WO2013038940A1 - 糖の製造方法 - Google Patents

糖の製造方法 Download PDF

Info

Publication number
WO2013038940A1
WO2013038940A1 PCT/JP2012/072384 JP2012072384W WO2013038940A1 WO 2013038940 A1 WO2013038940 A1 WO 2013038940A1 JP 2012072384 W JP2012072384 W JP 2012072384W WO 2013038940 A1 WO2013038940 A1 WO 2013038940A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
mass
raw material
sugar
producing
Prior art date
Application number
PCT/JP2012/072384
Other languages
English (en)
French (fr)
Inventor
聡宏 矢野
明宏 田ノ上
真梨 末次
康宏 石原
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011281919A external-priority patent/JP2013128468A/ja
Priority claimed from JP2012130095A external-priority patent/JP2013255430A/ja
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to BR112014006202A priority Critical patent/BR112014006202A8/pt
Priority to CN201280042561.7A priority patent/CN103764833A/zh
Publication of WO2013038940A1 publication Critical patent/WO2013038940A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis

Definitions

  • the present invention relates to a method for producing sugar.
  • the pretreatment step may include a treatment for amorphizing the crystal structure of the cellulose.
  • a pretreatment step it has been disclosed that a cellulose is made amorphous using a cellulose solvent such as lithium chloride / dimethylacetamide (Patent Document 1).
  • Patent Document 2 As a saccharification method of cellulose, there are a method using a specific cellulase (Patent Document 2), a method of hydrolyzing cellulose or hemicellulose with hydrogen peroxide, and then an enzyme treatment (Patent Documents 3 and 4).
  • Patent Documents 3 and 4 As a method for producing sugar from a cellulose-containing raw material, a cellulose-containing raw material is treated with a vibration mill filled with a rod to prepare amorphous cellulose having reduced cellulose I-type crystallinity, and then the amorphous cellulose is converted into the amorphous cellulose.
  • Patent Document 5 A method of saccharification by acting cellulase and / or hemicellulase is known (Patent Document 5).
  • Patent Documents 1 to 4 are not satisfactory in terms of saccharification efficiency and productivity.
  • the method described in Patent Document 5 can achieve excellent saccharification efficiency, it is required to further improve saccharification efficiency.
  • This invention makes it a subject to provide the manufacturing method of the saccharide
  • this invention provides the manufacturing method of sugar which has the following process (1) and process (2).
  • Step (1) Step (2) of pulverizing the cellulose-containing raw material in the presence of a basic compound under the condition that the moisture content relative to the dry weight of the cellulose-containing raw material is 40% by mass or less to obtain a cellulose-containing pulverized product.
  • the cellulose-containing raw material is pulverized under specific conditions and then subjected to an enzyme treatment, whereby the saccharification efficiency of cellulose by the enzyme treatment is improved, and the sugar is efficiently obtained from the cellulose-containing raw material.
  • an enzyme treatment whereby the saccharification efficiency of cellulose by the enzyme treatment is improved, and the sugar is efficiently obtained from the cellulose-containing raw material. Can be manufactured.
  • the sugar production method of the present invention includes the following steps (1) and (2).
  • Step (1) Step (2) of pulverizing the cellulose-containing raw material in the presence of a basic compound under the condition that the water content with respect to the dry weight of the cellulose-containing raw material is 40% by mass or less, ): A step of saccharifying the cellulose-containing pulverized product obtained in step (1) with an enzyme.
  • Step (1) is a step of obtaining a cellulose-containing pulverized product by pulverizing the cellulose-containing raw material in the presence of a basic compound under a condition that the water content relative to the dry weight of the cellulose-containing raw material is 40% by mass or less.
  • a cellulose-containing raw material hereinafter sometimes referred to as “raw cellulose”
  • raw cellulose is pulverized together with a basic compound under a condition where the water content is a predetermined amount or less, whereby a base is contained in the cellulose-containing raw material.
  • the active compound can be uniformly dispersed.
  • a cellulose containing raw material can be efficiently grind
  • cellulose can be amorphized and reduced in particle size, and can be delignified and dehemicellulosed by the action of a basic compound.
  • the type of cellulose-containing raw material is not particularly limited, and various woods obtained from conifers such as larch and cedar, hardwoods such as oil palm and cypress; wood pulp produced from wood, cotton obtained from fibers around cotton seeds Pulp such as linter pulp; Paper such as newspaper, cardboard, magazine, and fine paper; Plant stems, leaves, fruit bunches such as bagasse (sugar cane squeezed), palm empty fruit bunches (EFB), rice straw, corn stalks, etc. Plant shells such as rice husk, palm husk and coconut husk; algae and the like.
  • the cellulose-containing raw material used in the present invention preferably has a holocellulose content of 20% by mass or more, more preferably 40% by mass or more, still more preferably 45% by mass or more, and 50% by mass. The above is even more preferable.
  • the content of holocellulose refers to the total content of cellulose and hemicellulose.
  • the water content in the cellulose-containing raw material is 40% by mass or less, preferably 35% by mass or less, more preferably 30%, based on the dry weight of the raw material cellulose, from the viewpoint of improving the grinding efficiency and reducing the crystallinity. It is below mass%.
  • the lower limit of the moisture content is 0% by mass with respect to the raw material cellulose, it is difficult to reduce the moisture content in the cellulose-containing raw material to 0% by mass. Therefore, the moisture content is preferably based on the dry weight of the raw material cellulose. Is 0.01% by mass or more, more preferably 0.1% by mass or more, and further preferably 1% by mass or more.
  • the water content is preferably 0.01 to 40% by mass, more preferably 0.1 to 35% by mass, and more preferably 1 to 30% by mass with respect to the dry weight of the raw material cellulose. Is more preferable.
  • the cellulose-containing raw material is dried by a known method (hereinafter sometimes referred to as “drying treatment”), and the water content is cellulose. It can be used by adjusting so that it may become 40 mass% or less with respect to the dry weight of a containing raw material.
  • the water content in the cellulose-containing raw material can be measured using a commercially available infrared moisture meter or the like, and specifically can be measured by the method described in the examples.
  • the basic compound used in the step (1) is preferably an inorganic basic compound, and includes at least one selected from alkali metal or alkaline earth metal hydroxides, oxides and sulfides.
  • alkali metal or alkaline earth metal hydroxide include sodium hydroxide, potassium hydroxide, and lithium hydroxide.
  • alkali metal or alkaline earth metal oxide include sodium oxide, potassium oxide, magnesium oxide, and calcium oxide.
  • alkali metal or alkaline earth metal sulfide include sodium sulfide, potassium sulfide, Examples thereof include magnesium sulfide and calcium sulfide.
  • alkali metal hydroxides or alkaline earth metal hydroxides are more preferably used, alkali metal hydroxides are more preferably used, and sodium hydroxide or potassium hydroxide is used. Is even more preferable.
  • These basic compounds can be used alone or in combination of two or more.
  • the amount of the basic compound used in the step (1) may be referred to as an anhydroglucose unit (hereinafter, “AGU”) constituting the cellulose, assuming that the holocellulose in the cellulose-containing raw material is all cellulose.
  • AGU an anhydroglucose unit
  • the amount of the basic compound is preferably 0.01 to 10 times mol, and 0.05 to 8 times mol for the anhydroglucose unit constituting holocellulose in the cellulose-containing raw material. Is more preferably 0.1 to 5 times mol, and still more preferably 0.1 to 1.5 times mol. If the usage-amount of a basic compound is 0.01 times mole or more, saccharification efficiency will improve in the process (2) mentioned later. Moreover, if this usage-amount is 10 times mole or less, it is preferable from the viewpoint of the neutralization of a basic compound and / or the ease of washing
  • the basic compound may be added all at once or dividedly in the cellulose-containing raw material.
  • the basic compound is added to the cellulose-containing raw material and then stirred or mixed, or the cellulose-containing raw material is stirred. It is preferable to add and mix a basic compound.
  • the addition of the basic compound may be performed in an apparatus for performing a pulverization process described later, or may be performed in an apparatus for separately stirring and mixing.
  • the apparatus for performing the stirring and mixing is not particularly limited as long as the apparatus can disperse the basic compound in the raw material cellulose.
  • a ribbon type mixer for example, a ribbon type mixer, a paddle type mixer, a conical planetary screw type mixer, a mixer such as a kneader used for kneading powders, high-viscosity substances, and resins can be used.
  • a horizontal shaft type paddle type mixer is more preferable.
  • a Redige mixer manufactured by Chuo Kiko Co., Ltd .; characteristic ski shape
  • a horizontal shaft type paddle type mixer having chopper blades for example, a ribbon type mixer, a paddle type mixer, a conical planetary screw type mixer, a mixer such as a kneader used for kneading powders, high-viscosity substances, and resins.
  • the basic compound is added in the raw material cellulose in a solid state.
  • the basic compound is in the form of pellets, granules or powders from the viewpoint of handleability during production and from the viewpoint of uniformly dispersing the basic compound in the cellulose-containing raw material. Is preferred. Note that the fact that the basic compound is in a solid state does not mean that it does not contain moisture, and may contain moisture by absorbing moisture in the air or the like.
  • Step (1) is performed under the condition that the water content with respect to the dry weight of the raw material cellulose is 40% by mass or less.
  • the water content is 40% by mass or less with respect to the dry weight of the raw material cellulose, the grinding efficiency of the cellulose-containing raw material and the mixing / penetration / diffusibility of the cellulose-containing raw material and the basic compound are improved.
  • Saccharification treatment proceeds efficiently.
  • the lower limit of the moisture content is 0% by mass.
  • the water content in step (1) is preferably 0.1% by mass or more, more preferably 0.5%, based on the dry weight of the raw material cellulose.
  • % By mass or more, more preferably 1% by mass or more, still more preferably 5% by mass or more, still more preferably 7% by mass or more, preferably 35% by mass or less, more preferably 30% by mass or less, still more preferably. It is 25 mass% or less, More preferably, it is 20 mass% or less, More preferably, it is 15 mass% or less.
  • the water content in the step (1) is preferably 0.1 to 35% by mass, more preferably 0.5 to 35% by mass with respect to the dry weight of the raw material cellulose, and 1 to 30% by mass. Is more preferably 1 to 25% by mass, still more preferably 5 to 25% by mass, still more preferably 7 to 20% by mass, and 7 to 15% by mass. % Is even more preferable.
  • the amount of water at the time of the pulverization treatment in step (1) means the amount of water relative to the dry weight of the raw material cellulose.
  • the amount of water contained in the raw material cellulose and the basic compound is reduced by a drying treatment or the like. Can be adjusted to a predetermined moisture content.
  • the “nitrogen-containing compound” refers to a compound containing one or more nitrogen atoms excluding the compound used as the basic compound in step (1).
  • the nitrogen-containing compound include one or more selected from ammonia, amine, ammonia or an addition salt of an amine and an acid, and a quaternary ammonium salt.
  • amine examples include primary amines such as methylamine, butylamine, 2-ethylhexylamine, laurylamine, stearylamine; secondary amines such as dimethylamine, dibutylamine, dioctylamine, distearylamine; trimethylamine, triethylamine, lauryldimethyl.
  • primary amines such as methylamine, butylamine, 2-ethylhexylamine, laurylamine, stearylamine
  • secondary amines such as dimethylamine, dibutylamine, dioctylamine, distearylamine
  • trimethylamine triethylamine, lauryldimethyl.
  • Tertiary amines such as amine and distearylmethylamine; cyclic amines such as pyrrolidine, piperidine and morpholine, polyvalent amines such as ethylenediamine, hexamethylenediamine, diethylenetriamine and piperazine; ethanolamine, triethanolamine and 2-amino-2- Examples thereof include hydroxyamines such as methylpropanol and trishydroxymethylaminomethane.
  • aromatic amines such as pyridine, pyrrole, quinoline and imidazole; guanidine, amidine and the like can be mentioned.
  • acids that form addition salts with ammonia or amines include inorganic acids such as hydrochloric acid, phosphoric acid, and sulfuric acid, acetic acid, propionic acid, lauric acid, stearic acid, glycolic acid, lactic acid, succinic acid, adipic acid, and fumaric acid. And organic acids such as citric acid. Water can also act with ammonia as a kind of acid to produce ammonium hydroxide.
  • primary to tertiary ammonium salts such as octyl ammonium chloride, lauryl ammonium chloride, cetyl pyridinium chloride, and inorganic ammonium salts such as ammonium chloride and ammonium hydroxide are preferable.
  • inorganic ammonium salts are more preferred, and ammonium chloride is further preferred. preferable.
  • the alkyl group preferably has 1 or more carbon atoms, more preferably 6 or more carbon atoms from the viewpoint of improving saccharification efficiency. Moreover, it is preferable that it is C30 or less, and it is more preferable that it is C22 or less. In addition, the alkyl group preferably has 1 to 30 carbon atoms, and more preferably 6 to 22 carbon atoms, from the viewpoint of improving saccharification efficiency.
  • Examples of the quaternary ammonium salt include tetramethylammonium chloride, tetrapropylammonium chloride, tetrabutylammonium hydroxide, octyltrimethylammonium chloride, lauryltrimethylammonium chloride, cetyltrimethylammonium bromide, octyldimethylbenzylammonium chloride, dimethyldiallylammonium chloride. , Alkylbenzyldimethylammonium chloride, choline chloride and the like.
  • lauryltrimethylammonium chloride, alkylbenzyldimethylammonium chloride, tetramethylammonium chloride, and dimethyldiallylammonium chloride are preferable from the viewpoint of improving saccharification efficiency and improving grinding efficiency.
  • the nitrogen-containing compound used in the present invention may be a polymer.
  • the polymer include a polymer having an amine moiety, an addition salt between a polymer having an amine moiety and an acid, and a polymer having a quaternary ammonium salt moiety.
  • the nitrogen atom in the “amine moiety” may be any of primary to tertiary.
  • the “addition salt of a polymer having an amine moiety and an acid” refers to a polymer having at least one structure in which the aforementioned acid is added to the amine moiety.
  • polymers include allylamine polymers such as diallyldimethylammonium chloride polymer, diallylmethylamine hydrochloride / sulfur dioxide copolymer; dimethylaminoethyl (meth) acrylate polymer, trimethylammonioethyl (meth) acrylate polymer Examples thereof include (meth) acrylate polymers such as polymers, aromatic amine polymers such as poly (4-vinylpyridine) and vinylmethylimidazolinium chloride, and polyethyleneimine.
  • allylamine polymers such as diallyldimethylammonium chloride polymer, diallylmethylamine hydrochloride / sulfur dioxide copolymer
  • dimethylaminoethyl (meth) acrylate polymer dimethylaminoethyl (meth) acrylate polymer, trimethylammonioethyl (meth) acrylate polymer
  • (meth) acrylate polymers such as polymers, aromatic amine polymers such as poly (4-
  • the weight average molecular weight (Mw) of the polymer is preferably 100,000 or less, more preferably 1,000 to 50,000, from the viewpoint of improving saccharification efficiency.
  • the weight average molecular weight of the said polymer is a value measured by the method as described in an Example.
  • the nitrogen-containing compound includes primary to tertiary ammonium salts having an alkyl group, inorganic ammonium salts, quaternary ammonium salts, and amine sites from the viewpoint of improving saccharification efficiency and improving grinding efficiency.
  • a polymer having an amine moiety it is preferably at least one selected from a polymer having an amine moiety, an addition salt of a polymer having an amine moiety and an acid, and a polymer having a quaternary ammonium salt moiety, ammonium chloride, tetramethylammonium chloride, lauryltrimethylammonium chloride, It is more preferably at least one selected from alkylbenzyldimethylammonium chloride, dimethyldiallylammonium chloride, dimethyldiallylammonium chloride polymer, and diallylamine hydrochloride / sulfur dioxide copolymer.
  • the amount of nitrogen-containing compound used in step (1) or step (2) is based on the anhydroglucose unit (AGU) constituting the cellulose, assuming that holocellulose in the cellulose-containing raw material is all cellulose. It is preferably 0.001 times mol or more in terms of nitrogen atom, more preferably 0.002 times mol or more, and further preferably 0.005 times mol or more. Moreover, it is preferably 1 mol or less, more preferably 0.5 mol or less, still more preferably 0.3 mol or less, and even more preferably 0.2 mol or less. preferable.
  • AGU anhydroglucose unit
  • the amount of the nitrogen-containing compound used in the step (1) or the step (2) is preferably 0.001 to 1 times mol, and preferably 0.002 to 0.5 times mol in terms of nitrogen atom. More preferably, the amount is 0.005 to 0.3 times mol, and further preferably 0.005 to 0.2 times mol. If the usage-amount of a nitrogen-containing compound is 0.001 times mole or more, saccharification efficiency will improve. Moreover, if this usage-amount is 10 times or less, it is preferable from a viewpoint of the grinding
  • the usage-amount of a nitrogen-containing compound said above is process (1) and process (2).
  • the nitrogen-containing compound is uniformly dispersed from the viewpoint of pulverization efficiency, handling at the time of production, and the like. From a viewpoint, it is preferable to add in the state of a solid, a liquid, or aqueous solution in a cellulose containing raw material or a cellulose ground material.
  • the method for adding the nitrogen-containing compound is not particularly limited, and it may be added simultaneously with the basic compound used in step (1) or the enzyme used in step (2), or may be added individually. Further, nitrogen-containing compounds may be added all at once or in divided portions.
  • the mixture is stirred and mixed or stirred after adding the nitrogen-containing compound in the cellulose-containing raw material or cellulose pulverized product.
  • the pulverization treatment is an operation of reducing the particle size of the cellulose-containing raw material and dispersing the basic compound or the basic compound and the nitrogen-containing compound as uniformly as possible in the cellulose-containing raw material.
  • the basic compound is pulverized simultaneously by the pulverization treatment.
  • the pulverization treatment can be performed using a known pulverizer.
  • a known pulverizer There is no particular limitation on the pulverizer used, so long as the cellulose-containing raw material can be made into small particles and the basic compound, or the basic compound and the nitrogen-containing compound can be dispersed in the cellulose-containing raw material as much as possible. Good.
  • Specific examples of the pulverizer include a high pressure compression roll mill, a roll mill such as a roll rotating mill, a vertical roller mill such as a ring roller mill, a roller race mill or a ball race mill, a rolling ball mill, a vibration ball mill, a vibration rod mill, and a vibration tube.
  • Container driven media mills such as mills, planetary ball mills or centrifugal fluidization mills, tower crushers, stirring tank mills, medium stirring mills such as flow tank mills or annular mills, compaction such as high-speed centrifugal roller mills and angling mills
  • Examples include a shear mill, a mortar, a stone mortar, a mass collider, a fret mill, an edge runner mill, a knife mill, a pin mill, and a cutter mill.
  • a container-driven medium mill or a medium stirring mill is preferable, a container-driven medium mill is more preferable, a vibrating ball mill, a vibrating rod mill, and a vibrating tube mill. Is more preferable, and a vibration rod mill is still more preferable.
  • the pulverization method may be either batch type or continuous type.
  • the material of the apparatus and medium used for pulverization includes iron, stainless steel, alumina, zirconia, silicon carbide, silicon nitride, and glass. From the viewpoint of cellulose crystallinity reduction efficiency, iron Stainless steel, zirconia, silicon carbide, and silicon nitride are preferable, and iron or stainless steel is preferable from the viewpoint of industrial use.
  • the apparatus to be used is a vibration mill and the medium is a rod
  • the outer diameter of the rod is preferably 0.1 mm or more, more preferably 0.5 mm or more, from the viewpoint of grinding efficiency of the cellulose-containing raw material.
  • the outer diameter of the rod is preferably in the range of 0.1 to 100 mm, more preferably 0.5 to 50 mm. If the size of the rod is in the above range, the cellulose-containing raw material can be efficiently made into small particles, and there is little risk of contamination of the cellulose due to mixing of fragments of the rod and the like.
  • the rod filling rate varies depending on the type of vibration mill, but is preferably 10% or more, more preferably 15% or more, preferably 97% or less, more preferably 95% or less, and still more preferably 90%. % Or less, more preferably 80% or less.
  • the filling rate of the rod is preferably 10 to 97%, more preferably 10 to 95%, still more preferably 15 to 90%, and still more preferably 15 to 80%. If the filling rate is within this range, the contact frequency between the cellulose and the rod can be improved, and the grinding efficiency of the raw material cellulose can be improved without hindering the movement of the medium.
  • the filling rate refers to the apparent volume of the rod relative to the volume of the stirring section of the vibration mill.
  • the temperature during the pulverization treatment is not particularly limited, but from the viewpoint of operation cost and suppression of deterioration of raw material cellulose, it is preferably ⁇ 100 ° C. or higher, more preferably 0 ° C. or higher, further preferably 5 ° C. or higher, and 200 ° C. or lower. Is preferable, 150 degrees C or less is more preferable, and 100 degrees C or less is still more preferable. Further, from the same viewpoint as described above, ⁇ 100 to 200 ° C. is preferable, 0 to 150 ° C. is more preferable, and 5 to 100 ° C. is still more preferable.
  • the pulverization time may be appropriately adjusted so that the cellulose-containing raw material after pulverization is reduced in size.
  • the pulverizer to be used and the amount of energy to be used it is usually 1 minute to 12 hours, preferably 2 minutes or more from the viewpoint of reducing the particle size of the cellulose-containing raw material and energy cost, and 5 minutes or more. More preferably, it is preferably 6 hours or less, more preferably 3 hours or less, and even more preferably 2 hours or less. From the same viewpoint as described above, 2 minutes to 6 hours are preferable, 5 minutes to 3 hours are more preferable, and 5 minutes to 2 hours are more preferable.
  • the cellulose-containing pulverized product obtained in the step (1) has a water content of 50 to 50%. It is preferable to have a process of aging under the condition of 10,000% by mass (hereinafter sometimes referred to as “aging process”).
  • the saccharification efficiency is further improved by aging the cellulose-containing pulverized product containing a basic compound under a predetermined moisture condition, thereby promoting lignin elimination and hemicellulose elimination by the action of the basic compound.
  • water is added to and mixed with the cellulose-containing pulverized product obtained in step (1), and the mixture is stirred or allowed to stand for a certain period of time while being heated as desired. Can be performed.
  • water and mixing from the viewpoint of uniformly dispersing water in the cellulose-containing pulverized product, after adding water to the cellulose-containing pulverized product, stirring and mixing, or stirring the cellulose-containing pulverized product, adding water and mixing preferable.
  • the amount of water in the ripening step is determined from the cellulose-containing pulverized product from the viewpoint of improving the saccharification efficiency by further promoting lignin and hemicellulose bond hydrolysis by the action of the basic compound, that is, lignin desorption and hemicellulose desorption.
  • it is preferably 50% by mass or more, more preferably 100% by mass or more, still more preferably 200% by mass or more, still more preferably 230% by mass or more, and preferably 10000% by mass from the viewpoint of reducing production costs.
  • the water content in the ripening step is preferably 50 to 10000% by mass, more preferably 100 to 8000% by mass, still more preferably 200 to 5000% by mass, and still more preferably, with respect to the cellulose-containing pulverized product. 230 to 3500% by mass.
  • the moisture content with respect to a cellulose containing ground material is the mass% with respect to the dry raw material remove
  • the aging apparatus There is no particular limitation on the aging apparatus. Specific examples thereof include an apparatus used for stirring and mixing the basic compound.
  • the aging temperature is preferably 0 ° C. or higher, more preferably 20 ° C. or higher, further preferably 50 ° C. or higher, more preferably 80 ° C. or higher, from the viewpoint of promoting detachment of lignin and hemicellulose and improving saccharification efficiency. From the viewpoint of suppressing the excessive decomposition of components derived from hemicellulose and reducing the production cost, it is preferably 250 ° C. or lower, more preferably 200 ° C. or lower, still more preferably 150 ° C. or lower, and still more preferably 100 ° C. or lower. From the same viewpoint as described above, the aging temperature is preferably 0 ° C. or higher and 250 ° C. or lower, more preferably 20 ° C.
  • the aging time is preferably 0.01 hours or more, more preferably 0.1 hours or more, still more preferably 0.5 hours or more, and still more preferably, from the viewpoint of promoting detachment of lignin and hemicellulose and improving saccharification efficiency.
  • it is 1 hour or more, and preferably 24 hours or less, more preferably 18 hours or less, still more preferably 12 hours or less, and still more preferably, from the viewpoint of suppressing the excessive decomposition of components derived from hemicellulose and reducing the production cost.
  • it is 6 hours or less.
  • the aging time is preferably 0.01 to 24 hours, more preferably 0.1 to 18 hours, still more preferably 0.5 to 12 hours, and still more preferably 1 to 6 hours.
  • step (1) in order to remove impurities contained in the basic compound, nitrogen-containing compound, and cellulose-containing raw material used in step (1), it is preferable to perform the aging step before step (2).
  • the following neutralization step and washing step may be included.
  • a step of neutralizing the cellulose-containing pulverized product obtained in the step (1) with an acid before the step (2) is preferable to have this (hereinafter, this may be referred to as “neutralization step”).
  • the acid used include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and boric acid, and organic acids such as acetic acid and citric acid. From the viewpoint of improving productivity, saccharification efficiency and sugar yield.
  • hydrochloric acid acetic acid
  • sulfuric acid nitric acid and phosphoric acid
  • hydrochloric acid acetic acid and sulfuric acid
  • an inorganic acid such as hydrochloric acid or sulfuric acid
  • the neutralization step can be performed by adding an appropriate amount of acid to the cellulose-containing pulverized product and stirring.
  • the neutralization step for example, after the cellulose-containing pulverized product is dispersed in water so as to have a concentration of 0.1 to 50% by mass, 0.01 to 37%
  • An acid such as hydrochloric acid or 0.01 to 75% sulfuric acid can be added by adding an appropriate amount until the pH is near neutral, preferably pH 4 to 8, more preferably pH 4 to 7. At that time, it is preferable that the suspension is appropriately stirred to make it uniform.
  • the cellulose-containing pulverized product obtained in (1) may have a step of washing with water (hereinafter, this may be referred to as a “washing step”).
  • a washing step For washing the cellulose-containing pulverized product, for example, the cellulose-containing pulverized product is dispersed in ion-exchanged water so as to have a concentration of 0.1 to 50%.
  • the operation of dispersing and centrifuging to a similar concentration can be performed by a method of repeating washing until the pH is near neutral, preferably pH 4 to 8, more preferably pH 4 to 7.
  • the neutralization step and the washing step only one of the steps may be performed, or the washing step may be further performed after the neutralization step. Moreover, it is also possible to perform only the neutralization process using an inorganic acid from a viewpoint of the yield improvement of the saccharide
  • Step (2) is a step of saccharifying the cellulose-containing pulverized product obtained in step (1) with an enzyme.
  • the cellulose-containing pulverized product obtained in step (1) is amorphized, reduced in particle size, and delignified / dehemicellulosed, so that it can be treated with an enzyme to give a monosaccharide such as glucose or xylose. Or a mixture of oligosaccharides such as cellobiose, cellotriose, xylobiose, and xylotriose can be efficiently obtained.
  • Examples of the enzyme used in the step (2) include cellulase and hemicellulase from the viewpoint of improving saccharification efficiency.
  • cellulase refers to an enzyme that hydrolyzes the glycosidic bond of ⁇ -1,4-glucan of cellulose, and is a generic term for enzymes called endoglucanase, exoglucanase or cellobiohydrolase, and ⁇ -glucosidase. is there.
  • Hemicellulase refers to an enzyme that hydrolyzes hemicellulose, and is a general term for enzymes called xylanase, galactanase, and the like.
  • the cellulase and hemicellulase used in the present invention include commercially available cellulase preparations and those derived from animals, plants and microorganisms.
  • cellulases include cellulase preparations derived from Trichoderma reesei such as Cellcrust 1.5L (trade name, manufactured by Novozymes) and Bacillus sp. KSM-N145 (FERM P-19727) strain. cellulase derived from or Bacillus sp., (Bacillus sp.) KSM- N252 (FERM P-17474), Bacillus sp. (Bacillus sp.) KSM-N115 (FERM P-19726), Bacillus sp.
  • cellulase preparations include, for example, Cell Crust 1.5L (trade name, manufactured by Novozymes), TP-60 (trade name, manufactured by Meiji Seika Co., Ltd.), CellicCTec2 (trade name, manufactured by Novozymes), Accelerase DUET (manufactured by Genencor, product name) or Ultraflo L (manufactured by Novozymes, product name) may be mentioned.
  • Cell Crust 1.5L trade name, manufactured by Novozymes
  • TP-60 trade name, manufactured by Meiji Seika Co., Ltd.
  • CellicCTec2 trade name, manufactured by Novozymes
  • Accelerase DUET manufactured by Genencor, product name
  • Ultraflo L manufactured by Novozymes, product name
  • Cellcrust 1.5L (trade name, manufactured by Novozymes), CellicCTec (trade name, manufactured by Novozymes), and CellicCTec2 (trade name, manufactured by Novozymes) are preferable, and CellicCTec (Novozymes) Product, trade name), CellicCTec2 (Novozymes, trade name) is more preferred, and CellicCTec2 (Novozymes, trade name) is more preferred.
  • ⁇ -glucosidase which is a kind of cellulase
  • ⁇ -glucosidase derived from Aspergillus niger (for example, Novozyme 188 (manufactured by Novozymes, trade name), ⁇ -glucosidase manufactured by Megazyme)
  • Examples thereof include Trichoderma reesei and ⁇ -glucosidase derived from Penicillium emersonii .
  • hemicellulase examples include commercially available hemicellulase preparations, xylanase derived from Bacillus sp. KSM-N546 (FERM P-19729), Trichoderma reesei , Aspergillus niger ( Aspergillus niger ).
  • Trichoderma viride Trichoderma viride
  • Humicola insolens Humicola insolens
  • Bacillus alcalophilus Bacillus alcalophilus (Bacillus alcalophilus) derived from a xylanase, further, Thermomyces (Thermomyces), Ou Leo bus Shijiumu (Aureobasidium), Streptomyces (Streptomyces) , Clostridium (Clostridium), Thermotoga (Thermotoga), Thermoascus (Thermoascus), Karudoseramu (Caldocellum), etc. thermo mono Supora (Thermomonospora) derived from the genus of xylanase and the like.
  • Examples of commercially available hemicellulase preparations include CellicHTec (manufactured by Novozymes, trade name), CellicHTec2 (manufactured by Novozymes, trade name), sucrase (manufactured by Mitsubishi Chemical Foods, trade name), Shearzyme 500L (manufactured by Novozymes). , Product name).
  • CellicHTec or CellicHTec2 is preferable from the viewpoint of improving saccharification efficiency.
  • the enzyme used in step (2) is preferably at least one selected from the above cellulases and hemicellulases from the viewpoint of improving saccharification efficiency.
  • the enzyme used in a process (2) contains the endoglucanase which is 1 type of a cellulase.
  • the endoglucanase used in the present invention is preferably at least one selected from endoglucanase I (EGI) and endoglucanase II (EGII) derived from the Trichoderma family from the viewpoint of saccharification efficiency of cellulose.
  • EGI endoglucanase I
  • EGIII endoglucanase II
  • These enzymes may be used after being expressed by a heterologous host. There are no particular restrictions on the preparation method for expression in a heterologous host, but examples include the methods described in the Examples.
  • the endoglucanase used in the present invention may be a commercially available cellulase preparation or a product obtained by purifying a cellulase derived from animals, plants, or microorganisms.
  • a cellulase preparation or a product obtained by purifying a cellulase derived from animals, plants, or microorganisms Although there is no restriction
  • the cellulase to be purified include the aforementioned cellulases.
  • cellulases derived from Trichoderma reesei , Trichoderma viride , or Humicola insolens such as Cellcrust 1.5L (trade name, manufactured by Novozymes), TP-60 ( Meiji Seika Co., Ltd., trade name) or Ultraflo L (manufactured by Novozymes, trade name) is preferably used.
  • the blending ratio of the endoglucanase in the enzyme used in the step (2) is preferably 10% by mass or more, more preferably 14% in the total amount of protein in the enzyme, from the viewpoint of improving saccharification efficiency and increasing the amount of glucose produced.
  • % By mass or more more preferably 16% by mass or more, still more preferably 18% by mass or more, still more preferably 20% by mass or more, preferably 90% by mass or less, more preferably 75% by mass or less, still more preferably. It is 70 mass% or less, More preferably, it is 60 mass% or less, More preferably, it is 50 mass% or less.
  • the blending ratio of the endoglucanase in the enzyme used in the step (2) is preferably 10 to 90% by mass, more preferably 14 to 75% by mass, and still more preferably 16 to 70% by mass in the total amount of protein in the enzyme. %, More preferably 18 to 60% by mass, and still more preferably 20 to 50% by mass.
  • the blending ratio of endoglucanase can be adjusted by the method described in the examples.
  • the enzyme used in the step (2) preferably contains xylanase, which is one kind of hemicellulase.
  • xylanases used in the step (2) include CellicHTec (trade name, manufactured by Novozymes) and CellicHTec2 (trade name, manufactured by Novozymes).
  • the mixing ratio of the xylanase in the enzyme used in the step (2) is preferably 2% by mass or more, more preferably 3% by mass in the total protein amount in the enzyme from the viewpoint of improving saccharification efficiency and increasing the amount of reducing sugar.
  • the blending ratio of the xylanase in the enzyme used in the step (2) is preferably 2 to 75% by mass, more preferably 2 to 50% by mass, more preferably 3 to 40% by mass, based on the total amount of protein in the enzyme. Further, it is preferably 4 to 25% by mass, more preferably 5 to 20% by mass, and still more preferably 6 to 16% by mass.
  • the mixture ratio of a xylanase can be adjusted with the method as described in an Example.
  • the treatment conditions for saccharifying the cellulose-containing pulverized product with an enzyme can be appropriately selected depending on the crystallinity of cellulose in the pulverized product and the type of enzyme used.
  • an enzyme is used as a substrate with respect to a substrate suspension of 0.5 to 40% (w / v), preferably 0.5 to 20% (w / v).
  • the enzyme protein is added so that the amount of the enzyme protein is 0.04 to 600% by mass, or 0.001 to 15% (v / v), and the reaction time is 10 to 90 ° C. in a buffer solution having a pH of 2 to 10.
  • Sugar can be produced by reacting for 30 minutes to 5 days, preferably 0.5 to 3 days.
  • the pH of the buffer is preferably selected as appropriate according to the type of enzyme used, preferably pH 3-7, more preferably pH 4-6.
  • the reaction temperature is preferably selected as appropriate according to the type of enzyme used, preferably 20 to 70 ° C, more preferably 40 to 60 ° C.
  • the present invention discloses the following manufacturing method.
  • a method for producing sugar comprising the following step (1) and step (2).
  • ⁇ 2> The method for producing a sugar according to ⁇ 1>, wherein the basic compound is added in a solid state.
  • the amount of the basic compound is 0.01 times mol or more, preferably 0.05 times mol or more, more preferably 0.1 times the anhydroglucose unit constituting the holocellulose in the cellulose-containing raw material. It is not less than 10 mol, preferably not more than 8 times mol, more preferably not more than 5 times mol, still more preferably not more than 1.5 times mol, and preferably 0.01 to 10 times mol, preferably 0.05
  • ⁇ 4> The sugar production according to any one of ⁇ 1> to ⁇ 3>, further comprising a step of neutralizing the cellulose-containing pulverized product obtained in step (1) with an acid before step (2). Method.
  • the acid is an inorganic acid or an organic acid, preferably one or more selected from hydrochloric acid, acetic acid, sulfuric acid, nitric acid and phosphoric acid, more preferably one or more selected from hydrochloric acid, acetic acid and sulfuric acid, ⁇ 4
  • the method for producing sugar according to> is an inorganic acid or an organic acid, preferably one or more selected from hydrochloric acid, acetic acid, sulfuric acid, nitric acid and phosphoric acid, more preferably one or more selected from hydrochloric acid, acetic acid and sulfuric acid, ⁇ 4
  • the method for producing sugar according to> is an inorganic acid or an organic acid, preferably one or more selected from hydrochloric acid, acetic acid, sulfuric acid, nitric acid and phosphoric acid, more preferably one or more selected from hydrochloric acid, acetic acid and sulfuric acid, ⁇ 4
  • the method for producing sugar according to> is an inorganic acid or an organic acid,
  • ⁇ 6> The method for producing a saccharide according to ⁇ 4> or ⁇ 5>, wherein the acid is an inorganic acid.
  • ⁇ 7> The method for producing a saccharide according to any one of ⁇ 1> to ⁇ 6>, wherein the enzyme is one or more selected from cellulase and hemicellulase.
  • the enzyme contains endoglucanase, and the blending ratio of the endoglucanase is 10% by mass or more, preferably 14% by mass or more, more preferably 16% by mass or more, and still more preferably 18% of the total protein content in the enzyme.
  • % By mass or more, more preferably 20% by mass or more, 90% by mass or less, preferably 75% by mass or less, more preferably 70% by mass or less, still more preferably 60% by mass or less, and still more preferably 50% by mass. 10 to 90% by mass, preferably 14 to 75% by mass, more preferably 16 to 70% by mass, still more preferably 18 to 60% by mass, and still more preferably 20 to 50% by mass.
  • the method for producing a sugar according to any one of 1> to ⁇ 7>.
  • ⁇ 9> One or more types of cellulose-containing raw materials selected from pulp, paper, coniferous or hardwood, plant stems / leaves / fruits, and algae, preferably wood or plant stems / leaves / fruits
  • the sugar according to any one of ⁇ 1> to ⁇ 8>, which is one or more selected from tufts, more preferably one or more selected from bagasse, EFB, and oil palm (stem), and more preferably bagasse. Manufacturing method.
  • the enzyme contains xylanase, and the blending ratio of the xylanase is 2% by mass or more, preferably 3% by mass or more, more preferably 4% by mass or more, further preferably 5% by mass, based on the total amount of protein in the enzyme. Or more, more preferably 6% by mass or more, 75% by mass or less, preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 25% by mass or less, still more preferably 20% by mass or less, More preferably, it is 16% by mass or less, 2 to 75% by mass, preferably 2 to 50% by mass, more preferably 3 to 40% by mass, more preferably 4 to 25% by mass, and further preferably 5 to 20% by mass. %, More preferably 6 to 16% by mass, The method for producing a sugar according to any one of ⁇ 1> to ⁇ 9>.
  • the cellulose-containing raw material has a holocellulose content of 20% by mass or more, preferably 40% by mass or more, more preferably 45% by mass or more, and still more preferably 50% by mass or more.
  • the basic compound is at least one selected from hydroxides, oxides and sulfides of alkali metals and alkaline earth metals, preferably alkali metal hydroxides or alkaline earth metal hydroxides, more preferably The method for producing a saccharide according to any one of ⁇ 1> to ⁇ 11>, wherein is an alkali metal hydroxide, more preferably sodium hydroxide or potassium hydroxide.
  • the pulverization treatment in the step (1) is performed using a vibration mill selected from a vibration ball mill, a vibration rod mill, and a vibration tube mill, preferably a vibration rod mill. Of sugar production.
  • the rod filling rate is 10% or more, preferably 15% or more, 97% or less, preferably 95% or less, more preferably 90% or less, and still more preferably 80%. % Or less, 10 to 97%, preferably 10 to 95%, more preferably 15 to 90%, and still more preferably 15 to 80%, using the vibrating rod mill. Method.
  • ⁇ 15> The method for producing a saccharide according to any one of ⁇ 1> to ⁇ 14>, further comprising a step of washing the cellulose-containing pulverized product obtained in the step (1) with water before the step (2). .
  • the cellulose-containing pulverized product obtained in the step (1) has a water content of 50% by mass or more, preferably 100% by mass or more, more preferably 200%. % By mass or more, more preferably 230% by mass or more, 10000% by mass or less, preferably 8000% by mass or less, more preferably 5000% by mass or less, still more preferably 4000% by mass or less, and still more preferably 3500% by mass or less. And aging under the conditions of 50 to 10000% by mass, preferably 100 to 8000% by mass, more preferably 200 to 5000% by mass, and still more preferably 230 to 3500% by mass. 15> The method for producing a sugar according to any one of
  • the aging temperature is 0 ° C. or higher, preferably 20 ° C. or higher, more preferably 50 ° C. or higher, still more preferably 80 ° C. or higher, 250 ° C. or lower, preferably 200 ° C. or lower, more preferably 150 ° C. or lower, More preferably, it is 100 degrees C or less,
  • Aging time is 0.01 hour or more, preferably 0.1 hour or more, more preferably 0.5 hour or more, further preferably 1 hour or more, 24 hours or less, preferably 18 hours or less, more Preferably it is 12 hours or less, more preferably 6 hours or less, 0.01 to 24 hours, preferably 0.1 to 18 hours, more preferably 0.5 to 12 hours, still more preferably 1 to 6 hours.
  • ⁇ 21> The method for producing a saccharide according to any one of ⁇ 1> to ⁇ 18>, wherein the step (1) and the step (2) are performed in the presence of a nitrogen-containing compound.
  • the nitrogen-containing compound is used in an amount of 0.001 times mol or more, preferably 0.002 times mol or more, more preferably in terms of nitrogen atom, relative to the anhydroglucose unit constituting holocellulose in the cellulose raw material.
  • the method for producing a sugar according to any one of the above.
  • % means “% by mass” unless otherwise specified and excluding crystallinity (%).
  • the holocellulose content was used as the cellulose content in the cellulose-containing raw material (raw material cellulose).
  • the white residue was filtered through a glass filter (1G-3), washed with cold water and acetone, and then dried at 105 ° C. to a constant weight, and the weight of the residue was determined.
  • the holocellulose content was calculated by the following formula, and this was defined as the cellulose content.
  • Cellulose content (mass%) [residue weight (g) / amount of collected cellulose-containing raw material (g: dry raw material equivalent excluding basic compound)] ⁇ 100
  • Saccharification rate (%) reducing sugar concentration in the supernatant (g / ml) / (cellulose-containing ground product concentration (g / ml (in terms of dry raw material excluding basic compounds)) ⁇ holocellulose content (g / g-cellulose-containing raw material) /0.9 (molecular weight of glucose / molecular weight of AGU)) ⁇ 100
  • sugars were analyzed with a linear gradient of 10% initial concentration A solution: 90% C solution, 0 to 15 minutes, A solution 95%: B solution 5%.
  • the polymer weight average molecular weight (Mw) was determined by gel permeation chromatography (GPC) using the L-6000 type high performance liquid chromatograph manufactured by Hitachi, Ltd. under the following conditions. Was measured as the molecular weight in terms of polyethylene glycol.
  • GPC measurement conditions Column: Asahipak GS-220HQ (Showa Denko KK, exclusion limit molecular weight 3,000) and Asahipak GS-620HQ (Showa Denko KK, exclusion limit molecular weight 2 million) are connected, column temperature: 30 ° C.
  • Developing solvent 0.4 mol / l-sodium chloride aqueous solution
  • Sample concentration 0.5 g / 100 ml
  • Sample injection amount 20 ⁇ l
  • Flow rate 1.0 ml / min
  • Detector Differential refractometer (manufactured by Showa Denko KK; Shodex RISE- 61)
  • Example 1-1 (Drying process) Bagasse [sugarcane pomace, holocellulose content 71.3 mass%, crystallinity 29%, moisture content 7.0 mass%] reduced pressure dryer (trade name “VO-320” manufactured by Advantech Toyo Co., Ltd.) And dried under reduced pressure for 2 hours under nitrogen flow to obtain a dry bagasse having a holocellulose content of 71.3 mass%, a crystallinity of 29%, and a moisture content of 2.0 mass%.
  • reduced pressure dryer trade name “VO-320” manufactured by Advantech Toyo Co., Ltd.
  • the amount of enzyme protein is 1.5 mg (enzyme use amount: 10 mg / g-cellulose-containing raw material) relative to the neutralized cellulose-containing pulverized product (corresponding to 150 mg in terms of dry raw material excluding basic compounds, the same applies hereinafter)
  • Cellulase enzyme preparation Cellic CTec2 (manufactured by Novozymes, trade name) was added, and saccharification was performed at 50 ° C. for 24 hours while stirring.
  • the cellulose-containing raw material concentration in the solution in the saccharification treatment in the step (2) was 5% by mass.
  • Example 1-2 Sugar was produced in the same manner as in Example 1-1 except that water was added during the pulverization process in step (1) and the amount of water with respect to the dry bagasse was 10% by mass. The results are shown in Table 1.
  • Example 1-3 Sugar was produced in the same manner as in Example 1-1, except that water was added during the pulverization process in step (1) and the amount of water with respect to the dry bagasse was 20% by mass. The results are shown in Table 1.
  • Example 1-4 Sugar was produced in the same manner as in Example 1-1, except that water was added during the pulverization process in step (1), and the amount of water with respect to the dry bagasse was 30% by mass. The results are shown in Table 1.
  • Comparative Example 1-1 A sugar was produced in the same manner as in Example 1-1, except that the step (1) was performed without adding the basic compound and the neutralization step was not performed. The results are shown in Table 1.
  • Comparative Example 1-2 Sugar was produced in the same manner as in Example 1-1, except that water was added during the pulverization treatment in step (1) and the amount of water with respect to the dry bagasse was 50% by mass. The results are shown in Table 1.
  • Example 1-5 Example 1 except that the amount of sodium hydroxide, which is a basic compound, was 4.4 g (equivalent to 0.25 mol with respect to 1 mol of AGU constituting holocellulose), and the pulverization time was 2 hours. Sugar was produced in the same manner as in 1. The results are shown in Table 2.
  • Example 1-6 The amount of sugar was determined in the same manner as in Example 1-5 except that the amount of sodium hydroxide, which is a basic compound, was 8.8 g (corresponding to 0.5 mol corresponding to 1 mol of AGU constituting holocellulose). Manufactured. The results are shown in Table 2.
  • Example 1-7 The amount of sugar was determined in the same manner as in Example 1-5, except that the amount of sodium hydroxide, which is a basic compound, was 17.6 g (equivalent to 1.0 mol per 1 mol of AGU constituting holocellulose). Manufactured. The results are shown in Table 2.
  • Example 1-8 Except that 24.7 g of potassium hydroxide was used as the basic compound instead of sodium hydroxide (equivalent to 1.0 mol relative to 1 mol of AGU constituting holocellulose), the same method as in Example 1-7 was used. Sugar was produced. The results are shown in Table 2.
  • Example 1-9 Palm empty fruit bunch (EFB) is used as the cellulose-containing raw material instead of bagasse, and the amount of sodium hydroxide, which is a basic compound, is 15.2 g (equivalent to 1.0 mol with respect to 1 mol of AGU constituting holocellulose). Except for the above, sugar was produced in the same manner as in Example 1-7. The results are shown in Table 2.
  • Example 1-10 Using oil palm (stem) instead of bagasse as the cellulose-containing raw material, the amount of sodium hydroxide used as the basic compound was 14.0 g (1.0 mol equivalent to 1 mol of AGU constituting holocellulose). Except for the above, sugar was produced in the same manner as in Example 1-7. The results are shown in Table 2.
  • Example 1-11 A sugar was produced in the same manner as in Example 1-7, except that Celcrust 1.5L (trade name, manufactured by Novozymes) was used instead of Cellic CTec2. The results are shown in Table 2.
  • Example 1-12 Sugar was produced in the same manner as in Example 1-7, except that acetic acid was used instead of hydrochloric acid (1N-HCl) in the neutralization step. The results are shown in Table 2.
  • Example 1-13 A sugar was produced in the same manner as in Example 1-7, except that the neutralization step and the washing step were performed as follows. The results are shown in Table 2.
  • the cellulose-containing pulverized product obtained in the step (1) was added to an acetic acid aqueous solution and neutralized by stirring (neutralization step). This was placed in a centrifuge tube (IWAKI, 50 ml, 29 mm ⁇ 115 mm), centrifuged, and washed with ion exchange water three or more times until the generated salt was removed (washing step).
  • the sample after washing (150 mg in terms of dry raw material) is put into a screw tube with a lid (manufactured by Maruemu Co., Ltd., No. 5, ⁇ 27 ⁇ 55 mm), and water and 0.3 ml of 100 mM acetate buffer are added to adjust the pH.
  • Comparative Example 1-3 A sugar was produced in the same manner as in Example 1-9, except that the step (1) was performed without adding the basic compound and the neutralization step was not performed. The results are shown in Table 2.
  • Comparative Example 1-4 A sugar was produced in the same manner as in Example 1-10, except that the step (1) was performed without adding the basic compound and the neutralization step was not performed. The results are shown in Table 2.
  • Comparative Example 1-5 A sugar was produced in the same manner as in Example 1-11 except that the step (1) was performed without adding the basic compound and the neutralization step was not performed. The results are shown in Table 2.
  • Examples 1-14 to 1-22 As the enzyme, the amount shown in Table 3 (enzyme use amount: 3 mg / g-cellulose-containing raw material) Cellcrust 1.5L (manufactured by Novozymes, trade name) and heterologous expression endoglucanase I (heterologous expression EGI) were used. Except for the above, sugar was produced in the same manner as in Example 1-6. The results are shown in Table 3. As will be described later, the content ratio of 1.5 g of endoglucanase in the cell crust was 9% by mass (EGI: 4% by mass, EGII: 5% by mass).
  • Comparative Example 1-6 A sugar was produced in the same manner as in Example 1-14, except that the step (1) was performed without adding the basic compound and the neutralization step was not performed. The results are shown in Table 3. The various proteins used in Examples 1-14 to 1-22 and Comparative Example 1-6 were obtained by purification and preparation as follows. Moreover, in the following description, unless otherwise indicated, the reagent manufactured by Wako Pure Chemical Industries, Ltd. was used.
  • CBHI Cellobiohydrolase I
  • EGI endoglucanase I
  • EGII endoglucanase II
  • CBHII cellobiohydrolase II
  • EGI purified from 1.5 C of cell crust are UniProtKB / Swiss-Prot.
  • the pass fraction that was confirmed to be almost single by SDS-polyacrylamide gel electrophoresis (hereinafter also referred to as “SDS-PAGE”) was concentrated using an ultrafiltration membrane, and desalted.
  • the column was replaced with 10 mM citrate buffer (pH 5.0) to obtain cellobiohydrolase I (CBHI).
  • the pass fraction passed through the cation exchanger (b) was concentrated using the ultrafiltration membrane described above, and then replaced with 20 mM Tris hydrochloride buffer (pH 7.8) using a desalting column.
  • Anion exchanger (c) SuperQ Toyopearl 650M ( ⁇ 2.5 cm ⁇ 25 cm, trade name, manufactured by Tosoh Corporation) equilibrated with 40 mL of this pass fraction in the same buffer solution, and 250 mL of the same buffer solution in the column. After washing, linear gradient elution with 2000 mL of 0-0.3M sodium chloride was performed. The adsorbed fractions adsorbed on the anion exchanger (c) were pooled and concentrated to 12 mL using the ultrafiltration membrane described above.
  • the pass fraction that was confirmed to be almost single by SDS-PAGE was concentrated using the ultrafiltration membrane described above, and 10 mM citrate buffer (pH 5.0) was applied to the desalting column. ) To obtain endoglucanase II (EGII).
  • CBHI was 70% by mass
  • CBHII was 11% by mass
  • EGI was 4% by mass
  • EGII was 5% by mass in the total protein amount of the above-mentioned Celcrust 1.5L.
  • heterologous expression EGI (heterologous expression EGI)
  • the heterologous expression EGI was prepared by the following procedure. (Synthesis of Trichoderma reesei cDNA) Trichoderma reesei QM9414 (NBRC31329) was cultured on a PDA agar medium at 28 ° C. for 7 days to sufficiently form spores.
  • PCR was performed with DNA Engine PTC-200 (manufactured by MJ Japan). PCR conditions were 98 ° C for 10 seconds, 55 ° C for 5 seconds, 72 ° C for 8 seconds for 30 cycles, and the amplified gene fragment was purified with High Pure PCR Product Purification kit (Roche). did.
  • a forward primer (SEQ ID NO: 3: gtgaattcgagctcggtaccattacgcactacccgaatcg) designed based on the amyB promoter region using the obtained EGI gene and the PCR fragments derived from the A. oryzae-derived ⁇ -amylase gene (amyB) -derived promoter and terminator regions as template DNA PCR was performed using a reverse primer (SEQ ID NO: 4: tgattacgccaagcttgagttgtacctagaggagac) designed based on the amyB terminator region.
  • each PCR fragment 3.0 ⁇ L, 50 ⁇ M forward primer 0.4 ⁇ L, 50 ⁇ M reverse primer 0.4 ⁇ L, PrimeSTAR (registered trademark) Max DNA Polymerase (manufactured by Takara Bio Inc.) 25 ⁇ L, sterile deionized water 15.2 ⁇ L
  • PCR was performed with GeneAmp PCR System 9700 (manufactured by PE Applied Biosystems). PCR conditions were 98 ° C for 10 seconds, 55 ° C for 5 seconds, and 72 ° C for 20 seconds for 30 cycles, and the amplified gene fragment was purified with High Pure PCR Product Purification kit (Roche). did.
  • Hind III and Kpn I were added to a solution containing the pPTRI vector (Takara Bio Inc.), and a restriction enzyme reaction was performed overnight at 37 ° C. After inactivating the restriction enzyme at 70 ° C. for 15 minutes, purification was performed with a High Pure PCR Product Purification kit (Roche). The linearized pPTRI vector was mixed with 3 times the ligated EGI fragment (molar ratio) and mixed, and the In-fusion reaction (37 ° C) was performed using In-Fusion TM Advantage PCR Cloning Kit (Clontech). For 15 minutes and at 50 ° C. for 15 minutes).
  • a transformed colony in which a band of the target insert size was confirmed by agarose electrophoresis analysis was inoculated into an LB liquid medium containing 100 ppm ampicillin, and cultured overnight (37 ° C., 120 rpm) using a Sakaguchi flask. It was. The culture solution was centrifuged (6000 ⁇ g, 4 ° C., 15 minutes) to recover the bacterial cells, and then the plasmid was extracted and purified using QIAfilter Plasmid Midi Kit (manufactured by QIAGEN).
  • A. oryzae RIB40 strain (official name: Aspergillus oryzae (Ahlburg) Cohn var brunneus Murakami) purchased from NITE (NBRC100959) was used. This strain was cultured on a PDA agar plate medium at 25 ° C. for 7 days and then subcultured on a PDA slant medium at 25 ° C. for 7 days. The strain was refrigerated and used as a host for transformation. Using the A. oryzae RIB40 strain as a host, transformation with the constructed plasmid was carried out, and the cells were cultured at 30 ° C. for 7 days using a regeneration CD agar medium containing 0.2 ppm pyrithiamine. The transformed colonies that had grown on the CD agar medium were subcultured twice on a CD agar medium at 30 ° C. for 7 days.
  • A. oryzae transformed strain was inoculated on a CD agar medium with a platinum loop and cultured at 30 ° C. for 5-7 days, and then a spore suspension was prepared.
  • Examples 1-23 to 1-30 Other than the use of Cellclast 1.5L (trade name, manufactured by Novozymes) and CellicHTec (trade name, manufactured by Novozymes) in amounts shown in Table 4 (enzyme use amount: 3 mg / g-cellulose-containing raw material) as enzymes Produced a sugar in the same manner as in Example 1-6. The results are shown in Table 4.
  • Example 1-31 The amount of sodium hydroxide used in step (1) was 8.8 g (corresponding to 0.5 mol per mol of AGU constituting holocellulose in the cellulose-containing raw material), and the pulverization time was 0.5 hours. Except for the above, sugar was produced in the same manner as in Example 1-1. The results are shown in Table 5.
  • Example 1-32 The amount of sodium hydroxide used in step (1) was 8.8 g (equivalent to 0.5 mol with respect to 1 mol of AGU constituting holocellulose in the cellulose-containing raw material), and the grinding time was 0.5 hours.
  • (Aging process) 150 mg of the cellulose-containing pulverized product obtained in the step (1) (converted to a dry raw material excluding basic compounds) is put into a screw tube with a lid (No. 5, ⁇ 27 ⁇ 55 mm, manufactured by Maruemu Co., Ltd.), and then 1245 mg of water.
  • the amount of enzyme protein is 1.5 mg (enzyme use amount: 10 mg / g-cellulose-containing raw material) with respect to the neutralized cellulose-containing pulverized product (equivalent to 150 mg in terms of dry raw material excluding basic compounds).
  • Cellulase enzyme preparation Cellic CTec2 (manufactured by Novozymes, trade name) was added, and saccharification treatment was performed at 50 ° C. for 24 hours while stirring.
  • the cellulose-containing raw material concentration in the solution in the saccharification treatment in the step (2) was 5% by mass.
  • Example 1-33 Sugar was produced in the same manner as in Example 1-32, except that the amount of water added in the aging step was 2490 mg and the amount of water in the aging step was 1660% by mass with respect to the pulverized cellulose-containing product. The results are shown in Table 5.
  • Example 1-34 Drying and step (1) were performed in the same manner as in Example 1-32.
  • the amount of water added in the aging step was 4980 mg
  • the amount of water in the aging step was 3320% by mass with respect to the cellulose-containing pulverized product
  • the aging step was performed at 100 ° C. for 2 hours. It was opened to release the sealed state, and excess water was evaporated so that the concentration of the cellulose-containing raw material was 5% by mass.
  • the neutralization step and step (2) were carried out in the same manner as in Example 1-32 to produce sugar.
  • the cellulose-containing raw material concentration in the solution in the step (2) was 5% by mass. The results are shown in Table 5.
  • Example 1-35 In the neutralization step, the production of sugar was carried out in the same manner as in Example 1-31, except that 600 mg of the cellulose-containing pulverized product obtained in step (1) (converted into a dry raw material excluding the basic compound) was used. went. The cellulose-containing raw material concentration in the solution in the step (2) was 20% by mass. The results are shown in Table 5.
  • Example 1-36 In the aging step, 600 mg of the cellulose-containing pulverized product obtained in the step (1) (converted to a dry raw material excluding the basic compound) is used, the amount of water added is 850 mg, and the moisture content during the aging step is determined as the cellulose-containing pulverized product.
  • the sugar was produced in the same manner as in Example 1-32, except that the content was 142% by mass.
  • the cellulose-containing raw material concentration in the solution in the step (2) was 20% by mass. The results are shown in Table 5.
  • Example 1-37 Sugar was produced in the same manner as in Example 1-36, except that the amount of water added in the ripening step was 1700 mg and the amount of water in the ripening step was 283 mass% with respect to the pulverized cellulose-containing product. The results are shown in Table 5.
  • Example 1-38 Sugar was produced in the same manner as in Example 1-36, except that the amount of water added in the ripening step was 3400 mg, and the amount of water in the ripening step was 567 mass% with respect to the pulverized cellulose-containing product. The results are shown in Table 5.
  • Comparative Example 1-7 A sugar was produced in the same manner as in Comparative Example 1-1 except that the pulverization time in the step (1) was 0.5 hour. The results are shown in Table 5.
  • Comparative Example 1-8 A sugar was produced in the same manner as in Example 1-35, except that the step (1) was performed without adding the basic compound and the neutralization step was not performed. The results are shown in Table 5.
  • Examples 1-39 to 1-49 Sugar was produced in the same manner as in Example 1-37, except that the temperature and time in the aging step were changed as shown in Table 6. The results are shown in Table 6.
  • the sugar production method of the present invention further improves the saccharification rate of cellulose by performing the aging step, and also improves the yield because the yield of the resulting sugar is improved. Recognize.
  • Example 2-1 (Drying process) Bagasse [sugarcane pomace, holocellulose content 71.3 mass%, crystallinity 29%, moisture content 7.0 mass%] reduced pressure dryer (trade name “VO-320” manufactured by Advantech Toyo Co., Ltd.) And dried under reduced pressure for 2 hours under nitrogen flow to obtain a dry bagasse having a holocellulose content of 71.3 mass%, a crystallinity of 29%, and a moisture content of 2.0 mass%.
  • reduced pressure dryer trade name “VO-320” manufactured by Advantech Toyo Co., Ltd.
  • Example 2-2 In step (1), 3.12 g (effective amount: 1.56 g, constituting holocellulose) of 50% aqueous solution of alkylbenzyldimethylammonium chloride as a nitrogen-containing compound (trade name “Sanisol B-50” manufactured by Kao Corporation) A sugar was produced in the same manner as in Example 2-1, except that 0.01 mol equivalent of 1 mol of AGU) was used. The results are shown in Table 7.
  • Example 2-3 In step (1), 0.49 g of tetramethylammonium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the nitrogen-containing compound (equivalent to 0.01 mol in terms of nitrogen atom with respect to 1 mol of AGU constituting holocellulose). Except for the above, sugar was produced in the same manner as in Example 2-1. The results are shown in Table 7.
  • Example 2-4 In step (1), ammonium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) 0.24 g (equivalent to 0.01 mol in terms of nitrogen atom with respect to 1 mol of AGU constituting holocellulose) was used as the nitrogen-containing compound. In the same manner as in Example 2-1, sugar was produced. The results are shown in Table 7.
  • Example 2-5 In step (1), 5.00 g (effective amount: 1) of a 28% aqueous solution of diallyldimethylammonium chloride polymer (Mw 40,000) as a nitrogen-containing compound (product name “PAS-H-5L”, manufactured by Nitto Bo Medical Co., Ltd.) A sugar was produced in the same manner as in Example 2-1, except that .40 g was used in an amount equivalent to 0.02 mol in terms of nitrogen atom with respect to 1 mol of AGU constituting holocellulose. The results are shown in Table 7.
  • Example 2-6 In the step (1), 5.00 g of a 20% aqueous solution of diallylamine hydrochloride / sulfur dioxide copolymer (Mw 5,000) as a nitrogen-containing compound (trade name “PAS-92S” manufactured by Nitto Bo Medical Co., Ltd.) A sugar was produced in the same manner as in Example 2-1, except that 1.00 g and an equivalent amount of 0.02 mol in terms of nitrogen atom per 1 mol of AGU constituting holocellulose were used. The results are shown in Table 7.
  • Example 2-7 A 27% aqueous solution of lauryltrimethylammonium chloride (trade name “Coatamine 24P” manufactured by Kao Corporation) was added in the step (2) instead of the step (1) in the same manner as in Example 2-1. Sugar was produced. The results are shown in Table 7.
  • Example 2-8 Except that a 28% aqueous solution of diallyldimethylammonium chloride polymer (Mw 40,000) (trade name “PAS-H-5L”, manufactured by Nitto Bo Medical Co., Ltd.) was added in step (2) instead of step (1).
  • the sugar was produced in the same manner as in Example 2-5. The results are shown in Table 7.
  • Comparative Example 2-1 A sugar was produced in the same manner as in Example 2-1, except that the step (1) was performed without adding the basic compound and the neutralization treatment was not performed. The results are shown in Table 7.
  • the sugar production method of the present invention is excellent in productivity and can efficiently obtain sugar from a cellulose-containing raw material.
  • the obtained sugar is useful for the production of fermentation such as ethanol and lactic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Emergency Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 セルロース含有原料から糖を効率よく製造することができる、生産性に優れる糖の製造方法を提供する。 下記工程(1)及び工程(2)を有する糖の製造方法である。 工程(1):セルロース含有原料を、塩基性化合物の存在下、該セルロース含有原料の乾燥重量に対する水分量が40質量%以下の条件下で粉砕処理し、セルロース含有粉砕物を得る工程 工程(2):工程(1)で得られたセルロース含有粉砕物を酵素で糖化処理する工程

Description

糖の製造方法
 本発明は、糖の製造方法に関する。
 近年、環境問題への取り組みなどから、セルロースを含有するバイオマス材料から糖を製造し、それを発酵法などでエタノールや乳酸などへ変換する試みがなされている。セルロースを含有するバイオマス材料をセルラーゼなどの酵素により処理し、該セルロースを糖化して糖を製造する方法においては、その前処理工程として、該セルロースの結晶構造を非晶化させる処理を行うことが有用である。例えば、前処理工程として、塩化リチウム/ジメチルアセトアミドなどのセルロース溶剤を用いてセルロースを非晶化することが開示されている(特許文献1)。
 一方、セルロースの糖化方法としては、特定のセルラーゼを用いる方法(特許文献2)、過酸化水素を用いてセルロース又はヘミセルロースを熱水処理してから酵素処理する方法(特許文献3及び4)などが知られている。
 セルロース含有原料から糖を製造する方法としては、セルロース含有原料をロッドを充填した振動ミルで処理して、セルロースI型結晶化度を低減した非晶化セルロースを調製した後に、該非晶化セルロースにセルラーゼ及び/又はヘミセルラーゼを作用させて糖化する方法が知られている(特許文献5)。
特開2006-223152号公報 特開2003-135052号公報 特開2007-74992号公報 特開2007-74993号公報 特開2009-171951号公報
 しかしながら、特許文献1~4に記載の方法は、糖化効率、生産性において満足できるものではない。特許文献5に記載の方法は、優れた糖化効率を達成できるが、更に糖化効率を向上させることが求められている。
 本発明は、セルロース含有原料から糖を効率よく製造することができる、生産性に優れた糖の製造方法を提供することを課題とする。
 本発明者らは、塩基性化合物の存在下、かつ水分量が一定量以下の条件下でセルロース含有原料を粉砕処理することにより、前記課題を解決できることを見出した。
 すなわち本発明は、下記工程(1)及び工程(2)を有する、糖の製造方法を提供する。
工程(1):セルロース含有原料を、塩基性化合物の存在下、該セルロース含有原料の乾燥重量に対する水分量が40質量%以下の条件下で粉砕処理し、セルロース含有粉砕物を得る工程
工程(2):工程(1)で得られたセルロース含有粉砕物を酵素で糖化処理する工程
 本発明の糖の製造方法によれば、セルロース含有原料を特定条件下で粉砕処理してから酵素処理することで、該酵素処理によるセルロースの糖化効率が向上し、セルロース含有原料から糖を効率よく製造することができる。
[糖の製造方法]
 本発明の糖の製造方法は、下記工程(1)及び工程(2)を有する。
工程(1):セルロース含有原料を、塩基性化合物の存在下、該セルロース含有原料の乾燥重量に対する水分量が40質量%以下の条件下で粉砕処理し、セルロース含有粉砕物を得る工程
工程(2):工程(1)で得られたセルロース含有粉砕物を酵素で糖化処理する工程
<工程(1)>
 工程(1)は、セルロース含有原料を、塩基性化合物の存在下、該セルロース含有原料の乾燥重量に対する水分量が40質量%以下の条件下で粉砕処理し、セルロース含有粉砕物を得る工程である。
 工程(1)において、水分量が所定量以下の条件下でセルロース含有原料(以下、「原料セルロース」と称する場合がある。)を塩基性化合物と共に粉砕することにより、該セルロース含有原料中に塩基性化合物を均一に分散させることができる。また、水分量が所定量以下の条件下で粉砕処理を行うことで、セルロース含有原料を効率的に粉砕することができる。その結果、セルロースを非晶化、小粒子径化することができ、更に塩基性化合物の作用により脱リグニン化、脱ヘミセルロース化することができる。
(セルロース含有原料)
 セルロース含有原料の種類には特に制限はなく、カラマツやヌマスギなどの針葉樹、アブラヤシ、ヒノキなどの広葉樹から得られる各種木材;木材から製造されるウッドパルプ、綿の種子の周囲の繊維から得られるコットンリンターパルプなどのパルプ類;新聞紙、ダンボール、雑誌、上質紙などの紙類;バガス(サトウキビの搾りかす)、パーム空果房(EFB)、稲わら、とうもろこし茎などの植物茎・葉・果房類;籾殻、パーム殻、ココナッツ殻などの植物殻類;藻類などが挙げられる。
 上記のうち、糖化効率の向上の観点、入手容易性及び原料コストの観点から、パルプ類、紙類、針葉樹又は広葉樹から得られる木材、及び植物茎・葉・果房類、藻類から選ばれる1種以上が好ましく、木材、植物茎・葉・果房類から選ばれる1種以上がより好ましく、バガス、EFB、アブラヤシ(幹部)から選ばれる1種以上がより好ましく、バガスが更に好ましい。
 本発明に用いられるセルロース含有原料は、ホロセルロース含有量が20質量%以上であることが好ましく、40質量%以上であることがより好ましく、45質量%以上であることが更に好ましく、50質量%以上がより更に好ましい。なお、本発明において、ホロセルロースの含有量とは、セルロースとヘミセルロースの合計含有量をいう。
 セルロース含有原料中の水分量は、粉砕効率の向上、及び結晶化度低減などの観点から、原料セルロースの乾燥重量に対して40質量%以下であり、好ましくは35質量%以下、より好ましくは30質量%以下である。水分量の下限は原料セルロースに対して0質量%であるが、セルロース含有原料中の水分量を0質量%にすることは困難であるため、該水分量は原料セルロースの乾燥重量に対して好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは1質量%以上である。また、該水分量は、原料セルロースの乾燥重量に対して0.01~40質量%であることが好ましく、0.1~35質量%であることがより好ましく、1~30質量%であることが更に好ましい。
 なお、セルロース含有原料中の水分量が40質量%を超える場合には、該セルロース含有原料を公知の方法で乾燥させ(以下、「乾燥処理」と称する場合がある。)、その水分量がセルロース含有原料の乾燥重量に対し40質量%以下となるように調整することによって用いることができる。
 セルロース含有原料中の水分量は市販の赤外線水分計などを用いて測定することができ、具体的には実施例に記載の方法により測定することができる。
(塩基性化合物)
 工程(1)において用いられる塩基性化合物としては、無機塩基性化合物が好ましく、アルカリ金属又はアルカリ土類金属の水酸化物、酸化物及び硫化物から選ばれる1種以上が挙げられる。
 アルカリ金属又はアルカリ土類金属の水酸化物としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどが挙げられる。また、アルカリ金属又はアルカリ土類金属の酸化物としては、酸化ナトリウム、酸化カリウム、酸化マグネシウム、酸化カルシウムなどが挙げられ、アルカリ金属又はアルカリ土類金属の硫化物としては、硫化ナトリウム、硫化カリウム、硫化マグネシウム、硫化カルシウムなどが挙げられる。
 上記の塩基性化合物のうち、アルカリ金属水酸化物又はアルカリ土類金属水酸化物を用いることがより好ましく、アルカリ金属水酸化物を用いることが更に好ましく、水酸化ナトリウム又は水酸化カリウムを用いることがより更に好ましい。これらの塩基性化合物は、単独で又は2種以上を組み合わせて用いることができる。
 工程(1)において用いられる塩基性化合物の量は、セルロース含有原料中のホロセルロースをすべてセルロースとして仮定した場合に、該セルロースを構成するアンヒドログルコース単位(以下「AGU」と称する場合がある。)に対し、好ましくは0.01倍モル以上、より好ましくは0.05倍モル以上、更に好ましくは0.1倍モル以上であり、また、好ましくは10倍モル以下、より好ましくは8倍モル以下、更に好ましくは5倍モル以下、より更に好ましくは1.5倍モル以下である。また、該塩基性化合物の量は、セルロース含有原料中のホロセルロースを構成するアンヒドログルコース単位に対し、0.01~10倍モルであることが好ましく、0.05~8倍モルであることがより好ましく、0.1~5倍モルであることが更に好ましく、0.1~1.5倍モルであることがより更に好ましい。塩基性化合物の使用量が0.01倍モル以上であれば、後述する工程(2)において糖化効率が向上する。また、該使用量が10倍モル以下であれば、塩基性化合物の中和及び/又は洗浄容易性の観点、及び塩基性化合物のコストの観点から好ましい。
 セルロース含有原料への塩基性化合物の添加方法に特に限定はなく、セルロース含有原料中に塩基性化合物を一括添加してもよく、分割添加してもよい。塩基性化合物を一括添加する場合は、セルロース含有原料中に該塩基性化合物を均一に分散させる観点から、セルロース含有原料に塩基性化合物を添加した後に撹拌混合するか、セルロース含有原料を撹拌しながら塩基性化合物を添加して混合することが好ましい。
 塩基性化合物の添加は、後述する粉砕処理を行う装置の中で行ってもよいし、別途撹拌及び混合を行う装置で行ってもよい。
 上記撹拌及び混合を行う装置は、塩基性化合物を原料セルロース中に分散可能な装置であれば特に限定はない。例えば、リボン型混合機、パドル型混合機、円錐遊星スクリュー型混合機、粉体、高粘度物質、樹脂などの混錬に用いられるニーダーなどの混合機が挙げられる。これらの中では、水平軸型パドル型混合機がより好ましく、具体的には、チョッパー翼を有する水平軸型のパドル型混合機であるレディゲミキサー(中央機工株式会社製;特徴的なスキ状ショベルを用いる混合機、チョッパー翼を設置可能)、プロシェアミキサー(太平洋機工株式会社製;独自形状のショベル翼による浮遊拡散混合と多段式チョッパー翼による高速剪断分散の2つの機能を備えた混合機)が更に好ましい。
 塩基性化合物を添加する際の形態には特に制限はないが、粉砕効率の観点から、原料セルロース中に固体状態で添加することが好ましい。塩基性化合物を固体状態で添加する場合、製造時の取り扱い性の観点、及び塩基性化合物をセルロース含有原料中に均一に分散させる観点から、塩基性化合物はペレット状、粒状又は粉末状であることが好ましい。なお、塩基性化合物が固体状態であることは、水分を含有しないことを意味するものではなく、空気中の水分の吸湿などにより水分を含有していてもよい。
(水分量)
 工程(1)は、原料セルロースの乾燥重量に対する水分量が40質量%以下の条件下で行われる。該水分量が原料セルロースの乾燥重量に対して40質量%以下であれば、セルロース含有原料の粉砕効率、及びセルロース含有原料と塩基性化合物との混合・浸透・拡散性が向上し、工程(2)の糖化処理が効率よく進行する。水分量の下限は0質量%である。
 セルロースの結晶化度の低減、生産性及び糖化効率の向上の観点から、工程(1)における水分量は、原料セルロースの乾燥重量に対し好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上、より更に好ましくは5質量%以上、より更に好ましくは7質量%以上であり、好ましくは35質量%以下、より好ましくは30質量%以下、更に好ましくは25質量%以下、より更に好ましくは20質量%以下、より更に好ましくは15質量%以下である。また、工程(1)における水分量は、原料セルロースの乾燥重量に対し0.1~35質量%であることが好ましく、0.5~35質量%であることがより好ましく、1~30質量%であることが更に好ましく、1~25質量%であることがより更に好ましく、5~25質量%であることがより更に好ましく、7~20質量%であることがより更に好ましく、7~15質量%であることがより更に好ましい。
 工程(1)の粉砕処理時の水分量は、原料セルロースの乾燥重量に対する水分量を意味し、乾燥処理などにより原料セルロースならびに塩基性化合物に含まれる水分量を低減することや、粉砕処理時に水を添加することなどにより、所定の水分量に調整することができる。
(窒素含有化合物)
 また、糖化効率向上の観点から、工程(1)又は後述する工程(2)、並びに工程(1)及び工程(2)を、窒素含有化合物の存在下で行うことが好ましい。窒素含有化合物を用いることにより糖化効率が向上する理由は明らかではないが、セルロース含有原料の小粒径化、セルロースの低分子量化、比表面積の増加、非晶化及びリグニン等の夾雑物の除去が行われるためと推測される。
 本発明の製造方法において、糖化効率の更なる向上の観点から、工程(1)を窒素含有化合物の存在下で行うことが好ましい。
 本発明において「窒素含有化合物」とは、工程(1)において前記塩基性化合物として用いた化合物を除く、窒素原子を1つ以上含有する化合物をいう。窒素含有化合物としては、アンモニア、アミン、アンモニア又はアミンと酸との付加塩、ならびに第4級アンモニウム塩から選ばれる1種以上が挙げられる。
 前記アミンとしては、メチルアミン、ブチルアミン、2-エチルヘキシルアミン、ラウリルアミン、ステアリルアミン等の1級アミン;ジメチルアミン、ジブチルアミン、ジオクチルアミン、ジステアリルアミン等の2級アミン;トリメチルアミン、トリエチルアミン、ラウリルジメチルアミン、ジステアリルメチルアミン等の3級アミン;ピロリジン、ピペリジン、モルホリン等の環状アミン、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、ピペラジン等の多価アミン;エタノールアミン、トリエタノールアミン、2-アミノ-2-メチルプロパノール、トリスヒドロキシメチルアミノメタン等のヒドロキシアミンが挙げられる。
 また、ピリジン、ピロール、キノリン、イミダゾール等の芳香族アミン;グアニジン、アミジン等が挙げられる。
 前記アンモニア又はアミンとの付加塩を形成する酸としては、塩酸、リン酸、硫酸などの無機酸、酢酸、プロピオン酸、ラウリン酸、ステアリン酸、グリコール酸、乳酸、コハク酸、アジピン酸、フマル酸、クエン酸などの有機酸が挙げられる。水も酸の一種としてアンモニアと作用し、アンモニウムヒドロキシドを生成しうる。
 アンモニア又はアミンと酸との付加塩としては、好ましくはオクチルアンモニウムクロリド、ラウリルアンモニウムクロリド、セチルピリジニウムクロリドなどの第1級~第3級アンモニウム塩や、塩化アンモニウム、アンモニウムヒドロキシドなどの無機アンモニウム塩が挙げられる。中でも、糖化効率向上の観点、及びセルロース原料の粉砕効率向上の観点から、アルキル基を有する第1級~第3級アンモニウム塩及び無機アンモニウム塩が好ましく、無機アンモニウム塩がより好ましく、塩化アンモニウムが更に好ましい。
 なお、前記アルキル基は、糖化効率向上の観点から、炭素数1以上であることが好ましく、炭素数6以上であることがより好ましい。また、炭素数30以下であることが好ましく、炭素数22以下であることがより好ましい。また、前記アルキル基は、糖化効率向上の観点から、炭素数1~30であることが好ましく、炭素数6~22であることがより好ましい。
 前記第4級アンモニウム塩としては、テトラメチルアンモニウムクロリド、テトラプロピルアンモニウムクロリド、テトラブチルアンモニウムヒドロキシド、オクチルトリメチルアンモニウムクロリド、ラウリルトリメチルアンモニウムクロリド、セチルトリメチルアンモニウムブロミド、オクチルジメチルベンジルアンモニウムクロリド、ジメチルジアリルアンモニウムクロリド、アルキルベンジルジメチルアンモニウムクロリド、塩化コリン等が挙げられる。中でも、糖化効率向上の観点、及び粉砕効率向上の観点から、ラウリルトリメチルアンモニウムクロリド、アルキルベンジルジメチルアンモニウムクロリド、テトラメチルアンモニウムクロリド、及びジメチルジアリルアンモニウムクロリドが好ましい。
 また、本発明に用いられる窒素含有化合物は、ポリマーであってもよい。該ポリマーとしては、アミン部位を有するポリマー、アミン部位を有するポリマーと酸との付加塩、及び第4級アンモニウム塩部位を有するポリマーが挙げられる。「アミン部位」における窒素原子は、1級~3級のいずれでもよい。また、「アミン部位を有するポリマーと酸との付加塩」とは、前述した酸が前記アミン部位に付加した構造を少なくとも1つ有するポリマーをいう。
 かかるポリマーの具体例としては、ジアリルジメチルアンモニウムクロリド重合体、ジアリルメチルアミン塩酸塩・二酸化硫黄共重合体等のアリルアミンポリマー;ジメチルアミノエチル(メタ)アクリレート重合体、トリメチルアンモニオエチル(メタ)アクリレート重合体等の(メタ)アクリレート重合体、ポリ(4-ビニルピリジン)、ビニルメチルイミダゾリニウムクロリド等の芳香族アミン重合体、ポリエチレンイミン等が挙げられる。中でも、糖化効率向上の観点、及び粉砕効率向上の観点から、ジメチルジアリルアンモニウムクロリド重合体、及びジアリルアミン塩酸塩・二酸化硫黄共重合体から選ばれる1種以上が好ましい。なお、これらのポリマーは、単独で又は2種以上を組み合わせて用いてもよい。
 上記ポリマーの重量平均分子量(Mw)は、糖化効率向上の観点から、100,000以下であることが好ましく、1,000~50,000であることがより好ましい。なお、上記ポリマーの重量平均分子量は、実施例に記載の方法により測定される値である。
 以上より、窒素含有化合物としては、糖化効率向上の観点、及び粉砕効率向上の観点から、アルキル基を有する第1級~第3級アンモニウム塩、無機アンモニウム塩、第4級アンモニウム塩、アミン部位を有するポリマー、アミン部位を有するポリマーと酸との付加塩、及び第4級アンモニウム塩部位を有するポリマーから選ばれる1種以上であることが好ましく、塩化アンモニウム、テトラメチルアンモニウムクロリド、ラウリルトリメチルアンモニウムクロリド、アルキルベンジルジメチルアンモニウムクロリド、ジメチルジアリルアンモニウムクロリド、ジメチルジアリルアンモニウムクロリドの重合体、及びジアリルアミン塩酸塩・二酸化硫黄共重合体から選ばれる1種以上であることがより好ましい。
 工程(1)又は工程(2)における窒素含有化合物の使用量は、セルロース含有原料中のホロセルロースをすべてセルロースとして仮定した場合に、該セルロースを構成するアンヒドログルコース単位(AGU)に対して、窒素原子換算で0.001倍モル以上であることが好ましく、0.002倍モル以上であることがより好ましく、0.005倍モル以上であることが更に好ましい。また、1倍モル以下であることが好ましく、0.5倍モル以下であることがより好ましく、0.3倍モル以下であることが更に好ましく、0.2倍モル以下であることがより更に好ましい。また、工程(1)又は工程(2)における窒素含有化合物の使用量は、窒素原子換算で0.001~1倍モルであることが好ましく、0.002~0.5倍モルであることがより好ましく、0.005~0.3倍モルであることが更に好ましく、0.005~0.2倍モルであることがより更に好ましい。窒素含有化合物の使用量が0.001倍モル以上であれば糖化効率が向上する。また、該使用量が10倍モル以下であれば、セルロース原料の粉砕効率向上の観点から好ましい。
 なお、本発明において、工程(1)及び工程(2)の両方を窒素含有化合物の存在下で行う場合には、上記でいう窒素含有化合物の使用量とは、工程(1)及び工程(2)における窒素含有化合物の合計使用量を意味する。
 工程(1)又は工程(2)において、窒素含有化合物を添加する際の形態には特に制限はないが、粉砕効率の観点、製造時の取り扱い性の観点、及び窒素含有化合物を均一に分散させる観点から、セルロース含有原料中又はセルロース粉砕物中に、固体、液体、又は水溶液の状態で添加することが好ましい。
 窒素含有化合物の添加方法には特に限定はなく、工程(1)で用いる塩基性化合物や工程(2)で用いる酵素と同時に添加してもよく、個別に添加してもよい。また、窒素含有化合物を一括添加してもよく、分割添加してもよい。一括添加する場合は、セルロース含有原料中又はセルロース粉砕物中に窒素含有化合物を均一に分散させる観点から、セルロース含有原料中又はセルロース粉砕物中に窒素含有化合物を添加した後に撹拌混合するか、撹拌しながら窒素含有化合物を添加して混合することが好ましい。
(粉砕処理)
 粉砕処理は、セルロース含有原料を小粒径化し、かつ該セルロース含有原料中に塩基性化合物、又は塩基性化合物及び窒素含有化合物を可及的に均一に分散させる操作である。固体状態の塩基性化合物を用いた場合には、粉砕処理によって、同時に塩基性化合物の粉末化も進行する。
 粉砕処理は、公知の粉砕機を用いて行うことができる。用いられる粉砕機に特に制限はなく、セルロース含有原料を小粒子化することができ、塩基性化合物、又は塩基性化合物及び窒素含有化合物をセルロース含有原料中に可及的に分散できる装置であればよい。
 粉砕機の具体例としては、高圧圧縮ロールミルや、ロール回転ミルなどのロールミル、リングローラーミル、ローラーレースミル又はボールレースミルなどの竪型ローラーミル、転動ボールミル、振動ボールミル、振動ロッドミル、振動チューブミル、遊星ボールミル又は遠心流動化ミルなどの容器駆動媒体ミル、塔式粉砕機、攪拌槽式ミル、流通槽式ミル又はアニュラー式ミルなどの媒体攪拌式ミル、高速遠心ローラーミルやオングミルなどの圧密せん断ミル、乳鉢、石臼、マスコロイダー、フレットミル、エッジランナーミル、ナイフミル、ピンミル、カッターミルなどが挙げられる。これらの中では、セルロース含有原料の粉砕効率、及び生産性の観点から、容器駆動式媒体ミル又は媒体攪拌式ミルが好ましく、容器駆動式媒体ミルがより好ましく、振動ボールミル、振動ロッドミル及び振動チューブミルから選ばれる振動ミルが更に好ましく、振動ロッドミルがより更に好ましい。
 粉砕方法としては、バッチ式、連続式のどちらでもよい。
 粉砕に用いる装置や媒体の材質としては特に制限はなく、例えば、鉄、ステンレス、アルミナ、ジルコニア、炭化珪素、窒化珪素、ガラスなどが挙げられるが、セルロースの結晶化度低下効率の観点から、鉄、ステンレス、ジルコニア、炭化珪素、窒化珪素が好ましく、更に工業的利用の観点から、鉄又はステンレスが好ましい。
 用いる装置が振動ミルであって、媒体がロッドの場合には、セルロース含有原料の粉砕効率の観点から、ロッドの外径は好ましくは0.1mm以上、より好ましくは0.5mm以上であり、好ましくは100mm以下、より好ましくは50mm以下である。また、セルロース含有原料の粉砕効率の観点から、ロッドの外径は好ましくは0.1~100mm、より好ましくは0.5~50mmの範囲である。ロッドの大きさが上記の範囲であれば、セルロース含有原料を効率的に小粒子化させることができるとともに、ロッドのかけらなどが混入してセルロースが汚染されるおそれが少ない。
 ロッドの充填率は、振動ミルの機種により好適な範囲が異なるが、好ましくは10%以上、より好ましくは15%以上であり、好ましくは97%以下、より好ましくは95%以下、更に好ましくは90%以下、より更に好ましくは80%以下である。また、ロッドの充填率は、好ましくは10~97%、より好ましくは10~95%、更に好ましくは15~90%、より更に好ましくは15~80%である。充填率がこの範囲内であれば、セルロースとロッドとの接触頻度が向上するとともに、媒体の動きを妨げずに、原料セルロースの粉砕効率を向上させることができる。ここで充填率とは、振動ミルの攪拌部の容積に対するロッドの見かけの体積をいう。
 粉砕処理時の温度に特に限定はないが、操作コスト及び原料セルロースの劣化抑制の観点から、-100℃以上が好ましく、0℃以上がより好ましく、5℃以上が更に好ましく、また、200℃以下が好ましく、150℃以下がより好ましく、100℃以下が更に好ましい。また、上記と同様の観点から、-100~200℃が好ましく、0~150℃がより好ましく、5~100℃が更に好ましい。
 粉砕時間は、粉砕後のセルロース含有原料が小粒子化されるよう適宜調整すればよい。用いる粉砕機や使用するエネルギー量などによって変わるが、通常1分~12時間であり、セルロース含有原料の粒子径の低下の観点、及びエネルギーコストの観点から、2分間以上が好ましく、5分間以上がより好ましく、また、6時間以下が好ましく、3時間以下がより好ましく、2時間以下が更に好ましい。また、上記と同様の観点から、2分間~6時間が好ましく、5分間~3時間がより好ましく、5分間~2時間が更に好ましい。
 以上のようにして工程(1)を行うことにより、セルロース含有粉砕物が得られる。
(熟成工程)
 また、工程(1)を行った後に、塩基性化合物の作用によるリグニンやヘミセルロースの結合の加水分解、すなわちリグニンの脱離、ヘミセルロースの脱離をより促進させて糖化効率を向上させる観点から、工程(2)の前、好ましくは後述する中和工程及び洗浄工程を行う場合にはその前に、工程(1)で得られたセルロース含有粉砕物を、該セルロース含有粉砕物に対する水分量が50~10000質量%の条件下で熟成する工程(以下「熟成工程」ということがある。)を有することが好ましい。塩基性化合物を含むセルロース含有粉砕物を所定の水分条件下で熟成させることにより、塩基性化合物の作用によるリグニンの脱離、ヘミセルロースの脱離が促進されて、糖化効率が更に向上すると考えられる。
 本発明の製造方法において、熟成工程は、例えば、工程(1)で得られたセルロース含有粉砕物に水を添加して混合し、所望により加熱しながら、一定時間の間撹拌又は静置することにより行うことができる。
 水をセルロース含有粉砕物中に均一に分散させる観点から、水をセルロース含有粉砕物中に添加した後、撹拌混合するか、又はセルロース含有粉砕物を撹拌しながら、水を添加し混合することが好ましい。
 水の添加方法に特に限定はなく、一括添加でも、分割添加でもよい。
 熟成工程における水分量は、塩基性化合物の作用によるリグニンやヘミセルロースの結合の加水分解、すなわちリグニンの脱離、ヘミセルロースの脱離をより促進させて糖化効率を向上させる観点から、セルロース含有粉砕物に対して、好ましくは50質量%以上、より好ましくは100質量%以上、更に好ましくは200質量%以上、より更に好ましくは230質量%以上であり、また製造コストの低減の観点から、好ましくは10000質量%以下、より好ましくは8000質量%以下、更に好ましくは5000質量%以下、より更に好ましくは4000質量%以下、より更に好ましくは3500質量%以下である。また、上記観点から、熟成工程における水分量は、セルロース含有粉砕物に対して好ましくは50~10000質量%、より好ましくは100~8000質量%、更に好ましくは200~5000質量%、より更に好ましくは230~3500質量%である。
 なお、セルロース含有粉砕物に対する水分量とは、セルロース含有粉砕物から塩基性化合物を除いた乾燥原料に対する質量%である。
 熟成を行う装置に特に限定はない。その具体例としては、前記塩基性化合物の撹拌及び混合に用いられる装置が挙げられる。
 熟成温度は、リグニン及びヘミセルロースの脱離を促進して糖化効率を向上させる観点から、好ましくは0℃以上、より好ましくは20℃以上、更に好ましくは50℃以上、更に好ましくは80℃以上であり、ヘミセルロースに由来する成分の過分解の抑制、及び製造コスト低減の観点から、好ましくは250℃以下、より好ましくは200℃以下、更に好ましくは150℃以下、より更に好ましくは100℃以下である。
 上記と同様の観点から、熟成温度は、好ましくは0℃以上250℃以下、より好ましくは20℃以上200℃以下、更に好ましくは50℃以上150℃以下、更に好ましくは80℃以上100℃以下である。また、製造設備の簡素化、製造コスト低減の観点から、好ましくは0~100℃、より好ましくは20~100℃、更に好ましくは50~100℃、より更に好ましくは80~100℃である。
 なお、後述する工程(2)に供する溶液中のセルロース含有粉砕物が適度な濃度となるように、熟成工程時に余剰の水分を蒸発させる操作を行ってもよい。例えば、熟成時に開放系にすることにより水分の蒸発を同時に行うこと等が挙げられる。
 熟成時間は、リグニン及びヘミセルロースの脱離を促進して糖化効率を向上させる観点から、好ましくは0.01時間以上、より好ましくは0.1時間以上、更に好ましくは0.5時間以上、より更に好ましくは1時間以上であり、ヘミセルロースに由来する成分の過分解の抑制、及び製造コストの低減の観点から、好ましくは24時間以下、より好ましくは18時間以下、更に好ましくは12時間以下、より更に好ましくは6時間以下である。上記観点から、熟成時間は、好ましくは0.01~24時間、より好ましくは0.1~18時間、更に好ましくは0.5~12時間、より更に好ましくは1~6時間である。
 また、工程(1)で用いた塩基性化合物や窒素含有化合物、セルロース含有原料中に含まれる夾雑物を除去するために、工程(2)の前、かつ熟成工程を行う場合は好ましくはその後に、以下のような中和工程や洗浄工程を有していてもよい。
(中和工程)
 本発明の製造方法において、後述する工程(2)における糖化効率を向上させる観点から、工程(2)の前に、工程(1)で得られたセルロース含有粉砕物を酸で中和する工程を有することが好ましい(以下、これを「中和工程」と称する場合がある)。
 用いられる酸としては、塩酸、硫酸、硝酸、リン酸、ホウ酸などの無機酸や、酢酸、クエン酸などの有機酸が挙げられるが、生産性、糖化効率並びに糖の収率の向上の観点から、塩酸、酢酸、硫酸、硝酸及びリン酸から選ばれる1種以上を用いることがより好ましく、塩酸、酢酸及び硫酸から選ばれる1種以上を用いることが更に好ましい。
 また塩酸、硫酸などの無機酸を用いた場合には、中和工程において生成する塩の糖化反応に対する悪影響が少ないため、糖の収率向上の観点からもより更に好ましい。
 中和工程は、セルロース含有粉砕物に適量の酸を添加して撹拌することにより行うことができる。中和工程は、例えば、セルロース含有粉砕物を0.1~50質量%の濃度となるように水に分散した後に、中和熱による過度の発熱に注意しながら、0.01~37%の塩酸や0.01~75%の硫酸などの酸を、pHが中性付近、好ましくはpH4~8、より好ましくはpH4~7になるまで適量添加することにより行うことができる。その際、懸濁液を適度に攪拌し、均一化させることが好ましい。
(洗浄工程)
 工程(1)で用いた塩基性化合物や窒素含有化合物、セルロース含有原料中に含まれる夾雑物を除去し、工程(2)における糖化効率を向上させる観点から、工程(2)の前に、工程(1)で得られたセルロース含有粉砕物を水で洗浄する工程を有していてもよい(以下、これを「洗浄工程」と称する場合がある)。
 セルロース含有粉砕物の洗浄は、例えば、セルロース含有粉砕物を0.1~50%の濃度となるようにイオン交換水に分散し、遠心分離器により固形分を沈殿させ分離し、再度イオン交換水に同程度の濃度となるように分散させ、遠心分離するという操作をpHが中性付近、好ましくはpH4~8、より好ましくはpH4~7になるまで洗浄を繰り返す方法などにより行うことができる。
 上記中和工程及び洗浄工程は、いずれか一方の工程のみを行ってもよく、中和工程を行った後に更に洗浄工程を行ってもよい。また工程(2)で得られる糖の収率向上の観点から、無機酸を用いた中和工程のみを行うことも可能である。
<工程(2)>
 工程(2)は、工程(1)で得られたセルロース含有粉砕物を酵素で糖化処理する工程である。
 工程(1)で得られたセルロース含有粉砕物は、非晶化・小粒径化され、また脱リグニン化・脱ヘミセルロース化されているため、酵素で処理することにより、グルコースもしくはキシロースといった単糖や、セロビオース、セロトリオース、キシロビオース、キシロトリオースといったオリゴ糖などの混合物を効率よく得ることができる。糖化処理後にエタノール発酵や乳酸発酵に使用する場合などを考慮すると、単糖まで分解することが好ましい。
 工程(2)において用いられる酵素としては、糖化効率の向上の観点から、セルラーゼやヘミセルラーゼが挙げられる。
 ここで、セルラーゼとは、セルロースのβ-1,4-グルカンのグリコシド結合を加水分解する酵素を指し、エンドグルカナーゼ、エクソグルカナーゼまたはセロビオヒドロラーゼ、及びβ-グルコシダーゼなどと称される酵素の総称である。また、へミセルラーゼとは、へミセルロースを加水分解する酵素を指し、キシラナーゼ、ガラクタナーゼなどと称される酵素の総称である。本発明に使用されるセルラーゼやヘミセルラーゼとしては、市販のセルラーゼ製剤や、動物、植物、微生物由来のものが含まれる。
 セルラーゼの具体例としては、セルクラスト1.5L(ノボザイムズ社製、商品名)などのトリコデルマ リーゼ(Trichoderma reesei)由来のセルラーゼ製剤やバチルス エスピー(Bacillus sp.)KSM-N145(FERM P-19727)株由来のセルラーゼ、またはバチルス エスピー(Bacillus sp.)KSM-N252(FERM P-17474)、バチルス エスピー(Bacillus sp.)KSM-N115(FERM P-19726)、バチルス エスピー(Bacillus sp.)KSM-N440(FERM P-19728)、バチルス エスピー(Bacillus sp.)KSM-N659(FERM P-19730)などの各株由来のセルラーゼ、更には、トリコデルマ ビリデ(Trichoderma viride)、アスペルギルス アクレアタス(Aspergillus acleatus)、クロストリジウム サーモセラム(Clostridium thermocellum)、クロストリジウム ステルコラリウム(Clostridium stercorarium)、クロストリジウム ジョスイ(Clostridium josui)セルロモナス フィミ(Cellulomonas fimi)、アクレモニウム セルロリティクス(Acremonium celluloriticus)、イルペックス ラクテウス(Irpex lacteus)、アスペルギルス ニガー(Aspergillus niger)、フミコーラ インソレンス(Humicola insolens)由来のセルラーゼ混合物やパイロコッカス ホリコシ(Pyrococcus horikoshii)由来の耐熱性セルラーゼなどが挙げられる。これらの中で、糖化効率向上の観点から、好ましくはトリコデルマ リーゼ(Trichoderma reesei)、トリコデルマ ビリデ(Trichoderma viride)、あるいはフミコーラ インソレンス(Humicola insolens)由来のセルラーゼが好ましい。
 市販されているセルラーゼ製剤としては、例えば、セルクラスト1.5L(ノボザイムズ社製、商品名)、TP-60(明治製菓株式会社製、商品名)、CellicCTec2(ノボザイムズ社製、商品名)、Accellerase DUET(ジェネンコア社製、商品名)、あるいはウルトラフロL(ノボザイムズ社製、商品名)が挙げられる。このうち、糖化効率向上の観点から、セルクラスト1.5L(ノボザイムズ社製、商品名)、CellicCTec(ノボザイムズ社製、商品名)、CellicCTec2(ノボザイムズ社製、商品名)が好ましく、CellicCTec(ノボザイムズ社製、商品名)、CellicCTec2(ノボザイムズ社製、商品名)がより好ましく、CellicCTec2(ノボザイムズ社製、商品名)が更に好ましい。
 また、セルラーゼの1種であるβ-グルコシダーゼの具体例としては、アスペルギルス ニガー(Aspergillus niger)由来のβ-グルコシダーゼ(例えば、ノボザイム188(ノボザイムズ社製、商品名)やメガザイム社製β-グルコシダーゼ)やトリコデルマ リーゼ(Trichoderma reesei)、ペニシリウム エメルソニイ(Penicillium emersonii)由来のβ-グルコシダーゼなどが挙げられる。
 また、ヘミセルラーゼの具体例としては、市販のヘミセルラーゼ製剤やバチルス エスピー(Bacillus sp.)KSM-N546(FERM P-19729)由来のキシラナーゼのほか、トリコデルマ リーゼ(Trichoderma reesei)、アスペルギルス ニガー(Aspergillus niger)、トリコデルマ ビリデ(Trichoderma viride)、フミコーラ インソレンス(Humicola insolens)、バチルス アルカロフィルス(Bacillus alcalophilus)由来のキシラナーゼ、更には、サーモマイセス(Thermomyces)、オウレオバシジウム(Aureobasidium)、ストレプトマイセス(Streptomyces)、クロストリジウム(Clostridium)、サーモトガ(Thermotoga)、サーモアスクス(Thermoascus)、カルドセラム(Caldocellum)、サーモモノスポラ(Thermomonospora)属由来のキシラナーゼなどが挙げられる。
 市販されているヘミセルラーゼ製剤としては、例えば、CellicHTec(ノボザイムズ社製、商品名)、CellicHTec2(ノボザイムズ社製、商品名)、スクラーゼ(三菱化学フーズ株式会社製、商品名)、Shearzyme500L(ノボザイムズ社製、商品名)、が挙げられる。このうち、糖化効率向上の観点から、CellicHTec、又はCellicHTec2が好ましい。
 工程(2)において用いられる酵素は、糖化効率の向上の観点から、上記セルラーゼ及びヘミセルラーゼから選ばれる1種以上であることが好ましい。
 また、工程(2)において用いられる酵素は、セルラーゼの1種であるエンドグルカナーゼを含むことが好ましい。本発明で用いるエンドグルカナーゼとしては、セルロースの糖化効率の観点から、トリコデルマ(Trichoderma)族由来のエンドグルカナーゼI(EGI)、及びエンドグルカナーゼII(EGII)から選ばれる1種以上であることが好ましく、これらの酵素は異種宿主により発現させて用いてもよい。異種宿主により発現させる調製法は、特に制限はないが、例えば実施例記載の方法が挙げられる。
 また、本発明で用いられるエンドグルカナーゼは、市販のセルラーゼ製剤や、動物、植物、微生物由来のセルラーゼを精製したものを用いてもよい。精製方法については、特に制限はないが、例えば、実施例記載の方法が挙げられる。精製対象となるセルラーゼとしては、例えば、前述のセルラーゼが挙げられる。前述のセルラーゼのうち、トリコデルマ リーゼ(Trichoderma reesei)、トリコデルマ ビリデ(Trichoderma viride)、あるいはフミコーラ インソレンス(Humicola insolens)由来のセルラーゼ、例えばセルクラスト1.5L(ノボザイムズ社製、商品名)、TP-60(明治製菓株式会社製、商品名)、あるいはウルトラフロL(ノボザイムズ社製、商品名)を用いることが好ましい。
 工程(2)において用いられる酵素中のエンドグルカナーゼの配合割合は、糖化効率の向上及びグルコース生成量の増加の観点から、酵素中の総タンパク質量中、好ましくは10質量%以上、より好ましくは14質量%以上、更に好ましくは16質量%以上、より更に好ましくは18質量%以上、より更に好ましくは20質量%以上であり、好ましくは90質量%以下、より好ましくは75質量%以下、更に好ましくは70質量%以下、より更に好ましくは60質量%以下、より更に好ましくは50質量%以下である。また、工程(2)において用いられる酵素中のエンドグルカナーゼの配合割合は、酵素中の総タンパク質量中10~90質量%が好ましく、より好ましくは14~75質量%、更に好ましくは16~70質量%、より更に好ましくは18~60質量%、更により好ましくは20~50質量%である。なお、エンドグルカナーゼの配合割合は、実施例に記載の方法により調整することができる。
 糖化効率をさらに向上させる観点から、工程(2)において用いられる酵素は、ヘミセルラーゼの1種であるキシラナーゼを含むことが好ましい。工程(2)で用いられる好ましいキシラナーゼの具体例としては、CellicHTec(ノボザイムズ社製、商品名)、CellicHTec2(ノボザイムズ社製、商品名)が挙げられる。
 工程(2)において用いられる酵素中のキシラナーゼの配合割合は、糖化効率の向上及び還元糖量の増加の観点から、酵素中の総タンパク質量中、好ましくは2質量%以上、より好ましくは3質量%以上、更に好ましくは4質量%以上、より更に好ましくは5質量%以上、より更に好ましくは6質量%以上であり、好ましくは75質量%以下、より好ましくは50質量%以下、更に好ましくは40質量%以下、より更に好ましくは25質量%以下、より更に好ましくは20質量%以下、より更に好ましくは16質量%以下である。また、工程(2)において用いられる酵素中のキシラナーゼの配合割合は、酵素中の総タンパク質量中2~75質量%が好ましく、より好ましくは2~50質量%、より好ましくは3~40質量%、更に好ましくは4~25質量%、より更に好ましくは5~20質量%、より更に好ましくは6~16質量%である。なお、キシラナーゼの配合割合は、実施例に記載の方法により調整することができる。
 工程(2)において、セルロース含有粉砕物を酵素で糖化処理する場合の処理条件は、該粉砕物中のセルロースの結晶化度や、使用する酵素の種類により適宜選択することができる。
 例えば、セルロース原料を基質とする場合は、0.5~40%(w/v)、好ましくは0.5~20%(w/v)の基質懸濁液に対して、酵素を、基質に対し酵素タンパク量が0.04~600質量%、あるいは0.001~15%(v/v)となるように添加し、pH2~10の緩衝液中、反応温度10~90℃で、反応時間30分~5日間、好ましくは0.5~3日間反応させることにより糖を製造することができる。
 上記緩衝液のpHは、用いる酵素の種類により適宜選択することが好ましく、好ましくはpH3~7、より好ましくはpH4~6である。また、上記反応温度は、用いる酵素の種類により適宜選択することが好ましく、好ましくは20~70℃、より好ましくは40~60℃である。
 上述した実施の形態に関し、本発明は以下の製造方法を開示する。
<1>下記工程(1)及び工程(2)を有する、糖の製造方法。
工程(1):セルロース含有原料を、塩基性化合物の存在下、該セルロース含有原料の乾燥重量に対する水分量が40質量%以下、好ましくは35質量%以下、より好ましくは30質量%以下、更に好ましくは25質量%以下、より更に好ましくは20質量%以下、より更に好ましくは15質量%以下であり、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上、より更に好ましくは5質量%以上、より更に好ましくは7質量%以上であり、好ましくは0.1~35質量%、より好ましくは0.5~35質量%、更に好ましくは1~30質量%、より更に好ましくは1~25質量%、より更に好ましくは5~25質量%、より更に好ましくは7~20質量%、より更に好ましくは7~15質量%の条件下で粉砕処理し、セルロース含有粉砕物を得る工程
工程(2):工程(1)で得られたセルロース含有粉砕物を酵素で糖化処理する工程
<2>塩基性化合物を固体状態で添加する、前記<1>に記載の糖の製造方法。
<3>塩基性化合物の量が、セルロース含有原料中のホロセルロースを構成するアンヒドログルコース単位に対して0.01倍モル以上、好ましくは0.05倍モル以上、より好ましくは0.1倍モル以上であり、10倍モル以下、好ましくは8倍モル以下、より好ましくは5倍モル以下、更に好ましくは1.5倍モル以下であり、0.01~10倍モル、好ましくは0.05~8倍モル、より好ましくは0.1~5倍モル、更に好ましくは0.1~1.5倍モルである、前記<1>又は<2>に記載の糖の製造方法。
<4>工程(2)の前に、工程(1)で得られたセルロース含有粉砕物を酸で中和する工程を有する、前記<1>~<3>のいずれかに記載の糖の製造方法。
<5>酸が無機酸又は有機酸、好ましくは塩酸、酢酸、硫酸、硝酸及びリン酸から選ばれる1種以上、より好ましくは塩酸、酢酸及び硫酸から選ばれる1種以上である、前記<4>に記載の糖の製造方法。
<6>酸が無機酸である、前記<4>又は<5>に記載の糖の製造方法。
<7>酵素が、セルラーゼ及びヘミセルラーゼから選ばれる1種以上である、前記<1>~<6>のいずれかに記載の糖の製造方法。
<8>酵素が、エンドグルカナーゼを含み、該エンドグルカナーゼの配合割合が、酵素中の総タンパク質量中10質量%以上、好ましくは14質量%以上、より好ましくは16質量%以上、更に好ましくは18質量%以上、より更に好ましくは20質量%以上であり、90質量%以下、好ましくは75質量%以下、より好ましくは70質量%以下、更に好ましくは60質量%以下、より更に好ましくは50質量%以下であり、10~90質量%、好ましくは14~75質量%、より好ましくは16~70質量%、更に好ましくは18~60質量%、より更に好ましくは20~50質量%である、前記<1>~<7>のいずれかに記載の糖の製造方法。
<9>セルロース含有原料が、パルプ類、紙類、針葉樹又は広葉樹から得られる木材、植物茎・葉・果房類、及び藻類から選ばれる1種以上、好ましくは木材又は植物茎・葉・果房類から選ばれる1種以上、より好ましくはバガス、EFB、及びアブラヤシ(幹部)から選ばれる1種以上、更に好ましくはバガスである、前記<1>~<8>のいずれかに記載の糖の製造方法。
<10>酵素が、キシラナーゼを含み、該キシラナーゼの配合割合が、酵素中の総タンパク質量中2質量%以上、好ましくは3質量%以上、より好ましくは4質量%以上、更に好ましくは5質量%以上、より更に好ましくは6質量%以上であり、75質量%以下、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは25質量%以下、より更に好ましくは20質量%以下、より更に好ましくは16質量%以下であり、2~75質量%、好ましくは2~50質量%、より好ましくは3~40質量%、より好ましくは4~25質量%、更に好ましくは5~20質量%、より更に好ましくは6~16質量%である、前記<1>~<9>のいずれかに記載の糖の製造方法。
<11>セルロース含有原料が、ホロセルロース含有量が20質量%以上、好ましくは40質量%以上、より好ましくは45質量%以上、更に好ましくは50質量%以上である、前記<1>~<10>のいずれかに記載の糖の製造方法。
<12>塩基性化合物が、アルカリ金属及びアルカリ土類金属の水酸化物、酸化物及び硫化物から選ばれる1種以上、好ましくはアルカリ金属水酸化物又はアルカリ土類金属水酸化物、より好ましくはアルカリ金属水酸化物、更に好ましくは水酸化ナトリウム又は水酸化カリウムである、前記<1>~<11>のいずれかに記載の糖の製造方法。
<13>工程(1)における粉砕処理を、振動ボールミル、振動ロッドミル、及び振動チューブミルから選ばれる振動ミル、好ましくは振動ロッドミルを用いて行う、前記<1>~<12>のいずれかに記載の糖の製造方法。
<14>工程(1)における粉砕処理を、ロッドの充填率が10%以上、好ましくは15%以上であり、97%以下、好ましくは95%以下、より好ましくは90%以下、更に好ましくは80%以下であり、10~97%、好ましくは10~95%、より好ましくは15~90%、更に好ましくは15~80%の振動ロッドミルを用いて行う、前記<13>に記載の糖の製造方法。
<15>工程(2)の前に、工程(1)で得られたセルロース含有粉砕物を水で洗浄する工程を有する、前記<1>~<14>のいずれかに記載の糖の製造方法。
<16>工程(2)の前に、工程(1)で得られたセルロース含有粉砕物を、該セルロース含有粉砕物に対する水分量が50質量%以上、好ましくは100質量%以上、より好ましくは200質量%以上、更に好ましくは230質量%以上であり、10000質量%以下、好ましくは8000質量%以下、より好ましくは5000質量%以下、更に好ましくは4000質量%以下、より更に好ましくは3500質量%以下であり、50~10000質量%、好ましくは100~8000質量%、より好ましくは200~5000質量%、更に好ましくは230~3500質量%の条件下で熟成する工程を有する、前記<1>~<15>のいずれかに記載の糖の製造方法。
<17>熟成温度が、0℃以上、好ましくは20℃以上、より好ましくは50℃以上、更に好ましくは80℃以上であり、250℃以下、好ましくは200℃以下、より好ましくは150℃以下、更に好ましくは100℃以下である、前記<16>に記載の糖の製造方法。
<18>熟成時間が、0.01時間以上、好ましくは0.1時間以上、より好ましくは0.5時間以上、更に好ましくは1時間以上であり、24時間以下、好ましくは18時間以下、より好ましくは12時間以下、更に好ましくは6時間以下であり、0.01~24時間、好ましくは0.1~18時間、より好ましくは0.5~12時間、更に好ましくは1~6時間である、前記<16>又は<17>に記載の糖の製造方法。
<19>工程(1)又は工程(2)を窒素含有化合物の存在下で行う、前記<1>~<18>のいずれかに記載の糖の製造方法。
<20>工程(1)を窒素含有化合物の存在下で行う、前記<19>に記載の糖の製造方法。
<21>工程(1)及び工程(2)を窒素含有化合物の存在下で行う、前記<1>~<18>のいずれかに記載の糖の製造方法。
<22>窒素含有化合物が、アルキル基を有する第1級~第3級アンモニウム塩、無機アンモニウム塩、第4級アンモニウム塩、アミン部位を有するポリマー、アミン部位を有するポリマーと酸との付加塩、及び第4級アンモニウム塩部位を有するポリマーから選ばれる1種以上、好ましくは塩化アンモニウム、テトラメチルアンモニウムクロリド、ラウリルトリメチルアンモニウムクロリド、アルキルベンジルジメチルアンモニウムクロリド、ジメチルジアリルアンモニウムクロリド、ジメチルジアリルアンモニウムクロリドの重合体、及びジアリルアミン塩酸塩・二酸化硫黄共重合体から選ばれる1種以上である、前記<19>~<21>のいずれかに記載の糖の製造方法。
<23>窒素含有化合物の使用量が、セルロース原料中のホロセルロースを構成するアンヒドログルコース単位に対して、窒素原子換算で0.001倍モル以上、好ましくは0.002倍モル以上、より好ましくは0.005倍モル以上であり、1倍モル以下、好ましくは0.5倍モル以下、より好ましくは0.3倍モル以下、更に好ましくは0.2倍モル以下であり、0.001~1倍モル、好ましくは0.002~0.5倍モル、より好ましくは0.005~0.3倍モル、更に好ましくは0.005~0.2倍モルである、前記<19>~<22>のいずれかに記載の糖の製造方法。
 以下の実施例において、「%」は特に断りのない場合、及び結晶化度(%)を除き、「質量%」を意味する。セルロース含有原料(原料セルロース)中のセルロース含有量として、ホロセルロース含有量を用いた。
(1)セルロース含有原料中のホロセルロース含有量の算出
 粉砕したセルロース含有原料を、エタノール-ジクロロエタン混合溶剤(1:1)で6時間ソックスレー抽出を行い、抽出後のサンプルを60℃で真空乾燥した。得られた試料2.5gに水150mL、亜塩素酸ナトリウム1.0g及び酢酸0.2mLを添加し、70~80℃で1時間加温した。引き続き亜塩素酸ナトリウム及び酢酸を添加して加温する操作を、試料が白く脱色するまで3~4回繰り返し行った。白色の残渣をグラスフィルター(1G-3)でろ過し、冷水及びアセトンで洗浄した後、105℃で恒量になるまで乾燥し、残渣重量を求めた。下記式によりホロセルロース含有量を算出し、これをセルロース含有量とした。
  セルロース含有量(質量%)=[残渣重量(g)/セルロース含有原料の採取量(g:塩基性化合物を除いた乾燥原料換算)]×100
(2)アンヒドログルコース単位(AGU)モル数の算出
 AGUモル数は、セルロース含有原料中のホロセルロースをすべてセルロースと仮定して、以下の式に基づき算出した。
   AGUモル数=ホロセルロース重量(g)/162
(3)セルロース含有原料の水分量の測定
 セルロース含有原料の水分量の測定には、赤外線水分計(株式会社ケット科学研究所製、製品名「FD-610」)を使用した。150℃にて測定を行い、30秒間の重量変化率が0.1%以下となる点を測定の終点とした。測定された水分量の値を、セルロース含有原料の乾燥重量に対する質量%に換算した。
(4)還元糖量及び糖化率の測定
 実施例及び比較例において、DNS法(「生物化学実験法 還元糖の定量法」学会出版センター)に基づき、以下の手順で糖の定量を行った。
 工程(2)の糖化処理終了後、遠心分離によって沈殿物と上清液を分離した。DNS溶液(0.5%-3,5-ジニトロサリチル酸、30%-酒石酸ナトリウムカリウム四水和物、1.6%-水酸化ナトリウム)1mLに適量の上清液を加え、100℃で5分間加熱発色させ、冷却後、波長535nmで比色定量した。グルコースを標準糖とした検量線より、上清液中の還元糖量を定量した。
 得られた還元糖量の値から、糖化率、及び、セルロース含有粉砕物1gを糖化した際に生成した還元糖量を求めた。糖化率は下記の計算式により算出した。
 糖化率(%)=上清中の還元糖量濃度(g/ml)/(セルロース含有粉砕物濃度(g/ml(塩基性化合物を除いた乾燥原料換算))×ホロセルロース含有量(g/g-セルロース含有原料)/0.9(グルコースの分子量/AGUの分子量))×100
(5)HPLCによるグルコース及びキシロース生成量の定量
 本発明の方法により生成した糖の組成分析を以下の方法により行い、グルコース生成量及びキシロース生成量を求めた(実施例14~30及び比較例6)。
 Dionex社製のDX500クロマトグラフィーシステム;カラム:CarboPac PA1(Dionex社製、商品名、4×250mm)、検出器:ED40パルスドアンペロメトリー検出器、溶離液:A液;100mM水酸化ナトリウム溶液、B液;1M酢酸ナトリウムを含む100mM水酸化ナトリウム溶液、C液;超純水を用いた。注入から初期濃度A液10%:C液90%、0~15分A液95%:B液5%のリニアグラジエントにより糖を分析した。標準として0.01%(w/v)のグルコース(和光純薬工業株式会社製)、キシロース(和光純薬工業株式会社製)、キシロビオース(和光純薬工業株式会社製)、セロビオース(生化学工業株式会社製)を用いた。
(6)タンパク質の定量
 DCプロテインアッセイキット(Bio Rad社製)を使用し、ウシ血清アルブミンを標準タンパク質とした検量線よりタンパク質量を計算した。
(7)ポリマーの重量平均分子量の測定
 ポリマーの重量平均分子量(Mw)は、株式会社日立製作所製のL-6000型高速液体クロマトグラフを用いて下記の条件下でゲルパーミエーションクロマトグラフィー(GPC)を測定し、ポリエチレングリコール換算分子量として求めた。
<GPC測定条件>
 カラム:Asahipak GS-220HQ(昭和電工株式会社製、排除限界分子量3,000)及びAsahipak GS-620HQ(昭和電工株式会社製、排除限界分子量200万)を2本接続、カラム温度:30℃
 展開溶媒:0.4mol/l-塩化ナトリウム水溶液
 試料濃度:0.5g/100ml、試料注入量:20μl、流速:1.0ml/分
 検出器:示差屈折計(昭和電工株式会社製;Shodex RISE-61)
実施例1-1
(乾燥処理)
 バガス〔サトウキビの搾りかす、ホロセルロース含有量71.3質量%、結晶化度29%、水分量7.0質量%〕を減圧乾燥機(アドバンテック東洋株式会社製、商品名「VO-320」)の中に入れ、窒素流通下の条件で2時間減圧乾燥し、ホロセルロース含有量71.3質量%、結晶化度29%、水分量2.0質量%の乾燥バガスを得た。
(工程(1))
 得られた乾燥バガス100gと粒径0.7mmの粒状の水酸化ナトリウム(東ソー株式会社製、商品名「トーソーパール」)4.4g(ホロセルロースを構成するAGU1モルに対し0.25モル相当量)を、バッチ式振動ミル(中央化工機株式会社製、商品名「MB-1」:容器全容積3.5L、媒体としてφ30mm、長さ218mm、断面形状が円形のSUS304製ロッドを13本使用、ロッド充填率57%)に投入し、1時間粉砕処理してセルロース含有粉砕物を得た。
(中和工程)
 工程(1)で得られたセルロース含有粉砕物150mg(塩基性化合物を除いた乾燥原料換算、以下同じ)を、蓋つきスクリュー管(株式会社マルエム製、No.5,φ27×55mm)に投入し、1N-HClで中和した。
 さらに水と100mM酢酸緩衝液0.3mlを添加して3mlスケールとし、pHが5.0となるように調整した。
(工程(2))
 中和後のセルロース含有粉砕物(塩基性化合物を除いた乾燥原料換算で150mg相当、以下同じ)に対して、酵素タンパク量が1.5mg(酵素使用量:10mg/g-セルロース含有原料)となるようにセルラーゼ酵素標品CellicCTec2(ノボザイムズ社製、商品名)を加えて、振とう攪拌しながら50℃で24時間糖化処理を行った。工程(2)の糖化処理における溶液中のセルロース含有原料濃度は5質量%であった。
 反応終了後、遠心分離によって沈殿物と上清液を分離し、上清液に遊離した還元糖量を上述したDNS法によって定量して糖化率及びセルロース含有粉砕物1gを糖化した際に生成した還元糖量を求めた。結果を表1に示す。
実施例1-2
 工程(1)における粉砕処理時に水分を添加し、乾燥バガスに対する水分量を10質量%としたこと以外は、実施例1-1と同様の方法で糖の製造を行った。結果を表1に示す。
実施例1-3
 工程(1)における粉砕処理時に水分を添加し、乾燥バガスに対する水分量を20質量%としたこと以外は、実施例1-1と同様の方法で糖の製造を行った。結果を表1に示す。
実施例1-4
 工程(1)における粉砕処理時に水分を添加し、乾燥バガスに対する水分量を30質量%としたこと以外は、実施例1-1と同様の方法で糖の製造を行った。結果を表1に示す。
比較例1-1
 塩基性化合物を添加せずに工程(1)を行い、また中和工程を行わなかったこと以外は、実施例1-1と同様の方法で糖の製造を行った。結果を表1に示す。
比較例1-2
 工程(1)における粉砕処理時に水分を添加し、乾燥バガスに対する水分量を50質量%としたこと以外は、実施例1-1と同様の方法で糖の製造を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
実施例1-5
 塩基性化合物である水酸化ナトリウムの使用量を4.4g(ホロセルロースを構成するAGU1モルに対し0.25モル相当量)とし、粉砕処理時間を2時間としたこと以外は、実施例1-1と同様の方法で糖の製造を行った。結果を表2に示す。
実施例1-6
 塩基性化合物である水酸化ナトリウムの使用量を8.8g(ホロセルロースを構成するAGU1モルに対し0.5モル相当量)としたこと以外は、実施例1-5と同様の方法で糖の製造を行った。結果を表2に示す。
実施例1-7
 塩基性化合物である水酸化ナトリウムの使用量を17.6g(ホロセルロースを構成するAGU1モルに対し1.0モル相当量)としたこと以外は、実施例1-5と同様の方法で糖の製造を行った。結果を表2に示す。
実施例1-8
 塩基性化合物として水酸化ナトリウムの代わりに水酸化カリウムを24.7g(ホロセルロースを構成するAGU1モルに対し1.0モル相当量)用いたこと以外は、実施例1-7と同様の方法で糖の製造を行った。結果を表2に示す。
実施例1-9
 セルロース含有原料としてバガスの代わりにパーム空果房(EFB)を用い、塩基性化合物である水酸化ナトリウムの使用量を15.2g(ホロセルロースを構成するAGU1モルに対し1.0モル相当量)としたこと以外は、実施例1-7と同様の方法で糖の製造を行った。結果を表2に示す。
実施例1-10
 セルロース含有原料としてバガスの代わりにアブラヤシ(幹部)を用い、塩基性化合物である水酸化ナトリウムの使用量を14.0g(ホロセルロースを構成するAGU1モルに対し1.0モル相当量)としたこと以外は、実施例1-7と同様の方法で糖の製造を行った。結果を表2に示す。
実施例1-11
 酵素としてCellicCTec2の代わりにセルクラスト1.5L(ノボザイムズ社製、商品名)を用いたこと以外は、実施例1-7と同様の方法で糖の製造を行った。結果を表2に示す。
実施例1-12
 中和工程において塩酸(1N-HCl)の代わりに酢酸を用いたこと以外は、実施例1-7と同様の方法で糖の製造を行った。結果を表2に示す。
実施例1-13
 中和工程及び洗浄工程を下記のように行ったこと以外は、実施例1-7と同様の方法で糖の製造を行った。結果を表2に示す。
(中和工程及び洗浄工程)
 工程(1)で得られたセルロース含有粉砕物を酢酸水溶液に添加し、攪拌して中和した(中和工程)。これを遠沈管(IWAKI製、50ml、29mm×115mm)に入れて遠心分離を行い、イオン交換水を用いて、生成した塩が取り除けるまで3回以上洗浄を繰り返した(洗浄工程)。洗浄後の試料(乾燥原料換算で150mg)を蓋つきスクリュー管(株式会社マルエム製、No.5、φ27×55mm)に投入し、さらに水と100mM酢酸緩衝液0.3mlを添加して、pHが5.0となるように調整した。
比較例1-3
 塩基性化合物を添加せずに工程(1)を行い、また中和工程を行わなかったこと以外は、実施例1-9と同様の方法で糖の製造を行った。結果を表2に示す。
比較例1-4
 塩基性化合物を添加せずに工程(1)を行い、また中和工程を行わなかったこと以外は、実施例1-10と同様の方法で糖の製造を行った。結果を表2に示す。
比較例1-5
 塩基性化合物を添加せずに工程(1)を行い、また中和工程を行わなかったこと以外は、実施例1-11と同様の方法で糖の製造を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1及び表2より、本発明の糖の製造方法は、工程(1)において塩基性化合物を用いなかった比較例1-1及び比較例1-3~1-5、ならびに工程(1)における水分量が多い比較例1-2に比べ、セルロースの糖化率が向上し、また、生成する還元糖量が向上することから生産性にも優れることがわかる。
実施例1-14~1-22
 酵素として、表3に示す量(酵素使用量:3mg/g-セルロース含有原料)のセルクラスト1.5L(ノボザイムズ社製、商品名)及び異種発現エンドグルカナーゼI(異種発現EGI)を用いたこと以外は、実施例1-6と同様の方法で糖の製造を行った。結果を表3に示す。なお、後述するように、セルクラスト1.5Lのエンドグルカナーゼの含有割合は9質量%(EGI:4質量%、EGII:5質量%)であった。
比較例1-6
 塩基性化合物を添加せずに工程(1)を行い、また中和工程を行わなかったこと以外は、実施例1-14と同様の方法で糖の製造を行った。結果を表3に示す。
 なお、実施例1-14~1-22及び比較例1-6で使用した各種タンパク質は、以下のように精製及び調製して得た。また、以下の記載において、特に断りがない限り、試薬は和光純薬工業株式会社製のものを用いた。
<精製又は調製酵素の確認>
 セルクラスト1.5Lより精製したセロビオハイドロラーゼI(CBHI)、エンドグルカナーゼI(EGI)、エンドグルカナーゼII(EGII)、セロビオハイドロラーゼII(CBHII)及び異種発現EGIは、UniProtKB/Swiss-Prot(http://au.expasy.org/sprot/)に記載のそれぞれの酵素(Endoglucanase EG-1(P07981)、EG2:Endoglucanase EG-II(P07982)、CBH1:Exoglucanase 1(P62694)、CBH2:Exoglucanase 2(P07987))の分子量及び部分アミノ酸配列と比較することにより確認した。
(i)セロビオハイドロラーゼI(CBHI)の精製
 以下の操作は10℃以下で行った。セルクラスト1.5L(ノボザイムズ社製、商品名)を脱イオン水で2倍に希釈した後、脱塩カラムEcono-Pac 10DGカラム(Bio Rad社製)を用いて、10mM酢酸緩衝液(pH5.0)に置換を行った。得られた酵素溶液100mLを、予め10mM酢酸緩衝液(pH5.0)で平衡化した陰イオン交換体(a)SuperQトヨパール650M(φ2.5cm×25cm、東ソー株式会社製、商品名)に供し、250mLの同緩衝液でカラム内を洗浄後、0~0.3Mの塩化ナトリウム2000mLによる直線濃度勾配溶出を行った。
 陰イオン交換体(a)に吸着した吸着画分を、限外濾過膜PBCC(分画分子量:5000、ミリポア社製、商品名)により、19mLに濃縮した。濃縮した吸着画分3mLを、セファクリルS200HR(φ2.5cm×100cm、GEサイエンス社製、商品名)を用いてゲルろ過を行った。溶出画分について、SDS-ポリアクリルアミドゲル電気泳動(以下「SDS-PAGE」ともいう)でほぼ単一であることを確認できたパス画分を、限外濾過膜を用いて濃縮し、脱塩カラムにて10mMクエン酸緩衝液(pH5.0)に置換し、セロビオハイドロラーゼI(CBHI)を得た。
(ii)エンドグルカナーゼI(EGI)の精製
 上記陰イオン交換体(a)を素通りしたパス画分を、上述の限外濾過膜を用いて50mLに濃縮し、続いて10mM酢酸緩衝液(pH5.0)にて平衡化した陽イオン交換体(b)SPトヨパール650M(φ2.5cm×26cm、東ソー株式会社製、商品名)に供した。300mLの同緩衝液でカラム内を洗浄後、0~0.3Mの塩化ナトリウム1500mLによる直線濃度勾配溶出を行った。
 陽イオン交換体(b)を素通りしたパス画分を、上述の限外濾過膜を用いて濃縮した後、脱塩カラムを用いて、20mMトリス塩酸塩緩衝液(pH7.8)に置換した。このパス画分40mLを同緩衝液で平衡化した陰イオン交換体(c)SuperQトヨパール650M(φ2.5cm×25cm、東ソー株式会社製、商品名)に供し、250mLの同緩衝液でカラム内を洗浄後、0~0.3Mの塩化ナトリウム2000mLによる直線濃度勾配溶出を行った。
 陰イオン交換体(c)に吸着した吸着画分をプールし、上述の限外濾過膜にて12mLに濃縮を行った。濃縮した吸着画分12mLを、セファクリルS200HR(φ2.5cm×100cm、GEサイエンス社製、商品名)を用いて、ゲルろ過を行った。溶出画分について、SDS-PAGEでほぼ単一であることを確認できた画分を、上述の限外濾過膜を用いて濃縮し、脱塩カラムにて10mMクエン酸緩衝液(pH5.0)に置換し、エンドグルカナーゼI(EGI)を得た。
(iii)エンドグルカナーゼII(EGII)の精製
 上記陰イオン交換カラム(c)を素通りしたパス画分を、上述の限外濾過膜にて濃縮後、脱塩カラムにて10mM酢酸緩衝液(pH4.5)に置換した。このパス画分16mLを、同緩衝液にて平衡化した陽イオン交換体(d)SPトヨパール650M(φ2.5cm×26cm、東ソー株式会社製、商品名)に供し、300mLの同緩衝液でカラム内を洗浄後、0~0.1Mの塩化ナトリウム1000mLによる直線濃度勾配溶出を行った。溶出画分について、SDS-PAGEにてほぼ単一であることを確認できたパス画分を、上述の限外濾過膜にて濃縮し、脱塩カラムにて10mMクエン酸緩衝液(pH5.0)に置換し、エンドグルカナーゼII(EGII)を得た。
(iv)セロビオハイドロラーゼII(CBHII)の精製
 上記陽イオン交換カラム(d)に吸着した吸着画分を、上述の限外濾過膜にて濃縮し、脱塩カラムにて10mMクエン酸緩衝液(pH5.0)に置換し、セロビオハイドロラーゼII(CBHII)を得た。
 上記のセルクラスト1.5Lの総タンパク質量中、CBHIは70質量%、CBHIIは11質量%、EGIは4質量%、EGIIは5質量%であった。
(v)異種発現エンドグルカナーゼI(異種発現EGI)の調製
 以下の手順により、異種発現EGIを調製した。
〔Trichoderma reesei cDNAの合成〕
 Trichoderma reesei QM9414(NBRC31329)をPDA寒天培地で28℃、7日間培養して胞子を十分形成させた。その胞子の1白金耳を、液体培地[0.50%(w/v)KCフロック(日本製紙ケミカル株式会社製、商品名)、0.14%(w/v)硫酸アンモニウム、0.03%(w/v)尿素、0.25(w/v)ポリペプトンS(日本製薬株式会社製、商品名)、0.20(w/v)リン酸一カリウム、0.03%(w/v)塩化カルシウム・二水和物、0.03%(w/v)硫酸マグネシウム・七水和物、5.0ppm硫化鉄・七水和物、1.6ppm硫酸マンガン・五水和物、1.6ppm硫酸亜鉛・七水和物、2.0ppm塩化コバルト・六水和物]50mLを含む500mL容ひだ付き三角フラスコに接種して、28℃、160rpmで6日間振とう培養した。
 培養終了後、遠心分離(3,000rpm、4℃、15分間)によって得られた菌体から、TRIzol(登録商標) Reagent(invitrogen社製)を用いて、プロトコールに従いtotal RNAを分離した。得られたtotal RNAから、cDNA Synthesis Kit (M-MLV Version)(タカラバイオ株式会社製)を用いて、プロトコールに従いTrichoderma reesei cDNAを合成した。
〔EGI遺伝子断片の取得〕
 得られたcDNAを鋳型として、swissprotデータベースに公開されているT. reesei (Taxonomy ID:51453)のエンドグルカナーゼI遺伝子配列を元に設計したプライマー[フォワードプライマー(配列番号1:atggcgccctcagttacactgccg)、リバースプライマー(配列番号2:ttaaaggcattgcgagtagtagtcgtt)]を用いてPCRを行った。
 具体的には、鋳型cDNA0.5μL、50μMフォワードプライマー0.5μL、50μMリバースプライマー0.5μL、PrimeSTAR(登録商標) Max DNA Polymerase(タカラバイオ株式会社製)25μL、滅菌脱イオン水23.5μLを混合した後、DNA Engine PTC-200(MJ Japan社製)によりPCRを行った。PCRの条件は、98℃で10秒間、55℃で5秒間、72℃で8秒間を1サイクルとして30サイクル反応させ、増幅した遺伝子断片をHigh Pure PCR Product Purification kit(Roche社製)にて精製した。
〔EGI遺伝子とamyBプロモーター及びターミネーターの連結化〕
 得られたEGI遺伝子とA. oryzae由来α-アミラーゼ遺伝子(amyB)由来のプロモーター及びターミネーター領域の各PCR断片を鋳型DNAとして、amyBプロモーター領域を元に設計したフォワードプライマー(配列番号3:gtgaattcgagctcggtaccattacgcactacccgaatcg)及びamyBターミネーター領域を元に設計したリバースプライマー(配列番号4:tgattacgccaagcttgagttgtacctagaggagac)を用いてPCRを行った。
 具体的には、各PCR断片3.0μL、50μMフォワードプライマー0.4μL、50μMリバースプライマー0.4μL、PrimeSTAR(登録商標) Max DNA Polymerase(タカラバイオ株式会社製)25μL、滅菌脱イオン水15.2μLを混合した後、GeneAmp PCR System 9700(PE Applied Biosystems社製)でPCRを行った。PCRの条件は、98℃で10秒間、55℃で5秒間、72℃で20秒間を1サイクルとして30サイクル反応させ、増幅した遺伝子断片をHigh Pure PCR Product Purification kit(Roche社製)にて精製した。
〔プラスミドの構築と大量調製〕
 pPTRIベクター(タカラバイオ株式会社製)を含む溶液に、Hind III及びKpn Iを添加し、37℃で一晩制限酵素反応を行った。70℃で15分間制限酵素の失活処理を行った後、High Pure PCR Product Purification kit(Roche社製)にて精製した。線状化したpPTRIベクターに対して、連結化したEGI断片を3倍量(モル比)加えて混合し、In-FusionTM  Advantage PCR Cloning Kit(Clontech社製)を用いてIn-fusion反応(37℃で15分間、50℃で15分間)を行った。反応終了液(総量10μL)にTEバッファー(pH8.0)で40μL添加した。この混合液3μLに大腸菌コンピテントセルDH5α株(東洋紡績株式会社製)50μLを加えて形質転換を行い、X-galおよびIPTGを添加したLB寒天培地(100ppmアンピシリン含有)に塗沫した後、37℃で18時間培養を行った。生育したコロニーのうち白色コロニーを釣菌し、Quick TaqTM HS DyeMix(東洋紡績株式会社製)を用いてコロニーダイレクトPCRによるプラスミドのインサートチェックを行った。アガロース電気泳動解析により、目的のインサートサイズのバンドを確認できた形質転換コロニーを、100ppmアンピシリン含有LB液体培地に植菌し、坂口フラスコを用いて一晩振とう培養(37℃、120rpm)を行った。この培養液を遠心(6000×g、4℃、15分間)して菌体を回収した後、QIAfilter Plasmid Midi Kit(QIAGEN社製)を用いてプラスミドの抽出及び精製を行った。
〔A. oryzaeの形質転換〕
 形質転換用宿主として、A. oryzae RIB40株(正式名称:Aspergillus oryzae (Ahlburg) Cohn var brunneus Murakami)をNITEより購入(NBRC100959)したものを用いた。本株をPDA寒天平板培地上で、25℃、7日間復元培養した後、PDAスラント培地上で、25℃、7日間継代培養したものを冷蔵保存し、形質転換用の宿主として用いた。A. oryzae RIB40株を宿主に用いて、構築したプラスミドによる形質転換を行い、0.2ppmピリチアミンを含有する再生用CD寒天培地を用いて、30℃、7日間培養した。CD寒天培地上に生育してきた形質転換コロニーを、CD寒天培地で2回、30℃、7日間継代培養した。
〔A. oryzae形質転換株の液体培養〕
 A. oryzae形質転換株を白金耳でCD寒天培地上に接種し、30℃で5~7日間培養した後、胞子懸濁液を調製した。ヘマチトメーター(トーマ血球計算盤)を用いて胞子濃度を計測した後、約5×105個の胞子を50mLの液体培地[5%(w/v)ポリペプトンS(日本製薬株式会社製)、2.5%(w/v)酵母エキス(Difco社製)、0.5%(w/v)リン酸一カリウム、0.05%(w/v)硫酸マグネシウム・七水和物、10%(w/v)マルトース]に接種し、500mL容バッフル付きフラスコを用いて、培養温度30℃、回転数150rpmで約5日間振とう培養を行った。このようにして、最終的に700mL分の培養液を調製した。
〔培養液からの異種発現EGIの精製〕
 フィルター(ポアサイズ0.45μm、NALGENE社製)ろ過した培養液700mLを平膜(Polyethersulfone、76mm、30,000cutoff、ミリポア社製)で200mLに濃縮し、さらに、遠心式フィルターAmicon Ultra(30,000cutoff、ミリポア社製、商品名)で15mLに濃縮した。この濃縮液15mLを、脱塩カラムEcono-Pac 10DGカラム(Bio Rad社製)を用いて、10mM酢酸緩衝液(pH5.0)に置換した。得られた酵素溶液のうち5mLを、予め10mM酢酸緩衝液(pH5.0)で平衡化した陰イオン交換体DEAE-650M(φ1.46cm×3cm、東ソー株式会社製、商品名)に供し、15mLの同緩衝液でカラム内を洗浄後、0~0.5Mの塩化ナトリウム40mLによる直線濃度勾配溶出を行った。陰イオン交換体を素通りしたパス画分を、脱塩カラムにて10mMクエン酸緩衝液(pH5.0)に置換し、異種発現エンドグルカナーゼI(異種発現EGI)を得た。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、酵素中の総タンパク質量中のエンドグルカナーゼの配合割合を10~90質量%とすれば、グルコース生成量が増加し、また、セルロース含有粉砕物1gを糖化した際に生成する還元糖量が向上することがわかる。
実施例1-23~1-30
 酵素として、表4に示す量(酵素使用量:3mg/g-セルロース含有原料)のセルクラスト1.5L(ノボザイムズ社製、商品名)及びCellicHTec(ノボザイムズ社製、商品名)を用いたこと以外は、実施例1-6と同様の方法で糖の製造を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、酵素中の総タンパク質量中のキシラナーゼの配合割合を2~75質量%とすれば、キシロース生成量が増加し、また、セルロース含有粉砕物1gを糖化した際に生成する還元糖量が向上することがわかる。
実施例1-31
 工程(1)における水酸化ナトリウムの使用量を8.8g(セルロース含有原料中のホロセルロースを構成するAGU1モルに対し0.5モル相当量)とし、粉砕処理時間を0.5時間としたこと以外は、実施例1-1と同様の方法で糖の製造を行った。結果を表5に示す。
実施例1-32
 工程(1)における水酸化ナトリウムの使用量を8.8g(セルロース含有原料中のホロセルロースを構成するAGU1モルに対し0.5モル相当量)とし、粉砕時間を0.5時間としたこと以外は、実施例1-1と同様の方法で乾燥処理及び工程(1)を行い、セルロース含有粉砕物を得た。
(熟成工程)
 工程(1)で得られたセルロース含有粉砕物150mg(塩基性化合物を除いた乾燥原料換算)を蓋つきスクリュー管(株式会社マルエム製、No.5,φ27×55mm)に投入し、その後水1245mgを一括添加して混合した後、蓋つきスクリュー管を密閉し、100℃で2時間静置して熟成を行った。熟成工程時の水分量は、セルロース含有粉砕物(塩基性化合物を除いた乾燥原料換算)に対し830質量%であった。
(中和工程)
 熟成工程後の混合物を、1N-HClで中和した。
 さらに100mM酢酸緩衝液0.3mlを添加して3mlスケールとし、pHが5.0となるように調整した。
(工程(2))
 中和後のセルロース含有粉砕物(塩基性化合物を除いた乾燥原料換算で150mg相当)に対して、酵素タンパク量が1.5mg(酵素使用量:10mg/g-セルロース含有原料)となるようにセルラーゼ酵素標品CellicCTec2(ノボザイムズ社製、商品名)を加えて、振とう攪拌しながら50℃で24時間糖化処理を行った。工程(2)の糖化処理における溶液中のセルロース含有原料濃度は5質量%であった。
 反応終了後、遠心分離によって沈殿物と上清液を分離し、上清液に遊離した還元糖量を上述したDNS法によって定量して、糖化率及びセルロース含有粉砕物1gを糖化した際に生成した還元糖量を求めた。結果を表5に示す。
実施例1-33
 熟成工程における水の添加量を2490mgとし、熟成工程時の水分量をセルロース含有粉砕物に対し1660質量%としたこと以外は、実施例1-32と同様の方法で糖の製造を行った。結果を表5に示す。
実施例1-34
 実施例1-32と同様の方法で乾燥処理、工程(1)を行った。また、熟成工程における水の添加量を4980mgとし、熟成工程時の水分量をセルロース含有粉砕物に対し3320質量%として100℃で2時間熟成工程を行ったが、その際、スクリュー管の蓋を開放して密閉状態を解除し、セルロース含有原料濃度が5質量%となるように、余剰の水分を蒸発させた。
 熟成工程の後、実施例1-32と同様の方法で中和工程及び工程(2)を行い、糖の製造を行った。工程(2)における溶液中のセルロース含有原料濃度は5質量%であった。結果を表5に示す。
実施例1-35
 中和工程において、工程(1)で得られたセルロース含有粉砕物600mg(塩基性化合物を除いた乾燥原料換算)を使用したこと以外は、実施例1-31と同様の方法で糖の製造を行った。工程(2)における溶液中のセルロース含有原料濃度は20質量%であった。結果を表5に示す。
実施例1-36
 熟成工程において、工程(1)で得られたセルロース含有粉砕物600mg(塩基性化合物を除いた乾燥原料換算)を使用し、水の添加量を850mgとして熟成工程時の水分量をセルロース含有粉砕物に対し142質量%としたこと以外は、実施例1-32と同様の方法で糖の製造を行った。工程(2)における溶液中のセルロース含有原料濃度は20質量%であった。結果を表5に示す。
実施例1-37
 熟成工程における水の添加量を1700mgとし、熟成工程時の水分量をセルロース含有粉砕物に対し283質量%としたこと以外は、実施例1-36と同様の方法で糖の製造を行った。結果を表5に示す。
実施例1-38
 熟成工程における水の添加量を3400mgとし、熟成工程時の水分量をセルロース含有粉砕物に対し567質量%としたこと以外は、実施例1-36と同様の方法で糖の製造を行った。結果を表5に示す。
比較例1-7
 工程(1)における粉砕処理時間を0.5時間としたこと以外は、比較例1-1と同様の方法で糖の製造を行った。結果を表5に示す。
比較例1-8
 塩基性化合物を添加せずに工程(1)を行い、また中和工程を行わなかったこと以外は、実施例1-35と同様の方法で糖の製造を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
実施例1-39~1-49
 熟成工程における温度、時間をそれぞれ表6に示すように変更したこと以外は、実施例1-37と同様の方法で糖の製造を行った。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表5及び表6より、本発明の糖の製造方法は、熟成工程を行うことによりセルロースの糖化率が更に向上し、また、得られる糖の収量が向上することから生産性にも優れることがわかる。
実施例2-1
(乾燥処理)
 バガス〔サトウキビの搾りかす、ホロセルロース含有量71.3質量%、結晶化度29%、水分量7.0質量%〕を減圧乾燥機(アドバンテック東洋株式会社製、商品名「VO-320」)の中に入れ、窒素流通下の条件で2時間減圧乾燥し、ホロセルロース含有量71.3質量%、結晶化度29%、水分量2.0質量%の乾燥バガスを得た。
(工程(1))
 得られた乾燥バガス100gと粒径0.7mmの粒状の水酸化ナトリウム(東ソー株式会社製、商品名「トーソーパール」)4.4g(ホロセルロースを構成するAGU1モルに対し0.25モル相当量)、及び窒素含有化合物であるラウリルトリメチルアンモニウムクロリドの27%水溶液(花王株式会社製、商品名「コータミン24P」)4.30g(有効分:1.16g、ホロセルロースを構成するAGU1モルに対し窒素原子換算で0.01モル相当量)を、バッチ式振動ミル(中央化工機株式会社製、商品名「MB-1」:容器全容積3.5L、ロッドとして、φ30mm、長さ218mm、断面形状が円形のSUS304製ロッドを13本使用、ロッド充填率57%)に投入し、1時間粉砕処理してセルロース粉砕物を得た。
(中和工程)
 工程(1)で得られたセルロース粉砕物150mg(塩基性化合物ならびに窒素含有化合物を除いた乾燥原料換算)を、蓋つきスクリュー管(株式会社マルエム製、No.5,φ27×55mm)に投入し、1N-HClで中和した。
 さらに水と100mM酢酸緩衝液0.3mlを添加して3mlとし、pHが5.0となるように調整した。
(工程(2))
 中和後のセルロース粉砕物(塩基性化合物ならびに窒素含有化合物を除いた乾燥原料換算で150mg相当)に対して、セルラーゼ酵素標品CellicCTec2(ノボザイムズ社製、商品名)を7.5μl(酵素使用量:10mg/g-セルロース含有原料)加えて、振とう攪拌しながら50℃で24時間糖化処理を行った。工程(2)の糖化処理における溶液中のセルロース含有原料濃度は5質量%であった。
 反応終了後、遠心分離によって沈殿物と上清液を分離し、上清液に遊離した還元糖量を上述したDNS法によって定量して、糖化率及びセルロース含有粉砕物1gを糖化した際に生成した還元糖量を求めた。結果を表7に示す。
実施例2-2
 工程(1)において、窒素含有化合物としてアルキルベンジルジメチルアンモニウムクロリドの50%水溶液(花王株式会社製、商品名「サニゾールB-50」)3.12g(有効分:1.56g、ホロセルロースを構成するAGU1モルに対し窒素原子換算で0.01モル相当量)を用いたこと以外は、実施例2-1と同様の方法で糖の製造を行った。結果を表7に示す。
実施例2-3
 工程(1)において、窒素含有化合物としてテトラメチルアンモニウムクロリド(和光純薬株式会社製)0.49g(ホロセルロースを構成するAGU1モルに対し窒素原子換算で0.01モル相当量)を用いたこと以外は、実施例2-1と同様の方法で糖の製造を行った。結果を表7に示す。
実施例2-4
 工程(1)において、窒素含有化合物として塩化アンモニウム(和光純薬株式会社製)0.24g(ホロセルロースを構成するAGU1モルに対し窒素原子換算で0.01モル相当量)を用いたこと以外は、実施例2-1と同様の方法で糖の製造を行った。結果を表7に示す。
実施例2-5
 工程(1)において、窒素含有化合物としてジアリルジメチルアンモニウムクロリド重合体(Mw40,000)の28%水溶液(ニットーボーメディカル株式会社製、商品名「PAS-H-5L」)5.00g(有効分;1.40g、ホロセルロースを構成するAGU1モルに対し窒素原子換算で0.02モル相当量)を用いたこと以外は、実施例2-1と同様の方法で糖の製造を行った。結果を表7に示す。
実施例2-6
 工程(1)において、窒素含有化合物としてジアリルアミン塩酸塩・二酸化硫黄共重合体(Mw5,000)の20%水溶液(ニットーボーメディカル株式会社製、商品名「PAS-92S」)5.00g(有効分;1.00g、ホロセルロースを構成するAGU1モルに対し窒素原子換算で0.02モル相当量)を用いたこと以外は、実施例2-1と同様の方法で糖の製造を行った。結果を表7に示す。
実施例2-7
 ラウリルトリメチルアンモニウムクロリドの27%水溶液(花王株式会社製、商品名「コータミン24P」)を工程(1)の替わりに工程(2)において添加したこと以外は、実施例2-1と同様の方法で糖の製造を行った。結果を表7に示す。
実施例2-8
 ジアリルジメチルアンモニウムクロリド重合体(Mw40,000)の28%水溶液(ニットーボーメディカル株式会社製、商品名「PAS-H-5L」)を工程(1)の替わりに工程(2)において添加したこと以外は、実施例2-5と同様の方法で糖の製造を行った。結果を表7に示す。
比較例2-1
 塩基性化合物を添加せずに工程(1)を行ったこと、及び、中和処理を行わなかったこと以外は、実施例2-1と同様の方法で糖の製造を行った。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7より、窒素含有化合物を用いた実施例2-1~2-8の糖の製造方法は、実施例1-1、比較例1-1及び2-1と比べ、セルロースの糖化率が向上し、また、得られる糖の収量が向上することから生産性にも優れることがわかる。
 本発明の糖の製造方法は、生産性に優れ、セルロース含有原料から糖を効率的に得ることができる。得られた糖はエタノールや乳酸などの発酵生産などに有用である。

Claims (15)

  1.  下記工程(1)及び工程(2)を有する、糖の製造方法。
    工程(1):セルロース含有原料を、塩基性化合物の存在下、該セルロース含有原料の乾燥重量に対する水分量が40質量%以下の条件下で粉砕処理し、セルロース含有粉砕物を得る工程
    工程(2):工程(1)で得られたセルロース含有粉砕物を酵素で糖化処理する工程
  2.  塩基性化合物を固体状態で添加する、請求項1に記載の糖の製造方法。
  3.  塩基性化合物の量が、セルロース含有原料中のホロセルロースを構成するアンヒドログルコース単位に対して0.01~10倍モルである、請求項1又は2に記載の糖の製造方法。
  4.  工程(2)の前に、工程(1)で得られたセルロース含有粉砕物を酸で中和する工程を有する、請求項1~3のいずれかに記載の糖の製造方法。
  5.  酵素が、セルラーゼ及びヘミセルラーゼから選ばれる1種以上である、請求項1~4のいずれかに記載の糖の製造方法。
  6.  酵素が、エンドグルカナーゼを含み、該エンドグルカナーゼの配合割合が、酵素中の総タンパク質量中10~90質量%である、請求項1~5のいずれかに記載の糖の製造方法。
  7.  酵素が、キシラナーゼを含み、該キシラナーゼの配合割合が、酵素中の総タンパク質量中2~75質量%である、請求項1~6のいずれかに記載の糖の製造方法。
  8.  セルロース含有原料が、パルプ類、紙類、針葉樹又は広葉樹から得られる木材、植物茎・葉・果房類、及び藻類から選ばれる1種以上である、請求項1~7のいずれかに記載の糖の製造方法。
  9.  塩基性化合物が、アルカリ金属又はアルカリ土類金属の水酸化物、酸化物及び硫化物から選ばれる1種以上である、請求項1~8のいずれかに記載の糖の製造方法。
  10.  工程(2)の前に、工程(1)で得られたセルロース含有粉砕物を、該セルロース含有粉砕物に対する水分量が50~10000質量%の条件下で熟成する工程を有する、請求項1~9のいずれかに記載の糖の製造方法。
  11.  工程(1)又は工程(2)を窒素含有化合物の存在下で行う、請求項1~10のいずれかに記載の糖の製造方法。
  12.  工程(1)を窒素含有化合物の存在下で行う、請求項11に記載の糖の製造方法。
  13.  工程(1)及び工程(2)を窒素含有化合物の存在下で行う、請求項1~10のいずれかに記載の糖の製造方法。
  14.  窒素含有化合物が、アルキル基を有する第1級~第3級アンモニウム塩、無機アンモニウム塩、第4級アンモニウム塩、アミン部位を有するポリマー、アミン部位を有するポリマーと酸との付加塩、及び第4級アンモニウム塩部位を有するポリマーから選ばれる1種以上である、請求項11~13のいずれかに記載の糖の製造方法。
  15.  窒素含有化合物の使用量が、セルロース含有原料中のホロセルロースを構成するアンヒドログルコース単位に対して、窒素原子換算で0.001~1倍モルである、請求項11~14のいずれかに記載の糖の製造方法。
PCT/JP2012/072384 2011-09-16 2012-09-03 糖の製造方法 WO2013038940A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112014006202A BR112014006202A8 (pt) 2011-09-16 2012-09-03 Método para produção de acúcar
CN201280042561.7A CN103764833A (zh) 2011-09-16 2012-09-03 糖的制造方法

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2011-203371 2011-09-16
JP2011203371 2011-09-16
JP2011281919A JP2013128468A (ja) 2011-12-22 2011-12-22 糖の製造方法
JP2011-281919 2011-12-22
JP2012059221 2012-03-15
JP2012-059221 2012-03-15
JP2012113508 2012-05-17
JP2012-113508 2012-05-17
JP2012130095A JP2013255430A (ja) 2011-09-16 2012-06-07 糖の製造方法
JP2012-130095 2012-06-07

Publications (1)

Publication Number Publication Date
WO2013038940A1 true WO2013038940A1 (ja) 2013-03-21

Family

ID=47883171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072384 WO2013038940A1 (ja) 2011-09-16 2012-09-03 糖の製造方法

Country Status (1)

Country Link
WO (1) WO2013038940A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116183A (ja) * 2013-05-08 2015-06-25 アクテイブ株式会社 グルコース製造方法およびこの方法により製造されたグルコース
CN111373037A (zh) * 2017-11-22 2020-07-03 国立大学法人东京大学 壳多糖分解酶组合物、壳多糖分解反应液及糖的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003138A (ja) * 2001-06-18 2003-01-08 Oji Cornstarch Co Ltd 段ボール貼合用接着剤
WO2010055647A1 (ja) * 2008-11-13 2010-05-20 本田技研工業株式会社 リグノセルロース系バイオマス糖化前処理装置
JP2010136646A (ja) * 2008-12-10 2010-06-24 Oji Paper Co Ltd 樹皮原料から糖類を製造する方法
WO2010147218A1 (ja) * 2009-06-19 2010-12-23 国立大学法人東京大学 バイオマス原料の処理方法、並びに糖の製造方法、エタノールの製造方法、及び乳酸の製造方法
JP2011135869A (ja) * 2009-12-04 2011-07-14 Ehime Prefecture セルロースの糖化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003138A (ja) * 2001-06-18 2003-01-08 Oji Cornstarch Co Ltd 段ボール貼合用接着剤
WO2010055647A1 (ja) * 2008-11-13 2010-05-20 本田技研工業株式会社 リグノセルロース系バイオマス糖化前処理装置
JP2010136646A (ja) * 2008-12-10 2010-06-24 Oji Paper Co Ltd 樹皮原料から糖類を製造する方法
WO2010147218A1 (ja) * 2009-06-19 2010-12-23 国立大学法人東京大学 バイオマス原料の処理方法、並びに糖の製造方法、エタノールの製造方法、及び乳酸の製造方法
JP2011135869A (ja) * 2009-12-04 2011-07-14 Ehime Prefecture セルロースの糖化方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116183A (ja) * 2013-05-08 2015-06-25 アクテイブ株式会社 グルコース製造方法およびこの方法により製造されたグルコース
CN111373037A (zh) * 2017-11-22 2020-07-03 国立大学法人东京大学 壳多糖分解酶组合物、壳多糖分解反应液及糖的制造方法
CN111373037B (zh) * 2017-11-22 2023-04-18 国立大学法人东京大学 壳多糖分解酶组合物、壳多糖分解反应液及糖的制造方法

Similar Documents

Publication Publication Date Title
Selig et al. Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities
ES2527681T3 (es) Tratamiento de material celulósico y enzimas útiles en el mismo
Waeonukul et al. Efficient saccharification of ammonia soaked rice straw by combination of Clostridium thermocellum cellulosome and Thermoanaerobacter brockii β-glucosidase
JP2012527886A (ja) バイオマスからの発酵性糖類の産生のための方法
Isil et al. Investigation of factors affecting xylanase activity from Trichoderma harzianum 1073 D3
JP6114200B2 (ja) セルロース系バイオマスからの糖及びアルコールの製造方法、並びに該方法に用いられる微生物
JP6562735B2 (ja) 新規キシラナーゼ
WO2013136940A1 (ja) 糖の製造方法
Dobrev et al. Biosynthesis, purification and characterization of endoglucanase from a xylanase producing strain Aspergillus niger B03
Mtui Oxalic acid pretreatment, fungal enzymatic saccharification and fermentation of maize residues to ethanol
CN104428422A (zh) 使用来自木质纤维素材料的生物化学转化过程的液体残余物生产酶混合物的方法
JP2012016329A (ja) セルロース系バイオマスからの糖およびアルコールの製造方法
WO2013038940A1 (ja) 糖の製造方法
WO2013176205A1 (ja) キシラナーゼおよびそれを用いた糖の製造方法
CN106148369B (zh) 高温碱性果胶酸裂解酶Pel-863及其编码基因和应用
JP7208762B2 (ja) 新規アラビノフラノシダーゼ
JP5385561B2 (ja) 糖の製造方法
CN103764833A (zh) 糖的制造方法
JP2013255430A (ja) 糖の製造方法
Mohan et al. A comparative study on simultaneous saccharification and fermentation of agricultural wastes to bio-ethanol using two Saccharomyces strains
Knoshaug et al. Heterologous expression of two ferulic acid esterases from Penicillium funiculosum
Sharma et al. Evaluation of different pretreatments versus forest wood waste and its selection as a solid substrate for enhanced cellulase production by Paenibacillus mucilaginous B5
JP6849749B2 (ja) 新規キシラナーゼ
JP2014117207A (ja) 糖の製造方法
US20220356499A1 (en) Endoglucanase, and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014006202

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 12831555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014006202

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140314