WO2013008664A1 - ハニカム構造体 - Google Patents

ハニカム構造体 Download PDF

Info

Publication number
WO2013008664A1
WO2013008664A1 PCT/JP2012/066892 JP2012066892W WO2013008664A1 WO 2013008664 A1 WO2013008664 A1 WO 2013008664A1 JP 2012066892 W JP2012066892 W JP 2012066892W WO 2013008664 A1 WO2013008664 A1 WO 2013008664A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
honeycomb structure
electrode body
bodies
silicon carbide
Prior art date
Application number
PCT/JP2012/066892
Other languages
English (en)
French (fr)
Inventor
好雅 大宮
義幸 笠井
和弥 間瀬
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to EP12811944.3A priority Critical patent/EP2732875B1/en
Priority to JP2013523891A priority patent/JP5860465B2/ja
Publication of WO2013008664A1 publication Critical patent/WO2013008664A1/ja
Priority to US14/152,160 priority patent/US9382831B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • B01J35/56
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a honeycomb structure. More particularly, the present invention relates to a honeycomb structure that is a catalyst carrier and also functions as a heater by applying a voltage.
  • a honeycomb structure made of conductive ceramics and having electrodes disposed on both ends is used as a catalyst carrier with a heater (see, for example, Patent Document 3).
  • the power source used for the electric system of the car is commonly used. Therefore, for example, a power supply having a high voltage of 200V is used.
  • a power supply having a high voltage of 200V is used.
  • the metal heater has a low electric resistance, when such a high voltage power source is used, there is a problem that an excessive current flows and the power supply circuit may be damaged.
  • the heater is made of metal, it is difficult to integrate the heater and the catalyst because it is difficult to support the catalyst even if it is processed into a honeycomb structure.
  • the heater-supported catalyst carrier in which the electrodes are disposed at both ends of the honeycomb structure made of conductive ceramics may easily deteriorate the electrodes and increase the resistance value. This is because the electrode is directly exposed to exhaust gas when the catalyst support with a heater is mounted on an automobile and used.
  • the present invention has been made in view of the above-described problems, and provides a honeycomb structure that functions not only as a catalyst carrier but also as a heater when a voltage is applied.
  • the present invention provides the following honeycomb structure.
  • a cylindrical honeycomb structure having a porous partition wall that partitions and forms a plurality of cells extending from one end face to the other end face that serves as a fluid flow path, and an outer peripheral wall located at the outermost periphery;
  • a pair of electrode portions disposed on a side surface of the honeycomb structure portion, wherein the honeycomb structure portion has an electrical resistivity of 1 to 200 ⁇ cm, and each of the pair of electrode portions is a cell of the honeycomb structure portion.
  • Each of the pair of electrode portions is formed of two or more electrode bodies stacked in a radial direction in a cross section perpendicular to the cell extending direction of the honeycomb structure portion, and is formed in a strip shape extending in the extending direction, In the cross section perpendicular to the cell extending direction, one of the electrode portions of the pair of electrode portions is centered on the honeycomb structure portion with respect to the other electrode portion of the pair of electrode portions.
  • the electrode bodies that are disposed closest to the outer peripheral wall side are When one electrode body is used, the area of each of the first electrode bodies on the side surface of the honeycomb structure portion is larger than the area of the other electrode bodies of the two or more electrode bodies. And, in at least one cross section orthogonal to the cell extending direction, the central angle of each of the first electrode bodies is more than the central angle of the other electrode bodies of the two or more electrode bodies. Large honeycomb structure.
  • the central angle of each of the other electrode bodies is an angle corresponding to 5 to 95% of the central angle of each of the first electrode bodies.
  • the central angle of each of the first electrode bodies is larger than the central angle of each of the other electrode bodies.
  • each of the other electrode bodies is a thickness corresponding to 50 to 150% of the thickness of each of the first electrode bodies.
  • the honeycomb structure of the present invention has a honeycomb structure having an electric resistivity of 1 to 200 ⁇ cm. Therefore, even when a current is supplied using a high voltage power source, an excessive current does not flow, and the honeycomb structure can be suitably used as a heater. it can.
  • Each of the pair of electrode portions is formed in a strip shape extending in the cell extending direction of the honeycomb structure portion. Then, in a cross section orthogonal to the cell extending direction, one electrode portion of the pair of electrode portions is disposed on the opposite side of the center of the honeycomb structure portion with respect to the other electrode portion of the pair of electrode portions. ing. For this reason, it is possible to suppress an uneven temperature distribution when a voltage is applied. Furthermore, by adopting the following configurations (a) and (b), it is possible to suppress the concentration of heat generation at specific locations on the side surfaces of the honeycomb structure portion.
  • Each of the pair of electrode parts is composed of two or more electrode bodies stacked in the radial direction in a cross section orthogonal to the cell extending direction of the honeycomb structure part.
  • each electrode body disposed closest to the outer peripheral wall side is defined as a first electrode body.
  • the area of each first electrode body on the side surface of the honeycomb structure portion is larger than the area of the other electrode body among the two or more electrode bodies.
  • the center angle of each first electrode body is larger than the center angle of the other electrode body of each of the two or more electrode bodies.
  • the honeycomb structure of the present invention As described above, according to the honeycomb structure of the present invention, the local temperature rise of the honeycomb structure is suppressed and the honeycomb structure is heated more evenly by dispersing the portions where the heat generation is concentrated in the honeycomb structure. Can be made. Thereby, it can suppress that a crack arises in a honeycomb structure.
  • FIG. 1 is a perspective view schematically showing an embodiment of a honeycomb structure of the present invention.
  • 1 is a front view schematically showing one embodiment of a honeycomb structure of the present invention.
  • 1 is a schematic diagram showing a cross section parallel to a cell extending direction of an embodiment of a honeycomb structure of the present invention.
  • FIG. 1 is a schematic diagram showing a cross section orthogonal to a cell extending direction of an embodiment of a honeycomb structure of the present invention. It is a top view which shows typically an example of a 1st electrode body. It is a top view which shows typically the other example of a 1st electrode body.
  • FIG. 10 is a plan view schematically showing still another example of the first electrode body.
  • FIG. 10 is a plan view schematically showing still another example of the first electrode body.
  • FIG. 10 is a plan view schematically showing still another example of the first electrode body.
  • FIG. 10 is a plan view schematically showing still another example of the first electrode body.
  • FIG. 10 is a plan view schematically showing still another example of the first electrode body.
  • FIG. 10 is a plan view schematically showing still another example of the first electrode body. It is a top view which shows typically an example of a 2nd electrode body. It is a top view which shows typically the other example of a 2nd electrode body.
  • FIG. 10 is a plan view schematically showing still another example of the second electrode body.
  • FIG. 10 is a plan view schematically showing still another example of the second electrode body.
  • FIG. 10 is a plan view schematically showing still another example of the second electrode body.
  • FIG. 6 is a front view schematically showing still another embodiment of the honeycomb structure of the present invention.
  • FIG. 11 is a schematic diagram showing an A-A ′ cross section in FIG. 10.
  • FIG. 6 is a side view schematically showing still another embodiment of the honeycomb structure of the present invention.
  • FIG. 6 is a front view schematically showing still another embodiment of the honeycomb structure of the present invention.
  • FIG. 6 is a schematic view showing a cross section perpendicular to the cell extending direction of still another embodiment of the honeycomb structure of the present invention.
  • honeycomb structure One embodiment of the honeycomb structure of the present invention includes a tubular honeycomb structure portion 4 and a pair of electrode portions 21 disposed on the side surface 5 of the honeycomb structure portion 4, as shown in FIGS. 21 is a honeycomb structure 100.
  • the honeycomb structure portion 4 includes a porous partition wall 1 and an outer peripheral wall 3 located on the outermost periphery.
  • the partition wall 1 partitions and forms a plurality of cells 2 extending from one end surface 11 to the other end surface 12 that serve as fluid flow paths.
  • each electrode portion 21 of the pair of electrode portions 21 and 21 is configured as follows. Hereinafter, the following configuration may be referred to as “electrode configuration A”.
  • Each of the pair of electrode portions 21 and 21 is formed in a strip shape extending in the extending direction of the cells 2 of the honeycomb structure portion 4.
  • each of the pair of electrode parts 21 and 21 is composed of two or more electrode bodies 31 (two in FIG. 1 to FIG. 4) that are stacked in the radial direction in a cross section perpendicular to the extending direction of the cells 2 of the honeycomb structure part 4.
  • two electrode bodies 31a, 31b Two electrode bodies 31a, 31b). And in the cross section orthogonal to the extending direction of the cell 2, one electrode part 21 in the pair of electrode parts 21, 21 is honeycomb structure part 4 with respect to the other electrode part 21 in the pair of electrode parts 21, 21. Are disposed on the opposite side across the center O of the.
  • the electrode portions 21 of the pair of electrode portions 21 and 21 are configured as follows.
  • the following configuration may be referred to as “electrode configuration B”.
  • electrode configuration B the following configuration may be referred to as “electrode configuration B”.
  • first One electrode body 31a the area of each 1st electrode body 31a in the side surface 5 of the honeycomb structure part 4 is larger than the area of the other electrode body 31b of each two or more electrode bodies 31a and 31b.
  • each first electrode body 31a is the center of the other electrode body 31b of the two or more electrode bodies 31a and 31b. It is larger than the angle ⁇ 2 (that is, ⁇ 1> ⁇ 2).
  • the area of the first electrode body 31a means “the area of the surface of the first electrode body 31a that contacts the side surface 5 of the honeycomb structure 4”.
  • the area of the other electrode body 31b among the two or more electrode bodies 31a and 31b” means “the area of the surface of the other electrode body 31b on the first electrode body 31a side”.
  • the “other electrode body 31b” is “an electrode body other than the first electrode body 31a disposed closest to the outer peripheral wall 3”.
  • FIG. 1 is a perspective view schematically showing one embodiment of the honeycomb structure of the present invention.
  • FIG. 2 is a front view schematically showing one embodiment of the honeycomb structure of the present invention.
  • FIG. 3 is a schematic view showing a cross section parallel to the cell extending direction of one embodiment of the honeycomb structure of the present invention.
  • FIG. 4 is a schematic view showing a cross section perpendicular to the cell extending direction of one embodiment of the honeycomb structure of the present invention. In FIG. 4, the partition is omitted.
  • 1 to 4 show an example in which each of the pair of electrode portions is a laminated body in which two electrode bodies are laminated, but each electrode portion has three or more electrode bodies. It may consist of a laminated body in which is laminated.
  • the electrical resistivity of the honeycomb structure portion 4 is 1 to 200 ⁇ cm, even if a current is supplied using a high voltage power source, an excessive current does not flow, which is suitable as a heater. Can be used.
  • the honeycomb structure 100 of the present embodiment employs the above electrode configuration A, it suppresses the uneven temperature distribution of the honeycomb structure portion 4 when a voltage is applied between the pair of electrode portions 21 and 21. can do.
  • honeycomb structure 100 of the present embodiment two or more electrode bodies in which each of the pair of electrode portions 21 and 21 is stacked in the radial direction in a cross section orthogonal to the extending direction of the cells 2 of the honeycomb structure portion 4. 31 is comprised.
  • the honeycomb structure 4 can be heated more uniformly by forming each of the pair of electrode portions 21 and 21 as a laminate of two or more electrode bodies 31. .
  • each of the pair of electrode portions 21 and 21 is in the form of a single conductive film, in the cross section perpendicular to the cell 2 extending direction of the honeycomb structure 100, the pair of electrode portions 21 and 21 A current may flow intensively from the vicinity of both side edge portions to the honeycomb structure portion 4. When the current flows in a concentrated manner in this way, the amount of heat generated at that part increases. When the amount of electric power supplied to the honeycomb structure 100 is constant, if a specific part is partially heated as described above, the entire honeycomb structure 100 may not be sufficiently heated. .
  • Partial temperature distribution may occur.
  • the excessive increase in the temperature of the portion where the current flows intensively as described above is expected that the temperature of the other portion is not sufficiently increased, and the exhaust gas purification performance of the honeycomb structure 100 is expected. (Emission performance) may be reduced.
  • each of the pair of electrode portions 21 and 21 is a stacked body of two or more electrode bodies 31.
  • the electrode configuration B is employed. It is preferable that the “other electrode bodies” of the two or more electrode bodies 31a and 31b are arranged in a region where the “first electrode body” is arranged.
  • the electrode body disposed on the upper layer side is accommodated in the region where the “electrode body disposed on the lower layer side” is disposed (that is, the upper layer side
  • Each electrode body is preferably disposed without protruding from the lower electrode body).
  • the other electrode body disposed on the surface of the first electrode body 31a may be referred to as a “second electrode body 31b”.
  • This configuration makes it possible to disperse a concentrated current flow in each electrode part. That is, by forming an electrode portion from a laminate of two or more electrode bodies having the above-mentioned area and central angle, the side edge portions of the first electrode body and the side edge portions of the other electrode bodies are matched. Instead, the side edge of each electrode body is shifted. For this reason, the base point (namely, side edge part of each electrode body) where an electric current concentrates increases, and the location where an electric current concentrates can be disperse
  • the electrode portion 21 is formed of an electrode body 31 having a two-layer structure of a first electrode body 31a and a second electrode body 31b.
  • the location where an electric current concentrates can be disperse
  • the current flows more uniformly with respect to the honeycomb structure portion 4.
  • the honeycomb structure 100 can be heated well (in other words, efficiently) with a constant amount of power. At the same time, local temperature rise can be suppressed. Thereby, the maximum temperature at the time of heat_generation
  • the exhaust gas purification performance (emission performance) of the honeycomb structure 100 can be improved.
  • one electrode portion 21 in the pair of electrode portions 21, 21 has a honeycomb structure portion relative to the other electrode portion 21 in the pair of electrode portions 21, 21.
  • “Arranged on the opposite side across the center 4” means the following configuration.
  • a line segment connecting the center point of one electrode portion 21 and the center O of the honeycomb structure portion 4 in a cross section orthogonal to the cell extending direction is referred to as “line segment P”.
  • a line segment connecting the center point of the other electrode part 21 and the center O of the honeycomb structure part 4 in the cross section orthogonal to the cell extending direction is referred to as “line segment Q”.
  • the center point of one electrode part 21 and the other electrode part 21 is a center point in the circumferential direction of the honeycomb structure part 4.
  • the “opposite side across the center O of the honeycomb structure 4” is a positional relationship in which the angle ⁇ formed by the line segment P and the line segment Q is in the range of 170 ° to 190 °. Means. Therefore, in the above-described configuration, the pair of electrode portions 21 and 21 are disposed in a positional relationship that satisfies the range of the angle ⁇ .
  • the material of the partition walls 1 and the outer peripheral wall 3 is preferably a silicon-silicon carbide composite material or a silicon carbide material as a main component, and a silicon-silicon carbide composite material or More preferably, it is a silicon carbide material.
  • the material of the partition wall 1 and the outer peripheral wall 3 is mainly composed of a silicon-silicon carbide composite material or a silicon carbide material
  • the partition wall 1 and the outer peripheral wall 3 are formed of a silicon-silicon carbide composite material or carbonized carbon. It means that 90% by mass or more of the silicon material is contained.
  • the electrical resistivity of the honeycomb structure portion can be set to 1 to 200 ⁇ cm.
  • the silicon-silicon carbide composite material contains silicon carbide particles as an aggregate and silicon as a binder for bonding the silicon carbide particles.
  • this silicon-silicon carbide composite material it is preferable that a plurality of silicon carbide particles are bonded by silicon so as to form pores between the silicon carbide particles.
  • the silicon carbide material is obtained by sintering silicon carbide particles.
  • the electrical resistivity of the honeycomb structure part is a value at 400 ° C.
  • a pair of electrode portions 21 and 21 are disposed on the side surface 5 of the honeycomb structure portion 4 (the surface of the outer peripheral wall 3).
  • the honeycomb structure 100 of the present embodiment generates heat when a voltage is applied between the pair of electrode portions 21 and 21.
  • the applied voltage is preferably 12 to 900V, and more preferably 64 to 600V.
  • each of the pair of electrode portions 21 and 21 has two or more electrode bodies 31 (in a radial direction in a cross section orthogonal to the extending direction of the cells 2 of the honeycomb structure portion 4 ( In FIG. 1 to FIG. 4, it consists of two layers of electrode bodies 31a, 31b). And the area of each 1st electrode body 31a in the side surface 5 of the honeycomb structure part 4 is larger than the area of the other electrode body 31b of each two or more electrode bodies 31a and 31b. Furthermore, in at least one cross section orthogonal to the extending direction of the cell 2, the central angle ⁇ 1 of each first electrode body 31a is the center of the other electrode body 31b of the two or more electrode bodies 31a and 31b. It is larger than the angle ⁇ 2.
  • the central angle of the other electrode body 31b is the first electrode in which the other electrode body 31b is laminated in at least one cross section orthogonal to the extending direction of the cells 2.
  • An angle corresponding to 5 to 95% of the central angle of the body 31a is preferable.
  • the center angle of the other electrode body 31b is more preferably an angle corresponding to 25 to 95% of the center angle of the first electrode body, and particularly preferably an angle corresponding to 50 to 90%. .
  • the central angle of the n + 1 layer is 5 to 95% of the central angle of the nth layer. It is preferable that the angle corresponds to.
  • each of the pair of electrode portions 21 and 21 is a laminate of two electrode bodies, a first electrode body 31a and a second electrode body 31b. It is formed.
  • the central angle ⁇ 1 of the first electrode body 31a is preferably 40 to 140 °, more preferably 60 to 120 °, and more preferably 80 to 100. It is particularly preferable that the angle is.
  • the central angle of the electrode body 31 (for example, the central angle ⁇ 1 of the first electrode body 31a)” is, as shown in FIG. 4, in the cross section perpendicular to the extending direction of the cell 2, This is an angle formed by two line segments connecting the center O of the honeycomb structure part 4. That is, in the cross section perpendicular to the extending direction of the cell 2, “electrode body 31”, “line segment connecting one side edge of the electrode body 31 and the center O”, and “other side edge of the electrode body 31” This is the inner angle of the portion of the center O in the shape (for example, a fan shape) formed by the “line segment connecting the center O”.
  • the central angle ⁇ 1 of the first electrode body 31a is larger than the central angle ⁇ 2 of the other electrode body 31b, at least one location in the cell 2 extending direction (ie, And at least one cross section perpendicular to the extending direction of the cell 2).
  • the central angle ⁇ 1 of each first electrode body 31a is the center of each other electrode body 31b. It is preferably larger than the angle ⁇ 2.
  • the range in which the central angle ⁇ 1 of the first electrode body 31a is larger is more preferably 60 to 100%, and still more preferably 80 to 100% of the length in the cell 2 extending direction.
  • the central angle ⁇ 1 of each first electrode body 31a is larger than the central angle ⁇ 2 of each other electrode body 31b.
  • a large size is particularly preferred. That is, it is particularly preferable that the central angle ⁇ 1 of each first electrode body 31a is larger than the central angle ⁇ 2 of each other electrode body 31b in all cross sections orthogonal to the cell extending direction.
  • the width of each electrode body 31a, 31b may be constant in the extending direction of the cell 2 or may be different.
  • the “width of the electrode body” refers to the length from one side edge of the electrode body to the other side edge, that is, the length in the circumferential direction of the honeycomb structure portion.
  • the “angle ⁇ that is 0.5 times the central angle ⁇ ” of the one electrode portion 21 is 0.8 to 0.8 with respect to the “angle ⁇ that is 0.5 times the central angle ⁇ ” of the other electrode portion 21.
  • the size is preferably 1.2 times, and more preferably 1.0 times (that is, the same size).
  • each of the electrode portions 21 and 21 of the honeycomb structure 100 of the present embodiment two or more electrode bodies 31a and 31b are arranged on the outer periphery of the cylindrical shape of the honeycomb structure portion 4. It is formed by laminating in a state of being curved along.
  • the shape of each curved electrode body 31 when it is deformed so as to be a planar member that is not curved is referred to as the “planar shape” of each electrode body 31.
  • Each electrode body 31 is, for example, the first electrode body 31a and the second electrode body 31b.
  • the “planar shape” of the first electrode body 31a and the second electrode body 31b shown in FIGS. 1 to 4 is a rectangle.
  • the outer peripheral shape of the electrode body means “the outer peripheral shape in the planar shape of each electrode body”.
  • the “planar shape” and “peripheral shape” of the electrode portion are “planar shape” and “peripheral shape” of the electrode body in a laminated state unless otherwise specified.
  • the “planar shape” and “peripheral shape” of the electrode portion are The first electrode body has the same shape as the “planar shape” and the “peripheral shape”.
  • each electrode body 31a, 31b is rectangular.
  • the outer peripheral shape of the electrode part is a shape that is formed in a strip shape extending in the cell extending direction
  • the outer peripheral shape of each electrode body is other than the rectangle described above. Other shapes may be used.
  • the outer peripheral shape of the first electrode body 31a is not limited to the “rectangular shape” as shown in FIG. 5A.
  • a shape in which rectangular corners are formed in a curved shape may be used.
  • the outer peripheral shape of the first electrode body 31a may be “a shape in which rectangular corners are chamfered linearly”.
  • the outer peripheral shape of the first electrode body 31a may be a combined application of “curve shape” and “linear shape”.
  • the combined application of “curved” and “straight” means that at least one of the corners is a “curved shape” in a rectangle, and at least one of the corners is “linearly”. It is a shape that is a “chamfered shape”.
  • FIG. 5A is a plan view schematically showing an example of the first electrode body.
  • FIG. 5B is a plan view schematically showing another example of the first electrode body.
  • symbol I in FIG. 5A and 5B shows the direction where a cell is extended.
  • the outer peripheral shape of the first electrode body 31a is “a shape in which rectangular corners are formed in a curved shape” or “a shape in which rectangular corners are chamfered in a straight line”,
  • the thermal shock resistance of the honeycomb structure can be further improved.
  • the corner portion of the first electrode body 31a is a right angle
  • the stress in the vicinity of the “corner portion of the first electrode body” in the honeycomb structure portion tends to be relatively higher than the other portions. It is in.
  • the corners of the first electrode body are curved or chamfered in a straight line, the stress in the vicinity of the “corners of the first electrode body” in the honeycomb structure can be reduced. Become.
  • the outer peripheral shape of the first electrode body 31a may be a “hexagon” as shown in FIGS. 5C and 5D.
  • FIG. 5C shows a case where the first electrode body 31a having a hexagonal outer peripheral shape has a hexagonal shape with an inner angle of less than 180 °.
  • FIG. 5D shows a case where the outer peripheral shape is a hexagonal first electrode body 31a having a hexagonal shape in which the inner angles of two opposing corners exceed 180 °.
  • 5C and 5D are plan views schematically showing still another example of the first electrode body.
  • first electrode body 31a for example, a “net-like (mesh)” electrode body as shown in FIG. 5E may be used.
  • the first electrode body 31a shown in FIG. 5E has an outer peripheral shape “a shape in which rectangular corners are formed in a curved line shape”, and has a grid mesh (mesh) in a direction oblique to the cell extending direction I. ) Are electrode bodies configured to be aligned.
  • an electrode body having a “shape in which dot-like voids (holes) are formed in the electrode body” as shown in FIG. 5F may be used.
  • the first electrode body 31a for example, "a shape in which a part of a side parallel to the cell extending direction I among the sides constituting the outer peripheral shape of the first electrode body is bound inside" It may be.
  • the first electrode body 31a shown in FIG. 5G has a side (side) parallel to the cell extending direction of the electrode body in which the outer peripheral shape is “a shape in which rectangular corners are curved.” An example in the case where each of the three positions of the edges is cut out in an arc shape is shown.
  • the first electrode body 31a shown in FIG. 5G has a shape in which three portions (side edges) parallel to the cell extending direction of the electrode body are bound inside.
  • FIGS. 5E to 5G are plan views schematically showing still other examples of the first electrode body.
  • the other electrode body disposed in the upper layer than the first electrode body.
  • the other electrode body has an area smaller than that of the first electrode body, and when arranged on the first electrode body, at least one electrode body orthogonal to the cell extending direction. In the cross section, the central angle of the other electrode body is smaller than the central angle of the first electrode body.
  • the second electrode body is taken as an example of the other electrode body, and the outer peripheral shape and the like of the other electrode body (in other words, the second electrode body) will be described.
  • the outer peripheral shape of the second electrode body 31b include a “rectangle” as shown in FIG. 6A and a “shape in which corners of the rectangle are formed in a curved shape” as shown in FIG. 6B.
  • the outer peripheral shape of the second electrode body 31b may be “a shape in which rectangular corners are chamfered linearly”.
  • the outer peripheral shape of the second electrode body 31b may be a combined application of “curve shape” and “linear shape”.
  • FIG. 6A is a plan view schematically showing an example of the second electrode body.
  • FIG. 6B is a plan view schematically showing another example of the second electrode body.
  • symbol I in FIG. 5A and 5B shows the direction where a cell is extended.
  • the second electrode body 31b for example, a “net-like (mesh)” electrode body as shown in FIG. 6C may be used.
  • an electrode body having a “shape in which dot-like voids (holes) are formed in the electrode body” may be used.
  • the first electrode body 31a and the second electrode body 31b are both “net-like (mesh)” or “dot-shaped voids (holes) formed” electrode bodies.
  • the first electrode body 31a and the second electrode body 31b may have the same or different pattern of meshes or dots.
  • the second electrode body 31b is disposed so as to leave a gap in the first electrode body 31a. May be.
  • the “void portion of the first electrode body 31a” is a void formed by a mesh or a dot.
  • the gap portion of the second electrode body 31b may be narrow (for example, the mesh is fine), and the gap portion of the first electrode body 31a may be reduced by the second electrode body 31b.
  • the electrode body of the second layer or more has a smaller gap (in other words, a lower aperture ratio) than the first electrode body 31a. Excellent performance.
  • the second electrode body 31b has, for example, a shape in which a part of the side parallel to the cell extending direction I of the sides constituting the outer peripheral shape of the second electrode body is bound inside. May be.
  • the second electrode body 31b shown in FIG. 6E is a side (side) parallel to the cell extending direction of the electrode body in which the outer peripheral shape is “a shape in which rectangular corners are curved.” An example in the case where each of the three positions of the edges is cut out in an arc shape is shown.
  • FIGS. 6C to 6E are plan views schematically showing other examples of the second electrode body.
  • first electrode bodies 31a having the respective outer peripheral shapes as shown in FIGS. 5A to 5G are referred to as “first electrode bodies A to G”, and the respective outer peripheral shapes as shown in FIGS. 6A to 6E are used.
  • the second electrode bodies 31b are referred to as “second electrode bodies A to E”, respectively.
  • the first electrode body 31a shown in FIG. 5A becomes the “first electrode body A”
  • the second electrode body 31b shown in FIG. 6A becomes the “second electrode body A”.
  • preferable electrode body combinations include the following combinations.
  • first electrode body A all of the second electrode bodies A to E can be suitably combined.
  • about the 1st electrode body B the combination with either of the 2nd electrode bodies B and E is preferable.
  • about the 1st electrode body C the combination with either of the 2nd electrode bodies B and E is preferable.
  • about the 1st electrode body D the combination with either of the 2nd electrode bodies B and E is preferable.
  • about the 1st electrode body E the combination with either of the 2nd electrode bodies B and C is preferable.
  • the 1st electrode body F the combination with either of the 2nd electrode bodies B and D is preferable.
  • about the 1st electrode body G the combination with either of the 2nd electrode bodies B and E is preferable.
  • FIG. 7A shows an electrode portion 21 in which the first electrode body B (first electrode body 31a) and the second electrode body B (second electrode body 31b) are combined.
  • FIG. 7B shows an electrode portion 21 in which the first electrode body C (first electrode body 31a) and the second electrode body B (second electrode body 31b) are combined.
  • FIG. 7C shows an electrode portion 21 that combines the first electrode body D (first electrode body 31a) and the second electrode body B (second electrode body 31b).
  • FIG. 7D shows an electrode portion 21 in which the first electrode body G (first electrode body 31a) and the second electrode body B (second electrode body 31b) are combined.
  • FIG. 7E shows an electrode portion 21 in which the first electrode body E (first electrode body 31a) and the second electrode body B (second electrode body 31b) are combined.
  • FIG. 7F shows an electrode portion 21 in which the first electrode body F (first electrode body 31a) and the second electrode body B (second electrode body 31b) are combined.
  • FIG. 7G shows an electrode portion 21 in which the first electrode body E (first electrode body 31a) and the second electrode body C (second electrode body 31b) are combined.
  • FIG. 7H shows an electrode portion 21 in which the first electrode body B (first electrode body 31a) and the second electrode body C (second electrode body 31b) are combined.
  • FIG. 7I shows an electrode portion 21 in which a first electrode body F (first electrode body 31a) and a second electrode body D (second electrode body 31b) are combined.
  • FIG. 7J shows an electrode portion 21 in which the first electrode body B (first electrode body 31a) and the second electrode body E (second electrode body 31b) are combined.
  • FIG. 7G and FIG. 7I the boundary part of the 1st electrode body 31a and the 2nd electrode body 31b is shown with the broken line.
  • the outer peripheral shape of the second electrode body is “the direction in which the cell extends through the center of gravity of the planar shape of the first electrode body” Further, the shape may be symmetrical with respect to a “center line that bisects the area of the first electrode body”. In addition, the outer peripheral shape of the second electrode body described above is “a center line that passes through the center of gravity of the planar shape of the first electrode body and bisects the area of the first electrode body in the cell extending direction”. On the other hand, the shape may be asymmetric. A symmetrical shape is preferred. With such a shape, the current is evenly distributed from side to side.
  • the electrical resistivity of each of the two or more electrode bodies constituting the pair of electrode portions is equal to the electrical resistivity of each first electrode body.
  • a value corresponding to 5 to 100% of the above is preferable.
  • the electrical resistivity of the other electrode bodies is more preferably a value corresponding to 10 to 90% of the electrical resistivity of each first electrode body, and a value corresponding to 50 to 90%. Is particularly preferred.
  • the exhaust gas purification performance (emission performance) of the honeycomb structure 100 can be improved.
  • the electrical resistivity of the other electrode body is less than 5% or more than 100% of the electrical resistivity of the first electrode body, the current flow from the electrode part to the honeycomb structure part is difficult to disperse. .
  • the first electrode body preferably has an electrical resistivity of 0.01 to 100 ⁇ cm. Further, the electrical resistivity of the first electrode body is more preferably 0.1 to 10 ⁇ cm, and particularly preferably 0.6 to 5 ⁇ cm. By setting the electrical resistivity of the first electrode body in such a range, the pair of electrode portions 21 and 21 effectively serve as electrodes in the pipe through which the high-temperature exhaust gas flows. If the electrical resistivity of the first electrode body is smaller than 0.01 ⁇ cm, the temperature of the honeycomb structure near the both side edges of the first electrode body may easily rise in the cross section orthogonal to the cell extending direction. . If the electrical resistivity of the first electrode body is greater than 100 ⁇ cm, it may be difficult to play a role as an electrode because current hardly flows.
  • the electrical resistivity of the first electrode body is a value at 400 ° C.
  • the electrode part 21 may be composed of a central part 21X and expansion parts 21Y and 21Y as in the honeycomb structure 400 shown in FIGS. preferable. And it is preferable that the electrical resistivity of the center part 21X of the electrode part 21 is smaller than the electrical resistivity of the extended parts 21Y and 21Y of the electrode part 21.
  • the central portion 21 ⁇ / b> X is a central portion in the circumferential direction of the electrode portion 21 in a cross section orthogonal to the extending direction of the cells 2.
  • the extended portions 21Y and 21Y are portions located on both sides in the circumferential direction of the central portion 21X in a cross section orthogonal to the extending direction of the cells 2.
  • FIG. 13 is a front view schematically showing another embodiment of the honeycomb structure of the present invention.
  • FIG. 14 is a schematic view showing a cross section perpendicular to the cell extending direction of another embodiment of the honeycomb structure of the present invention. In FIG. 13 and FIG. 14, the laminated structure of the first electrode body and the second electrode body is omitted and the electrode portions are shown.
  • the electrical resistivity of the central portion 21X is preferably 0.0001 to 70%, more preferably 0.001 to 50%, and particularly preferably 0.001 to 10% of the electrical resistivity of the extended portions 21Y and 21Y. If it is less than 0.0001%, the flow of current in the outer peripheral direction in the cross section perpendicular to the central axis of the honeycomb structure portion becomes small, and the deviation in temperature distribution may become large. If it is larger than 70%, the effect of suppressing the uneven temperature distribution of the honeycomb structure 400 may be reduced.
  • the Young's modulus of the electrode portion 21 is preferably 2 to 50 GPa, more preferably 3 to 45 GPa, and particularly preferably 3 to 35 GPa.
  • the Young's modulus of the electrode part 21 is preferably 2 to 50 GPa, more preferably 3 to 45 GPa, and particularly preferably 3 to 35 GPa.
  • the Young's modulus of the electrode part is a value measured by a bending resonance method in accordance with JIS R1602. As a test piece used for measurement, after a plurality of sheets made of electrode part forming raw materials for forming an electrode part were stacked to obtain a laminate, the laminate was dried and cut into a size of 3 mm ⁇ 4 mm ⁇ 40 mm. Use things.
  • the total heat capacity of the pair of electrode portions is preferably 2 to 150% of the heat capacity of the entire outer peripheral wall.
  • stored in an electrode part decreases and the thermal shock resistance of a honeycomb structure further improves. Therefore, when the honeycomb structure is used by being mounted on an exhaust system of an internal combustion engine, it is possible to suppress the generation of a large stress in the honeycomb structure portion even if there is a sudden temperature change.
  • the total heat capacity of the pair of electrode portions is more preferably less than or equal to the heat capacity of the entire outer peripheral wall (that is, 2 to 100%), and particularly preferably smaller than the heat capacity of the entire outer peripheral wall.
  • the sum of the heat capacities of the pair of electrode portions is a value derived by a heat capacity calculation method that takes into account the porosity, the specific gravity of the material, and the specific heat based on the volume of the electrode portions.
  • the “volume of the electrode part” is the volume of the electrode part calculated using the average thickness of the electrode part and the electrode angle (center angle ⁇ in FIG. 3) measured with an optical microscope.
  • the heat capacity of the entire outer peripheral wall is a value derived by a heat capacity calculation method that takes into account the porosity, the specific gravity of the material, and the specific heat based on the volume of the outer peripheral wall.
  • the “volume of the outer peripheral wall” is the volume of the outer peripheral wall calculated using the average thickness of the outer peripheral wall measured with an optical microscope.
  • the area of the side surface of the honeycomb structure portion where the electrode portion is disposed is referred to as “electrode portion disposed area”.
  • a cylinder that is coaxial with the honeycomb structure part and divides the electrode part is assumed, and a divided surface of the electrode part divided into the cylinder is defined as a virtual divided surface.
  • the area of this virtual division plane is referred to as “virtual division area”.
  • a portion where the “virtual divided area” is 90% or more of the “arrangement area of the electrode portion” is defined as an “electrode portion”. That is, in calculating the “heat capacity of the electrode part” in the present specification, a part where the “virtual divided area” is less than 90% of the “arrangement area of the electrode part” is not an electrode part.
  • the total heat capacity of the pair of electrode portions is smaller than the heat capacity of the entire outer peripheral wall
  • the total heat capacity of the pair of electrode portions is the entire outer wall. It is preferably 2 to 80% of the heat capacity.
  • the lower limit is more preferably 9%, and particularly preferably 15%.
  • the upper limit value is more preferably 75%, and particularly preferably 50%. If it is less than 2%, there is a possibility that the effect that current flows more uniformly throughout the honeycomb structure portion when a voltage is applied may not be sufficiently obtained. If it exceeds 80%, the effect of reducing the thermal shock resistance may be reduced.
  • the thickness of the other electrode body out of each of the two or more electrode bodies is equivalent to 50 to 150% of the thickness of each first electrode body. It is preferable. Further, the thickness of the other electrode body is more preferably a thickness corresponding to 50 to 100%, and particularly preferably a thickness corresponding to 70 to 100%.
  • the thickness of the electrode body is a value measured with an optical microscope, and is a value of an average thickness at three points in the circumferential direction of the electrode body in “the central portion of the honeycomb structure in the cell extending direction”. “The value of the average thickness at three points in the circumferential direction of the electrode body” means that the electrode body is divided into three equal parts in the “circumferential direction of the honeycomb structure portion” to form three divided portions. It is a value obtained by measuring the thickness of the central portion in the “circumferential direction of the” and averaging the obtained thickness measurement results at three points. Dividing the electrode body into three equal parts in the circumferential direction of the honeycomb structure means that the electrode body is divided into three equal parts along a straight line parallel to the cell extending direction.
  • the thickness of the first electrode body is preferably 0.1 to 2.0 mm, more preferably 0.1 to 1.0 mm, It is particularly preferable that the thickness is ⁇ 0.5 mm.
  • the honeycomb structure of the present embodiment has a structure in which the electrode body is further laminated on the surface of the first electrode body, the current-carrying performance of the electrode portion can be improved.
  • the porosity of the pair of electrode portions is preferably 30 to 80%, more preferably 30 to 70%, and particularly preferably 30 to 60%. .
  • the porosity of the electrode part is in such a range, the heat capacity of the electrode part can be lowered, and the thermal shock resistance of the honeycomb structure can be improved.
  • the porosity of the electrode part is smaller than 30%, it may be difficult to reduce the heat capacity of the electrode part.
  • the porosity of the electrode part is greater than 80%, it may be difficult to flow a current uniformly through the honeycomb structure part.
  • the porosity of the electrode part is a value measured with a mercury porosimeter.
  • the electrode bodies 31a and 31b constituting the electrode part 21 are preferably mainly composed of silicon carbide particles and silicon, and are formed using silicon carbide particles and silicon as raw materials except for impurities that are usually contained. Further preferred.
  • “having silicon carbide particles and silicon as main components” means that the total mass of the silicon carbide particles and silicon is 90% by mass or more of the total mass of the electrode bodies 31a and 31b.
  • the first electrode body 31a contains silicon carbide particles and silicon as main components, the component of the first electrode body 31a and the component of the honeycomb structure portion 4 are the same component or a close component (the material of the honeycomb structure portion). Is silicon carbide). Therefore, the first electrode body 31a and the honeycomb structure portion 4 have the same or close thermal expansion coefficients.
  • the bonding strength between the first electrode body 31a and the honeycomb structure portion 4 is also increased. Therefore, even if the honeycomb structure is subjected to thermal stress, the first electrode body 31a (in other words, the electrode portion 21) is peeled off from the honeycomb structure portion 4 or the first electrode body 31a (in other words, the electrode portion). It is possible to prevent the joint portion between the portion 21) and the honeycomb structure portion 4 from being damaged.
  • the electrode bodies 31a and 31b constituting the electrode part 21 preferably have an average pore diameter of 5 to 45 ⁇ m, and more preferably 7 to 40 ⁇ m.
  • an average pore diameter of each of the electrode bodies 31a and 31b constituting the electrode portion 21 is within such a range, a suitable electrical resistivity can be obtained. If the average pore diameter of each electrode body 31a, 31b constituting the electrode part 21 is smaller than 5 ⁇ m, the electrical resistivity may be too high. If the average pore diameter of each electrode body 31a, 31b constituting the electrode portion 21 is larger than 45 ⁇ m, the strength of the electrode portion 21 is weakened and may be easily damaged.
  • the average pore diameter is a value measured with a mercury porosimeter.
  • the average particle diameter of the silicon carbide particles contained in the electrode bodies 31a and 31b is 10 to 70 ⁇ m. It is preferably 10 to 60 ⁇ m.
  • the electrical resistivity of the electrode bodies 31a and 31b can be controlled to a good value. If the average particle diameter of the silicon carbide particles contained in the electrode bodies 31a and 31b is smaller than 10 ⁇ m, the electrical resistivity of the electrode portion 21 may become too large.
  • the average particle diameter of the silicon carbide particles contained in each electrode body 31a, 31b is a value measured by a laser diffraction method.
  • the ratio of the mass of silicon contained in each electrode body 31a, 31b to the “total mass of silicon carbide particles and silicon” contained in each electrode body 31a, 31b is 20 to 50 mass%. It is preferably 20 to 40% by mass.
  • the electrical resistivity of each electrode body 31a, 31b can be reduced. It can be controlled in the range of 0.01 to 100 ⁇ cm. If the ratio of the mass of silicon to the total mass of silicon carbide particles and silicon contained in each electrode body 31a, 31b is less than 20% by mass, the electrical resistivity may be too high, and 50% by mass. If it is larger than%, it may be easily deformed during production.
  • the partition wall thickness is 50 to 260 ⁇ m, and preferably 70 to 180 ⁇ m.
  • the partition wall thickness is 50 to 260 ⁇ m, and preferably 70 to 180 ⁇ m.
  • the honeycomb structure 100 of the present embodiment preferably has a cell density of 40 to 150 cells / cm 2 , and more preferably 70 to 100 cells / cm 2 .
  • the purification performance of the catalyst can be enhanced while reducing the pressure loss when the exhaust gas is flowed.
  • the cell density is lower than 40 cells / cm 2 , the catalyst supporting area may be reduced.
  • the cell density is higher than 150 cells / cm 2 , when the honeycomb structure 100 is used as a catalyst carrier and a catalyst is supported, the pressure loss when the exhaust gas flows may increase.
  • the average particle diameter of the silicon carbide particles (aggregate) constituting the honeycomb structure portion 4 is preferably 3 to 50 ⁇ m, and more preferably 3 to 40 ⁇ m.
  • the electrical resistivity at 400 ° C. of the honeycomb structure part 4 can be 1 to 200 ⁇ cm.
  • the electrical resistivity of the honeycomb structure portion 4 may be increased.
  • the electrical resistivity of the honeycomb structure portion 4 may be reduced.
  • the extrusion forming die may be clogged with the forming raw material when the honeycomb formed body is extruded.
  • the average particle diameter of the silicon carbide particles is a value measured by a laser diffraction method.
  • the electrical resistivity of the honeycomb structure portion 4 is 1 to 200 ⁇ cm, and preferably 40 to 100 ⁇ cm.
  • the electrical resistivity is smaller than 1 ⁇ cm, for example, when the honeycomb structure 100 is energized by a high-voltage power supply of 200 V or higher, an excessive current may flow.
  • the electrical resistivity is greater than 200 ⁇ cm, for example, when the honeycomb structure 100 is energized by a high-voltage power supply of 200 V or higher, it becomes difficult for current to flow, and heat generation may not occur sufficiently.
  • the electrical resistivity of the honeycomb structure part is a value measured by a four-terminal method.
  • the electrical resistivity of the honeycomb structure part is a value at 400 ° C.
  • the electrical resistivity of the first electrode body 31a is preferably lower than the electrical resistivity of the honeycomb structure portion 4. Furthermore, the electrical resistivity of the first electrode body 31a is more preferably 20% or less, and particularly preferably 1 to 10%, of the electrical resistivity of the honeycomb structure portion 4. By setting the electrical resistivity of the first electrode body 31a to 20% or less of the electrical resistivity of the honeycomb structure part 4, the electrode part 21 functions more effectively as an electrode.
  • the material of the honeycomb structure portion 4 is a silicon-silicon carbide composite material
  • the following “mass ratio of silicon” is preferably 10 to 40% by mass, More preferably, it is -35 mass%. If the “mass ratio of silicon” is lower than 10 mass%, the strength of the honeycomb structure may be lowered. If it is higher than 40% by mass, the shape may not be maintained during firing.
  • Mass ratio of silicon is the sum of “mass of silicon carbide particles as aggregate” contained in the honeycomb structure 4 and “mass of silicon as binder” contained in the honeycomb structure 4 Is the ratio of “mass of silicon as a binder” contained in the honeycomb structure part 4.
  • the porosity of the partition walls 1 of the honeycomb structure portion 4 is preferably 35 to 60%, and more preferably 45 to 55%. If the porosity is less than 35%, deformation during firing may increase. When the porosity exceeds 60%, the strength of the honeycomb structure may be lowered.
  • the porosity is a value measured with a mercury porosimeter.
  • the average pore diameter of the partition walls 1 of the honeycomb structure part 4 is preferably 2 to 15 ⁇ m, and more preferably 4 to 8 ⁇ m. If the average pore diameter is smaller than 2 ⁇ m, the electrical resistivity may become too large. If the average pore diameter is larger than 15 ⁇ m, the electrical resistivity may be too small.
  • the average pore diameter is a value measured with a mercury porosimeter.
  • the porosity of the outer peripheral wall of the honeycomb structure portion is preferably 35 to 60%, more preferably 35 to 55%, and more preferably 35 to 50%. It is particularly preferred.
  • the porosity of the outer peripheral wall of the honeycomb structure is within such a range, the thermal shock resistance of the honeycomb structure can be improved. If the porosity of the outer peripheral wall of the honeycomb structure is less than 35%, the effect of improving the thermal shock resistance of the honeycomb structure may be reduced. If the porosity of the outer peripheral wall of the honeycomb structure is larger than 60%, the mechanical strength of the honeycomb structure may be lowered.
  • the thickness of the outer peripheral wall of the honeycomb structure is preferably 0.1 to 1.0 mm, more preferably 0.2 to 0.8 mm, and particularly preferably 0.2 to 0.5 mm.
  • the thickness of the outer peripheral wall of the honeycomb structure portion is preferably 0.1 to 1.0 mm, more preferably 0.2 to 0.8 mm, and particularly preferably 0.2 to 0.5 mm.
  • the thermal shock resistance of the honeycomb structure may be lowered. If the thickness of the outer peripheral wall of the honeycomb structure is greater than 1.0 mm, the area of the partition walls supporting the catalyst may be reduced when the catalyst is supported using the honeycomb structure as a catalyst carrier.
  • the shape of the cell 2 in a cross section orthogonal to the extending direction of the cell 2 is preferably a quadrangle, a hexagon, an octagon, or a combination thereof.
  • the shape of the honeycomb structure 100 of the present embodiment is not particularly limited.
  • the bottom surface has a circular cylindrical shape (cylindrical shape), the bottom surface has an oval cylindrical shape, and the bottom surface has a polygonal shape (square, pentagon, hexagon, seven
  • the shape may be a cylindrical shape such as a square or an octagon.
  • the honeycomb structure has a bottom surface area of preferably 2000 to 20000 mm 2 , more preferably 4000 to 10000 mm 2 .
  • the length of the honeycomb structure in the central axis direction (cell extending direction) is preferably 50 to 200 mm, and more preferably 75 to 150 mm.
  • the isostatic strength of the honeycomb structure 100 of the present embodiment is preferably 1 MPa or more, and more preferably 3 MPa or more.
  • the isostatic strength is preferably as large as possible. However, considering the material, structure, etc. of the honeycomb structure 100, the upper limit is about 6 MPa. When the isostatic strength is less than 1 MPa, the honeycomb structure may be easily damaged when used as a catalyst carrier or the like. Isostatic strength is a value measured by applying hydrostatic pressure in water.
  • the honeycomb structure 100 of the present embodiment has a pair of electrode portions 21 and 21 extending in the direction in which the cells 2 of the honeycomb structure portion 4 extend and “between both ends ( It is formed in a strip shape extending between both end faces 11 and 12).
  • the pair of electrode portions 21 and 21 are disposed so as to extend between both ends of the honeycomb structure portion 4, so that when a voltage is applied between the pair of electrode portions 21 and 21, the honeycomb structure
  • the bias of the current flowing through the portion 4 can be more effectively suppressed.
  • the bias of the heat generation in the honeycomb structure portion 4 can be effectively suppressed.
  • the electrode portion 21 is formed (arranged) so as to extend between both end portions of the honeycomb structure portion 4” means the following configuration. That is, one end of the electrode part 21 is in contact with one end (one end face) of the honeycomb structure part 4, and the other end of the electrode part 21 is the other end part (the other end face) of the honeycomb structure part 4. ).
  • the pair of electrode portions 21 and 21 may be formed so as to extend between both end portions of the honeycomb structure portion 4 as shown in FIG. 1 and FIG. It may be configured. That is, as shown in FIGS. 8 and 9, both end portions 21 a and 21 b of the electrode portion 21 in the “direction in which the cells 2 of the honeycomb structure portion 4 extend” are connected to both end portions (both end surfaces 11 and 12 of the honeycomb structure portion 4). ) May not be in contact (not reached). In addition, one end portion 21 a of the electrode portion 21 is in contact with (reaches) one end portion (one end surface 11) of the honeycomb structure portion 4, and the other end portion 21 b is the other end of the honeycomb structure portion 4. It may be in a state of not touching (not reaching) the part (the other end face 12).
  • the distance up to is “distance L1”.
  • “Distance L1” is preferably the same as “Distance L2”, but may be different.
  • the distance from the other end portion 21b of the remaining one electrode portion 21 in the pair of electrode portions 21 and 21 to the “other end portion (the other end surface 12) of the honeycomb structure portion 4” is expressed as “ Distance L4 ”.
  • “Distance L3” is preferably the same as “Distance L4”, but may be different.
  • One end portion 21a of the electrode portion 21 is an end portion facing one end portion (one end face 11) of the honeycomb structure portion 4, and the other end portion 21b of the electrode portion 21 is a honeycomb structure portion. 4 is an end portion facing the other end portion (the other end surface 12) side.
  • FIG. 8 is a perspective view schematically showing another embodiment (honeycomb structure 200) of the honeycomb structure of the present invention.
  • FIG. 9 is a schematic view showing a cross section parallel to the cell extending direction of another embodiment (honeycomb structure 200) of the honeycomb structure of the present invention.
  • Each condition of the honeycomb structure 200 of the present embodiment is that, except that at least one end of the electrode portion 21 is not in contact with (has reached) the end (end face) of the honeycomb structure 4 as shown in FIG.
  • the conditions are preferably the same as those in the honeycomb structure 100 shown in FIG.
  • each of the above-mentioned “distance L1”, “distance L2”, “distance L3”, and “distance L4” is preferably shorter than 50% of the length of the honeycomb structure portion 4 in the cell 2 extending direction, 25% More preferably, it is as follows. If it is 50% or more, when a voltage is applied between the pair of electrode parts 21 and 21, it may be difficult to suppress the bias of the current flowing in the honeycomb structure part 4.
  • the honeycomb structure 300 of the present embodiment is the electrode terminal protrusion 22 having the following configuration in the honeycomb structure 100 of the present invention (see FIGS. 1 to 4). Is arranged.
  • the electrode terminal protrusion 22 is a central portion of each electrode portion 21, 21 in the cross section perpendicular to the cell extending direction, and is disposed in the central portion in the cell extending direction.
  • the electrode terminal protrusion 22 is an object for connecting electrical wiring. That is, the electrode terminal protrusion 22 is a portion for connecting a wiring from a power source in order to apply a voltage between the electrode portions 21 and 21.
  • FIG. 10 is a front view schematically showing still another embodiment of the honeycomb structure of the present invention.
  • FIG. 11 is a schematic diagram showing an A-A ′ cross section in FIG. 10.
  • Fig. 12 is a side view schematically showing still another embodiment of the honeycomb structure of the present invention.
  • Each condition of the honeycomb structure 300 of the present embodiment is that an embodiment of the honeycomb structure of the present invention (honeycomb structure 100 (FIG. It is preferable that the conditions are the same as those in 1 to 4))).
  • the main components of the electrode terminal protrusion 22 are also preferably silicon carbide particles and silicon.
  • the electrode terminal protrusion 22 has silicon carbide particles and silicon as main components, the component of the electrode part 21 and the component of the electrode terminal protrusion 22 are the same (or close) components. Therefore, the thermal expansion coefficient of the electrode part 21 and the electrode terminal protrusion part 22 becomes the same (or close) value.
  • the material of the electrode part 21 and the material of the electrode terminal protrusion part 22 become the same (or close), the joining strength of the electrode part 21 and the electrode terminal protrusion part 22 also becomes high.
  • the electrode terminal protrusion 22 when “the electrode terminal protrusion 22 is composed mainly of silicon carbide particles and silicon”, the electrode terminal protrusion 22 contains 90% by mass or more of silicon carbide particles and silicon.
  • the component of the electrode body (second electrode body 31b in FIGS. 10 to 12) disposed in the uppermost layer of the two or more electrode bodies constituting the electrode section 21 and the electrode terminal protrusion 22 More preferably, the components are the same (or close) components.
  • the shape of the electrode terminal protrusion 22 is not particularly limited as long as it can be bonded to the electrode 21 and can be connected to the electric wiring.
  • the electrode terminal protrusion 22 preferably has a shape in which a cylindrical protrusion 22b is disposed on a rectangular plate-shaped substrate 22a. By adopting such a shape, the electrode terminal protrusion 22 can be firmly bonded to the electrode portion 21 by the substrate 22a, and the electric wiring can be reliably bonded by the protrusion 22b.
  • the thickness of the substrate 22a is preferably 1 to 5 mm. By setting it as such thickness, the electrode terminal protrusion part 22 can be joined to the electrode part 21 reliably. If the thickness is less than 1 mm, the substrate 22a becomes weak, and the protrusion 22b may be easily detached from the substrate 22a. If it is thicker than 5 mm, the space for arranging the honeycomb structure may become larger than necessary.
  • the length of the substrate 22a constituting the electrode terminal protrusion 22 in the “peripheral direction in the cross section perpendicular to the cell extending direction of the honeycomb structure portion 4” is defined as “the width of the substrate 22a”.
  • the width of the substrate 22a is 10 to 50% of the length of the electrode portion 21 in the “peripheral direction (direction along the outer periphery) in the cross section perpendicular to the cell extending direction of the honeycomb structure portion 4”. Is more preferable, and 20 to 40% is more preferable.
  • the electrode terminal protrusion part 22 becomes difficult to remove
  • the length of the substrate 22a in the “cell 2 extending direction” is preferably 5 to 30% of the length of the honeycomb structure 4 in the cell extending direction. By setting the length of the substrate 22a in the “direction in which the cells 2 extend” within such a range, sufficient bonding strength can be obtained. If the length of the substrate 22 a in the “cell 2 extending direction” is shorter than 5% of the length of the honeycomb structure portion 4 in the cell extending direction, the substrate 22 a may be easily detached from the electrode portion 21. And if it is longer than 30%, the mass may increase.
  • the thickness of the protrusion 22b is preferably 3 to 15 mm. With such a thickness, the electrical wiring can be reliably bonded to the protrusion 22b. If the thickness of the protrusion 22b is thinner than 3 mm, the protrusion 22b may be easily broken. If the thickness of the protrusion 22b is greater than 15 mm, it may be difficult to connect the electrical wiring.
  • the length of the protrusion 22b is preferably 3 to 20 mm. With such a length, the electrical wiring can be reliably bonded to the protrusion 22b. If it is shorter than 3 mm, it may be difficult to join the electric wiring. If it is longer than 20 mm, the protrusion 22b may be easily broken.
  • the electrical resistivity of the electrode terminal protrusion 22 is preferably 0.1 to 2.0 ⁇ cm, and more preferably 0.1 to 1.0 ⁇ cm. By setting the electrical resistivity of the electrode terminal protrusion 22 in such a range, current can be efficiently supplied from the electrode terminal protrusion 22 to the electrode portion 21 in the pipe through which high-temperature exhaust gas flows. If the electrical resistivity of the electrode terminal protrusion 22 is greater than 2.0 ⁇ cm, it may be difficult to supply current to the electrode portion 21 because current does not flow easily.
  • the electrode terminal protrusion 22 preferably has a porosity of 30 to 45%, and more preferably 30 to 40%. When the porosity of the electrode terminal protrusion 22 is within such a range, an appropriate electrical resistivity can be obtained. If the porosity of the electrode terminal protrusion 22 is higher than 45%, the strength of the electrode terminal protrusion 22 may be reduced. In particular, if the strength of the protrusion 22b is reduced, the protrusion 22b may be easily broken.
  • the porosity is a value measured with a mercury porosimeter.
  • the electrode terminal protrusion 22 preferably has an average pore diameter of 5 to 20 ⁇ m, and more preferably 7 to 15 ⁇ m. When the average pore diameter of the electrode terminal protrusion 22 is within such a range, an appropriate electrical resistivity can be obtained. When the average pore diameter of the electrode terminal protrusion 22 is larger than 20 ⁇ m, the strength of the electrode terminal protrusion 22 may be reduced. In particular, when the strength of the protrusion 22b is reduced, the protrusion 22b may be easily broken.
  • the average pore diameter is a value measured with a mercury porosimeter.
  • the average particle diameter of the silicon carbide particles contained in the electrode terminal protrusion 22 is preferably 10 to 60 ⁇ m, and preferably 20 to 60 ⁇ m. More preferably.
  • the electrical resistivity of the electrode terminal protrusion 22 can be set to 0.1 to 2.0 ⁇ cm. If the average particle diameter of the silicon carbide particles contained in the electrode terminal protrusion 22 is smaller than 10 ⁇ m, the electrical resistivity of the electrode terminal protrusion 22 may become too large.
  • the average particle diameter of the silicon carbide particles contained in the electrode terminal protrusion 22 is a value measured by a laser diffraction method.
  • the ratio of the mass of silicon contained in the electrode terminal projection 22 to the “total mass of silicon carbide particles and silicon” contained in the electrode terminal projection 22 is preferably 20 to 40% by mass. More preferably, the content is 25 to 35% by mass.
  • an electrical resistivity of 0.1 to 2.0 ⁇ cm can be obtained. It becomes easy to obtain. If the ratio of the mass of silicon to the total mass of silicon carbide particles and silicon contained in the electrode terminal protrusion 22 is smaller than 20% by mass, the electrical resistivity may become too large. And when larger than 40 mass%, it may deform
  • metal silicon powder metal silicon
  • a binder a surfactant, a pore former, water and the like are added to silicon carbide powder (silicon carbide) to produce a forming raw material.
  • the mass of the metal silicon is 10 to 40% by mass with respect to the total of the mass of the silicon carbide powder and the mass of the metal silicon.
  • the average particle diameter of the silicon carbide particles in the silicon carbide powder is preferably 3 to 50 ⁇ m, and more preferably 3 to 40 ⁇ m.
  • the average particle diameter of metal silicon (metal silicon powder) is preferably 2 to 35 ⁇ m.
  • the average particle diameter of silicon carbide particles and metal silicon (metal silicon particles) is a value measured by a laser diffraction method.
  • the silicon carbide particles are silicon carbide fine particles constituting the silicon carbide powder, and the metal silicon particles are metal silicon fine particles constituting the metal silicon powder.
  • This is a composition of a forming raw material when the material of the honeycomb structure part is a silicon-silicon carbide composite material. When the material of the honeycomb structure part is silicon carbide, no metallic silicon is added.
  • binder examples include methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropoxyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, and polyvinyl alcohol. Among these, it is preferable to use methyl cellulose and hydroxypropoxyl cellulose in combination.
  • the content of the binder is preferably 2.0 to 10.0 parts by mass when the total mass of the silicon carbide powder and the metal silicon powder is 100 parts by mass.
  • the water content is preferably 20 to 60 parts by mass when the total mass of the silicon carbide powder and the metal silicon powder is 100 parts by mass.
  • ethylene glycol, dextrin, fatty acid soap, polyalcohol or the like can be used as the surfactant. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the content of the surfactant is preferably 0.1 to 2.0 parts by mass when the total mass of the silicon carbide powder and the metal silicon powder is 100 parts by mass.
  • the pore former is not particularly limited as long as it becomes pores after firing, and examples thereof include graphite, starch, foamed resin, water absorbent resin, silica gel and the like.
  • the pore former content is preferably 0.5 to 10.0 parts by mass when the total mass of the silicon carbide powder and the metal silicon powder is 100 parts by mass.
  • the average particle size of the pore former is preferably 10 to 30 ⁇ m. If it is smaller than 10 ⁇ m, pores may not be formed sufficiently. If it is larger than 30 ⁇ m, the die may be clogged during molding.
  • the average particle diameter of the pore former is a value measured by a laser diffraction method.
  • the forming raw material is kneaded to form a clay.
  • molding raw material and forming a clay For example, the method of using a kneader, a vacuum clay kneader, etc. can be mentioned.
  • the clay is extruded to form a honeycomb formed body.
  • a die having a desired overall shape, cell shape, partition wall thickness, cell density and the like.
  • a cemented carbide which does not easily wear is preferable.
  • the honeycomb formed body has a structure having partition walls that form a plurality of cells that serve as fluid flow paths and an outer peripheral wall that is positioned on the outermost periphery.
  • the partition wall thickness, cell density, outer peripheral wall thickness and the like of the honeycomb formed body can be appropriately determined in accordance with the structure of the honeycomb structure of the present invention to be manufactured in consideration of shrinkage during drying and firing.
  • the drying method is not particularly limited, and examples thereof include an electromagnetic heating method such as microwave heating drying and high-frequency dielectric heating drying, and an external heating method such as hot air drying and superheated steam drying.
  • an electromagnetic heating method such as microwave heating drying and high-frequency dielectric heating drying
  • an external heating method such as hot air drying and superheated steam drying.
  • the entire molded body can be dried quickly and uniformly without cracks, and after drying a certain amount of moisture with an electromagnetic heating method, the remaining moisture is dried with an external heating method. It is preferable to make it.
  • drying conditions it is preferable to remove water of 30 to 99% by mass with respect to the amount of moisture before drying by an electromagnetic heating method, and then to make the moisture to 3% by mass or less by an external heating method.
  • the electromagnetic heating method dielectric heating drying is preferable, and as the external heating method, hot air drying is preferable.
  • the cutting method is not particularly limited, and examples thereof include a method using a circular saw cutting machine.
  • an electrode part forming raw material for forming an electrode part (specifically, an electrode body constituting the electrode part) is prepared.
  • the electrode part forming raw material is preferably formed by adding a predetermined additive to silicon carbide powder and silicon powder and kneading. Since the electrode portion is formed of a laminate of two or more electrode bodies, the components may be different for each electrode body to be laminated, or the same components.
  • a center part formation raw material and an expansion part formation raw material are each prepared.
  • the central part forming raw material is preferably formed by adding predetermined additives to the silicon carbide powder and silicon powder and kneading.
  • the extended portion forming raw material is preferably formed by adding a predetermined additive to the silicon carbide powder and the silicon powder and kneading.
  • metal silicon powder metal silicon
  • a binder a surfactant, a pore former, water and the like
  • silicon carbide powder silicon carbide
  • the mass of the metal silicon is preferably 20 to 40 parts by mass.
  • the average particle diameter of the silicon carbide particles in the silicon carbide powder is preferably 10 to 60 ⁇ m.
  • the average particle diameter of the metal silicon powder (metal silicon) is preferably 2 to 20 ⁇ m. If it is smaller than 2 ⁇ m, the electrical resistivity may be too small. If it is larger than 20 ⁇ m, the electrical resistivity may become too large.
  • the average particle diameter of silicon carbide particles and metal silicon is a value measured by a laser diffraction method.
  • the silicon carbide particles are silicon carbide fine particles constituting the silicon carbide powder, and the metal silicon particles are metal silicon fine particles constituting the metal silicon powder.
  • binder examples include methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropoxyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, and polyvinyl alcohol. Among these, it is preferable to use methyl cellulose and hydroxypropoxyl cellulose in combination.
  • the binder content is preferably 0.1 to 5.0 parts by mass when the total mass of the silicon carbide powder and the metal silicon powder is 100 parts by mass.
  • the water content is preferably 15 to 60 parts by mass when the total mass of the silicon carbide powder and the metal silicon powder is 100 parts by mass.
  • ethylene glycol, dextrin, fatty acid soap, polyalcohol or the like can be used as the surfactant. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the content of the surfactant is preferably 0.1 to 2.0 parts by mass when the total mass of the silicon carbide powder and the metal silicon powder is 100 parts by mass.
  • the pore former is not particularly limited as long as it becomes pores after firing, and examples thereof include graphite, starch, foamed resin, water absorbent resin, silica gel and the like.
  • the pore former content is preferably 0.1 to 5.0 parts by mass when the total mass of the silicon carbide powder and the metal silicon powder is 100 parts by mass.
  • the average particle size of the pore former is preferably 10 to 30 ⁇ m. If it is smaller than 10 ⁇ m, pores may not be formed sufficiently. When it is larger than 30 ⁇ m, air holes are easily formed, and the strength may be lowered.
  • the average particle diameter of the pore former is a value measured by a laser diffraction method.
  • the mixture obtained by mixing silicon carbide powder (silicon carbide), metal silicon (metal silicon powder), binder, surfactant, pore former, water, etc. is kneaded to form a paste-like electrode part It is preferable to use it as a raw material.
  • the method of kneading is not particularly limited, and for example, a vertical stirrer can be used.
  • the obtained electrode part forming raw material to the side surface of the dried honeycomb formed body.
  • the method for applying the electrode part forming raw material to the side surface of the honeycomb formed body is not particularly limited, and for example, a printing method can be used.
  • the electrode part forming raw material is preferably applied to the side surface of the honeycomb molded body so as to have the shape and arrangement of the electrode part in the honeycomb structure of the present invention.
  • the electrode part forming raw material is applied to the side surface of the honeycomb formed body to form a precursor of the first electrode body.
  • the electrode part forming raw material of the same component or a different component is apply
  • the electrode body is a laminate of three or more layers, it is preferable to further apply an electrode part forming raw material to form an electrode body precursor.
  • the “electrode body precursor” is an unfired electrode body that becomes an electrode body by firing.
  • the area of the first electrode body (the area of the first electrode body after firing) is the same as the area of the other electrode body (the other after firing). (Area of electrode body). Furthermore, in at least one cross section orthogonal to the cell extending direction of the honeycomb formed body, the center angle of the first electrode body (center angle of the first electrode body after firing) is the center angle of the other electrode body ( It is made larger than the central angle of the other electrode body after firing.
  • the outer peripheral shape of the electrode body the outer peripheral shapes as shown in FIGS. 5A to 5G and FIGS. 6A to 6E can be cited as preferable examples.
  • the thickness of the first electrode body and other electrode bodies can be set to a desired thickness by adjusting the thickness when the electrode part forming raw material is applied.
  • the electrode part can be formed simply by applying the electrode part forming raw material to the side surface of the honeycomb formed body, drying and firing, the electrode part can be formed very easily.
  • each of the center part forming raw material and the extension part forming raw material is applied to the side surface of the dried honeycomb formed body.
  • each raw material is applied to the side surface of the honeycomb formed body so as to have the shape of the central portion 21X and the extended portion 21Y of the electrode portion 21 as shown in FIGS.
  • the method for applying the central portion forming raw material and the extension portion forming raw material to the side surface of the honeycomb formed body is not particularly limited, and for example, a printing method can be used as in the case of applying the electrode portion forming raw material.
  • the electrode part forming raw material that is, the electrode part precursor formed of a laminate of the precursors of the electrode body
  • the drying conditions are preferably 50 to 100 ° C. At this time, the electrode terminal protrusion forming member is not attached to the honeycomb formed body.
  • the electrode terminal protrusion forming member is attached to the honeycomb formed body to become an electrode terminal protrusion.
  • the shape of the electrode terminal protrusion forming member is not particularly limited, but for example, it is preferably formed in the shape as shown in FIGS.
  • the obtained electrode terminal protrusion forming member is attached to the portion of the honeycomb formed body to which the electrode portion forming raw material is applied (that is, the electrode body precursor).
  • the order of preparation of the honeycomb formed body, preparation of the electrode part forming raw material, and preparation of the electrode terminal protrusion forming member may be any order.
  • the electrode terminal protrusion forming member is preferably obtained by molding and drying the electrode terminal protrusion forming raw material.
  • the electrode terminal protrusion forming raw material is a raw material for forming the electrode terminal protrusion forming member.
  • the electrode terminal protrusion forming raw material is preferably formed by adding a predetermined additive to silicon carbide powder and silicon powder and kneading.
  • a metal silicon powder (metal silicon), a binder, a surfactant, a pore former, water, etc. are added to silicon carbide powder (silicon carbide) and kneaded to prepare an electrode terminal protrusion forming raw material.
  • the mass of the metal silicon is 20 to 40% by mass with respect to the total of the mass of the silicon carbide powder and the mass of the metal silicon.
  • the average particle diameter of the silicon carbide particles in the silicon carbide powder is preferably 10 to 60 ⁇ m.
  • the average particle diameter of the metal silicon powder (metal silicon) is preferably 2 to 20 ⁇ m. If it is smaller than 2 ⁇ m, the electrical resistivity may be too small.
  • the average particle diameter of silicon carbide particles and metal silicon particles (metal silicon) is a value measured by a laser diffraction method.
  • the silicon carbide particles are silicon carbide fine particles constituting the silicon carbide powder, and the metal silicon particles are metal silicon fine particles constituting the metal silicon powder.
  • binder examples include methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropoxyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, and polyvinyl alcohol. Among these, it is preferable to use methyl cellulose and hydroxypropoxyl cellulose in combination.
  • the content of the binder is preferably 2.0 to 10.0 parts by mass when the total mass of the silicon carbide powder and the metal silicon powder is 100 parts by mass.
  • the water content is preferably 20 to 40 parts by mass when the total mass of the silicon carbide powder and the metal silicon powder is 100 parts by mass.
  • ethylene glycol, dextrin, fatty acid soap, polyalcohol or the like can be used as the surfactant. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the content of the surfactant is preferably 0.1 to 2.0 parts by mass when the total mass of the silicon carbide powder and the metal silicon powder is 100 parts by mass.
  • the pore former is not particularly limited as long as it becomes pores after firing, and examples thereof include graphite, starch, foamed resin, water absorbent resin, silica gel and the like.
  • the pore former content is preferably 0.1 to 5.0 parts by mass when the total mass of the silicon carbide powder and the metal silicon powder is 100 parts by mass.
  • the average particle size of the pore former is preferably 10 to 30 ⁇ m. If it is smaller than 10 ⁇ m, pores may not be formed sufficiently. When it is larger than 30 ⁇ m, air holes are easily formed, and the strength may be lowered.
  • the average particle diameter of the pore former is a value measured by a laser diffraction method.
  • a mixture obtained by mixing silicon carbide powder (silicon carbide), metal silicon (metal silicon powder), a binder, a surfactant, a pore former, water, and the like is kneaded to obtain a material for forming electrode terminal protrusions. It is preferable that The method of kneading is not particularly limited, and for example, a kneader can be used.
  • the method for forming the obtained electrode terminal protrusion forming raw material into the shape of the electrode terminal protrusion forming member is not particularly limited, and examples thereof include a method of processing after extrusion molding.
  • the electrode terminal protrusion forming raw material into the shape of the electrode terminal protrusion forming member and then dry it to obtain the electrode terminal protrusion forming member.
  • the drying conditions are preferably 50 to 100 ° C.
  • the electrode terminal protrusion forming member is preferably attached to the honeycomb formed body coated with the electrode portion forming raw material.
  • the method for attaching the electrode terminal protrusion forming member to the honeycomb formed body is not particularly limited, but it is preferable to attach the electrode terminal protrusion forming member to the honeycomb formed body using the electrode part forming raw material.
  • the electrode terminal protrusion forming member is attached to the portion of the honeycomb formed body to which the electrode part forming raw material has been applied.
  • the electrode terminal protrusion forming member is preferably attached to the honeycomb formed body.
  • honeycomb structure 100 honeycomb structure 100 (see FIGS. 1 to 4)
  • the above-mentioned “honeycomb forming coated with electrode part forming raw material” is formed. What is necessary is just to perform processes, such as baking, by the following methods for the body (thing which the electrode terminal protrusion part formation member is not sticking). Treatments such as firing are provisional firing, firing, oxidation treatment, and the like.
  • the drying conditions at this time are preferably 50 to 100 ° C.
  • pre-baking is preferably performed at 400 to 500 ° C. for 0.5 to 20 hours in an air atmosphere.
  • the method of temporary baking and baking is not particularly limited, and baking can be performed using an electric furnace, a gas furnace, or the like.
  • firing conditions it is preferable to heat at 1400 to 1500 ° C. for 1 to 20 hours in an inert atmosphere such as nitrogen or argon.
  • oxygenation treatment it is preferable to perform oxygenation treatment at 1200 to 1350 ° C. for 1 to 10 hours after firing to improve durability.
  • the electrode terminal protrusion forming member may be attached before firing the honeycomb formed body or may be attached after firing. When the electrode terminal protrusion forming member is attached after the honeycomb formed body is fired, it is preferably fired again under the above conditions.
  • Example 1 silicon carbide (SiC) powder and metal silicon (Si) powder are mixed at a mass ratio of 80:20, to which hydroxypropylmethylcellulose as a binder and a water absorbent resin as a pore former are added, and water is added. A molding raw material was obtained by addition. Next, this forming raw material was kneaded with a vacuum kneader to prepare a columnar clay.
  • the content of the binder is 7 parts by mass when the total of the silicon carbide (SiC) powder and the metal silicon (Si) powder is 100 parts by mass.
  • the content of the pore former was 3 parts by mass when the total of the silicon carbide (SiC) powder and the metal silicon (Si) powder was 100 parts by mass.
  • the water content was 42 parts by mass when the total of silicon carbide (SiC) powder and metal silicon (Si) powder was 100 parts by mass.
  • the average particle size of the silicon carbide powder was 20 ⁇ m, and the average particle size of the metal silicon powder was 6 ⁇ m.
  • the average particle diameter of the pore former was 20 ⁇ m.
  • the average particle diameters of silicon carbide, metal silicon and pore former are values measured by a laser diffraction method.
  • the obtained columnar kneaded material was molded using an extrusion molding machine to obtain a honeycomb molded body.
  • the obtained honeycomb formed body was dried by high-frequency dielectric heating and then dried at 120 ° C. for 2 hours using a hot air dryer, and both end surfaces were cut by a predetermined amount.
  • silicon carbide (SiC) powder and metal silicon (Si) powder are mixed at a mass ratio of 60:40, and hydroxypropylmethylcellulose as a binder, glycerin as a humectant, and a surfactant as a dispersant are added thereto.
  • water was added and mixed.
  • the mixture was kneaded to obtain an electrode part forming raw material.
  • the content of the binder was 0.5 parts by mass when the total of the silicon carbide (SiC) powder and the metal silicon (Si) powder was 100 parts by mass.
  • the content of glycerin was 10 parts by mass when the total of silicon carbide (SiC) powder and metal silicon (Si) powder was 100 parts by mass.
  • the content of the surfactant was 0.3 part by mass when the total of the silicon carbide (SiC) powder and the metal silicon (Si) powder was 100 parts by mass.
  • the water content was 42 parts by mass when the total of silicon carbide (SiC) powder and metal silicon (Si) powder was 100 parts by mass.
  • the average particle diameter of the silicon carbide powder was 52 ⁇ m, and the average particle diameter of the metal silicon powder was 6 ⁇ m.
  • the average particle diameter of silicon carbide and metal silicon is a value measured by a laser diffraction method. The kneading was performed with a vertical stirrer.
  • the electrode part forming raw material was applied in a strip shape on the side surface of the dried honeycomb formed body so that the thickness was 0.25 mm and the outer peripheral width was 80 mm.
  • the “thickness” applied with the electrode part forming raw material is the “thickness” after the electrode part forming raw material is dried and fired.
  • the “peripheral shape width” refers to the “length” in the circumferential direction of the honeycomb structure portion after the electrode portion forming raw material is dried and fired.
  • the electrode part forming raw material was applied to two sides of the dried honeycomb formed body.
  • one of the portions where the electrode part forming raw material is applied is arranged on the opposite side across the center of the honeycomb formed body with respect to the other. did.
  • the precursor of the first electrode body was formed on the side surface of the honeycomb formed body.
  • the outer peripheral shape of the precursor of the first electrode body applied to the side surface of the honeycomb formed body was a rectangle.
  • the electrode part forming raw material was applied in a strip shape on the surface of the dried precursor of each first electrode body so that the thickness was 0.25 mm and the outer peripheral width was 12 mm.
  • the “thickness” applied with the electrode part forming raw material is the “thickness” after the electrode part forming raw material is dried and fired.
  • the “peripheral shape width” refers to the “length” in the circumferential direction of the honeycomb structure portion after the electrode portion forming raw material is dried and fired.
  • a second electrode body precursor was formed on the honeycomb formed body.
  • the outer peripheral shape of the precursor of the second electrode body was a rectangle.
  • a pair of electrode portions was formed from a laminate in which the precursor of the first electrode body and the precursor of the second electrode body were laminated.
  • the electrode part forming raw material (electrode body precursor laminate) applied to the honeycomb formed body was further dried.
  • the drying conditions were 120 ° C.
  • silicon carbide (SiC) powder and metal silicon (Si) powder were mixed at a mass ratio of 60:40, to which hydroxypropylmethylcellulose was added as a binder, and water was added and mixed.
  • the mixture was kneaded to obtain an electrode terminal protrusion forming raw material.
  • the electrode terminal protrusion forming raw material was made into clay using a vacuum kneader.
  • the content of the binder was 4 parts by mass when the total of the silicon carbide (SiC) powder and the metal silicon (Si) powder was 100 parts by mass.
  • the water content was 22 parts by mass when the total of silicon carbide (SiC) powder and metal silicon (Si) powder was 100 parts by mass.
  • the average particle diameter of the silicon carbide powder was 52 ⁇ m, and the average particle diameter of the metal silicon powder was 6 ⁇ m.
  • the average particle diameter of silicon carbide and metal silicon is a value measured by a laser diffraction method.
  • the obtained clay is processed into a shape like the electrode terminal protrusion 22 shown in FIGS. 10 to 12 (a shape made of a substrate and a protrusion) and dried to form an electrode terminal protrusion forming member. Obtained.
  • the drying conditions were 70 ° C.
  • a portion corresponding to the plate-like substrate 22a was set to a size of “3 mm ⁇ 12 mm ⁇ 15 mm”.
  • the portion corresponding to the protruding portion 22b was a columnar shape having a bottom surface diameter of 7 mm and a length in the central axis direction of 10 mm.
  • Two electrode terminal protrusion forming members were prepared.
  • each of the two electrode terminal protrusion forming members was attached to each of the portions of the honeycomb formed body to which the electrode portion forming raw material was applied.
  • the electrode terminal protrusion forming member was attached to the portion of the honeycomb formed body to which the electrode part forming raw material was applied using the electrode part forming raw material.
  • “the honeycomb formed body on which the electrode part forming raw material was applied and the electrode terminal protrusion forming member was attached” was degreased, fired, and further oxidized to obtain a honeycomb structure.
  • the degreasing conditions were 550 ° C. for 3 hours.
  • the firing conditions were 1450 ° C. and 2 hours in an argon atmosphere.
  • the conditions for the oxidation treatment were 1300 ° C. and 1 hour.
  • the average pore diameter of the partition walls of the obtained honeycomb structure was 8.6 ⁇ m, and the porosity was 45%.
  • the average pore diameter and porosity are values measured with a mercury porosimeter.
  • As the mercury porosimeter trade name “Autopore IV9505” manufactured by Micromeritics was used.
  • the honeycomb structure had a partition wall thickness of 101.6 ⁇ m and a cell density of 93 cells / cm 2 .
  • the bottom surface of the honeycomb structure was a circle having a diameter of 93 mm, and the length of the honeycomb structure in the cell extending direction was 100 mm.
  • the ratio of the center angle of the second electrode body to the center angle of the first electrode body (hereinafter also referred to as “center angle ratio”) was 15%.
  • the electrical resistivity of the first electrode body was 5 ⁇ cm, and the electrical resistivity of the second electrode body was 1.3 ⁇ cm.
  • the ratio of the electrical resistivity of the second electrode body to the electrical resistivity of the first electrode body (hereinafter also referred to as “electric resistivity ratio”) was 26%.
  • the electrical resistivity of the honeycomb structure portion was 40 ⁇ cm, and the electrical resistivity of the electrode terminal protrusion was 0.8 ⁇ cm.
  • the electrical resistivity of the honeycomb structure part, the first electrode body constituting the electrode part, the second electrode body, and the electrode terminal protrusion was measured by the following method.
  • a test piece of 10 mm ⁇ 10 mm ⁇ 50 mm was made of the same material as the measurement object. That is, when measuring the electrical resistivity of the honeycomb structure part, a test piece was made of the same material as that of the honeycomb structure part.
  • the test piece was produced with the same material as each electrode body.
  • the electrical resistivity of an electrode terminal protrusion part the test piece was produced with the same material as an electrode terminal protrusion part.
  • a silver paste was applied to the entire surface of both ends (both ends in the longitudinal direction) of the test piece so that the wiring could be energized.
  • a voltage application current measuring device was connected to the test piece, and a voltage was applied to the test piece.
  • a thermocouple was installed at the center of the test piece, and the change with time of the temperature of the test piece during voltage application was confirmed with a recorder.
  • a voltage of 100 to 200 V is applied to the test piece, the current value and voltage value are measured in a state where the temperature of the test piece is 400 ° C., and the electrical resistivity is calculated from the obtained current value and voltage value and the test piece size. did.
  • the “highest temperature” of the obtained honeycomb structure was measured by the following method. The results are shown in Table 1.
  • the highest temperature was defined as the highest temperature.
  • the position where the end part (circumferential end part) of the electrode part is in contact or the position where the center point in the circumferential direction of the electrode part is in contact is the position where the most current flows. This is the highest temperature part.
  • the position in the gas flow direction (temperature measurement position) was the center.
  • Example 2 Examples 2 to 16, Comparative Examples 1 and 2
  • Example 1 A honeycomb structure was manufactured in the same manner as in Example 1 except that the width, thickness, and electrical resistivity of the first electrode body and the second electrode body of the honeycomb structure were changed as shown in Table 1. did.
  • the “maximum temperature” of the honeycomb structure was measured.
  • Comparative Example 1 only the first electrode body was used as the electrode part without forming the second electrode body.
  • Table 1 shows that the honeycomb structures of Examples 1 to 16 have a low “maximum temperature”, whereas the honeycomb structures of Comparative Examples have a very high “maximum temperature”.
  • honeycomb structure of the present invention can be suitably used as a catalyst carrier for an exhaust gas purifying device that purifies exhaust gas from automobiles.

Abstract

 触媒担体であると共に電圧を印加することによりヒーターとしても機能し、発熱時における温度分布の偏りの少ないハニカム構造体を提供する。複数のセル2を区画形成する多孔質の隔壁1と、外周壁3とを有する筒状のハニカム構造部4と、ハニカム構造部4の側面5に配設された一対の電極部21とを備え、ハニカム構造部4の電気抵抗率が1~200Ωcmであり、一対の電極部21のそれぞれが、二以上の電極体31a,31bの積層体からなり、最も外周壁側寄りに配設された電極体31aの面積が、その他の電極体31bの面積よりも大きく、且つ、セルの延びる方向に直交する断面における、最も外周壁側寄りに配設された電極体31aの中心角が、その他の電極体31bの中心角よりも大きいハニカム構造体100。

Description

ハニカム構造体
 本発明は、ハニカム構造体に関する。更に詳しくは、触媒担体であると共に電圧を印加することによりヒーターとしても機能するハニカム構造体に関する。
 従来、コージェライト製のハニカム構造体に触媒を担持したものを、自動車エンジンから排出された排ガス中の有害物質の処理に用いていた。また、炭化珪素質焼結体によって形成されたハニカム構造体を排ガスの浄化に使用することも知られている(例えば、特許文献1を参照)。
 ハニカム構造体に担持した触媒によって排ガスを処理する場合、触媒を所定の温度まで昇温する必要がある。しかし、エンジン始動時には、触媒温度が低いため、排ガスが十分に浄化されないという問題があった。
 そのため、触媒が担持されたハニカム構造体の上流側に、金属製のヒーターを設置して、排ガスを昇温させる方法が検討されている(例えば、特許文献2を参照)。
 また、導電性セラミックスからなり両端部に電極が配設されたハニカム構造体を、ヒータ付触媒担体として使用することが開示されている(例えば、特許文献3を参照)。
特許第4136319号公報 特許第2931362号公報 特開平8-141408号公報
 上記のような金属製のヒーターを、自動車に搭載して使用する場合、自動車の電気系統に使用される電源が共通で使用される。そのため、例えば、200Vという高い電圧の電源が用いられる。しかし、金属製のヒーターは、電気抵抗が低いため、このような高い電圧の電源を用いた場合、過剰に電流が流れ、電源回路を損傷させることがあるという問題があった。
 また、ヒーターが金属製であると、仮にハニカム構造に加工したものであっても、触媒を担持し難いため、ヒーターと触媒とを一体化させることは難しかった。
 また、導電性セラミックスからなるハニカム構造体の両端部に電極を配設したヒーター付触媒担体は、電極が劣化し易く、抵抗値が上昇することがあった。これは、当該ヒーター付触媒担体を自動車に搭載して使用する際に、電極が、排ガスに直接暴露されるためであった。
 本発明は、上述した問題に鑑みてなされたものであり、触媒担体であると共に電圧を印加することによりヒーターとしても良好に機能するハニカム構造体を提供する。
 上述の課題を解決するため、本発明は、以下のハニカム構造体を提供する。
[1] 流体の流路となる一方の端面から他方の端面まで延びる複数のセルを区画形成する多孔質の隔壁と、最外周に位置する外周壁とを有する筒状のハニカム構造部と、前記ハニカム構造部の側面に配設された一対の電極部とを備え、前記ハニカム構造部の電気抵抗率が、1~200Ωcmであり、前記一対の電極部のそれぞれが、前記ハニカム構造部のセルの延びる方向に延びる帯状に形成されるとともに、前記一対の電極部のそれぞれが、前記ハニカム構造部の前記セルの延びる方向に直交する断面における径方向に積層された二以上の電極体からなり、前記セルの延びる方向に直交する断面において、前記一対の電極部における一方の前記電極部が、前記一対の電極部における他方の前記電極部に対して、前記ハニカム構造部の中心を挟んで反対側に配設され、前記一対の電極部のそれぞれの電極部を構成する各前記二以上の電極体のうち、最も前記外周壁側寄りに配設されたそれぞれの前記電極体を第一の電極体としたときに、前記ハニカム構造部の前記側面における、それぞれの前記第一の電極体の面積が、それぞれの前記二以上の電極体のうちの他の電極体の面積よりも大きく、且つ、前記セルの延びる方向に直交する少なくとも一の断面において、それぞれの前記第一の電極体の中心角が、それぞれの前記二以上の電極体のうちの前記他の電極体の中心角よりも大きいハニカム構造体。
[2] 前記セルの延びる方向に直交する少なくとも一の断面において、それぞれの前記他の電極体の中心角が、それぞれの前記第一の電極体の中心角の5~95%に相当する角度である前記[1]に記載のハニカム構造体。
[3] 前記一対の電極部の前記セルの延びる方向における長さの50~100%の範囲において、それぞれの前記第一の電極体の中心角が、それぞれの前記他の電極体の中心角よりも大きい前記[1]又は[2]に記載のハニカム構造体。
[4] 前記一対の電極部の前記セルの延びる方向の全ての前記断面において、それぞれの前記第一の電極体の中心角が、それぞれの前記他の電極体の中心角よりも大きい前記[1]~[3]のいずれかに記載のハニカム構造体。
[5] それぞれの前記他の電極体の電気抵抗率が、それぞれの前記第一の電極体の電気抵抗率の5~100%に相当する値である前記[1]~[4]のいずれかに記載のハニカム構造体。
[6] それぞれの前記他の電極体の厚さが、それぞれの前記第一の電極体の厚さの50~150%に相当する厚さである前記[1]~[5]のいずれかに記載のハニカム構造体。
 本発明のハニカム構造体は、ハニカム構造部の電気抵抗率が1~200Ωcmであるため、電圧の高い電源を用いて電流を流しても、過剰に電流が流れず、ヒーターとして好適に用いることができる。また、一対の電極部のそれぞれが、ハニカム構造部のセルの延びる方向に延びる帯状に形成されている。そして、セルの延びる方向に直交する断面において、一対の電極部における一方の電極部が、一対の電極部における他方の電極部に対して、ハニカム構造部の中心を挟んで反対側に配設されている。そのため、電圧を印加したときの温度分布の偏りを抑制することができる。更に、以下の(a)及び(b)の構成を採用することにより、ハニカム構造部の側面の特定箇所における発熱の集中を抑制することができる。
 (a)一対の電極部のそれぞれが、ハニカム構造部のセルの延びる方向に直交する断面における径方向に積層された二以上の電極体からなる。
 (b)一対の電極部のそれぞれの電極部を構成する各二以上の電極体のうち、最も外周壁側寄りに配設されたそれぞれの電極体を第一の電極体とする。このときに、ハニカム構造部の側面における、それぞれの第一の電極体の面積が、それぞれの二以上の電極体のうちの他の電極体の面積よりも大きい。更に、セルの延びる方向に直交する少なくとも一の断面において、それぞれの第一の電極体の中心角が、それぞれの二以上の電極体のうちの他の電極体の中心角よりも大きい。
 このように、本発明のハニカム構造体によれば、ハニカム構造体における発熱が集中する箇所を分散させることにより、ハニカム構造体の局所的な温度上昇を抑制し、より均等にハニカム構造体を発熱させることができる。これにより、ハニカム構造体にクラックが生じることを抑制することができる。
本発明のハニカム構造体の一の実施形態を模式的に示す斜視図である。 本発明のハニカム構造体の一の実施形態を模式的に示す正面図である。 本発明のハニカム構造体の一の実施形態の、セルの延びる方向に平行な断面を示す模式図である。 本発明のハニカム構造体の一の実施形態の、セルの延びる方向に直交する断面を示す模式図である。 第一の電極体の一例を模式的に示す平面図である。 第一の電極体の他の例を模式的に示す平面図である。 第一の電極体の更に他の例を模式的に示す平面図である。 第一の電極体の更に他の例を模式的に示す平面図である。 第一の電極体の更に他の例を模式的に示す平面図である。 第一の電極体の更に他の例を模式的に示す平面図である。 第一の電極体の更に他の例を模式的に示す平面図である。 第二の電極体の一例を模式的に示す平面図である。 第二の電極体の他の例を模式的に示す平面図である。 第二の電極体の更に他の例を模式的に示す平面図である。 第二の電極体の更に他の例を模式的に示す平面図である。 第二の電極体の更に他の例を模式的に示す平面図である。 電極部の一例を模式的に示す平面図である。 電極部の他の例を模式的に示す平面図である。 電極部の更に他の例を模式的に示す平面図である。 電極部の更に他の例を模式的に示す平面図である。 電極部の更に他の例を模式的に示す平面図である。 電極部の更に他の例を模式的に示す平面図である。 電極部の更に他の例を模式的に示す平面図である。 電極部の更に他の例を模式的に示す平面図である。 電極部の更に他の例を模式的に示す平面図である。 電極部の更に他の例を模式的に示す平面図である。 本発明のハニカム構造体の他の実施形態を模式的に示す斜視図である。 本発明のハニカム構造体の他の実施形態の、セルの延びる方向に平行な断面を示す模式図である。 本発明のハニカム構造体の更に他の実施形態を模式的に示す正面図である。 図10における、A-A’断面を示す模式図である。 本発明のハニカム構造体の更に他の実施形態を模式的に示す側面図である。 本発明のハニカム構造体の更に他の実施形態を模式的に示す正面図である。 本発明のハニカム構造体の更に他の実施形態の、セルの延びる方向に直交する断面を示す模式図である。
 次に、本発明を実施するための形態を図面を参照しながら詳細に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。
(1)ハニカム構造体:
 本発明のハニカム構造体の一の実施形態は、図1~図4に示すように、筒状のハニカム構造部4と、ハニカム構造部4の側面5に配設された一対の電極部21,21とを備えたハニカム構造体100である。このハニカム構造部4は、多孔質の隔壁1と、最外周に位置する外周壁3とを有する。上記隔壁1は、流体の流路となる、一方の端面11から他方の端面12まで延びる複数のセル2を区画形成するものである。
 本実施形態のハニカム構造体100においては、ハニカム構造部4の電気抵抗率が、1~200Ωcmである。また、本実施形態のハニカム構造体100は、一対の電極部21,21のそれぞれの電極部21が、以下のように構成されている。以下、下記構成を、「電極構成A」ということがある。一対の電極部21,21のそれぞれが、ハニカム構造部4のセル2の延びる方向に延びる帯状に形成される。更に、一対の電極部21,21のそれぞれが、ハニカム構造部4のセル2の延びる方向に直交する断面における径方向に積層された二以上の電極体31(図1~図4においては、二つの電極体31a,31b)からなる。そして、上記セル2の延びる方向に直交する断面において、一対の電極部21,21における一方の電極部21が、一対の電極部21,21における他方の電極部21に対して、ハニカム構造部4の中心Oを挟んで反対側に配設されている。
 更に、本実施形態のハニカム構造体100は、一対の電極部21,21のそれぞれの電極部21が、以下のように構成されている。以下、下記構成を、「電極構成B」ということがある。まず、一対の電極部21,21のそれぞれの電極部21を構成する各二以上の電極体31a,31bのうち、最も外周壁3側寄りに配設されたそれぞれの電極体31aを、「第一の電極体31a」とする。その際、ハニカム構造部4の側面5における、それぞれの第一の電極体31aの面積が、それぞれの二以上の電極体31a,31bのうちの他の電極体31bの面積よりも大きい。且つ、セル2の延びる方向に直交する少なくとも一の断面において、それぞれの第一の電極体31aの中心角α1が、それぞれの二以上の電極体31a,31bのうちの他の電極体31bの中心角α2よりも大きい(即ち、α1>α2)。「第一の電極体31aの面積」とは、「第一の電極体31aのハニカム構造部4の側面5と接触する面の面積」のことである。また、「二以上の電極体31a,31bのうちの他の電極体31bの面積」とは、「他の電極体31bの第一の電極体31a側の表面の面積」のことである。「他の電極体31b」とは、「最も外周壁3側寄りに配設された第一の電極体31a以外の電極体」のことである。
 ここで、図1は、本発明のハニカム構造体の一の実施形態を模式的に示す斜視図である。図2は、本発明のハニカム構造体の一の実施形態を模式的に示す正面図である。図3は、本発明のハニカム構造体の一の実施形態の、セルの延びる方向に平行な断面を示す模式図である。図4は、本発明のハニカム構造体の一の実施形態の、セルの延びる方向に直交する断面を示す模式図である。図4においては、隔壁が省略されている。また、図1~図4においては、一対の電極部のそれぞれが、二つの電極体が積層された積層体からなる場合の例を示しているが、各電極部は、三つ以上の電極体が積層された積層体からなるものであってもよい。
 本実施形態のハニカム構造体100は、ハニカム構造部4の電気抵抗率が1~200Ωcmであるため、電圧の高い電源を用いて電流を流しても、過剰に電流が流れず、ヒーターとして好適に用いることができる。また、本実施形態のハニカム構造体100は、上記電極構成Aを採用しているため、一対の電極部21,21間に電圧を印加したときの、ハニカム構造部4の温度分布の偏りを抑制することができる。
 更に、本実施形態のハニカム構造体100においては、一対の電極部21,21のそれぞれが、ハニカム構造部4のセル2の延びる方向に直交する断面における径方向に積層された二以上の電極体31によって構成されている。本実施形態のハニカム構造体100においては、一対の電極部21,21のそれぞれを、二層以上の電極体31の積層体とすることによって、ハニカム構造部4をより均一に加熱することができる。例えば、一対の電極部21,21のそれぞれが、一層の導電性の膜状のものの場合には、ハニカム構造体100のセル2の延びる方向に垂直な断面において、一対の電極部21,21の両側縁部近傍からハニカム構造部4に対して集中的に電流が流れることがある。このように電流が集中的に流れると、その部位の発熱量が多くなる。ハニカム構造体100に供給される電力量が一定の場合には、上述したように部分的に特定の部位が加熱されてしまうと、ハニカム構造体100全体の発熱が十分に行われないことがある。即ち、電極部が一層の膜状のものであると、一方の電極部21と他方の電極部21とが、ハニカム構造部4の中心Oを挟んで反対側に配設されていたとしても、部分的に温度分布の偏りが生じることがある。特に、上記したように集中的に電流が流れる箇所の温度が過剰に上昇するということは、他の部位の温度が十分に上昇していなことが予想され、ハニカム構造体100の排ガスの浄化性能(エミッション性能)が低下することもある。
 本実施形態のハニカム構造体100においては、上述したように、一対の電極部21,21のそれぞれを、二以上の電極体31の積層体とする。更に、本実施形態のハニカム構造体100においては、上記電極構成Bを採用している。各二以上の電極体31a,31bの「他の電極体」は、「第一の電極体」が配置された領域内に配置されていることが好ましい。また、電極体が三層以上の場合には、「下層側に配置された電極体」が配設された領域内に、より上層側に配置された電極体が納まるように(即ち、上層側の電極体が、下層側の電極体からはみ出さずに)、各電極体が配置されていることが好ましい。以下、第一の電極体31aの表面に配設された他の電極体のことを「第二の電極体31b」ということがある。
 このように構成することによって、各電極部における集中的な電流の流れを分散させることができる。即ち、上記のような面積及び中心角の二以上の電極体の積層体から電極部を形成することにより、第一の電極体の側縁部とその他の電極体の側縁部とが合致せずに、各電極体の側縁部がずれた状態となる。このため、集中的に電流が流れる基点(即ち、各電極体の側縁部)が増え、電流が集中する箇所を分散させることができる。
 例えば、図1~図4においては、電極部21が、第一の電極体31aと、第二の電極体31bとの二層構造の電極体31から形成されている。このように構成することによって、第一の電極体31aの両側縁部近傍と、第二の電極体31bの両側縁部近傍との合計4箇所に、電流が集中する箇所を分散させることができる。これにより、ハニカム構造部4に対して、電流がより均等に流れることとなり、例えば、一定の電力量で、ハニカム構造体100を良好に(別言すれば、効率的に)発熱させることができるとともに、局所的な温度上昇を抑制することもできる。これにより、ハニカム構造体の発熱時の最高温度を低減させることができる。また、ハニカム構造体100の排ガスの浄化性能(エミッション性能)も向上させることができる。
 ここで、「セル2の延びる方向に直交する断面において、一対の電極部21,21における一方の電極部21が、一対の電極部21,21における他方の電極部21に対して、ハニカム構造部4の中心Oを挟んで反対側に配設される」とは、以下の構成を意味する。まず、セルの延びる方向に直交する断面における、一方の電極部21の中央点とハニカム構造部4の中心Oとを結ぶ線分を、「線分P」とする。また、セルの延びる方向に直交する断面における、他方の電極部21の中央点とハニカム構造部4の中心Oとを結ぶ線分を、「線分Q」とする。一方の電極部21及び他方の電極部21の中央点は、ハニカム構造部4の周方向における中央の点のことである。そして、「ハニカム構造部4の中心Oを挟んで反対側」とは、線分Pと線分Qとにより形成される角度βが、170°~190°の範囲となるような位置関係のことを意味する。従って、上記した構成においては、一対の電極部21,21が、上記角度βの範囲を満たすような位置関係に配設される。
 本実施形態のハニカム構造体100においては、隔壁1及び外周壁3の材質が、珪素-炭化珪素複合材又は炭化珪素材を主成分とするものであることが好ましく、珪素-炭化珪素複合材又は炭化珪素材であることが更に好ましい。「隔壁1及び外周壁3の材質が、珪素-炭化珪素複合材又は炭化珪素材を主成分とするものである」というときは、隔壁1及び外周壁3が、珪素-炭化珪素複合材又は炭化珪素材を、全体の90質量%以上含有していることを意味する。このような材質を用いることにより、ハニカム構造部の電気抵抗率を1~200Ωcmにすることができる。ここで、珪素-炭化珪素複合材は、骨材としての炭化珪素粒子、及び炭化珪素粒子を結合させる結合材としての珪素を含有するものである。この珪素-炭化珪素複合材においては、複数の炭化珪素粒子が、炭化珪素粒子間に細孔を形成するようにして、珪素によって結合されていることが好ましい。また、炭化珪素材は、炭化珪素粒子同士が焼結したものである。ハニカム構造部の電気抵抗率は、400℃における値である。
 図1~図4に示されるように、本実施形態のハニカム構造体100は、ハニカム構造部4の側面5(外周壁3の表面)に一対の電極部21,21が配設されている。本実施形態のハニカム構造体100は、一対の電極部21,21間に電圧を印加することにより、発熱する。印加する電圧は12~900Vが好ましく、64~600Vが更に好ましい。
 本実施形態のハニカム構造体100においては、一対の電極部21,21のそれぞれが、ハニカム構造部4のセル2の延びる方向に直交する断面における径方向に積層された二以上の電極体31(図1~図4においては、二層の電極体31a,31b)からなる。そして、ハニカム構造部4の側面5における、それぞれの第一の電極体31aの面積が、それぞれの二以上の電極体31a,31bのうちの他の電極体31bの面積よりも大きい。更に、セル2の延びる方向に直交する少なくとも一の断面において、それぞれの第一の電極体31aの中心角α1が、それぞれの二以上の電極体31a,31bのうちの他の電極体31bの中心角α2よりも大きい。
 本実施形態のハニカム構造体100においては、セル2の延びる方向に直交する少なくとも一の断面において、他の電極体31bの中心角が、この他の電極体31bが積層されている第一の電極体31aの中心角の5~95%に相当する角度であることが好ましい。このように構成することによって、第一の電極体の側縁の位置と、その他の電極体の側縁の位置とに十分な差異が生じ、電流が集中的に流れる箇所が分散し、ハニカム構造体をより均一に発熱させることができる。また、局所的な発熱を抑制することで、排ガスの浄化性能もより向上させることができる。なお、他の電極体31bの中心角が、第一の電極体の中心角の25~95%に相当する角度であることがより好ましく、50~90%に相当する角度であることが特に好ましい。また、電極部が3層以上の場合において、電極部をn+1層構造(nは2以上の整数)としたときに、n+1層目の中心角は、n層目の中心角の5~95%に相当する角度であることが好ましい。
 図1~図4に示す本実施形態のハニカム構造体100は、一対の電極部21,21のそれぞれが、第一の電極体31aと第二の電極体31bの二つの電極体の積層体によって形成されたものである。この際、セル2の延びる方向に直交する断面において、第一の電極体31aの中心角α1は、40~140°であることが好ましく、60~120°であることが更に好ましく、80~100°であることが特に好ましい。このように構成することによって、一対の電極部21,21間に電圧を印加した時に、ハニカム構造部4内を流れる電流の偏りを、より効果的に抑制することができる。換言すれば、ハニカム構造部4内を流れる電流を、より均一に流すことができる。これによりハニカム構造部4内の発熱の偏りを抑制することができる。「電極体31の中心角(例えば、第一の電極体31aの中心角α1)」は、図4に示されるように、セル2の延びる方向に直交する断面において、電極体31aの両側縁とハニカム構造部4の中心Oとを結ぶ2本の線分により形成される角度である。即ち、セル2の延びる方向に直交する断面において、「電極体31」と、「電極体31の一方の側縁と中心Oとを結ぶ線分」と、「電極体31の他方の側縁と中心Oとを結ぶ線分」とにより形成される形状(例えば、扇形)における、中心Oの部分の内角である。
 本実施形態のハニカム構造体100において、第一の電極体31aの中心角α1が、他の電極体31bの中心角α2よりも大きくなる箇所については、セル2の延びる方向の少なくとも一箇所(即ち、セル2の延びる方向に直交する少なくとも一の断面)であればよい。但し、一対の電極部21,21のセル2の延びる方向における長さの30~100%の範囲において、それぞれの第一の電極体31aの中心角α1が、それぞれの他の電極体31bの中心角α2よりも大きいことが好ましい。第一の電極体31aの中心角α1が大きくなる範囲は、セル2の延びる方向における長さの60~100%であることがより好ましく、80~100%であることが更に好ましい。更に、一対の電極部21,21のセル2の延びる方向に直交する全ての断面において、それぞれの第一の電極体31aの中心角α1が、それぞれの他の電極体31bの中心角α2よりも大きいことが特に好ましい。即ち、セルの延びる方向に直交する全ての断面において、それぞれの第一の電極体31aの中心角α1が、それぞれの他の電極体31bの中心角α2よりも大きいことが特に好ましい。各電極体31a,31bの幅は、セル2の延びる方向において一定であってもよいし、異なっていてもよい。「電極体の幅」とは、電極体の一方の側縁から他方の側縁までの長さ、即ち、ハニカム構造部の周方向における長さのことをいう。
 また、一方の電極部21の「中心角αの0.5倍の角度θ」は、他方の電極部21の「中心角αの0.5倍の角度θ」に対して、0.8~1.2倍の大きさであることが好ましく、1.0倍の大きさ(即ち、同じ大きさ)であることが更に好ましい。これにより、一対の電極部21,21間に電圧を印加した時に、ハニカム構造部4内を流れる電流の偏りを、より効果的に抑制することができ、これによりハニカム構造部4内の発熱の偏りを、より効果的に抑制することができる。なお、「一方の電極部又は他方の電極の中心角」というときは、電極部のうち最も中心角が大きくなる電極体に基づいて求められた中心角のことをいう。
 図1~図4に示されるように、本実施形態のハニカム構造体100のそれぞれの電極部21,21は、2つ以上の電極体31a,31bが、ハニカム構造部4の円筒形状の外周に沿って湾曲させた状態で積層して形成されたものである。ここで、湾曲した各電極体31を、湾曲していない平面状の部材になるように変形したときの形状を、各電極体31の「平面形状」と称することにする。各電極体31とは、例えば、第一の電極体31a、第二の電極体31bのことである。図1~図4に示される第一の電極体31a及び第二の電極体31bの「平面形状」は、長方形になる。そして、「電極体の外周形状」というときは、「各電極体の平面形状における外周形状」を意味する。また、電極部の「平面形状」及び「外周形状」という場合は、特に断りのない限り、積層状態の電極体の「平面形状」及び「外周形状」のこととする。例えば、第一の電極体上に、その他の電極体が、第一の電極体からはみ出すことなく配設(積層)されている場合には、電極部の「平面形状」及び「外周形状」は、第一の電極体の「平面形状」及び「外周形状」と同じ形状となる。
 図1~図4に示す本実施形態のハニカム構造体100においては、各電極体31a,31bの外周形状が長方形の場合の例を示している。本実施形態のハニカム構造体においては、電極部の外周形状が、セルの延びる方向に延びる帯状に形成されるような形状のものであれば、各電極体の外周形状は、上述した長方形以外のその他の形状であってもよい。
 即ち、第一の電極体31aの外周形状としては、図5Aに示すような「長方形」に限定されることはない。例えば、図5Bに示すような、「長方形の角部が曲線状に形成された形状」であってもよい。また、第一の電極体31aの外周形状が、「長方形の角部が直線状に面取りされた形状」であってもよい。更に、第一の電極体31aの外周形状が、「曲線状」と「直線状」の複合適用であってもよい。「曲線状」と「直線状」の複合適用とは、長方形において、角部の少なくとも一つが「曲線状に形成された形状」となっており、且つ、角部の少なくとも一つが「直線状に面取りされた形状」となっている形状のことである。また、本明細書における「帯状」は、シート状または膜状ということもできる。つまり、本明細書における「電極部」は、本明細書における「電極端子突起部」のように外側に向かって突出したものを含まない。図5Aは、第一の電極体の一例を模式的に示す平面図である。図5Bは、第一の電極体の他の例を模式的に示す平面図である。また、図5A及び図5Bにおける符号Iは、セルの延びる方向を示す。
 このように、第一の電極体31aの外周形状が、「長方形の角部が曲線状に形成された形状」、又は「長方形の角部が直線状に面取りされた形状」であることにより、ハニカム構造体の耐熱衝撃性を更に向上させることができる。例えば、第一の電極体31aの角部が直角であると、ハニカム構造部における「当該第一の電極体の角部」付近の応力が、他の部分と比較して相対的に高くなる傾向にある。これに対し、第一の電極体の角部を曲線状にしたり直線状に面取りしたりすると、ハニカム構造部における「当該第一の電極体の角部」付近の応力を低下させることが可能となる。
 また、第一の電極体31aの外周形状が、図5C及び図5Dに示すような「六角形」であってもよい。図5Cにおいては、外周形状が六角形の第一の電極体31aとして、それぞれの内角が180°未満の六角形の場合を示す。図5Dにおいては、外周形状が六角形の第一の電極体31aとして、対向する2つの角の内角が180°超の六角形の場合を示す。図5C及び図5Dは、第一の電極体の更に他の例を模式的に示す平面図である。
 また、第一の電極体31aとしては、例えば、図5Eに示すような、「網状(メッシュ状)」の電極体であってもよい。図5Eに示す第一の電極体31aは、その外周形状が「長方形の角部が曲線状に形成された形状」であり、セルの延びる方向Iに対して斜め方向に、格子の升目(網目)が整列するように構成された電極体である。また、第一の電極体31aとしては、例えば、図5Fに示すような、「電極体にドット状の空隙(孔)が形成された形状」の電極体であってもよい。
 また、第一の電極体31aとしては、例えば、「第一の電極体の外周形状を構成する辺のうち、セルの延びる方向Iに平行な辺の一部が内側に括れた形状」のものであってもよい。例えば、図5Gに示す第一の電極体31aは、外周形状が「長方形の角部が曲線状に形成された形状」の電極体において、当該電極体のセルの延びる方向に平行な辺(側縁)のそれぞれ3箇所が、円弧状に切り欠かれた形状の場合の例を示す。別言すれば、図5Gに示す第一の電極体31aは、電極体のセルの延びる方向に平行な辺(側縁)のそれぞれ3箇所が、内側に括れた形状となっている。ここで、図5E~図5Gは、第一の電極体の更に他の例を模式的に示す平面図である。
 また、第一の電極体よりも上層に配置される他の電極体の外周形状についても特に制限はない。但し、この他の電極体は、第一の電極体の面積よりもその面積が小さいものであり、且つ、第一の電極体上に配置された場合に、少なくともセルの延びる方向に直交する一の断面において、他の電極体の中心角が、第一の電極体の中心角よりも小さくなるものである。
 ここで、他の電極体として第二の電極体を例にとり、他の電極体(別言すれば、第二の電極体)の外周形状等について説明する。第二の電極体31bの外周形状としては、図6Aに示すような「長方形」、図6Bに示すような、「長方形の角部が曲線状に形成された形状」を挙げることができる。また、第二の電極体31bの外周形状が、「長方形の角部が直線状に面取りされた形状」であってもよい。第二の電極体31bの外周形状が、「曲線状」と「直線状」の複合適用であってもよい。図6Aは、第二の電極体の一例を模式的に示す平面図である。図6Bは、第二の電極体の他の例を模式的に示す平面図である。また、図5A及び図5Bにおける符号Iは、セルの延びる方向を示す。
 また、第二の電極体31bとしては、例えば、図6Cに示すような、「網状(メッシュ状)」の電極体であってもよい。また、図6Dに示すような、「電極体にドット状の空隙(孔)が形成された形状」の電極体であってもよい。第一の電極体31aと第二の電極体31bとが、共に「網状(メッシュ状)」や「ドット状の空隙(孔)が形成された形状」の電極体の場合には、第一の電極体31a及び第二の電極体31bのメッシュやドットのパターンについては特に制限はない。即ち、第一の電極体31aと第二の電極体31bとで、メッシュやドットのパターンが同じであってもよいし、異なっていてもよい。例えば、第一の電極体31aと第二の電極体31bとのメッシュやドットのパターンが異なる場合には、第一の電極体31aの空隙部分を残すように、第二の電極体31bが配置されていてもよい。「第一の電極体31aの空隙部分」とは、メッシュやドットによって形成される空隙のことである。また、第二の電極体31bの空隙部分が狭く(例えば、メッシュが細かく)、第二の電極体31bによって第一の電極体31aの空隙部分が少なくなるように構成されていてもよい。なお、2層目以上の電極体(例えば、第二の電極体31b)は、第一の電極体31aに比して、空隙部分が小さい(換言すれば、開口率が低い)方が、通電性能に優れたものとなる。
 更に、第二の電極体31bとしては、例えば、第二の電極体の外周形状を構成する辺のうち、セルの延びる方向Iに平行な辺の一部が内側に括れた形状のものであってもよい。例えば、図6Eに示す第二の電極体31bは、外周形状が「長方形の角部が曲線状に形成された形状」の電極体において、当該電極体のセルの延びる方向に平行な辺(側縁)のそれぞれ3箇所が、円弧状に切り欠かれた形状の場合の例を示す。ここで、図6C~図6Eは、第二の電極体の他の例を模式的に示す平面図である。
 ここで、図5A~図5Gに示すような各外周形状の第一の電極体31aを、それぞれ「第一の電極体A~G」とし、図6A~図6Eに示すような各外周形状の第二の電極体31bを、それぞれ「第二の電極体A~E」とする。例えば、図5Aに示す第一の電極体31aが、「第一の電極体A」となり、例えば、図6Aに示す第二の電極体31bが、「第二の電極体A」となる。このような場合において、それぞれの電極体(即ち、第一の電極体と第二の電極体と)の組合せについては特に制限はない。好ましい電極体の組合せとしては、以下のような組合せを挙げることができる。
 第一の電極体Aについては、第二の電極体A~Eの全てを好適に組み合わせることができる。第一の電極体Bについては、第二の電極体B、Eのいずれかとの組合せが好ましい。第一の電極体Cについては、第二の電極体B、Eのいずれかとの組合せが好ましい。第一の電極体Dについては、第二の電極体B、Eのいずれかとの組合せが好ましい。第一の電極体Eについては、第二の電極体B、Cのいずれかとの組合せが好ましい。第一の電極体Fについては、第二の電極体B、Dのいずれかとの組合せが好ましい。第一の電極体Gについては、第二の電極体B、Eのいずれかとの組合せが好ましい。
 ここで、図7Aは、第一の電極体B(第一の電極体31a)と、第二の電極体B(第二の電極体31b)とを組み合わせた電極部21を示す。図7Bは、第一の電極体C(第一の電極体31a)と、第二の電極体B(第二の電極体31b)とを組み合わせた電極部21を示す。図7Cは、第一の電極体D(第一の電極体31a)と、第二の電極体B(第二の電極体31b)とを組み合わせた電極部21を示す。図7Dは、第一の電極体G(第一の電極体31a)と、第二の電極体B(第二の電極体31b)とを組み合わせた電極部21を示す。図7Eは、第一の電極体E(第一の電極体31a)と、第二の電極体B(第二の電極体31b)とを組み合わせた電極部21を示す。図7Fは、第一の電極体F(第一の電極体31a)と、第二の電極体B(第二の電極体31b)とを組み合わせた電極部21を示す。図7Gは、第一の電極体E(第一の電極体31a)と、第二の電極体C(第二の電極体31b)とを組み合わせた電極部21を示す。図7Hは、第一の電極体B(第一の電極体31a)と、第二の電極体C(第二の電極体31b)とを組み合わせた電極部21を示す。図7Iは、第一の電極体F(第一の電極体31a)と、第二の電極体D(第二の電極体31b)とを組み合わせた電極部21を示す。図7Jは、第一の電極体B(第一の電極体31a)と、第二の電極体E(第二の電極体31b)とを組み合わせた電極部21を示す。図7G及び図7Iにおいては、第一の電極体31aと第二の電極体31bとの境界部分を破線によって示している。
 第一の電極体上に、第二の電極体が積層される場合には、第二の電極体の外周形状が、「第一の電極体の平面形状の重心を通過し、セルの延びる方向に第一の電極体の面積を二等分する中心線」に対して、対称となる形状であってもよい。また、上述した第二の電極体の外周形状が、「第一の電極体の平面形状の重心を通過し、セルの延びる方向に第一の電極体の面積を二等分する中心線」に対して、非対称となる形状であってもよい。なお、対称の形状が好ましい。このような形状であると、左右に均一に電流が分散する。
 また、本実施形態のハニカム構造体においては、一対の電極部を構成するそれぞれの二以上の電極体のうちの他の電極体の電気抵抗率が、それぞれの第一の電極体の電気抵抗率の5~100%に相当する値であることが好ましい。また、他の電極体の電気抵抗率が、それぞれの第一の電極体の電気抵抗率の10~90%に相当する値であることが更に好ましく、50~90%に相当する値であることが特に好ましい。このように構成することによって、電極部直下又は電極部の両端部で発生する発熱集中を、複数箇所に良好に分散させることができ、ハニカム構造体の局所的な温度上昇を良好に抑制することができる。即ち、ハニカム構造体の発熱時の最高温度を低減させることができる。また、ハニカム構造体100の排ガスの浄化性能(エミッション性能)も向上させることができる。例えば、他の電極体の電気抵抗率が、第一の電極体の電気抵抗率の5%未満、又は100%超であると、電極部からハニカム構造部への電流の流れが分散し難くなる。
 本実施形態のハニカム構造体においては、第一の電極体の電気抵抗率が、0.01~100Ωcmであることが好ましい。更に、第一の電極体の電気抵抗率が、0.1~10Ωcmであることが更に好ましく、0.6~5Ωcmであることが特に好ましい。第一の電極体の電気抵抗率をこのような範囲にすることにより、一対の電極部21,21が、高温の排ガスが流れる配管内において、効果的に電極の役割を果たす。第一の電極体の電気抵抗率が0.01Ωcmより小さいと、セルの延びる方向に直交する断面において、第一の電極体の両側縁付近のハニカム構造部の温度が上昇し易くなることがある。第一の電極体の電気抵抗率が100Ωcmより大きいと、電流が流れ難くなるため、電極としての役割を果たし難くなることがある。第一の電極体の電気抵抗率は、400℃における値である。
 電極部21の電気抵抗率が部分的に異なる場合、図13、図14に示すハニカム構造体400のように、電極部21が、中央部21Xと拡張部21Y,21Yとから構成されることが好ましい。そして、電極部21の中央部21Xの電気抵抗率は、電極部21の拡張部21Y,21Yの電気抵抗率より小さいものであることが好ましい。中央部21Xは、セル2の延びる方向に直交する断面において、電極部21の周方向における中央部分のことである。拡張部21Y,21Yは、セル2の延びる方向に直交する断面において、中央部21Xの周方向における両側に位置する部分のことである。このように、電極部21の中央部21Xの電気抵抗率が、電極部21の拡張部21Yの電気抵抗率より小さいと、電極部21の中央部21Xに電圧を印加したときに、電気抵抗率が低い中央部21Xに電流が容易に流れる。そのため、ハニカム構造体のセルの延びる方向における電流の流れの偏りが小さくなる。これにより、ハニカム構造部4のセル2の延びる方向における温度分布の偏りを効果的に抑制することができる。図13は、本発明のハニカム構造体の他の実施形態を模式的に示す正面図である。図14は、本発明のハニカム構造体の他の実施形態の、セルの延びる方向に直交する断面を示す模式図である。なお、図13及び図14においては、第一の電極体及び第二の電極体の積層構造については捨象して電極部を示している。
 中央部21Xの電気抵抗率は、拡張部21Y,21Yの電気抵抗率の0.0001~70%が好ましく、0.001~50%が更に好ましく、0.001~10%が特に好ましい。0.0001%より小さいと、ハニカム構造部の中心軸に直交する断面における外周方向への電流の流れが小さくなり、温度分布の偏りが大きくなることがある。70%より大きいと、ハニカム構造体400の温度分布の偏りを抑制する効果が低下することがある。
 また、本実施形態のハニカム構造体100においては、電極部21のヤング率は、2~50GPaであることが好ましく、3~45GPaであることが更に好ましく、3~35GPaであることが特に好ましい。電極部21のヤング率をこのような範囲にすることにより、電極部21のアイソスタティック強度を確保できるとともに、ハニカム構造部にクラックが発生し難くなる。電極部21のヤング率が2GPaより小さいと、電極部21のアイソスタティック強度を確保できなくなることがある。電極部21のヤング率が50GPaより大きいと、剛性が高くなるためハニカム構造部にクラックが発生し易くなることがある。
 電極部のヤング率は、JIS R1602に準拠して、曲げ共振法によって測定した値である。測定に用いる試験片としては、電極部を形成する電極部形成原料からなる複数のシートを積み重ねて積層体を得た後、この積層体を乾燥させ、3mm×4mm×40mmの大きさに切り出したものを用いる。
 本発明のハニカム構造体は、一対の電極部の熱容量の合計を、外周壁全体の熱容量の2~150%にすることが好ましい。このような範囲とすることにより、電極部に蓄積する熱量が少なくなり、ハニカム構造体の耐熱衝撃性が更に向上する。そのため、ハニカム構造体を内燃機関の排気システムに搭載して使用した際に、急激な温度変化があっても、ハニカム構造部に大きな応力が生じることを抑制することができる。一対の電極部の熱容量の合計は、外周壁全体の熱容量以下にすること(即ち、2~100%であること)が更に好ましく、外周壁全体の熱容量より小さくすることが特に好ましい。これにより、電極部に蓄積する熱量が更に少なくなり、ハニカム構造体の耐熱衝撃性が更に向上する。そのため、ハニカム構造体を内燃機関の排気システムに搭載して使用した際に、急激な温度変化があっても、ハニカム構造部に大きな応力が生じることを更に抑制することができる。一対の電極部の熱容量の合計は、電極部の体積をもとに、気孔率、材料の比重、及び比熱を考慮した熱容量計算の方法で導き出した値である。上記「電極部の体積」は、光学顕微鏡で測定された電極部の平均厚みと電極角度(図3における、中心角α)とを用いて計算された電極部の体積のことである。外周壁全体の熱容量は、外周壁の体積をもとに、気孔率、材料の比重、及び比熱を考慮した熱容量計算の方法で導き出した値である。上記「外周壁の体積」は、光学顕微鏡で測定された外周壁の平均厚みを用いて計算された外周壁の体積のことである。本明細書において、ハニカム構造部の側面の、電極部が配設されている部分の面積を「電極部の配設面積」とする。また、ハニカム構造部と同軸であり電極部を分割する円筒を仮定し、その円筒に分割された電極部の分割面を仮想分割面とする。更に、この仮想分割面の面積を「仮想分割面積」とする。本明細書における「電極部の熱容量」の算出に際しては、上記「仮想分割面積」が、上記「電極部の配設面積」の90%以上となる部分を「電極部」とする。即ち、本明細書における「電極部の熱容量」の算出に際しては、上記「仮想分割面積」が、上記「電極部の配設面積」の90%未満となる部分は電極部ではないものとする。
 本実施形態のハニカム構造体においては、「一対の電極部の熱容量の合計が、外周壁全体の熱容量より小さい」場合、具体的には、一対の電極部の熱容量の合計が、外周壁全体の熱容量の2~80%であることが好ましい。下限値は、9%であることが更に好ましく、15%であることが特に好ましい。また、上限値は、75%であることが更に好ましく、50%であることが特に好ましい。2%より小さいと、電圧を印加したときに、ハニカム構造部の全体に、より均一に電流が流れるという効果が十分に得られないおそれがある。80%より大きいと、耐熱衝撃性を低下させる効果が小さくなることがある。
 また、本実施形態のハニカム構造体においては、それぞれの二以上の電極体のうちの他の電極体の厚さが、それぞれの第一の電極体の厚さの50~150%に相当する厚さであることが好ましい。また、他の電極体の厚さが、50~100%に相当する厚さであることが更に好ましく、70~100%に相当する厚さであることが特に好ましい。
 電極体の厚さは、光学顕微鏡で測定された値であり、「セルの延びる方向におけるハニカム構造体の中央部」における、電極体の周方向3点の平均厚みの値である。「電極体の周方向3点の平均厚みの値」とは、電極体を「ハニカム構造部の周方向」に3等分して3つの分割部分を形成し、各分割部分において「ハニカム構造部の周方向」における中央部の厚さを測定し、得られた3点の厚さの測定結果を平均した値である。電極体をハニカム構造部の周方向に3等分するとは、セルの延びる方向に平行な直線で、電極体を3等分することを意味する。
 本実施形態のハニカム構造体においては、第一の電極体の厚さが、0.1~2.0mmであることが好ましく、0.1~1.0mmであることが更に好ましく、0.1~0.5mmであることが特に好ましい。第一の電極体の厚さを薄くすることにより、電極部の熱容量を低くすることができ、ハニカム構造体の耐熱衝撃性を向上させることができる。その一方で、本実施形態のハニカム構造体においては、第一の電極体の表面に、更に電極体を積層した構造となっているため、電極部の通電性能を向上させることができる。
 本実施形態のハニカム構造体においては、一対の電極部の気孔率が、30~80%であることが好ましく、30~70%であることが更に好ましく、30~60%であることが特に好ましい。電極部の気孔率がこのような範囲であることにより、電極部の熱容量を低くすることができ、ハニカム構造体の耐熱衝撃性を向上させることができる。電極部の気孔率が30%より小さいと、電極部の熱容量を低くし難くなることがある。電極部の気孔率が80%より大きいと、ハニカム構造部に均一に電流を流すことが難しくなることがある。電極部の気孔率は、水銀ポロシメータで測定した値である。
 電極部21を構成する各電極体31a,31bは、炭化珪素粒子及び珪素を主成分とすることが好ましく、通常含有される不純物以外は、炭化珪素粒子及び珪素を原料として形成されていることが更に好ましい。ここで、「炭化珪素粒子及び珪素を主成分とする」とは、炭化珪素粒子と珪素との合計質量が、各電極体31a,31b全体の質量の90質量%以上であることを意味する。特に、第一の電極体31aが炭化珪素粒子及び珪素を主成分とすることにより、第一の電極体31aの成分とハニカム構造部4の成分とが同じ成分又は近い成分(ハニカム構造部の材質が炭化珪素である場合)となる。そのため、第一の電極体31aとハニカム構造部4の熱膨張係数が同じ値又は近い値になる。また、第一の電極体31aの材質とハニカム構造部4の材質とが、同じもの又は近いものになるため、第一の電極体31aとハニカム構造部4との接合強度も高くなる。そのため、ハニカム構造体に熱応力がかかっても、第一の電極体31a(換言すれば、電極部21)がハニカム構造部4から剥れたり、第一の電極体31a(換言すれば、電極部21)とハニカム構造部4との接合部分が破損したりすることを防ぐことができる。
 電極部21を構成する各電極体31a,31bは、平均細孔径が5~45μmであることが好ましく、7~40μmであることが更に好ましい。電極部21を構成する各電極体31a,31bの平均細孔径がこのような範囲であることにより、好適な電気抵抗率が得られる。電極部21を構成する各電極体31a,31bの平均細孔径が、5μmより小さいと、電気抵抗率が高くなり過ぎることがある。電極部21を構成する各電極体31a,31bの平均細孔径が、45μmより大きいと、電極部21の強度が弱くなり破損し易くなることがある。平均細孔径は、水銀ポロシメータで測定した値である。
 電極部21を構成する各電極体31a,31bの主成分が炭化珪素粒子及び珪素である場合に、各電極体31a,31bに含有される炭化珪素粒子の平均粒子径が10~70μmであることが好ましく、10~60μmであることが更に好ましい。各電極体31a,31bに含有される炭化珪素粒子の平均粒子径がこのような範囲であることにより、各電極体31a,31bの電気抵抗率を良好な値に制御することができる。各電極体31a,31bに含有される炭化珪素粒子の平均粒子径が、10μmより小さいと、電極部21の電気抵抗率が大きくなり過ぎることがある。各電極体31a,31bに含有される炭化珪素粒子の平均粒子径が、70μmより大きいと、電極部21の強度が弱くなり破損し易くなることがある。各電極体31a,31bに含有される炭化珪素粒子の平均粒子径は、レーザー回折法で測定した値である。
 各電極体31a,31bに含有される「炭化珪素粒子と珪素のそれぞれの質量の合計」に対する、各電極体31a,31bに含有される珪素の質量の比率が、20~50質量%であることが好ましく、20~40質量%であることが更に好ましい。各電極体31a,31bに含有される炭化珪素粒子と珪素のそれぞれの質量の合計に対する、珪素の質量の比率が、このような範囲であることにより、各電極体31a,31bの電気抵抗率を0.01~100Ωcmの範囲で制御することができる。各電極体31a,31bに含有される炭化珪素粒子と珪素のそれぞれの質量の合計に対する、珪素の質量の比率が、20質量%より小さいと、電気抵抗率が大きくなり過ぎることがあり、50質量%より大きいと、製造時に変形し易くなることがある。
 本実施形態のハニカム構造体100は、隔壁厚さが50~260μmであり、70~180μmであることが好ましい。隔壁厚さをこのような範囲にすることにより、ハニカム構造体100を触媒担体として用いて、触媒を担持しても、排ガスを流したときの圧力損失が大きくなり過ぎることを抑制できる。隔壁厚さが50μmより薄いと、ハニカム構造体の強度が低下することがある。隔壁厚さが260μmより厚いと、ハニカム構造体100を触媒担体として用いて、触媒を担持した場合に、排ガスを流したときの圧力損失が大きくなることがある。
 本実施形態のハニカム構造体100は、セル密度が40~150セル/cmであることが好ましく、70~100セル/cmであることが更に好ましい。セル密度をこのような範囲にすることにより、排ガスを流したときの圧力損失を小さくした状態で、触媒の浄化性能を高くすることができる。セル密度が40セル/cmより低いと、触媒担持面積が少なくなることがある。セル密度が150セル/cmより高いと、ハニカム構造体100を触媒担体として用いて、触媒を担持した場合に、排ガスを流したときの圧力損失が大きくなることがある。
 本実施形態のハニカム構造体100において、ハニカム構造部4を構成する炭化珪素粒子(骨材)の平均粒子径は、3~50μmであることが好ましく、3~40μmであることが更に好ましい。ハニカム構造部4を構成する炭化珪素粒子の平均粒子径をこのような範囲とすることにより、ハニカム構造部4の400℃における電気抵抗率を1~200Ωcmにすることができる。炭化珪素粒子の平均粒子径が3μmより小さいと、ハニカム構造部4の電気抵抗率が大きくなることがある。炭化珪素粒子の平均粒子径が50μmより大きいと、ハニカム構造部4の電気抵抗率が小さくなることがある。更に、炭化珪素粒子の平均粒子径が50μmより大きいと、ハニカム成形体を押出成形するときに、押出成形用の口金に成形用原料が詰まることがある。炭化珪素粒子の平均粒子径はレーザー回折法で測定した値である。
 本実施形態のハニカム構造体100において、ハニカム構造部4の電気抵抗率は、1~200Ωcmであり、40~100Ωcmであることが好ましい。電気抵抗率が1Ωcmより小さいと、例えば、200V以上の高電圧の電源によってハニカム構造体100に通電したときに、電流が過剰に流れることがある。電気抵抗率が200Ωcmより大きいと、例えば、200V以上の高電圧の電源によってハニカム構造体100に通電したときに、電流が流れ難くなり、十分に発熱しないことがある。ハニカム構造部の電気抵抗率は、四端子法により測定した値である。ハニカム構造部の電気抵抗率は、400℃における値である。
 本実施形態のハニカム構造体100においては、第一の電極体31aの電気抵抗率は、ハニカム構造部4の電気抵抗率より低いものであることが好ましい。更に、第一の電極体31aの電気抵抗率が、ハニカム構造部4の電気抵抗率の、20%以下であることが更に好ましく、1~10%であることが特に好ましい。第一の電極体31aの電気抵抗率を、ハニカム構造部4の電気抵抗率の、20%以下とすることにより、電極部21が、より効果的に電極として機能するようになる。
 本実施形態のハニカム構造体100においては、ハニカム構造部4の材質が、珪素-炭化珪素複合材である場合、下記「珪素の質量比率」が、10~40質量%であることが好ましく、15~35質量%であることが更に好ましい。「珪素の質量比率」が、10質量%より低いと、ハニカム構造体の強度が低下することがある。40質量%より高いと、焼成時に形状を保持できないことがある。「珪素の質量比率」とは、ハニカム構造部4に含有される「骨材としての炭化珪素粒子の質量」と、ハニカム構造部4に含有される「結合材としての珪素の質量」との合計に対する、ハニカム構造部4に含有される「結合材としての珪素の質量」の比率のことである。
 ハニカム構造部4の隔壁1の気孔率が、35~60%であることが好ましく、45~55%であることが更に好ましい。気孔率が、35%未満であると、焼成時の変形が大きくなってしまうことがある。気孔率が60%を超えるとハニカム構造体の強度が低下することがある。気孔率は、水銀ポロシメータにより測定した値である。
 ハニカム構造部4の隔壁1の平均細孔径は、2~15μmであることが好ましく、4~8μmであることが更に好ましい。平均細孔径が2μmより小さいと、電気抵抗率が大きくなり過ぎることがある。平均細孔径が15μmより大きいと、電気抵抗率が小さくなり過ぎることがある。平均細孔径は、水銀ポロシメータにより測定した値である。
 また、本実施形態のハニカム構造体においては、ハニカム構造部の外周壁の気孔率が、35~60%であることが好ましく、35~55%であることが更に好ましく、35~50%であることが特に好ましい。ハニカム構造部の外周壁の気孔率がこのような範囲であることにより、ハニカム構造体の耐熱衝撃性を向上させることができる。ハニカム構造部の外周壁の気孔率が35%より小さいと、ハニカム構造体の耐熱衝撃性を向上させる効果が低下することがある。ハニカム構造部の外周壁の気孔率が60%より大きいと、ハニカム構造体の機械的強度が低下することがある。
 ハニカム構造部の外周壁の厚さについては特に制限はない。外周壁の厚さは、0.1~1.0mmであることが好ましく、0.2~0.8mmであることが更に好ましく、0.2~0.5mmであることが特に好ましい。ハニカム構造部の外周壁の厚さをこのような範囲にすることにより、ハニカム構造体の耐熱衝撃性を向上させることができる。また、これにより、ハニカム構造体を触媒担体として用いて、触媒を担持しても、排ガスを流したときの圧力損失が大きくなり過ぎることを抑制できる。ハニカム構造部の外周壁の厚さが0.1mmより薄いと、ハニカム構造体の強度が低下することがある。ハニカム構造部の外周壁の厚さが1.0mmより厚いと、ハニカム構造体の耐熱衝撃性が低下することがある。また、ハニカム構造部の外周壁の厚さが1.0mmより厚いと、ハニカム構造体を触媒担体として用いて、触媒を担持した場合に、触媒を担持する隔壁の面積が小さくなることがある。
 本実施形態のハニカム構造体100は、セル2の延びる方向に直交する断面におけるセル2の形状が、四角形、六角形、八角形、又はこれらの組合せ、であることが好ましい。セル形状をこのようにすることにより、ハニカム構造体100に排ガスを流したときの圧力損失が小さくなり、触媒の浄化性能が優れたものとなる。
 本実施形態のハニカム構造体100の形状は特に限定されず、例えば、底面が円形の筒状(円筒形状)、底面がオーバル形状の筒状、底面が多角形(四角形、五角形、六角形、七角形、八角形等)の筒状等の形状とすることができる。また、ハニカム構造体の大きさは、底面の面積が2000~20000mmであることが好ましく、4000~10000mmであることが更に好ましい。また、ハニカム構造体の中心軸方向(セルの延びる方向)の長さは、50~200mmであることが好ましく、75~150mmであることが更に好ましい。
 本実施形態のハニカム構造体100のアイソスタティック強度は、1MPa以上であることが好ましく、3MPa以上であることが更に好ましい。アイソスタティック強度は、値が大きいほど好ましいが、ハニカム構造体100の材質、構造等を考慮すると、6MPa程度が上限となる。アイソスタティック強度が1MPa未満であると、ハニカム構造体を触媒担体等として使用する際に、破損し易くなることがある。アイソスタティック強度は水中にて静水圧をかけて測定した値である。
 図1、図2に示されるように、本実施形態のハニカム構造体100は、一対の電極部21,21のそれぞれが、ハニカム構造部4のセル2の延びる方向に延びると共に「両端部間(両端面11,12間)に亘る」帯状に形成されている。このように、一対の電極部21,21が、ハニカム構造部4の両端部間に亘るように配設されていることにより、一対の電極部21,21間に電圧を印加した時に、ハニカム構造部4内を流れる電流の偏りをより効果的に抑制することができる。これによりハニカム構造部4内の発熱の偏りを効果的に抑制することができる。ここで、「電極部21が、ハニカム構造部4の両端部間に亘るように形成(配設)されている」というときは、以下の構成のことを意味する。即ち、電極部21の一方の端部がハニカム構造部4の一方の端部(一方の端面)に接し、電極部21の他方の端部がハニカム構造部4の他方の端部(他方の端面)に接していることを意味する。
 尚、一対の電極部21,21は、図1、図2に示されるように、ハニカム構造部4の両端部間に亘るように形成されたものであってもよいが、例えば、以下のように構成されていてもよい。即ち、図8、図9に示されるように、電極部21の「ハニカム構造部4のセル2の延びる方向」における両端部21a,21bが、ハニカム構造部4の両端部(両端面11,12)に接していない(到達していない)状態であってもよい。また、電極部21の一方の端部21aが、ハニカム構造部4の一方の端部(一方の端面11)に接し(到達し)、他方の端部21bが、ハニカム構造部4の他方の端部(他方の端面12)に接していない(到達していない)状態であってもよい。
 ここで、図9に示すように、一対の電極部21,21の中の片方の電極部21における一方の端部21aから、「ハニカム構造部4の一方の端部(一方の端面11)」までの距離を、「距離L1」とする。また、一対の電極部21,21の中の残りの片方の電極部21における一方の端部21aから、「ハニカム構造部4の一方の端部(一方の端面11)」までの距離を、「距離L2」とする。「距離L1」は、「距離L2」と、同じであることが好ましいが、異なっていてもよい。また、図9に示すように、一対の電極部21,21の中の片方の電極部21における他方の端部21bから、「ハニカム構造部4の他方の端部(他方の端面12)」までの距離を、「距離L3」とする。また、一対の電極部21,21の中の残りの片方の電極部21における他方の端部21bから、「ハニカム構造部4の他方の端部(他方の端面12)」までの距離を、「距離L4」とする。「距離L3」は、「距離L4」と、同じであることが好ましいが、異なっていてもよい。尚、電極部21の一方の端部21aは、ハニカム構造部4の一方の端部(一方の端面11)側を向く端部であり、電極部21の他方の端部21bは、ハニカム構造部4の他方の端部(他方の端面12)側を向く端部である。図8は、本発明のハニカム構造体の他の実施形態(ハニカム構造体200)を模式的に示す斜視図である。図9は、本発明のハニカム構造体の他の実施形態(ハニカム構造体200)の、セルの延びる方向に平行な断面を示す模式図である。本実施形態のハニカム構造体200の各条件は、電極部21の少なくとも片方の端部が、ハニカム構造部4の端部(端面)に接して(到達して)いないこと以外は、図1~図3に示すハニカム構造体100における各条件と同じであることが好ましい。
 上述した「距離L1」、「距離L2」、「距離L3」、及び「距離L4」のそれぞれは、ハニカム構造部4のセル2の延びる方向における長さの50%より短いことが好ましく、25%以下であることが更に好ましい。50%以上であると、一対の電極部21,21間に電圧を印加した時に、ハニカム構造部4内を流れる電流の偏りを抑制し難くなることがある。
 次に、本発明のハニカム構造体の更に他の実施形態について説明する。図10~図12に示されるように、本実施形態のハニカム構造体300は、上記本発明のハニカム構造体100(図1~図4参照)において、以下のような構成の電極端子突起部22が配設されたものである。電極端子突起部22は、それぞれの電極部21,21の、セルの延びる方向に直交する断面における中央部であり、且つセルの延びる方向における中央部に配設されている。この電極端子突起部22は、電気配線を繋ぐための物である。即ち、電極端子突起部22は、電極部21,21間に電圧を印加するために、電源からの配線を接続する部分である。ハニカム構造体300に電極端子突起部22が配設されることにより、電極部21,21に電圧を印加したときに、ハニカム構造部4の温度分布の偏りを、より小さくすることができる。図10は、本発明のハニカム構造体の更に他の実施形態を模式的に示す正面図である。図11は、図10における、A-A’断面を示す模式図である。図12は、本発明のハニカム構造体の更に他の実施形態を模式的に示す側面図である。
 本実施形態のハニカム構造体300の各条件は、上述した構成の電極端子突起部22が配設されていること以外は、本発明のハニカム構造体の一の実施形態(ハニカム構造体100(図1~図4参照))における各条件と同じであることが好ましい。
 電極部21の主成分が炭化珪素粒子及び珪素である場合、電極端子突起部22の主成分も、炭化珪素粒子及び珪素であることが好ましい。このように、電極端子突起部22が、炭化珪素粒子及び珪素を主成分とすることにより、電極部21の成分と電極端子突起部22の成分とが同じ(又は近い)成分となる。そのため、電極部21と電極端子突起部22の熱膨張係数が同じ(又は近い)値になる。また、電極部21の材質と電極端子突起部22の材質とが、同じ(又は近く)になるため、電極部21と電極端子突起部22との接合強度も高くなる。そのため、ハニカム構造体に熱応力がかかっても、電極端子突起部22が電極部21から剥れたり、電極端子突起部22と電極部21との接合部分が破損したりすることを防ぐことができる。ここで、「電極端子突起部22が、炭化珪素粒子及び珪素を主成分とする」というときは、電極端子突起部22が、炭化珪素粒子及び珪素を、全体の90質量%以上含有していることを意味する。特に、電極部21を構成する二以上の電極体のうち、最も上層に配置された電極体(図10~図12においては、第二の電極体31b)の成分と、電極端子突起部22の成分とが、同じ(又は近い)成分であることがより好ましい。
 電極端子突起部22の形状は、特に限定されず、電極部21に接合でき、電気配線を接合できる形状であればよい。例えば、図10~図12に示すように、電極端子突起部22は、四角形の板状の基板22aに、円柱状の突起部22bが配設された形状であることが好ましい。このような形状にすることにより、電極端子突起部22は、基板22aにより電極部21に強固に接合されることができ、突起部22bにより電気配線を確実に接合させることができる。
 電極端子突起部22において、基板22aの厚さは、1~5mmが好ましい。このような厚さとすることにより、電極端子突起部22を確実に電極部21に接合することができる。1mmより薄いと、基板22aが弱くなり、突起部22bが基板22aから、外れ易くなることがある。5mmより厚いと、ハニカム構造体を配置するスペースが必要以上に大きくなることがある。
 ここで、電極端子突起部22を構成する基板22aの、「ハニカム構造部4の、セルの延びる方向に直交する断面における外周方向」における長さを、「基板22aの幅」とする。上記基板22aの幅は、電極部21の、「ハニカム構造部4の、セルの延びる方向に直交する断面における外周方向(外周に沿った方向)」における長さの、10~50%であることが好ましく、20~40%であることが更に好ましい。このような範囲にすることにより、電極端子突起部22が、電極部21から外れ難くなる。10%より短いと、電極端子突起部22が、電極部21から外れ易くなることがある。50%より長いと、質量が大きくなることがある。また、電極端子突起部22において、基板22aの、「セル2の延びる方向」における長さは、ハニカム構造部4のセルの延びる方向における長さの、5~30%が好ましい。基板22aの「セル2の延びる方向」における長さをこのような範囲とすることにより、十分な接合強度が得られる。基板22aの「セル2の延びる方向」における長さを、ハニカム構造部4のセルの延びる方向における長さの5%より短くすると、電極部21から外れ易くなることがある。そして、30%より長くすると、質量が大きくなることがある。
 電極端子突起部22において、突起部22bの太さは3~15mmが好ましい。このような太さにすることにより、突起部22bに、電気配線を確実に接合させることができる。突起部22bの太さが3mmより細いと突起部22bが折れ易くなることがある。突起部22bの太さが15mmより太いと、電気配線を接続し難くなることがある。また、突起部22bの長さは、3~20mmが好ましい。このような長さにすることにより、突起部22bに、電気配線を確実に接合させることができる。3mmより短いと電気配線を接合し難くなることがある。20mmより長いと、突起部22bが折れ易くなることがある。
 電極端子突起部22の電気抵抗率は、0.1~2.0Ωcmであることが好ましく、0.1~1.0Ωcmであることが更に好ましい。電極端子突起部22の電気抵抗率をこのような範囲にすることにより、高温の排ガスが流れる配管内において、電極端子突起部22から、電流を電極部21に効率的に供給することができる。電極端子突起部22の電気抵抗率が2.0Ωcmより大きいと、電流が流れ難くなるため、電流を電極部21に供給し難くなることがある。
 電極端子突起部22は、気孔率が30~45%であることが好ましく、30~40%であることが更に好ましい。電極端子突起部22の気孔率がこのような範囲であることにより、適切な電気抵抗率が得られる。電極端子突起部22の気孔率が、45%より高いと、電極端子突起部22の強度が低下することがあり、特に突起部22bの強度が低下すると突起部22bが折れ易くなることがある。気孔率は、水銀ポロシメータで測定した値である。
 電極端子突起部22は、平均細孔径が5~20μmであることが好ましく、7~15μmであることが更に好ましい。電極端子突起部22の平均細孔径がこのような範囲であることにより、適切な電気抵抗率が得られる。電極端子突起部22の平均細孔径が、20μmより大きいと、電極端子突起部22の強度が低下することがあり、特に突起部22bの強度が低下すると突起部22bが折れ易くなることがある。平均細孔径は、水銀ポロシメータで測定した値である。
 電極端子突起部22の主成分が炭化珪素粒子及び珪素である場合に、電極端子突起部22に含有される炭化珪素粒子の平均粒子径が10~60μmであることが好ましく、20~60μmであることが更に好ましい。電極端子突起部22に含有される炭化珪素粒子の平均粒子径がこのような範囲であることにより、電極端子突起部22の電気抵抗率を、0.1~2.0Ωcmにすることができる。電極端子突起部22に含有される炭化珪素粒子の平均粒子径が、10μmより小さいと、電極端子突起部22の電気抵抗率が大きくなり過ぎることがある。電極端子突起部22に含有される炭化珪素粒子の平均粒子径が、60μmより大きいと、電極端子突起部22の電気抵抗率が小さくなり過ぎることがある。電極端子突起部22に含有される炭化珪素粒子の平均粒子径は、レーザー回折法で測定した値である。
 電極端子突起部22に含有される「炭化珪素粒子と珪素のそれぞれの質量の合計」に対する、電極端子突起部22に含有される珪素の質量の比率が、20~40質量%であることが好ましく、25~35質量%であることが更に好ましい。電極端子突起部22に含有される炭化珪素粒子と珪素のそれぞれの質量の合計に対する、珪素の質量の比率が、このような範囲であることにより、0.1~2.0Ωcmの電気抵抗率を得やすくなる。電極端子突起部22に含有される炭化珪素粒子と珪素のそれぞれの質量の合計に対する、珪素の質量の比率が、20質量%より小さいと、電気抵抗率が大きくなり過ぎることがある。そして、40質量%より大きいと、製造時に変形してしまうことがある。
(2)ハニカム構造体の製造方法:
 次に、本発明のハニカム構造体の製造方法について説明する。上記本発明のハニカム構造体の更に他の実施形態である、ハニカム構造体300(図10~図12参照)を製造する方法を示す。
 まず、炭化珪素粉末(炭化珪素)に、金属珪素粉末(金属珪素)、バインダ、界面活性剤、造孔材、水等を添加して成形原料を作製する。炭化珪素粉末の質量と金属珪素の質量との合計に対して、金属珪素の質量が10~40質量%となるようにすることが好ましい。炭化珪素粉末における炭化珪素粒子の平均粒子径は、3~50μmが好ましく、3~40μmが更に好ましい。金属珪素(金属珪素粉末)の平均粒子径は、2~35μmであることが好ましい。炭化珪素粒子及び金属珪素(金属珪素粒子)の平均粒子径はレーザー回折法で測定した値である。炭化珪素粒子は、炭化珪素粉末を構成する炭化珪素の微粒子であり、金属珪素粒子は、金属珪素粉末を構成する金属珪素の微粒子である。なお、これは、ハニカム構造部の材質を、珪素-炭化珪素系複合材とする場合の成形原料の配合であり、ハニカム構造部の材質を炭化珪素とする場合には、金属珪素は添加しない。
 バインダとしては、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロポキシルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール等を挙げることができる。これらの中でも、メチルセルロースとヒドロキシプロポキシルセルロースとを併用することが好ましい。バインダの含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、2.0~10.0質量部であることが好ましい。
 水の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、20~60質量部であることが好ましい。
 界面活性剤としては、エチレングリコール、デキストリン、脂肪酸石鹸、ポリアルコール等を用いることができる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。界面活性剤の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、0.1~2.0質量部であることが好ましい。
 造孔材としては、焼成後に気孔となるものであれば特に限定されるものではなく、例えば、グラファイト、澱粉、発泡樹脂、吸水性樹脂、シリカゲル等を挙げることができる。造孔材の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、0.5~10.0質量部であることが好ましい。造孔材の平均粒子径は、10~30μmであることが好ましい。10μmより小さいと、気孔を十分形成できないことがある。30μmより大きいと、成形時に口金に詰まることがある。造孔材の平均粒子径はレーザー回折方法で測定した値である。
 次に、成形原料を混練して坏土を形成する。成形原料を混練して坏土を形成する方法としては特に制限はなく、例えば、ニーダー、真空土練機等を用いる方法を挙げることができる。
 次に、坏土を押出成形してハニカム成形体を形成する。押出成形に際しては、所望の全体形状、セル形状、隔壁厚さ、セル密度等を有する口金を用いることが好ましい。口金の材質としては、摩耗し難い超硬合金が好ましい。ハニカム成形体は、流体の流路となる複数のセルを区画形成する隔壁と最外周に位置する外周壁とを有する構造である。
 ハニカム成形体の隔壁厚さ、セル密度、外周壁の厚さ等は、乾燥、焼成における収縮を考慮し、作製しようとする本発明のハニカム構造体の構造に合わせて適宜決定することができる。
 得られたハニカム成形体について、乾燥を行うことが好ましい。乾燥の方法は特に限定されず、例えば、マイクロ波加熱乾燥、高周波誘電加熱乾燥等の電磁波加熱方式と、熱風乾燥、過熱水蒸気乾燥等の外部加熱方式とを挙げることができる。これらの中でも、成形体全体を迅速かつ均一に、クラックが生じないように乾燥することができる点で、電磁波加熱方式で一定量の水分を乾燥させた後、残りの水分を外部加熱方式により乾燥させることが好ましい。乾燥の条件として、電磁波加熱方式にて、乾燥前の水分量に対して、30~99質量%の水分を除いた後、外部加熱方式にて、3質量%以下の水分にすることが好ましい。電磁波加熱方式としては、誘電加熱乾燥が好ましく、外部加熱方式としては、熱風乾燥が好ましい。
 ハニカム成形体の中心軸方向長さが、所望の長さではない場合は、両端面(両端部)を切断して所望の長さとすることが好ましい。切断方法は特に限定されないが、丸鋸切断機等を用いる方法を挙げることができる。
 次に、電極部(具体的には、電極部を構成する電極体)を形成するための電極部形成原料を調合する。電極部の主成分を、炭化珪素及び珪素とする場合、電極部形成原料は、炭化珪素粉末及び珪素粉末に、所定の添加物を添加し、混練して形成することが好ましい。電極部は、2つ以上の電極体の積層体によって形成するため、積層する電極体毎に、その成分が異なるものとしてもよいし、同じ成分のものとしてもよい。また、中央部及び拡張部からなる電極部を形成する場合には、中央部形成原料及び拡張部形成原料をそれぞれ調合する。中央部形成原料は、中央部の主成分を、炭化珪素及び珪素とする場合、炭化珪素粉末及び珪素粉末に、所定の添加物を添加し、混練して形成することが好ましい。拡張部形成原料は、拡張部の主成分を、炭化珪素及び珪素とする場合、炭化珪素粉末及び珪素粉末に、所定の添加物を添加し、混練して形成することが好ましい。
 具体的には、炭化珪素粉末(炭化珪素)に、金属珪素粉末(金属珪素)、バインダ、界面活性剤、造孔材、水等を添加して、混練して電極部形成原料を作製する。炭化珪素粉末及び金属珪素の合計質量を100質量部としたときに、金属珪素の質量が20~40質量部となるようにすることが好ましい。炭化珪素粉末における炭化珪素粒子の平均粒子径は、10~60μmが好ましい。金属珪素粉末(金属珪素)の平均粒子径は、2~20μmであることが好ましい。2μmより小さいと、電気抵抗率が小さくなり過ぎることがある。20μmより大きいと、電気抵抗率が大きくなり過ぎることがある。炭化珪素粒子及び金属珪素(金属珪素粒子)の平均粒子径はレーザー回折法で測定した値である。炭化珪素粒子は、炭化珪素粉末を構成する炭化珪素の微粒子であり、金属珪素粒子は、金属珪素粉末を構成する金属珪素の微粒子である。
 バインダとしては、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロポキシルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール等を挙げることができる。これらの中でも、メチルセルロースとヒドロキシプロポキシルセルロースとを併用することが好ましい。バインダの含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、0.1~5.0質量部であることが好ましい。
 水の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、15~60質量部であることが好ましい。
 界面活性剤としては、エチレングリコール、デキストリン、脂肪酸石鹸、ポリアルコール等を用いることができる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。界面活性剤の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、0.1~2.0質量部であることが好ましい。
 造孔材としては、焼成後に気孔となるものであれば特に限定されるものではなく、例えば、グラファイト、澱粉、発泡樹脂、吸水性樹脂、シリカゲル等を挙げることができる。造孔材の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、0.1~5.0質量部であることが好ましい。造孔材の平均粒子径は、10~30μmであることが好ましい。10μmより小さいと、気孔を十分形成できないことがある。30μmより大きいと、大気孔ができやすくなり、強度低下を起こすことがある。造孔材の平均粒子径はレーザー回折方法で測定した値である。
 次に、炭化珪素粉末(炭化珪素)、金属珪素(金属珪素粉末)、バインダ、界面活性剤、造孔材、水等を混合して得られた混合物を混練して、ペースト状の電極部形成原料とすることが好ましい。混練の方法は特に限定されず、例えば、縦型の撹拌機を用いることができる。
 次に、得られた電極部形成原料を、乾燥させたハニカム成形体の側面に塗布することが好ましい。電極部形成原料をハニカム成形体の側面に塗布する方法は、特に限定されないが、例えば、印刷方法を用いることができる。また、電極部形成原料は、上記本発明のハニカム構造体における電極部の形状及び配置になるように、ハニカム成形体の側面に塗布することが好ましい。本実施形態のハニカム構造体を製造する際には、まず、上記電極部形成原料を、ハニカム成形体の側面に塗布し、第一の電極体の前駆体を形成する。その後、同じ成分又は異なる成分の電極部形成原料を、第一の電極体の前駆体の表面に塗布し、その他の電極体の前駆体(例えば、第二の電極体の前駆体)を形成する。電極体が3層以上の積層体とする場合には、更に、電極部形成原料を塗布して、電極体の前駆体を形成することが好ましい。なお、電極部形成原料を塗布して各電極体の前駆体を形成する毎に、塗布した電極部形成原料(各電極体の前駆体)を乾燥することが好ましい。例えば、第一の電極体の前駆体を形成した後、50~100℃で、30分程度乾燥し、次の電極体の前駆体の形成を行うことが好ましい。「電極体の前駆体」とは、焼成により電極体となる未焼成の電極体のことである。
 電極部形成原料をハニカム成形体の側面に塗布する際には、第一の電極体の面積(焼成後の第一の電極体の面積)が、他の電極体の面積(焼成後の他の電極体の面積)よりも大きくなるようにする。更に、ハニカム成形体のセルの延びる方向に直交する少なくとも一の断面において、第一の電極体の中心角(焼成後の第一の電極体の中心角)が、他の電極体の中心角(焼成後の他の電極体の中心角)よりも大きくなるようにする。電極体の外周形状については、図5A~図5G、図6A~図6Eに示すような外周形状を好適例として挙げることができる。
 第一の電極体及びその他の電極体の厚さは、電極部形成原料を塗布するときの厚さを調整することにより、所望の厚さとすることができる。このように、電極部形成原料をハニカム成形体の側面に塗布し、乾燥、焼成するだけで電極部を形成することができるため、非常に容易に電極部を形成することができる。
 また、中央部及び拡張部からなる電極部を形成する場合には、中央部形成原料及び拡張部形成原料のそれぞれを、乾燥させたハニカム成形体の側面に塗布することが好ましい。このとき、図13、図14に示されるような電極部21の中央部21X及び拡張部21Yの形状になるように各原料をハニカム成形体の側面に塗布する。中央部形成原料及び拡張部形成原料をハニカム成形体の側面に塗布する方法は、特に限定されるものではなく、電極部形成原料を塗布する場合と同様に、例えば印刷方法を用いることができる。
 次に、ハニカム成形体の側面に塗布した電極部形成原料(即ち、電極体の前駆体の積層体からなる電極部の前駆体)を乾燥させることが好ましい。これにより、電極部形成原料が塗布されたハニカム成形体を得ることができる。乾燥条件は、50~100℃とすることが好ましい。この時点では、ハニカム成形体には、電極端子突起部形成用部材が貼り付けられていない。
 次に、電極端子突起部形成用部材を作製することが好ましい。電極端子突起部形成用部材は、ハニカム成形体に貼り付けられて、電極端子突起部となるものである。電極端子突起部形成用部材の形状は、特に限定されないが、例えば、図10~図12に示すような形状に形成することが好ましい。そして、得られた電極端子突起部形成用部材を、電極部形成原料が塗布されたハニカム成形体の、電極部形成原料が塗布された部分(即ち、電極体の前駆体)に貼り付けることが好ましい。尚、ハニカム成形体の作製、電極部形成原料の調合、及び電極端子突起部形成用部材の作製の、順序はどのような順序でもよい。
 電極端子突起部形成用部材は、電極端子突起部形成原料を成形、乾燥して得ることが好ましい。電極端子突起部形成原料とは、電極端子突起部形成用部材を形成するための原料のことである。電極端子突起部の主成分を、炭化珪素及び珪素とする場合、電極端子突起部形成原料は、炭化珪素粉末及び珪素粉末に、所定の添加物を添加し、混練して形成することが好ましい。
 具体的には、炭化珪素粉末(炭化珪素)に、金属珪素粉末(金属珪素)、バインダ、界面活性剤、造孔材、水等を添加して、混練して電極端子突起部形成原料を作製する。炭化珪素粉末の質量と金属珪素の質量との合計に対して、金属珪素の質量が20~40質量%となるようにすることが好ましい。炭化珪素粉末における炭化珪素粒子の平均粒子径は、10~60μmが好ましい。金属珪素粉末(金属珪素)の平均粒子径は、2~20μmであることが好ましい。2μmより小さいと、電気抵抗率が小さくなり過ぎることがある。20μmより大きいと、電気抵抗率が大きくなり過ぎることがある。炭化珪素粒子及び金属珪素粒子(金属珪素)の平均粒子径はレーザー回折法で測定した値である。炭化珪素粒子は、炭化珪素粉末を構成する炭化珪素の微粒子であり、金属珪素粒子は、金属珪素粉末を構成する金属珪素の微粒子である。
 バインダとしては、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロポキシルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール等を挙げることができる。これらの中でも、メチルセルロースとヒドロキシプロポキシルセルロースとを併用することが好ましい。バインダの含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、2.0~10.0質量部であることが好ましい。
 水の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、20~40質量部であることが好ましい。
 界面活性剤としては、エチレングリコール、デキストリン、脂肪酸石鹸、ポリアルコール等を用いることができる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。界面活性剤の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、0.1~2.0質量部であることが好ましい。
 造孔材としては、焼成後に気孔となるものであれば特に限定されるものではなく、例えば、グラファイト、澱粉、発泡樹脂、吸水性樹脂、シリカゲル等を挙げることができる。造孔材の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、0.1~5.0質量部であることが好ましい。造孔材の平均粒子径は、10~30μmであることが好ましい。10μmより小さいと、気孔を十分形成できないことがある。30μmより大きいと、大気孔ができやすくなり、強度低下を起こすことがある。造孔材の平均粒子径はレーザー回折方法で測定した値である。
 次に、炭化珪素粉末(炭化珪素)、金属珪素(金属珪素粉末)、バインダ、界面活性剤、造孔材、水等を混合して得られた混合物を混練して、電極端子突起部形成原料とすることが好ましい。混練の方法は特に限定されず、例えば、混練機を用いることができる。
 得られた電極端子突起部形成原料を成形して、電極端子突起部形成用部材の形状にする方法は特に限定されず、押し出し成形後に加工する方法を挙げることができる。
 電極端子突起部形成原料を成形して、電極端子突起部形成用部材の形状にした後に、乾燥させて、電極端子突起部形成用部材を得ることが好ましい。乾燥条件は、50~100℃とすることが好ましい。
 次に、電極端子突起部形成用部材を、電極部形成原料が塗布されたハニカム成形体に貼り付けることが好ましい。電極端子突起部形成用部材をハニカム成形体に貼り付ける方法は、特に限定されないが、上記電極部形成原料を用いて電極端子突起部形成用部材をハニカム成形体に貼り付けることが好ましい。電極端子突起部形成用部材を貼り付ける際には、ハニカム成形体の電極部形成原料が塗布された部分に、電極端子突起部形成用部材を貼り付ける。例えば、電極端子突起部形成用部材の「ハニカム成形体に接触する面」に電極部形成原料を塗布し、「当該電極部形成原料を塗布した面」がハニカム成形体に接触するようにして、電極端子突起部形成用部材をハニカム成形体に貼り付けることが好ましい。
 そして、「電極部形成原料が塗布され、電極端子突起部形成用部材が貼り付けられたハニカム成形体」を乾燥し、焼成して、本発明のハニカム構造体とすることが好ましい。尚、本発明のハニカム構造体の一の実施形態(ハニカム構造体100(図1~図4参照))を作製する際には、上記、乾燥後の「電極部形成原料が塗布されたハニカム成形体(電極端子突起部形成用部材が貼り付いていないもの)」を、以下の方法で焼成等の処理を行えばよい。焼成等の処理とは、仮焼成、焼成、及び酸化処理等のことである。
 このときの乾燥条件は、50~100℃とすることが好ましい。
 また、焼成の前に、バインダ等を除去するため、仮焼成を行うことが好ましい。仮焼成は大気雰囲気において、400~500℃で、0.5~20時間行うことが好ましい。仮焼成及び焼成の方法は特に限定されず、電気炉、ガス炉等を用いて焼成することができる。焼成条件は、窒素、アルゴン等の不活性雰囲気において、1400~1500℃で、1~20時間加熱することが好ましい。また、焼成後、耐久性向上のために、1200~1350℃で、1~10時間、酸素化処理を行うことが好ましい。
 なお、電極端子突起部形成用部材は、ハニカム成形体を焼成する前に貼り付けてもよいし、焼成した後に貼り付けてもよい。電極端子突起部形成用部材を、ハニカム成形体を焼成した後に貼り付けた場合は、その後に、上記条件によって再度焼成することが好ましい。
 以下、本発明を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
(実施例1)
 まず、炭化珪素(SiC)粉末と金属珪素(Si)粉末とを80:20の質量割合で混合し、これに、バインダとしてヒドロキシプロピルメチルセルロース、造孔材として吸水性樹脂を添加すると共に、水を添加して成形原料を得た。次に、この成形原料を、真空土練機により混練し、円柱状の坏土を作製した。バインダの含有量は、炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計を100質量部としたときに7質量部である。造孔材の含有量は、炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計を100質量部としたときに3質量部であった。水の含有量は、炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計を100質量部としたときに42質量部であった。炭化珪素粉末の平均粒子径は20μmであり、金属珪素粉末の平均粒子径は6μmであった。また、造孔材の平均粒子径は、20μmであった。炭化珪素、金属珪素及び造孔材の平均粒子径は、レーザー回折法で測定した値である。
 得られた円柱状の坏土を、押出成形機を用いて成形し、ハニカム成形体を得た。得られたハニカム成形体を高周波誘電加熱乾燥した後、熱風乾燥機を用いて120℃で2時間乾燥し、両端面を所定量切断した。
 次に、炭化珪素(SiC)粉末と金属珪素(Si)粉末とを60:40の質量割合で混合し、これに、バインダとしてヒドロキシプロピルメチルセルロース、保湿剤としてグリセリン、分散剤として界面活性剤を添加すると共に、水を添加して、混合した。混合物を混練して電極部形成原料とした。バインダの含有量は、炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計を100質量部としたときに0.5質量部であった。グリセリンの含有量は、炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計を100質量部としたときに10質量部であった。界面活性剤の含有量は、炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計を100質量部としたときに0.3質量部であった。水の含有量は、炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計を100質量部としたときに42質量部であった。炭化珪素粉末の平均粒子径は52μmであり、金属珪素粉末の平均粒子径は6μmであった。炭化珪素及び金属珪素の平均粒子径は、レーザー回折法で測定した値である。混練は、縦型の撹拌機で行った。
 次に、電極部形成原料を、乾燥させたハニカム成形体の側面に、厚さが0.25mm、外周形状の幅が80mmとなるように帯状に塗布した。上述した電極部形成原料を塗布した「厚さ」は、電極部形成原料を乾燥、焼成した後の「厚さ」である。また、上記「外周形状の幅」は、電極部形成原料を乾燥、焼成した後の、ハニカム構造部の周方向における「長さ」のことである。電極部形成原料は、乾燥させたハニカム成形体の側面に、2箇所塗布した。そして、セルの延びる方向に直交する断面において、2箇所の電極部形成原料を塗布した部分のなかの一方が、他方に対して、ハニカム成形体の中心を挟んで反対側に配置されるようにした。このようにして、ハニカム成形体の側面に第一の電極体の前駆体を形成した。ハニカム成形体の側面に塗布された第一の電極体の前駆体の外周形状は、長方形とした。
 次に、乾燥した各第一の電極体の前駆体の表面に、電極部形成原料を、厚さが0.25mm、外周形状の幅が12mmとなるように帯状に塗布した。電極部形成原料を塗布した「厚さ」は、電極部形成原料を乾燥、焼成した後の「厚さ」である。また、上記「外周形状の幅」は、電極部形成原料を乾燥、焼成した後の、ハニカム構造部の周方向における「長さ」のことである。このようにして、ハニカム成形体に第二の電極体の前駆体を形成した。第二の電極体の前駆体の外周形状は、長方形とした。本実施例においては、この第一の電極体の前駆体と第二の電極体の前駆体とが積層した積層体から、一対の電極部を形成した。
 次に、ハニカム成形体に塗布した電極部形成原料(電極体の前駆体の積層体)を更に乾燥させた。乾燥条件は、120℃とした。
 次に、炭化珪素(SiC)粉末と金属珪素(Si)粉末とを60:40の質量割合で混合し、これに、バインダとしてヒドロキシプロピルメチルセルロースを添加すると共に、水を添加して、混合した。混合物を混練して電極端子突起部形成原料とした。電極端子突起部形成原料を、真空土練機を用いて坏土とした。バインダの含有量は、炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計を100質量部としたときに4質量部であった。水の含有量は、炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計を100質量部としたときに22質量部であった。炭化珪素粉末の平均粒子径は52μmであり、金属珪素粉末の平均粒子径は6μmであった。炭化珪素及び金属珪素の平均粒子径は、レーザー回折法で測定した値である。
 得られた坏土を、図10~図12に示される電極端子突起部22のような形状(基板と突起部とからなる形状)に加工し、乾燥して、電極端子突起部形成用部材を得た。また、乾燥条件は、70℃とした。板状の基板22aに相当する部分は、「3mm×12mm×15mm」の大きさとした。また、突起部22bに相当する部分は、底面の直径が7mmで、中心軸方向の長さが10mmの円柱状とした。電極端子突起部形成用部材は2つ作製した。
 次に、2つの電極端子突起部形成用部材のそれぞれを、ハニカム成形体の2箇所の電極部形成原料を塗布した部分のそれぞれに貼り付けた。電極端子突起部形成用部材は、電極部形成原料を用いて、ハニカム成形体の電極部形成原料を塗布した部分に貼り付けた。その後、「電極部形成原料が塗布され、電極端子突起部形成用部材が貼り付けられたハニカム成形体」を、脱脂し、焼成し、更に酸化処理してハニカム構造体を得た。脱脂の条件は、550℃で3時間とした。焼成の条件は、アルゴン雰囲気下で、1450℃、2時間とした。酸化処理の条件は、1300℃で1時間とした。
 得られたハニカム構造体の隔壁の平均細孔径は8.6μmであり、気孔率は45%であった。平均細孔径及び気孔率は、水銀ポロシメータにより測定した値である。水銀ポロシメータとしては、Micromeritics社製の商品名「オートポアIV9505」を用いた。また、ハニカム構造体の、隔壁の厚さは101.6μmであり、セル密度は93セル/cmであった。また、ハニカム構造体の底面は直径93mmの円形であり、ハニカム構造体のセルの延びる方向における長さは100mmであった。また、第二の電極体の中心角の、第一の電極体の中心角に対する比率(以下、「中心角比率」ともいう)は、15%であった。第一の電極体の電気抵抗率は、5Ωcmであり、第二の電極体の電気抵抗率は、1.3Ωcmであった。第二の電極体の電気抵抗率の、第一の電極体の電気抵抗率に対する比率(以下、「電気抵抗率比率」ともいう)は、26%であった。ハニカム構造部の電気抵抗率は、40Ωcmであり、電極端子突起部の電気抵抗率は、0.8Ωcmであった。
 また、ハニカム構造部、電極部を構成する第一の電極体、第二の電極体、及び電極端子突起部の電気抵抗率は、以下の方法で測定した。まず、測定対象と同じ材質で10mm×10mm×50mmの試験片を作成した。つまり、ハニカム構造部の電気抵抗率を測定する場合には、ハニカム構造部と同じ材質で試験片を作製した。各電極体の電気抵抗率を測定する場合には、各電極体と同じ材質で試験片を作製した。そして、電極端子突起部の電気抵抗率を測定する場合には、電極端子突起部と同じ材質で試験片を作製した。試験片の両端部(長手方向における両端部)全面に銀ペーストを塗布し、配線して通電できるようにした。試験片に電圧印加電流測定装置をつなぎ、その試験片に電圧を印加した。試験片中央部に熱電対を設置し、電圧印加時の試験片の温度の経時変化をレコーダーにて確認した。試験片に100~200Vの電圧を印加し、試験片の温度が400℃の状態における電流値及び電圧値を測定し、得られた電流値及び電圧値、並びに試験片寸法から電気抵抗率を算出した。
 得られたハニカム構造体について、以下の方法で、「最高温度」を測定した。結果を表1に示す。
(最高温度)
 得られたハニカム構造体に200Vの電圧を印加したときの、ハニカム構造部の「セルの延びる方向に直交する断面における、電極部の端部(周方向の端部)が接する位置と、電極部の周方向の中央点が接する位置」の温度を測定する。測定された温度のうち、最も高い温度を最高温度とした。ハニカム構造部における、電極部の端部(周方向の端部)が接する位置か、電極部の周方向の中央点が接する位置のいずれかが、最も電流が流れる位置であり、ハニカム構造体において最も高い温度となる部分である。ガス流れ方向の位置(測温位置)は、中央とした。
Figure JPOXMLDOC01-appb-T000001
(実施例2~16、比較例1及び2)
 ハニカム構造体の第一の電極体及び第二の電極体の幅、厚さ、及び電気抵抗率を、表1に示すように変更した以外は、実施例1と同様にしてハニカム構造体を作製した。実施例1の場合と同様にして、ハニカム構造体の「最高温度」を測定した。比較例1においては、第二の電極体を形成せずに、第一の電極体のみを電極部とした。
 表1より、実施例1~16のハニカム構造体は、「最高温度」が低いのに対し、比較例のハニカム構造体は、「最高温度」が非常に高いことがわかる。
 本発明のハニカム構造体は、自動車の排ガスを浄化する排ガス浄化装置用の触媒担体として好適に利用することができる。
1:隔壁、2:セル、3:外周壁、4:ハニカム構造部、5:側面、11:一方の端面、12:他方の端面、21:電極部、21a:電極部の一方の端部、21b:電極部の他方の端部、22:電極端子突起部、22a:基板、22b:突起部、23:導電体、31:電極体、31a:電極体(第一の電極体)、31b:電極体(他の電極体,第二の電極体)100,200,300,400:ハニカム構造体、O:中心、P,Q:線分、α:中心角、β:線分Pと線分Qとにより形成される角度、θ:中心角の0.5倍の角度。

Claims (6)

  1.  流体の流路となる一方の端面から他方の端面まで延びる複数のセルを区画形成する多孔質の隔壁と、最外周に位置する外周壁とを有する筒状のハニカム構造部と、前記ハニカム構造部の側面に配設された一対の電極部とを備え、
     前記ハニカム構造部の電気抵抗率が、1~200Ωcmであり、
     前記一対の電極部のそれぞれが、前記ハニカム構造部のセルの延びる方向に延びる帯状に形成されるとともに、前記一対の電極部のそれぞれが、前記ハニカム構造部の前記セルの延びる方向に直交する断面における径方向に積層された二以上の電極体からなり、
     前記セルの延びる方向に直交する断面において、前記一対の電極部における一方の前記電極部が、前記一対の電極部における他方の前記電極部に対して、前記ハニカム構造部の中心を挟んで反対側に配設され、
     前記一対の電極部のそれぞれの電極部を構成する各前記二以上の電極体のうち、最も前記外周壁側寄りに配設されたそれぞれの前記電極体を第一の電極体としたときに、前記ハニカム構造部の前記側面における、それぞれの前記第一の電極体の面積が、それぞれの前記二以上の電極体のうちの他の電極体の面積よりも大きく、且つ、前記セルの延びる方向に直交する少なくとも一の断面において、それぞれの前記第一の電極体の中心角が、それぞれの前記二以上の電極体のうちの前記他の電極体の中心角よりも大きいハニカム構造体。
  2.  前記セルの延びる方向に直交する少なくとも一の断面において、それぞれの前記他の電極体の中心角が、それぞれの前記第一の電極体の中心角の5~95%に相当する角度である請求項1に記載のハニカム構造体。
  3.  前記一対の電極部の前記セルの延びる方向における長さの50~100%の範囲において、それぞれの前記第一の電極体の中心角が、それぞれの前記他の電極体の中心角よりも大きい請求項1又は2に記載のハニカム構造体。
  4.  前記一対の電極部の前記セルの延びる方向の全ての前記断面において、それぞれの前記第一の電極体の中心角が、それぞれの前記他の電極体の中心角よりも大きい請求項1~3のいずれか一項に記載のハニカム構造体。
  5.  それぞれの前記他の電極体の電気抵抗率が、それぞれの前記第一の電極体の電気抵抗率の5~100%に相当する値である請求項1~4のいずれか一項に記載のハニカム構造体。
  6.  それぞれの前記他の電極体の厚さが、それぞれの前記第一の電極体の厚さの50~150%に相当する厚さである請求項1~5のいずれか一項に記載のハニカム構造体。
PCT/JP2012/066892 2011-07-11 2012-07-02 ハニカム構造体 WO2013008664A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12811944.3A EP2732875B1 (en) 2011-07-11 2012-07-02 Honeycomb structure
JP2013523891A JP5860465B2 (ja) 2011-07-11 2012-07-02 ハニカム構造体
US14/152,160 US9382831B2 (en) 2011-07-11 2014-01-10 Honeycomb structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011152858 2011-07-11
JP2011-152858 2011-07-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/152,160 Continuation US9382831B2 (en) 2011-07-11 2014-01-10 Honeycomb structure

Publications (1)

Publication Number Publication Date
WO2013008664A1 true WO2013008664A1 (ja) 2013-01-17

Family

ID=47505957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066892 WO2013008664A1 (ja) 2011-07-11 2012-07-02 ハニカム構造体

Country Status (4)

Country Link
US (1) US9382831B2 (ja)
EP (1) EP2732875B1 (ja)
JP (1) JP5860465B2 (ja)
WO (1) WO2013008664A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2708523A1 (en) * 2012-09-13 2014-03-19 NGK Insulators, Ltd. Manufacturing method of honeycomb structure with electrodes
JP2014198318A (ja) * 2013-03-29 2014-10-23 日本碍子株式会社 ハニカム構造体、及びその製造方法
JP2014198320A (ja) * 2013-03-29 2014-10-23 日本碍子株式会社 ハニカム構造体、及びその製造方法
JP2014198321A (ja) * 2013-03-29 2014-10-23 日本碍子株式会社 ハニカム構造体及びその製造方法
JPWO2013098889A1 (ja) * 2011-12-27 2015-04-30 トヨタ自動車株式会社 通電加熱式触媒装置及びその製造方法
DE102018221558A1 (de) 2017-12-15 2019-06-19 Ngk Insulators, Ltd. Wabenstruktur
JP2021050648A (ja) * 2019-09-24 2021-04-01 日本碍子株式会社 電気加熱式担体及び排気ガス浄化装置
WO2021117431A1 (ja) * 2019-12-11 2021-06-17 株式会社デンソー 電極付きハニカム基材
WO2021176926A1 (ja) * 2020-03-05 2021-09-10 日本碍子株式会社 電気加熱式コンバータ及び電気加熱式担体
WO2021176928A1 (ja) * 2020-03-05 2021-09-10 日本碍子株式会社 電気加熱式コンバータ及び電気加熱式コンバータの製造方法
WO2021176927A1 (ja) * 2020-03-05 2021-09-10 日本碍子株式会社 電気加熱式コンバータ及び電気加熱式コンバータの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6131980B2 (ja) * 2015-03-27 2017-05-24 トヨタ自動車株式会社 電気加熱式触媒コンバーター
USD1004622S1 (en) * 2018-02-20 2023-11-14 Ngk Insulators, Ltd. Catalyst carrier for exhaust gas purification
US11092052B2 (en) * 2019-03-15 2021-08-17 Ngk Insulators, Ltd. Electric heating type support, exhaust gas purifying device, and method for producing electric heating type support
JP2022072369A (ja) * 2020-10-29 2022-05-17 日本碍子株式会社 接合体および接合体の製造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295184A (ja) * 1990-04-12 1991-12-26 Ngk Insulators Ltd 抵抗調節型ヒーター及び触媒コンバーター
JPH04280086A (ja) * 1991-03-06 1992-10-06 Ngk Insulators Ltd ハニカムモノリスヒータ
JPH05115796A (ja) * 1991-09-02 1993-05-14 Usui Internatl Ind Co Ltd 排気ガス浄化装置
JPH06212954A (ja) * 1992-06-03 1994-08-02 Corning Inc 抵抗加熱装置及び製造方法
JPH08141408A (ja) 1994-11-24 1996-06-04 Nippon Soken Inc 排ガス浄化用抵抗調整型ヒータ付触媒担体およびその製造方法
JP2002201082A (ja) * 2000-04-14 2002-07-16 Ngk Insulators Ltd ハニカム構造体及びその製造方法
WO2011043434A1 (ja) * 2009-10-07 2011-04-14 日本碍子株式会社 ハニカム構造体
WO2011105567A1 (ja) * 2010-02-26 2011-09-01 日本碍子株式会社 ハニカム構造体
WO2011125817A1 (ja) * 2010-03-31 2011-10-13 日本碍子株式会社 ハニカム構造体
WO2011125815A1 (ja) * 2010-03-31 2011-10-13 日本碍子株式会社 ハニカム構造体
WO2012086817A1 (ja) * 2010-12-24 2012-06-28 日本碍子株式会社 ハニカム構造体
WO2012086815A1 (ja) * 2010-12-24 2012-06-28 日本碍子株式会社 ハニカム構造体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288975A (en) 1991-01-30 1994-02-22 Ngk Insulators, Ltd. Resistance adjusting type heater
US5393499A (en) 1992-06-03 1995-02-28 Corning Incorporated Heated cellular substrates
US5277937A (en) 1992-06-03 1994-01-11 Corning Incorporated Method for controlling the conductance of a heated cellular substrate
JP2012030215A (ja) * 2010-07-02 2012-02-16 Denso Corp ハニカム構造体及びその製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295184A (ja) * 1990-04-12 1991-12-26 Ngk Insulators Ltd 抵抗調節型ヒーター及び触媒コンバーター
JP2931362B2 (ja) 1990-04-12 1999-08-09 日本碍子株式会社 抵抗調節型ヒーター及び触媒コンバーター
JPH04280086A (ja) * 1991-03-06 1992-10-06 Ngk Insulators Ltd ハニカムモノリスヒータ
JPH05115796A (ja) * 1991-09-02 1993-05-14 Usui Internatl Ind Co Ltd 排気ガス浄化装置
JPH06212954A (ja) * 1992-06-03 1994-08-02 Corning Inc 抵抗加熱装置及び製造方法
JPH08141408A (ja) 1994-11-24 1996-06-04 Nippon Soken Inc 排ガス浄化用抵抗調整型ヒータ付触媒担体およびその製造方法
JP2002201082A (ja) * 2000-04-14 2002-07-16 Ngk Insulators Ltd ハニカム構造体及びその製造方法
JP4136319B2 (ja) 2000-04-14 2008-08-20 日本碍子株式会社 ハニカム構造体及びその製造方法
WO2011043434A1 (ja) * 2009-10-07 2011-04-14 日本碍子株式会社 ハニカム構造体
WO2011105567A1 (ja) * 2010-02-26 2011-09-01 日本碍子株式会社 ハニカム構造体
WO2011125817A1 (ja) * 2010-03-31 2011-10-13 日本碍子株式会社 ハニカム構造体
WO2011125815A1 (ja) * 2010-03-31 2011-10-13 日本碍子株式会社 ハニカム構造体
WO2012086817A1 (ja) * 2010-12-24 2012-06-28 日本碍子株式会社 ハニカム構造体
WO2012086815A1 (ja) * 2010-12-24 2012-06-28 日本碍子株式会社 ハニカム構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2732875A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013098889A1 (ja) * 2011-12-27 2015-04-30 トヨタ自動車株式会社 通電加熱式触媒装置及びその製造方法
EP2708523A1 (en) * 2012-09-13 2014-03-19 NGK Insulators, Ltd. Manufacturing method of honeycomb structure with electrodes
JP2014198318A (ja) * 2013-03-29 2014-10-23 日本碍子株式会社 ハニカム構造体、及びその製造方法
JP2014198320A (ja) * 2013-03-29 2014-10-23 日本碍子株式会社 ハニカム構造体、及びその製造方法
JP2014198321A (ja) * 2013-03-29 2014-10-23 日本碍子株式会社 ハニカム構造体及びその製造方法
EP2784046A3 (en) * 2013-03-29 2015-03-11 NGK Insulators, Ltd. Honeycomb structure and manufacturing method of the same
US9279356B2 (en) 2013-03-29 2016-03-08 Ngk Insulators, Ltd. Honeycomb structure and manufacturing method of the same
US10681779B2 (en) 2017-12-15 2020-06-09 Ngk Insulators, Ltd. Honeycomb structure
DE102018221558A1 (de) 2017-12-15 2019-06-19 Ngk Insulators, Ltd. Wabenstruktur
DE102018221558B4 (de) 2017-12-15 2021-07-08 Ngk Insulators, Ltd. Wabenstruktur
JP2021050648A (ja) * 2019-09-24 2021-04-01 日本碍子株式会社 電気加熱式担体及び排気ガス浄化装置
JP7182530B2 (ja) 2019-09-24 2022-12-02 日本碍子株式会社 電気加熱式担体及び排気ガス浄化装置
WO2021117431A1 (ja) * 2019-12-11 2021-06-17 株式会社デンソー 電極付きハニカム基材
WO2021176926A1 (ja) * 2020-03-05 2021-09-10 日本碍子株式会社 電気加熱式コンバータ及び電気加熱式担体
WO2021176928A1 (ja) * 2020-03-05 2021-09-10 日本碍子株式会社 電気加熱式コンバータ及び電気加熱式コンバータの製造方法
WO2021176927A1 (ja) * 2020-03-05 2021-09-10 日本碍子株式会社 電気加熱式コンバータ及び電気加熱式コンバータの製造方法
JP7430776B2 (ja) 2020-03-05 2024-02-13 日本碍子株式会社 電気加熱式コンバータ及び電気加熱式コンバータの製造方法
JP7445742B2 (ja) 2020-03-05 2024-03-07 日本碍子株式会社 電気加熱式コンバータ及び電気加熱式コンバータの製造方法
JP7448632B2 (ja) 2020-03-05 2024-03-12 日本碍子株式会社 電気加熱式コンバータ及び電気加熱式担体

Also Published As

Publication number Publication date
JP5860465B2 (ja) 2016-02-16
JPWO2013008664A1 (ja) 2015-02-23
US9382831B2 (en) 2016-07-05
EP2732875A1 (en) 2014-05-21
EP2732875A4 (en) 2015-03-04
US20140127085A1 (en) 2014-05-08
EP2732875B1 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP5860465B2 (ja) ハニカム構造体
JP5663003B2 (ja) ハニカム構造体
JP5658233B2 (ja) ハニカム構造体
JP5850858B2 (ja) ハニカム構造体
US8530803B2 (en) Honeycomb structure
JP5735481B2 (ja) ハニカム構造体
JP5902670B2 (ja) ハニカム構造体
JP5654999B2 (ja) ハニカム構造体
JP5919199B2 (ja) ハニカム構造体
WO2013146955A1 (ja) ハニカム構造体
JP6626524B2 (ja) 電気加熱型触媒用担体
JP6364374B2 (ja) ハニカム構造体、及びその製造方法
JP5916628B2 (ja) ハニカム構造体
JP5792743B2 (ja) ハニカム構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811944

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523891

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012811944

Country of ref document: EP