CN111103757A - Euv掩模缺陷检测***及方法 - Google Patents

Euv掩模缺陷检测***及方法 Download PDF

Info

Publication number
CN111103757A
CN111103757A CN202010024305.1A CN202010024305A CN111103757A CN 111103757 A CN111103757 A CN 111103757A CN 202010024305 A CN202010024305 A CN 202010024305A CN 111103757 A CN111103757 A CN 111103757A
Authority
CN
China
Prior art keywords
mask
detected
extreme ultraviolet
euv
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010024305.1A
Other languages
English (en)
Inventor
刘立拓
周维虎
余晓娅
吴晓斌
陈晓梅
王宇
石俊凯
黎尧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN202010024305.1A priority Critical patent/CN111103757A/zh
Publication of CN111103757A publication Critical patent/CN111103757A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95676Masks, reticles, shadow masks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

一种EUV掩模缺陷检测***及方法,其中EUV掩模检测***包括:极紫外光束,所述极紫外光束斜射入一待测掩模表面;反光杯,用于收集并反射因待测掩模表面缺陷引起的散射光;传输部件,用于将所述反光杯发出的反射光进行传输;探测器,用于接收所述传输部件传输的光信号,获取待测掩模表面缺陷信息。本发明设计将极紫外光束斜射入待测掩模,允许反光杯作为收集部件更加靠近待测掩模表面,进而增大了收集部件NA,提高缺陷引起的散射光收集效率。

Description

EUV掩模缺陷检测***及方法
技术领域
本发明涉及EUV光刻技术领域,尤其涉及一种EUV掩模缺陷检测***及方法。
背景技术
无缺陷EUV(extremely ultraviolet)掩模制备是制约EUV光刻走向量产的关键问题之一。因此EUV掩模缺陷检测是实现EUV光刻的关键核心技术。EUV掩模缺陷可以分为振幅型缺陷和相位型缺陷两种,其中相位型缺陷是最重要的缺陷,因为它的存在不能修复。相位缺陷也是研究最多的缺陷。因相位缺陷为EUV掩模版多层结构畸变引起,需要穿透多层结构进行检测,传统基于深紫外或紫外的检测方法无法满足这种要求。
为此,研究人员利用actinic方法,即基于EUV波段的光源穿透多层结构进行缺陷检测,且有几种最典型的实现方法,其中最典型的是基于Schwarzschild光学***的暗场检测方法,该方法如图1所示。主要通过该方法由两个曲面镜和一个平面镜组成,平面镜除了对入射光具有转折作用外,还可以遮挡反射光,两曲面镜将缺陷产生的散射光收集到CCD(charge-coupled device,电荷耦合元件)。
该方法的缺点一方面是由于平面反射镜的存在使得曲面反射镜不能太靠近掩模版进行缺陷检测,这就限制了缺陷散射光的接收NA(numerical aperture,数值孔径),同时若想增大接收NA必须增大曲面反射镜的尺寸,曲面反射镜的尺寸增大一方面增大了曲面反射镜的加工难度,另一方面增大了加工成本;另一方面,当缺陷较小,缺陷散射光信号与噪声相当时,因信噪比下降***很难检测出缺陷。总之,急需一种方法能够使接收***无限靠近掩模版进行检测,无需增大接收镜面积而使接收NA很大,同时能够增加探测***信噪比,进一步提高检测灵敏度。
发明内容
有鉴于此,本发明的主要目的在于提供一种EUV掩模缺陷检测***和方法,以期至少部分地解决上述提及的技术问题的至少之一。
作为本发明的一个方面,提供一种EUV掩模缺陷检测***,包括:
极紫外光束,所述极紫外光束斜射入一待测掩模表面;
反光杯,用于收集并反射因待测掩模表面缺陷引起的散射光;
传输部件,用于将所述反光杯发出的反射光进行传输;
探测器,用于接收所述传输部件传输的光信号,获取待测掩模表面缺陷信息。
作为本发明的另一个方面,还提供一种采用如上述的EUV掩模缺陷检测***的检测方法,所述检测方法包括如下步骤:
步骤1:将极紫外光的光束斜射入待测掩模上,待测掩模因表面缺陷发出散射光;
步骤2:反光杯收集并反射所述散射光;
步骤3:传输部件将所述反光杯发出的反射光进行传输;
步骤4:探测器接收传输部件传输的光信号,获取待测掩模表面的缺陷信息。
基于上述技术方案,本发明相较于现有技术至少具有以下有益效果的其中之一或其中一部分:
本发明的EUV掩模缺陷检测***,设计将极紫外光束斜射入待测掩模,允许反光杯作为收集部件更加靠近待测掩模表面,进而增大了收集部件NA,提高缺陷引起的散射光收集效率。
另外,本发明还可以利用两束极紫外光束入射产生干涉调制,当掩模运动时,将产生缺陷引起的周期性散射信号(即时间序列图像),通过傅里叶变换得到信号频率,便可以将与噪声相当的缺陷信息提取出来,该方法增大了信噪比,进一步提高了缺陷检测灵敏度。
附图说明
图1是现有技术Schwarzschild光学检测***;
图2是本发明实施例EUV掩模缺陷检测***光路图。
以上附图中,附图标记含义如下:
1、第一平面反射镜;2、第二平面反射镜;3、待测掩模;4、反光杯;5、曲面反射镜;6、极紫外CCD相机。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
作为本发明的一个方面,提供一种EUV掩模缺陷检测***,包括:
极紫外光束,极紫外光束斜射入一待测掩模3表面;
反光杯4,用于收集并反射因待测掩模3表面缺陷引起的散射光;
传输部件,用于将反光杯4发出的反射光进行传输;
探测器,用于接收传输部件传输的光信号,获取待测掩模3表面缺陷信息。
值得一提的是,本发明的主要目的为增大收集部件NA。本发明利用EUV光斜入射,且利用反光杯4在垂直方向接收待测掩模3缺陷引起的散射光,并通过反光杯4顶部的传输部件最终将光信号汇聚入探测器中,从而实现了增大接收NA。
更为具体的,NA为数值孔径,是一个无量纲的数,用以衡量该***能够收集的光的角度范围。
在本发明的实施例中,极紫外光束包括单束,单束极紫外光束通过第一平面反射镜1反射斜射入待测掩模3,在本发明的其他实施例中,极紫外光束并不局限于单束,如图2所示,极紫外光束还可以包括两束,两束极紫外光束分别通过第一平面反射镜1和第二平面反射镜2反射斜射入待测掩模,在待测掩模3表面形成干涉调制。
在本发明的实施例中,反光杯4的内壁面型为偶次抛物面面型,反光杯的内壁为钼硅多层结构。
反光杯4作为收集部件的主要作用为增大照明区域散射光的收集角度,增大收集部件NA。本发明的这种设计方法可以将收集部件更加靠近待测掩模3,进而增大了收集部件NA。
在本发明的实施例中,传输部件包括曲面反射镜5,曲面反射镜5设置于反光杯4的顶部,用于将反光杯4发出的反射光进行反射传输;
其中,曲面反射镜5的面型为双曲面,曲面反射镜5为钼硅多层结构。
在本发明的实施例中,探测器为极紫外CCD相机6。
在本发明的实施例中,EUV掩模缺陷检测***还包括扫描台,设置于待测掩模3下方,用于带动待测掩模3进行步进移动;
EUV掩模缺陷检测***还包括真空腔,反光杯4、传输部件、探测器和扫描台设置于真空腔内。
作为本发明的另一个方面,还提供一种采用如上述的EUV掩模缺陷检测***的检测方法,检测方法包括如下步骤:
步骤1:将极紫外光的光束斜射入待测掩模3上,待测掩模3因表面缺陷发出散射光;
步骤2:反光杯4收集并反射散射光;
步骤3:传输部件将反光杯4发出的反射光进行传输;
步骤4:探测器接收传输部件传输的光信号,获取待测掩模3表面的缺陷信息。
在本发明的实施例中,当极紫外光束为单束光时,探测器得到待测掩模3表面缺陷引起的散射光形成的亮斑。
在本发明的实施例中,当极紫外光束为双束光时,探测器得到时间序列图像,经傅里叶变换得到待测掩模3表面缺陷信息。
更为具体的,当EUV汇聚光束经第一平面反射镜1(单束)或如图2所示,同时经第一平面反射镜1和第二平面反射镜2(双束)汇聚于待测掩模3表面,待测掩模3表面因存在缺陷将汇聚的EUV光散射到各个方向,大NA反光杯4将这些反射光收集并经位于反光杯4顶部的曲面反射镜5反射进入探测器极紫外光CCD相机6中,当采用单束照明时,探测器极紫外光CCD相机6将直接得到缺陷引起的散射光亮斑,当为双束照明时,探测器极紫外光CCD相机6将得到的时间序列图像经过傅里叶变换便得到缺陷信息,并进一步提高缺陷检测灵敏度。
在待测掩模3表面产生干涉调制,并以一定速度扫描平移待测掩模3,当待测掩模3存在缺陷时,会造成调制的干涉条纹散射,由于待测掩模3的运动,极紫外光CCD相机6将探测到周期性散射光信号,经过傅里叶变换,便可以得到散射光信号的频率,其频率大小与缺陷对光场的影响相关,通过这种方法便可以提取淹没在噪声中或与噪声相当的周期性缺陷散射信号,进一步增强***缺陷检测灵敏度,如图2所示。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换,例如:
改变光源波长;
替换任何光学元件或更改其形状及尺寸;
将图中两束光干涉改为单束光斜入射;
综上所述,在本发明EUV掩模缺陷检测***中,将如图1所示的传统的基于Schwarzschild光学***改为如图2所示光束斜入射***,这种设计一方面可以允许收集部件更加靠近待测掩模3表面,进而增大了收集部件NA,提高缺陷引起的散射光收集效率。另一方面,可以利用两束光入射产生干涉调制,当待测掩模3运动时,将产生缺陷引起的周期性散射信号,通过傅里叶变换得到信号频率,便可以将与噪声相当的缺陷信息提取出来,该方法增大了信噪比,进一步提高了缺陷检测灵敏度。
以上的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种EUV掩模缺陷检测***,其特征在于,包括:
极紫外光束,所述极紫外光束斜射入一待测掩模表面;
反光杯,用于收集并反射因待测掩模表面缺陷引起的散射光;
传输部件,用于将所述反光杯发出的反射光进行传输;
探测器,用于接收所述传输部件传输的光信号,获取待测掩模表面缺陷信息。
2.如权利要求1所述的一种EUV掩模缺陷检测***,其特征在于,所述极紫外光束包括单束,单束极紫外光束通过第一平面反射镜反射斜射入所述待测掩模。
3.如权利要求1所述的一种EUV掩模缺陷检测***,其特征在于,所述极紫外光束包括两束,两束极紫外光束分别通过第一平面反射镜和第二平面反射镜反射斜射入所述待测掩模,在所述待测掩模表面形成干涉调制。
4.如权利要求1所述的一种EUV掩模缺陷检测***,其特征在于,所述反光杯的内壁面型为偶次抛物面面型,所述反光杯的内壁为钼硅多层结构。
5.如权利要求1所述的一种EUV掩模缺陷检测***,其特征在于,所述传输部件包括曲面反射镜,所述曲面反射镜设置于所述反光杯的顶部,用于将所述反光杯发出的反射光进行反射传输;
其中,所述曲面反射镜的面型为双曲面,所述曲面反射镜为钼硅多层结构。
6.如权利要求1所述的一种EUV掩模缺陷检测***,其特征在于,所述探测器为极紫外CCD相机。
7.如权利要求1所述的一种EUV掩模缺陷检测***,其特征在于,所述EUV掩模缺陷检测***还包括扫描台,设置于所述待测掩模下方,用于带动所述待测掩模进行步进移动;
所述EUV掩模缺陷检测***还包括真空腔,所述反光杯、传输部件、探测器和扫描台设置于所述真空腔内。
8.一种采用如权利要求1至7任一项所述的EUV掩模缺陷检测***的检测方法,其特征在于,所述检测方法包括如下步骤:
步骤1:将极紫外光的光束斜射入待测掩模上,待测掩模因表面缺陷发出散射光;
步骤2:反光杯收集并反射所述散射光;
步骤3:传输部件将所述反光杯发出的反射光进行传输;
步骤4:探测器接收传输部件传输的光信号,获取待测掩模表面的缺陷信息。
9.如权利要求8所述检测方法,其特征在于,当极紫外光束为单束光时,所述探测器得到待测掩模表面缺陷引起的散射光形成的亮斑。
10.如权利要求8所述检测方法,其特征在于,当极紫外光束为双束光时,所述探测器得到时间序列图像,经傅里叶变换得到待测掩模表面缺陷信息。
CN202010024305.1A 2020-01-09 2020-01-09 Euv掩模缺陷检测***及方法 Pending CN111103757A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010024305.1A CN111103757A (zh) 2020-01-09 2020-01-09 Euv掩模缺陷检测***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010024305.1A CN111103757A (zh) 2020-01-09 2020-01-09 Euv掩模缺陷检测***及方法

Publications (1)

Publication Number Publication Date
CN111103757A true CN111103757A (zh) 2020-05-05

Family

ID=70427352

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010024305.1A Pending CN111103757A (zh) 2020-01-09 2020-01-09 Euv掩模缺陷检测***及方法

Country Status (1)

Country Link
CN (1) CN111103757A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112347527A (zh) * 2020-11-09 2021-02-09 武汉科技大学 一种用于暗场缺陷检测的光罩掩模板图形设计方法
CN113791076A (zh) * 2021-08-24 2021-12-14 中国科学院微电子研究所 暗场成像检测***
CN114895524A (zh) * 2022-04-25 2022-08-12 上海传芯半导体有限公司 Euv光掩模体的缺陷检测方法及***
WO2023048853A1 (en) * 2021-09-22 2023-03-30 Intel Corporation Measurement tool and methods for euv lithography masks
WO2023048825A1 (en) * 2021-09-23 2023-03-30 Intel Corporation Measurement tool and method for lithography masks
CN116359247A (zh) * 2023-03-03 2023-06-30 中国科学院上海高等研究院 掩模缺陷的检测方法
US12032298B2 (en) 2021-09-23 2024-07-09 Intel Corporation Measurement tool and method for lithography masks

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1740782A (zh) * 2005-09-15 2006-03-01 中国科学院上海光学精密机械研究所 倾斜入射光散射式硅片表面缺陷检测仪
US20120236281A1 (en) * 2011-03-16 2012-09-20 Kla-Tencor Corporation Source multiplexing illumination for mask inspection
CN103018202A (zh) * 2011-09-22 2013-04-03 中国科学院微电子研究所 一种集成电路缺陷的光学检测方法和装置
CN103365073A (zh) * 2012-04-10 2013-10-23 中国科学院微电子研究所 极紫外光刻掩模缺陷检测***
US20150192459A1 (en) * 2014-01-08 2015-07-09 Kla-Tencor Corporation Extreme ultra-violet (euv) inspection systems
CN106645173A (zh) * 2016-12-24 2017-05-10 合肥知常光电科技有限公司 一种检测表面缺陷的散射光高效收集装置及收集方法
CN109578824A (zh) * 2018-12-17 2019-04-05 华中科技大学 一种基于抛物面反光杯的白光均匀照明装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1740782A (zh) * 2005-09-15 2006-03-01 中国科学院上海光学精密机械研究所 倾斜入射光散射式硅片表面缺陷检测仪
US20120236281A1 (en) * 2011-03-16 2012-09-20 Kla-Tencor Corporation Source multiplexing illumination for mask inspection
CN103018202A (zh) * 2011-09-22 2013-04-03 中国科学院微电子研究所 一种集成电路缺陷的光学检测方法和装置
CN103365073A (zh) * 2012-04-10 2013-10-23 中国科学院微电子研究所 极紫外光刻掩模缺陷检测***
US20150192459A1 (en) * 2014-01-08 2015-07-09 Kla-Tencor Corporation Extreme ultra-violet (euv) inspection systems
CN106645173A (zh) * 2016-12-24 2017-05-10 合肥知常光电科技有限公司 一种检测表面缺陷的散射光高效收集装置及收集方法
CN109578824A (zh) * 2018-12-17 2019-04-05 华中科技大学 一种基于抛物面反光杯的白光均匀照明装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112347527A (zh) * 2020-11-09 2021-02-09 武汉科技大学 一种用于暗场缺陷检测的光罩掩模板图形设计方法
CN112347527B (zh) * 2020-11-09 2022-06-03 武汉科技大学 一种用于暗场缺陷检测的光罩掩模板图形设计方法
CN113791076A (zh) * 2021-08-24 2021-12-14 中国科学院微电子研究所 暗场成像检测***
WO2023048853A1 (en) * 2021-09-22 2023-03-30 Intel Corporation Measurement tool and methods for euv lithography masks
US11815810B2 (en) 2021-09-22 2023-11-14 Intel Corporation Measurement tool and methods for EUV lithography masks
WO2023048825A1 (en) * 2021-09-23 2023-03-30 Intel Corporation Measurement tool and method for lithography masks
US12032298B2 (en) 2021-09-23 2024-07-09 Intel Corporation Measurement tool and method for lithography masks
CN114895524A (zh) * 2022-04-25 2022-08-12 上海传芯半导体有限公司 Euv光掩模体的缺陷检测方法及***
CN116359247A (zh) * 2023-03-03 2023-06-30 中国科学院上海高等研究院 掩模缺陷的检测方法
CN116359247B (zh) * 2023-03-03 2024-05-10 中国科学院上海高等研究院 掩模缺陷的检测方法

Similar Documents

Publication Publication Date Title
CN111103757A (zh) Euv掩模缺陷检测***及方法
US7436507B2 (en) Method and apparatus for inspecting a pattern
US8305568B2 (en) Surface inspection method and surface inspection apparatus
US8878119B2 (en) Optical inspection method and optical inspection apparatus
US20100225903A1 (en) Pattern defect inspection apparatus and method
JPH07209202A (ja) 表面状態検査装置、該表面状態検査装置を備える露光装置及び該露光装置を用いてデバイスを製造する方法
US4330205A (en) Optical apparatus for measuring the size and location of optical in an article
JP2000249529A (ja) 欠陥検査装置および欠陥検査方法
JPS6036013B2 (ja) 金属表面の欠陥検査方法
CN113075216B (zh) 检测装置及检测方法
JPH09257720A (ja) 欠陥検査方法とその装置
JPH11142127A (ja) ウェーハ表面検査方法とその装置
JP2000097872A (ja) 光学的検査装置
CN113533351B (zh) 一种面板缺陷检测装置及检测方法
JP5430614B2 (ja) 光学装置
JP2002287327A (ja) 位相シフトマスクの欠陥検査装置
JP3106521B2 (ja) 透明基板の光学的検査装置
CN116840260B (zh) 晶圆表面缺陷检测方法及装置
CN220473342U (zh) 光学检测***
CN217605696U (zh) 检测装置
JPH0682373A (ja) 欠陥検査方法
TWI714418B (zh) 聚焦式原子力顯微鏡
CN116794042A (zh) 检测***和检测方法
CN112697039A (zh) 一种检测装置及检测设备
CN115527877A (zh) 制造半导体装置的方法和半导体基板的检验***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200505

RJ01 Rejection of invention patent application after publication