WO2013038907A1 - 細胞の増殖抑制方法、nek10バリアント遺伝子に対するrna干渉作用を有する核酸分子、及び抗癌剤 - Google Patents

細胞の増殖抑制方法、nek10バリアント遺伝子に対するrna干渉作用を有する核酸分子、及び抗癌剤 Download PDF

Info

Publication number
WO2013038907A1
WO2013038907A1 PCT/JP2012/071868 JP2012071868W WO2013038907A1 WO 2013038907 A1 WO2013038907 A1 WO 2013038907A1 JP 2012071868 W JP2012071868 W JP 2012071868W WO 2013038907 A1 WO2013038907 A1 WO 2013038907A1
Authority
WO
WIPO (PCT)
Prior art keywords
base sequence
sirna
rna
seq
nek10
Prior art date
Application number
PCT/JP2012/071868
Other languages
English (en)
French (fr)
Inventor
学道 佐藤
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to MX2014002600A priority Critical patent/MX2014002600A/es
Priority to CN201280044023.1A priority patent/CN103781906A/zh
Priority to BR112014005331A priority patent/BR112014005331A2/pt
Priority to US14/241,170 priority patent/US20150064710A1/en
Priority to KR1020147006335A priority patent/KR20140059229A/ko
Priority to EP12831615.5A priority patent/EP2757152A4/en
Priority to RU2014108824/10A priority patent/RU2014108824A/ru
Priority to JP2013533600A priority patent/JP6018068B2/ja
Publication of WO2013038907A1 publication Critical patent/WO2013038907A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/11Protein-serine/threonine kinases (2.7.11)
    • C12Y207/11001Non-specific serine/threonine protein kinase (2.7.11.1), i.e. casein kinase or checkpoint kinase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/34Allele or polymorphism specific uses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/04Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells

Definitions

  • the present invention relates to a method for inhibiting cell growth, a nucleic acid molecule having an RNA interference effect on a NEK10 variant gene, an expression vector for expressing the nucleic acid molecule in a cell, and a composition for inhibiting NEK10 variant gene expression, comprising the nucleic acid molecule.
  • the present invention relates to an anticancer agent comprising the nucleic acid molecule as an active ingredient, and a method for screening an anticancer agent.
  • Cancer is the number one cause of death in Japan in recent years, with more than 30,000 deaths each year due to cancer. Despite advances in cancer detection and treatment, cancer mortality remains high. In recent years, molecular target anticancer drugs such as Gleevec (registered trademark) and Herceptin (registered trademark) have attracted attention as cancer chemotherapy. It is desired.
  • Gleevec registered trademark
  • Herceptin registered trademark
  • NIMA kinase was discovered from Aspergillus nidulans, and Fin1 which is a homolog of NIMA kinase was discovered from fission yeast.
  • NIMA kinase belongs to the serine / threonine kinase family and has been shown to be important in the M phase of the cell cycle. That is, it was revealed that NIMA kinase is a molecule having a central role in controlling M phase entry, chromosome aggregation, spindle formation, and cytokinesis (see, for example, Non-Patent Document 1).
  • NIMA related kinases The homologue of human NIMA kinase is NIMA related kinases (NEK), which exists from NEK 1 to 11, and forms the NEK family.
  • NEK NIMA related kinases
  • the NEK family has been shown to be an important molecule in the cell cycle and signal transduction pathways.
  • NEK2, NEK6, NEK7, and NEK9 of the NEK family have been reported to be involved in the control of M phase entry, chromosome aggregation, spindle formation, and cytokinesis, similar to NIMA kinase and Fin1.
  • NEK2 NIMA related kinases
  • Non-Patent Document 3 There is a report that NEK10 is important for G2 / M checkpoint control in response to UV irradiation (see, for example, Non-Patent Document 3). It has also been reported that SNPs present in the NEK10 gene are involved in breast cancer morbidity (see, for example, Non-Patent Documents 4 and 5). However, it was unclear whether NEK10 was involved in the growth of cells, particularly cancer cells. In addition, a molecule presumed to be a human NEK10 variant (accession number: AK098832.1, hereinafter, human NEK10 variant) is registered in the NCBI database. Since it has a kinase domain like other NEK family molecules, human NEK10 variants may also be involved in cell cycle control, but it is unclear what functions they have in vivo.
  • An object of the present invention is to provide a method for inhibiting cell growth, a nucleic acid molecule useful as an anticancer agent, and a method for screening a new anticancer agent.
  • NEK10 variants are important for cell proliferation and cell cycle control because molecules having homology with human NEK10 variants also exist in mice, and NEK10 variants are conserved across species.
  • the NEK10 variant whose function in vivo was unknown, was intensively studied.
  • the present inventor has found that cell growth suppression occurs when the expression of NEK10 variant is suppressed in a cell, and that a nucleic acid having an RNA interference effect on NEK10 variant mRNA (NEK10 siRNA) is applied to a cell, particularly a cancer cell. It has been found that it has a cell growth inhibitory action, and the present invention has been completed.
  • the present invention has the following configuration.
  • a method for inhibiting cell growth comprising an expression reduction step of reducing expression of a NEK10 variant gene or an activity reduction step of reducing the activity of a NEK10 variant protein in a cell.
  • the expression reduction step is selected from the group consisting of a nucleic acid molecule that suppresses expression of a NEK10 variant gene by RNA interference, a precursor of the nucleic acid molecule, and an expression vector that can express the nucleic acid molecule or the precursor.
  • the nucleic acid molecule is an siRNA having an RNA interference action that targets a base sequence in mRNA of a NEK10 variant gene represented by SEQ ID NO: 2 or 4.
  • the nucleic acid molecule is (A) a siRNA comprising a combination of a sense RNA comprising the base sequence represented by SEQ ID NO: 2 and an antisense RNA comprising the base sequence represented by SEQ ID NO: 3, (B) a siRNA comprising a combination of a sense RNA comprising the base sequence represented by SEQ ID NO: 4 and an antisense RNA comprising the base sequence represented by SEQ ID NO: 5, (C) a combination of a sense RNA containing 15 to 24 consecutive base sequences in the base sequence represented by SEQ ID NO: 2 and an antisense RNA containing a base sequence complementary to the sense RNA, and NEK10 SiRNA having an RNA interference effect on a variant gene, (D) a combination of a sense RNA containing 15 to 24 consecutive base sequences in the base sequence represented by SEQ ID NO: 4 and an antisense RNA containing a base sequence complementary to the sense RNA, and NEK10 SiRNA having an RNA interference effect on a variant gene,
  • the precursor is (P) 15 or more consecutive base sequences in the base sequence represented by SEQ ID NO: 2, or a base sequence in which one or several bases in the base sequence are modified, substituted, added or deleted And 15 or more consecutive base sequences in the base sequence represented by SEQ ID NO: 3, or a base sequence in which one or several bases in the base sequence are modified, substituted, added or deleted Or (q) 15 or more consecutive base sequences in the base sequence represented by SEQ ID NO: 4, or one or several bases in the base sequence are modified, substituted, added or missing The missing base sequence and 15 or more consecutive base sequences in the base sequence represented by SEQ ID NO: 5, or one or several bases in the base sequence are modified, substituted, added or deleted And a shR comprising A; And the method for inhibiting cell growth according to (2) above, wherein siRNA having an RNA interference action against a NEK10 variant gene is produced from the shRNA of (p) and the shRNA of (q) in a cell.
  • B a siRNA comprising a combination of a sense RNA comprising the base sequence represented by SEQ ID NO: 4 and an antisense RNA comprising the base sequence represented by SEQ ID NO: 5
  • C a combination of a sense RNA containing 15 to 24 consecutive base sequences in the base sequence represented by SEQ ID NO: 2 and an antisense RNA containing a base sequence complementary to the sense RNA, and NEK10 SiRNA having an RNA interference effect on a variant gene
  • D a combination of a sense RNA containing 15 to 24 consecutive base sequences in the base sequence represented by SEQ ID NO: 4 and an antisense RNA containing a base sequence complementary to
  • shRNA A nucleic acid molecule which is a precursor for producing siRNA having an RNA interference action against a NEK10 variant gene in a cell.
  • An expression vector comprising the nucleic acid molecule according to (8) or (9) and capable of expressing the nucleic acid molecule.
  • NEK10 variant gene expression comprising one or more selected from the group consisting of the nucleic acid molecule according to (8), the nucleic acid molecule according to (9), and the expression vector according to (10) Composition for suppression.
  • An anticancer agent comprising as an active ingredient at least one selected from the group consisting of the nucleic acid molecule according to (8), the nucleic acid molecule according to (9), and the expression vector according to (10) .
  • a screening method for an anticancer agent using as an index the inhibitory effect on the expression of the NEK10 variant gene or the inhibitory effect on the activity of the NEK10 variant protein (14) a step of culturing NEK10 variant-expressing cells in the presence and absence of a candidate substance for the NEK10 variant gene expression inhibitory effect or the inhibitory effect on NEK10 variant protein activity; and the NEK10 variant in the cell; measuring the mRNA expression level or NEK10 variant protein activity level, and comparing the expression level or activity level in the presence and absence of the candidate substance; The screening method of the anticancer agent as described in said (13) containing.
  • the method for inhibiting cell growth of the present invention cell growth can be suppressed by acting on a novel pathway of reducing NEK10 variant activity.
  • the nucleic acid molecule of the present invention is a substance having an RNA interference action on NEK10 variant mRNA, and is suitably used for the cell growth inhibition method of the present invention. That is, the cell growth inhibition method and nucleic acid molecule of the present invention are extremely useful in the treatment of cancer, and can exhibit an antitumor effect even for cancer patients that have not been effective by conventional growth inhibition methods. I can expect.
  • a novel candidate compound for an anticancer agent can be obtained by the method for screening an anticancer agent of the present invention.
  • Example 1 when the NEK10 variant mRNA expression at the time of control siRNA processing is set to 100, it is the figure which showed the relative NEK10 variant mRNA expression level of each siRNA processing group. In Example 1, it is the figure which showed the cell growth rate of each siRNA processing group when the cell growth at the time of control siRNA processing is set to 100.
  • FIG. 1 when the NEK10 variant mRNA expression at the time of control siRNA processing is set to 100, it is the figure which showed the relative NEK10 variant mRNA expression level of each siRNA processing group. In Example 1, it is the figure which showed the cell growth rate of each siRNA processing group when the cell growth at the time of control siRNA processing is set to 100.
  • the method for inhibiting cell growth of the present invention includes an expression reduction step for reducing expression of a NEK10 variant gene and / or an activity reduction step for reducing the activity of a NEK10 variant protein (protein encoded by the NEK10 variant gene) in the cell. It is characterized by that.
  • a NEK10 variant protein protein encoded by the NEK10 variant gene
  • cell proliferation of the cell can be suppressed. This is considered to be a phenomenon that occurs because NEK10 variant protein is involved in cell proliferation in cells.
  • the method for reducing the expression of NEK10 variant gene or the activity of NEK10 variant protein is not particularly limited, and any of known methods used for reducing the expression of a specific gene or protein activity in a cell can be used. It may be used.
  • a substance that binds to the NEK10 variant protein such as an antibody against the NEK10 variant protein, is introduced into the cell, and the substance is bound to the NEK10 variant protein in the cell.
  • examples thereof include a method for suppressing the interaction of NEK10 variant protein with other biomolecules.
  • the method of introducing a substance that binds to the NEK10 variant protein into the cell is not particularly limited, and the substance may be directly introduced into the cell by injection or the like, and the substance is brought into contact with the cell surface to end. It may be incorporated into cells by cytosis or the like.
  • the NEK10 variant protein has a kinase activity like the NEK10 protein. Therefore, the activity of NEK10 variant protein can also be suppressed by expressing a dominant negative form in which the kinase active site of NEK10 variant protein is deleted or substituted in the cell.
  • RNA interference method a method of knocking down the NEK10 variant gene by RNA interference method.
  • a nucleic acid molecule that induces RNA interference such as antisense nucleic acid, ribozyme nucleic acid, or double-stranded RNA (dsRNA), that targets NEK10 variant gene mRNA (NEK10 variant mRNA) is introduced into the cell. Then, the NEK10 variant mRNA in the cells is degraded.
  • RNA interference refers to a siRNA that is a dsRNA formed from a sense siRNA consisting of a sequence homologous to a part of the mRNA sequence of a target gene (small interfering RNA) and an antisense siRNA consisting of a complementary sequence thereto.
  • siRNA dissociates into sense siRNA and antisense siRNA in the cell, the target gene mRNA and antisense siRNA form a double strand, and then the formed dsRNA is degraded by Dicer. Is a phenomenon in which the expression of a target gene is suppressed.
  • the RNA interference method introduces a relatively long dsRNA or hairpin shRNA (smallphairpin RNA), which is a precursor of siRNA into the cell, or siRNA or a precursor thereof. It is also possible to suppress the expression of the target gene in the same manner as siRNA by introducing a vector that expresses. Furthermore, a method for suppressing the expression of a target gene in vivo by siRNA is also known (P. Anton et al., Nature, 2002, vol. 418, p38-39; L. David et al., Nat. Genet., 2002, vol.32, p107-108).
  • RNAi nucleic acid molecule having RNA interference effect on NEK10 variant gene it is preferable to reduce the expression of the NEK10 variant gene by introducing into the cell a nucleic acid molecule having an RNA interference action against the NEK10 variant gene (hereinafter sometimes referred to as “RNAi nucleic acid molecule”).
  • the RNAi nucleic acid molecule is not particularly limited as long as it is a nucleic acid molecule having an RNA interference effect on NEK10 variant mRNA, but siRNA is preferable.
  • the siRNA used as the RNAi nucleic acid molecule in the present invention may be an siRNA for any region as long as it has an RNA interference effect on NEK10 variant mRNA.
  • An siRNA having an RNA interference action on a partial base sequence of NEK10 variant mRNA can be appropriately designed and prepared by those skilled in the art based on the base sequence information of NEK10 variant mRNA.
  • the nucleotide sequence of cDNA of human NEK10 variant mRNA is shown in SEQ ID NO: 1.
  • the siRNA used in the present invention preferably has a nucleotide sequence that is completely complementary to the target nucleotide sequence in the NEK10 variant mRNA, but as long as it has an RNA interference action, it has a mismatch of one or several nucleotides. There may be.
  • the base pair length of siRNA used in the present invention is not particularly limited as long as it exhibits an RNA interference action against NEK10 variant mRNA.
  • siRNA in which the sense RNA and the antisense RNA have 15 to 30 base pairs, preferably 21 to 23 base pairs.
  • siRNA used in the present invention has an RNA interference action
  • one or several bases may be modified.
  • the modification include methylation, inosine, dU, fluorescent group modification, phosphorylation, and the like.
  • the modified base may be in sense RNA, in antisense RNA, or may be present in both.
  • the end structure of siRNA used in the present invention may be either a blunt end or a protruding end as long as the expression of the NEK10 variant gene can be regulated by the RNA interference effect.
  • the protruding end structure can include not only a structure in which the 3 'end side protrudes but also a structure in which the 5' end side protrudes as long as the RNA interference effect is exhibited.
  • the number of protruding bases is 2 to 3 bases in many siRNAs that have already been reported to show RNA interference effects against other genes, but siRNA used in the present invention induces RNA interference effects.
  • the number of protruding bases may be 1 to 8 bases, preferably 2 to 4 bases. This protruding base does not have to be complementary (antisense) or identical (sense) sequence to NEK10 variant mRNA.
  • siRNA having an RNA interference action against NEK10 variant mRNA examples include, for example, the full length of the base sequence represented by SEQ ID NO: 2 in NEK10 variant mRNA or a continuous base sequence thereof, for example, 15 to 24 contiguous sequences.
  • SiRNA having an RNA interference effect targeting a base sequence to be detected preferably 18 to 20 consecutive base sequences.
  • the full length of the base sequence represented by SEQ ID NO: 4 in NEK10 variant mRNA or a partial base sequence thereof for example, 15-24 continuous base sequences, preferably 18-20 continuous base sequences.
  • SiRNA having an RNA interference action targeting the target is also included.
  • siRNA targeting the full length of the base sequence represented by SEQ ID NO: 2 in NEK10 variant mRNA or a partial base sequence thereof is specifically represented by SEQ ID NO: 2 (5′-GAAAUCCUGUCAGAUGAAUACUUCA-3 ′)
  • Examples include siRNA having a RNA interference action against a NEK10 variant gene, comprising a combination of a sense RNA containing ⁇ 24 consecutive base sequences and an antisense RNA containing a base sequence complementary to the sense RNA.
  • a sense RNA comprising a base sequence in which one or several bases are substituted, added or deleted in 15 or more consecutive base sequences in the base sequence represented by SEQ ID NO: 2, and the sense RNA SiRNA having a RNA interference action against the NEK10 variant gene, which is a combination of antisense RNAs containing a complementary nucleotide sequence to NEK10.
  • the sense RNA SiRNA having a RNA interference action against the NEK10 variant gene, which is a combination of antisense RNAs containing a complementary nucleotide sequence to NEK10.
  • one or several bases may be modified, and siRNA which has RNA interference effect with respect to a NEK10 variant gene may be sufficient.
  • siRNA targeting the full length of the base sequence represented by SEQ ID NO: 4 in NEK10 variant mRNA or a partial base sequence thereof is specifically represented by SEQ ID NO: 4 (5′-UCUGCCUUGUUGUUCACCACCUAUU-3 ′)
  • Examples include siRNA having a RNA interference action against a NEK10 variant gene, comprising a combination of a sense RNA containing ⁇ 24 consecutive base sequences and an antisense RNA containing a base sequence complementary to the sense RNA.
  • a sense RNA comprising a base sequence in which one or several bases are substituted, added or deleted in 15 or more consecutive base sequences in the base sequence represented by SEQ ID NO: 4, and the sense RNA SiRNA having a RNA interference action against the NEK10 variant gene, which is a combination of antisense RNAs containing a complementary nucleotide sequence to NEK10.
  • one or several bases may be modified, and siRNA which has RNA interference effect with respect to a NEK10 variant gene may be sufficient.
  • RNAi nucleic acid molecule such as siRNA
  • a precursor of the RNAi nucleic acid molecule is introduced into the cell, and the precursor is subjected to a reaction such as degradation in the cell.
  • RNAi nucleic acid molecules may be produced from the body.
  • the precursor of the RNAi nucleic acid molecule is not particularly limited as long as it is a precursor that finally produces an RNAi nucleic acid molecule such as siRNA in a cell.
  • siRNA precursors include relatively long dsRNA, and single-stranded RNA in which sense RNA and antisense RNA constituting siRNA are linked via a spacer.
  • the length of the spacer is not particularly limited, but may be 3 to 23 bases, for example.
  • RNA (shRNA) in which a spacer connecting the sense RNA and the antisense RNA forms a loop and the RNA sequences before and after that anneal to form a double strand is also preferred.
  • the length of the loop and stem in the shRNA is not particularly limited, but for example, the stem may be 5 to 29 bases. Further, the base may have an overhang of several bases at the 5 ′ end and / or the 3 ′ end.
  • Examples of the precursor used in the method for inhibiting cell growth of the present invention include shRNA having RNA interference action targeting the base sequence represented by SEQ ID NO: 2 or 4 in mRNA of NEK10 variant gene.
  • shRNA having RNA interference action targeting the base sequence represented by SEQ ID NO: 2 or 4 in mRNA of NEK10 variant gene.
  • siRNA targeting the full length of the base sequence represented by SEQ ID NO: 2 in NEK10 variant mRNA or a partial base sequence thereof, or SEQ ID NO: 4 in NEK10 variant mRNA ShRNA capable of producing either the full length of the base sequence represented by or a siRNA targeting the partial base sequence thereof is preferred.
  • Examples of the nucleic acid molecule that is a precursor for producing siRNA targeting the full length of the base sequence represented by SEQ ID NO: 2 or a partial base sequence thereof include 15 in the base sequence represented by SEQ ID NO: 2 15 or more in the base sequence represented by SEQ ID NO: 3 and the above continuous base sequence, or a base sequence in which one or several bases in the base sequence are modified, substituted, added or deleted Or a base sequence in which one or several bases in the base sequence are modified, substituted, added, or deleted, from the shRNA to NEK10 in the cell. Examples include those that produce siRNA having an RNA interference action against a variant gene.
  • Examples of the nucleic acid molecule that is a precursor for producing siRNA targeting the full length of the base sequence represented by SEQ ID NO: 4 or a partial base sequence thereof include 15 in the base sequence represented by SEQ ID NO: 4
  • a base sequence in which one or several bases in the base sequence are modified, substituted, added, or deleted, from the shRNA to NEK10 in the cell include those that produce siRNA having an RNA interference action against a variant gene.
  • RNAi nucleic acid molecules such as siRNA or nucleic acid molecules that are precursors thereof include, for example, a chemical in vitro synthesis system, an in vitro transcription method using phage RNA polymerase, a long dsRNA that is transcribed and associated using a cloned cDNA as a template. Can be appropriately prepared by a method of cleaving with RNase III or Dicer.
  • the synthesized nucleic acid molecule may be modified, or the RNAi nucleic acid molecule may be synthesized using the modified base.
  • an expression vector capable of expressing an RNAi nucleic acid molecule or a nucleic acid molecule that is a precursor thereof is introduced into the cell, and the RNAi nucleic acid molecule or the like is produced from the expression vector in the cell.
  • a vector capable of expressing siRNA include, for example, an expression vector linked to different promoters so that the sense RNA and the antisense RNA of siRNA are separately expressed, selective splicing, etc.
  • Examples include expression vectors in which sense RNA is transcribed separately.
  • the vector capable of expressing shRNA include an expression vector in which a single-stranded RNA constituting shRNA is linked downstream of a promoter.
  • RNA polymerase III promoter or the like can be used as the promoter. Specifically, for example, U6 promoter and H1 promoter can be used.
  • a retrovirus vector As a known vector, a retrovirus vector, an adenovirus vector, an adeno-associated virus vector, a viral vector such as a minus-strand RNA virus vector, a non-viral vector such as a plasmid, or the like can be used.
  • RNAi nucleic acid molecule such as siRNA, a precursor thereof, or an expression vector thereof into a cell
  • any of known methods used for introducing a nucleic acid molecule into a cell can be used. It may be used.
  • an RNAi nucleic acid molecule or the like may be directly introduced into the cell by injection or the like, and may be incorporated into the cell by endocytosis or the like using a known gene introduction reagent as necessary.
  • only one type of RNAi nucleic acid molecule or the like to be introduced into a cell may be used, or two or more types may be introduced in combination.
  • the cell to be inhibited from growth expresses a cell in which the NEK10 variant gene is expressed, that is, mRNA that is a transcription product of the NEK10 variant gene and a protein that is a translation product thereof.
  • Cell (hereinafter referred to as NEK10 variant-expressing cell). It is not particularly limited as long as it is a NEK10 variant-expressing cell, and it may be a normal cell or a cancer cell.
  • the tissue etc. from which it originates are not particularly limited. For example, in the case of cancer cells, the cancer type is not particularly limited.
  • the cell derived from a human may be sufficient and the cell derived from animals other than a human may be sufficient.
  • the cell that is the target of inhibiting the growth may be a cultured cell, a cell collected from a living individual, or a cell in the living individual.
  • RNA interference occurs in the cell and the expression of the NEK10 variant gene decreases, and as a result, cell proliferation of the cell is suppressed.
  • these nucleic acid molecules can be used as an active ingredient of a cell growth inhibitor, and thus are useful substances as drugs for diseases in which cell overgrowth such as tumors is a problem.
  • these nucleic acid molecules are used as they are or mixed with a pharmacologically acceptable compounding agent as appropriate, as a composition for suppressing NEK10 variant gene expression (the composition of the present invention) or an anticancer agent (the anticancer agent of the present invention).
  • a composition for suppressing NEK10 variant gene expression the composition of the present invention
  • an anticancer agent the anticancer agent of the present invention.
  • the composition and anticancer agent of the present invention may contain only one type of nucleic acid molecule such as siRNA, or may contain a plurality of types in combination.
  • the anticancer agent of the present invention comprising a nucleic acid molecule having an RNA interference effect on NEK10 variant mRNA as an active ingredient is considered to be extremely useful in the treatment of cancers that express the NEK10 variant gene.
  • the NEK10 variant gene is expressed not only in breast cancer but also in at least liver cancer, kidney cancer, prostate cancer, and uterine cancer. For this reason, the anticancer agent of the present invention is expected to exhibit a cell proliferating action and exhibit a high antitumor effect in many cancer cells.
  • composition and anticancer agent of the present invention exhibit anticancer effects such as cancer cell proliferation inhibitory action and cancer cell death-inducing action, sensitivity enhancing action against anticancer agents, etc., against cancer cells expressing the NEK10 variant gene. Moreover, these effects by the composition or anticancer agent of the present invention may be transient or may be exhibited constantly. Moreover, after the introduction of the composition or anticancer agent of the present invention, after a certain period of time has passed, the effect may finally be manifested.
  • the compounding agents that may be added to the composition and anticancer agent of the present invention include carriers, excipients, disintegrants, binders, lubricants, fluidizing agents, coating agents, suspending agents, emulsifiers, and stabilization. And pharmaceutically acceptable additives such as agents, preservatives, flavoring agents, flavoring agents, diluents, and solubilizing agents.
  • the composition and anticancer agent of the present invention can be used orally or parenterally (systemic administration, topical administration, etc.) in the form of powders, granules, tablets, caplets, capsules, injections, suppositories, ointments, etc. ) Safely administered.
  • the content of the active ingredient (RNAi nucleic acid molecule or nucleic acid molecule that is a precursor thereof) in the composition and anticancer agent of the present invention varies depending on the preparation, but is usually preferably 0.1 to 100% by weight.
  • the dosage varies depending on the administration route, the age of the patient, and the actual symptoms to be prevented or treated, but when administered orally to an adult, for example, 0.01 mg to 2000 mg, preferably 0.1 mg per day as an active ingredient It can be ⁇ 1000 mg and can be administered once or divided into several times a day.
  • ⁇ Screening method of anticancer agent> As described above, by suppressing the function of the NEK10 variant protein in the cancer cell, for example, by reducing the expression of the NEK10 variant gene, the cell proliferation of the cancer cell is suppressed and an antitumor effect is exhibited. For this reason, the substance which has the effect
  • Candidate substances for anticancer agents include nucleic acids, peptides, proteins, organic compounds (including low molecular compounds and high molecular compounds), inorganic compounds, and the like.
  • the screening method of the present invention can be carried out on a sample containing these candidate substances (hereinafter referred to as test substances).
  • Samples containing a test substance include cell extracts, gene library expression products, microbial culture supernatants, bacterial cell components, and the like.
  • NEK10 variant-expressing cells are cultured in the presence or absence of the test substance, The expression level of NEK10 variant mRNA or NEK10 variant protein is compared.
  • the cells used for screening may be NEK10 variant-expressing cells.
  • human-derived NEK10 variant-expressing cells When screening for anticancer agents effective for humans, it is preferable to use human-derived NEK10 variant-expressing cells. However, as long as the cells are derived from a species having a base sequence having homology with human NEK10 variant mRNA, animals other than humans are used.
  • the NEK10 variant-expressing cell may be used.
  • a mouse-derived NEK10 variant-expressing cell may be used because a nucleotide sequence (NCBI accession number: NM_0011195119.1) having homology with human NEK10 variant mRNA is present in the mouse transcript.
  • the category of cells used for screening includes tissues that are aggregates of cells.
  • a transformed cell prepared by introducing an expression vector having cDNA of a human NEK10 variant gene and capable of producing a NEK10 variant protein can also be used as a NEK10 variant expression cell.
  • the contact between the test substance and the NEK10 variant-expressing cells is performed, for example, by culturing the test substance in a culture solution of NEK10 variant-expressing cells.
  • the contact condition between the test substance and the NEK10 variant-expressing cell is not particularly limited, but the culture conditions (temperature, pH, medium composition, etc.) that allow the NEK10 variant mRNA or protein to be expressed without killing the cell are selected. It is preferable.
  • Selection of candidate substances can be performed, for example, by bringing a test substance into contact with a NEK10 variant-expressing cell under the above conditions and searching for a substance that reduces the expression level of NEK10 variant mRNA or protein. Specifically, when NEK10 variant-expressing cells are cultured in the presence of a test substance, the test substance whose NEK10 variant mRNA or protein expression level is smaller than the NEK10 variant mRNA or protein expression level in the absence of the test substance under the same conditions Sort out.
  • the expression level of NEK10 variant mRNA is determined by Northern blot method using an oligonucleotide probe having a sequence complementary to the base sequence of NEK10 variant mRNA, a measurement method using DNA array, a partial base sequence in NEK10 variant mRNA as a primer
  • the RT-PCR method and real-time PCR method can be used.
  • the expression level of NEK10 variant protein can be measured by, for example, a known method using an antibody against NEK10 variant protein.
  • Examples of the measurement method using an antibody include Western blotting, immunoprecipitation, ELISA, and the like.
  • the NEK10 variant has kinase activity. Therefore, screening of anticancer agents can be performed using the inhibitory effect on the kinase activity of NEK10 variant protein as an index among test substances. Specifically, for example, purified NEK10 variant protein or a cell extract expressing NEK10 variant protein is used to compare the kinase activity of NEK10 variant protein in the presence or absence of the test substance.
  • a recombinant protein produced by a gene recombination technique can be used as the NEK10 variant protein used for measuring the kinase activity.
  • the recombinant protein can be produced by a conventional method using cDNA of NEK10 variant gene and a known expression system.
  • the expression system include an expression system using E. coli, yeast, insect cells, mammalian cells and the like as host cells, and a cell-free expression system.
  • a host cell extract after forced expression of NEK10 variant protein may be used as it is for kinase activity measurement, or a recombinant protein purified from the extract may be used.
  • an extract of cells originally expressing NEK10 variant protein and a NEK10 variant protein purified from the extract can also be used for kinase activity measurement.
  • kinase substrates As a substrate used for kinase activity measurement, various proteins generally used as kinase substrates can be used. Specific examples include MBP (myelin basic protein) and histones.
  • the protein used as a substrate may be a recombinant protein, may be artificially synthesized by peptide synthesis or the like, or may be an endogenous protein in a cell. When a recombinant protein or a protein originally present in a cell is used, either a cell extract or a protein purified from the extract may be used for kinase activity measurement.
  • test substance and NEK10 variant-expressing cells are brought into contact in a measurement environment for kinase activity measurement.
  • Conditions such as temperature, pH, and salt concentration for kinase activity measurement are not particularly limited as long as phosphorylation of a protein serving as a substrate by NEK10 variant protein occurs.
  • Selection of candidate substances can be performed, for example, by comparing the phosphorylation amount of the substrate protein by the NEK10 variant protein with the phosphorylation amount of the substrate protein in the absence of the test substance in the presence of the test substance under the above conditions. it can. Specifically, a test substance in which the phosphorylation amount of the substrate protein in the presence of the test substance is smaller than the phosphorylation amount of the substrate protein in the absence of the test substance under the same conditions is selected.
  • the substance selected by the method for screening an anticancer agent of the present invention has an action of suppressing the expression of NEK10 variant gene in cells and reducing the production of NEK10 variant protein or reducing the kinase activity of NEK10 variant protein. It is considered useful for cancer treatment. It is also possible to obtain derivatives having excellent effects and safety by producing various derivatives of the test substance selected by the screening method and conducting further screening on these derivatives.
  • a primer for amplifying cDNA synthesized from NEK10 variant mRNA and a primer for amplifying cDNA synthesized from GAPDH mRNA were used, and BRILIANT SYBR (registered trademark) Real-time PCR was performed using GREEN master mix (Stratagene) according to the instructions for use.
  • Amplification of GAPDH was performed as a reaction system control. That is, after heat denaturation at 95 ° C. for 10 minutes, a PCR reaction was performed in which one cycle was 95 ° C. for 30 seconds, then 55 ° C. for 60 seconds, followed by 40 cycles of a cycle reaction consisting of 72 ° C. for 60 seconds.
  • MX3000 (STRATAGENE) was used as the real-time PCR machine.
  • a forward primer consisting of the base sequence of SEQ ID NO: 6: 5′-GCACACAAAGGTATTTTATGG-3 ′, and the base sequence of SEQ ID NO: 7: 5′-CTACTCAAACTTGCCTTTCCA-3 ′
  • a reverse primer consisting of
  • primers for amplifying cDNA synthesized from GAPDH mRNA a forward primer consisting of the base sequence of SEQ ID NO: 8: 5′-TCTGCTCCTCCTGTTCGACAGT-3 ′, and SEQ ID NO: 9: 5 ′ -ACCAAATCCGTTGACTCCGAC-3 ′
  • a reverse primer consisting of a base sequence was used.
  • the determination of the Ct value was performed using software MX Pro (STRATAGENE).
  • the Ct value is the number of cycles (Cycle Threshold: Ct value) at
  • ⁇ Ct (NEK10 gene variant) value C value of NEK10 variant mRNA ⁇ Ct value of GAPDH mRNA
  • Table 1 shows the relative expression level of NEK10 variant mRNA in various cancer cell lines when the expression level of NEK10 variant mRNA in HeLaS3 cells is 100, obtained using the above formula (2).
  • NEK10 variant mRNA expression was observed in breast cancer cells, liver cancer, kidney cancer, prostate cancer and uterine cancer cells. Therefore, it is speculated that the NEK10 variant plays an important role not only in breast cancer cells but also in cancer cells other than breast cancer.
  • Example 1 This example was performed in order to confirm that siRNA having an RNA interference action on NEK10 variant mRNA suppresses the expression of NEK10 variant mRNA and suppresses the growth of cancer cells.
  • NEK10 siRNA # 1 comprising a combination of a sense RNA comprising the base sequence represented by SEQ ID NO: 2 and an antisense RNA comprising the base sequence represented by SEQ ID NO: 3 and a base represented by SEQ ID NO: 4
  • NEK10 variant after introduction into siRNA and siRNA treatment comprising siRNA comprising a combination of sense RNA comprising sequence and antisense RNA comprising nucleotide sequence represented by SEQ ID NO: 5 (hereinafter referred to as NEK10 siRNA # 2)
  • mRNA was measured by real-time PCR using SYBR (registered trademark) GREEN, and the knockdown effect on NEK10 variant mRNA was examined.
  • control siRNA NEK10 siRNA # 1, or NEK10 siRNA # 2 was introduced into the cells and treated with siRNA.
  • the subsequent NEK10 variant mRNA was measured by real-time PCR using SYBR (registered trademark) GREEN, and the knockdown effect of NEK10 variant mRNA by each siRNA was examined.
  • Control siRNA was purchased from Invitrogen, and NEK10 siRNA # 1 and NEK10 siRNA # 2 were synthesized by Invitrogen.
  • siRNA was introduced using Lipofectamine RNAiMAX (Invitrogen) according to the manufacturer's instructions. Specifically, 1 ⁇ L of siRNA (20 nM) dissolved in 50 ⁇ L of OptiMEM (Invitrogen) was mixed with 1 ⁇ L of Lipofectamine RNAiMAX dissolved in 50 ⁇ L of OptiMEM and allowed to stand at room temperature for 5 minutes, and further mixed at room temperature for 20 minutes. Left to stand. After allowing to stand, the above mixed solution was added to the cells and cultured at 37 ° C. for 3 hours. Then, the medium was changed, and the cells were further cultured for 72 hours.
  • OptiMEM Invitrogen
  • the reagents, primers and equipment used are the same as in Reference Example 1.
  • NEK10 variant mRNA amount 2 ( ⁇ Ct (control) value ⁇ Ct (sample) value) ⁇ 100
  • the vertical axis represents the relative NEK10 variant mRNA expression level of each siRNA treatment group when the NEK10 variant mRNA expression at the time of control siRNA treatment is 100.
  • the horizontal axis shows each siRNA treatment group.
  • control siRNA or NEK10 siRNA-treated NEK10 mRNA paired control (%) is 107 ⁇ 6.2 in the control siRNA treatment group, 11 ⁇ 0.5 in the NEK10 siRNA # 1 treatment group, The NEK10 siRNA # 2 treatment group was 86 ⁇ 7.4.
  • the NEK10 siRNA # 1 treatment group was significantly (***, p ⁇ 0.001) NEK10 variant mRNA compared to the control siRNA treatment group. was suppressed.
  • the NEK10 siRNA # 2 treatment group also significantly (**, p ⁇ 0.01) suppressed the expression of NEK10 variant mRNA as compared to the control siRNA treatment group. That is, it has been clarified that NEK10 siRNA # 1 and NEK10 siRNA # 2 both suppress NEK10 variant mRNA expression in breast cancer cells.
  • NEK10 siRNA cancer cell growth inhibitory effect It was confirmed that NEK10 siRNA # 1 and NEK10 siRNA # 2 have a growth inhibitory effect on cancer cells. That is, whether or not cell growth was suppressed by introducing NEK10 siRNA # 1 and NEK10 siRNA # 2 into cells and knocking down the NEK10 variant gene was examined by the methylene blue method.
  • Each siRNA was introduced into MDA-MB-231 cells in the same manner as described above (confirmation of NEK10 variant mRNA expression inhibitory action), and cultured for 72 hours after introduction. After the culture, the medium was removed, 1000 ⁇ L of methanol was added, and the mixture was allowed to stand at room temperature for 2 minutes to fix the cells. After removing methanol, 1000 ⁇ L of staining solution (0.05% methylene blue solution) was added and staining was performed for 30 minutes. After washing 3 times with 4 mL of distilled water, 2 mL of 3% HCl solution was added, and the absorbance at 660 nm of methylene blue was measured using a microplate reader (BioRad).
  • the vertical axis represents the cell growth rate of each siRNA treatment group when the cell growth at the time of control siRNA treatment is 100.
  • the horizontal axis shows each siRNA treatment group.
  • the cell growth rate (%) of breast cancer cells MDA-MB-231 by each siRNA treatment was 88 ⁇ 18 in the control siRNA treatment group, 34 ⁇ 14 in the NEK10 siRNA # 1 treatment group, and 58 ⁇ 17 in the NEK10 siRNA # 2 treatment group. Met.
  • the NEK10 siRNA # 1 treatment group was significantly (*, p ⁇ 0.05) MDA-MB-231 compared with the control siRNA treatment group. Inhibited cell growth.
  • the NEK10 siRNA # 2 treatment group could not confirm statistical significance, the growth of MDA-MB-231 cells was suppressed as compared with the control siRNA treatment group. That is, it has been clarified that NEK10 siRNA # 1 and NEK10 siRNA # 2 have a growth inhibitory effect on breast cancer cells, although they have some effects.
  • NEK10 siRNA # 1 which has a higher inhibitory effect on the expression of NEK10 variant mRNA, had a higher cell growth inhibitory effect than NEK10 siRNA # 2.
  • siRNA that can be 86 or less in (%).
  • NEK10 siRNA # 1 and NEK10 siRNA # 2 target different sequences of NEK10 variant mRNA, when each siRNA is used alone by using NEK10 siRNA # 1 and NEK10 siRNA # 2 together It is expected that a higher cell growth inhibitory effect (antitumor effect) can be obtained.
  • the cell growth suppression method and nucleic acid molecule of the present invention can suppress the growth of various cells expressing NEK10 variant genes, particularly cancer cells, and are therefore used in the fields of cancer treatment and production of anticancer agents. Is possible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Virology (AREA)
  • Plant Pathology (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

本発明は、細胞の増殖抑制方法、抗癌剤として有用な核酸分子、及び新たな抗癌剤のスクリーニング方法を提供する。本発明においては、細胞にNEK10バリアント遺伝子に対するRNA干渉作用を有する核酸分子を導入することにより、NEK10バリアント遺伝子の発現に対する抑制効果又はNEK10バリアントタンパク質の活性に対する抑制効果が得られる。本発明は、この抑制効果を指標とした抗癌剤のスクリーニング方法も提供する。

Description

細胞の増殖抑制方法、NEK10バリアント遺伝子に対するRNA干渉作用を有する核酸分子、及び抗癌剤
 本発明は、細胞の増殖抑制方法、NEK10バリアント遺伝子に対するRNA干渉作用を有する核酸分子、細胞内に当該核酸分子を発現させるための発現ベクター、当該核酸分子を含む、NEK10バリアント遺伝子発現抑制用組成物、当該核酸分子を有効成分とする抗癌剤、及び抗癌剤のスクリーニング方法に関する。
 癌は、近年の日本における第1位の死因であり、毎年30、0000以上が癌により亡くなっている。癌の検出及び治療は進歩しているにもかかわらず、癌の死亡率は依然として高いままである。癌の化学療法として、近年、グリベック(登録商標)やハーセプチン(登録商標)等の分子標的抗癌剤が注目を集めているが、効果を示す患者が限定されるため、新たな分子標的抗癌剤の開発が望まれている。
 1970年代初頭に、NIMA kinaseがAspergillus nidulansから、また、NIMA kinaseのホモログであるFin1が***酵母から発見された。NIMA kinaseはセリン/スレオニンキナーゼファミリーに属し、細胞周期のM期に重要であることが示された。すなわち、NIMA kinaseは、M期への進入、染色体の凝集、紡錘体の形成及び細胞質***の制御において中心的役割を有する分子であることが明らかとなった(例えば、非特許文献1参照)。
 ヒトのNIMA kinaseのホモログは、NIMA related kinases(NEK)でありNEK1から11まで存在し、NEKファミリーを形成する。これまでに、NEKファミリーは細胞周期及びシグナル伝達経路に重要な分子であることがわかっている。例えば、NEKファミリーのうちのNEK2、NEK6、NEK7、及びNEK9は、NIMA kinase及びFin1と同様に、M期への進入、染色体の凝集、紡錘体の形成及び細胞質***の制御に関与すると報告されている(例えば、非特許文献2参照)。
 NEK10については、UV照射に対する応答におけるG2/M期チェックポイント制御に重要であるとの報告がある(例えば、非特許文献3参照)。また、NEK10遺伝子に存在するSNPが乳癌の罹患率に関与することが報告されている(例えば、非特許文献4及び5参照)。但し、NEK10が細胞、特に癌細胞の増殖に関与しているかについては、不明であった。また、NCBIのデータベースには、ヒトNEK10バリアントと推測される分子(アクセッション番号:AK098832.1、以下、ヒトNEK10バリアント)が登録されている。他のNEKファミリー分子と同様にキナーゼドメインを有することから、ヒトNEK10バリアントも細胞周期制御に関わっている可能性があるものの、生体内でどのような機能を持つかは不明であった。
M.J.O’Connell et al., TRENDS in cell Biology,2003,vol.13,p.221~228. L.O’Regan et al., Cell Division, 2007,vol.2,p.25~36. L.S.Moniz et al., MOLECULAR and Cellular Biology,2011,vol.31,p.30~42. S.Ahmed et al.,Nature Genetics, 2009, vol.41, p.585~590. A.C.Antoniou et al., Cancer Research,2010,vol.70,p.9742~9754.
 本発明は、細胞の増殖抑制方法、抗癌剤として有用な核酸分子、及び新たな抗癌剤のスクリーニング方法を提供することを目的とする。
 本発明者は、ヒトNEK10バリアントと相同性を有する分子がマウスにも存在し、NEK10バリアントが種を超えて保存されていることから、NEK10バリアントは細胞増殖や細胞周期制御に重要であると考え、生体内での機能が不明であったNEK10バリアントについて鋭意研究を行った。その結果、本発明者は、細胞においてNEK10バリアントの発現が抑制されると細胞増殖抑制が起こること、及びNEK10バリアントmRNAに対してRNA干渉作用を有する核酸(NEK10 siRNA)が細胞、特に癌細胞に対する細胞増殖抑制作用を有することを見出し、本願発明を完成させた。
 すなわち、本発明は、下記の構成をとる。
(1) 細胞において、NEK10バリアント遺伝子の発現を低下させる発現低下工程、又はNEK10バリアントタンパク質の活性を低下させる活性低下工程を含む、細胞の増殖抑制方法。
(2) 前記発現低下工程が、RNA干渉によりNEK10バリアント遺伝子の発現を抑制する核酸分子、前記核酸分子の前駆体、及び、前記核酸分子又は前記前駆体を発現し得る発現ベクターからなる群より選択される少なくとも1種を細胞に導入する工程である、前記(1)に記載の細胞の増殖抑制方法。
(3) 前記核酸分子が、配列番号2又は4で表される、NEK10バリアント遺伝子のmRNA中の塩基配列を標的とする、RNA干渉作用を有するsiRNAであり、
 前記前駆体が、配列番号2又は4で表される、NEK10バリアント遺伝子のmRNA中の塩基配列を標的とするRNA干渉作用を有するshRNAである、前記(2)に記載の細胞の増殖抑制方法。
(4) 前記核酸分子が、
(a)配列番号2で表される塩基配列からなるセンスRNA、及び配列番号3で表される塩基配列からなるアンチセンスRNAの組み合わせからなるsiRNA、
(b)配列番号4で表される塩基配列からなるセンスRNA、及び配列番号5で表される塩基配列からなるアンチセンスRNAの組み合わせからなるsiRNA、
(c)配列番号2で表される塩基配列中の15~24個の連続する塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
(d)配列番号4で表される塩基配列中の15~24個の連続する塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
(e)配列番号2で表される塩基配列中の15個以上の連続する塩基配列において1個若しくは数個の塩基が置換、付加又は欠失している塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
(f)配列番号4で表される塩基配列中の15個以上の連続する塩基配列において1個若しくは数個の塩基が置換、付加又は欠失している塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、並びに、
(g)前記(a)~(f)のいずれかのsiRNAにおいて、1個若しくは数個の塩基が修飾されており、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
からなる群より選択される、前記(2)又は(3)に記載の細胞の増殖抑制方法。
(5) 前記前駆体が、細胞内において、
(a)配列番号2で表される塩基配列からなるセンスRNA、及び配列番号3で表される塩基配列からなるアンチセンスRNAの組み合わせからなるsiRNA、
(b)配列番号4で表される塩基配列からなるセンスRNA、及び配列番号5で表される塩基配列からなるアンチセンスRNAの組み合わせからなるsiRNA、
(c)配列番号2で表される塩基配列中の15~24個の連続する塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
(d)配列番号4で表される塩基配列中の15~24個の連続する塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
(e)配列番号2で表される塩基配列中の15個以上の連続する塩基配列において1個若しくは数個の塩基が置換、付加又は欠失している塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
(f)配列番号4で表される塩基配列中の15個以上の連続する塩基配列において1個若しくは数個の塩基が置換、付加又は欠失している塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、又は
(g)前記(a)~(f)のいずれかのsiRNAにおいて、1個若しくは数個の塩基が修飾されており、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
の何れかを産生する核酸分子である、
前記(2)~(4)の何れか一つに記載の細胞の増殖抑制方法。
(6) 前記前駆体が、
(p)配列番号2で表される塩基配列中の15個以上の連続する塩基配列、又は当該塩基配列中の1個若しくは数個の塩基が修飾、置換、付加若しくは欠失している塩基配列と、配列番号3で表される塩基配列中の15個以上の連続する塩基配列、又は当該塩基配列中の1個若しくは数個の塩基が修飾、置換、付加若しくは欠失している塩基配列と、を含むshRNA;あるいは
(q)配列番号4で表される塩基配列中の15個以上の連続する塩基配列、又は当該塩基配列中の1個若しくは数個の塩基が修飾、置換、付加若しくは欠失している塩基配列と、配列番号5で表される塩基配列中の15個以上の連続する塩基配列、又は当該塩基配列中の1個若しくは数個の塩基が修飾、置換、付加若しくは欠失している塩基配列と、を含むshRNA;
であり、かつ
細胞内において、前記(p)のshRNA及び前記(q)のshRNAから、NEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNAが産生される、前記(2)に記載の細胞の増殖抑制方法。
(7) 前記細胞が癌細胞である、前記(1)~(6)のいずれか一つに記載の細胞の増殖抑制方法。
(8) (a)配列番号2で表される塩基配列からなるセンスRNA、及び配列番号3で表される塩基配列からなるアンチセンスRNAの組み合わせからなるsiRNA、
(b)配列番号4で表される塩基配列からなるセンスRNA、及び配列番号5で表される塩基配列からなるアンチセンスRNAの組み合わせからなるsiRNA、
(c)配列番号2で表される塩基配列中の15~24個の連続する塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
(d)配列番号4で表される塩基配列中の15~24個の連続する塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
(e)配列番号2で表される塩基配列中の15個以上の連続する塩基配列において1個若しくは数個の塩基が置換、付加又は欠失している塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
(f)配列番号4で表される塩基配列中の15個以上の連続する塩基配列において1個若しくは数個の塩基が置換、付加又は欠失している塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、又は、
(g)前記(a)~(f)のいずれかのsiRNAにおいて、1個若しくは数個の塩基が修飾されており、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
である、核酸分子。
(9) (p)配列番号2で表される塩基配列中の15個以上の連続する塩基配列、又は当該塩基配列中の1個若しくは数個の塩基が修飾、置換、付加若しくは欠失している塩基配列と、配列番号3で表される塩基配列中の15個以上の連続する塩基配列、又は当該塩基配列中の1個若しくは数個の塩基が修飾、置換、付加若しくは欠失している塩基配列と、を含むshRNA;あるいは
(q)配列番号4で表される塩基配列中の15個以上の連続する塩基配列、又は当該塩基配列中の1個若しくは数個の塩基が修飾、置換、付加若しくは欠失している塩基配列と、配列番号5で表される塩基配列中の15個以上の連続する塩基配列、又は当該塩基配列中の1個若しくは数個の塩基が修飾、置換、付加若しくは欠失している塩基配列と、を含むshRNA、
であり、細胞内において、NEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNAを産生するための前駆体である、核酸分子。
(10) 前記(8)又は(9)に記載の核酸分子を含み、当該核酸分子を発現させ得る、発現ベクター。
(11) 前記(8)に記載の核酸分子、前記(9)に記載の核酸分子、及び前記(10)に記載の発現ベクターからなる群より選択される1種以上を含む、NEK10バリアント遺伝子発現抑制用組成物。
(12) 前記(8)に記載の核酸分子、前記(9)に記載の核酸分子、及び前記(10)に記載の発現ベクターからなる群より選択される1種以上を有効成分として含む、抗癌剤。
(13) NEK10バリアント遺伝子の発現に対する抑制効果又はNEK10バリアントタンパク質の活性に対する抑制効果を指標とする、抗癌剤のスクリーニング方法。
(14) NEK10バリアント遺伝子の発現抑制効果、又はNEK10バリアントタンパク質の活性に対する抑制効果についての候補物質の存在下及び非存在下で、NEK10バリアント発現細胞をそれぞれ培養する工程;及び
 当該細胞内のNEK10バリアントmRNA発現量、又はNEK10バリアントタンパク質の活性量を測定し、当該候補物質存在下及び非存在下での発現量又は活性量を比較する工程;
を含む、前記(13)に記載の抗癌剤のスクリーニング方法。
 本発明の細胞の増殖抑制方法により、NEK10バリアント活性の低下という新規な経路に作用することによって、細胞の増殖を抑制することができる。また、本発明の核酸分子は、NEK10バリアントmRNAに対してRNA干渉作用を有する物質であり、本発明の細胞の増殖抑制方法に好適に用いられる。すなわち、本発明の細胞の増殖抑制方法及び核酸分子は、癌の治療において極めて有用であり、従来の増殖抑制方法によっては効果が得られなかった癌患者に対しても抗腫瘍効果を示すことが期待できる。
 また、本発明の抗癌剤のスクリーニング方法により、新たな抗癌剤の候補化合物を取得することができる。
実施例1において、コントロール siRNA処理時のNEK10バリアントmRNA発現を100とした場合の、各siRNA処理群の相対的なNEK10バリアントmRNA発現量を示した図である。 実施例1において、コントロール siRNA処理時の細胞増殖を100とした場合の、各siRNA処理群の細胞増殖率を示した図である。
<細胞の増殖抑制方法>
 本発明の細胞の増殖抑制方法は、細胞において、NEK10バリアント遺伝子の発現を低下させる発現低下工程、及び/又はNEK10バリアントタンパク質(NEK10バリアント遺伝子がコードするタンパク質)の活性を低下させる活性低下工程を含むことを特徴とする。細胞内におけるNEK10バリアントタンパク質の機能を抑制することにより、細胞の細胞増殖を抑制することができる。これは、NEK10バリアントタンパク質が、細胞における細胞増殖に関与しているために生じる現象と考えられる。NEK10バリアント遺伝子の発現又はNEK10バリアントタンパク質の活性を低下させる方法は、特に限定されるものではなく、細胞内における特定の遺伝子の発現又はタンパク質の活性を低下させる際に用いられる公知の手法のいずれを用いてもよい。
 NEK10バリアントタンパク質の活性を低下させる方法としては、例えば、NEK10バリアントタンパク質に対する抗体等の、NEK10バリアントタンパク質に結合する物質を細胞内に導入し、当該物質を細胞内のNEK10バリアントタンパク質と結合させることによってNEK10バリアントタンパク質が他の生体分子と相互作用することを抑制する方法が挙げられる。NEK10バリアントタンパク質に結合する物質を細胞内へ導入する方法は特に限定されるものではなく、当該物質をインジェクション等により直接細胞内へ導入してもよく、当該物質を細胞表面上に接触させてエンドサイトーシス等により細胞内へ取り込ませてもよい。その他、NEK10バリアントタンパク質はNEK10タンパク質と同様にキナーゼ活性を持つことが、NEK10バリアントタンパク質の構造から推測される。したがって、NEK10バリアントタンパク質の活性は、細胞内に、NEK10バリアントタンパク質のキナーゼ活性部位を欠失又は置換したドミナントネガティブ体を発現させることによって抑制することも可能である。
 一方、NEK10バリアント遺伝子の発現を低下させる方法としては、RNA干渉法によりNEK10バリアント遺伝子をノックダウンする方法を挙げることができる。具体的には、NEK10バリアント遺伝子のmRNA(NEK10バリアントmRNA)を標的とする、アンチセンス核酸、リボザイム核酸、又は二本鎖RNA(dsRNA)等のRNA干渉を誘導する核酸分子を、細胞内へ導入し、当該細胞内のNEK10バリアントmRNAを分解させる。
 一般的にRNA干渉とは、標的遺伝子のmRNA配列の一部と相同な配列からなるセンスsiRNA(small interfering RNA)及びこれと相補的な配列からなるアンチセンスsiRNAから形成されたdsRNAであるsiRNAを細胞に投与することにより、細胞内でsiRNAが、センスsiRNA及びアンチセンスsiRNAに乖離し、標的遺伝子mRNAとアンチセンスsiRNAが二本鎖を形成し、その後、この形成されたdsRNAがDicerにより分解されることにより、標的遺伝子の発現が抑制される現象を言う。RNA干渉法は、siRNAを細胞内に導入するほか、細胞内へsiRNAの前駆体となる比較的長鎖のdsRNA又はヘアピン型のshRNA(small hairpin RNA)を導入することや、siRNA又はその前駆体を発現するベクターを導入することによっても、siRNAと同様に目的遺伝子の発現を抑制することも可能である。さらに、siRNAにより、in vivoにおいて標的遺伝子の発現を抑制する方法も知られている(P.Anton et al.,Nature,2002,vol.418,p38-39;L.David et al.,Nat.Genet.,2002,vol.32,p107-108)。
[NEK10バリアント遺伝子に対するRNA干渉作用を有する核酸分子]
 本発明においては、NEK10バリアント遺伝子に対するRNA干渉作用を有する核酸分子(以下、「RNAi核酸分子」ということがある)を細胞へ導入することによって、NEK10バリアント遺伝子の発現を低下させることが好ましい。RNAi核酸分子としては、NEK10バリアントmRNAに対してRNA干渉作用を有する核酸分子であれば特に限定されるものではないが、siRNAであることが好ましい。
 本発明においてRNAi核酸分子として用いられるsiRNAは、NEK10バリアントmRNAに対するRNA干渉作用を有する限り、そのどの領域に対してのsiRNAであってもよい。NEK10バリアントmRNAの部分塩基配列に対してRNA干渉作用を有するsiRNAは、NEK10バリアントmRNAの塩基配列情報に基づき、当業者であれば、適宜設計して調製することが出来る。例えば、ヒトNEK10バリアントmRNAのcDNAの塩基配列を配列番号1に示す。本発明において用いられるsiRNAは、NEK10バリアントmRNA中の標的とする塩基配列と、完全に相補的な塩基配列を有していることが好ましいが、RNA干渉作用を有する限り、1又は数塩基のミスマッチがあってもよい。
 本発明において用いられるsiRNAの塩基対長は、NEK10バリアントmRNAに対するRNA干渉作用を示すものであれば特に限定されるものではない。例えば、センスRNA及びアンチセンスRNAが15~30個の塩基対、好ましくは21~23個の塩基対からなるsiRNAが挙げられる。
 また、本発明において用いられるsiRNAは、RNA干渉作用を有する限り、1又は数個の塩基が修飾されていてもよい。当該修飾としては、メチル化、イノシン化、dU化、蛍光基修飾、又はリン酸化等が挙げられる。siRNA中、修飾塩基は、センスRNA中にあってもよく、アンチセンスRNA中にあってもよく、両方に存在していてもよい。
 本発明において用いられるsiRNAの末端構造は、NEK10バリアント遺伝子の発現をRNA干渉効果により調節することが可能であれば、平滑末端と突出末端のいずれであってもよい。突出末端構造は、3’末端側が突出している構造だけではなく、上記RNA干渉効果を示す限り5’末端側が突出している構造も含めることができる。また、突出する塩基数は、既に他の遺伝子に対しRNA干渉効果を示すことが報告されているsiRNAの多くでは2~3塩基であるが、本発明において用いられるsiRNAでは、RNA干渉効果を誘導することができる塩基数であればよく、例えば、突出する塩基数は、1~8塩基、好ましくは2~4塩基であってもよい。この突出している塩基については、NEK10バリアントmRNAと相補的(アンチセンス)又は同一(センス)配列である必要はない。
 NEK10バリアントmRNAに対してRNA干渉作用を有するsiRNAとしては、例えば、NEK10バリアントmRNA中の配列番号2で表される塩基配列の全長若しくはその一部の連続する塩基配列、例えば15~24個の連続する塩基配列、好ましくは18~20個の連続する塩基配列を標的とする、RNA干渉作用を有するsiRNAが挙げられる。また、NEK10バリアントmRNA中の配列番号4で表される塩基配列の全長若しくはその一部の連続する塩基配列、例えば15~24個の連続する塩基配列、好ましくは18~20個の連続する塩基配列を標的とするRNA干渉作用を有するsiRNAも挙げられる。
 NEK10バリアントmRNA中の配列番号2で表される塩基配列の全長若しくはその部分塩基配列を標的とするsiRNAとしては、具体的には、配列番号2(5’-GAAAUCCUGUCAGAUGAUAACUUCA-3’)で表される塩基配列からなるセンスRNA、及び配列番号3(5’-UGAAGUUAUCAUCUGACAGGAUUUC-3’)で表される塩基配列からなるアンチセンスRNAの組み合わせからなるsiRNAや、配列番号2で表される塩基配列中の15~24個の連続する塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNAが挙げられる。また、配列番号2で表される塩基配列中の15個以上の連続する塩基配列において1個若しくは数個の塩基が置換、付加又は欠失している塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNAであってもよい。その他、これらのsiRNAにおいて、1個若しくは数個の塩基が修飾されており、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNAであってもよい。
 NEK10バリアントmRNA中の配列番号4で表される塩基配列の全長若しくはその部分塩基配列を標的とするsiRNAとしては、具体的には、配列番号4(5’-UCUGCCUUGUUUGUUCACCACUAUU-3’)で表される塩基配列からなるセンスRNA、及び配列番号5(5’-AAUAGUGGUGAACAAACAAGGCAGA-3’)で表される塩基配列からなるアンチセンスRNAの組み合わせからなるsiRNAや、配列番号4で表される塩基配列中の15~24個の連続する塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNAが挙げられる。また、配列番号4で表される塩基配列中の15個以上の連続する塩基配列において1個若しくは数個の塩基が置換、付加又は欠失している塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNAであってもよい。その他、これらのsiRNAにおいて、1個若しくは数個の塩基が修飾されており、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNAであってもよい。
[RNAi核酸分子の前駆体]
 本発明の細胞の増殖抑制方法においては、siRNA等のRNAi核酸分子を直接細胞へ導入してもよく、RNAi核酸分子の前駆体を細胞へ導入し、当該細胞内において分解等の反応により当該前駆体からRNAi核酸分子を産生させてもよい。RNAi核酸分子の前駆体としては、細胞内において最終的にsiRNA等のRNAi核酸分子を産生する前駆体であればよく、特に限定されない。siRNAの前駆体としては、例えば、比較的長鎖のdsRNA、siRNAを構成するセンスRNA及びアンチセンスRNAがスペーサーを介して連結されている一本鎖RNAが挙げられる。スペーサーの長さは特に限定されないが、例えば3~23塩基としてよい。また、センスRNA及びアンチセンスRNAを連結するスペーサーがループを形成して、その前後のRNA配列同士がアニールして2本鎖を形成するRNA(shRNA)も好ましい。shRNA中のループ及びステムの長さは特に限定されないが、例えばステムは5~29塩基としてよい。また、5’末端及び/又は3’末端に数塩基のオーバーハングを有していてもよく、有していなくてもよい。これらの前駆体が、細胞内でDicer等により消化される結果、siRNA等のRNAi核酸分子が産生される。
 本発明の細胞の増殖抑制方法において用いられる前駆体としては、NEK10バリアント遺伝子のmRNA中の配列番号2又は4で表される塩基配列を標的とする、RNA干渉作用を有するshRNAが挙げられる。本発明において用いられる前駆体としては、細胞内において、NEK10バリアントmRNA中の配列番号2で表される塩基配列の全長若しくはその部分塩基配列を標的とするsiRNA、又はNEK10バリアントmRNA中の配列番号4で表される塩基配列の全長若しくはその部分塩基配列を標的とするsiRNA、の何れかを産生し得るshRNAが好ましい。
 配列番号2で表される塩基配列の全長若しくはその部分塩基配列を標的とするsiRNAを産生するための前駆体である核酸分子としては、例えば、配列番号2で表される塩基配列中の15個以上の連続する塩基配列、又は当該塩基配列中の1個若しくは数個の塩基が修飾、置換、付加若しくは欠失している塩基配列と、配列番号3で表される塩基配列中の15個以上の連続する塩基配列、又は当該塩基配列中の1個若しくは数個の塩基が修飾、置換、付加若しくは欠失している塩基配列と、を含むshRNA等であって、細胞内において当該shRNAからNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNAが産生されるものが挙げられる。配列番号4で表される塩基配列の全長若しくはその部分塩基配列を標的とするsiRNAを産生するための前駆体である核酸分子としては、例えば、配列番号4で表される塩基配列中の15個以上の連続する塩基配列、又は当該塩基配列中の1個若しくは数個の塩基が修飾、置換、付加若しくは欠失している塩基配列と、配列番号5で表される塩基配列中の15個以上の連続する塩基配列、又は当該塩基配列中の1個若しくは数個の塩基が修飾、置換、付加若しくは欠失している塩基配列と、を含むshRNA等であって、細胞内において当該shRNAからNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNAが産生されるものが挙げられる。
 siRNA等のRNAi核酸分子又はその前駆体である核酸分子は、例えば、化学的in vitro合成系、ファージRNAポリメラーゼを用いたin vitro転写法、クローン化したcDNAを鋳型として転写し会合させた長いdsRNAをRNase III又はDicerによって切断する方法等により、適宜調製することができる。また、修飾塩基を含むRNAi核酸分子を用いる場合には、合成された核酸分子に対して修飾を施してもよく、修飾塩基を用いてRNAi核酸分子を合成させてもよい。
[発現ベクター]
 本発明の細胞の増殖抑制方法においては、RNAi核酸分子又はその前駆体である核酸分子を発現し得る発現ベクターを細胞に導入し、当該細胞内において、当該発現ベクターからRNAi核酸分子等を産生させてもよい。siRNAを発現し得るベクターとしては、例えば、siRNAのセンスRNAとアンチセンスRNAが別々に発現するように、それぞれ別々のプロモーターと連結した発現ベクター、選択的スプライシング等により1つのプロモーターからセンスRNAとアンチセンスRNAが別個に転写されるようにした発現ベクター等が挙げられる。shRNAを発現し得るベクターとしては、例えば、プロモーターの下流に、shRNAを構成する一本鎖のRNAを連結した発現ベクター等が挙げられる。
 これらの発現ベクターは、当業者においては、一般的な遺伝子工学技術により、容易に作製することができる(T.R.Brummelkamp et al.,Science,2002,vol.296,p.550~553;N.S.Lee et al.,Nat.Biotech.,2001,vol.19,p.500~505;M.Miyagishi and K.Taira,Nat.Biotech.,2002,vol.19,p.497~500;P.J.Paddison et al.,Proc.Natl.Acad.Sci.USA,2002,vol.99,p.1443~1448;C.P.Paul et al.,Nat.Biotech.,2002,vol.19,p.505~508;G.Sui et al.,Proc.Natl.Acad.Sci.USA,2002,vol.99,p.5515~5520;G.M.Barton and R.Medzhitov,Proc.Natl.Acad.Sci.USA,2002,vol.99,p.14943~14945;P.J.Paddison et al.,Genes Dev.,2002,vol.16,p.948~958)。より具体的には、目的のRNA配列をコードするDNAを公知の種々の発現ベクターへ適宜挿入することによって構築することが可能である。プロモーターとしては、RNAポリメラーゼIIIプロモーター等を用いることができる。具体的には、例えばU6プロモーターやH1プロモーター等が利用できる。公知のベクターとしては、レトロウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター、マイナス鎖RNAウイルスベクター等のウイルスベクターや、プラスミド等の非ウイルスベクター等が利用できる。
[細胞への導入]
 siRNA等のRNAi核酸分子、その前駆体、又はこれらの発現ベクターを細胞へ導入する方法は、特に限定されるものではなく、核酸分子を細胞内へ導入する際に用いられる公知の手法のいずれを用いてもよい。例えば、RNAi核酸分子等をインジェクション等により直接細胞内へ導入してもよく、必要に応じて公知の遺伝子導入試薬等を使用してエンドサイトーシス等により細胞内へ取り込ませてもよい。また、細胞へ導入するRNAi核酸分子等は、1種類のみを用いてもよく、2種類以上を組み合わせて導入してもよい。
 本発明の細胞の増殖抑制方法において、増殖を抑制させる対象となる細胞は、NEK10バリアント遺伝子が発現している細胞、すなわち、NEK10バリアント遺伝子の転写産物であるmRNAやその翻訳産物であるタンパク質を発現し得る細胞(以下、NEK10バリアント発現細胞)である。NEK10バリアント発現細胞であれば特に限定されず、正常細胞であってもよく、癌細胞であってもよい。また、由来する組織等は特に限定されない。例えば、癌細胞の場合には、癌種も特に限定されない。また、ヒト由来の細胞であってもよく、ヒト以外の動物由来の細胞であってもよい。増殖を抑制させる対象となる細胞は、培養細胞や、生物個体から採取された細胞であってもよく、生物個体中の細胞であってもよい。
<NEK10バリアント遺伝子発現抑制用組成物、抗癌剤>
 NEK10バリアントmRNAに対してRNA干渉作用を有するsiRNA、前記siRNAの前駆体(中でも、shRNA)、前記siRNAの発現ベクター、又は前記前駆体の発現ベクター等の核酸分子を細胞内へ導入すると、当該細胞内でRNA干渉がおこり、NEK10バリアント遺伝子の発現が低下する結果、当該細胞の細胞増殖が抑制される。つまり、これらの核酸分子は細胞増殖抑制剤の有効成分とし得るものであり、よって腫瘍等の細胞の過増殖等が問題となる疾患に対する医薬品として有用な物質である。そこで、これらの核酸分子は、そのまま、あるいは適宜薬理学的に許容される配合剤と混合して、NEK10バリアント遺伝子発現抑制用組成物(本発明の組成物)又は抗癌剤(本発明の抗癌剤)として使用することができる。なお、本発明の組成物及び抗癌剤は、siRNA等の核酸分子を1種類のみ含有していてもよく、複数種類を組み合わせて含有していてもよい。
 NEK10バリアントmRNAに対してRNA干渉作用を有する核酸分子を有効成分とする本発明の抗癌剤は、NEK10バリアント遺伝子を発現する癌に対する治療において極めて有用であると考えられる。そして、NEK10バリアント遺伝子は、乳癌のみならず、少なくとも肝癌、腎癌、前立腺癌、及び子宮癌で発現している。このため、本発明の抗癌剤は、多くの癌細胞において、細胞増殖作用を示し、高い抗腫瘍効果を発揮することが期待される。
 本発明の組成物及び抗癌剤は、NEK10バリアント遺伝子を発現する癌細胞に対して、癌細胞増殖抑制作用、癌細胞死誘導作用等の抗癌作用や、抗癌剤等に対する感受性増強作用等を示す。また、本発明の組成物又は抗癌剤によるこれらの作用効果は、一過性であってもよく、恒常的に発揮されるものであってもよい。また、本発明の組成物又は抗癌剤の導入後、ある一定期間が経過した後に、最終的に効果が発現されるものであっても良い。
 本発明の組成物及び抗癌剤に添加してもよい配合剤としては、担体、賦形剤、崩壊剤、結合剤、滑沢剤、流動化剤、コーティング剤、懸濁化剤、乳化剤、安定化剤、保存剤、矯味剤、着香剤、希釈剤、溶解補助剤等の製薬上許容し得る添加剤が挙げられる。又、本発明の組成物及び抗癌剤は、粉剤、顆粒剤、錠剤、カブレット剤、カプセル剤、注射剤、座剤、軟膏剤等の製剤形態で、経口又は非経口的(全身投与、局所投与等)に安全に投与される。本発明の組成物及び抗癌剤中の有効成分(RNAi核酸分子又はその前駆体である核酸分子)の含有量は、製剤により種々異なるが、通常0.1~100重量%であることが好ましい。投与量は、投与経路、患者の年齢、及び、予防又は治療すべき実際の症状等により異なるが、例えば成人に経口投与する場合、有効成分として1日0.01mg~2000mg、好ましくは0.1mg~1000mgとすることができ、1日1回又は数回に分けて投与できる。
<抗癌剤のスクリーニング方法>
 上述のように、NEK10バリアント遺伝子の発現を低下させる等により、癌細胞内におけるNEK10バリアントタンパク質の機能を抑制させることによって、癌細胞の細胞増殖が抑制され、抗腫瘍効果を示す。このため、NEK10バリアント遺伝子の発現を抑制する作用を有する物質、又はNEK10バリアントタンパク質の活性を抑制する作用を有する物質は、癌治療薬の有効成分として有用である可能性が高い。したがって、NEK10バリアント遺伝子の発現に対する抑制効果又はNEK10バリアントタンパク質の活性に対する抑制効果を指標とすることにより、新規抗癌剤のスクリーニングが可能である。
 抗癌剤の候補物質としては、核酸、ペプチド、タンパク質、有機化合物(低分子化合物や高分子化合物を含む)、無機化合物等を挙げることができる。本発明のスクリーニング方法は、これらの候補物質(以下、被験物質)を含む試料を対象として実施することができる。被験物質を含む試料には、細胞抽出物、遺伝子ライブラリーの発現産物、微生物培養上清及び菌体成分等が含まれる。
 被験物質の中から、NEK10バリアント遺伝子の発現に対する抑制効果を指標として探索する場合には、具体的には、NEK10バリアント発現細胞を、被験物質の存在下又は非存在下で培養し、両条件下でのNEK10バリアントmRNA又はNEK10バリアントタンパク質の発現量を比較する。
 スクリーニングに使用する細胞としては、NEK10バリアント発現細胞であればよい。ヒトに有効な抗癌剤をスクリーニングする場合、ヒト由来のNEK10バリアント発現細胞を用いることが好ましいが、ヒトNEK10バリアントmRNAと相同性を示す塩基配列が存在する種由来の細胞であれば、ヒト以外の動物由来のNEK10バリアント発現細胞であってもよい。例えば、マウスの転写産物中にもヒトNEK10バリアントmRNAと相同性を示す塩基配列(NCBIのアクセッション番号:NM_001195119.1)が存在することから、マウス由来のNEK10バリアント発現細胞を用いてもよい。なお、スクリーニングに用いられる細胞の範疇には、細胞の集合体である組織も含まれる。その他、定法に従って、ヒトNEK10バリアント遺伝子のcDNAを有する発現ベクターを導入してNEK10バリアントタンパク質を産生可能な状態に調製された形質転換細胞を、NEK10バリアント発現細胞として使用することもできる。
 上述のスクリーニング方法において、被験物質とNEK10バリアント発現細胞との接触は、例えば、NEK10バリアント発現細胞の培養液に被験物質を添加した状態で培養することにより行う。また、被験物質とNEK10バリアント発現細胞との接触条件は、特に限定されないが、当該細胞が死滅せず、NEK10バリアントmRNA又は蛋白質が発現し得る培養条件(温度、pH、培地組成等)を選択することが好ましい。
 候補物質の選別は、例えば上記条件で被験物質とNEK10バリアント発現細胞とを接触させ、NEK10バリアントmRNA又はタンパク質の発現量を低下させる物質を探索することによって行うことができる。具体的には、被験物質存在下でNEK10バリアント発現細胞を培養した場合に、NEK10バリアントmRNA又はタンパク質発現量が、同条件の被験物質非存在下のNEK10バリアントmRNA又はタンパク質発現量よりも小さい被験物質を選別する。
 NEK10バリアントmRNAの発現量は、NEK10バリアントmRNAの塩基配列と相補的な配列を有するオリゴヌクレオチドプローブ等を利用したノーザンブロット法やDNAアレイを利用した測定方法、NEK10バリアントmRNA中の部分塩基配列をプライマーとしたRT-PCR法やリアルタイムPCR法等により測定することができる。
 NEK10バリアントタンパク質の発現量は、例えば、NEK10バリアントタンパク質に対する抗体を利用した公知の方法により測定することができる。抗体を利用した測定方法としては、例えば、ウエスタンブロット法、免疫沈降法、ELISA等が挙げられる。
 NEK10バリアントはキナーゼ活性を持つことが構造から推定される。したがって、被験物質の中から、NEK10バリアントタンパク質のキナーゼ活性に対する抑制効果を指標として、抗癌剤のスクリーニングを行うこともできる。具体的には、例えば、精製したNEK10バリアントタンパク質又はNEK10バリアントタンパク質を発現する細胞の抽出液を用い、被験物質の存在下又は非存在下での、NEK10バリアントタンパク質のキナーゼ活性を比較する。
 キナーゼ活性測定に用いられるNEK10バリアントタンパク質としては、遺伝子組換え技術により産生された組換えタンパク質を用いることができる。組換えタンパク質は、NEK10バリアント遺伝子のcDNAと公知の発現系を用いて常法により製造することができる。発現系としては、大腸菌、酵母、昆虫細胞、哺乳類細胞等を宿主細胞とする発現系、無細胞発現系等が挙げられる。例えば、NEK10バリアントタンパク質を強制発現後の宿主細胞の抽出液をそのままキナーゼ活性測定に用いてもよく、当該抽出液から精製した組換えタンパク質を用いてもよい。また、元々NEK10バリアントタンパク質を発現している細胞の抽出液や、当該抽出液から精製されたNEK10バリアントタンパク質も、キナーゼ活性測定に用いることができる。
 キナーゼ活性測定に用いられる基質としては、キナーゼの基質として一般的に用いられる各種タンパク質を用いることができる。具体的には、MBP(myelin basic protein)、ヒストン等が挙げられる。基質とするタンパク質は、組換えタンパク質であってもよく、ペプチド合成等により人工的に合成されたものであってもよく、細胞内の内在性のタンパク質であってもよい。組換えタンパク質や元々細胞内に存在しているタンパク質を用いる場合、細胞の抽出液と当該抽出液から精製したタンパク質のいずれをキナーゼ活性測定に用いてもよい。
 上述のスクリーニング方法において、被験物質とNEK10バリアント発現細胞は、キナーゼ活性測定の測定環境下で接触させる。キナーゼ活性測定の温度、pH、塩濃度等の条件は、NEK10バリアントタンパク質による基質となるタンパク質のリン酸化が起こる条件であればよく、特に限定されない。
 候補物質の選別は、例えば上記条件の被験物質存在下で、NEK10バリアントタンパク質による基質タンパク質のリン酸化量と、被験物質非存在下での基質タンパク質のリン酸化量とを比較することにより行うことができる。具体的には、被験物質存在下での基質タンパク質のリン酸化量が、同条件の被験物質非存在下での基質タンパク質のリン酸化量よりも小さい被験物質を選別する。
 本発明の抗癌剤のスクリーニング方法により選抜された物質は、細胞においてNEK10バリアント遺伝子の発現を抑制しNEK10バリアントタンパク質の産生を低下させるか、又はNEK10バリアントタンパク質のキナーゼ活性を低下させる作用を有するものであり、癌治療に有用であると考えられる。また、当該スクリーニング方法によって選別された被検物質の各種誘導体を製造し、これらに対してさらなるスクリーニングを行うことによって、効果や安全性に優れた誘導体を得ることも可能である。
 以下、本発明を実施例等により具体的に説明するが、これは一例であり、本発明はこれらに限定されるものではない。なお、実施例等で言及されている市販試薬は、特に示さない限りは製造者の使用説明に従い使用した。
[参考例1]
 本参考例は、各種癌細胞株において、NEK10バリアントmRNAの発現を確認するために行った。すなわち、表1に記載の各種癌細胞株におけるNEK10バリアントのmRNAの相対発現量を、SYBR(登録商標)GREENによるリアルタイムPCRにより測定した。
 各癌細胞株よりRNAeasy Kit(QIAGEN社)を用いてtotal RNAを精製した。400ngの精製したRNAを用い、逆転写酵素SuperscriptIII(Invitrogen社)を使用説明に従い使用し、cDNAを調製した。すなわち、RNAを65℃で5分間変性処理を行った後4℃で急冷し、その後55℃で30分間及び75℃で15分間反応させ、cDNAを合成した。
 得られたcDNAのうち1μLを鋳型とし、NEK10バリアントmRNAから合成されたcDNAを増幅するためのプライマー、及びGAPDHのmRNAから合成されたcDNAを増幅するためのプライマーを用い、BRILIANT SYBR(登録商標)GREEN master mix(STRATAGENE社)を用い使用説明に従い使用し、リアルタイムPCRを行った。GAPDHの増幅は、反応系のコントロールとして行った。すなわち、95℃、10分間の熱変性の後、1サイクルが95℃、30秒間、次いで55℃、60秒間、その後72℃、60秒間からなるサイクル反応を40サイクル行うPCR反応を行った。リアルタイムPCR機は、MX3000(STRATAGENE社)を用いた。NEK10バリアントmRNAから合成されたcDNAを増幅するためのプライマーとして、配列番号6:5’-GCACACAAAGGTATTTTATGG-3’の塩基配列からなるフォワードプライマー、及び配列番号7:5’-CTACTCAAACTTGCCTTCTCA-3’の塩基配列からなるリバースプライマーを用いた。また、GAPDHのmRNAから合成されたcDNAを増幅するためのプライマーとして、配列番号8:5’-TCTGCTCCTCCTGTTCGACAGT-3’の塩基配列からなるフォワードプライマー、及び配列番号9:5’ -ACCAAATCCGTTGACTCCGAC-3’の塩基配列からなるリバースプライマーを用いた。Ct値の判定は、ソフトウエアMX Pro(STRATAGENE社)を用いた。Ct値とは、PCR反応により標的遺伝子の増幅が指数関数的におこる立ち上がりのサイクル数(Cycle Threshold:Ct値)のことである。
 下記の式(1)を用いて、得られたCt値から、各種癌細胞株のNEK10バリアントmRNAのΔCt値(キャリブレータと比較した場合の相対的なCt値)を求めた。
式(1): 
ΔCt(NEK10遺伝子バリアント)値=NEK10バリアントmRNAのCt値-GAPDH mRNAのCt値
 式(1)から得られた各種癌細胞株におけるNEK10バリアントmRNAのΔCt値を用いて、HeLaS3細胞におけるNEK10バリアントmRNAの発現量を100とした場合の、各種癌細胞株の相対的なNEK10バリアントmRNA発現量を、式(2)により求めた。
式(2): 
各種癌細胞株のNEK10バリアントmRNAの相対発現値=(各種癌細胞株におけるNEK10バリアントmRNAのΔCt値/HeLaS3細胞におけるNEK10バリアントmRNAのΔCt値)×100
 前記式(2)を用いて得られた、HeLaS3細胞のNEK10バリアントmRNA発現量を100とした場合の、各種癌細胞株におけるNEK10バリアントmRNAの相対的な発現量を表1に示す。NEK10バリアントmRNAの発現は、乳癌細胞、肝癌、腎癌、前立腺癌及び子宮癌細胞で認められた。したがって、NEK10バリアントは乳癌細胞のみならず、乳癌以外の癌細胞でも重要な働きを担っていることが推測される。
Figure JPOXMLDOC01-appb-T000001
[実施例1]
 本実施例は、NEK10バリアントmRNAに対してRNA干渉作用を有するsiRNAが、NEK10バリアントmRNAの発現を抑制し、かつ癌細胞の増殖を抑制することを確認するために行った。
<NEK10バリアントmRNAの発現抑制作用の確認>
 配列番号2で表される塩基配列からなるセンスRNA及び配列番号3で表される塩基配列からなるアンチセンスRNAの組み合わせからなるsiRNA(以下、NEK10 siRNA#1)及び配列番号4で表される塩基配列からなるセンスRNA及び配列番号5で表される塩基配列からなるアンチセンスRNAの組み合わせからなるsiRNA(以下、NEK10 siRNA#2)について、細胞内に導入してsiRNA処理を行った後のNEK10バリアントmRNAをSYBR(登録商標)GREENによるリアルタイムPCRにより測定し、NEK10バリアントmRNAに対するノックダウン効果を検討した。
 実施例1でNEK10バリアントmRNAを発現していることが確認された乳癌細胞株 MDA-MB-231を用い、コントロールsiRNA、NEK10 siRNA#1、又はNEK10 siRNA#2を細胞内に導入し、siRNA処理後のNEK10バリアントmRNAをSYBR(登録商標)GREENによるリアルタイムPCRにより測定し、各siRNAによるNEK10バリアントmRNAのノックダウン効果を検討した。コントロールsiRNAはInvitrogen社から購入し、NEK10 siRNA#1及びNEK10 siRNA#2はInvitrogen社が合成したものを使用した。
 1万個/wellのMDA-MB-231細胞を12well plateに播種し、24時間後にsiRNAをLipofectamine RNAiMAX(Invitrogen社)を用い製造者の使用説明に従い使用し導入した。すなわち、1μLのsiRNA(20nM)を50μLのOptiMEM(Invitrogen社)に溶解した溶液を、1μLのLipofectamine RNAiMAXを50μLのOptiMEMに溶解し室温で5分間静置した溶液と混合し、さらに室温で20分間静置した。静置後、上記混合液を細胞に添加し、37℃で3時間培養した後、培地を交換し、さらに72時間培養した。その後、培地を除去し、RNAeasy Kit(QIAGEN社)を用いて、各well中の細胞からRNAを精製した。
 精製されたRNAのうち500ng用い、逆転写酵素SuperscriptIII(Invitrogen社)を使用し、参考例1と同様にしてcDNAを調製した。得られたcDNAのうち1μLを鋳型とし、参考例1と同様にしてCt値の測定を行った。使用した試薬、プライマー及び機器も参考例1と同様である。
 実験はトリプリケイトで行い、Ct値のトリプリケイトの平均値を下記の式(3)に代入し、各siRNA処理群のΔCt値を求めた。また、実験は3回繰り返した。
式(3)-1:
ΔCt(control)値=コントロール siRNA処理群のNEK10バリアントmRNAのCt値-コントロール siRNA処理群のGAPDHのmRNAのCt値
式(3)-2:
ΔCt(sample)値=NEK10 siRNA処理群のNEK10バリアントmRNAのCt値-NEK10 siRNA処理群のGAPDHのmRNAのCt値
 前記式(3)で得られた各siRNA処理群のΔCt値を用いて、下記式(4)により、各実験における各siRNA処理によるNEK10バリアントmRNAの発現量を、1回目のコントロール siRNA処理群を100とした場合の相対値として求めた。但し、式(4)中、NEK10バリアントmRNA量は、対コントロール siRNA処理群に対する%である。
式(4):
NEK10バリアントmRNA量=2(ΔCt(control)値-ΔCt(sample)値)×100
 算出結果を図1に示す。図1中、縦軸はコントロールsiRNA処理時のNEK10バリアントmRNA発現を100とした場合の、各siRNA処理群の相対的なNEK10バリアントmRNA発現量を示す。横軸は各siRNA処理群を示す。
 乳癌細胞MDA-MB-231における、コントロール siRNA又はNEK10 siRNA処理によるNEK10 mRNAの対コントロール(%)は、コントロールsiRNA処理群が107±6.2、NEK10 siRNA#1処理群が11±0.5、NEK10 siRNA#2処理群が86±7.4であった。Dunnet検定によりコントロール siRNA処理群とNEK10 siRNA処理群とを検定した結果、NEK10 siRNA#1処理群は、コントロール siRNA処理群と比較して有意(***、p<0.001)にNEK10バリアントmRNAを抑制した。同様に、NEK10 siRNA#2処理群も、コントロール siRNA処理群と比較して有意(**、p<0.01)にNEK10バリアントmRNAの発現を抑制した。すなわち、NEK10 siRNA#1及びNEK10 siRNA#2はいずれも、乳癌細胞において、NEK10バリアントのmRNA発現を抑制することが明らかとなった。 
<NEK10 siRNAの癌細胞の増殖抑制効果>
 NEK10 siRNA#1及びNEK10 siRNA#2が癌細胞に対する増殖抑制効果を有することを確認した。すなわち、NEK10 siRNA#1及びNEK10 siRNA#2を細胞内に導入し、NEK10バリアント遺伝子をノックダウンすることにより細胞増殖が抑制されるか、メチレンブルー法により検討した。
 上記(NEK10バリアントmRNAの発現抑制作用の確認)と同様にして、各siRNAをMDA-MB-231細胞へ導入し、導入後、72時間培養した。培養後、培地を除去し、1000μLのメタノールを添加して室温で2分間放置し、細胞を固定した。メタノールを除去後、1000μLの染色液(0.05%メチレンブルー溶液)を添加し、30分間染色した。4mLの蒸留水で3回洗浄した後、3%HCl溶液を2mL添加し、メチレンブルーの660nmの吸光度を、マイクロプレートリーダー(BioRad社)を用いて測定した。
 実験はトリプリケイトで実施し、同様の実験を3回繰り返した。1回目の実験のコントロール siRNA処理群のトリプリケイトの平均値をコントロールとし、各実験のsiRNA処理群のトリプリケイトの平均値を用いて、下記式(5)により細胞増殖率(%)を算出した。
式(5):
細胞増殖率(%)=(各実験のコントロール siRNA処理群又はNEK10 siRNA処理群の660nmの吸光度/1回目の実験のコントロール siRNA処理群の660nmの吸光度)×100
 算出結果を図2に示す。図2中、縦軸はコントロールsiRNA処理時の細胞増殖を100とした場合の、各siRNA処理群の細胞増殖率を示す。横軸は各siRNA処理群を示す。
 各siRNA処理による乳癌細胞MDA-MB-231の細胞増殖率(%)は、コントロール siRNA処理群が88±18、NEK10 siRNA#1処理群が34±14、NEK10 siRNA#2処理群が58±17であった。Dunnet検定によりコントロール siRNA処理群とNEK10 siRNA処理群とを検定した結果、NEK10 siRNA#1処理群は、コントロール siRNA処理群と比較して有意(*、p<0.05)にMDA-MB-231細胞の増殖を抑制した。
 また、NEK10 siRNA#2処理群は、統計学的な有意性は確認できなかったものの、コントロール siRNA処理群よりも、MDA-MB-231細胞の増殖が抑制されていた。すなわち、NEK10 siRNA#1及びNEK10 siRNA#2は、効果の多少はあるがいずれも、乳癌細胞に対する増殖抑制効果を有することが明らかとなった。
 また、NEK10バリアントmRNAの発現抑制効果がより高いNEK10 siRNA#1のほうが、NEK10 siRNA#2よりも細胞増殖抑制効果が高かった。これより、NEK10バリアントmRNAの発現抑制効果が高いsiRNAを用いることにより、より高い細胞増殖抑制効果が得られること、十分な細胞増殖抑制効果を得るためには、NEK10バリアントmRNAの発現量を対コントロール(%)で86以下とし得るsiRNAを用いることが好ましいことが示唆された。また、NEK10 siRNA#1とNEK10 siRNA#2は、NEK10バリアントmRNAの異なる配列を標的としていることから、NEK10 siRNA#1とNEK10 siRNA#2を併用することにより、それぞれのsiRNAを単独で使用した場合よりも高い細胞増殖抑制効果(抗腫瘍効果)が得られることが期待される。
 本発明の細胞の増殖抑制方法及び核酸分子は、NEK10バリアント遺伝子が発現している様々な細胞、特に癌細胞の増殖を抑制することができるため、癌の治療及び抗癌剤の製造等の分野で利用が可能である。

Claims (14)

  1.  細胞において、NEK10バリアント遺伝子の発現を低下させる発現低下工程、及び/又はNEK10バリアントタンパク質の活性を低下させる活性低下工程を含む、細胞の増殖抑制方法。
  2.  前記発現低下工程が、RNA干渉によりNEK10バリアント遺伝子の発現を抑制する核酸分子、前記核酸分子の前駆体、及び、前記核酸分子又は前記前駆体を発現し得る発現ベクターからなる群より選択される少なくとも1種を細胞に導入する工程である、請求項1に記載の細胞の増殖抑制方法。
  3.  前記核酸分子が、配列番号2又は4で表される、NEK10バリアント遺伝子のmRNA中の塩基配列を標的とするRNA干渉作用を有するsiRNAであり、
     前記前駆体が、配列番号2又は4で表される、NEK10バリアント遺伝子のmRNA中の塩基配列を標的とするRNA干渉作用を有するshRNAである、請求項2に記載の細胞の増殖抑制方法。
  4.  前記核酸分子が、
    (a)配列番号2で表される塩基配列からなるセンスRNA、及び配列番号3で表される塩基配列からなるアンチセンスRNAの組み合わせからなるsiRNA、
    (b)配列番号4で表される塩基配列からなるセンスRNA、及び配列番号5で表される塩基配列からなるアンチセンスRNAの組み合わせからなるsiRNA、
    (c)配列番号2で表される塩基配列中の15~24個の連続する塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
    (d)配列番号4で表される塩基配列中の15~24個の連続する塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
    (e)配列番号2で表される塩基配列中の15個以上の連続する塩基配列において1個若しくは数個の塩基が置換、付加又は欠失している塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
    (f)配列番号4で表される塩基配列中の15個以上の連続する塩基配列において1個若しくは数個の塩基が置換、付加又は欠失している塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、並びに、
    (g)前記(a)~(f)のいずれかのsiRNAにおいて、1個若しくは数個の塩基が修飾されており、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
    からなる群より選択される、請求項2に記載の細胞の増殖抑制方法。
  5.  前記前駆体が、細胞内において、
    (a)配列番号2で表される塩基配列からなるセンスRNA、及び配列番号3で表される塩基配列からなるアンチセンスRNAの組み合わせからなるsiRNA、
    (b)配列番号4で表される塩基配列からなるセンスRNA、及び配列番号5で表される塩基配列からなるアンチセンスRNAの組み合わせからなるsiRNA、
    (c)配列番号2で表される塩基配列中の15~24個の連続する塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
    (d)配列番号4で表される塩基配列中の15~24個の連続する塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
    (e)配列番号2で表される塩基配列中の15個以上の連続する塩基配列において1個若しくは数個の塩基が置換、付加又は欠失している塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
    (f)配列番号4で表される塩基配列中の15個以上の連続する塩基配列において1個若しくは数個の塩基が置換、付加又は欠失している塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、又は
    (g)前記(a)~(f)のいずれかのsiRNAにおいて、1個若しくは数個の塩基が修飾されており、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
    の何れかを産生する核酸分子である、請求項2に記載の細胞の増殖抑制方法。
  6.  前記前駆体が、
    (p)配列番号2で表される塩基配列中の15個以上の連続する塩基配列、又は当該塩基配列中の1個若しくは数個の塩基が修飾、置換、付加若しくは欠失している塩基配列と、配列番号3で表される塩基配列中の15個以上の連続する塩基配列、又は当該塩基配列中の1個若しくは数個の塩基が修飾、置換、付加若しくは欠失している塩基配列と、を含むshRNA;あるいは
    (q)配列番号4で表される塩基配列中の15個以上の連続する塩基配列、又は当該塩基配列中の1個若しくは数個の塩基が修飾、置換、付加若しくは欠失している塩基配列と、配列番号5で表される塩基配列中の15個以上の連続する塩基配列、又は当該塩基配列中の1個若しくは数個の塩基が修飾、置換、付加若しくは欠失している塩基配列と、を含むshRNA;であり、かつ
    細胞内において、前記(p)のshRNA及び前記(q)のshRNAから、NEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNAが産生される、請求項2に記載の細胞の増殖抑制方法。
  7.  前記細胞が癌細胞である、請求項1に記載の細胞の増殖抑制方法。
  8.  (a)配列番号2で表される塩基配列からなるセンスRNA、及び配列番号3で表される塩基配列からなるアンチセンスRNAの組み合わせからなるsiRNA、
    (b)配列番号4で表される塩基配列からなるセンスRNA、及び配列番号5で表される塩基配列からなるアンチセンスRNAの組み合わせからなるsiRNA、
    (c)配列番号2で表される塩基配列中の15~24個の連続する塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
    (d)配列番号4で表される塩基配列中の15~24個の連続する塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
    (e)配列番号2で表される塩基配列中の15個以上の連続する塩基配列において1個若しくは数個の塩基が置換、付加又は欠失している塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
    (f)配列番号4で表される塩基配列中の15個以上の連続する塩基配列において1個若しくは数個の塩基が置換、付加又は欠失している塩基配列を含むセンスRNA、及び前記センスRNAと相補的な塩基配列を含むアンチセンスRNAの組み合わせからなり、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、又は、
    (g)前記(a)~(f)のいずれかのsiRNAにおいて、1個若しくは数個の塩基が修飾されており、かつNEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNA、
    である、核酸分子。
  9.  (p)配列番号2で表される塩基配列中の15個以上の連続する塩基配列、又は当該塩基配列中の1個若しくは数個の塩基が修飾、置換、付加若しくは欠失している塩基配列と、
    配列番号3で表される塩基配列中の15個以上の連続する塩基配列、又は当該塩基配列中の1個若しくは数個の塩基が修飾、置換、付加若しくは欠失している塩基配列と、を含むshRNA;あるいは
    (q)配列番号4で表される塩基配列中の15個以上の連続する塩基配列、又は当該塩基配列中の1個若しくは数個の塩基が修飾、置換、付加若しくは欠失している塩基配列と、配列番号5で表される塩基配列中の15個以上の連続する塩基配列、又は当該塩基配列中の1個若しくは数個の塩基が修飾、置換、付加若しくは欠失している塩基配列と、を含むshRNA、
    であり、細胞内において、NEK10バリアント遺伝子に対するRNA干渉作用を有するsiRNAを産生するための前駆体である、核酸分子。
  10.  請求項8又は9に記載の核酸分子を含み、当該核酸分子を発現させ得る、発現ベクター。
  11.  請求項8に記載の核酸分子、請求項9に記載の核酸分子、及び請求項10に記載の発現ベクターからなる群より選択される1種以上を含む、NEK10バリアント遺伝子発現抑制用組成物。
  12.  請求項8に記載の核酸分子、請求項9に記載の核酸分子、及び請求項10に記載の発現ベクターからなる群より選択される1種以上を有効成分として含む、抗癌剤。
  13.  NEK10バリアント遺伝子の発現に対する抑制効果又はNEK10バリアントタンパク質の活性に対する抑制効果を指標とする、抗癌剤のスクリーニング方法。
  14.  NEK10バリアント遺伝子の発現抑制効果、又はNEK10バリアントタンパク質の活性に対する抑制効果についての候補物質の存在下及び非存在下で、NEK10バリアント発現細胞をそれぞれ培養する工程;及び
     当該細胞内のNEK10バリアントmRNA発現量、又はNEK10バリアントタンパク質の活性量を測定し、当該候補物質存在下及び非存在下での発現量又は活性量を比較する工程;
    を含む、請求項13に記載の抗癌剤のスクリーニング方法。
PCT/JP2012/071868 2011-09-14 2012-08-29 細胞の増殖抑制方法、nek10バリアント遺伝子に対するrna干渉作用を有する核酸分子、及び抗癌剤 WO2013038907A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2014002600A MX2014002600A (es) 2011-09-14 2012-08-29 Metodo para inhibir crecimiento celular, molecula de acido nucleico que tiene efecto de inteferencia de arn sobre gen variante nek10 y agente anticancer.
CN201280044023.1A CN103781906A (zh) 2011-09-14 2012-08-29 抑制细胞生长的方法、对nek10变异基因具有rna干扰效应的核酸分子、以及抗癌剂
BR112014005331A BR112014005331A2 (pt) 2011-09-14 2012-08-29 métodos para inibir o crescimento de células, e para triar agentes anticâncer, molécula de ácido nucleico, vetor de expressão, composição para inibir a expressão de gene, e, agente anticâncer
US14/241,170 US20150064710A1 (en) 2011-09-14 2012-08-29 Method for inhibiting cell growth, nucleic acid molecule having rna interference effect on nek10 variant gene, and anticancer agent
KR1020147006335A KR20140059229A (ko) 2011-09-14 2012-08-29 세포 증식 억제 방법, nek10 변이체 유전자에 대한 rna 간섭 작용을 갖는 핵산 분자, 및 항암제
EP12831615.5A EP2757152A4 (en) 2011-09-14 2012-08-29 METHOD FOR INHIBITING CELL GROWTH, NUCLEIC ACID MOLECULE HAVING THE EFFECT OF AN INTERFERENCE RNA ON A VARIANT OF THE NEK10 GENE, AND ANTICANCER AGENT
RU2014108824/10A RU2014108824A (ru) 2011-09-14 2012-08-29 Способ ингибирования роста клетки, молекула нуклеиновой кислоты, проявляющая эффект рнк-интерференции в отношении гена, кодирующего вариант nek10, и противоопухолевый агент
JP2013533600A JP6018068B2 (ja) 2011-09-14 2012-08-29 細胞の増殖抑制方法、nek10バリアント遺伝子に対するrna干渉作用を有する核酸分子、及び抗癌剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011200756 2011-09-14
JP2011-200756 2011-09-14

Publications (1)

Publication Number Publication Date
WO2013038907A1 true WO2013038907A1 (ja) 2013-03-21

Family

ID=47883141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071868 WO2013038907A1 (ja) 2011-09-14 2012-08-29 細胞の増殖抑制方法、nek10バリアント遺伝子に対するrna干渉作用を有する核酸分子、及び抗癌剤

Country Status (10)

Country Link
US (1) US20150064710A1 (ja)
EP (1) EP2757152A4 (ja)
JP (1) JP6018068B2 (ja)
KR (1) KR20140059229A (ja)
CN (1) CN103781906A (ja)
BR (1) BR112014005331A2 (ja)
MX (1) MX2014002600A (ja)
RU (1) RU2014108824A (ja)
TW (1) TW201317251A (ja)
WO (1) WO2013038907A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194993A1 (ja) * 2015-06-02 2016-12-08 国立大学法人鹿児島大学 癌型slco1b3を標的とする核酸医薬

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203745A (ja) * 2002-12-20 2004-07-22 Eisai Co Ltd メナテトレノンを含有する肝癌細胞増殖抑制剤
WO2005061704A1 (ja) * 2003-12-24 2005-07-07 Takeda Pharmaceutical Company Limited 癌の予防・治療剤
WO2007117038A1 (ja) * 2006-04-07 2007-10-18 Japanese Foundation For Cancer Research 癌の予防・治療剤
JP2007282628A (ja) * 2006-03-22 2007-11-01 Dai Ichi Seiyaku Co Ltd 抗癌剤のスクリーニング方法
WO2010094734A2 (en) * 2009-02-19 2010-08-26 Biofocus Dpi B.V. Methods for identifying and compounds useful for the diagnosis and treatment of diseases involving inflammation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003295600A1 (en) * 2002-11-14 2004-06-15 Dharmacon, Inc. Functional and hyperfunctional sirna
AU2003224132A1 (en) * 2003-04-24 2004-11-19 Galapagos Genomics N.V. Effective sirna knock-down constructs
JP2005192567A (ja) * 2003-12-11 2005-07-21 Dai Ichi Seiyaku Co Ltd チロシンキナーゼ遺伝子およびその遺伝子産物
WO2005116204A1 (ja) * 2004-05-11 2005-12-08 Rnai Co., Ltd. Rna干渉を生じさせるポリヌクレオチド、および、これを用いた遺伝子発現抑制方法
WO2009099991A2 (en) * 2008-01-31 2009-08-13 The Brigham And Women's Hospital, Inc. Treatment of cancer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203745A (ja) * 2002-12-20 2004-07-22 Eisai Co Ltd メナテトレノンを含有する肝癌細胞増殖抑制剤
WO2005061704A1 (ja) * 2003-12-24 2005-07-07 Takeda Pharmaceutical Company Limited 癌の予防・治療剤
JP2007282628A (ja) * 2006-03-22 2007-11-01 Dai Ichi Seiyaku Co Ltd 抗癌剤のスクリーニング方法
WO2007117038A1 (ja) * 2006-04-07 2007-10-18 Japanese Foundation For Cancer Research 癌の予防・治療剤
WO2010094734A2 (en) * 2009-02-19 2010-08-26 Biofocus Dpi B.V. Methods for identifying and compounds useful for the diagnosis and treatment of diseases involving inflammation

Non-Patent Citations (28)

* Cited by examiner, † Cited by third party
Title
A.C. ANTONIOU ET AL., CANCER RESEARCH, vol. 70, 2010, pages 9742 - 9754
AHMED, S. ET AL.: "Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2", NATURE GENETICS, vol. 41, no. 5, 2009, pages 585 - 590, XP055143037 *
ANTONIOU, A. C. ET AL.: "Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction", CANCER RES., vol. 70, no. 23, 2010, pages 9742 - 9754, XP055143035 *
BELHAM, C. ET AL.: "A mitotic cascade of NIMA family kinases", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 278, no. 37, 2003, pages 34897 - 34909, XP055143034 *
BOWERS, A. J. ET AL.: "Nek8, a NIMA family kinase member, is overexpressed in primary human breast tumors", GENE, vol. 328, 2004, pages 135 - 142, XP004496552 *
C.P. PAUL ET AL., NAT. BIOTECH., vol. 19, 2002, pages 505 - 508
DATABASE GENBANK [online] 14 September 2006 (2006-09-14), "HOMO SAPIENS CDNA FLJ25966 FIS, CLONE TST05207", XP055148110, retrieved from N N N N accession no. AK098832 *
DAVIES, H. ET AL.: "Somatic mutations of the protein kinase gene family in human lung cancer", CANCER RES., vol. 65, no. 17, 2005, pages 7591 - 7595, XP002484151 *
FRY, A. M. ET AL.: "A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators", THE EMBO JOURNAL, vol. 17, no. 2, 1998, pages 470 - 481, XP002991357 *
G. SUI ET AL., PROC. NATL. ACAD. SCI. USA, vol. 99, 2002, pages 5515 - 5520
G.M. BARTON; R. MEDZHITOV, PROC. NATL. ACAD. SCI. USA, vol. 99, 2002, pages 14943 - 14945
GORODNOVA, T. V. ET AL.: "Distribution of FGFR2, TNRC9, MAP3K1, LSP1, and 8q24 alleles in genetically enriched breast cancer patients versus elderly tumor-free women", CANCER GENETICS AND CYTOGENETICS, vol. 199, 2010, pages 69 - 72, XP027020234 *
L. DAVID ET AL., NAT. GENET., vol. 32, 2002, pages 107 - 108
L. O'REGAN ET AL., CELL DIVISION, vol. 2, 2007, pages 25 - 36
L.S. MONIZ ET AL., MOLECULAR AND CELLULAR BIOLOGY, vol. 31, 2011, pages 30 - 42
LI, J. J. ET AL.: "Mitotic kinases: the key to duplication, segregation, and cytokinesis errors, chromosomal instability, and oncogenesis", PHARMACOLOGY & THERAPEUTICS, vol. 111, 2006, pages 74 - 984, XP027900643 *
M. MIYAGISHI; K. TAIRA, NAT. BIOTECH., vol. 19, 2002, pages 497 - 500
M.J. O'CONNELL ET AL., TRENDS IN CELL BIOLOGY, vol. 13, 2003, pages 221 - 228
MAVADDAT, N. ET AL.: "Familial relative risks for breast cancer by pathological subtype: a population-based cohort study", BREAST CANCER RESEARCH, vol. 12, no. R10, 2010, pages 1 - 12, XP021070774 *
MONIZ, L. S. ET AL.: "NeklO mediates G2/M cell cycle arrest and MEK autoactivation in response to UV irradiation", MOLECULAR AND CELLULAR BIOLOGY, vol. 31, no. 1, January 2011 (2011-01-01), pages 30 - 42, XP055143033 *
N.S. LEE ET AL., NAT. BIOTECH., vol. 19, 2001, pages 500 - 505
P. ANTON ET AL., NATURE, vol. 418, 2002, pages 38 - 39
P.J. PADDISON ET AL., GENES DEV., vol. 16, 2002, pages 948 - 958
P.J. PADDISON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 99, 2002, pages 1443 - 1448
S. AHMED ET AL., NATURE GENETICS, vol. 41, 2009, pages 585 - 590
See also references of EP2757152A4 *
T. R. BRUMMELKAMP ET AL., SCIENCE, vol. 296, 2002, pages 550 - 553
ZENG, M. ET AL.: "Identifying mRNAs bound by human RBMY protein in the testis", JOURNAL OF REPRODUCTION AND DEVELOPMENT, vol. 57, no. 1, March 2011 (2011-03-01), pages 107 - 112, XP055143044 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194993A1 (ja) * 2015-06-02 2016-12-08 国立大学法人鹿児島大学 癌型slco1b3を標的とする核酸医薬

Also Published As

Publication number Publication date
RU2014108824A (ru) 2015-09-20
CN103781906A (zh) 2014-05-07
BR112014005331A2 (pt) 2017-04-11
EP2757152A1 (en) 2014-07-23
KR20140059229A (ko) 2014-05-15
MX2014002600A (es) 2014-08-29
JP6018068B2 (ja) 2016-11-02
JPWO2013038907A1 (ja) 2015-03-26
TW201317251A (zh) 2013-05-01
US20150064710A1 (en) 2015-03-05
EP2757152A4 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
Li et al. Long non-coding RNA TUG1 promotes proliferation and inhibits apoptosis of osteosarcoma cells by sponging miR-132-3p and upregulating SOX4 expression
JP6414886B2 (ja) 抗癌治療に用いられる長鎖非コードrna
JP2018507866A (ja) マイクロrnaを有効成分として含む癌治療用医薬組成物
EP2316491B1 (en) Cell proliferation inhibitor
Yin et al. Immunogenicity of mammary tumor cells can be induced by shikonin via direct binding-interference with hnRNPA1
EP3663404A1 (en) Aptamers and the use thereof in the treatment of cancer
JP2007530431A (ja) 膵臓癌を治療するための組成物および方法
US20230149415A1 (en) Methods and compositions for treating cancer
JP4467559B2 (ja) 細胞増殖を阻害する組成物および方法
EP2606909B1 (en) Method and composition for treating, preventing and diagnosing cancer containing cancer stem cells or derived therefrom
JP6018068B2 (ja) 細胞の増殖抑制方法、nek10バリアント遺伝子に対するrna干渉作用を有する核酸分子、及び抗癌剤
JP5397692B2 (ja) 悪性黒色腫抗原の発現上昇剤及びその用途
Hu et al. Anti‐hsa‐miR‐59 alleviates premature senescence associated with Hutchinson‐Gilford progeria syndrome in mice
KR101413581B1 (ko) miR-186, miR-216b, miR-337-3p 및 miR-760를 유효성분으로 포함하는 암의 예방 또는 치료용 조성물
US8796240B2 (en) Cell growth inhibitor and screening method thereof
JP2022541212A (ja) 治療的使用のための、ヒト遺伝子JAK1又はJAK3の発現を標的とするSiRNA配列
WO2011074652A1 (ja) HIF-2αの発現を抑制する核酸
WO2023234410A1 (ja) 心筋細胞死の抑制剤及び心筋障害又は心不全の予防又は治療剤
JP2010529852A (ja) 癌治療のためのNuMAのRNAi媒介ノックダウン
JP5382746B2 (ja) 抗癌剤耐性を獲得した癌細胞の抗癌剤感受性を回復する方法
KR101862247B1 (ko) serpinb5에 대한 약물반응성을 가지는 마이크로 RNA를 함유하는 암치료용 의약조성물 및 이의 적용
JP2013018754A (ja) 悪性胸膜中皮腫治療剤
KR101414383B1 (ko) Dlk-1 유전자 발현억제용 조성물
Zhang et al. Hsa-miR-301a-3p inhibited the killing effect of natural killer cells on non-small cell lung cancer cells by regulating RUNX3
US8853182B2 (en) Cell growth inhibitor and screening method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533600

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14241170

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/002600

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2014108824

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147006335

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014005331

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014005331

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140307