WO2013038531A1 - 運転支援装置及び運転支援方法 - Google Patents

運転支援装置及び運転支援方法 Download PDF

Info

Publication number
WO2013038531A1
WO2013038531A1 PCT/JP2011/071039 JP2011071039W WO2013038531A1 WO 2013038531 A1 WO2013038531 A1 WO 2013038531A1 JP 2011071039 W JP2011071039 W JP 2011071039W WO 2013038531 A1 WO2013038531 A1 WO 2013038531A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving support
driving
host vehicle
moving body
time
Prior art date
Application number
PCT/JP2011/071039
Other languages
English (en)
French (fr)
Inventor
政行 清水
祥一 早坂
みなみ 佐藤
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201180073408.6A priority Critical patent/CN103782330B/zh
Priority to PCT/JP2011/071039 priority patent/WO2013038531A1/ja
Priority to EP11872251.1A priority patent/EP2757540B1/en
Priority to US14/344,712 priority patent/US9026352B2/en
Priority to JP2013533404A priority patent/JP5668862B2/ja
Publication of WO2013038531A1 publication Critical patent/WO2013038531A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0026Lookup tables or parameter maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0953Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions

Definitions

  • the present invention relates to a driving support apparatus and a driving support method for performing driving support for avoiding a collision between a host vehicle and a moving body.
  • a device described in Patent Document 1 As a conventional driving support device, for example, a device described in Patent Document 1 is known.
  • the driving support device described in Patent Document 1 the position of an object existing in the traveling direction of the host vehicle is detected, and it is determined whether or not the lateral movement speed with respect to the traveling direction of the detected object is equal to or lower than a predetermined speed. Yes.
  • the contact between the host vehicle and the moving body is based on the detection angle formed by the detection direction of the moving body and the traveling direction of the host vehicle.
  • the own vehicle is positioned without the driving support for avoiding a collision with the pedestrian.
  • the pedestrian may have already crossed the road.
  • a conventional driving support device even in such a situation, it is possible to determine the possibility of contact based on a detection angle made with the host vehicle when the lateral movement speed is equal to or lower than a predetermined speed, and to perform driving support There is sex. Therefore, there is a possibility that unnecessary driving assistance may be implemented, and a problem may arise that the driver feels uncomfortable with the actual situation.
  • the present invention has been made in order to solve the above-described problems, and an object thereof is to provide a driving support device and a driving support method that can appropriately determine whether driving support is necessary and perform effective driving support. To do.
  • a driving support device is a driving support device that performs driving support that avoids a collision between the host vehicle and a moving body, and the driving support device according to the present invention has A first time prediction means for predicting a first time until the host vehicle reaches a crossing point where the host vehicle and the mobile body cross in the crossing direction; and a crossing point in the direction in which the mobile body crosses the traveling direction.
  • a second time prediction means for predicting a second time until the vehicle arrives, and the first and second times predicted by the first and second time prediction means are applied to a preset first map, Driving assistance determining means for determining whether or not to provide driving assistance in the vehicle, and driving assistance for controlling driving assistance in the own vehicle when the first driving assistance judging means determines that the driving assistance is to be implemented in the own vehicle control If it is determined that the driving support is not performed by the first driving support determination means, the speed in the direction intersecting the traveling direction of the moving body is equal to or lower than the first threshold, and the first time is equal to or lower than the second threshold.
  • a second driving support determination means for determining that the driving support is performed in the host vehicle when the condition is satisfied, and the driving support control means is provided by the second driving support determination means.
  • Time is predicted, and the predicted first time and second time are applied to the first map to determine whether or not driving assistance is necessary.
  • the necessity of driving assistance can be appropriately determined by predicting the second time until the moving body reaches the intersection.
  • effective driving support can be implemented.
  • the driving support in the above-described driving support device when the movement of the moving body is stopped, that is, when the speed of the moving body becomes “0”, it is determined that driving support is unnecessary. In this case, since the driving support is not performed even though the moving body is located in front of the host vehicle, the driver may feel uncomfortable. Therefore, in the present invention, when it is determined by the first driving support determination means that the driving support is not performed, the speed in the direction intersecting the traveling direction of the moving body is equal to or lower than the first threshold value and the first time is the first time. It is determined whether or not the threshold value is equal to or less than two threshold values, and when this condition is satisfied, the driving support in the host vehicle is continued even when the first driving support determination unit determines that the driving support is not performed. Continue driving support. Therefore, since the driving assistance is continued even when the moving body stops, it is possible to reduce the driver's uncomfortable feeling.
  • the vehicle includes a traveling state detection unit that detects a traveling state of the host vehicle, and a moving body state detection unit that detects a state of the moving body.
  • the first and second time prediction units detect the vehicle state detected by the traveling state detection unit.
  • the first time and the second time are predicted based on the running state of the vehicle and the state of the moving body detected by the moving body state detecting means. According to such a configuration, the first time and the second time can be predicted more accurately.
  • the second driving support determination means determines whether or not the first time is equal to or less than the second threshold using a preset second map. As described above, by using the preset second map, it is possible to satisfactorily determine whether or not the first time is equal to or less than the second threshold value.
  • the second driving support determination means determines whether the second time is within the determination area. It is determined that one hour is less than or equal to the second threshold, and driving assistance is determined to be performed when the moving body is located within the determination area. As described above, by using the second map in which the determination region is set, it is possible to accurately determine whether or not to perform driving support.
  • It has a plurality of second maps in which a determination area is set according to the speed of the moving body, and the second driving support determination means changes the second map used according to the speed in the direction intersecting the traveling direction of the moving body. To do. Thereby, the necessity of driving assistance can be determined more appropriately.
  • the driving support control means performs control to make the braking control release gradient when releasing the braking control gentler than usual when it is determined by the second driving support determination means that the driving support is performed. Thereby, driving assistance is continuously implemented.
  • the driving support control means performs control for maintaining a predetermined braking amount for a certain period of time when it is determined by the second driving support determination means that the driving support is performed. Thereby, driving assistance is continuously implemented.
  • the first map is set such that the first time is set on the vertical axis and the second time is set on the horizontal axis, and the first area in which driving support is determined to be unnecessary, and driving support is determined to be required.
  • the first region is set, and the first driving support determination means determines that driving support is to be performed in the host vehicle when a point where the first time and the second time intersect exists in the second region. .
  • a driving support method is a driving support method for avoiding a collision between the host vehicle and a moving body, and the host vehicle and the moving body intersect in a traveling direction of the host vehicle and a direction intersecting the traveling direction.
  • a first time prediction step for predicting a first time until the host vehicle reaches the intersection where the vehicle moves, and a second time for predicting a second time until the mobile body reaches the intersection in a direction intersecting the traveling direction.
  • a driving support control step for controlling driving support in the host vehicle when it is determined in the driving support determining step and the first driving support determining step that the driving support is performed in the host vehicle; When it is determined in the determination step that driving assistance is not performed, it is determined whether or not the speed in the direction intersecting the traveling direction of the moving body is equal to or less than the first threshold and the first time is equal to or less than the second threshold. And a second driving support determination step that determines that driving support is to be performed in the host vehicle when the condition is satisfied. In the driving support control step, it is determined that driving support is performed in the second driving support determination step. In this case, the driving support in the host vehicle is continued even when it is determined that the driving support is not performed in the first driving support determination step.
  • FIG. 1 is a diagram illustrating a configuration of a driving support system including a driving support device according to an embodiment.
  • a driving support system 100 illustrated in FIG. 1 is a system that is mounted on a vehicle such as a car and performs driving support for avoiding a collision with a moving body such as a pedestrian or a bicycle.
  • driving assistance includes performing interventional control such as braking and steering directly in the host vehicle and warning the driver.
  • the driving support system 100 includes a driving support device 1 and a PCS (Pre-Crash System) 20.
  • the driving support device 1 includes an ECU (Electronic Control Unit) 3.
  • the ECU 3 is connected with a moving body detection sensor (moving body state detection means) 5, a vehicle sensor (running state detection means) 7, an HMI (Human Machine Interface) 9, and an intervention control ECU 11.
  • the ECU 3 and the intervention control ECU 11 are electronic control units including a CPU [Central Processing Unit], ROM [Read Only Memory], RAM [Random Access Memory], and the like, and operate according to a program.
  • the PCS 20 operates in parallel with the ECU 3 of the driving support device 1. Although not shown, the PCS 20 is connected to the moving body detection sensor 5, the vehicle sensor 7, the HMI 9, and the intervention control ECU 11, similarly to the ECU 3.
  • the PCS 20 calculates TTC (Time To Collision) for the moving body based on information detected by the moving body detection sensor 5 and the vehicle sensor 7 described later.
  • TTC is a value indicating how many seconds later when the host vehicle and the moving body travel in the current traveling state.
  • the PCS 20 causes the intervention control ECU 11 to perform automatic intervention control when the TTC becomes equal to or less than a predetermined value.
  • the moving body detection sensor 5 is an external sensor that detects a moving body.
  • the moving body detection sensor 5 is an imaging unit such as a laser radar, a millimeter wave radar, or a camera.
  • the moving object detection sensor 5 detects a moving object located in front of the host vehicle by transmitting and receiving a radar wave of a frequency-modulated millimeter wave band, and moves based on the detection result. Generates moving body information such as body position and speed.
  • the moving body detection sensor 5 outputs the moving body information to the ECU 3. If the moving body detection sensor 5 is a camera, the captured image is subjected to image processing to generate moving body information.
  • the moving body detection sensor 5 may be composed of both a millimeter wave radar and a camera.
  • Vehicle sensor 7 is an internal sensor that detects the traveling state of the host vehicle.
  • the vehicle sensor 7 is, for example, a yaw rate sensor that detects the yaw rate of the host vehicle, a steering angle sensor that detects the steering angle of the steering, a vehicle speed sensor that detects the vehicle speed (traveling speed) of the vehicle, and the like.
  • the vehicle sensor 7 outputs vehicle information indicating the detected traveling state of the host vehicle to the ECU 3.
  • the ECU 3 includes a collision time prediction unit (first time prediction unit, second time prediction unit) 31, a map storage unit 33, a driving support determination unit (first driving support determination unit) 35, and an extension mode determination unit (first 2 driving support determination means) 37 and a driving support control unit (driving support control means) 39.
  • the collision time prediction unit 31 is a part that predicts the time until the host vehicle and the moving body reach the intersection (collision point).
  • the collision time prediction unit 31 receives the moving body information output from the moving body detection sensor 5 and the vehicle information output from the vehicle sensor 7, the collision time prediction unit 31 determines whether the own vehicle and the moving body are based on the moving body information and the vehicle information. Collision time, that is, the time until the host vehicle and the moving body reach the intersection where the host vehicle and the moving body cross each other is calculated.
  • the collision time predicting unit 31 obtains the predicted trajectory of the own vehicle based on the vehicle information, and how many seconds it takes for the own vehicle to travel in the traveling direction in the current state, that is, the time until the own vehicle reaches the intersection.
  • TTC first time
  • TTV Time To Vehicle, the second time
  • the collision time prediction unit 31 calculates TTC and TTV by the following equations (1) and (2).
  • TTC x / (V ⁇ vx) (1)
  • TTV y / vy (2)
  • V speed of the host vehicle
  • x, y relative position of the moving body
  • vx, vy speed of the moving body.
  • the collision time prediction unit 31 outputs TTC information and TTV information indicating the calculated TTC and TTV to the driving support determination unit 35.
  • the map storage unit 33 stores a map (first map) M.
  • FIG. 2 is a diagram showing a map. As shown in FIG. 2, in the map M, the vertical axis is TTC [s], the horizontal axis is TTV [s], and the origin is set at the intersection of the host vehicle and the moving body. In the map M, as the distance from the origin increases (as TTC and TTV increase), the map M is located away from the intersection. In the map M, a driving assistance unnecessary area (first area) A1 and a driving assistance area (second area) A2 are set. The map M will be specifically described below.
  • the two straight lines that define the driving support area A2 are set as a difference between TTC and TTV (TTC-TTV).
  • T 1 and T 2 are set to 1 to 3 seconds, for example.
  • driving support control details are set in advance, and an HMI area A21, an intervention control area A22, and an emergency intervention control area A23 are set.
  • the HMI area A21 is an area where driving assistance is performed such as warning the driver.
  • the intervention control area A22 is set inside the HMI area A21.
  • the intervention control area A22 is an area where intervention control such as braking is performed.
  • the emergency intervention control area A23 is an area in which emergency braking control for avoiding a collision is performed by performing sudden braking or the like.
  • the emergency intervention control area A23 is set near the origin of the map M, that is, near the intersection between the host vehicle and the moving body.
  • the driving support unnecessary area A1 is a portion other than the driving support area A2, and is an area that does not require driving support for avoiding a collision between the host vehicle and the moving body. That is, in the case where it corresponds to the driving assistance unnecessary area A1, when the own vehicle reaches the intersection, the moving body has already passed the intersection, or the moving body is located at a place away from the intersection. Will be.
  • the driving assistance area A2 and the driving assistance unnecessary area A1 may be set based on experimental data or the like, or the driving assistance area by learning the driving characteristics (accelerator characteristics, brake characteristics, etc.) of the driver. A2 and driving support unnecessary area A1 may be set.
  • the driving assistance control amounts may be set in the intervention control area A22 and the emergency intervention control area A23, respectively.
  • the map M stored (stored) in the map storage unit 33 can be rewritten (update of the map M).
  • the driving support determination unit 35 is a part that determines whether or not driving support is performed in the host vehicle.
  • the driving support determination unit 35 applies TTC and TTV to the map M, and determines whether or not driving support is to be performed in the host vehicle.
  • the driving support determination unit 35 applies the TTC information and the TTV information output from the collision time prediction unit 31 to the map M, and in which area of the map M the intersection where TTC and TTV intersect is located.
  • the driving support determination unit 35 outputs support non-execution information indicating that driving support is not performed to the extension mode determination unit 37.
  • the driving support determination unit 35 determines that the driving support is performed in the own vehicle because it is the driving support area A2 (intervention control area A22).
  • the driving support determination unit 35 provides the driving support control unit 39 with support execution information including information indicating any one of the HMI area A21, the intervention control area A22, and the emergency intervention control area A23. Output.
  • the extension mode determination unit 37 determines whether or not to execute the extension mode when the driving support determination unit 35 determines that the driving support is performed and the speed vy of the moving body becomes a predetermined value (first threshold value) or less. It is a part to determine whether. When the extension mode determination unit 37 receives the support non-execution information from the driving support determination unit 35, the extension mode determination unit 37 determines whether or not to implement the extension mode.
  • the extension mode will be described with reference to FIG.
  • FIG. 4 is a diagram for explaining the extension mode.
  • the host vehicle and the moving body when they are approaching the intersection in a constant state, they will be present on the line L1 with “t 1 ” and “t 2 ” as time passes.
  • the TTV becomes infinite (TTV ⁇ ⁇ ), so that the locus becomes a line L2.
  • the driving support determination unit 35 determines that driving support is not performed.
  • the PCS 20 operates to avoid a collision.
  • the TTC is equal to or less than a predetermined value (corresponding to the emergency intervention control area A23 in the map M). ) Does not work until it is determined. Therefore, when the driving support determination unit 35 determines the end of driving support, that is, until the PCS 20 operates from the state where the speed vy of the moving body is “0” (Ta [ s]) occurs.
  • the driving support determination unit 35 performs driving support in order to connect control from the end of the driving support in the driving support device 1 to the start of driving support in the PCS 20. Extend (continue) the driving assistance implemented in This control is the extension mode.
  • the extension mode determination unit 37 determines whether or not to implement the extension mode using the determination map (second map) MC.
  • FIG. 5 is a diagram showing a determination map.
  • the determination map MC shown in FIG. 5 is stored (stored) in the map storage unit 33.
  • the vertical axis is set to TTC [s] and the horizontal axis is set to Y [m].
  • a determination area (determination area) HA is set in the determination map MC.
  • TTC is set to a predetermined time (second threshold)
  • the lateral direction (width direction of the host vehicle C) Y is set to a predetermined distance
  • intervention control for collision avoidance by the PCS 20 is performed. This is the area where the extension mode is extended to extend the intervention control until it is executed.
  • the determination area HA may be set based on experimental data or the like, or the determination area HA may be set by learning the driving characteristics (accelerator characteristics, brake characteristics, etc.) of the driver. .
  • the determination area HA includes at least a range where intervention control is performed in the PCS 20.
  • the extension mode determination unit 37 when the moving body is located in the determination area HA in the determination map MC, that is, when the TTC is equal to or shorter than a predetermined time and the moving body is within a predetermined range in the lateral direction, It is determined that the extension mode is performed. When it is determined that the extension mode is to be performed, the extension mode determination unit 37 outputs extension mode information to the driving support control unit 39.
  • the driving support control unit 39 is a part that controls driving support in the host vehicle.
  • the driving support control unit 39 controls driving support (intervention control) based on the support execution information.
  • the intervention control is, for example, braking control or steering control.
  • the driving support control unit 39 outputs a warning instruction signal to the HMI 9 when the support execution information includes information indicating the HMI area A21.
  • the driving support control unit 39 calculates the control amount of the intervention control.
  • the driving support control unit 39 determines the braking control amount (target acceleration (deceleration acceleration), Speed).
  • the driving support control unit 39 calculates the braking control amount based on the following equation (3). ⁇ ⁇ TTC + ⁇ ⁇ TTV + ⁇ (3)
  • ⁇ and ⁇ are coefficients, and ⁇ is a constant.
  • ⁇ , ⁇ , and ⁇ are set based on experimental values and the like.
  • the steering control amount is calculated based on experimental values, predetermined formulas, and the like.
  • the driving support control unit 39 outputs an intervention control signal including a control amount to the intervention control ECU 11.
  • the driving support control unit 39 receives the extension mode information output from the extension mode determination unit 37, the driving support control unit 39 calculates the extension mode control amount. Specifically, as shown in FIG. 6, the driving support control unit 39 calculates a control amount such that the braking control release gradient at the end of the braking control becomes gentler than usual.
  • a portion indicated by a broken line La is a braking control release gradient at the end of normal braking control
  • a portion indicated by a solid line Lb is a braking control release gradient at the end of braking control in the extension mode.
  • the driving support control unit 39 uses the following equation (4) to calculate an extension mode control amount that provides a braking control release gradient as shown in FIG.
  • Ax off deceleration at the end of control
  • Ax PCS deceleration connected to PCS
  • TTC off TTC at the end of control
  • TTC PCS TTC for performing PCS control
  • ⁇ , ⁇ control adjustment It is a variable for.
  • the driving support control unit 39 outputs an extension control signal including a control amount in the extension mode to the intervention control ECU 11.
  • the HMI 9 is a buzzer, HUD (Head Up Display), a navigation system monitor, a meter panel, and the like.
  • HMI 9 receives the warning instruction signal output from the ECU 3
  • the HMI 9 plays a sound for warning the driver that the moving body exists ahead, or displays a warning text or the like. For example, when the HMI 9 is HUD, a pop-up indicating that a moving body is present on the windshield is displayed.
  • the intervention control ECU 11 is an ECU that executes intervention control in the host vehicle.
  • the intervention control ECU 11 is composed of a brake ECU, an engine ECU (not shown), and the like.
  • a brake actuator Upon receiving an intervention control signal output from the ECU 3, for example, a brake actuator, Automatic intervention is performed by controlling a steering actuator (both not shown).
  • the intervention control ECU 11 controls the brake actuator according to the extension mode control amount included in the extension control signal, and performs the braking control as shown in FIG.
  • FIG. 7 is a flowchart showing the operation of the driving support apparatus.
  • the state of the moving body is detected by the moving body detection sensor 5 (step S01). Further, the traveling state of the host vehicle is detected by the vehicle sensor 7 (step S02). Next, TTC and TTV are calculated by the collision time prediction unit 31 based on the moving body information and the vehicle information detected by the moving body detection sensor 5 and the vehicle sensor 7 (step S03).
  • the TTC and TTV calculated by the collision time prediction unit 31 are applied to the map M stored in the map storage unit 33 (step S04), and it is determined whether or not driving assistance is to be performed in the host vehicle. This is performed in the support determination unit 35.
  • the driving support determination unit 35 determines whether or not the intersection of TTC and TTV is the HMI area A21, that is, whether or not it is the driving support area A2 (step S05). If it is determined that the area is the HMI area A21, the HMI operation flag is set to “1” (step S06). On the other hand, if it is not determined that the area is the HMI area A21, that is, if it is determined that the area is the driving assistance unnecessary area A1, the process returns to step S01.
  • step S07 it is determined in the driving support control unit 39 whether or not it is the intervention control area A22 (step S07). If it is determined that it is the intervention control area A22, the driving support control unit 39 calculates the control amount of the intervention control based on, for example, the map M (step S08). On the other hand, if it is not determined that it is the intervention control area A22, the process proceeds to step S12.
  • step S09 it is determined in the driving support control unit 390 whether or not it is the emergency intervention control area A23 (step S09).
  • the driving assistance control unit 39 calculates a control amount for emergency avoidance (step S10).
  • the process proceeds to step S12.
  • step S11 driving support is implemented. Specifically, a warning is given to the driver by the HMI 9. In addition, intervention control is performed by the intervention control ECU 11 together with a warning by the HMI 9.
  • step S12 it is determined whether or not the moving object is a target (previous (past) control execution target) for which it is determined whether or not the driving support determination unit 35 performs driving support. If it is determined that it is the previous control target, the process proceeds to step S13. On the other hand, if it is not determined that it is the previous control target, the process proceeds to step S11.
  • step S13 the extension mode determination unit 37 determines whether or not to implement the extension mode using the determination map MC. If it is determined that the extension mode is to be performed, the process proceeds to step S14. On the other hand, if it is not determined that the extension mode is to be executed, the driving support is ended (step S16).
  • step S14 the driving support control unit 39 calculates the driving extension mode control amount. Then, the intervention control ECU 11 performs driving support in the extension mode (step S15).
  • the collision time prediction unit 31 calculates and predicts the TTC and TTV, and applies the TTC and TTV to the map M to determine whether or not to perform driving support in the host vehicle. Is determined by the support determination unit 35.
  • the support determination unit 35 it is possible to appropriately determine whether or not driving assistance is necessary by predicting the collision time in the direction in which the moving body reaches the intersection, that is, the direction in which the moving body approaches the host vehicle.
  • the extension mode determination unit 37 performs driving support in the extended mode. If it is determined that the extension mode is to be executed, the driving support control unit 39 calculates the extension mode control amount and extends (continues) the driving support. As a result, there is no time during which the driving support is not performed before the driving support in the driving support device 1 is completed and the driving support by the PCS 20 is performed. Therefore, even when the moving body is stopped, the intervention control is continued until the next driving assistance, so that the driver's uncomfortable feeling can be reduced.
  • the determination map MC is used to determine whether or not the extended mode determination unit 37 performs driving support in the extended mode. As a result, it is possible to reliably determine whether or not to implement the extension mode.
  • the extension mode determination unit 37 determines the extension mode using the determination map MC.
  • the determination map shown in FIGS. 8 and 9 may be used.
  • FIG. 8 is a diagram showing a determination map according to another embodiment.
  • the determination area HA of the determination map MC becomes narrower (tapered) as the TTC increases from a portion where the TTC is equal to or longer than a predetermined time.
  • This determination map MC is used when the speed of the moving body is not more than a predetermined value in the moving body information detected by the moving body detection sensor 5. That is, the extension mode determination unit 37 extracts the determination map MC from the map storage unit 33 according to the speed of the moving object. By using such a determination map MC, a more appropriate extension mode can be determined.
  • FIG. 9 is a diagram showing a determination map according to another embodiment.
  • the determination area HA of the determination map MC becomes wider as the TTC increases from the portion where the TTC is equal to or longer than the predetermined time.
  • This determination map MC is used when the speed of the moving body is a predetermined value or more in the moving body information detected by the moving body detection sensor 5. That is, the extension mode determination unit 37 extracts the determination map MC from the map storage unit 33 according to the speed of the moving object. By using such a determination map MC, a more appropriate extension mode can be determined.
  • the driving support control unit 39 may calculate the extension mode control amount as follows. As shown in FIG. 10, the driving support control unit 39 calculates the extension mode control amount so that the predetermined braking amount is maintained for a certain period of time. Specifically, the driving support control unit 39 calculates the extension mode control amount by the following equation (5). TTC off -TTC PCS + ⁇ (5)
  • the driving support control unit 39 may calculate the extension mode control amount as follows. As shown in FIG. 11, the driving support control unit 39 calculates the deceleration with respect to the moving object from the end of the braking control, selects the minimum value, and calculates the control amount. Specifically, the driving support control unit 39 calculates the extension mode control amount by the following equation (6). vx 2 / 2L (6) In Expression (6), L is a distance to the moving body.
  • the warning by the HIM 9 is also performed at the same time.
  • the warning by the HIM 9 may not be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Regulating Braking Force (AREA)

Abstract

 運転支援の要否を適切に判断し、効果的な運転支援を実施できる運転支援装置及び運転支援方法を提供する。運転支援装置1は、TTC及びTTVを予測する衝突時間予測部31と、TTC及びTTVをマップMに適用して、自車両において運転支援を実施するか否か判断する運転支援判断部35と、自車両における運転支援を制御する運転支援制御部39と、移動体の進行方向に交差する方向の速度が第1閾値以下であり且つTTCが第2閾値以下であるか否かを判断して、当該条件を満たす場合に自車両において運転支援を実施すると判断する延長モード判定部37とを備え、運転支援制御部39は、延長モード判定部37によって運転支援を実施すると判断された場合に、運転支援判断部35によって運転支援を実施しないと判断された場合であっても自車両における運転支援を継続する。

Description

運転支援装置及び運転支援方法
 本発明は、自車両と移動体との衝突を回避するための運転支援を実施する運転支援装置及び運転支援方法に関する。
 従来の運転支援装置として、例えば特許文献1に記載されたものが知られている。特許文献1に記載の運転支援装置では、自車両の進行方向に存在する物体の位置を検出し、検出された物体の進行方向に対する横移動速度が所定速度以下であるか否かを判断している。そして、この運転支援装置では、横移動速度が所定速度以下であると判断した場合に、移動体の検出方向と自車両の進行方向とからなる検出角度に基づいて自車両と移動体との接触の可能性を判定している。
特開2010-257298号公報
 ところで、自車両の進行方向の前方にいる歩行者が道路を横断しようとしている状況において、歩行者との衝突を回避するための運転支援を実施しなくても、自車両が歩行者の位置する地点に到達したときには歩行者が既に道路を横断し終えていることがある。従来の運転支援装置では、そのような状況であっても、横移動速度が所定速度以下である場合に自車両となす検出角度に基づいて接触の可能性を判定し、運転支援を実施する可能性がある。したがって、不要な運転支援が実施されるおそれがあり、実際の状況との違いに運転者が違和感を覚えるといった問題が生じ得る。
 本発明は、上記課題を解決するためになされたものであり、運転支援の要否を適切に判断し、効果的な運転支援を実施できる運転支援装置及び運転支援方法を提供することを目的とする。
 上記課題を解決するために、本発明に係る運転支援装置は、自車両と移動体との衝突を回避する運転支援を実施する運転支援装置であって、自車両の進行方向と当該進行方向に交差する方向とにおいて自車両と移動体とが交差する交差地点に自車両が到達するまでの第1時間を予測する第1時間予測手段と、移動体が進行方向に交差する方向において交差地点に到達するまでの第2時間を予測する第2時間予測手段と、第1及び第2時間予測手段によって予測された第1及び第2時間を予め設定された第1マップに適用して、自車両において運転支援を実施するか否か判断する第1運転支援判断手段と、第1運転支援判断手段により自車両において運転支援を実施すると判断された場合に、自車両における運転支援を制御する運転支援制御手段と、第1運転支援判断手段によって運転支援を実施しないと判断された場合に、移動体の進行方向に交差する方向の速度が第1閾値以下であり、且つ第1時間が第2閾値以下であるか否かを判断して、当該条件を満たす場合に自車両において運転支援を実施すると判断する第2運転支援判断手段と、を備え、運転支援制御手段は、第2運転支援判断手段によって運転支援を実施すると判断された場合に、第1運転支援判断手段によって運転支援を実施しないと判断された場合であっても自車両における運転支援を継続することを特徴とする。
 この運転支援装置では、進行方向において自車両が交差地点に到達するまでの第1時間と、進行方向に交差する方向、つまり自車両の横方向において移動体が交差地点に到達するまでの第2時間とを予測し、予測した第1時間及び第2時間とを第1マップに適用して運転支援の実施の要否を判断している。このように、移動体が交差地点に到達するまでの第2時間を予測することにより、運転支援の要否を適切に判断できる。その結果、効果的な運転支援の実施が可能となる。
 ここで、上記運転支援装置において、移動体の移動が停止、つまり移動体の速度が「0」となった場合には、運転支援が不要と判断される。この場合、移動体が自車両の前方に位置しているにもかかわらず、運転支援が実施されないため、運転者が違和感を覚えるおそれがある。そこで、本発明では、第1運転支援判断手段によって運転支援を実施しないと判断された場合に、移動体の進行方向に交差する方向の速度が第1閾値以下であり、且つ第1時間が第2閾値以下であるか否かを判断し、この条件を満たした場合には、第1運転支援判断手段によって運転支援を実施しないと判断された場合であっても自車両における運転支援を継続する運転支援を継続する。したがって、移動体が停止した場合であっても運転支援が継続されるため、運転者の違和感の軽減を図れる。
 自車両の走行状態を検出する走行状態検出手段と、移動体の状態を検出する移動体状態検出手段と、を備え、第1及び第2時間予測手段は、走行状態検出手段によって検出された自車両の走行状態と移動体状態検出手段によって検出された移動体の状態とに基づいて、第1時間及び第2時間をそれぞれ予測する。このような構成によれば、第1時間及び第2時間をより正確に予測できる。
 第2運転支援判断手段は、予め設定された第2マップを用いて第1時間が第2閾値以下であるか否かを判断する。このように、予め設定された第2マップを用いることにより、第1時間が第2閾値以下であるか否かの判断を良好に行える。
 第2マップには、第1時間と自車両の幅方向の距離とで規定される判定領域が設定されており、第2運転支援判断手段は、第1時間が判定領域内である場合に第1時間が第2閾値以下であると判断し、且つ判定領域内に移動体が位置する場合に運転支援を実施すると判断する。このように、判定領域が設定された第2マップを用いることにより、運転支援を実施するか否かの判断を正確に行える。
 移動体の速度に応じて判定領域が設定された複数の第2マップを有し、第2運転支援判断手段は、移動体の進行方向に交差する方向の速度に応じて用いる第2マップを変更する。これにより、より適切に運転支援の要否の判断を行える。
 運転支援制御手段は、第2運転支援判断手段によって運転支援を実施すると判断された場合に、制動制御を解除するときの制動制御解除勾配を通常よりも緩やかにする制御を行う。これにより、運転支援が継続して実施される。
 運転支援制御手段は、第2運転支援判断手段によって運転支援を実施すると判断された場合に、所定の制動量を一定時間維持する制御を行う。これにより、運転支援が継続して実施される。
 第1マップは、第1時間が縦軸で且つ第2時間が横軸として設定されていると共に、運転支援が不要であると判断される第1領域と、運転支援が必要であると判断される第2領域とが設定されており、第1運転支援判断手段は、第1時間と第2時間とが交わる点が第2領域に存在する場合に、自車両において運転支援を実施すると判断する。このような第1マップを用いることにより、運転支援の要否の判断をより一層的確に行うことが可能となる。
 本発明に係る運転支援方法は、自車両と移動体との衝突を回避する運転支援方法であって、自車両の進行方向と当該進行方向に交差する方向とにおいて自車両と移動体とが交差する交差地点に自車両が到達するまでの第1時間を予測する第1時間予測ステップと、移動体が進行方向に交差する方向において交差地点に到達するまでの第2時間を予測する第2時間予測ステップと、第1及び第2時間予測ステップにおいて予測された第1及び第2時間を予め設定された第1マップに適用して、自車両において運転支援を実施するか否か判断する第1運転支援判断ステップと、第1運転支援判断ステップにおいて自車両において運転支援を実施すると判断された場合に、自車両における運転支援を制御する運転支援制御ステップと、第1運転支援判断ステップにおいて運転支援を実施しないと判断された場合に、移動体の進行方向に交差する方向の速度が第1閾値以下であり、且つ第1時間が第2閾値以下であるか否かを判断して、当該条件を満たす場合に自車両において運転支援を実施すると判断する第2運転支援判断ステップと、を含み、運転支援制御ステップでは、第2運転支援判断ステップにおいて運転支援を実施すると判断された場合に、第1運転支援判断ステップにおいて運転支援を実施しないと判断された場合であっても自車両における運転支援を継続することを特徴とする。
 本発明によれば、運転支援の要否を適切に判断し、効果的な運転支援を実施できる。
一実施形態に係る運転支援装置を含む運転支援システムを示す図である。 マップを示す図である。 運転支援判断部における運転支援要否の判断方法を説明するための図である。 延長モードを説明するための図である。 判定マップを示す図である。 制動量の算出方法を示す図である。 運転支援装置の動作を示すフローチャートである。 他の形態に係る判定マップを示す図である。 他の形態に係る判定マップを示す図である。 他の形態に係る制動量の算出方法を示す図である。 他の形態に係る制動量の算出方法を示す図である。
 以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、図面の説明において同一又は相当要素には同一符号を付し、重複する説明は省略する。
 図1は、一実施形態に係る運転支援装置を含む運転支援システムの構成を示す図である。図1に示す運転支援システム100は、車などの車両に搭載され、歩行者や自転車などの移動体との衝突を回避するための運転支援を行うシステムである。なお、運転支援とは、自車両において直接的に制動や操舵などの介入制御を行うことや、運転者に対して警告を行うことを含んでいる。
 図1に示すように、運転支援システム100は、運転支援装置1と、PCS(Pre Crash System)20と含んで構成されている。運転支援装置1は、ECU(Electronic Control Unit)3を備えている。ECU3には、移動体検出センサ(移動体状態検出手段)5と、車両センサ(走行状態検出手段)7と、HMI(Human Machine Interface)9と、介入制御ECU11とが接続されている。ECU3及び介入制御ECU11は、CPU[Central Processing Unit]、ROM[Read Only Memory]、RAM[Random Access Memory]などからなる電子制御ユニットであり、プログラムによって動作する。
 PCS20は、運転支援装置1のECU3と並行して動作している。PCS20は、図示しないが、ECU3と同様に、移動体検出センサ5、車両センサ7、HMI9及び介入制御ECU11に接続されている。PCS20は、後述する移動体検出センサ5及び車両センサ7により検出された情報に基づいて、移動体に対するTTC(Time To Collision)を算出する。ここで、TTCは、自車両と移動体とが現在の走行状態で走行した場合に何秒後に衝突するかを示す値である。PCS20は、TTCが所定値以下となった場合に、介入制御ECU11により自動介入制御を実施させる。
 移動体検出センサ5は、移動体を検出する外界センサである。移動体検出センサ5は、例えば、レーザーレーダーやミリ波レーダー、カメラなどの撮像手段である。移動体検出センサ5は、ミリ波レーダーである場合、周波数変調されたミリ波帯のレーダー波を送受信することにより、自車両の前方に位置する移動体を検出し、検出結果に基づいて、移動体の位置や速度などの移動体情報を生成する。移動体検出センサ5は、移動体情報をECU3に出力する。なお、移動体検出センサ5がカメラである場合には、撮像した画像に画像処理を施して移動体情報を生成する。移動体検出センサ5は、ミリ波レーダー及びカメラの両方から構成されていてもよい。
 車両センサ7は、自車両の走行状態を検出する内界センサである。車両センサ7は、例えば、自車両のヨーレートを検出するヨーレートセンサ、ステアリングの操舵角を検出する操舵角センサ、車両の車速(走行速度)を検出する車速センサなどである。車両センサ7は、検出した自車両の走行状態を示す車両情報をECU3に出力する。
 ECU3は、衝突時間予測部(第1時間予測手段、第2時間予測手段)31と、マップ記憶部33と、運転支援判断部(第1運転支援判断手段)35と、延長モード判定部(第2運転支援判断手段)37と、運転支援制御部(運転支援制御手段)39とを備えている。
 衝突時間予測部31は、自車両及び移動体が交差地点(衝突地点)に到達するまでの時間を予測する部分である。衝突時間予測部31は、移動体検出センサ5から出力された移動体情報、及び、車両センサ7から出力された車両情報を受け取ると、移動体情報及び車両情報に基づいて自車両と移動体との衝突時間、すなわち自車両と移動体とが交差する交差地点に自車両及び移動体がそれぞれ到達するまでの時間を算出する。
 衝突時間予測部31は、車両情報に基づいて自車両の予測軌跡などを求め、自車両が交差地点に到達するまでの時間、すなわち自車両が現在の状態で進行方向に走行した場合に何秒後に移動体に衝突するかを示す値であるTTC(第1時間)を算出する。また、衝突時間予測部31は、移動体情報に基づいて移動体の速度ベクトルなどを求め、移動体が交差地点に到達するまでの時間、すなわち移動体が現在の状態で自車両の進行方向に交差する方向(自車両の横方向)に移動した場合に何秒後に自車両に衝突するかを示す値であるTTV(Time To Vehicle、第2時間)を算出する。
 衝突時間予測部31は、以下の式(1)及び(2)によりTTC及びTTVを算出する。
TTC=x/(V-vx) …(1)
TTV=y/vy …(2)
上記式(1),(2)において、V:自車両の速度、x,y:移動体の相対位置、vx,vy:移動体の速度である。衝突時間予測部31は、算出したTTC及びTTVを示すTTC情報及びTTV情報を運転支援判断部35に出力する。
 マップ記憶部33は、マップ(第1マップ)Mを記憶している。図2は、マップを示す図である。図2に示すように、マップMは、縦軸がTTC[s]、横軸がTTV[s]であり、原点が自車両と移動体との交差地点に設定されている。マップMでは、原点から離れるにつれて(TTC、TTVが大きくなるにつれて)交差地点から離れた場所に位置していることとなる。マップMには、運転支援不要エリア(第1領域)A1と、運転支援エリア(第2領域)A2とが設定されている。マップMについて、以下具体的に説明する。
 運転支援エリアA2は、y=fx(TTC,TTV)の関数に囲まれた領域である。運転支援エリアA2を規定する2本の直線は、TTCとTTVとの差分(TTC-TTV)で設定されている。マップMにおいて、T及びTは、例えば1~3秒に設定されている。
 運転支援エリアA2には、予め運転支援の制御内容が設定されており、HMIエリアA21と、介入制御エリアA22と、緊急介入制御エリアA23とが設定されている。HMIエリアA21は、運転者に対して警告を行うといった運転支援を実施するエリアである。介入制御エリアA22は、HMIエリアA21の内側に設定されている。介入制御エリアA22は、制動などの介入制御を実施するエリアである。緊急介入制御エリアA23は、急制動などを実施し、衝突を回避するための緊急介入制御を実施するエリアである。緊急介入制御エリアA23は、マップMの原点寄り、つまり自車両と移動体との交差地点に近い部分に設定されている。
 運転支援不要エリアA1は、運転支援エリアA2以外の部分であり、自車両と移動体との衝突を回避するための運転支援を必要としないエリアである。つまり、運転支援不要エリアA1に該当する場合には、自車両が交差地点に到達するときには移動体が交差地点を既に通過している、或いは、移動体が交差地点から離れた場所に位置していることになる。
 マップMでは、実験データなどに基づいて運転支援エリアA2及び運転支援不要エリアA1が設定されていてもよいし、運転者の運転特性(アクセル特性、ブレーキ特性など)を学習させることにより運転支援エリアA2及び運転支援不要エリアA1が設定されてもよい。また、マップMにおいては、介入制御エリアA22及び緊急介入制御エリアA23において、運転支援の制御量がそれぞれ設定されていてもよい。マップ記憶部33に記憶(格納)されるマップMは、書き換え(マップMの更新)可能とされている。
 運転支援判断部35は、自車両において運転支援を実施するか否かを判断する部分である。運転支援判断部35は、TTC及びTTVをマップMに適用して、自車両において運転支援を実施するか否かを判断する。具体的には、運転支援判断部35は、衝突時間予測部31から出力されたTTC情報及びTTV情報をマップMに適用し、TTCとTTVとが交差する交点がマップMのどのエリアに位置するのかを判断する。例えば、図3に示すように、運転支援判断部35は、TTCとTTVとが点P1で交わる場合には、運転支援不要エリアA1であるため、自車両において運転支援を実施しないと判断する。つまり、例えば点P1で交わる場合には、移動体が交差地点に到達するときには自車両が交差地点を通過していることになる。運転支援判断部35は、運転支援を実施しないことを示す支援不実施情報を延長モード判定部37に出力する。
 一方、運転支援判断部35は、TTCとTTVとが点P2で交わる場合には、運転支援エリアA2(介入制御エリアA22)であるため、自車両において運転支援を実施すると判断する。運転支援判断部35は、運転支援を実施すると判断した場合には、HMIエリアA21、介入制御エリアA22及び緊急介入制御エリアA23のいずれかを示す情報を含む支援実施情報を運転支援制御部39に出力する。
 延長モード判定部37は、運転支援判断部35において運転支援を実施すると判断された後、移動体の速度vyが所定値(第1閾値)以下となった場合に、延長モードを実施するか否かを判定する部分である。延長モード判定部37は、運転支援判断部35から支援不実施情報を受け取ると、延長モードを実施するか否かを判定する。延長モードについて、図4を参照して説明する。
 図4は、延長モードを説明するための図である。図4において、自車両と移動体とが一定の状態で交差地点に近づいている場合には、時間の経過と共に「t」、「t」と線L1上に存在することになる。ここで、移動体の横方向の移動が停止、すなわち速度vyが「0」になった場合には、TTVが無限大(TTV→∞)になるため、線L2のような軌跡となる。この場合、運転支援判断部35においては、運転支援を実施しないと判断する。このとき、自車両が走行状態を維持している場合には、衝突を回避するためにPCS20が動作することになるが、PCS20ではTTCが所定値以下(マップMにおける緊急介入制御エリアA23に相当)と判定されるまでは動作しない。そのため、運転支援判断部35による運転支援の終了判定時、つまり移動体の速度vyが「0」になった状態からPCS20が動作するまでには、運転支援が実施されない時間(図4ではTa[s])が発生する。
 そこで、運転支援装置1における運転支援の実施終了時からPCS20における運転支援の開始時までの制御を繋ぐために、運転支援装置1において、運転支援判断部35により運転支援を実施すると判断された場合に実施される運転支援を延長(継続)する。この制御が延長モードである。延長モード判定部37は、判定マップ(第2マップ)MCを用いて延長モードを実施するか否かを判定する。
 図5は、判定マップを示す図である。図5に示す判定マップMCは、マップ記憶部33に記憶(格納)されている。判定マップMCは、縦軸がTTC[s]、横軸がY[m]に設定されている。判定マップMCには、判定エリア(判定領域)HAが設定されている。判定エリアHAは、TTCが所定時間(第2閾値)に設定されていると共に、横方向(自車両Cの幅方向)Yが所定の距離に設定されており、PCS20による衝突回避の介入制御が実施されるまで介入制御を延長する延長モードを実施するエリアである。判定マップMCでは、実験データなどに基づいて判定エリアHAが設定されていてもよいし、運転者の運転特性(アクセル特性、ブレーキ特性など)を学習させることにより判定エリアHAが設定されてもよい。判定エリアHAは、PCS20において介入制御が実施される範囲を少なくとも含んでいる。
 延長モード判定部37は、移動体が判定マップMCにおいて判定エリアHAに位置している、つまりTTCが所定時間以下であり、移動体が横方向において所定範囲内に存在している場合には、延長モードを実施すると判定する。延長モード判定部37は、延長モードを実施すると判定した場合、延長モード情報を運転支援制御部39に出力する。
 図1に戻って、運転支援制御部39は、自車両における運転支援を制御する部分である。運転支援制御部39は、運転支援判断部35から出力された支援実施情報を受け取ると、この支援実施情報に基づいて運転支援(介入制御)を制御する。介入制御は、例えば制動制御や操舵制御である。運転支援制御部39は、支援実施情報においてHMIエリアA21を示す情報が含まれている場合には、HMI9に警告指示信号を出力する。
 運転支援制御部39は、支援実施情報において介入制御エリアA22及び緊急介入制御エリアA23を示す情報が含まれている場合には、介入制御の制御量を算出する。運転支援制御部39は、マップMの介入制御エリアA22及び緊急介入制御エリアA23において制御量が設定されている場合には、マップMに基づいて制動の制御量(目標の加速度(減速加速度)、速度)を算出する。また、運転支援制御部39は、マップMにおいて制御量が設定されていないときには、以下の式(3)に基づいて制動の制御量を算出する。
α×TTC+β×TTV+γ …(3)
ここで、α,βは係数であり、γは定数である。α,β,γは、実験値などに基づいて設定されている。また、操舵の制御量は、実験値や所定の式などに基づいて算出する。運転支援制御部39は、制御量を含む介入制御信号を介入制御ECU11に出力する。
 また、運転支援制御部39は、延長モード判定部37から出力された延長モード情報を受け取ると、延長モード制御量を算出する。具体的には、運転支援制御部39は、図6に示すように、制動制御終了時の制動制御解除勾配が通常よりも緩やかになるような制御量を算出する。
 図6において、破線Laで示す部分は、通常の制動制御終了時の制動制御解除勾配であり、実線Lbで示す部分は、延長モードにおける制動制御終了時の制動制御解除勾配である。運転支援制御部39では、以下の式(4)を用いて図6に示すような制動制御解除勾配となる延長モード制御量を算出する。
Figure JPOXMLDOC01-appb-I000001
上記式(4)において、Axoff:制御終了時の減速度、AxPCS:PCSに繋ぐ減速度、TTCoff:制御終了時のTTC、TTCPCS:PCS制御を行うTTC、α,β:制御調整用の変数である。運転支援制御部39は、延長モードにおける制御量を含む延長制御信号を介入制御ECU11に出力する。
 HMI9は、例えばブザー、HUD(Head Up Display)、ナビゲーションシステムのモニタ、メータパネルなどである。HMI9は、ECU3から出力された警告指示信号を受け取ると、移動体が前方に存在することを運転者に警告する音声を流したり、警告文などを表示したりする。例えば、HMI9がHUDである場合には、フロントガラスに移動体が存在することを示すポップアップを表示する。
 介入制御ECU11は、自車両において介入制御を実行させるECUである。介入制御ECU11は、ブレーキECUやエンジンECU(いずれも図示しない)などから構成されており、ECU3から出力された介入制御信号を受け取ると、介入制御信号に含まれる制御量に応じて例えばブレーキアクチュエータやステアリングアクチュエータ(いずれも図示しない)を制御して自動介入を実施する。
 また、介入制御ECU11は、ECU3から出力された延長制御信号を受け取ると、延長制御信号に含まれる延長モード制御量に応じてブレーキアクチュエータを制御し、図6に示すような制動制御を実施する。
 続いて、運転支援装置1の動作について説明する。図7は、運転支援装置の動作を示すフローチャートである。
 図7に示すように、まず、移動体の状態が移動体検出センサ5により検出される(ステップS01)。また、自車両の走行状態が車両センサ7により検出される(ステップS02)。次に、移動体検出センサ5及び車両センサ7により検出された移動体情報及び車両情報に基づいて、TTC及びTTVが衝突時間予測部31によって算出される(ステップS03)。
 続いて、衝突時間予測部31によって算出されたTTC及びTTVをマップ記憶部33に格納されているマップMに適用し(ステップS04)、自車両において運転支援を実施するか否かの判断が運転支援判断部35において行われる。
 運転支援判断部35では、TTCとTTVとの交点がHMIエリアA21であるか否か、つまり運転支援エリアA2であるか否かが判断される(ステップS05)。HMIエリアA21であると判断された場合には、HMI作動フラグが「1」に設定される(ステップS06)。一方、HMIエリアA21であると判断されなかった場合、つまり運転支援不要エリアA1であると判断された場合には、ステップS01の処理に戻る。
 次に、運転支援制御部39において、介入制御エリアA22であるか否かが判断される(ステップS07)。介入制御エリアA22であると判断された場合には、運転支援制御部39において介入制御の制御量が例えばマップMに基づいて算出される(ステップS08)。一方、介入制御エリアA22であると判断されなかった場合には、ステップS12に進む。
 次に、運転支援制御部390において、緊急介入制御エリアA23であるか否かが判断される(ステップS09)。緊急介入制御エリアA23であると判断された場合には、運転支援制御部39において緊急回避のための制御量が算出される(ステップS10)。一方、緊急介入制御エリアA23であると判断されなかった場合には、ステップS12に進む。
 ステップS11では、運転支援が実施される。具体的には、HMI9によって運転者に対して警告が行われる。また、HMI9による警告と共に、介入制御が介入制御ECU11により実施される。
 また、ステップS12では、移動体が運転支援判断部35において運転支援を実施するか否かが判断された対象(前回(過去)の制御実施対象)であったか否かが判断される。前回の制御実施対象であると判断された場合には、ステップS13に進む。一方、前回の制御対象であると判断されなかった場合には、ステップS11に進む。
 ステップS13では、延長モード判定部37において延長モードを実施するか否かが判定マップMCを用いて判定される。延長モードを実施すると判定された場合には、ステップS14に進む。一方、延長モードを実施すると判定されなかった場合には、運転支援が終了される(ステップS16)。
 ステップS14では、運転支援制御部39において運転延長モード制御量が算出される。そして、介入制御ECU11により、延長モードの運転支援が実施される(ステップS15)。
 以上説明したように、本実施形態では、衝突時間予測部31においてTTC及びTTVを算出して予測し、このTTC及びTTVをマップMに適用して、自車両において運転支援を実施するか否かを支援判断部35が判断している。このように、移動体が交差地点に到達するTTV、すなわち移動体が自車両に近づく方向における衝突時間を予測することにより、運転支援の要否を適切に判断できる。その結果、例えば移動体が車道を横断したにもかかわらず運転支援が実施されるといった事態を回避でき、運転者に違和感を与えることのない効果的な運転支援を実施できる。
 また、移動体の速度が所定値以下(例えば、vy=0)となり、運転支援判断部35において運転支援を実施しないと判断された後、延長モード判定部37において延長モードによる運転支援を実施するか否かを判定し、延長モードを実施すると判定された場合には、運転支援制御部39において延長モード制御量が算出されて運転支援が延長(継続)される。これにより、運転支援装置1における運転支援が終了し、PCS20による運転支援が実施されるまでの間に運転支援が実施されない時間が生じない。したがって、移動体が停止した場合であっても次の運転支援まで介入制御が継続されるため、運転者の違和感の軽減を図れる。
 また、延長モード判定部37における延長モードの運転支援を実施するか否かの判定には判定マップMCを用いている。これにより、延長モードを実施するか否かの判断を確実に行うことができる。
 本発明は、上記実施形態に限定されるものではない。例えば、上記実施形態では、延長モード判定部37において、判定マップMCを用いて延長モードの判定を行っているが、判定マップは図8及び図9に示すものを用いてもよい。
 図8は、他の形態に係る判定マップを示す図である。図8に示すように、判定マップMCの判定エリアHAは、TTCが所定時間以上の部分からTTCが大きくなるにつれて幅が狭くなっている(先細になっている)。この判定マップMCは、移動体検出センサ5により検出された移動体情報において、移動体の速度が所定値以下である場合に用いる。つまり、延長モード判定部37は、移動体の速度に応じてマップ記憶部33から判定マップMCを抽出する。このような判定マップMCを用いることにより、より適切な延長モードの判定を実施できる。
 図9は、他の形態に係る判定マップを示す図である。図9に示すように、判定マップMCの判定エリアHAは、TTCが所定時間以上の部分からTTCが大きくなるにつれて幅が広くなっている。この判定マップMCは、移動体検出センサ5により検出された移動体情報において、移動体の速度が所定値以上である場合に用いる。つまり、延長モード判定部37は、移動体の速度に応じてマップ記憶部33から判定マップMCを抽出する。このような判定マップMCを用いることにより、より適切な延長モードの判定を実施できる。
 また、運転支援制御部39では、延長モード制御量を以下のように算出してもよい。図10に示すように、運転支援制御部39では、所定の制動量を一定時間維持するように、延長モード制御量を算出する。具体的には、運転支援制御部39は、以下の式(5)により延長モード制御量を算出する。
TTCoff-TTCPCS+α …(5)
 また、運転支援制御部39では、延長モード制御量を以下のように算出してもよい。図11に示すように、運転支援制御部39では、制動制御の終了時から移動体に対しての減速度を演算し、最小値を選択して制御量を算出する。具体的には、運転支援制御部39は、以下の式(6)により延長モード制御量を算出する。
vx/2L …(6)
式(6)において、L:移動体までの距離である。
 また、上記実施形態では、介入制御ECU11による介入制御を実施する場合、HIM9による警告も同時に実施しているが、介入制御を実施する際にはHIM9による警告を実施しなくてもよい。
 また、上記実施形態に加えて、自車両の周辺情報(環境)を取得する手段を備え、自車両の周辺の状況、状態(例えば、対向車の有無など)に応じて運転支援を実施する構成であってもよい。
 1…運転支援装置、3…ECU、5…移動体検出センサ、7…車両センサ、31…衝突時間予測部(第1時間予測手段、第2時間予測手段)、33…マップ記憶部、35…運転支援判断部(第1運転支援判断手段)、37…延長モード判定部(第2運転支援判断手段)、39…運転支援制御部(運転支援制御手段)、M…マップ(第1マップ)、MC…判定マップ(第2マップ)。

Claims (9)

  1.  自車両と移動体との衝突を回避する運転支援を実施する運転支援装置であって、
     前記自車両の進行方向と当該進行方向に交差する方向とにおいて前記自車両と前記移動体とが交差する交差地点に前記自車両が到達するまでの第1時間を予測する第1時間予測手段と、
     前記移動体が前記進行方向に交差する方向において前記交差地点に到達するまでの第2時間を予測する第2時間予測手段と、
     前記第1及び第2時間予測手段によって予測された前記第1及び第2時間を予め設定された第1マップに適用して、前記自車両において運転支援を実施するか否か判断する第1運転支援判断手段と、
     前記第1運転支援判断手段により前記自車両において運転支援を実施すると判断された場合に、前記自車両における運転支援を制御する運転支援制御手段と、
     前記第1運転支援判断手段によって運転支援を実施しないと判断された場合に、前記移動体の前記進行方向に交差する方向の速度が第1閾値以下であり、且つ前記第1時間が第2閾値以下であるか否かを判断して、当該条件を満たす場合に前記自車両において運転支援を実施すると判断する第2運転支援判断手段と、
    を備え、
     前記運転支援制御手段は、前記第2運転支援判断手段によって運転支援を実施すると判断された場合に、前記第1運転支援判断手段によって運転支援を実施しないと判断された場合であっても前記自車両における運転支援を継続することを特徴とする運転支援装置。
  2.  前記自車両の走行状態を検出する走行状態検出手段と、
     前記移動体の状態を検出する移動体状態検出手段と、
    を備え、
     前記第1及び第2時間予測手段は、前記走行状態検出手段によって検出された前記自車両の走行状態と前記移動体状態検出手段によって検出された前記移動体の状態とに基づいて、前記第1時間及び前記第2時間をそれぞれ予測する、請求項1記載の運転支援装置。
  3.  前記第2運転支援判断手段は、予め設定された第2マップを用いて前記第1時間が前記第2閾値以下であるか否かを判断する、請求項1又は2記載の運転支援装置。
  4.  前記第2マップには、前記第1時間と前記自車両の幅方向の距離とで規定される判定領域が設定されており、
     前記第2運転支援判断手段は、前記第1時間が前記判定領域内である場合に前記第1時間が前記第2閾値以下であると判断し、且つ前記判定領域内に前記移動体が位置する場合に運転支援を実施すると判断する、請求項3記載の運転支援装置。
  5.  前記移動体の速度に応じて判定領域が設定された複数の第2マップを有し、
     前記第2運転支援判断手段は、前記移動体の前記進行方向に交差する方向の速度に応じて用いる第2マップを変更する、請求項4記載の運転支援装置。
  6.  前記運転支援制御手段は、前記第2運転支援判断手段によって運転支援を実施すると判断された場合に、制動制御を解除するときの制動制御解除勾配を通常よりも緩やかにする制御を行う、請求項1~5のいずれか一項記載の運転支援装置。
  7.  前記運転支援制御手段は、前記第2運転支援判断手段によって運転支援を実施すると判断された場合に、所定の制動量を一定時間維持する制御を行う、請求項1~5のいずれか一項記載の運転支援装置。
  8.  前記第1マップは、前記第1時間が縦軸で且つ前記第2時間が横軸として設定されていると共に、運転支援が不要であると判断される第1領域と、運転支援が必要であると判断される第2領域とが設定されており、
     前記第1運転支援判断手段は、前記第1時間と前記第2時間とが交わる点が前記第2領域に存在する場合に、前記自車両において運転支援を実施すると判断する、請求項1~7のいずれか一項記載の運転支援装置。
  9.  自車両と移動体との衝突を回避する運転支援方法であって、
     前記自車両の進行方向と当該進行方向に交差する方向とにおいて前記自車両と前記移動体とが交差する交差地点に前記自車両が到達するまでの第1時間を予測する第1時間予測ステップと、
     前記移動体が前記進行方向に交差する方向において前記交差地点に到達するまでの第2時間を予測する第2時間予測ステップと、
     前記第1及び第2時間予測ステップにおいて予測された前記第1及び第2時間を予め設定された第1マップに適用して、前記自車両において運転支援を実施するか否か判断する第1運転支援判断ステップと、
     前記第1運転支援判断ステップにおいて前記自車両において運転支援を実施すると判断された場合に、前記自車両における運転支援を制御する運転支援制御ステップと、
     前記第1運転支援判断ステップにおいて運転支援を実施しないと判断された場合に、前記移動体の前記進行方向に交差する方向の速度が第1閾値以下であり、且つ前記第1時間が第2閾値以下であるか否かを判断して、当該条件を満たす場合に前記自車両において運転支援を実施すると判断する第2運転支援判断ステップと、
    を含み、
     前記運転支援制御ステップでは、前記第2運転支援判断ステップにおいて運転支援を実施すると判断された場合に、前記第1運転支援判断ステップにおいて運転支援を実施しないと判断された場合であっても前記自車両における運転支援を継続することを特徴とする運転支援方法。
PCT/JP2011/071039 2011-09-14 2011-09-14 運転支援装置及び運転支援方法 WO2013038531A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180073408.6A CN103782330B (zh) 2011-09-14 2011-09-14 驾驶辅助装置以及驾驶辅助方法
PCT/JP2011/071039 WO2013038531A1 (ja) 2011-09-14 2011-09-14 運転支援装置及び運転支援方法
EP11872251.1A EP2757540B1 (en) 2011-09-14 2011-09-14 Driving assistance device and driving assistance method
US14/344,712 US9026352B2 (en) 2011-09-14 2011-09-14 Driving assistance device and driving assistance method
JP2013533404A JP5668862B2 (ja) 2011-09-14 2011-09-14 運転支援装置及び運転支援方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071039 WO2013038531A1 (ja) 2011-09-14 2011-09-14 運転支援装置及び運転支援方法

Publications (1)

Publication Number Publication Date
WO2013038531A1 true WO2013038531A1 (ja) 2013-03-21

Family

ID=47882790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071039 WO2013038531A1 (ja) 2011-09-14 2011-09-14 運転支援装置及び運転支援方法

Country Status (5)

Country Link
US (1) US9026352B2 (ja)
EP (1) EP2757540B1 (ja)
JP (1) JP5668862B2 (ja)
CN (1) CN103782330B (ja)
WO (1) WO2013038531A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106573621A (zh) * 2014-05-13 2017-04-19 株式会社电装 车辆用驾驶辅助装置以及车辆用驾驶辅助方法
JP2017228120A (ja) * 2016-06-23 2017-12-28 いすゞ自動車株式会社 車両制御装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6137194B2 (ja) * 2012-11-29 2017-05-31 トヨタ自動車株式会社 運転支援装置及び運転支援方法
JP6082638B2 (ja) * 2013-03-29 2017-02-15 日立オートモティブシステムズ株式会社 走行制御装置及び走行制御システム
CN104269070B (zh) * 2014-08-20 2017-05-17 东风汽车公司 一种车辆主动安全预警方法和运用该方法的安全预警***
JP6115579B2 (ja) * 2015-02-16 2017-04-19 トヨタ自動車株式会社 衝突回避装置
JP6304223B2 (ja) * 2015-12-10 2018-04-04 トヨタ自動車株式会社 運転支援装置
JP6551382B2 (ja) * 2016-12-22 2019-07-31 トヨタ自動車株式会社 衝突回避支援装置
US11100729B2 (en) * 2017-08-08 2021-08-24 Panasonic Intellectual Property Corporation Of America Information processing method, information processing system, and program
KR102139590B1 (ko) * 2018-02-27 2020-07-30 주식회사 만도 교차로에서의 차량 자동 긴급 제동 시스템 및 방법
CN108674413B (zh) * 2018-05-18 2021-02-19 广州小鹏汽车科技有限公司 车辆行人碰撞预防方法及***
JP7245006B2 (ja) * 2018-07-05 2023-03-23 株式会社デンソー 車両の運転支援制御装置、車両の運転支援システムおよび車両の運転支援制御方法
CN110647146B (zh) * 2019-09-09 2023-01-31 深圳一清创新科技有限公司 无人车控制方法、装置、计算机设备和存储介质
KR20210153998A (ko) 2020-06-11 2021-12-20 현대자동차주식회사 차량 및 그 제어방법
CN112158188B (zh) * 2020-09-30 2022-12-09 重庆长安汽车股份有限公司 一种智能驾驶车辆行车制动***、方法及汽车

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009282702A (ja) * 2008-05-21 2009-12-03 Toyota Central R&D Labs Inc 運転支援装置
JP2010003086A (ja) * 2008-06-19 2010-01-07 Toyota Motor Corp ドライブレコーダー
JP2010250501A (ja) * 2009-04-14 2010-11-04 Hitachi Automotive Systems Ltd 車両用外界認識装置及びそれを用いた車両システム
JP2011170869A (ja) * 2011-03-31 2011-09-01 Mitsubishi Electric Corp 情報提供装置および情報提供方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1269445B8 (en) * 2000-02-28 2006-08-23 Calspan Corporation System and method for avoiding accidents in intersections
JP3938023B2 (ja) * 2002-11-27 2007-06-27 日産自動車株式会社 リスクポテンシャル算出装置、車両用運転操作補助装置、その装置を備える車両およびリスクポテンシャル演算方法
JP2004302621A (ja) 2003-03-28 2004-10-28 Calsonic Kansei Corp 車両衝突防止装置
DE10315819A1 (de) * 2003-04-07 2004-11-11 Robert Bosch Gmbh Verfahren und Anordnung zur Steuerung einer Fahrerassistenz-Einrichtung
JP2008020950A (ja) * 2006-07-10 2008-01-31 Toyota Motor Corp 走行支援制御装置および走行支援制御方法
JP4400634B2 (ja) * 2007-02-28 2010-01-20 トヨタ自動車株式会社 衝突予測装置
JP4967015B2 (ja) * 2007-04-02 2012-07-04 パナソニック株式会社 安全運転支援装置
JP4375488B2 (ja) * 2007-10-11 2009-12-02 トヨタ自動車株式会社 運転支援装置
JP4737239B2 (ja) * 2008-06-20 2011-07-27 トヨタ自動車株式会社 運転支援装置
JP5025623B2 (ja) * 2008-11-21 2012-09-12 三菱電機株式会社 情報提供装置および情報提供方法
JP2010257298A (ja) 2009-04-27 2010-11-11 Honda Motor Co Ltd 車両の走行安全装置
US8577550B2 (en) * 2009-10-05 2013-11-05 Ford Global Technologies, Llc System for vehicle control to mitigate intersection collisions and method of using the same
JP4873068B2 (ja) * 2009-11-20 2012-02-08 株式会社デンソー 衝突被害軽減装置
CN102096803B (zh) * 2010-11-29 2013-11-13 吉林大学 基于机器视觉的行人安全状态识别***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009282702A (ja) * 2008-05-21 2009-12-03 Toyota Central R&D Labs Inc 運転支援装置
JP2010003086A (ja) * 2008-06-19 2010-01-07 Toyota Motor Corp ドライブレコーダー
JP2010250501A (ja) * 2009-04-14 2010-11-04 Hitachi Automotive Systems Ltd 車両用外界認識装置及びそれを用いた車両システム
JP2011170869A (ja) * 2011-03-31 2011-09-01 Mitsubishi Electric Corp 情報提供装置および情報提供方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2757540A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106573621A (zh) * 2014-05-13 2017-04-19 株式会社电装 车辆用驾驶辅助装置以及车辆用驾驶辅助方法
JP2017228120A (ja) * 2016-06-23 2017-12-28 いすゞ自動車株式会社 車両制御装置

Also Published As

Publication number Publication date
JPWO2013038531A1 (ja) 2015-03-23
JP5668862B2 (ja) 2015-02-12
EP2757540B1 (en) 2016-03-09
US20140358392A1 (en) 2014-12-04
CN103782330B (zh) 2015-12-16
CN103782330A (zh) 2014-05-07
EP2757540A4 (en) 2015-01-21
EP2757540A1 (en) 2014-07-23
US9026352B2 (en) 2015-05-05

Similar Documents

Publication Publication Date Title
JP5668862B2 (ja) 運転支援装置及び運転支援方法
JP5641146B2 (ja) 運転支援装置及び運転支援方法
JP5664790B2 (ja) 運転支援装置及び運転支援方法
JP6036839B2 (ja) 運転支援装置及び運転支援方法
US20150266473A1 (en) Driving support apparatus and driving support method
JP5846106B2 (ja) 運転支援装置及び運転支援方法
JP2020097346A (ja) 車両の走行制御装置
JP5899761B2 (ja) 運転支援装置及び運転支援方法
JP7468409B2 (ja) 車両衝突回避支援装置
JP2013246768A (ja) 運転支援装置
JP2013186626A (ja) 運転支援装置及び運転支援方法
JP5915386B2 (ja) 運転支援装置及び運転支援方法
JP5733273B2 (ja) 運転支援装置及び運転支援方法
WO2013132621A1 (ja) 運転支援装置及び運転支援方法
JP2021020518A (ja) 車両用表示制御装置および車両用表示制御方法
JP2013156688A (ja) 運転支援装置及び運転支援方法
JP2013149077A (ja) 運転支援装置及び運転支援方法
JP2013156687A (ja) 運転支援装置及び運転支援方法
JP2013161232A (ja) 運転支援装置及び運転支援方法
JP2014149627A (ja) 運転支援装置及び運転支援方法
JP2014148291A (ja) 運転支援装置及び運転支援方法
JP2013246767A (ja) 運転支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533404

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14344712

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011872251

Country of ref document: EP