase adjustment range of the spiral phase modulation system may be selected to be (0, 2 ⁇ ). This is because it is easier to see the rotation pattern of the spot by adding the 2 ⁇ phase, thereby distinguishing the defect type.
  • the shape of the spot formed by the scattering of the defect by the spiral phase plate is closely related to the intensity and phase distribution of the defect scattering in the solid angle, and the scattered light intensity and phase distribution of each defect are different, reflecting each defect. Information on shape, material and size. Therefore, the defect determining unit can judge the kind of the defect by the distribution property of the bright spot and the dark spot in the defect imaging.
  • the defect when the spot image is a light spot that is dark and dark, that is, the spot is 90 degrees azimuth with respect to the center of the spot, and the dark spot is 270 degrees azimuth with respect to the center of the spot, the defect is a short defect;
  • the spot image is a left-right dark spot, that is, the bright spot is at a 180-degree azimuth with respect to the center of the spot, and the dark spot is at an azimuth angle of 0 degrees with respect to the center of the spot, the defect is an open-circuit defect.
  • the description since it basically corresponds to the method embodiment, the description is relatively simple, and the relevant parts can be referred to the description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, ie may be located One place, or it can be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

一种集成电路缺陷的光学检测方法和装置,所述方法包括:通过螺旋相位调制***,接收来自集成电路上缺陷的散射光和反射光,其中散射光经过螺旋相位调制***在图像接收平面形成圆圈形状图像,反射光经过螺旋相位调制***的中心在图像接收平面形成同相位均匀背景光,所述圆圈形状图像与同相位均匀背景光在图像接收平面发生相位干涉,形成包含亮斑和暗斑的光斑图像,根据该光斑图像,确定集成电路上缺陷的类别。

Description

一种集成电路缺陷的光学检测方法和装置
本申请要求于 2011年 9月 22日提交中国专利局、申请号为 201110283462.5、 发明名称为 "一种集成电路缺陷的光学检测方法和装置"的中国专利申请的优 先权, 其全部内容通过引用结合在本申请中。
技术领域 本发明涉及集成电路制造领域, 更具体地说, 涉及一种集成电路缺陷的光 学检测方法和装置。
背景技术
电路缺陷存在于任何半导体制作的过程中,是量产前的工艺研发过程中所 要面对的主要问题。缺陷不仅来自于芯片制作中由于环境中污染成分带来的随 机缺陷, 而且也来自于由于工艺的不完善所带来的***缺陷。
作为电子产业的基础和核心,集成电路产业的设计工艺将进入 22纳米及以 下技术代。 因此, 如何在研发过程中不断完善制作工艺、 将制作过程中出现的 电路缺陷控制到最少是 22纳米及以下是该工艺成功与否的关键所在。
由于特征尺寸的减小,电路图形的材料表面和边缘粗糙度逐渐成为科研人 员关注的重点。虽然电路图形的材料表面和边缘粗糙度在 22纳米以上的工艺中 已经存在, 但是直到 22纳米工艺中才成为影响电路性能的重要因素。
边缘粗糙度是芯片制作过程中的必有现象,由光刻技术精度和光刻胶蚀刻 工艺决定。 由于光刻工艺的误差, 线宽和边缘的误差可达到几个纳米。 在 22 纳米工艺中, 图形特征尺寸小, 严重的边缘粗糙度会形成边缘突起, 甚至形成 短路断路, 直接造成芯片的性能破坏。 22纳米及以下工艺中缺陷出现可能性更 高。 因此, 纳米量级的缺陷检测是集成电路制作过程中不可或缺的环节。
为避免在检测过程中对芯片造成污染,无损伤非接触式的光学检测技术已 成为重要的缺陷检测方法。
现有的光学检测设备中, 波长一般在 260纳米以上。这是由于 260纳米以下 的大功率激光成本高寿命短, 在检测设备很难使用; 而且, 在 200纳米波长以 下, 进入真空 UV波段, 即光被空气吸收衰减很快。 除非光学检测在真空环境 中完成, 否则 200纳米波长以下的检测仪也不能实现。 在这样的情况下, 加上 数值孔径小于 1的局限(通常检测***不能使用 immersion技术, 否则容易损伤 晶圓表面) , 理想光学***的分辨率大于 0.35微米。 随着芯片工艺向 2x纳米或 更小发展, 芯片缺陷检测的尺寸要求远远小于光学***的波长。 集成电路上纳 米量级的缺陷尺寸对光学缺陷检测***精度提出了很高的要求,传统的光学明 场成像技术已经很难达到工艺指标。
此外,传统光学***中的检测信号是成像平面的空间分布的光强信息。现 有技术通过调节参考光的强度来提高某些芯片部分的缺陷检测信号。 然而, 随 着缺陷的尺寸减小至纳米量级, 它的散射光的强度相比反射光很弱 (在 5 x 15 微米大小光斑的掠射角照射下,一个 20纳米直径的 Si02的颗粒在全方位角中的 散射强度仅为 0.01334ppm ) ,缺陷散射信号很容易淹没在反射光和 CCD的背景 噪音中。 发明内容
有鉴于此, 本发明实施例提供一种集成电路缺陷的光学检测方法和装置, 提高集成电路中缺陷检测的精度。
本发明实施例提供一种集成电路缺陷的光学检测方法, 包括:
通过螺旋相位调制***,接收来自集成电路上缺陷的散射光和反射光, 其 中,所述散射光经过所述螺旋相位调制***,在图像接收平面形成圓圏形状图 像; 所述反射光经过所述螺旋相位调制***的中心,在图像接收平面形成同相 位均匀背景光;所述圓圏形状图像与同相位均匀背景光在图像接收平面发生相 位干涉, 形成包含亮斑和暗斑的光斑图像;
根据所述光斑图像, 确定所述集成电路上缺陷的类别。
优选的, 所述螺旋相位调制***的螺旋相位调节范围为 (0, 2 π )。
优选的, 所述方法还包括: 调节所述缺陷的散射光和反射光的比例, 使得 反射光光强不超过散射光光强的 10倍。
优选的, 所述调节所述缺陷的散射光和反射光的比例,使得反射光光强不 超过散射光光强的 10倍, 包括:
在所述缺陷的反射光进入所述螺旋相位调制***之前的光路上设置可调 节光衰减片,通过所述可调节光衰减片调节反射光光强,使得所述缺陷的反射 光光强不超过散射光光强的 10倍。
优选的, 所述调节所述缺陷的散射光和反射光的比例,使得反射光光强不 超过散射光光强的 10倍, 包括:
在所述缺陷的反射光进入所述螺旋相位调制***之前的光路上设置滤光 片, 通过所述滤光片, 调节反射光的透过率, 使得所述缺陷的反射光光强不超 过散射光光强的 10倍。
优选的,所述根据所述光斑图像,确定所述集成电路上缺陷的类别, 包括: 根据所述光斑图像中亮斑和暗斑的分布属性,确定所述集成电路上缺陷的 类别。
一种集成电路缺陷的光学检测装置,包括:沿光路设置的光信号采集单元、 螺旋相位调制***、 图像接收单元及缺陷确定单元; 所述光信号采集单元采集 来自集成电路上缺陷的散射光和反射光,所述散射光和反射光通过所述螺旋相 位调制***在图像接收单元中的接收平面形成圓圏形状图像; 其中, 所述反射 光经过所述螺旋相位调制***的中心, 在图像接收平面形成同相位均匀背景 光; 所述圓圏形状图像与同相位均匀背景光在图像接收平面发生相位干涉, 形 成包含亮斑和暗斑的光斑图像; 所述缺陷确定单元根据所述光斑图像,确定所 述集成电路上缺陷的类别。
优选的, 所述螺旋相位调制***的螺旋相位范围为 (0, 2 π )。
优选的, 还包括:
光强调节单元, 用于调节所述缺陷的散射光和反射光的比例,使得反射光 光强不超过散射光光强的 10倍。
优选的, 所述光强调节单元包括: 设置在所述缺陷的反射光进入所述螺旋 相位片之前的光路上的可调节光衰减片。
优选的, 所述光强调节单元包括: 设置在所述缺陷的反射光进入所述螺旋 相位片之前的光路上的滤光片。
优选的, 所述缺陷确定单元根据所述光斑图像中亮斑和暗斑的分布属性, 确定所述集成电路上缺陷的类别。 同现有技术相比, 本发明提供的技术方案具有以下优点:
本发明实施例中,将螺旋相位技术应用于对于集成电路缺陷的检测中,在 光学***中设置螺旋相位调制***,将采集到的集成电路上缺陷的散射光和反 射光传输至螺旋相位调制***之后进行输出, 其中,散射光经过螺旋相位调制 ***, 因方向角的不同发生从 0到 2 π的相位变化, 在图像接收平面形成圓圏 形状图像; 反射光经过螺旋相位调制***的中心, 相位基本不发生变化, 在图 像接收平面形成同相位均匀背景光,圓圏形状图像与同相位均匀背景光在图像 接收平面发生相位干涉,在一定位置会完全干涉相加形成亮点,在相反的位置 会完全抵消形成暗斑,从而使得最终的光斑图像产生最大程度的亮度对比, 达 到更高的缺陷检测精度。
附图说明 为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术 描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动 的前提下, 还可以根据这些附图获得其他的附图。
图 1 为本发明实施例提供的一种集成电路缺陷的光学检测方法的步骤流 程图;
图 2为本发明实施例中螺旋相位片的相位分布示意图;
图 3为本发明实施例中螺旋相位 4f成像***示意图;
图 4 ( a ) 为传统明视野显微镜下缺陷检测信号的对比度示意图; 图 4 ( b ) 为本发明实施例中缺陷检测信号的对比度示意图;
图 5为本发明实施例提供的附加不同螺旋相位对干涉图案影响的示意图; 图 6为本发明实施例提供的短路缺陷对应的光斑图像;
图 7为本发明实施例提供的断路缺陷对应的光斑图像;
图 8 为本发明实施例提供的一种应用螺旋相位技术进行集成电路缺陷检 测的具体应用实例示意图。
具体实施方式 在集成电路中, 电路缺陷会影响甚至破坏芯片的正常功能, 直接导致器件 功能失败。因此,对于集成电路中缺陷的检测在集成电路制造工艺中至关重要。
本发明实施例将螺旋相位技术应用于对于集成电路缺陷的检测中,在光学 ***中设置螺旋相位调制***。下面首先对本发明实施例提供的一种集成电路 缺陷的光学检测方法进行说明, 参见图 1所示, 包括以下步骤:
步骤 101、 通过螺旋相位调制***, 接收来自集成电路上缺陷的散射光和 反射光, 其中, 所述散射光经过所述螺旋相位调制***, 在图像接收平面形成 圓圏形状图像; 所述反射光经过所述螺旋相位调制***的中心,在图像接收平 面形成同相位均匀背景光;所述圓圏形状图像与同相位均匀背景光在图像接收 平面发生相位干涉, 形成包含亮斑和暗斑的光斑图像;
步骤 102、 根据所述光斑图像, 确定所述集成电路上缺陷的类别。
上述实施例中,将螺旋相位技术应用于对于集成电路缺陷的检测中,在光 学***中设置螺旋相位调制***,将采集到的集成电路上缺陷的散射光和反射 光传输至螺旋相位调制***之后进行输出, 其中,散射光经过螺旋相位调制系 统, 因方向角的不同发生从 0到 2 π的相位变化, 在图像接收平面形成圓圏形 状图像; 反射光经过螺旋相位片的中心, 即光学***的中心, 相位基本不发生 变化,在图像接收平面形成同相位均匀背景光, 圓圏形状图像与同相位均匀背 景光在图像接收平面发生相位干涉,在一定位置会完全干涉相加形成亮点, 在 相反的位置会完全抵消形成暗斑,从而使得最终的光斑图像产生最大程度的亮 度对比, 达到更高的缺陷检测精度。
为了便于对本发明进一步的理解,下面结合本发明的具体实施方式对本发 明进行详细描述。 本发明实施例中,在成像***中的孔径光阑, 或接近于傅立叶平面的位置 上, 颗粒散射光的不同方位角的分布在空间上分开, 从而可以被独立的处理。 如图 2所示实施例中, 在螺旋相位技术中, 螺旋相位调制***可以为一螺旋相 位片 ( spiral phase plate ) , 该螺旋相位片可以设置于孔径光阑, 它的相位关系 为 exp ( ΐ φ ) , 其中, φ为垂直于光轴的傅立叶 (Fourier )平面中的方位角。
当光线通过螺旋相位片时, 光线的相位发生了变化, 相位变化范围为 0 到 2 π , 数值与方位角成线性关系。 如图 3所示, 在一个经典的 4f光学成像系 统中, 一个点光源的成像是它与傅立叶平面的通光孔径的卷积(convolution ) 的结果。在傅立叶平面放螺旋相位片后,一个点光源的成像是它与螺旋相位片 的卷积, 即圓圏形状的像, 这也就是螺旋相位***的点扩散函数(point spread function, PSF )。 沿着成像圓圏的圓周方向, 螺旋相位***的点成像 PSF的相 位从 0到 2 π变化着。
通常, 集成电路上的缺陷尺寸远小于光波长, 可以是 2χ纳米或更小量级, 因此, 在成像***中可视为点光源, 该点光源的散射光分布在立体角中, 散射 光具体的分布角度由缺陷的特定形状、 大小和入射光的性质等决定。缺陷的散 射光透过螺旋相位片, 因方位角的不同发生从 0到 2 π的相位变化, 再通过透 镜***成像在 CCD上。 集成电路表面的反射光同样透过螺旋相位片的中心, 相位基本不变化, 再通过透镜***均匀照射在 CCD上, 形成均匀同相位的背 景光强。
在 CCD的图像接收平面上, 由于缺陷散射后在 CCD上成像圓圏形状,与 周围的反射光背景发生相位干涉。 由于缺陷散射光圏的相位从 0到 2 π变化, 所以在一定位置会与反射光背景发生完全干涉相加形成亮斑,在相反的位置会 完全抵消形成暗斑。缺陷散射光圏的完全相加干涉和完全抵消干涉形成了最大 程度的亮度对比。
如图 4 ( b )所示, 本发明实施例对于缺陷检测的信号对比度大大高于同 等条件下的传统明视野显微镜下的信号对比度(参见图 4 ( a ) )。 这里以桥型 短路缺陷为例,从图 4可见, 本发明实施例对于缺陷检测的信号对比度是明视 野显微镜成像下信号对比度的近十倍。
可见, 使用螺旋相位技术在缺陷检测中, 能够大大增加缺陷的亮度对比, 从而大大增加缺陷检测信号。
在本发明实施例中, 无须调节缺陷反射光与散射光的相位差, 因为任何缺 陷散射光在成像中一定会形成 0到 2 π的相位变化, 在相同相位的反射光背景 中,一定会形成完全加强的干涉和完全抵消的干涉,从而形成最大的图像对比。
需要说明的是, 为了获得更好的干涉图案, 即增加干涉图案中明暗光斑之 间的对比度, 通常需要调节缺陷反射光的强度。 实际应用中, 通过调节所述缺 陷的散射光和反射光的比例, 使得反射光光强不超过散射光光强的 10倍。 具 体实现可以是: 衰减缺陷反射光, 通过衰减, 调节缺陷的散射光和反射光的光 强相当。具体实施时, 可以在缺陷的反射光进入螺旋相位片之前的光路上设置 可调节光衰减片,通过该可调节光衰减片调节缺陷的散射光和反射光的光强相 当。此外,还可以在所述缺陷的反射光进入所述螺旋相位调制***之前的光路 上设置滤光片, 通过所述滤光片, 调节反射光的透过率, 使得所述缺陷的反射 光光强不超过散射光光强的 10倍。
此外,通过研究发现, 上述干涉图案具体成像与螺旋相位片的螺旋相位范 围有关, 即: 干涉图案中光斑数与所加螺旋相位的 π位成正比, 如图 5所示, 所加螺旋相位分别为 (0, π )、 (0, 2 π )、 (0, 3 π )及(0, 4 π ), 可见, 加 2 π相位更加容易看清楚光斑的旋转图形, 从而进行缺陷类型的分辨。 因此, 优选的, 可以选择螺旋相位调制***的螺旋相位调节范围为 (0, 2 π )。
需要指出的是,缺陷散射经过螺旋相位片干涉形成的光斑形状与缺陷散射 在立体角中的光强和相位分布紧密相关,而每一种缺陷的散射光强和相位分布 都是不同的, 反映了每种缺陷的形状、 材料和大小的信息。 因此, 可以通过缺 陷成像中亮斑和暗斑的分布属性来判断缺陷的种类。
本发明实施例中,光斑的分布属性主要指光斑中的最亮处和最暗处相对于 图像中心的位置, 例如: 光斑的最亮处或亮斑在图像中位于相对于光斑中心 90度方位角的位置, 而暗斑位于相对于光斑中心 270度方位角的位置; 或者, 亮斑位于相对于光斑中心 180度方位角的位置, 而暗斑位于相对于光斑中心 0 度方位角的位置。 光斑的分布属性有多种可能分布, 不同的分布对应于不同的 缺陷类别。 例如: 当所述光斑图像为上明下暗的光斑, 即: 亮斑在相对于光斑 中心 90度方位角, 而暗斑在相对于光斑中心 270度方位角时, 所述缺陷为短 路缺陷, 如图 6所示; 当所述光斑图像为左明右暗的光斑, 即亮斑在相对于光 斑中心 180度方位角, 而暗斑在相对于光斑中心 0度方位角时, 所述缺陷为断 路缺陷, 如图 7所示。 本发明实施例还提供了一种集成电路缺陷的光学检测装置, 包括: 沿光路 设置的光信号采集单元、 螺旋相位调制***、 图像接收单元及缺陷确定单元; 所述光信号采集单元采集来自集成电路上缺陷的散射光和反射光,所述散射光 和反射光通过所述螺旋相位调制***在图像接收单元中的接收平面形成圓圏 形状图像; 其中, 所述反射光经过所述螺旋相位调制***的中心, 在图像接收 平面形成同相位均匀背景光;所述圓圏形状图像与同相位均匀背景光在图像接 收平面发生相位干涉, 形成包含亮斑和暗斑的光斑图像; 所述缺陷确定单元根 据所述光斑图像, 确定所述集成电路上缺陷的类别。
参考图 8, 示出了一种应用螺旋相位技术进行集成电路缺陷检测的具体应 用实例。 具体实施时, 螺旋相位调制***可以为一螺旋相位片, 该螺旋相位片 可以设置在成像***中的孔径光阑, 或接近于傅立叶平面的位置上。 图 8中, 集成电路上的缺陷在成像***中可视为点光源,缺陷的散射光被显微镜镜头采 集, 透过螺旋相位片, 因方位角的不同发生从 0到 2 π的相位变化, 再通过透 镜***成像在 CCD上。 集成电路表面的反射光同样透过螺旋相位片的中心, 相位基本不变化, 再通过透镜***均匀照射在 CCD上, 形成均匀同相位的背 景光强。 图 6中, 入射光由激光光源(例如: arc lamp )产生。 在 CCD的图像 接收平面上, 由于缺陷散射后在 CCD上成像圓圏形状, 与周围的反射光背景 发生相位干涉。 由于缺陷散射光圏的相位从 0到 2 π变化, 所以在一定位置会 与反射光背景发生完全干涉相加形成亮斑, 在相反的位置会完全抵消形成暗 斑。 缺陷散射光圏的完全相加干涉和完全抵消干涉形成了最大程度的亮度对 比。 可见, 使用螺旋相位技术在缺陷检测中, 能够大大增加缺陷的亮度对比, 从而大大增加缺陷检测信号。
上述集成电路缺陷的光学检测装置中,无须调节缺陷反射光与散射光的相 位差, 因为任何缺陷散射光在成像中一定会形成 0到 2 π的相位变化, 在相同 相位的反射光背景中, 一定会形成完全加强的干涉和完全抵消的干涉,从而形 成最大的图像对比。
需要说明的是, 为了获得更好的干涉图案, 即增加干涉图案中明暗光斑之 间的对比度, 通常需要调节缺陷反射光的强度。 因此, 上述装置中, 还需设置 光强调节单元, 用于调节所述缺陷的散射光和反射光的比例,使得反射光光强 不超过散射光光强的 10倍。 具体实现可以是: 通过该光强调节单元衰减缺陷 反射光, 通过衰减, 调节缺陷的反射光光强不超过散射光光强的 10倍。 具体 实施时,该光强调节单元可以包括在缺陷的反射光进入螺旋相位片之前的光路 上设置的可调节光衰减片,通过该可调节光衰减片调节缺陷的散射光和反射光 的光强比例。 除此之外, 该光强调节单元还可以包括在缺陷的反射光进入螺旋 相位片之前的光路上设置的滤光片, 通过所述滤光片, 调节反射光的透过率, 使得所述缺陷的反射光光强不超过散射光光强的 10倍。
此外, 优选的, 可以选择螺旋相位调制***的螺旋相位调节范围为(0, 2 π )。 这是由于, 加 2 π相位更加容易看清楚光斑的旋转图形, 从而进行缺陷 类型的分辨。
缺陷散射经过螺旋相位片干涉形成的光斑形状与缺陷散射在立体角中的 光强和相位分布紧密相关, 而每一种缺陷的散射光强和相位分布都是不同的, 反映了每种缺陷的形状、 材料和大小的信息。 因此, 缺陷确定单元可以通过缺 陷成像中亮斑和暗斑的分布属性来判断缺陷的种类。例如: 当所述光斑图像为 上明下暗的光斑, 即: 亮斑在相对于光斑中心 90度方位角, 而暗斑在相对于 光斑中心 270度方位角时, 所述缺陷为短路缺陷; 当所述光斑图像为左明右暗 的光斑, 即亮斑在相对于光斑中心 180度方位角, 而暗斑在相对于光斑中心 0 度方位角时, 所述缺陷为断路缺陷。 对于装置实施例而言, 由于其基本相应于方法实施例, 所以描述得比较筒 单,相关之处参见方法实施例的部分说明即可。 以上所描述的装置实施例仅仅 是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上 分开的,作为模块显示的部件可以是或者也可以不是物理模块, 即可以位于一 个地方, 或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的 部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出 创造性劳动的情况下, 即可以理解并实施。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本 发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见 的,本文中所定义的一般原理可以在不脱离本发明实施例的精神或范围的情况 下, 在其它实施例中实现。 因此, 本发明实施例将不会被限制于本文所示的这 些实施例, 而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims

权 利 要 求
1、 一种集成电路缺陷的光学检测方法, 其特征在于, 包括:
通过螺旋相位调制***,接收来自集成电路上缺陷的散射光和反射光, 其 中,所述散射光经过所述螺旋相位调制***,在图像接收平面形成圓圏形状图 像; 所述反射光经过所述螺旋相位调制***的中心,在图像接收平面形成同相 位均匀背景光;所述圓圏形状图像与同相位均匀背景光在图像接收平面发生相 位干涉, 形成包含亮斑和暗斑的光斑图像;
根据所述光斑图像, 确定所述集成电路上缺陷的类别。
2、 根据权利要求 1所述的集成电路缺陷的光学检测方法, 其特征在于, 所述螺旋相位调制***的螺旋相位调节范围为 (0, 2 π )。
3、 根据权利要求 1所述的集成电路缺陷的光学检测方法, 其特征在于, 所述方法还包括: 调节所述缺陷的散射光和反射光的比例,使得反射光光强不 超过散射光光强的 10倍。
4、 根据权利要求 3所述的集成电路缺陷的光学检测方法, 其特征在于, 所述调节所述缺陷的散射光和反射光的比例,使得反射光光强不超过散射光光 强的 10倍, 包括:
在所述缺陷的反射光进入所述螺旋相位调制***之前的光路上设置可调 节光衰减片,通过所述可调节光衰减片调节反射光光强,使得所述缺陷的反射 光光强不超过散射光光强的 10倍。
5、 根据权利要求 3所述的集成电路缺陷的光学检测方法, 其特征在于, 所述调节所述缺陷的散射光和反射光的比例,使得反射光光强不超过散射光光 强的 10倍, 包括:
在所述缺陷的反射光进入所述螺旋相位调制***之前的光路上设置滤光 片, 通过所述滤光片, 调节反射光的透过率, 使得所述缺陷的反射光光强不超 过散射光光强的 10倍。
6、 根据权利要求 1-5 中任一项所述的集成电路缺陷的光学检测方法, 其 特征在于, 所述根据所述光斑图像, 确定所述集成电路上缺陷的类别, 包括: 根据所述光斑图像中亮斑和暗斑的分布属性,确定所述集成电路上缺陷的 类别。
7、 一种集成电路缺陷的光学检测装置, 其特征在于, 包括: 沿光路设置 的光信号采集单元、 螺旋相位调制***、 图像接收单元及缺陷确定单元; 所述 光信号采集单元采集来自集成电路上缺陷的散射光和反射光,所述散射光和反 射光通过所述螺旋相位调制***在图像接收单元中的接收平面形成圓圏形状 图像; 其中, 所述反射光经过所述螺旋相位调制***的中心, 在图像接收平面 形成同相位均匀背景光;所述圓圏形状图像与同相位均匀背景光在图像接收平 面发生相位干涉, 形成包含亮斑和暗斑的光斑图像; 所述缺陷确定单元根据所 述光斑图像, 确定所述集成电路上缺陷的类别。
8、 根据权利要求 7所述的集成电路缺陷的光学检测装置, 其特征在于, 所述螺旋相位调制***的螺旋相位范围为 (0, 2 π )。
9、 根据权利要求 7所述的集成电路缺陷的光学检测装置, 其特征在于, 还包括:
光强调节单元, 用于调节所述缺陷的散射光和反射光的比例,使得反射光 光强不超过散射光光强的 10倍。
10、 根据权利要求 9所述的集成电路缺陷的光学检测装置, 其特征在于, 所述光强调节单元包括:设置在所述缺陷的反射光进入所述螺旋相位片之前的 光路上的可调节光衰减片。
11、 根据权利要求 9所述的集成电路缺陷的光学检测装置, 其特征在于, 所述光强调节单元包括:设置在所述缺陷的反射光进入所述螺旋相位片之前的 光路上的滤光片。
12、 根据权利要求 7-11 中任一项所述的集成电路缺陷的光学检测装置, 其特征在于, 所述缺陷确定单元根据所述光斑图像中亮斑和暗斑的分布属性, 确定所述集成电路上缺陷的类别。
PCT/CN2012/077087 2011-09-22 2012-06-18 一种集成电路缺陷的光学检测方法和装置 WO2013040918A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110283462.5A CN103018202B (zh) 2011-09-22 2011-09-22 一种集成电路缺陷的光学检测方法和装置
CN201110283462.5 2011-09-22

Publications (1)

Publication Number Publication Date
WO2013040918A1 true WO2013040918A1 (zh) 2013-03-28

Family

ID=47913838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077087 WO2013040918A1 (zh) 2011-09-22 2012-06-18 一种集成电路缺陷的光学检测方法和装置

Country Status (2)

Country Link
CN (1) CN103018202B (zh)
WO (1) WO2013040918A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103646895B (zh) * 2013-11-29 2016-05-04 上海华力微电子有限公司 检测缺陷扫描程式灵敏度的方法
CN110501817B (zh) * 2019-09-05 2021-07-13 上海理工大学 产生时空涡旋光场的方法及时空涡旋光场的检测方法
CN111103757A (zh) * 2020-01-09 2020-05-05 中国科学院微电子研究所 Euv掩模缺陷检测***及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249789A (ja) * 1993-02-26 1994-09-09 Hitachi Ltd 欠陥検査装置およびその方法
JPH08304296A (ja) * 1995-03-08 1996-11-22 Hitachi Ltd 異物等の欠陥検出方法およびそれを実行する装置
JPH08327557A (ja) * 1995-06-02 1996-12-13 Nikon Corp 欠陥検査装置及び方法
CN102089616A (zh) * 2008-06-03 2011-06-08 焕·J·郑 干涉缺陷检测和分类
CN102116745A (zh) * 2009-12-30 2011-07-06 上海允科自动化有限公司 一种ic元件检测***

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755702A (ja) * 1993-08-12 1995-03-03 Hitachi Ltd 結晶欠陥計測装置及びそれを用いた半導体製造装置
JPH07297248A (ja) * 1994-04-20 1995-11-10 Hitachi Ltd 結晶欠陥計測装置および半導体装置の製造方法
US5883714A (en) * 1996-10-07 1999-03-16 Phase Metrics Method and apparatus for detecting defects on a disk using interferometric analysis on reflected light
US7002695B2 (en) * 2002-05-07 2006-02-21 Applied Materials Inc. Dual-spot phase-sensitive detection
WO2006072581A1 (en) * 2005-01-10 2006-07-13 Medizinische Universität Innsbruck Spiral phase contrast imaging in microscopy
JP4498185B2 (ja) * 2005-03-23 2010-07-07 株式会社東芝 基板検査方法、半導体装置の製造方法および基板検査装置
JP4724833B2 (ja) * 2006-02-27 2011-07-13 国立大学法人 東京大学 高解像検出装置及び方法
AU2009202140A1 (en) * 2009-05-29 2010-12-16 Canon Kabushiki Kaisha Spiral phase optical aberration measurements
JP4916573B2 (ja) * 2010-01-28 2012-04-11 パナソニック株式会社 光干渉計測方法および光干渉計測装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249789A (ja) * 1993-02-26 1994-09-09 Hitachi Ltd 欠陥検査装置およびその方法
JPH08304296A (ja) * 1995-03-08 1996-11-22 Hitachi Ltd 異物等の欠陥検出方法およびそれを実行する装置
JPH08327557A (ja) * 1995-06-02 1996-12-13 Nikon Corp 欠陥検査装置及び方法
CN102089616A (zh) * 2008-06-03 2011-06-08 焕·J·郑 干涉缺陷检测和分类
CN102116745A (zh) * 2009-12-30 2011-07-06 上海允科自动化有限公司 一种ic元件检测***

Also Published As

Publication number Publication date
CN103018202B (zh) 2014-10-01
CN103018202A (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
US9915621B2 (en) Extreme ultraviolet (EUV) substrate inspection system with simplified optics and method of manufacturing thereof
US20170363547A1 (en) Defect detection method and defect detection device and defect observation device provided with same
KR20180028072A (ko) Euv 이미징을 위한 장치 및 이의 이용 방법
US7889338B2 (en) Coordinate measuring machine and method for structured illumination of substrates
JP6857186B2 (ja) 改善されたスポットサイズ能力を有する単波長エリプソメトリー
US9157870B2 (en) Pattern test apparatus
JP2023075201A (ja) 粒子検出のためのシステム及び方法
US9607833B2 (en) System and method for photomask particle detection
US6636303B2 (en) Foreign substance inspecting method and apparatus, which detect a height of a foreign substance, and an exposure apparatus using this inspecting apparatus
WO2013040918A1 (zh) 一种集成电路缺陷的光学检测方法和装置
US20060091334A1 (en) Con-focal imaging system and method using destructive interference to enhance image contrast of light scattering objects on a sample surface
CN110050232A (zh) 量测设备、光刻***和测量结构的方法
US20080055606A1 (en) Apparatus and method for inspecting a pattern and method for manufacturing a semiconductor device
US20230213853A1 (en) Photomask inspection method and apparatus thereof
JP5218111B2 (ja) 反射型フォトマスクブランクス、反射型フォトマスク、反射型フォトマスクの検査装置及びその検査方法
Badger et al. Evaluation of non-actinic EUV mask inspection and defect printability on multiple EUV mask absorbers
US7862965B2 (en) Method for detecting defects which originate from chemical solution and method of manufacturing semiconductor device
JP2020060521A (ja) 異物検出装置、露光装置及び物品の製造方法
TWI840582B (zh) 用於光學表面缺陷材料特性化的方法及系統
JP3880904B2 (ja) アライメント検出方法、アライメント検出装置、デバイス製造方法及びデバイス製造装置
TW202109017A (zh) 用於光學表面缺陷材料特性化的方法及系統
JP2001118766A (ja) X線マスク及びそれを用いたデバイスの製造方法
JP2005077201A (ja) 異物検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833681

Country of ref document: EP

Kind code of ref document: A1