WO2013035627A1 - 帯電防止性ハードコートフィルム、偏光板及び画像表示装置 - Google Patents

帯電防止性ハードコートフィルム、偏光板及び画像表示装置 Download PDF

Info

Publication number
WO2013035627A1
WO2013035627A1 PCT/JP2012/072055 JP2012072055W WO2013035627A1 WO 2013035627 A1 WO2013035627 A1 WO 2013035627A1 JP 2012072055 W JP2012072055 W JP 2012072055W WO 2013035627 A1 WO2013035627 A1 WO 2013035627A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coat
antistatic
meth
film
acrylate
Prior art date
Application number
PCT/JP2012/072055
Other languages
English (en)
French (fr)
Inventor
麻友 正木
智之 堀尾
真理子 林
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47832074&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013035627(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to KR1020137030078A priority Critical patent/KR101747488B1/ko
Priority to CN201280033030.1A priority patent/CN103635834B/zh
Priority to JP2013532561A priority patent/JP5988174B2/ja
Publication of WO2013035627A1 publication Critical patent/WO2013035627A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/20Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/16Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/21Anti-static
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/121Antistatic or EM shielding layer

Definitions

  • the present invention relates to an antistatic hard coat film, a polarizing plate and an image display device.
  • the present invention relates to an antistatic hard coat film having saponification resistance capable of preventing a decrease in antistatic performance during a saponification treatment with an alkaline aqueous solution, a polarizing plate and an image display device using the same.
  • an antistatic hard coat film displays images to prevent scratches on the image display surface and adhesion of dust due to charging. It is provided on the surface.
  • an antistatic hard coat film in which a hard coat layer is formed by applying a resin composition obtained by adding a quaternary ammonium salt to an ionizing radiation curable resin on a transparent base film has been proposed (Patent Literature). 1).
  • a polarizing plate is usually provided for the liquid crystal cell.
  • the polarizing plate usually has a structure in which both surfaces of a polarizer made of a polyvinyl alcohol film that has been adsorbed with iodine and subjected to orientation treatment are laminated with a protective film.
  • a triacetyl cellulose film is usually used as the protective film in terms of transparency, optical non-orientation, etc., and the surface is saponified with an aqueous alkaline solution to enhance the adhesion with the polarizer and then polarized. Laminated with a child.
  • an antistatic hard coat film is used for the protective film of the polarizing plate, that is, an antistatic hard coat film is laminated on the polarizer.
  • stacked on a polarizer requires the saponification process by aqueous alkali solution as an easily bonding process from an adhesive viewpoint with a polarizer.
  • the antistatic agent in the hard coat layer may fall off and the antistatic performance may deteriorate.
  • an object of the present invention is to prevent scratch resistance and antistatic properties by the hard coat layer so that the antistatic performance of the hard coat layer to which the antistatic agent is added is not impaired even if saponification treatment is performed with an alkaline aqueous solution. It is to provide an antistatic hard coat film having saponification resistance capable of maintaining the above functions. Moreover, it is providing the polarizing plate and image display apparatus using such an antistatic hard coat film.
  • the present invention provides an antistatic hard coat film, a polarizing plate and an image display device having the following constitution.
  • An ionizing radiation curable composition comprising a transparent base film made of triacetyl cellulose and an antistatic agent containing a quaternary ammonium salt and a polyfunctional polymerizable compound provided on one surface of the transparent base film.
  • An antistatic hard coat film comprising a hard coat layer made of a cured resin layer, wherein the quaternary ammonium salt has a quaternary ammonium base and has a weight average molecular weight of 1,000 to 50, 000 polymer type antistatic agent, wherein the polyfunctional polymerizable compound is represented by the following formula [1], has an isocyanuric acid skeleton, and a (meth) acryloyl group is a 15-functional urethane polyfunctional acrylate
  • An antistatic hard coat film which is a compound of the type.
  • Ac is a (meth) acryloyl group
  • R- (Ac) 5 is a hydrogen atom of 5 hydroxyl groups out of 6 hydroxyl groups of dipentaerythritol, and is a (meth) acryloyl group.
  • It is a pentafunctional (meth) acrylate group replaced with Ac.
  • a polarizing plate comprising the antistatic hard coat film of (1) or (2) and a polarizer laminated on the surface of the antistatic hard coat film on the transparent substrate film side.
  • An image display comprising: a display panel; and the antistatic hard coat film of (1) or (2) or the polarizing plate of (3) provided on the viewer side of the display panel. apparatus.
  • the antistatic hard coat film according to the present invention has saponification resistance that is maintained without impairing hardness, antistatic properties, and transparency with respect to saponification treatment. Further, by providing a low refractive index layer, antireflection properties can be imparted, and scratch resistance of the low refractive index layer (adhesion between the hard coat layer and the low refractive index layer) can be obtained.
  • the antistatic hard coat film included in the polarizing plate has hardness, antistatic properties, and transparency.
  • the image display device of the present invention it is possible to impart hardness, antistatic property, and transparency to the image display surface. Alternatively, it is also possible to impart antireflection properties accompanied by scratch resistance (adhesion between the hard coat layer and the low refractive index layer).
  • Sectional drawing explaining one Embodiment of the antistatic hard coat film by this invention It is sectional drawing which shows the thickness direction distribution in the hard-coat layer of an antistatic agent, (A) is conventional and (B) is this invention.
  • the graph which shows the thickness direction distribution in the hard-coat layer of an antistatic agent the wavy line which the code
  • An antistatic hard coat film according to the present invention is a hard coat comprising a cured layer of an ionizing radiation curable resin containing an antistatic agent on one surface of a transparent substrate film made of triacetyl cellulose. Having a layer.
  • the antistatic agent contains a quaternary ammonium salt, and the quaternary ammonium salt is a polymer type antistatic agent having a molecular weight of 1,000 to 50,000.
  • the antistatic hard coat film of the present invention can be further provided with a low refractive index layer on the surface of the hard coat layer, and the low refractive index layer can provide antireflection properties and also provide scratch resistance. It is done.
  • FIG. 1 is a cross-sectional view showing an embodiment of an antistatic hard coat film according to the present invention.
  • the antistatic hard coat film 10 in FIG. 1 is a hard layer as a cured product layer of an ionizing radiation curable resin containing a polymer type quaternary ammonium salt having a molecular weight within a specific range on one surface of the transparent substrate film 1.
  • the coating layer 2 is provided, and the low refractive index layer 3 is laminated on the outermost surface of the hard coating layer 2.
  • the (meth) acryloyl group means an acryloyl group or a methacryloyl group
  • the (meth) acrylate means an acrylate or a methacrylate
  • the simple term “acrylate type” includes a methacrylate type.
  • the transparent substrate film 1 is a transparent film made of triacetyl cellulose.
  • TAC film triacetyl cellulose film
  • excellent transparency and excellent optical isotropy suitable as a protective film for a polarizing plate for liquid crystal displays can be obtained.
  • a preferable optical characteristic is acquired by using a TAC film, when using it with a polarizing plate in a liquid crystal display use, or when using it as a protective film of a polarizing plate.
  • the transparency of the transparent base film is desirably an average light transmittance of at least 70%, preferably 85% or more, more preferably 90% or more in the visible light region of 380 to 780 nm.
  • the refractive index of the transparent substrate film is about 1.49 in the case of a triacetyl cellulose film.
  • the thickness of the transparent substrate film is usually 20 ⁇ m to 300 ⁇ m, preferably 30 ⁇ m to 200 ⁇ m.
  • the triacetyl cellulose constituting the transparent substrate film in addition to pure triacetyl cellulose, components other than acetic acid are used in combination as a fatty acid that forms an ester with cellulose, such as cellulose acetate propionate and cellulose acetate butyrate. Resin may be used.
  • the transparent substrate film may contain a cellulose lower fatty acid ester-based resin other than triacetyl cellulose such as diacetyl cellulose, if necessary.
  • the transparent substrate film 1 may contain various additives such as a plasticizer, an antistatic agent, and an ultraviolet absorber.
  • the transparent base film 1 may be subjected to surface treatment for adhesion enhancement such as glow discharge treatment, corona discharge treatment, ultraviolet (UV) treatment, flame treatment, and primer layer formation, if necessary. .
  • the “hard coat layer” refers to a layer having a hardness of “H” or higher in a pencil hardness test (load 500 g) defined by JIS K5600-5-4 (1999).
  • the hard coat layer 2 has a polymeric quaternary ammonium salt having a molecular weight in a specific range as an antistatic agent and an isocyanuric acid skeleton represented by at least the following formula [1] as a polyfunctional polymerizable compound.
  • This is a layer made of a cured product of an ionizing radiation curable resin containing a urethane-based polyfunctional acrylate compound that is a 15-functional (meth) acrylate compound.
  • Ac is a (meth) acryloyl group
  • R- (Ac) 5 is a hydrogen atom of 5 hydroxyl groups out of 6 hydroxyl groups of dipentaerythritol, and is a (meth) acryloyl group.
  • It is a pentafunctional (meth) acrylate group replaced with Ac, where R is a dipentaerythritol residue.
  • the quaternary ammonium salt is a polymer having a quaternary ammonium base.
  • a copolymer C of a monomer A having a quaternary ammonium base and a monomer B having no quaternary ammonium base can be used.
  • the molecular weight of the quaternary ammonium salt is preferably 1,000 to 50,000 in terms of weight average molecular weight. It is preferably 1,500 to 30,000, more preferably 2,000 to 20,000. If the molecular weight is too small, the antistatic agent will bleed out excessively on the surface. Conversely, if the molecular weight is too large, the viscosity of the resin composition for forming the hard coat layer will be too high, Coating suitability is reduced.
  • the above weight average molecular weight can be determined by polystyrene conversion by gel permeation chromatography (GPC). Tetrahydrofuran or chloroform can be used as the solvent for the GPC mobile phase.
  • the measurement column may be used in combination with a commercially available column such as a column for tetrahydrofuran or a column for chloroform. Examples of the commercially available column include Shodex (registered trademark) GPC KF-801, GPC KF-800D (both manufactured by Showa Denko KK) and the like.
  • As the detector an RI (differential refractive index) detector and a UV detector may be used. Using such a solvent, column, and detector, the weight average molecular weight can be appropriately measured by a GPC system such as Shodex (registered trademark) GPC-101 (manufactured by Showa Denko KK).
  • An antistatic agent is basically present in a portion as close to the surface as possible in order to prevent electrostatic charge on the surface, so that an antistatic effect can be effectively exhibited even with a small amount.
  • the antistatic agent present on the surface falls off or dissolves in contact with the aqueous solution, continuous antistatic performance cannot be expected. Therefore, it is effective to prevent the antistatic agent from bleed out on the surface and to distribute it as close to the surface as possible without distributing it uniformly in the thickness direction of the hard coat layer.
  • the weight average molecular weight of the quaternary ammonium salt as the antistatic agent is preferably 1,000 or more.
  • copolymer C examples include, for example, an N, N-dialkylamino group
  • the copolymer obtained by quaternizing the monomer and then polymerizing with the other monomer B, or after copolymerizing the N, N-dialkylamino group-containing monomer and the other monomer B Can be obtained by quaternizing the N, N-dialkylamino group possessed by
  • N, N-dialkylamino group-containing monomers examples include N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, and N, N-dimethylaminopropyl (meth) acrylate.
  • N, N-diethylaminopropyl (meth) acrylate, N, N-dimethylaminobutyl (meth) acrylate, N, N-diethylaminobutyl (meth) acrylate, N, N-dihydroxyethylaminoethyl (meth) acrylate, N, N N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide and the like are mentioned.
  • N, N-dimethylaminoethyl (meth) acrylate is a preferable compound in that excellent saponification resistance is obtained. It is a kind of.
  • Examples of the other monomer B constituting the copolymer C include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate.
  • Alkyl (meth) acrylates such as 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, dodecyl (meth) acrylate, or 2-hydroxyethyl (meth) acrylate 2-hydroxypropyl (meth) acrylate, hydroxyalkyl (meth) acrylate such as hydroxybutyl (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl ( T) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, alkyl (meth) acrylate having a cyclic structure such as glycidyl (meth) acrylate, or ethoxyethyl (meth) acrylate,
  • Alkoxyalkyl (meth) acrylamides such as siethyl (meth) acrylamide and butoxyethyl (meth) acrylamide, or various (meth) acrylamides such as ethyl carbitol (meth) acrylamide and cyanoethyl (meth) acrylamide, or styrene and methylstyrene Etc.
  • dodecyl (meth) acrylate and tridecyl (meth) acrylate are preferably used in terms of the high solubility of the obtained copolymer C in an organic solvent and the hydrophobicity.
  • N, N-dimethylaminoethyl (meth) acrylate is selected as the monomer A
  • dodecyl (meth) acrylate, tridecyl (meth) acrylate is selected as the monomer B.
  • examples of the other monomer B include organopolysiloxane monomers, for example, polydimethylsiloxane having a (meth) acryloyl group.
  • the quaternary ammonium base can be obtained by modification with a cationizing agent and quaternization treatment.
  • the quaternary ammonium base is preferably obtained by modifying the N, N-dialkylamino group with a cationizing agent and subjecting it to a quaternization treatment.
  • Examples of the cationizing agent include alkyl halides such as methyl halide, ethyl halide, normal propyl halide, isopropyl halide, normal butyl halide, isopropyl halide, normal hexyl halide, 2-ethylhexyl halide, octyl halide, lauryl halide, stearyl halide, or the like.
  • Monochloroacetates such as sodium monochloroacetate and potassium monochloroacetate, monochloroacetates such as methyl monochloroacetate and ethyl monochloroacetate, or 3-chloro-2-hydroxypropyltrimethylammonium chloride.
  • One of these cationizing agents may be used alone, or two or more may be used in combination.
  • quaternary ammonium bases are alkyl halides, monochloroacetates, monochloroacetates, and 3-chloro-2-hydroxypropyltrimethylammonium in terms of high reactivity and antistatic performance.
  • a cationizing agent selected from chlorides are preferred, more preferably alkyl chlorides, more preferably alkyl chlorides having 1 to 2 carbon atoms, particularly preferably those obtained by modification with methyl chloride. is there.
  • the quaternary ammonium salt may be a reactive compound.
  • a compound having a vinyl group such as a (meth) acryloyl group as a reactive group, the same reactivity for radical polymerization as that of the ionizing radiation curable resin used for forming the hard coat layer can be imparted. .
  • the quaternary ammonium salt chemically bonds with the ionizing radiation curable resin constituting the hard coat layer, and can effectively prevent bleed out with time on the surface.
  • the blending amount of the quaternary ammonium salt is 0.01 to 5% by mass, preferably 0, in terms of antistatic performance with respect to the total resin content including the antistatic agent constituting the hard coat layer. 0.1 to 5% by mass, more preferably 0.3 to 3% by mass. However, if it exceeds 5% by mass, the antistatic performance is improved, but after the saponification treatment, the antistatic performance deteriorates and the saponification resistance is poor.
  • the commercially available antistatic agent may contain a polymerizable compound such as a monomer or a prepolymer, or a polymer as a solid content thereof together with a compound that exhibits an antistatic function such as a quaternary ammonium salt.
  • Polyfunctional polymerizable compound As the polyfunctional polymerizable compound, at least the urethane polyfunctional acrylate compound represented by the above-mentioned formula [1] and having an isocyanuric acid skeleton and having a (meth) acryloyl group of 15 functions (hereinafter, this compound is simply referred to as this compound). , which is also referred to as “15-functional polymerizable compound”) as an essential component. By using this 15-functional polymerizable compound, good saponification resistance can be obtained.
  • This 15-functional polymerizable compound may occupy the entire amount of the polymerizable compound, but is included in the antistatic agent when other polymerizable compounds such as other polyfunctional polymerizable compounds described later are used in combination.
  • 6 to 90% by mass, more preferably 9 to 80% by mass, and most preferably 20 to 80% by mass with respect to the total amount of the polymerizable compound including the polymerizable compound to be obtained exhibits the antistatic performance. It is desirable in terms of the point and the saponification resistance can be obtained.
  • this 15-functional polymerizable compound has a very large number of 15 functional groups, so that a dense coating film with a crosslinked structure of the resin can be obtained, and the movement of the antistatic agent in the hard coat layer can be achieved. It is presumed that the saponification resistance can be obtained because of this, and it is effective in suppressing bleeding out on the surface.
  • the 15 functional polymerizable compound is excellent in terms of hardness by obtaining a dense coating film having a crosslinked resin structure.
  • this 15-functional polymerizable compound does not have a hydroxyl group
  • the resulting hard coat layer has good water resistance and is considered to be resistant to an alkaline aqueous solution during saponification treatment.
  • DPPA dipentaerythritol pentaacrylate
  • DPHA dipentaerythritol hexaacrylate
  • a polyfunctional polymerizable compound other than the 15 functional polymerizable compound for example, a polyfunctional acrylate compound can be included within a range not departing from the gist of the present invention.
  • the number of functional groups is at least bifunctional, but it is more preferable to use a trifunctional or higher functional group in terms of scratch resistance.
  • a compound having no hydroxyl group is desirable.
  • the proportion of the hydroxyl group is as small as possible with respect to the molecular weight.
  • the “hydroxyl group content” defined as a value obtained by dividing the number of hydroxyl groups contained in one molecule by the molecular weight and multiplying by 100 is as follows: Compounds of 0.2 or less are preferred.
  • polyfunctional acrylate compound may be appropriately selected from known various polymerizable compounds.
  • polyfunctional acrylate compounds having no hydroxyl group in the molecule include hexanediol di (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,6-hexanediol.
  • Bifunctional (meth) acrylates such as di (meth) acrylate and neopentyl glycol di (meth) acrylate, trifunctional (meth) acrylates such as trimethylolpropane tri (meth) acrylate and isocyanuric acid modified tri (meth) acrylate, penta Examples include tetrafunctional (meth) acrylates such as erythritol tetra (meth) acrylate, hexafunctional (meth) acrylates such as dipentaerythritol hexa (meth) acrylate, and the like.
  • prepolymer or oligomer compounds examples include urethane (meth) acrylate, polyester (meth) acrylate, silicone (meth) acrylate, and epoxy (meth) acrylate.
  • UV1700B urethane acrylate oligomer, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • a polyfunctional acrylate compound is preferable, but in addition to this, a monofunctional polymerizable compound may be used in combination as appropriate for adjusting physical properties.
  • monofunctional monomers as monofunctional polymerizable compounds include methyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, isobornyl (meth) acrylate, and dicyclohexane. Examples thereof include pentenyl (meth) acrylate.
  • ionizing radiation curable resins in addition to polymerizable compounds that can be cured with ionizing radiation, ionizing radiation non-polymerizable resins that do not polymerize with ionizing radiation can interfere with saponification resistance when necessary, such as for adjusting physical properties. They may be used in combination as long as they do not.
  • An ionizing radiation non-polymerizable resin that does not cause a polymerization reaction by ionizing radiation is a polymerizable compound that can be cured by energy other than ionizing radiation, for example, a thermosetting resin that is not cured by ionizing radiation but can be cured by heat, ionization
  • a thermoplastic resin that is not cured by radiation or heat.
  • thermosetting resins include urethane resins, melamine resins, phenolic resins, silicone resins, etc.
  • thermoplastic resins include acrylic resins, thermoplastic urethane resins, polyamide resins, styrene resins, Cellulosic resins, polycarbonate resins, vinyl resins, silicone resins and the like.
  • the cellulose-based resin include nitrocellulose, acetylcellulose, cellulose acetate propionate, and ethylhydroxyethylcellulose.
  • the resin composition of the ionizing radiation curable resin further contains a polymerization initiator. It is preferable to make it.
  • a polymerization initiator a known one, for example, when curing by radical polymerization, an acetophenone-based, benzophenone-based, or thioxanthone-based polymerization initiator is used. The polymerization initiator is used alone or in combination.
  • 1-hydroxy-cyclohexyl-phenyl-ketone is available from Irgacure (registered trademark) 184 (manufactured by Ciba Specialty Chemicals Co., Ltd.).
  • a polymerization initiator such as metallocene, aromatic sulfonium or aromatic iodonium is used.
  • the polymerization initiator is added in an amount of about 0.1 to 5 parts by mass with respect to 100 parts by mass of the resin content.
  • the hard coat layer 2 may contain various known additives for adjusting various physical properties such as coating suitability.
  • a leveling agent, a dispersion stabilizer, an ultraviolet absorber, an antiglare agent, and a silica having a reactive group for example, by adding an antiglare agent, the hard coat layer can also be used as an antiglare layer, and the antireflection film can be used as an antiglare antireflection film.
  • an organic or inorganic diffusing agent can be used as the antiglare agent.
  • the resin composition of the ionizing radiation curable resin can contain a solvent for adjusting physical properties such as coating suitability on the transparent substrate film.
  • a solvent can be used as the permeable solvent which has the permeability
  • the solvent examples include alcohols such as isopropyl alcohol, methanol, ethanol, butanol, and isobutyl alcohol, ketones such as methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and cyclohexanone, and glycols such as propylene glycol monomethyl ether (PGMEA).
  • Ethers esters such as methyl acetate, ethyl acetate and butyl acetate; halogenated hydrocarbons such as chloroform, methylene chloride and tetrachloroethane; and aromatic hydrocarbons such as toluene and xylene.
  • solvents are used alone or as a mixture thereof.
  • MIBK methyl isobutyl ketone
  • PGME propylene glycol monomethyl ether
  • PMEA propylene glycol monomethyl ether acetate
  • FIG. 2 and 3 both conceptually show the thickness direction distribution of the antistatic agent in the hard coat layer
  • FIG. 2 (A) shows the conventional antistatic hard coat film 20.
  • the distribution, FIG. 2B, is the distribution in the antistatic hard coat film 10 of the present invention.
  • the graph indicated by reference numeral 20 is a conventional distribution
  • the graph indicated by reference numeral 10 is a distribution according to the present invention.
  • Each of the antistatic hard coat film 10 and the conventional antistatic hard coat film 20 shown in FIGS. 2 and 3 is a hard coat layer 2 containing an antistatic agent As on the transparent substrate film 1. Further, the low refractive index layer 3 is laminated on the hard coat layer 2.
  • the antistatic agent As is basically present in a portion as close to the surface as possible in order to prevent electrostatic charging on the surface. An antistatic effect can be effectively exhibited. Therefore, the antistatic agent is not bleed out on the surface where the antistatic agent is dropped, but it is not distributed uniformly in the thickness direction of the hard coat layer, but distributed as close to the surface as possible. It is preferable in that the antistatic performance can be effectively obtained. Accordingly, a distribution in which the antistatic agent is present in a larger amount in the upper half than in the lower half of the hard coat layer is preferable.
  • the antistatic agent As is distributed in the vicinity of the surface.
  • the distribution of the antistatic agent in the thickness direction in the thickness T of the hard coat layer increases as it goes from the lower side (lower side in the drawing) to the upper side of the transparent base film 1 side.
  • the distribution is such that the concentration of the inhibitor increases, and is the largest on the outermost surface Ph of the hard coat layer 2.
  • the antistatic hard coat film 10 according to the present invention as shown in FIG. 2B, the antistatic agent As is distributed in the vicinity of the surface, but at a position slightly away from the outermost surface of the hard coat layer 2. Most distributed. As shown in FIG.
  • the distribution of the antistatic agent in the thickness T direction is such that the concentration of the antistatic agent increases and becomes the outermost surface of the hard coat layer 2 as it goes from the lower side to the upper side of the transparent base film 1 side.
  • the middle is the maximum concentration, and it becomes smaller on the outermost surface of the hard coat layer.
  • the density is drawn as being close to zero.
  • the binder resin component that holds the antistatic agent in the hard coat layer is well coated with the antistatic agent, protecting it from the aqueous alkaline solution, and moving within the antistatic agent layer. It is presumed that the bleed-out to the surface is also limited.
  • the 15-functional polymerizable compound which is a urethane-based polyfunctional acrylate compound, is difficult to move due to its large molecular weight compared to, for example, about 6-functional monomers, and has little penetration into the transparent substrate film 1 and is functional.
  • Both of these compounds control each other's fluidity because they have a large number of groups and are easy to polymerize, and because quaternary ammonium salts are also of high molecular weight with a molecular weight of 1000 to 50,000 and are difficult to move. This is considered to be because bleed-out of the quaternary ammonium salt until the time of curing is suppressed.
  • this 15-functional polymerizable compound is easy to react due to the large number of functional groups, and since the antistatic agent is not surfaced, the adhesion between the hard coat layer and the low refractive index layer is improved, It is also effective in improving scratch resistance and pencil hardness as an original hard coat layer.
  • the hard coat layer 2 can be formed by coating the resin composition of the ionizing radiation curable resin described above as a paint or ink on a transparent substrate film and then irradiating the ionizing radiation to cure the resin.
  • a coating method is not particularly limited, and a known coating method may be appropriately employed. Examples of the coating method include a roll coating method, a gravure coating method, a dip method, a spray method, a die coating method, a bar coating method, a spin coating method, and a meniscus coating method. Alternatively, it may be formed by a printing method such as a flexographic printing method or a screen printing method.
  • Typical examples of the ionizing radiation include ultraviolet rays and electron beams.
  • Known ultraviolet light sources can be used, and specific examples thereof include light sources such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc lamp, a black light fluorescent lamp, and a metal halide lamp lamp.
  • As the wavelength of the ultraviolet light a wavelength range of 190 to 380 nm can be used.
  • Known electron beam sources can be used. Specific examples thereof include Cockcroft-Walton type, Bandegraft type, resonant transformer type, insulated core transformer type, or linear type, dynamitron type, and high frequency type. And various electron beam accelerators. Among these, a high pressure mercury lamp is preferable.
  • the thickness of the hard coat layer is 0.1 to 100 ⁇ m, preferably 0.8 to 20 ⁇ m, and most preferably 5 to 13 ⁇ m. By making the thickness of the hard coat layer 5 ⁇ m or more, it becomes easy to make the pencil hardness 3 H or more. Further, curling can be easily prevented by setting the thickness of the hard coat layer to 13 ⁇ m or less.
  • the hard coat layer 2 has already been described as having a hardness of H or higher in terms of pencil hardness, but the pencil hardness is more preferably 2H or higher, and further preferably 3H or higher.
  • the said pencil hardness is 2H or more, and it is more preferable that it is 3H or more.
  • a low refractive index layer 3 can be further provided on the surface of the hard coat layer 2. Antireflection properties can be imparted by the low refractive index layer.
  • the low refractive index layer 3 is formed of a cured resin layer containing a low refractive index agent, and prevents light reflection by having a refractive index lower than that of the hard coat layer 2.
  • the refractive index of the low refractive index layer is less than the refractive index of the hard coat layer, but the refractive index difference between the low refractive index layer and the hard coat layer is 0.02 to 0.3, more preferably 0.05. It is preferable that it is -0.2.
  • the refractive index itself of the low refractive index layer is preferably 1.45 or less in view of obtaining sufficient antireflection properties, more preferably 1.40 or less, and further preferably 1.38 or less.
  • the low refractive index layer 3 When the low refractive index layer 3 is provided, the low refractive index layer must also have saponification resistance.
  • a low refractive index layer is composed of, for example, a cured layer of an ionizing radiation curable resin, contains hollow silica particles as a low refractive index agent, and the ionizing radiation curable resin has a hydroxyl group as a molecule.
  • cured material of the resin composition containing the polyfunctional polymerizable compound which does not have in it is preferable.
  • the ionizing radiation curable resin becomes a binder resin for the hollow silica particles and improves the scratch resistance of the low refractive index layer.
  • the hollow silica particles are, for example, fine particles having an outer shell and porous or hollow inside, and are disclosed in JP-A-6-330606, JP-A-7-013137, It can be obtained by various production methods described in JP-A No. 7-133105 and JP-A No. 2001-233611.
  • the thickness of the low refractive index layer is 50 to 150 nm, preferably 80 to 120 nm.
  • the ionizing radiation curable resin is a resin that is cured by ionizing radiation typified by ultraviolet rays and electron beams, and has a polymerizable functional group that can be polymerized by ionizing radiation, such as monomers and prepolymers (including oligomers). It is a resin composition having at least one compound or two or more compounds.
  • a representative example of a polymerizable functional group that can be polymerized by ionizing radiation is a polymerizable unsaturated group.
  • the polymerizable unsaturated group include radically polymerizable ethylenic divalent groups such as (meth) acryloyl group, vinyl group, and allyl group. It is a double bond. Of these, (meth) acryloyl groups are typical, and various acrylate-based ionizing radiation curable resins are known.
  • the polymerizable compound is preferably a bifunctional or higher polyfunctional polymerizable compound, more preferably a trifunctional or higher functional 9 in terms of scratch resistance (surface hardness, adhesion between the low refractive index layer and the underlying layer).
  • a polyfunctional polymerizable compound having a functionality or lower is preferred.
  • examples include tetrafunctional (meth) acrylates such as (meth) acrylate and pentaerythritol tetra (meth) acrylate, hexafunctional (meth) acrylates such as dipentaerythritol hexa (meth) acrylate, and the like.
  • polyfunctional polymerizable compounds that do not have hydroxyl groups in the molecule that provide good saponification resistance are exemplified by polyfunctional prepolymers of acrylate ionizing radiation curable resins. And various acrylate-based prepolymers such as urethane-based, epoxy-based, and silicone-based.
  • the resin composition of the ionizing radiation curable resin used for the formation of the low refractive index layer 3 is composed of only a polyfunctional polymerizable compound having no hydroxyl group in the molecule as its polymerizable compound. Most preferred in terms. However, within the range not impairing the saponification resistance, a polymerizable compound having a hydroxyl group in the molecule can be used for adjusting physical properties such as scratch resistance and coating suitability. In this case, from the viewpoint of scratch resistance, the polymerizable compound having a hydroxyl group in the molecule is preferably a polyfunctional polymerizable compound.
  • a polyfunctional polymerizable compound having a hydroxyl group in the molecule an example of a polyfunctional monomer of an acrylate ionizing radiation curable resin, a polyfunctional monomer having one hydroxyl group in the molecule is trimethylol.
  • examples include propanedi (meth) acrylate (abbreviation TMPDA), pentaerythritol tri (meth) acrylate (abbreviation PETA), dipentaerythritol penta (meth) acrylate (abbreviation DPPA), etc., and has two hydroxyl groups in the molecule.
  • TMPDA propanedi (meth) acrylate
  • PETA pentaerythritol tri (meth) acrylate
  • DPPA dipentaerythritol penta (meth) acrylate
  • DPTA dipentaerythritol tetra (meth) acrylate
  • a compound having a large proportion of the hydroxyl group in the molecule is not preferable in terms of saponification resistance.
  • the proportion of hydroxyl groups in the total amount of the resin composition of the ionizing radiation curable resin forming the low refractive index layer is smaller in that the saponification resistance can be improved more reliably.
  • the pentaerythritol tri (meth) acrylate (abbreviated as PETA) has an OH group number of 1 and a molecular weight of 298 of 0.33, and dipentaerythritol pentaacrylate (abbreviated as DPPA) has 1 OH group. And a molecular weight of about 550 is 0.18.
  • the hydroxyl group content is preferably 0.2 or less.
  • a preferred saponification resistance can be obtained by using a compound having a hydroxyl group content of 0.2 or less as a polyfunctional polymerizable compound.
  • the hydroxyl group content is an index for one molecule, but when the resin composition of the ionizing radiation curable resin is a mixture of a plurality of polymerizable compounds, the hydroxyl group content is determined as a whole of the plurality of polymerizable compounds. It is preferable to be 0.2 or less.
  • the weight average molecular weight is used as the molecular weight in the above formula.
  • the polymerizable compound does not have a hydroxyl group in the molecule.
  • a polyfunctional polymerizable compound is preferable, but a monofunctional polymerizable compound may be used in combination for adjusting physical properties.
  • a monofunctional polymerizable compound having no hydroxyl group in the molecule a monofunctional monomer of an acrylate-based ionizing radiation curable resin, methyl (meth) acrylate, ethyl (meth) acrylate, Other ethylenically polymerizable compounds such as methylhexyl (meth) acrylate, ethylhexyl (meth) acrylate, and the like can be mentioned.
  • the polyfunctional polymerizable compound used for the low refractive index layer 3 preferably has a molecular weight of 300 to 1000 from the viewpoint of scratch resistance. If the molecular weight is too small or too large, the scratch resistance decreases. In the case of a compound having a molecular weight distribution, this molecular weight means the weight average molecular weight.
  • ionizing radiation curable resins in addition to polymerizable compounds that can be cured with ionizing radiation, ionizing radiation non-polymerizable resins that do not polymerize with ionizing radiation can interfere with saponification resistance when necessary, such as for adjusting physical properties. They may be used in combination as long as they do not.
  • Ionizing radiation non-polymerizable resins other than polymerizable compounds curable by ionizing radiation are polymerizable compounds curable by energy other than ionizing radiation, for example, thermosetting resins that are not cured by ionizing radiation but can be cured by heat, ionization
  • thermosetting resins that are not cured by ionizing radiation but can be cured by heat, ionization
  • a thermoplastic resin that is not cured by radiation or heat.
  • thermosetting resins include urethane resins, melamine resins, phenolic resins, silicone resins, etc.
  • thermoplastic resins include acrylic resins, thermoplastic urethane resins, polyamide resins, styrene resins, Cellulosic resins, polycarbonate resins, vinyl resins, silicone resins and the like.
  • the cellulose-based resin include nitrocellulose, acetylcellulose, cellulose acetate propionate, and ethylhydroxyethylcellulose.
  • the ionizing radiation curable resin for forming the low refractive index layer is cured with ultraviolet rays, it is preferable to contain a polymerization initiator.
  • a polymerization initiator known compounds, for example, compounds listed in the hard coat layer can be used.
  • the resin composition of the ionizing radiation curable resin for forming the low refractive index layer may contain a solvent for adjusting physical properties such as coating suitability on the hard coat layer.
  • a solvent for example, the solvents listed in the hard coat layer can be used.
  • the low refractive index layer 3 is preferably antifouling against dirt in that it is the outermost layer of the antistatic hard coat film.
  • an antifouling agent in the low refractive index layer.
  • a well-known thing can be suitably employ
  • examples of the antifouling agent include silicone compounds and fluorine compounds.
  • the antifouling agent is preferably an acrylate compound for maintaining saponification resistance and curability performance.
  • additives Various known additives can be added to the resin composition of the ionizing radiation curable resin in order to adjust physical properties such as coating suitability and dispersion stability of the low refractive index agent.
  • a leveling agent e.g., a dispersion stabilizer, an antistatic agent, an ultraviolet absorber, an antioxidant, a refractive index adjusting agent and the like.
  • the hollow silica particles are particles having a function of lowering the refractive index while maintaining the coating strength of the low refractive index layer.
  • the hollow silica particles used in the present invention are silica fine particles having a structure having a cavity inside.
  • the hollow silica particle is not particularly limited as long as it is a silica fine particle having a cavity inside, and is, for example, a fine particle having an outer shell and having a porous or hollow inside.
  • Preferable examples include silica fine particles prepared by using the techniques disclosed in 330606, JP-A-7-013137, JP-A-7-133105, and JP-A-2001-233611.
  • the average particle diameter of the hollow silica particles is preferably 5 to 300 nm, more preferably 5 nm to 200 nm. When the average particle diameter is within this range, excellent transparency can be imparted to the low refractive index layer. Further, the range of the average particle diameter is more preferably a lower limit of 8 nm, a more preferable upper limit of 100 nm, a still more preferable lower limit of 10 nm, and a still more preferable upper limit of 80 nm.
  • the content of the hollow silica particles in the low refractive index layer is not particularly limited, but is preferably in the range of 20 to 180 parts by mass with respect to 100 parts by mass of the resin solid content. If it exceeds 180 parts by mass, the coating strength of the low refractive index layer may be insufficient, and if it is less than 20 parts by mass, the effect of lowering the refractive index by the hollow silica particles is sufficiently low. Cannot be granted.
  • the surface of the hollow silica particles may be previously treated with a silane coupling agent before compounding.
  • the silane coupling agent may be a commercially available product, such as KBM-1003, KBE-1003, KBM-303, KBM-402, KBM-403, KBE-402, KBE-403, KBM-1403, manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM-502, KBM-503, KBE-502, KBE-503, KBM-5103, KBM-602, KBM-603, KBM-903, KBE-903, KBE-9103, KBM-573, KBM-575, KBE- 585, KBM-802, KBM-803, KBE-846, KBE-9007, etc. preferably silane coupling agents containing (meth) acryloyl groups, KBM-502, KBM-503, KBE-502, KBE-503 and KBM-5103, most preferred is KB It is -503.
  • the low refractive index layer 3 can be formed by applying the above ionizing radiation curable resin resin composition as a paint or ink on the hard coat layer and then irradiating the resin with ionizing radiation.
  • a coating method is not particularly limited, and a known coating method may be appropriately employed. Examples of the coating method include a roll coating method, a gravure coating method, a dip method, a spray method, a die coating method, a bar coating method, a spin coating method, and a meniscus coating method. Alternatively, it may be formed by a printing method such as a flexographic printing method or a screen printing method.
  • Typical examples of the ionizing radiation include ultraviolet rays and electron beams. As the ultraviolet ray source and the electron beam source, known ones can be used, and as specific examples thereof, those mentioned in the section of the formation of the hard coat layer can be used, and among them, a high pressure mercury lamp is preferable.
  • the hard coat layer is not completely cured when the low refractive index layer is formed, and the resin of the low refractive index layer is cured. At the same time, it is preferable to completely cure the resin of the hard coat layer in terms of adhesion between these two layers.
  • the polarizing plate according to the present invention is a polarizing plate having a configuration in which the above-described antistatic hard coat film of the present invention is laminated on the transparent base film side on at least one surface of a polarizer.
  • FIG. 4 is a cross-sectional view showing one embodiment of a polarizing plate.
  • the antistatic hard coat film 10 of the present invention is such that the surface Pf on the hard coat layer 2 side of the transparent base film 1 is the outermost surface.
  • the side surface Pr is laminated on the polarizer 4.
  • the antistatic hard coat film 10 is laminated on one surface of the polarizer 4, and the other surface of the polarizer 4 is a configuration example in which the protective film 5 other than the antistatic hard coat film 10 of the present invention is laminated. is there.
  • the surface of the polarizing plate 20 on the antistatic hard coat film 10 side is prevented from being scratched or charged by the hard coat layer 2.
  • the surface on the protective film 5 side of the polarizing plate is usually adhered and laminated to another optical member such as a liquid crystal cell with an adhesive layer, so the surface on the protective film side is like an antistatic hard coat film. Hard coat treatment and antistatic treatment are not so necessary.
  • the antistatic hard coat film of the present invention described above may be laminated on both sides of the polarizer on the transparent substrate film side.
  • the polarizer 4 is not particularly limited, and may be a conventionally known polarizer in a polarizing plate.
  • stretched is mentioned.
  • examples of the film to be dyed and stretched include a polyvinyl formal film, a polyvinyl acetal film, and an ethylene-vinyl acetate copolymer saponified film.
  • ⁇ Protective film As the protective film 5, a film similar to the transparent substrate film in the antistatic hard coat film can be used. Therefore, it is preferable to use a transparent film made of triacetyl cellulose as the protective film. Moreover, the same kind of film is preferable from the viewpoint of curling prevention. Therefore, further explanation is omitted.
  • this protective film is a film that is permanently bonded and laminated, unlike the protective film that is temporarily bonded in the prior art section.
  • the image display device is an image display device having a configuration in which the antistatic hard coat film of the present invention described above or the polarizing plate of the present invention described above is provided on the viewer side of the display panel.
  • the antistatic hard coat film or polarizing plate may be a display panel that is closely laminated and integrated with the display panel, or may be disposed on the viewer side of the display panel via an air layer.
  • the display panel is not particularly limited and may be a known display panel.
  • a cathode ray tube CRT may be used.
  • the antistatic hard coat film and the polarizing plate are usually provided with a polarizing plate when the display panel provided in the image display device is a liquid crystal panel.
  • the image display device includes an antistatic hard coat film.
  • the image display device of the present invention may include known components such as a touch panel, a display drive circuit, wiring, a chassis, a frame, an input / output component, a cabinet, and the like according to applications.
  • the application of the image display device according to the present invention is not particularly limited, and examples thereof include a television receiver, a monitor display, an electronic signboard, a portable information terminal, a digital photo frame, and a medical device.
  • UV-ASHC-01 a high molecular weight antistatic agent having a quaternary ammonium base and a molecular weight Mw of 10,000 (manufactured by Nippon Kasei Co., Ltd., 15% by mass of a copolymer having a quaternary ammonium base in solid content) %).
  • H6500 An antistatic agent containing a high molecular weight quaternary ammonium salt having a molecular weight of Mw 10,000 (manufactured by Mitsubishi Chemical Corporation, containing 7% by mass of a copolymer having a quaternary ammonium base in the solid content).
  • ASNo1 an antistatic agent containing a high molecular weight quaternary ammonium salt having a molecular weight Mw of 20,000.
  • ASNo2 High molecular weight antistatic agent having a quaternary ammonium base and a molecular weight of Mw 100,000 (Mitsubishi Chemical Co., Ltd., containing 7% by mass of a polymer having a quaternary ammonium base in the solid content).
  • ASNo3 a low molecular weight antistatic agent having a quaternary ammonium base and having a molecular weight of Mw 500 (manufactured by Mitsubishi Chemical Corporation, containing 7% by mass of a compound having a quaternary ammonium base in the solid content).
  • Polyfunctional polymerizable compound (ionizing radiation curable resin)
  • the following polyfunctional polymerizable compounds other than DPPA are compounds having no hydroxyl group in the molecule.
  • U15HA 15-functional urethane-based polyfunctional acrylate system having Mw of about 2300 obtained by reacting 3 isocyanate groups extending from the isocyanuric skeleton of trimer of HDI (hexamethylene diisocyanate) with DPPA (dipentaerythritol pentaacrylate) Compound (made by Shin-Nakamura Chemical Co., Ltd.).
  • This U15HA is a compound represented by the above formula [1], wherein Ac is an acryloyl group, and R- (Ac) 5 is a group of 5 hydroxyl groups among the 6 hydroxyl groups of dipentaerythritol.
  • the hydrogen atom is a pentafunctional acrylate group in which the acryloyl group Ac is replaced.
  • UV1700B a 10-functional urethane acrylate oligomer having a Mw of about 2000 (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) obtained by reacting DPPA (dipentaerythritol pentaacrylate) with an isocyanate group of bifunctional IPDI (isophorone diisocyanate).
  • BS577 A hexafunctional urethane acrylate oligomer (manufactured by Arakawa Chemical Industries, Ltd.) having a molecular weight Mw of about 300 obtained by reacting an isocyanate group of bifunctional IPDI (isophorone diisocyanate) with PETA (pentaerythritol triacrylate).
  • M9050 Trifunctional polyester acrylate oligomer (molecular weight Mw 428, manufactured by Toagosei Co., Ltd.).
  • -M8030 Trifunctional or higher polyester acrylate oligomer (molecular weight Mw400, manufactured by Toagosei Co., Ltd.).
  • DPPA dipentaerythritol pentaacrylate.
  • TMPTA trifunctional, Mw296, trimethylolpropane triacrylate
  • the surface resistivity was measured with a surface resistivity meter (“HIRESTA (registered trademark) IP MCP-HT260”, manufactured by Mitsubishi Chemical Corporation) at an applied voltage of 1000V.
  • Transparency measured the presence or absence of whitening (whitening resistance) and the change of haze.
  • Whitening is performed by observing light transmitted from the surface of the hard coat layer side by applying light from the surface of the transparent substrate film opposite to the hard coat layer to the antistatic hard coat film. ,evaluated. ⁇ : Whitening does not occur (good). X: Whitening occurred (defect).
  • Haze was measured in accordance with JIS K-7136 using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory Co., Ltd.). Even if there was an increase in the haze value before and after the saponification treatment, if the haze was less than 0.5%, it was judged good, and 0.5% or more was judged bad.
  • the saponification treatment was performed under the following two conditions. Usually, the saponification treatment is slowly immersed in a low-concentration low-temperature alkaline solution or quickly immersed in a high-concentration high-temperature alkaline solution. Although the immersion time is shorter under the latter condition, since the antireflection film is a harsh treatment, those having better condition B below are better than those having better condition A.
  • Condition A An immersion treatment was performed in a 2N NaOH aqueous solution at a temperature of 50 ° C. for 3 minutes.
  • Condition B Dipped in a 4N NaOH aqueous solution at a temperature of 60 ° C. for 30 s.
  • Example 1 After applying the composition for hard coat layer (1) containing the following ionizing radiation curable resin to one side of a transparent triacetyl cellulose film (TAC film, refractive index: 1.48) having a thickness of 80 ⁇ m as a transparent substrate film The resin was (semi) cured by ultraviolet irradiation to form a 10 ⁇ m thick hard coat layer.
  • TAC film transparent triacetyl cellulose film, refractive index: 1.408
  • the resin is cured by ultraviolet irradiation to form a low refractive index layer having a thickness of 100 nm,
  • the hard coat layer was also completely cured to produce an antistatic hard coat film.
  • saponification treatment was performed under saponification treatment condition A.
  • composition for hard coat layer (1) Antistatic agent; UV-ASHC-01 25 parts Resin; U15HA 25 parts Resin; UV1700B 50 parts Solvent; MEK 100 parts Photopolymerization initiator; Irgacure 184 4 parts
  • TMPTA 100 parts Hollow silica particles (as solids) 100 parts Solvent; MIBK 70 parts Solvent; PGMEA 30 parts Photopolymerization initiator; Irgacure 127 0.07 parts
  • Example 2 In Example 1, an antistatic hard coat film was produced in the same manner as in Example 1, except that the following hard coat layer composition (2) having a different resin component was used to form the hard coat layer. The saponification treatment was performed under the same conditions as in Example 1.
  • Composition for hard coat layer (2) Antistatic agent; UV-ASHC-01 25 parts Resin; U15HA 75 parts Resin; UV1700B 0 parts (none) Solvent; MEK 100 parts Photopolymerization initiator; Irgacure 184 4 parts
  • Example 3 an antistatic hard coat film was produced in the same manner as in Example 1 except that the following hard coat layer composition (3) having a different resin component was used to form the hard coat layer.
  • the saponification treatment was performed under the same conditions as in Example 1.
  • Composition for hard coat layer (3) Antistatic agent; UV-ASHC-01 25 parts Resin; U15HA 25 parts Resin; BS5777 50 parts Solvent; MEK 100 parts Photopolymerization initiator; Irgacure 184 4 parts
  • Example 4 an antistatic hard coat film was produced in the same manner as in Example 1 except that the following hard coat layer composition (4) having a different resin component was used to form the hard coat layer.
  • the saponification treatment was performed under the same conditions as in Example 1.
  • Composition for hard coat layer (4) Antistatic agent; UV-ASHC-01 25 parts Resin; U15HA 25 parts Resin; M9050 50 parts Solvent; MEK 100 parts Photopolymerization initiator; Irgacure 184 4 parts
  • Example 5 an antistatic hard coat film was produced in the same manner as in Example 1 except that the following hard coat layer composition (5) having a different resin component was used to form the hard coat layer.
  • the saponification treatment was performed under the same conditions as in Example 1.
  • Composition for hard coat layer (5) Antistatic agent; UV-ASHC-01 25 parts Resin; U15HA 25 parts Resin; M8030 50 parts Solvent; MEK 100 parts Photopolymerization initiator; Irgacure 184 4 parts
  • Example 6 The antistatic hard coat film prepared in Example 1 was saponified under saponification condition B.
  • Example 7 an antistatic hard coat film was formed in the same manner as in Example 1 except that the following hard coat layer composition (6) having a different ratio of the antistatic agent was used for forming the hard coat layer. This was saponified under the same conditions as in Example 1.
  • Composition for hard coat layer (6) Antistatic agent; UV-ASHC-01 20 parts Resin; U15HA 27.5 parts Resin; UV1700B 52.5 parts Solvent; MEK 100 parts Photopolymerization initiator; Irgacure 184 4 parts
  • Example 1 the hard coat layer was formed in the same manner as in Example 1 except that the following hard coat layer composition (7) in which U15HA in the resin component was replaced with DPPA was used. A coated film was prepared and saponified under the same conditions as in Example 1.
  • composition for hard coat layer (7) Antistatic agent; UV-ASHC-01 25 parts Resin; DPPA 25 parts Resin; UV1700B 50 parts Solvent; MEK 100 parts Photopolymerization initiator; Irgacure 184 4 parts
  • Example 3 the hard coat layer was formed in the same manner as in Example 3 except that the following hard coat layer composition (8) in which U15HA in the resin component was replaced with DPPA was used. A coated film was prepared and saponified under the same conditions as in Example 1.
  • composition for hard coat layer (8) Antistatic agent; UV-ASHC-01 25 parts Resin; DPPA 25 parts Resin; BS5777 50 parts Solvent; MEK 100 parts Photopolymerization initiator; Irgacure 184 4 parts
  • Example 4 the same hard coat layer composition as that in Example 4 was used except that the U15HA in the resin component was replaced with DPPA in the formation of the hard coat layer.
  • a coated film was prepared and saponified under the same conditions as in Example 1.
  • Composition for hard coat layer (9) Antistatic agent; UV-ASHC-01 25 parts Resin; DPPA 25 parts Resin; M9050 50 parts Solvent; MEK 100 parts Photopolymerization initiator; Irgacure 184 4 parts
  • Example 5 the hard coat layer was formed in the same manner as in Example 5, except that the following composition (10) for hard coat layer in which U15HA in the resin was replaced with DPPA was used. A coated film was prepared and saponified under the same conditions as in Example 1.
  • composition for hard coat layer (10) Antistatic agent; UV-ASHC-01 25 parts Resin; DPPA 25 parts Resin; M8030 50 parts Solvent; MEK 100 parts Photopolymerization initiator; Irgacure 184 4 parts
  • Example 5 a hard coat film was prepared in the same manner as in Example 1 except that the hard coat layer was formed using the following composition for hard coat layer (11) which did not use an antistatic agent. The saponification treatment was performed under the same conditions as in Example 1.
  • composition for hard coat layer (11) Antistatic agent; UV-ASHC-01 0 parts (none) Resin; U15HA 25 parts Resin; UV1700B 50 parts Solvent; MEK 100 parts Photopolymerization initiator; Irgacure 184 4 parts
  • Example 8 In Example 1, an antistatic hard coat film was prepared in the same manner as in Example 1 except that the following hard coat layer composition (12) having a different antistatic agent was used for forming the hard coat layer. The saponification treatment was performed under the same conditions as in Example 1.
  • Composition for hard coat layer (12) Antistatic agent; H6500 25 parts Resin; U15HA 25 parts Resin; UV1700B 50 parts Solvent; MEK 100 parts Photopolymerization initiator; Irgacure 184 4 parts
  • Example 9 an antistatic hard coat film was prepared in the same manner as in Example 1 except that the following hard coat layer composition (13) having different antistatic agents was used for forming the hard coat layer.
  • the saponification treatment was performed under the same conditions as in Example 1.
  • Composition for hard coat layer (13) Antistatic agent; ASNo1 25 parts Resin; U15HA 25 parts Resin; UV1700B 50 parts Solvent; MEK 100 parts Photopolymerization initiator; Irgacure 184 4 parts
  • Example 10 an antistatic hard coat film was prepared in the same manner as in Example 1 except that the following hard coat layer composition (14) having a different proportion of the antistatic agent was used for forming the hard coat layer. This was saponified under the same conditions as in Example 1.
  • Composition for hard coat layer (14) Antistatic agent; UV-ASHC-01 71 parts Resin; U15H 9.6 parts Resin; UV1700B 19.3 parts Solvent; MEK 100 parts Photopolymerization initiator; Irgacure 184 4 parts
  • Example 11 In Example 1, an antistatic hard coat film was formed in the same manner as in Example 1 except that the following hard coat layer composition (15) having a different ratio of the antistatic agent was used for forming the hard coat layer. This was saponified under the same conditions as in Example 1.
  • Composition for hard coat layer (15) Antistatic agent; UV-ASHC-01 7 parts Resin; U15HA 31 parts Resin; UV1700B 62 parts Solvent; MEK 100 parts Photopolymerization initiator; Irgacure 184 4 parts
  • Example 6 an antistatic hard coat film was produced in the same manner as in Example 1 except that the hard coat layer was formed using the following composition for hard coat layer (16) having a different antistatic agent. The saponification treatment was performed under the same conditions as in Example 1.
  • composition for hard coat layer (16) Antistatic agent; ASNo2 25 parts Resin; U15HA 25 parts Resin; UV1700B 50 parts Solvent; MEK 100 parts Photopolymerization initiator; Irgacure 184 4 parts
  • Example 7 an antistatic hard coat film was prepared in the same manner as in Example 1 except that the following hard coat layer composition (17) having a different antistatic agent was used for forming the hard coat layer. The saponification treatment was performed under the same conditions as in Example 1.
  • composition for hard coat layer (17) Antistatic agent; ASNo3 25 parts Resin; U15HA 25 parts Resin; UV1700B 50 parts Solvent; MEK 100 parts Photopolymerization initiator; Irgacure 184 4 parts
  • Example 8 In Example 1, an antistatic hard coat film was prepared in the same manner as in Example 1 except that the following hard coat layer composition (18) having a different ratio of the antistatic agent was used for forming the hard coat layer. This was saponified under the same conditions as in Example 1.
  • Composition for hard coat layer (18) Antistatic agent; UV-ASHC-01 90 parts Resin; U15HA 5 parts Resin; UV1700B 5 parts Solvent; MEK 100 parts Photopolymerization initiator; Irgacure 184 4 parts
  • Example 9 an antistatic hard coat film was formed in the same manner as in Example 1 except that the following hard coat layer composition (19) having a different proportion of the antistatic agent was used for forming the hard coat layer. This was saponified under the same conditions as in Example 1.
  • composition for hard coat layer (19) Antistatic agent; UV-ASHC-01 25 parts Resin; G201-P 25 parts Resin; 4-HBA 25 parts Solvent; MEK 100 parts Photopolymerization initiator; Irgacure 184 4 parts
  • the polyfunctional polymerizable compound constituting the ionizing radiation curable resin of the hard coat layer has an isocyanuric acid skeleton represented by the formula [1] and has an acryloyl group.
  • a 15-functional polymerizable compound U15HA
  • oligomer 15-functional urethane-based polyfunctional acrylate compound
  • the prevention property, transparency (whitening resistance, haze) and hardness were all good, and the saponification resistance was satisfactory.
  • the 15 functional polymerizable compound was changed to dipentaerythritol pentaacrylate (DPPA) having 5 functional groups and one hydroxyl group.
  • DPPA dipentaerythritol pentaacrylate
  • antistatic properties and transparency were all good before the saponification treatment, but all were poor after the saponification treatment.
  • the hardness decreased from 3H to H by the saponification treatment.
  • all these comparative examples had an antistatic performance lower than that of all the examples before the saponification treatment, the surface resistivity was better than each example. It is a fact that it deteriorates after saponification.
  • the surface resistivity is not as high as those of the comparative examples before the saponification treatment, but good performance is maintained after the saponification treatment. This is because the distribution of the antistatic agent in the vicinity of the surface described with reference to FIGS. 2 and 3 is reduced.
  • the concentration of the antistatic agent is reduced on the outermost surface of the hard coat layer, and the resin is antistatic. It can be said that the assumption that the agent is coated is the supporting data.
  • the low refractive index layer uses trifunctional trimethylolpropane triacrylate (TMPTA) as a polyfunctional polymerizable compound having no hydroxyl group, and no polymerizable compound having a hydroxyl group is used.
  • TMPTA trifunctional trimethylolpropane triacrylate
  • the rate layer was also resistant to saponification.
  • the surface resistivity was lower and good, but after the saponification treatment, it was poor. Further, in Comparative Example 7, transparency (whitening resistance, haze) was poor before saponification treatment. However, although the hardness was H before the saponification treatment, it was maintained after the saponification treatment.
  • Comparative Example 8 in which the content of the antistatic agent in the hard coat was too much was higher in antistatic property before the saponification treatment than in each Example. Compared to the examples, the surface resistivity was lower and good, but after saponification, it was poor. In Comparative Example 8, transparency (whitening resistance, haze) was poor before saponification. However, although the hardness was H before the saponification treatment, it was maintained after the saponification treatment.
  • the antistatic agent is the same as in Examples 1 to 7, but Comparative Example 9 using an acrylate monomer having a hydroxyl group without using U15HA as the resin for the hard coat layer is transparent (whitening resistance, The haze was good both before and after the saponification treatment, but the antistatic property was poor after the saponification treatment. In Comparative Example 9, the hardness of 3H before the saponification treatment was maintained after the saponification treatment.
  • Comparative Example 5 in which no antistatic agent was contained in the hard coat layer had saponification resistance in transparency (whitening resistance, haze), but naturally the antistatic property was poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)

Abstract

[課題]アルカリ水溶液による鹸化処理をしても、帯電防止剤が配合されたハードコート層の帯電防止性能が損なわれない様にして、帯電防止性、透明性を維持できる、耐鹸化性を有する帯電防止性ハードコートフィルムと、これを用いた偏光板、画像表示装置を提供する。 [解決手段]帯電防止性ハードコートフィルム10は、トリアセチルセルロースの透明基材フィルム1上に設けるハードコート層2について、帯電防止剤として分子量1000~5万の高分子型の第四級アンモニウム塩を含有させ、これと組み合わせる樹脂分として、下記式[1]で表わされる、イソシアヌル酸骨格を有し(メタ)アクリロイル基Acが15官能のウレタン系多官能アクリレート系化合物を用いる。ハードコート層上に低屈折率層3があっても良い。(式中、Rはジペンタエリストール残基である。)

Description

帯電防止性ハードコートフィルム、偏光板及び画像表示装置
 本発明は、帯電防止性ハードコートフィルム、偏光板及び画像表示装置に関する。特に、アルカリ水溶液による鹸化処理時の帯電防止性能の低下を防げる耐鹸化性を有する帯電防止性ハードコートフィルムと、それを用いた、偏光板及び画像表示装置に関する。
 液晶ディスプレイ、プラズマディスプレイ、エレクトロルミネッセンスディスプレイ、タッチパネル、電子ペーパー、タブレットPC等の画像表示装置では、画像表示面の傷付き、帯電による塵の付着を防ぐ為に帯電防止性ハードコートフィルムが、画像表示面に設けられている。例えば、透明基材フィルム上に、電離放射線硬化性樹脂に第四級アンモニウム塩を添加した樹脂組成物を塗布してハードコート層を形成した帯電防止性ハードコートフィルムが提案されている(特許文献1)。
 また、液晶ディスプレイにおいては、液晶セルに対して通常偏光板が設けられている。偏光板は、通常、ヨウ素を吸着し配向処理したポリビニルアルコールフィルムからなる偏光子に対して、その両面を保護フィルムで積層した構成である。また保護フィルムには、透明性、光学的無配向性等の点で通常トリアセチルセルロースフィルムが使用されており、偏光子との密着性を高める為にアルカリ水溶液で表面を鹸化処理してから偏光子と積層している。
特開2009-86660号公報
 ところで、画像表示装置においては、薄型化は性能に於ける重要な一要素であり、光学フィルムにおいても、薄型化への対応が望まれている。このため、偏光板に加えて帯電防止性ハードコートフィルムをさらに設ける代わりに、偏光板の保護フィルムに帯電防止性ハードコートフィルムを使用して、つまり、偏光子に帯電防止性ハードコートフィルムを積層し、偏光板と帯電防止性ハードコートフィルムとを一体化した偏光板とすれば、その分薄く出来ることになる。また、偏光子に積層する保護フィルムは、偏光子との密着性の観点から易接着処理としてアルカリ水溶液による鹸化処理が必要とされている。しかしながら、帯電防止剤入りのハードコート層を有する帯電防止性ハードコートフィルムを鹸化処理すると、ハードコート層中の帯電防止剤が脱落し、帯電防止性能が低下することがあった。
 この耐鹸化性を持たせるために、前記ハードコート層上に一時的に耐鹸化用の保護フィルムを貼り付けることもなされているが、コストアップの問題があった。
 そこで、本発明の課題は、アルカリ水溶液によって鹸化処理をしても、帯電防止剤を添加したハードコート層の帯電防止性能が損なわれない様にして、ハードコート層による耐擦傷性及び帯電防止性の機能を維持できる耐鹸化性を有する、帯電防止性ハードコートフィルムを提供することである。また、この様な帯電防止性ハードコートフィルムを用いた、偏光板及び画像表示装置を提供することである。
 本発明は、次の構成の帯電防止性ハードコートフィルム、偏光板、及び画像表示装置とした。
(1)トリアセチルセルロースからなる透明基材フィルムと、前記透明基材フィルムの一方の面に設けられ、第四級アンモニウム塩を含有する帯電防止剤及び多官能重合性化合物を含む電離放射線硬化性樹脂の硬化物層からなるハードコート層とを備える、帯電防止性ハードコートフィルムであって、上記第四級アンモニウム塩が、第四級アンモニウム塩基を有する、重量平均分子量が1,000~50,000の高分子型の帯電防止剤であり、上記多官能重合性化合物が、下記式[1]で表わされ、イソシアヌル酸骨格を有する、(メタ)アクリロイル基が15官能のウレタン系多官能アクリレート系化合物である、帯電防止性ハードコートフィルム。
Figure JPOXMLDOC01-appb-C000002
(式[1]中、Acは(メタ)アクリロイル基であり、R-(Ac)はジペンタエリスリトールが有する6個のヒドロキシル基のうち5個のヒドロキシル基の水素原子が(メタ)アクリロイル基Acで置き換わった5官能(メタ)アクリレート基である。)
(2)上記ハードコート層の表面に形成された低屈折率層をさらに備えている、上記(1)の帯電防止性ハードコートフィルム。
(3)上記(1)又は(2)の帯電防止性ハードコートフィルムと、前記帯電防止性ハードコートフィルムにおける透明基材フィルム側の面に積層された偏光子とを備える、偏光板。
(4)ディスプレイパネルと、前記ディスプレイパネルの観察者側に設けられた、上記(1)若しくは(2)の帯電防止性ハードコートフィルム、又は、上記(3)の偏光板とを備える、画像表示装置。
(1)本発明による帯電防止性ハードコートフィルムによれば、鹸化処理に対して、硬度、帯電防止性、及び透明性を損なわず維持される、耐鹸化性を有する。また低屈折率層を設けることによって、反射防止性も付与することができ、また低屈折率層の耐擦傷性(ハードコート層と低屈折率層間の密着性)も得られる。
(2)本発明による偏光板によれば、それが備える帯電防止性ハードコートフィルムによって、硬度、帯電防止性、及び透明性を有する。或いはさらに、耐擦傷性(ハードコート層と低屈折率層間の密着性)も伴った反射防止性も付与することが可能である。
(3)本発明による画像表示装置によれば、画像表示面に、硬度、帯電防止性、及び透明性を付与することができる。或いはさらに、耐擦傷性(ハードコート層と低屈折率層間の密着性)も伴った反射防止性も付与することが可能である。
本発明による帯電防止性ハードコートフィルムの一実施形態を説明する断面図。 帯電防止剤のハードコート層中での厚み方向分布を示す断面図で、(A)が従来、(B)が本発明。 帯電防止剤のハードコート層中での厚み方向分布を示すグラフで、符号20が示す波線が従来、符号10が示す実線が本発明。 本発明による偏光板の一実施形態を説明する断面図。
 以下、本発明の実施の形態を説明する。
A.帯電防止性ハードコートフィルム
 本発明による帯電防止性ハードコートフィルムは、トリアセチルセルロースからなる透明基材フィルムの一方の面に、帯電防止剤を含む電離放射線硬化性樹脂の硬化物層からなるハードコート層を有する。しかも、本発明では、上記帯電防止剤が第四級アンモニウム塩を含有し、この第四級アンモニウム塩が分子量1,000以上で50,000以下の高分子タイプの帯電防止剤となっている。
 また、本発明の帯電防止性ハードコートフィルムは、ハードコート層の表面にさらに低屈折率層を設けることができ、低屈折率層により反射防止性を付与できる上、その、耐擦傷性も得られる。
 図1は、本発明による帯電防止性ハードコートフィルムの一形態例を示す断面図である。同図の帯電防止性ハードコートフィルム10は、透明基材フィルム1の片面に、分子量が特定範囲内の高分子タイプの第四級アンモニウム塩を含む電離放射線硬化性樹脂の硬化物層としてのハードコート層2を有し、さらにこのハードコート層2の最外面である表面に、低屈折率層3が積層された構成である。
 以下、各層毎に説明する。
 なお、本明細書では、(メタ)アクリロイル基とはアクリロイル基又はメタクリロイル基を意味し、(メタ)アクリレートとはアクリレート又はメタクリレートを意味し、単に「アクリレート系」と言うときはメタクリレート系も含む。
〔透明基材フィルム〕
 透明基材フィルム1は、トリアセチルセルロースからなる透明なフィルムである。トリアセチルセルロースフィルム(TACフィルム)を透明基材フィルムに用いることで、優れた透明性と、液晶ディスプレイ用途の偏光板の保護フィルムとして好適な優れた光学的等方性が得られる。このため、TACフィルムを用いることで、液晶ディスプレイ用途に於いて、偏光板と共に使用したり、偏光板の保護フィルムとして使用したりするときに、好ましい光学特性が得られる。
 透明基材フィルムの透明性とは、可視光域380~780nmにおいて、平均光透過率が少なくとも70%以上であり、好ましくは85%以上、より好ましくは90%以上であることが望ましい。透明基材フィルムの屈折率は、トリアセチルセルロースフィルムの場合、約1.49である。
 透明基材フィルムの厚さは、通常20μm~300μm、好ましくは30μm~200μmである。
 透明基材フィルム1を構成する上記トリアセチルセルロースとしては、純粋なトリアセチルセルロース以外に、セルロースアセテートプロピオネート、セルロースアセテートブチレートの如くセルロースとエステルを形成する脂肪酸として酢酸以外の成分を併用した樹脂でも良い。透明基材フィルムには、必要に応じて、ジアセチルセルロース等のトリアセチルセルロース以外のセルロース低級脂肪酸エステル系樹脂を含んでいても良い。
 透明基材フィルム1は、可塑剤、帯電防止剤、紫外線吸收剤等の各種添加剤を含んでいても良い。透明基材フィルム1は、必要に応じて、例えば、グロー放電処理、コロナ放電処理、紫外線(UV)処理、火炎処理、プライマー層形成などの密着強化の為の表面処理が施されたものでも良い。
〔ハードコート層〕
 本明細書において、「ハードコート層」とは、JIS K5600-5-4(1999年)で規定される鉛筆硬度試験(荷重500g)で「H」以上の硬度を示すものをいう。
 ハードコート層2は、帯電防止剤として特定範囲の分子量を有する高分子型の第四級アンモニウム塩と、多官能重合性化合物として、少なくとも下記の式[1]で表わされる、イソシアヌル酸骨格を有する15官能(メタ)アクリレート化合物であるウレタン系多官能アクリレート系化合物とを、含む電離放射線硬化性樹脂の硬化物からなる層である。
Figure JPOXMLDOC01-appb-C000003
(式[1]中、Acは(メタ)アクリロイル基であり、R-(Ac)はジペンタエリスリトールが有する6個のヒドロキシル基のうち5個のヒドロキシル基の水素原子が(メタ)アクリロイル基Acで置き換わった5官能(メタ)アクリレート基である。なお、Rはジペンタエリスリトール残基である。)
[帯電防止剤]
 上記第四級アンモニウム塩は、第四級アンモニウム塩基を有する重合体である。この重合体には、第四級アンモニウム塩基を有するモノマーAと、第四級アンモニウム塩基を有さないモノマーBとの共重合体Cを用いることができる。
(分子量)
 上記第四級アンモニウム塩の分子量は、重量平均分子量で、1,000~50,000であることが好ましい。好ましくは1,500~30,000で、さらに好ましくは2,000~20,000である。分子量が小さ過ぎると、帯電防止剤が表面上へ過度にブリードアウトすることになり、また、逆に、分子量が大き過ぎると、ハードコート層形成用の樹脂組成物の粘度が高くなり過ぎて、塗工適性が低下する。
 上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算により求めることができる。GPC移動相の溶剤には、テトラヒドロフランやクロロホルムを使用することができる。測定用カラムは、テトラヒドロフラン用又はクロロホルム用のカラムの市販品カラムを組み合わせて使用するとよい。この市販品カラムとしては、例えば、Shodex(登録商標)GPC KF-801、GPC KF-800D(いずれも、昭和電工株式会社製)等を挙げることができる。検出器には、RI(示差屈折率)検出器及びUV検出器を使用するとよい。このような溶剤、カラム、検出器を使用して、例えば、Shodex(登録商標)GPC-101(昭和電工株式会社製)等のGPCシステムにより、上記重量平均分子量を適宜測定することができる。
 帯電防止剤は、表面での静電気帯電を防ぐ意味で、基本的には、なるべく表面に近い部分に存在させるのが、少ない配合量でも効果的に帯電防止効果を発現させることができる。但し、表面上に存在する帯電防止剤は、脱落したり、水溶液に接して溶解したりするので、継続的な帯電防止性能は期待できない。従って、帯電防止剤を表面上にはブリードアウトさせず、しかも、ハードコート層の厚み方向で均一に分布させずに、なるべく表面近傍に存在する様に分布させるのが、効果的に帯電防止性能が得られる点で、好ましい。この層内厚み方向分布の点でも、帯電防止剤としての第四級アンモニウム塩の重量平均分子量は1,000以上であることが好ましい。
(共重合体C)
 前記共重合体C、つまり、第四級アンモニウム塩基を有するモノマーAと、第四級アンモニウム塩基を有さないモノマーBとの共重合体C、としては、例えば、N,N-ジアルキルアミノ基含有単量体を四級化した後、その他のモノマーBと重合することにより、又はN,N-ジアルキルアミノ基含有単量体とその他のモノマーBとを共重合した後、得られた共重合体が有するN,N-ジアルキルアミノ基を四級化することにより得ることができる。
 N,N-ジアルキルアミノ基含有単量体としては、例えば、N,N-ジメチルアミノエチル(メタ) アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、N,N-ジメチルアミノブチル(メタ)アクリレート、N,N-ジエチルアミノブチル(メタ)アクリレート、N,N-ジヒドロキシエチルアミノエチル(メタ)アクリレート、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド等が挙げられ、なかでも、優れた耐鹸化性が得られる点で、N,N-ジメチルアミノエチル(メタ)アクリレートは好ましい化合物の一種である。
 共重合体Cを構成する、前記のその他のモノマーBとしては、例えば、(メタ)アクリル酸、或いは、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ドデシル(メタ)アクリレート等のアルキル(メタ)アクリレート、或いは、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、或いは、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート等の環状構造を有するアルキル(メタ)アクリレート、或いは、エトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート、或いは、エチルカルビトール(メタ)アクリレート、シアノエチル(メタ)アクリレート等の各種(メタ)アクリレート、或いは、メチル(メタ)アクリルアミド、エチル(メタ)アクリルアミド、プロピル(メタ)アクリルアミド、ブチル(メタ)アクリルアミド、2-エチルヘキシル(メタ)アクリルアミド、ステアリル(メタ)アクリルアミド、ラウリル(メタ)アクリルアミド、トリデシル(メタ)アクリルアミド、ドデシル(メタ)アクリルアミド等のアルキル(メタ)アクリルアミド、或いは、ヒドロキシエチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリルアミド、ヒドロキシプロピル(メタ)アクリルアミド、2-ヒドロキシプロピル(メタ)アクリルアミド、ヒドロキシブチル(メタ)アクリルアミド等のヒドロキシアルキル(メタ)アクリルアミド、或いは、ベンジル(メタ)アクリルアミド、シクロヘキシル(メタ)アクリルアミド、イソボルニル(メタ)アクリルアミド、ジシクロペンテニル(メタ)アクリルアミド、ジシクロペンテニルオキシエチル(メタ)アクリルアミド、グリシジル(メタ)アクリルアミド等の環状構造を有するアルキル(メタ)アクリルアミド、或いは、エトキシエチル(メタ)アクリルアミド、ブトキシエチル(メタ)アクリルアミド等のアルコキシアルキル(メタ)アクリルアミド、或いは、エチルカルビトール(メタ)アクリルアミド、シアノエチル(メタ)アクリルアミド等の各種(メタ)アクリルアミド、或いは、スチレン、メチルスチレン等が挙げられる。特に、得られる共重合体Cの有機溶媒に対する溶解性の高さ、及び疎水性の強さの面からドデシル(メタ)アクリレート、トリデシル(メタ)アクリレートが好適に使用される。
 耐鹸化性などの点で好ましい共重合体Cを例示すれば、モノマーAには、N,N-ジメチルアミノエチル(メタ)アクリレートを選び、モノマーBには、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレートの群から1種又は2種以上を選び、共重合させた共重合体である。
 また、前記その他のモノマーBとしては、オルガノポリシロキサン系モノマー、例えば、(メタ)アクリロイル基を有するポリジメチルシロキサンが挙げられる。
 第四級アンモニウム塩基は、カチオン化剤で変性して四級化処理して得ることができる。第四級アンモニウム塩基はN,N-ジアルキルアミノ基をカチオン化剤で変性し、四級化処理をして得られたものであることが好ましい。カチオン化剤としては、例えばメチルハライド、エチルハライド、ノルマルプロピルハライド、イソプロピルハライド、ノルマルブチルハライド、イソプロピルハライド、ノルマルヘキシルハライド、2-エチルヘキシルハライド、オクチルハライド、ラウリルハライド、ステアリルハライドなどのアルキルハライド、或いは、モノクロロ酢酸ナトリウム、モノクロロ酢酸カリウムなどのモノクロロ酢酸塩、或いは、モノクロロ酢酸メチル、モノクロロ酢酸エチルなどのモノクロロ酢酸エステル、或いは、3-クロロ-2-ヒドロキシプロピルトリメチルアンモニウムクロライドなどである。カチオン化剤は、これらから1種単独使用してもよく、また、2種以上を併用してもよい。
 なかでも反応性の高さや帯電防止性能等の点で、四級アンモニウム塩基がN,N-ジアルキルアミノ基をアルキルハライド、モノクロロ酢酸塩、モノクロロ酢酸エステル、及び3-クロロ-2-ヒドロキシプロピルトリメチルアンモニウムクロライドから選ばれるカチオン化剤で変性して得られたものが好ましく、より好ましくはアルキルクロライド、更に好ましくは炭素数1~2のアルキルクロライド、特に好ましくはメチルクロライドで変性して得られたものである。
(反応性)
 上記第四級アンモニウム塩は、反応性の化合物であっても良い。反応基として、例えば、(メタ)アクリロイル基などのビニル基を有する化合物にすることで、ハードコート層の形成に用いる電離放射線硬化性樹脂の硬化と同じラジカル重合に対する反応性を付与することができる。この結果、第四級アンモニウム塩は、ハードコート層を構成する電離放射線硬化性樹脂と化学結合することになり、表面上への経時的なブリードアウトを効果的に防ぐことができる。
(配合量)
 上記第四級アンモニウム塩の配合量は、ハードコート層を構成する帯電防止剤を含めた樹脂分全量に対して、帯電防止性能の点で、0.01~5質量%であり、好ましくは0.1~5質量%であり、更に好ましいのは0.3~3質量%である。ただ、5質量%を超えると、帯電防止性能は向上するが、鹸化処理後に帯電防止性能が悪化し耐鹸化性としては劣る。
 なお、市販の帯電防止剤には、その固形分として、第四級アンモニウム塩などの帯電防止機能を発揮する化合物と共に、モノマー、プレポリマー等の重合性化合物、ポリマーを含むことがある。
[多官能重合性化合物]
 上記多官能重合性化合物として、少なくとも、上記した式[1]で表わされ、イソシアヌル酸骨格を有する、(メタ)アクリロイル基が15官能のウレタン系多官能アクリレート系化合物(以下、この化合物を単に、「15官能重合性化合物」とも呼ぶことにする)を必須成分として含む。この15官能重合性化合物を用いることによって、良好なる耐鹸化性を得ることができる。
 この15官能重合性化合物は、重合性化合物の全量を占めても良いが、後述する、その他の多官能重合性化合物など、その他の重合性化合物を併用する場合は、帯電防止剤中に含まれ得る重合性化合物も含めた重合性化合物の全量に対して、6~90質量%、より好ましくは9~80質量%、最も好ましくは20~80質量%とするのが、帯電防止性能を発現させる点で望ましく、またその耐鹸化性を得ることができる。
 上記15官能重合性化合物によって、耐鹸化性が得られる理由は定かではないが、一つには以下の如く推測される。すなちわ、この15官能重合性化合物は、官能基数が15官能と非常に大きいことによって、樹脂の架橋構造が緻密な塗膜が得られ、ハードコート層中での帯電防止剤の移動を制限し、表面上へのブリードアウトの抑制に効果的であり、この為に、良好なる耐鹸化性が得られるのではと推測される。また、この15官能重合性化合物は、樹脂の架橋構造が緻密な塗膜が得られることによって、硬度の点でも優れたものが得られる。
 さらに、この15官能重合性化合物は、ヒドロキシル基を有さない為に、得られるハードコート層の耐水性が良く、鹸化処理時のアルカリ水溶液に対して耐性を有すると思われる。なぜならば、多官能(メタ)アクリレート化合物として、ヒドロキシル基を1個有するジペンタエリスリトールペンタアクリレート(DPPA)を、ヒドロキシル基を有さないジペンタエリスリトールヘキサアクリレート(DPHA)と共に含む、商品名「カヤラッド(登録商標)DPHA」を用いると、鹸化処理後に帯電防止性が低下し、耐鹸化性が得られないからである。
(その他の多官能重合性化合物)
 多官能重合性化合物としては、上記15官能重合性化合物以外の多官能重合性化合物、例えば、多官能アクリレート系化合物を、本発明の主旨を逸脱しない範囲内で含むことができる。ただ、この場合でも上記した15官能重合性化合物の場合と同様に、官能基数は、少なくとも2官能であるが、より好ましくは3官能以上のものを用いるのが、耐擦傷性の点で好ましい。また同様に、耐鹸化性の点で、なるべく、ヒドロキシル基を有さない化合物が望ましい。ヒドロキシル基を有する化合物である場合は、その分子量に対して、ヒドロキシル基の占める割合が、なるべく小さい化合物であることが好ましい。この点で、ヒドロキシル基を有する多官能アクリレート系化合物を用いる場合には、1分子中に含まれるヒドロキシル基の数を分子量で除して100倍した値として定義した「ヒドロキシル基含有率」が、0.2以下の化合物が好ましい。
 この様な多官能アクリレート系化合物としては、公知の各種重合性化合物から適宜選択すると良い。例えば、ヒドロキシル基を分子中に有さない多官能アクリレート系化合物を挙げれば、ヘキサンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の2官能(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、イソシアヌル酸変性トリ(メタ)アクリレート等の3官能(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の4官能(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の6官能(メタ)アクリレート、等が挙げられる。
 また、プレポリマー乃至はオリゴマーの化合物を挙げれば、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、シリコーン(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
 また、ヒドロキシル基を有さない多官能アクリレート系化合物として、市販品では、例えば、UV1700B(ウレタンアクリレートオリゴマー、日本合成化学工業株式会社製)が挙げられる。
 ハードコート層の形成に用いる電離放射線硬化性樹脂としては、多官能アクリレート系化合物が好ましいが、この他、物性調整等の為に、単官能重合性化合物を適宜併用しても良い。単官能重合性化合物として単官能モノマーを例示すれば、例えば、メチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレートなどが挙げられる。
(電離放射線非重合性樹脂の併用)
 電離放射線硬化性樹脂には、電離放射線で硬化可能な重合性化合物以外に、電離放射線では重合しない電離放射線非重合性樹脂を、物性調整の為など必要に応じて、耐鹸化性能に支障を来たさない範囲で、併用しても良い。電離放射線で重合反応を来たさない電離放射線非重合性樹脂とは、電離放射線以外のエネルギーで硬化可能な重合性化合物、例えば電離放射線では硬化しないが熱で硬化可能な熱硬化性樹脂、電離放射線でも熱でも硬化しない熱可塑性樹脂などである。
 熱硬化性樹脂としては、ウレタン系樹脂、メラミン系樹脂、フェノール系樹脂、シリコーン樹脂等が挙げられ、熱可塑性樹脂としては、アクリル系樹脂、熱可塑性ウレタン系樹脂、ポリアミド系樹脂、スチレン系樹脂、セルロース系樹脂、ポリカーボネート系樹脂、ビニル系樹脂、シリコーン樹脂等である。セルロース系樹脂としては、ニトロセルロース、アセチルセルロース、セルロースアセテートプロピオネート、エチルヒドロキシエチルセルロース等が挙げられる。
(重合開始剤)
 第四級アンモニウム塩及び15官能重合性化合物を含む電離放射線硬化性樹脂(組成物)を紫外線で硬化させる場合は、該電離放射線硬化性樹脂の樹脂組成物中に、さらに、重合開始剤を含有させることが好ましい。重合開始剤としては公知のもの、例えば、ラジカル重合により硬化させる場合は、アセトフェノン系、ベンゾフェノン系、チオキサントン系の重合開始剤が用いられる。重合開始剤は単独使用又は併用して用いる。市販品では、例えば、1-ヒドロキシ-シクロヘキシル-フェニル-ケトンは、イルガキュア(登録商標)184(チバ・スペシャルティ・ケミカルズ株式会社製)等が入手可能である。また、カチオン重合により硬化させる場合は、メタロセン系、芳香族スルホニウム系、芳香族ヨードニウム系等の重合開始剤が用いられる。重合開始剤は、樹脂分100質量部に対して、0.1~5質量部程度添加する。
(その他添加剤)
 ハードコート層2には、塗工適性など各種物性調整の為に公知の各種添加剤を含ませても良い。例えば、レベリング剤、分散安定剤、紫外線吸収剤、防眩剤、反応性基を有するシリカなどである。例えば、防眩剤を添加することにより、ハードコート層を防眩層と兼用して、反射防止フィルムを防眩性反射防止フィルムとすることも出来る。防眩剤には、有機系や無機系の拡散剤などを用いることができる。
(溶剤)
 電離放射線硬化性樹脂の樹脂組成物には、透明基材フィルム上への塗工適性等の物性調整の為に、溶剤を含ませることができる。また、溶剤は、透明基材フィルムとハードコート層との界面の干渉縞防止の為に、透明基材フィルムに対して浸透性を有する浸透性溶剤とすることができる。
 溶剤としては、例えば、イソプロピルアルコール、メタノール、エタノール、ブタノール、イソブチルアルコール等のアルコール類、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロヘキサノン等のケトン類、プロピレングリコールモノメチルエーテル(PGMEA)等のグリコールエーテル類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、クロロホルム、塩化メチレン、テトラクロルエタン等のハロゲン化炭化水素類、トルエン、キシレン等の芳香族炭化水素類である。溶剤は、これらの単独又は混合物として用いる。なかでも、好ましいのは、塗工適性、分散安定性、透明基材フィルムに対する浸透性等の点で、メチルイソブチルケトン(MIBK)、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)等である。
(帯電防止剤の厚み方向分布と耐鹸化性)
 図2及び図3を参照して、帯電防止剤のハードコート層中での厚み方向分布について考察する。図2及び図3は、どちらも、帯電防止剤のハードコート層中での厚み方向分布を概念的に示すものであり、図2(A)が従来の帯電防止性ハードコートフィルム20に於ける分布、図2(B)が本発明の帯電防止性ハードコートフィルム10に於ける分布である。また同様に図3に於いても、符号20で示すグラフが従来の分布、符号10で示すグラフが本発明による分布である。図2と図3で示す帯電防止性ハードコートフィルム10、及び従来の帯電防止性ハードコートフィルム20は、何れも、透明基材フィルム1上に、帯電防止剤Asを含有するハードコート層2、さらにこのハードコート層2上に低屈折率層3が積層された構成である。
 帯電防止剤の説明のところで、既に述べた様に、帯電防止剤Asは、表面での静電気帯電を防ぐ意味で、基本的には、なるべく表面に近い部分に存在させるのが、少ない配合量でも効果的に帯電防止効果を発現させることができる。従って、帯電防止剤を脱落してしまう表面上にはブリードアウトさせず、かと言って、ハードコート層の厚み方向で均一に分布させずに、なるべく表面近傍に存在する様に分布させるのが、帯電防止性能が効果的に得られる点で、好ましい。従って、帯電防止剤は、ハードコート層の厚みの下半分よりも上半分の方に、多く存在する分布が好ましい。
 しかし、従来の帯電防止性ハードコートフィルム20では、図2(A)で示す様に、帯電防止剤Asが表面近傍に分布する。帯電防止剤の、ハードコート層の厚みTの中での厚み方向の分布は、図3に示す様に、透明基材フィルム1側の下側(図面で下側)から上側にいくにつれて、帯電防止剤の濃度が大きくなる分布であり、ハードコート層2の最表面Phで最も大きい。一方、本発明による帯電防止性ハードコートフィルム10では、図2(B)で示す様に、帯電防止剤Asが表面近傍に分布はするが、ハードコート層2の最表面から少し離れた位置に最も多く分布する。帯電防止剤の厚みT方向の分布は、図3に示す様に、透明基材フィルム1側の下側から上側にいくにつれて、帯電防止剤の濃度が大きくなりハードコート層2の最表面になる途中が最大濃度であり、ハードコート層の最表面では小さくなる。なお、図3では、濃度がゼロに近いものとして描いてある。
 図2(B)及び図3で示す様に、帯電防止剤の上方をカバーするような多官能重合性化合物の存在領域を増やす(バインダー成分が、うまく帯電防止剤を被覆する状態)と、ハードコート層と低屈折率層とが共に有する多官能重合性化合物同士が、良好に反応し化学結合することによって、架橋密度があるレベル以上になり、内部上方からハードコート層の最表面に存在していると思われる帯電防止剤を被覆し、アルカリ水溶液から保護する形になり、その結果、鹸化処理時の劣化を防いで、満足できる耐鹸化性が得られているものと、推測される。
 一方、図2(A)のように、帯電防止剤Asがハードコート層2の表面側に多すぎると、ハードコート層2と低屈折率層3の界面やハードコート層2の上部での架橋密度が低下し、その結果、鹸化処理時に、帯電防止剤Asが存在する部分を起点に、劣化が始まると推測される。
 帯電防止剤をハードコート層の層内に保持するバインダー樹脂成分が、うまく帯電防止剤を被覆する状態になり、アルカリ水溶液から保護する役割を果たしながら、且つ、帯電防止剤の層内での移動も制限して表面にブリードアウトすることを防いでいると推測される。おそらく、ウレタン系多官能アクリレート系化合物である15官能重合性化合物は、例えば6官能程度のモノマー類等に比べて、分子量が大きいために動き難く透明基材フィルム1への浸透が少なく、且つ官能基数が多いために重合反応しやすい点、及び第4級アンモニウム塩も分子量1000~50,000の高分子型である為に動き難い点で、これら両方の化合物がお互いの流動性を制御していることによって、硬化時までの第4級アンモニウム塩のブリードアウトを抑制しているためではと考えられる。
 また、この15官能重合性化合物は、官能基数が大きい為に反応しやすい点、及び、帯電防止剤が表面化していない点から、ハードコート層と低屈折率層との密着も良好になり、本来のハードコート層としての耐擦傷性や鉛筆硬度向上にも効果的である。
[ハードコート層の形成]
 ハードコート層2は上記した電離放射線硬化性樹脂の樹脂組成物を塗料乃至はインキとして、透明基材フィルム上に塗布後、電離放射線を照射して樹脂を硬化させて、形成することができる。塗布方法は特に限定はなく公知の塗布法を適宜採用すれば良い。例えば、ロールコート法、グラビアコート法、ディップ法、スプレー法、ダイコート法、バーコート法、スピンコート法、メニスカスコート法等の塗布法である。或いは、フレキソ印刷法、スクリーン印刷法等の印刷法によって形成しても良い。なお、電離放射線としては、紫外線、及び電子線が代表的である。紫外線源としては公知のものを使用することができ、その具体例としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク灯、ブラックライト蛍光灯、メタルハライドランプ灯等の光源が挙げられる。紫外線の波長としては、190~380nmの波長域を使用することができる。電子線源としては公知のものを使用することができ、その具体例としては、コッククロフトワルトン型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、又は直線型、ダイナミトロン型、高周波型等の各種電子線加速器が挙げられる。これらのなかでも高圧水銀灯が好ましい。
 ハードコート層の厚みは、0.1~100μm、好ましくは0.8~20μm、最も好ましくは5~13μmである。ハードコート層の厚みを5μm以上とすることによって鉛筆硬度を3H以上にすることが容易になる。また、ハードコート層の厚みを13μm以下とすることによってカールの防止が容易になる。
 ハードコート層2とは鉛筆硬度でH以上の硬度を示すものを言うことは既に述べたが、この鉛筆硬度は、より好ましくは2H以上であり、3H以上であることが更に好ましい。なお、本発明の帯電防止性ハードコートフィルムを画像表示装置の最表面に用いる場合には、上記鉛筆硬度は2H以上であることが好ましく、3H以上であることがより好ましい。
〔低屈折率層〕
 帯電防止性ハードコートフィルム10には、ハードコート層2の表面に、更に低屈折率層3を設けることができる。低屈折率層によって、反射防止性を付与できる。
 低屈折率層3は、低屈折率化剤を含有する樹脂の硬化物層からなり、ハードコート層2よりも屈折率が低いことで、光反射を防止する。低屈折率層の屈折率は、ハードコート層の屈折率未満であるが、低屈折率層とハードコート層との屈折率差は0.02~0.3であり、より好ましくは0.05~0.2であることが好ましい。
 低屈折率層の屈折率自体は、1.45以下が充分な反射防止性が得られる点で好ましく、より好ましくは1.40以下、さらに好ましくは1.38以下である。
 低屈折率層3を設ける場合、低屈折率層にも耐鹸化性が必要である。この様な低屈折率層としては、例えば、電離放射線硬化性樹脂の硬化物層からなり、低屈折率化剤として中空状シリカ粒子を含有し、しかも該電離放射線硬化性樹脂がヒドロキシル基を分子中に有さない多官能重合性化合物を含む樹脂組成物の硬化物からなる層が好ましい。
 電離放射線硬化性樹脂は中空状シリカ粒子に対するバインダー樹脂となると共に、低屈折率層の耐擦傷性を向上させる。この電離放射線硬化性樹脂に、ヒドロキシル基を分子中に有さない重合性化合物を用いることで、耐鹸化性が得られ、また、低屈折率層に電離放射線硬化性樹脂を用い且つ多官能の重合性化合物を用いることで、低屈折率層の塗膜強度を強めて耐擦傷性が得られる。なお、中空状シリカ粒子とは、例えば、外殻を有し、その内部が多孔質または空洞になっている微粒子であり、特開平6-330606号公報、特開平7-013137号公報、特開平7-133105号公報、特開2001-233611号公報等に記載された様々な製法で得ることができる。
 低屈折率層の厚みは、50~150nm、好ましくは80~120nmである。
[電離放射線硬化性樹脂]
 上記電離放射線硬化性樹脂は、紫外線及び電子線に代表される電離放射線により硬化する樹脂であり、電離放射線で重合可能な重合性官能基を有する、モノマー、プレポリマー(含むオリゴマー)等の重合性化合物の1種又は2種以上を少なくとも有する樹脂組成物である。電離放射線で重合可能な重合性官能基の代表例は重合性不飽和基であり、重合性不飽和基は例えば、(メタ)アクリロイル基、ビニル基、アリル基等のラジカル重合性のエチレン性二重結合である。なかでも、(メタ)アクリロイル基が代表的であり、各種アクリレート系の電離放射線硬化性樹脂が知られている。
 重合性化合物としては、耐擦傷性(表面硬度、低屈折率層とその下の層間の密着性)の点で、2官能以上の多官能重合性化合物が好ましく、より好ましくは3官能以上で9官能以下の多官能重合性化合物が好ましい。
 良好なる耐鹸化性が得られるヒドロキシル基を分子中に有さない多官能重合性化合物を挙げれば、ヘキサンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の2官能(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、イソシアヌル酸変性トリ(メタ)アクリレート等の3官能(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の4官能(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の6官能(メタ)アクリレート、等が挙げられる。
 良好なる耐鹸化性が得られるヒドロキシル基を分子中に有さない多官能重合性化合物の例として、アクリレート系の電離放射線硬化性樹脂の多官能プレポリマーで例示すれば、ポリエステル系、ポリエーテル系、ウレタン系、エポキシ系、シリコーン系などの各種アクリレート系プレポリマーが挙げられる。
(ヒドロキシル基を分子中に有する重合性化合物の使用)
 低屈折率層3の形成に用いる電離放射線硬化性樹脂の樹脂組成物としては、その重合性化合物としてヒドロキシル基を分子中に有さない多官能重合性化合物のみからなることが、耐鹸化性の点で最も好ましい。ただ、耐鹸化性を損なわない範囲内であれば、耐擦傷性、塗工適性などの物性調整等の為に、ヒドロキシル基を分子中に有する重合性化合物を使用することができる。この場合、耐擦傷性の点で、ヒドロキシル基を分子中に有する重合性化合物としては、多官能重合性化合物が好ましい。
 ヒドロキシル基を分子中に有する多官能重合性化合物の例として、アクリレート系の電離放射線硬化性樹脂の多官能モノマーで例示すれば、分子中に1個のヒドロキシル基を有する多官能モノマーでは、トリメチロールプロパンジ(メタ)アクリレート(略称TMPDA)、ペンタエリスリトールトリ(メタ)アクリレート(略称PETA)、ジペンタエリスリトールペンタ(メタ)アクリレート(略称DPPA)等が挙げられ、分子中に2個のヒドロキシル基を有する多官能モノマーでは、ジペンタエリスリトールテトラ(メタ)アクリレート(略称DPTA)が挙げられる。
 このように、ヒドロキシル基を分子中に有する多官能重合性化合物の場合、ヒドロキシル基が分子中に占める割合が大きいものは、耐鹸化性の点で好ましくない。なるべく、低屈折率層を形成する電離放射線硬化性樹脂の樹脂組成物の全量中に於ける、ヒドロキシル基の割合が少ない方が、より確実に耐鹸化性をよくできる点で好ましい。
(ヒドロキシル基含有率)
 そこで、本発明では、ヒドロキシル基を分子中に有する多官能重合性化合物の場合、ヒドロキシル基(OH基)が分子中に占める割合の指標として、1分子中に含まれるヒドロキシル基の数を分子量で除して100倍した値を「ヒドロキシル基含有率」として定義する。
 ヒドロキシル基含有率の具体例を示せば、前記ペンタエリスリトールトリ(メタ)アクリレート(略称PETA)は、OH基数1で分子量298で0.33、ジペンタエリスリトールペンタアクリレート(略称DPPA)は、OH基数1で分子量約550で0.18である。
 ヒドロキシル基含有率は、0.2以下が好ましい。多官能重合性化合物として、その1分子中に含有するヒドロキシル基の数が、ヒドロキシル基含有率で0.2以下の化合物を用いることによって、好ましい耐鹸化性が得られる。ヒドロキシル基含有率は1分子に対する指標であるが、電離放射線硬化性樹脂の樹脂組成物が、複数の重合性化合物の混合物である場合、これら複数の重合性化合物の全体として、ヒドロキシル基含有率を0.2以下とするのが好ましい。また、重合性化合物の分子量が単一ではなく分布を有する場合は、前記計算式中の分子量に重量平均分子量を使う。
 低屈折率層3を構成する電離放射線硬化性樹脂の硬化物層を形成する為の、電離放射線硬化性樹脂の樹脂組成物としては、その重合性化合物にはヒドロキシル基を分子中に有さない重合性化合物として、多官能の重合性化合物が好ましいが、物性調整等の為に、単官能の重合性化合物を併用しても良い。
 例えば、ヒドロキシル基を分子中に有さない単官能の重合性化合物の例として、アクリレート系の電離放射線硬化性樹脂の単官能モノマーで例示すれば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、メチルヘキシル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート等、その他のエチレン性重合性化合物等が挙げられる。
(分子量)
 低屈折率層3に用いる多官能重合性化合物においては、耐擦傷性の点から分子量が300~1000とするのが良い。分子量が小さすぎても、大きすぎても耐擦傷性が低下する。なお、分子量分布を有する化合物の場合は、この分子量とは重量平均分子量の意味である。
(電離放射線非重合性樹脂の併用)
 電離放射線硬化性樹脂には、電離放射線で硬化可能な重合性化合物以外に、電離放射線では重合しない電離放射線非重合性樹脂を、物性調整の為など必要に応じて、耐鹸化性能に支障を来たさない範囲で、併用しても良い。電離放射線で硬化可能な重合性化合物以外の電離放射線非重合性樹脂は、電離放射線以外のエネルギーで硬化可能な重合性化合物、例えば電離放射線では硬化しないが熱で硬化可能な熱硬化性樹脂、電離放射線でも熱でも硬化しない熱可塑性樹脂などである。
 熱硬化性樹脂としては、ウレタン系樹脂、メラミン系樹脂、フェノール系樹脂、シリコーン樹脂等が挙げられ、熱可塑性樹脂としては、アクリル系樹脂、熱可塑性ウレタン系樹脂、ポリアミド系樹脂、スチレン系樹脂、セルロース系樹脂、ポリカーボネート系樹脂、ビニル系樹脂、シリコーン樹脂等である。セルロース系樹脂としては、ニトロセルロース、アセチルセルロース、セルロースアセテートプロピオネート、エチルヒドロキシエチルセルロース等が挙げられる。
 なお、低屈折率層形成用の電離放射線硬化性樹脂を紫外線で硬化させる場合は、重合開始剤を含有させることが好ましい。重合開始剤としては公知のもの、例えば、前記ハードコート層で列記した化合物を用いることができる。
 また、低屈折率層形成用の電離放射線硬化性樹脂の樹脂組成物には、ハードコート層上への塗工適性等の物性調整の為に、溶剤を含ませることができる。溶剤としては、例えば、前記ハードコート層で列記した溶剤を用いることができる。
(防汚剤)
 低屈折率層3は、帯電防止性ハードコートフィルムの最外層となる点で、汚れに対して防汚性を有することが好ましい。この点で、低屈折率層には防汚剤を含ませることが好ましい。防汚剤としては、公知のものを適宜採用することができる。例えば、防汚剤としては、シリコーン系化合物、フッ素系化合物などが挙げられる。また、防汚剤は耐鹸化性や硬化性の性能持続性のためにアクリレート系化合物であるのが好ましい。例えば、シリコーンアクリレート系化合物、フッ素含有アクリレート化合物、フッ素とシリコーンを含有するアクリレート系化合物などである。
(その他添加剤)
 電離放射線硬化性樹脂の樹脂組成物には、塗工適性、低屈折率化剤の分散安定性等の物性調整の為に、公知の各種添加剤を添加することができる。例えば、レベリング剤、分散安定剤、帯電防止剤、紫外線吸収剤、酸化防止剤、屈折率調整剤等である。
[中空状シリカ粒子]
 中空状シリカ粒子は、低屈折率層の塗膜強度を保持しつつ、その屈折率を下げる機能を有する粒子である。本発明で用いる中空状シリカ粒子は、内部に空洞を有する構造のシリカ微粒子である。中空状シリカ粒子は、シリカ微粒子本来の屈折率(屈折率n=1.46程度)に比べて、内部の空洞の占有率に反比例して屈折率が低下しているシリカ微粒子である。このため、中空状シリカ粒子の粒子全体としての屈折率は1.20~1.45となる。
 中空状シリカ粒子としては、内部に空洞を有するシリカ微粒子であれば、特に限定されず、例えば、外殻を有し、その内部が多孔質または空洞になっている微粒子であり、特開平6-330606号公報、特開平7-013137号公報、特開平7-133105号公報、特開2001-233611号公報で開示されている技術を用いて調製したシリカ微粒子が好ましく挙げられる。
 中空状シリカ粒子の平均粒子径は好ましくは5~300nm、より好ましくは5nm~200nmである。該平均粒子径がこの範囲内にあることにより、低屈折率層に優れた透明性を付与することができる。また、該平均粒子径の範囲は、より好ましい下限は8nm、より好ましい上限は100nm、更に好ましい下限は10nm、更に好ましい上限は80nmである。
 低屈折率層中の中空状シリカ粒子の含有量は特に限定されないが、好ましくは、樹脂固形分100質量部に対して、20~180質量部の範囲である。180質量部を超えると、低屈折率層の塗膜強度が不充分となることがあり、20質量部未満であると、中空状シリカ粒子による低屈折率化の効果を充分に低屈折率層に付与できない。
 また、中空状シリカ粒子の表面はシランカップリング剤で配合前に事前に処理されていてもよい。シランカップリング剤は市販品でよく、例えば信越化学工業株式会社製のKBM-1003、KBE-1003、KBM-303、KBM-402、KBM-403、KBE-402、KBE-403、KBM-1403、KBM-502、KBM-503、KBE-502、KBE-503、KBM-5103、KBM-602、KBM-603、KBM-903、KBE-903、KBE-9103、KBM-573、KBM-575、KBE-585、KBM-802、KBM-803、KBE-846、KBE-9007などがあり、好ましくは(メタ)アクリロイル基を含有するシランカップリング剤である、KBM-502、KBM-503、KBE-502、KBE-503、KBM-5103であり、最も好ましいのはKBM-503である。
[低屈折率層の形成]
 低屈折率層3は上記した電離放射線硬化性樹脂の樹脂組成物を塗料乃至はインキとして、ハードコート層上に塗布後、電離放射線を照射して樹脂を硬化させて、形成することができる。塗布方法は特に限定はなく公知の塗布法を適宜採用すれば良い。例えば、ロールコート法、グラビアコート法、ディップ法、スプレー法、ダイコート法、バーコート法、スピンコート法、メニスカスコート法等の塗布法である。或いは、フレキソ印刷法、スクリーン印刷法等の印刷法によって形成しても良い。なお、電離放射線としては、紫外線、及び電子線が代表的である。紫外線源及び電子線源としては公知のものを使用することができ、これらの具体例としては前記ハードコート層の形成の欄で挙げたものを使用でき、なかでも高圧水銀灯が好ましい。
 低屈折率層3を設ける場合、低屈折率層はハードコート層上に形成することになるので、低屈折率層形成時はハードコート層を完全硬化させずに、低屈折率層の樹脂硬化と同時にハードコート層の樹脂の完全硬化を行うのが、これら両層の密着性の点で好ましい。
B.偏光板
 本発明による偏光板は、偏光子の少なくとも一方の面に、上記した本発明の帯電防止性ハードコートフィルムがその透明基材フィルム側で積層されている構成の偏光板である。
 図4は、偏光板の一形態を示す断面図である。同図に示す偏光板20は、本発明の帯電防止性ハードコートフィルム10が、透明基材フィルム1に対してハードコート層2の側の面Pfが最外面となる様に透明基材フィルム1側の面Prで、偏光子4に積層されている。帯電防止性ハードコートフィルム10は、偏光子4の片面に積層され、偏光子4の他方の面は、本発明の帯電防止性ハードコートフィルム10以外の保護フィルム5が積層されている構成例である。
 偏光板20の帯電防止性ハードコートフィルム10側の面は、そのハードコート層2によって、偏光板の傷付きや帯電が防止される。一方、偏光板の保護フィルム5側の面は、液晶セルなど他の光学部材に粘着剤層などで密着積層するのが普通なので、保護フィルム側の面は、帯電防止性ハードコートフィルムの様にハードコート処理や帯電防止処理は、それほど必要がない。
 ただ、本発明の偏光板としては、偏光子の両面に上記した本発明の帯電防止性ハードコートフィルムが、その透明基材フィルム側で積層されていても良い。
〔偏光子〕
 偏光子4は、特に限定されず、偏光板における従来公知の偏光子でよい。例えば、ヨウ素等により染色し延伸したポリビニルアルコールフィルムが挙げられる。また、染色・延伸するフィルムは、ポリビニルアルコールフィルム以外に、ポリビニルホルマールフィルム、ポリビニルアセタールフィルム、エチレン-酢酸ビニル共重合体系ケン化フィルム等も挙げられる。
〔保護フィルム〕
 保護フィルム5は、帯電防止性ハードコートフィルムにおける透明基材フィルムと同様のフィルムを使用することができる。従って、保護フィルムには、トリアセチルセルロースからなる透明なフィルムを用いるのが好ましい。また、カール防止等の観点から、同種のフィルムが好ましい。よって、更なる説明は省略する。
 なお、この保護フィルムは、従来技術の欄で述べた一時的に接着しておく保護フィルムとは異なり、永久的に接着積層されているフィルムである。
〔偏光子と帯電防止性ハードコートフィルム及び保護フィルムとの積層〕
 偏光子4と帯電防止性ハードコートフィルム10及び保護フィルム5とを積層する際は、アルカリ水溶液による、いわゆる鹸化処理を行うことが、偏光子とこれらのフィルムとの密着性を強化できる点で好ましい。特に、本発明による帯電防止性ハードコートフィルムは耐鹸化性を備えているので、その利点を発揮できる点でも好ましい。
C.画像表示装置
 本発明による画像表示装置は、前記した本発明の帯電防止性ハードコートフィルム、又は、上記した本発明の偏光板を、ディスプレイパネルの観察者側に備えた構成の画像表示装置である。帯電防止性ハードコートフィルム或いは偏光板は、ディスプレイパネルに密着積層され一体化したものをディスプレイパネルとすることもあるし、ディスプレイパネルの観察者側に空気層を介して配置されることもある。
 ディスプレイパネルは、特に限定はなく公知のディスプレイパネルで良く、例えば、液晶パネル、プラズマディスプレイパネル、エレクトロルミネッセンスパネル等の各種ディスプレイパネルの他、ブラウン管(CRT)等でも良い。
 帯電防止性ハードコートフィルムと偏光板は、画像表示装置が備えるディスプレイパネルが液晶パネルの場合は、通常偏光板を備える。偏光板が基本的に不要なディスプレイパネル、例えば、プラズマディスプレイパネル、エレクトロルミネッセンスパネル、ブラウン管(CRT)等の場合は、画像表示装置は帯電防止性ハードコートフィルムを備える。
 本発明の画像表示装置は、この他、タッチパネル、ディスプレイ駆動回路、配線、シャーシ、フレーム、入出力部品、キャビネット、等の公知の部品を用途に応じて備えていても良い。
〔用途〕
 本発明による画像表示装置の用途は特に制限はないが、例えば、テレビジョン受像機、モニターディスプレイ、電子看板、携帯情報端末、デシタルフォトフレーム、医療用機器などである。
 以下、実施例、比較例及び参考例によって、本発明を更に説明する。また、以下において、使用した材料乃至はその略称は次の通りである。また、「部」とあるのは、全て質量部の意味である。
[帯電防止剤]
・UV-ASHC-01:第四級アンモニウム塩基を有する分子量Mw10,000の高分子型の帯電防止剤(日本化成株式会社製、第四級アンモニウム塩基を有する共重合体を、固形分中15質量%含む)。
・H6500:分子量Mw10,000の高分子型の第四級アンモニウム塩を含む帯電防止剤(三菱化学株式会社製、第四級アンモニウム塩基を有する共重合体を、固形分中7質量%含む)。
・ASNo1:分子量Mw20,000の高分子型の第四級アンモニウム塩を含む帯電防止剤。
・ASNo2:第四級アンモニウム塩基を有する分子量Mw100,000の高分子型の帯電防止剤(三菱化学株式会社製、第四級アンモニウム塩基を有する重合体を、固形分中7質量%含む)。
・ASNo3:第四級アンモニウム塩基を有する分子量Mw500の低分子型の帯電防止剤(三菱化学株式会社製、第四級アンモニウム塩基を有する化合物を、固形分中7質量%含む)。
[多官能重合性化合物(電離放射線硬化性樹脂)]
 なお、以下の多官能重合性化合物はDPPA以外は、何れも分子中にヒドロキシル基は有さない化合物である。
・U15HA:HDI(ヘキサメチレンジイソシアネート)の三量体のイソシアヌル骨格から延びる3個のイソシアネート基にDPPA(ジペンタエリスリトールペンタアクリレート)を反応させた、Mw約2300の15官能のウレタン系多官能アクリレート系化合物(新中村化学工業株式会社製)。このU15HAは、前記式[1]で示される化合物であり、式中、Acはアクリロイル基で、R-(Ac)5はジペンタエリスリトールが有する6個のヒドロキシル基のうち5個のヒドロキシル基の水素原子がアクリロイル基Acで置き換わった5官能アクリレート基である化合物である。
 ・UV1700B:2官能のIPDI(イソホロンジイソシアネート)のイソシアネート基にDPPA(ジペンタエリスリトールペンタアクリレート)を反応させた、Mw約2000の10官能のウレタンアクリレートオリゴマー(日本合成化学工業株式会社製)。
・BS577:2官能のIPDI(イソホロンジイソシアネート)のイソシアネート基にPETA(ペンタエリスリトールトリアクリレート)を反応させた、分子量Mw約300の6官能のウレタンアクリレートオリゴマー(荒川化学工業株式会社製)。
・M9050:3官能のポリエステル系アクリレートオリゴマー(分子量Mw428、東亞合成株式会社製)。
・M8030:3官能以上のポリエステル系アクリレートオリゴマー(分子量Mw400、東亞合成株式会社製)。
・DPPA:ジペンタエリスリトールペンタアクリレート。
・TMPTA:3官能、Mw296、トリメチロールプロパントリアクリレート。
[溶剤]
・MEK  :メチルエチルケトン
・MIBK :メチルイソブチルケトン
・PGMEA:プロピレングリコールモノメチルエーテルアセテート
・PGME :プロピレングリコールモノメチルエーテル
[表面疎水処理した中空状シリカ粒子]
・(平均粒子径55nmで内部に空洞を有し表面を疎水処理したシリカ粒子、固形分20%、MIBK分散)
[光重合開始剤]
・イルガキュア(登録商標)184(チバ・スペシャルティ・ケミカルズ株式会社製)
・イルガキュア(登録商標)127(チバ・スペシャルティ・ケミカルズ株式会社製)
 これらは、以下単に「イルガキュア184」、「イルガキュア127」と記載する。
〔試験評価方法〕
 耐鹸化性について、帯電防止性と透明性と鉛筆硬度について、鹸化処理前後の性能を測定評価した。
[帯電防止性]
 帯電防止性は、表面抵抗率を表面抵抗率測定器(「ハイレスタ(登録商標)IP MCP-HT260」、三菱化学株式会社製)にて印加電圧1000Vで測定した。表面抵抗率が1011〔Ω/□〕(〔Ω/sq.〕)以下を良好、1012〔Ω/□〕以上を不良とした。
[透明性]
 透明性は、白化有無(耐白化性)とヘイズの変化を測定した。
(白化):白化は、帯電防止性ハードコートフィルムをハードコート層とは逆側の透明基材フィルムの面から光を当てて、ハードコート層側の面から透過した光を目視により観察して、評価した。
○;白化が発生しない(良好)。
×;白化が発生した(不良)。
(ヘイズ):ヘイズは、ヘイズメータ(株式会社村上色彩技術研究所製、HM-150)を用いて、JIS K-7136に準拠して測定した。鹸化処理前後にヘイズ値の増加があっても、ヘイズが0.5%未満ならば良好、0.5%以上を不良とした。
[鉛筆硬度]
 温度25℃、相対湿度50%の条件で2時間調湿した後、JIS S6006に規定する試験用鉛筆(硬度H~4H)を用いて、JIS K5600-5-4(1999)に規定する鉛筆硬度評価方法に従い、鉛筆硬度試験を500gの荷重にて測定した。5本の傷をつけ、4本以上傷跡がない場合の鉛筆硬度を試験結果の硬度とした。
[鹸化処理]
 鹸化処理は、次の2条件で行った。通常、鹸化処理は、低濃度低温アルカリ溶液で、ゆっくり浸漬するか、または、高濃度高温アルカリ溶液で、すばやく浸漬する。後者条件のほうが浸漬時間は短いが、反射防止フィルムには厳しい処理であるので、以下条件Bが良好であるものは、条件Aで良好であるものよりも優れている。
・条件A:2規定のNaOH水溶液に温度50℃、3min浸漬処理した。
・条件B:4規定のNaOH水溶液に温度60℃、30s浸漬処理した。
〔実施例1〕
 透明基材フィルムとして厚み80μmの透明なトリアセチルセルロースフィルム(TACフィルム、屈折率1.48)の片面に、下記の電離放射線硬化性樹脂を含むハードコート層用組成物(1)を塗布した後、紫外線照射で樹脂を(半)硬化させて、厚み10μmのハードコート層を形成した。
 次に、形成したハードコート層の上に、下記の低屈折率層用組成物(A)を塗布した後、紫外線照射で樹脂を硬化させて、厚み100nmの低屈折率層を形成すると共に、ハードコート層も完全に硬化させて、帯電防止性ハードコートフィルムを作製した。次いで、鹸化処理条件Aで鹸化処理をした。
[ハードコート層用組成物(1)]
 帯電防止剤;UV-ASHC-01    25部
 樹脂;U15HA            25部
 樹脂;UV1700B          50部
 溶剤;MEK             100部
 光重合開始剤;イルガキュア184     4部
[低屈折率層用組成物(A)]
 TMPTA              100部
 中空状シリカ粒子(固形分として) 100部
 溶剤;MIBK             70部
 溶剤;PGMEA            30部
 光重合開始剤;イルガキュア127  0.07部
〔実施例2〕
 実施例1において、ハードコート層の形成に、樹脂成分が異なる下記のハードコート層用組成物(2)を用いた他は、実施例1同様にして、帯電防止性ハードコートフィルムを作製し、実施例1と同じ条件で鹸化処理した。
[ハードコート層用組成物(2)]
 帯電防止剤;UV-ASHC-01    25部
 樹脂;U15HA            75部
 樹脂;UV1700B           0部(無し)
 溶剤;MEK             100部
 光重合開始剤;イルガキュア184     4部
〔実施例3〕
 実施例1において、ハードコート層の形成に、樹脂成分が異なる下記のハードコート層用組成物(3)を用いた他は、実施例1同様にして、帯電防止性ハードコートフィルムを作製し、実施例1と同じ条件で鹸化処理した。
[ハードコート層用組成物(3)]
 帯電防止剤;UV-ASHC-01    25部
 樹脂;U15HA            25部
 樹脂;BS577            50部
 溶剤;MEK             100部
 光重合開始剤;イルガキュア184     4部
〔実施例4〕
 実施例1において、ハードコート層の形成に、樹脂成分が異なる下記のハードコート層用組成物(4)を用いた他は、実施例1同様にして、帯電防止性ハードコートフィルムを作製し、実施例1と同じ条件で鹸化処理した。
[ハードコート層用組成物(4)]
 帯電防止剤;UV-ASHC-01    25部
 樹脂;U15HA            25部
 樹脂;M9050            50部
 溶剤;MEK             100部
 光重合開始剤;イルガキュア184     4部
〔実施例5〕
 実施例1において、ハードコート層の形成に、樹脂成分が異なる下記のハードコート層用組成物(5)を用いた他は、実施例1同様にして、帯電防止性ハードコートフィルムを作製し、実施例1と同じ条件で鹸化処理した。
[ハードコート層用組成物(5)]
 帯電防止剤;UV-ASHC-01    25部
 樹脂;U15HA            25部
 樹脂;M8030            50部
 溶剤;MEK             100部
 光重合開始剤;イルガキュア184     4部
〔実施例6〕
 実施例1において作製し帯電防止性ハードコートフィルムを、鹸化処理条件Bで鹸化処理した。
〔実施例7〕
 実施例1において、ハードコート層の形成に、帯電防止剤の割合が異なる下記のハードコート層用組成物(6)を用いた他は、実施例1同様にして、帯電防止性ハードコートフィルムを作製し、実施例1と同じ条件で鹸化処理した。
[ハードコート層用組成物(6)]
 帯電防止剤;UV-ASHC-01    20部
 樹脂;U15HA            27.5部
 樹脂;UV1700B          52.5部
 溶剤;MEK             100部
 光重合開始剤;イルガキュア184     4部
〔比較例1〕
 実施例1において、ハードコート層の形成に、樹脂分中のU15HAをDPPAに代えた下記のハードコート層用組成物(7)を用いた他は、実施例1同様にして、帯電防止性ハードコートフィルムを作製し、実施例1と同じ条件で鹸化処理した。
[ハードコート層用組成物(7)]
 帯電防止剤;UV-ASHC-01    25部
 樹脂;DPPA             25部
 樹脂;UV1700B          50部
 溶剤;MEK             100部
 光重合開始剤;イルガキュア184     4部
〔比較例2〕
 実施例3において、ハードコート層の形成に、樹脂分中のU15HAをDPPAに代えた下記のハードコート層用組成物(8)を用いた他は、実施例3同様にして、帯電防止性ハードコートフィルムを作製し、実施例1と同じ条件で鹸化処理した。
[ハードコート層用組成物(8)]
 帯電防止剤;UV-ASHC-01    25部
 樹脂;DPPA             25部
 樹脂;BS577            50部
 溶剤;MEK             100部
 光重合開始剤;イルガキュア184     4部
〔比較例3〕
 実施例4において、ハードコート層の形成に、樹脂分中のU15HAをDPPAに代えた下記のハードコート層用組成物(9)を用いた他は、実施例4同様にして、帯電防止性ハードコートフィルムを作製し、実施例1と同じ条件で鹸化処理した。
[ハードコート層用組成物(9)]
 帯電防止剤;UV-ASHC-01    25部
 樹脂;DPPA             25部
 樹脂;M9050            50部
 溶剤;MEK             100部
 光重合開始剤;イルガキュア184     4部
〔比較例4〕
 実施例5において、ハードコート層の形成に、樹脂分中のU15HAをDPPAに代えた下記のハードコート層用組成物(10)を用いた他は、実施例5同様にして、帯電防止性ハードコートフィルムを作製し、実施例1と同じ条件で鹸化処理した。
[ハードコート層用組成物(10)]
 帯電防止剤;UV-ASHC-01    25部
 樹脂;DPPA             25部
 樹脂;M8030            50部
 溶剤;MEK             100部
 光重合開始剤;イルガキュア184     4部
〔比較例5〕
 実施例1において、ハードコート層の形成に、帯電防止剤を使用しなかった下記のハードコート層用組成物(11)を用いた他は、実施例1同様にして、ハードコートフィルムを作製し、実施例1と同じ条件で鹸化処理した。
[ハードコート層用組成物(11)]
 帯電防止剤;UV-ASHC-01     0部(無し)
 樹脂;U15HA            25部
 樹脂;UV1700B          50部
 溶剤;MEK             100部
 光重合開始剤;イルガキュア184     4部
〔実施例8〕
 実施例1において、ハードコート層の形成に、帯電防止剤が異なる下記のハードコート層用組成物(12)を用いた他は、実施例1同様にして、帯電防止性ハードコートフィルムを作製し、実施例1と同じ条件で鹸化処理した。
[ハードコート層用組成物(12)]
 帯電防止剤;H6500         25部
 樹脂;U15HA            25部
 樹脂;UV1700B          50部
 溶剤;MEK             100部
 光重合開始剤;イルガキュア184     4部
〔実施例9〕
 実施例1において、ハードコート層の形成に、帯電防止剤が異なる下記のハードコート層用組成物(13)を用いた他は、実施例1同様にして、帯電防止性ハードコートフィルムを作製し、実施例1と同じ条件で鹸化処理した。
[ハードコート層用組成物(13)]
 帯電防止剤;ASNo1         25部
 樹脂;U15HA            25部
 樹脂;UV1700B          50部
 溶剤;MEK             100部
 光重合開始剤;イルガキュア184     4部
〔実施例10〕
 実施例1において、ハードコート層の形成に、帯電防止剤の割合が異なる下記のハードコート層用組成物(14)を用いた他は、実施例1同様にして、帯電防止性ハードコートフィルムを作製し、実施例1と同じ条件で鹸化処理した。
[ハードコート層用組成物(14)]
 帯電防止剤;UV-ASHC-01    71部
 樹脂;U15H              9.6部
 樹脂;UV1700B          19.3部
 溶剤;MEK             100部
 光重合開始剤;イルガキュア184     4部
〔実施例11〕
 実施例1において、ハードコート層の形成に、帯電防止剤の割合が異なる下記のハードコート層用組成物(15)を用いた他は、実施例1同様にして、帯電防止性ハードコートフィルムを作製し、実施例1と同じ条件で鹸化処理した。
[ハードコート層用組成物(15)]
 帯電防止剤;UV-ASHC-01     7部
 樹脂;U15HA            31部
 樹脂;UV1700B          62部
 溶剤;MEK             100部
 光重合開始剤;イルガキュア184     4部
〔比較例6〕
 実施例1において、ハードコート層の形成に、帯電防止剤が異なる下記のハードコート層用組成物(16)を用いた他は、実施例1同様にして、帯電防止性ハードコートフィルムを作製し、実施例1と同じ条件で鹸化処理した。
[ハードコート層用組成物(16)]
 帯電防止剤;ASNo2         25部
 樹脂;U15HA            25部
 樹脂;UV1700B          50部
 溶剤;MEK             100部
 光重合開始剤;イルガキュア184     4部
〔比較例7〕
 実施例1において、ハードコート層の形成に、帯電防止剤が異なる下記のハードコート層用組成物(17)を用いた他は、実施例1同様にして、帯電防止性ハードコートフィルムを作製し、実施例1と同じ条件で鹸化処理した。
[ハードコート層用組成物(17)]
 帯電防止剤;ASNo3         25部
 樹脂;U15HA            25部
 樹脂;UV1700B          50部
 溶剤;MEK             100部
 光重合開始剤;イルガキュア184     4部
〔比較例8〕
 実施例1において、ハードコート層の形成に、帯電防止剤の割合が異なる下記のハードコート層用組成物(18)を用いた他は、実施例1同様にして、帯電防止性ハードコートフィルムを作製し、実施例1と同じ条件で鹸化処理した。
[ハードコート層用組成物(18)]
 帯電防止剤;UV-ASHC-01    90部
 樹脂;U15HA             5部
 樹脂;UV1700B           5部
 溶剤;MEK             100部
 光重合開始剤;イルガキュア184     4部
〔比較例9〕
 実施例1において、ハードコート層の形成に、帯電防止剤の割合が異なる下記のハードコート層用組成物(19)を用いた他は、実施例1同様にして、帯電防止性ハードコートフィルムを作製し、実施例1と同じ条件で鹸化処理した。
[ハードコート層用組成物(19)]
 帯電防止剤;UV-ASHC-01    25部
 樹脂;G201-P           25部
 樹脂;4-HBA            25部
 溶剤;MEK             100部
 光重合開始剤;イルガキュア184     4部
〔性能評価結果〕
 上記実施例、比較例及び参考例の性能評価結果を表1-1、及び表1-2に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1-1及び表1-2に示す様に、ハードコート層の電離放射線硬化性樹脂を構成する多官能重合性化合物に、前記式[1]で表わされる、イソシアヌル酸骨格を有しアクリロイル基が15官能のウレタン系多官能アクリレート系化合物(オリゴマー)である15官能重合性化合物(U15HA)を用いた実施例1~12(但し実施例6は鹸化処理条件が異なる)は、いずれも、帯電防止性、透明性(耐白化、ヘイズ)、及び硬度の全てが良好で、耐鹸化性が満足できるものであった。
 また、多官能重合性化合物を上記15官能重合性化合物単独(実施例2)ではなく、他の多官能重合性化合物のオリゴマーも併用した場合(実施例1、及び実施例3~実施例12)でも、耐鹸化性は満足できるものであった。
 また、帯電防止剤に別の高分子型の第四級アンモニウム塩で分子量1,000以上で50,000以下の物を用いた実施例8及び実施例9でも、耐鹸化性は満足できるものであった。
 一方、ハードコート層の電離放射線硬化性樹脂を構成する重合性化合物に、前記15官能重合性化合物を、5官能でヒドロキシル基を1個有するジペンタエリスリトールペンタアクリレート(DPPA)に変更した、比較例1~比較例4は、いずれも、帯電防止性、透明性(耐白化、ヘイズ)の全てが鹸化処理前は良好だが、鹸化処理後は全てが不良となった。また、これらの比較例は硬度が鹸化処理で3HからHに低下した。興味深いことには、これらの全ての比較例が、鹸化処理前では、帯電防止性能が全ての実施例に比べて表面抵抗率が小さく、表面抵抗率的には各実施例よりも良いにも拘らず、鹸化処理後は悪化する事実である。一方、15官能重合性化合物を用いた本発明による実施例では、鹸化処理前はこれら比較例程の表面抵抗率ではないが、鹸化処理後も良好な性能を維持する。これは、前記図2及び図3を参照して説明した、帯電防止剤の表面近傍での分布が、本発明ではハードコート層の最表面では帯電防止剤の濃度が小さくなり、樹脂が帯電防止剤を被覆しているとした推測を、裏付けているデータと言える。
 また、低屈折率層には、ヒドロキシル基を有さない多官能重合性化合物として、3官能のトリメチロールプロパントリアクリレート(TMPTA)を用い、ヒドロキシル基を有する重合性化合物は用いなかったため、低屈折率層も耐鹸化性が得られていた。
 樹脂には各実施例と同じU15HAを用いてあるが、ハードコート中の帯電防止剤が高分子型だが所定の分子量範囲を超えている比較例6は、鹸化処理前から帯電防止性が各実施例及び比較例に比べて高い表面抵抗率を示し不良であった。ただ、比較例6は、透明性(耐白化、ヘイズ)、及び硬度は鹸化処理前及び処理後共に良好となった。
 樹脂には各実施例と同じU15HAを用いてあるが、ハードコート中の帯電防止剤が所定の分子量範囲未満の(低分子型の)比較例7は、鹸化処理前は帯電防止性が各実施例及び比較例に比べてより低い表面抵抗率を示し良好だが、鹸化処理後は不良となった。また、比較例7は、透明性(耐白化、ヘイズ)は鹸化処理前から不良となった。ただ、硬度が鹸化処理前からHではあるが鹸化処理後もこれを維持した。
 ただ、樹脂には各実施例と同じU15HAを用いてあるが、ハードコート中の帯電防止剤の含有量が更に多すぎた比較例8は、鹸化処理前は帯電防止性が各実施例及び比較例に比べてより低い表面抵抗率を示し良好だが、鹸化処理後は不良となった。また、比較例8は、透明性(耐白化、ヘイズ)は鹸化処理前から不良となった。ただ、硬度が鹸化処理前からHではあるが鹸化処理後もこれを維持した。
 また、帯電防止剤は実施例1~7と同じであるが、ハードコート層の樹脂にU15HAを用いずに、ヒドロキシル基を有するアクリレート系モノマーを用いた比較例9は、透明性(耐白化、ヘイズ)は鹸化処理前及び処理後共に良好であったが、帯電防止性が鹸化処理後に不良となった。また、この比較例9では硬度が鹸化処理前の3Hを鹸化処理後も維持した。
 なお、ハードコート層中に帯電防止剤を含有させなかった比較例5は、透明性(耐白化、ヘイズ)には耐鹸化性があるが、当然に帯電防止性が不良となった。
1   透明基材フィルム
2   ハードコート層
3   低屈折率層
4   偏光子
5   保護フィルム
As  帯電防止剤
Pf  ハードコート層側の面
Ph  ハードコート層の最表面
Pr  透明基材フィルム側の面
10  帯電防止性ハードコートフィルム
20  偏光板

Claims (4)

  1.  トリアセチルセルロースからなる透明基材フィルムと、前記透明基材フィルムの一方の面に設けられ、第四級アンモニウム塩を含有する帯電防止剤及び多官能重合性化合物を含む電離放射線硬化性樹脂の硬化物層からなるハードコート層とを備える、帯電防止性ハードコートフィルムであって、
     上記第四級アンモニウム塩が、第四級アンモニウム塩基を有する、重量平均分子量が1,000~50,000の高分子型の帯電防止剤であり、
     上記多官能重合性化合物が、下記式[1]で表わされ、イソシアヌル酸骨格を有する、(メタ)アクリロイル基が15官能のウレタン系多官能アクリレート系化合物である、帯電防止性ハードコートフィルム。
    Figure JPOXMLDOC01-appb-C000001
    (式[1]中、Acは(メタ)アクリロイル基であり、R-(Ac)はジペンタエリスリトールが有する6個のヒドロキシル基のうち5個のヒドロキシル基の水素原子が(メタ)アクリロイル基Acで置き換わった5官能(メタ)アクリレート基である。)
  2.  前記ハードコート層の表面に形成された低屈折率層をさらに備えている、請求項1記載の帯電防止性ハードコートフィルム。
  3.  請求項1又は2に記載の帯電防止性ハードコートフィルムと、
     前記帯電防止性ハードコートフィルムにおける透明基材フィルム側の面に積層された偏光子とを備える、偏光板。
  4.  ディスプレイパネルと、
     前記ディスプレイパネルの観察者側に設けられた、請求項1又は2に記載の帯電防止性ハードコートフィルム、又は、請求項3に記載の偏光板とを備える、画像表示装置。
PCT/JP2012/072055 2011-09-06 2012-08-30 帯電防止性ハードコートフィルム、偏光板及び画像表示装置 WO2013035627A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137030078A KR101747488B1 (ko) 2011-09-06 2012-08-30 대전 방지성 하드 코트 필름, 편광판 및 화상 표시 장치
CN201280033030.1A CN103635834B (zh) 2011-09-06 2012-08-30 抗静电性硬涂膜、偏振片和图像显示装置
JP2013532561A JP5988174B2 (ja) 2011-09-06 2012-08-30 帯電防止性ハードコートフィルム、偏光板及び画像表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011193523 2011-09-06
JP2011-193523 2011-09-06

Publications (1)

Publication Number Publication Date
WO2013035627A1 true WO2013035627A1 (ja) 2013-03-14

Family

ID=47832074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072055 WO2013035627A1 (ja) 2011-09-06 2012-08-30 帯電防止性ハードコートフィルム、偏光板及び画像表示装置

Country Status (5)

Country Link
JP (1) JP5988174B2 (ja)
KR (1) KR101747488B1 (ja)
CN (1) CN103635834B (ja)
TW (1) TWI523760B (ja)
WO (1) WO2013035627A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5667080B2 (ja) * 2009-11-30 2015-02-12 株式会社タムラ製作所 硬化性組成物、その硬化物及びその用途
JP2016148825A (ja) * 2015-02-09 2016-08-18 大日本印刷株式会社 光学フィルム、これを備えた偏光板、液晶パネル、画像表示装置
WO2018221618A1 (ja) * 2017-05-31 2018-12-06 富士フイルム株式会社 平版印刷版原版、及び、平版印刷版の作製方法
JPWO2020145297A1 (ja) * 2019-01-09 2021-12-16 富士フイルム株式会社 偏光板、液晶表示装置、有機電界発光装置
WO2022168660A1 (ja) * 2021-02-05 2022-08-11 住友化学株式会社 積層体
US11971567B2 (en) 2020-10-21 2024-04-30 Dai Nippon Printing Co., Ltd. Optical film, polarizing plate, image display device, and optical film selection method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6140066B2 (ja) * 2013-12-10 2017-05-31 リンテック株式会社 半導体加工用シート
CN105295082B (zh) * 2014-07-25 2018-10-02 大日本印刷株式会社 多层基材及图像显示装置
DE102015008336A1 (de) * 2015-06-23 2016-12-29 Island Polymer Industries Gmbh Hochtransparente beschichtete Cellulosetriacetatfolie und Anlösemedium
CN115477781B (zh) * 2021-06-16 2023-07-25 宁波安特弗新材料科技有限公司 一种折叠屏用硬涂膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009086660A (ja) * 2007-09-12 2009-04-23 Dainippon Printing Co Ltd 光学積層体、その製造方法、偏光板及び画像表示装置
WO2009087752A1 (ja) * 2008-01-07 2009-07-16 Soken Chemical & Engineering Co., Ltd. ハードコート層形成用樹脂組成物
JP2012141459A (ja) * 2010-12-28 2012-07-26 Fujifilm Corp ハードコート層形成用組成物、光学フィルム、光学フィルムの製造方法、偏光板、及び画像表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256035A (ja) * 2000-12-25 2002-09-11 Dow Corning Toray Silicone Co Ltd ビニル系共重合体エマルジョンおよび塗料添加剤
JP3924154B2 (ja) * 2001-11-12 2007-06-06 東レ・ダウコーニング株式会社 有機樹脂用添加剤、それを含有する硬化性有機樹脂組成物、およびその硬化物
US20070212498A1 (en) * 2006-02-24 2007-09-13 Fujifilm Corporation Optical film, antireflection film, polarizing plate, display apparatus and method for manufacturing optical film
JP2011048358A (ja) * 2009-07-31 2011-03-10 Fujifilm Corp 反射防止フィルム、偏光板、及び画像表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009086660A (ja) * 2007-09-12 2009-04-23 Dainippon Printing Co Ltd 光学積層体、その製造方法、偏光板及び画像表示装置
WO2009087752A1 (ja) * 2008-01-07 2009-07-16 Soken Chemical & Engineering Co., Ltd. ハードコート層形成用樹脂組成物
JP2012141459A (ja) * 2010-12-28 2012-07-26 Fujifilm Corp ハードコート層形成用組成物、光学フィルム、光学フィルムの製造方法、偏光板、及び画像表示装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5667080B2 (ja) * 2009-11-30 2015-02-12 株式会社タムラ製作所 硬化性組成物、その硬化物及びその用途
JP2016148825A (ja) * 2015-02-09 2016-08-18 大日本印刷株式会社 光学フィルム、これを備えた偏光板、液晶パネル、画像表示装置
WO2018221618A1 (ja) * 2017-05-31 2018-12-06 富士フイルム株式会社 平版印刷版原版、及び、平版印刷版の作製方法
CN110719847A (zh) * 2017-05-31 2020-01-21 富士胶片株式会社 平版印刷版原版及平版印刷版的制作方法
JPWO2018221618A1 (ja) * 2017-05-31 2020-03-19 富士フイルム株式会社 平版印刷版原版、及び、平版印刷版の作製方法
CN110719847B (zh) * 2017-05-31 2021-08-31 富士胶片株式会社 平版印刷版原版及平版印刷版的制作方法
US11331900B2 (en) 2017-05-31 2022-05-17 Fujifilm Corporation Lithographic printing plate precursor and method for producing lithographic printing plate
JPWO2020145297A1 (ja) * 2019-01-09 2021-12-16 富士フイルム株式会社 偏光板、液晶表示装置、有機電界発光装置
JP7335900B2 (ja) 2019-01-09 2023-08-30 富士フイルム株式会社 偏光板、液晶表示装置、有機電界発光装置
US11971567B2 (en) 2020-10-21 2024-04-30 Dai Nippon Printing Co., Ltd. Optical film, polarizing plate, image display device, and optical film selection method
WO2022168660A1 (ja) * 2021-02-05 2022-08-11 住友化学株式会社 積層体

Also Published As

Publication number Publication date
KR20140057484A (ko) 2014-05-13
TWI523760B (zh) 2016-03-01
JP5988174B2 (ja) 2016-09-07
TW201315596A (zh) 2013-04-16
KR101747488B1 (ko) 2017-06-14
JPWO2013035627A1 (ja) 2015-03-23
CN103635834B (zh) 2015-09-30
CN103635834A (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5988174B2 (ja) 帯電防止性ハードコートフィルム、偏光板及び画像表示装置
JP5359137B2 (ja) 光学積層体、その製造方法、偏光板及び画像表示装置
KR100926504B1 (ko) 하드코트층을 구비한 플라스틱 시트 및 하드코팅 조성물
US8715784B2 (en) Method of producing optical layered body, optical layered body, polarizer and image display device
JP5954173B2 (ja) 光学積層体、偏光板及び画像表示装置
JP2015069197A (ja) ハードコートフィルム及び画像表示装置
WO2007105394A1 (ja) 帯電防止性ハードコートフィルム
JP2012053178A (ja) 防眩性帯電防止ハードコートフィルム及び偏光板
JP2007058204A (ja) 防眩ハードコートフィルム、及びそれを用いた表示装置
JP6330881B2 (ja) 反射防止フィルムの耐鹸化性を改善する方法
KR101772232B1 (ko) 방현성 하드 코트 필름 및 그것을 이용한 편광판
JP2004182765A (ja) ハードコートフィルム
TWI541530B (zh) Anti-reflective film, polarizer and image display device
JP2015132744A (ja) アンチグレアフィルム
JP2006343630A (ja) 防眩フィルム
JP7229833B2 (ja) 成型用積層フィルム
JP2011081120A (ja) 反射防止フィルム
JP2010160464A (ja) 帯電防止ハードコートフィルム及び帯電防止ハードコートフィルムを有する偏光板並びにディスプレイ
JP2016164622A (ja) 反射防止層用組成物および反射防止基板の製造方法
JP2006175783A (ja) 防眩性積層体及び表示装置
JP7480532B2 (ja) フィルム及び積層体
JP4582305B2 (ja) 反射防止フィルムの製造方法
JP2007008073A (ja) 防眩フィルム
JP2011028074A (ja) 反射防止フィルム
JP2012198340A (ja) 反射防止フィルム、偏光板及び透過型液晶ディスプレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532561

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137030078

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829678

Country of ref document: EP

Kind code of ref document: A1