WO2013008592A1 - 配線基板 - Google Patents

配線基板 Download PDF

Info

Publication number
WO2013008592A1
WO2013008592A1 PCT/JP2012/065719 JP2012065719W WO2013008592A1 WO 2013008592 A1 WO2013008592 A1 WO 2013008592A1 JP 2012065719 W JP2012065719 W JP 2012065719W WO 2013008592 A1 WO2013008592 A1 WO 2013008592A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring pattern
wiring board
conductive pattern
pattern
insulating layer
Prior art date
Application number
PCT/JP2012/065719
Other languages
English (en)
French (fr)
Inventor
伊藤悟志
守屋要一
金森哲雄
八木幸弘
山本祐樹
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201280033749.5A priority Critical patent/CN103650653A/zh
Publication of WO2013008592A1 publication Critical patent/WO2013008592A1/ja
Priority to US14/147,611 priority patent/US20140118977A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • H05K1/188Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or attaching to a structure having a conductive layer, e.g. a metal foil, such that the terminals of the component are connected to or adjacent to the conductive layer before embedding, and by using the conductive layer, which is patterned after embedding, at least partially for connecting the component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10378Interposers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0323Working metal substrate or core, e.g. by etching, deforming
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0369Etching selective parts of a metal substrate through part of its thickness, e.g. using etch resist
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0376Etching temporary metallic carrier substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4647Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits by applying an insulating layer around previously made via studs

Definitions

  • the present invention relates to a wiring board having a conductor pattern formed on an insulating layer.
  • an interlayer connection conductor (via hole conductor) that electrically connects wiring patterns between different layers is generally provided with a through hole (through hole) in the wiring board and plated on the inner wall of the through hole. Is formed.
  • a through hole through hole
  • the adhesion of the plating to the through hole is poor, there may be a problem in the reliability of the through hole such as peeling or cutting of the plating due to stress during heating and cooling.
  • Patent Document 1 discloses a method for manufacturing a printed wiring board having excellent through-hole reliability.
  • FIG. 1 is a schematic cross-sectional view of a wiring board described in Patent Document 1.
  • the printed wiring board shown in FIG. 1 has a frustoconical protrusion 101 with a silver paste 101A attached on one side of a metal plate 100, an insulating layer 102 on the protrusion side, and a metal foil 103 on the outside.
  • the laminate is formed under heating and pressure. Then, circuit formation and noble metal plating are applied to the double-sided metal plates 103 and 104 to form a printed wiring board.
  • the trapezoidal protrusion 101 formed on the metal plate 100 is used as a via hole conductor, so that the peeling of the plating at the time of heating and cooling does not occur, and the through hole The reliability in the system is not lowered.
  • the trapezoidal protrusion 101 of the metal plate 100 serving as a via-hole conductor has a problem in that the wiring board is downsized because the trapezoidal protrusion 101 extends in the surface direction of the wiring board. Such a problem becomes more prominent as the thickness direction of the wiring board, that is, the height of the trapezoidal protrusion 101 becomes higher.
  • an object of the present invention is to provide a wiring board that does not deteriorate the reliability of the interlayer connection conductor so as not to be an adverse effect of downsizing.
  • the wiring board according to the present invention includes an insulating layer, a first conductive pattern and a second conductive pattern which are arranged across the insulating layer and extend in a planar direction, and penetrate the insulating layer in the thickness direction, and the first conductive pattern. And an interlayer connection conductor that conducts the second conductive pattern, wherein the interlayer connection conductor is opposed to each other in the thickness direction from each of the first conductive pattern and the second conductive pattern. A pattern and a portion that narrows toward the second conductive pattern.
  • the interlayer connection conductor that conducts the first conductive pattern and the second conductive pattern has a configuration in which the thickness gradually decreases toward the center in the thickness direction. Therefore, as compared with the case of the trapezoidal shape as in the prior art, even if the height is increased, the spread in the plane direction of the substrate can be suppressed, and the wiring substrate can be reduced in size.
  • the interlayer connection conductor may have a configuration in which two connection conductors that are narrowed toward the tip are joined at the tip.
  • connection conductors that are thinner toward the tip are joined to form an interlayer connection conductor.
  • the heights of the two connection conductors are the same, the spread in the surface direction can be minimized, and the wiring board can be further downsized.
  • one of the two connection conductors protrudes toward the second conductive pattern in the thickness direction and is integrally formed with the first conductive pattern, and the other is the first in the thickness direction. It is preferable that the first conductive pattern protrudes toward the first conductive pattern and is integrally formed with the second conductive pattern.
  • the interlayer connection conductor is integrally formed with the first conductive pattern and the second conductive pattern, the first conductive pattern and the second conductive pattern do not have a bonding interface with the interlayer connection conductor.
  • integral formation means forming from the same metal member.
  • each of the connection conductors forming the interlayer connection conductor is integrally formed with the first conductive pattern and the second conductive pattern, so that it is possible to prevent conduction failure due to peeling, cracks generated in the wiring board, and the like.
  • the resistance value at the connection portion increases.
  • the interlayer connection conductor as the interlayer connection conductor is formed integrally with the first conductive pattern and the second conductive pattern as in the present invention, the resistance value of the connection portion does not increase. The problem can be avoided.
  • the first conductive pattern includes a land integrally formed on the insulating layer side, and further includes an electronic component mounted on the land and disposed in the insulating layer. But you can.
  • the interlayer connection conductor of the present invention since the interlayer connection conductor of the present invention has a small spread in the plane direction, this configuration is advantageous in that the wiring board can be miniaturized when an electronic component is built in the insulating layer. is there.
  • the reliability of the interlayer connection conductor can be prevented from deteriorating so as not to adversely affect the miniaturization of the wiring board.
  • FIG. 6 is a schematic cross-sectional view of a wiring board described in Patent Document 1.
  • FIG. 3 is a schematic cross-sectional view of the wiring board according to the first embodiment.
  • FIG. 4 is a schematic cross-sectional view of a wiring board according to a second embodiment.
  • FIG. 6 is a schematic cross-sectional view of a wiring board according to a third embodiment.
  • the schematic diagram which showed the manufacturing process of the wiring board which concerns on Embodiment 3 in order The schematic diagram which showed the manufacturing process of the wiring board which concerns on Embodiment 3 in order.
  • the wiring board according to the present invention includes an insulating layer made of an insulating resin and a conductive wiring pattern (conductive pattern) provided on the insulating layer.
  • the insulating layer may be a single layer or a plurality of layers.
  • the insulating resin that forms the insulating layer include glass epoxy resin, epoxy resin, phenol resin, and cyanate resin.
  • an epoxy resin is preferable in terms of excellent adhesiveness and strength.
  • the wiring board electrically connects an electronic component mounted on the surface of the insulating layer and a main board (for example, a motherboard) on which the wiring board is mounted via a wiring pattern.
  • the electronic component mounted on the wiring board is, for example, an active element such as a silicon semiconductor element or a gallium arsenide semiconductor element, or a passive element such as a capacitor or an inductor.
  • FIG. 2 is a schematic cross-sectional view of the wiring board according to the first embodiment.
  • the wiring substrate 1 according to the first embodiment has a configuration in which an upper wiring pattern 11 is formed on the upper surface of the insulating layer 10 and a lower wiring pattern 12 is formed on the lower surface.
  • the insulating layer 10 has a thickness of 0.10 mm.
  • An upper wiring pattern 11 is formed on the upper surface of the insulating layer 10, and a lower wiring pattern 12 is formed on the lower surface.
  • the upper wiring pattern 11 and the lower wiring pattern 12 each have a thickness of 0.10 mm, and are formed at positions that substantially coincide with each other in the thickness direction of the insulating layer 10.
  • the upper wiring pattern 11 is integrally formed with a convex portion 11A protruding downward in the thickness direction, that is, on the lower wiring pattern 12 side.
  • the upper wiring pattern 11 and the convex portion 11A are formed from the same metal member, and no bonding interface exists between them.
  • the convex portion 11A has a height (length in the thickness direction) to the approximate center between the upper wiring pattern 11 and the lower wiring pattern 12 and gradually becomes thinner toward the lower wiring pattern 12 side. It is a stand.
  • the diameter of the tip end portion (hereinafter referred to as a joining end portion) of the convex portion 11A on the lower wiring pattern 12 side is about 0.6 mm.
  • the convex portion 11A may be a quadrangular prism having a trapezoidal side surface.
  • the lower wiring pattern 12 is integrally formed with a convex portion 12A protruding toward the upper wiring pattern 11 side. That is, the lower wiring pattern 12 and the convex portion 12A are formed from the same metal member, and no bonding interface exists between them.
  • the convex portion 12A has substantially the same shape as the convex portion 11A.
  • the protruding end 11A of the upper wiring pattern 11 and the protruding portion 12A of the lower wiring pattern 12 are in close contact with each other.
  • an interlayer connection conductor 13 a structure in which the convex portion 11A and the convex portion 12A are joined.
  • the upper wiring pattern 11 and the lower wiring pattern 12 are made conductive by the interlayer connection conductor 13.
  • the height of the convex portions 11A and 12A is set to the length between the upper wiring pattern 11 and the lower wiring pattern 12. It can be about 1 ⁇ 2.
  • the interlayer connection conductor 13 is formed from a single member, the spread of the convex portions 11A and 12A in the direction orthogonal to the thickness direction of the insulating layer 10 (hereinafter referred to as the plane direction) can be reduced. it can. Thereby, size reduction of the wiring board 1 is attained.
  • the convex portions 11A and 12A are integrally formed with the upper wiring pattern 11 and the lower wiring pattern 12, respectively, there is no bonding interface other than between the convex portions 11A and 12A. Thereby, it is possible to prevent a conduction failure due to peeling caused by a stress caused by a difference in expansion rate, a crack generated in the wiring board 1, and the like, and the connection reliability in the interlayer connection conductor 13 can be improved.
  • FIG. 3A, FIG. 3B, FIG. 3C, FIG. 3D, and FIG. 3E are schematic views sequentially showing the manufacturing process of the wiring board 1 according to the first embodiment.
  • the first process to the third process two same products are manufactured, that is, the upper wiring pattern 11 side and the lower wiring pattern 12 side in FIG. 2, but the upper wiring pattern 11 will be described below.
  • the corresponding code is written in parentheses.
  • a dry film resist 21 having a thickness of 15 ⁇ m is attached to both surfaces facing each other in the thickness direction of a copper plate 110 having a thickness of 0.3 mm.
  • FIG. 3A, FIG. 3B, FIG. 3C, FIG. 3D, and FIG. 3E it is the figure seen from the side surface direction of the copper plate 110.
  • FIG. 3A, FIG. 3B, FIG. 3C, FIG. 3D, and FIG. 3E it is the figure seen from the side surface direction of the copper plate 110.
  • the convex part 11A (12A) of the truncated cone having a diameter of the joining end of 0.6 mm remains on one side of the copper plate 110 to which the dry film resist 21 is attached. And etch. Further, the dry film resist 21 is peeled off after the etching.
  • the insulating resin 22 is applied to the copper plate 110 that has been etched in the second step. At this time, the convex portion 11A (12A) protrudes 0.05 mm from the insulating resin 22 (23). The insulating resins 22 and 23 become the insulating layer 10 described above.
  • the protrusions 11A, 12A face each other manufactured up to the third step so that the joint ends of the protrusions 11A and 12A are in close contact with each other.
  • Pressure bonding is performed by heating and pressurizing at 10 MPa for 1 hour. Thereby, one interlayer connection conductor 13 in which the convex portions 11A and 12A are joined is formed.
  • the fifth step after pressing the laminated body obtained in the fourth step, pattern formation is performed on both sides of the laminated body by a subtractive method (a method in which unnecessary portions are removed and a circuit is left).
  • a subtractive method a method in which unnecessary portions are removed and a circuit is left.
  • the upper wiring pattern 11 and the lower wiring pattern 12 are formed.
  • the wiring board 1 is formed.
  • the interlayer connection conductor 13 by joining the two convex portions 11A and 12A, the spread in the planar direction of the wiring board 1 can be suppressed, and the wiring board 1 can be reduced in size.
  • the convex portions 11A and 12A are integrally formed with the upper wiring pattern 11 and the lower wiring pattern 12, respectively. In other words, there is no bonding interface other than the bonding interface between the convex portions 11A and 12A. Thereby, it is possible to prevent a conduction failure due to peeling caused by a stress caused by a difference in expansion rate, a crack generated in the wiring board 1, and the like, and the connection reliability in the interlayer connection conductor 13 can be improved.
  • a conductive adhesive may be applied to the bonding interface between the convex portion 11A of the upper wiring pattern 11 and the convex portion 12A of the lower wiring pattern 12.
  • the conductive adhesive is, for example, a low resistance conductive paste of nano silver or nano copper.
  • the resin composition containing a metal powder may be sufficient. By applying the conductive adhesive, the connection reliability of the interlayer connection conductor 13 can be further improved.
  • the wiring board according to the second embodiment is different from the first embodiment in that a wiring pattern is further laminated between the upper wiring pattern 11 and the lower wiring pattern 12. Only the differences will be described below.
  • FIG. 4 is a schematic cross-sectional view of the wiring board according to the second embodiment.
  • the wiring board 2 according to the second embodiment includes a first intermediate layer wiring pattern 14 and a second intermediate layer wiring pattern 15 between the upper wiring pattern 11 and the lower wiring pattern 12 in the insulating layer 10. Are further laminated.
  • the first intermediate layer wiring pattern 14 is stacked on the lower wiring pattern 12 side
  • the second intermediate layer wiring pattern 15 is stacked on the upper wiring pattern 11 side. That is, the upper wiring pattern 11, the second intermediate wiring pattern 15, the first intermediate wiring pattern 14, and the lower wiring pattern 12 are laminated in this order from the upper surface side of the insulating layer 10.
  • the first intermediate layer wiring pattern 14 is integrally formed with a convex portion 14A protruding to the second intermediate layer wiring pattern 15 side and a convex portion 14B protruding to the upper wiring pattern 11 side. That is, the first intermediate layer wiring pattern 14 and the convex portions 14A and 14B are formed of the same metal member, and no bonding interface exists between them.
  • the convex portions 14A and 14B have the same shape and size as the convex portions 11A and 12A.
  • the projecting portion 14 ⁇ / b> A is joined to the projecting portion 15 ⁇ / b> B of the second intermediate layer wiring pattern 15 described later and the joining end portions.
  • the convex part 14B is joined to the convex part 12A of the lower wiring pattern 12 and the joining end parts.
  • the second intermediate layer wiring pattern 15 is integrally formed with a convex portion 15A protruding to the upper wiring pattern 11 side and a convex portion 15B protruding to the first intermediate layer wiring pattern 14 side. That is, the second intermediate layer wiring pattern 15 and the convex portions 15A and 15B are formed of the same metal member, and no bonding interface exists between them.
  • the convex portions 15A and 15B have the same shape and size as the convex portions 11A and 12A.
  • the convex part 15A is joined to the convex part 11A of the upper wiring pattern 11 and the joining end parts. Further, the convex portion 15 ⁇ / b> B is joined to the convex portion 14 ⁇ / b> A of the first intermediate layer wiring pattern 14 and the joining end portions.
  • the upper wiring pattern 11 and the second intermediate layer wiring pattern 15 are electrically connected by the convex portions 11A and 15A.
  • the first intermediate layer wiring pattern 14 and the second intermediate layer wiring pattern 15 are made conductive by the convex portions 15B and 14A.
  • the first intermediate layer wiring pattern 14 and the lower wiring pattern 12 are electrically connected by the convex portions 14B and 12A.
  • FIG. 5A, FIG. 5B, FIG. 5C and FIG. 5D and FIG. 6A and FIG. 6B are schematic views sequentially showing the manufacturing process of the wiring board 2 according to the second embodiment.
  • the joint end portion of the convex portion 15B integrally formed on the copper plate 150 and the convex portion 14A integrally formed on the copper plate 140 A laminated body in which the insulating resins 24 are laminated between each other is formed.
  • the surface of the copper plate 150 opposite to the surface on which the convex portions 15B are formed is defined as the upper surface.
  • the surface of the copper plate 140 on the opposite side to the surface in which the convex part 14A was formed be a lower surface.
  • a convex portion 15A protruding in the normal direction of the upper surface is integrally formed on the copper plate 150 at the position of the upper surface facing the convex portion 15B. Further, the copper plate 140 is integrally formed with a convex portion 14B protruding in the normal direction of the lower surface at the position of the lower surface facing the convex portion 14A.
  • the first intermediate layer wiring pattern 14 and the second intermediate layer wiring pattern 15 are formed by performing pattern formation on both surfaces of the laminate by a subtractive method. In this step, the resist remaining at the joint ends of the convex portions 14B and 15A is peeled off.
  • the insulating resin 25 is applied to the convex portion 15A side of the laminate, and the insulating resin 26 is applied to the convex portion 14B side.
  • the convex portions 15A and 14B protrude from the insulating resins 25 and 26 by 0.05 mm, respectively.
  • the convex portion 11A integrally formed on the copper plate 110 and the convex portion 12A integrally formed on the copper plate 120 which are generated by performing the manufacturing steps from FIG. 3A to FIG. 3C described in the first embodiment, are shown in FIG. 5D. It laminates
  • the joining end portions of the convex portion 11A and the convex portion 15A are joined together, and the joining end portions of the convex portion 12A and the convex portion 14B are joined together.
  • the bonding ends are brought into close contact with each other, and in this state, pressure bonding is performed by heating and pressing at 180 ° C. and 10 MPa for 1 hour.
  • the upper wiring pattern 11 and the lower wiring pattern 12 are formed by patterning the upper and lower surfaces of the pressure-bonded laminate by a subtractive method. Thereby, the wiring board 2 is formed.
  • the wiring pattern can be prevented from becoming large in the plane direction by incorporating the wiring pattern in the insulating layer 10 and making it multilayer, thereby realizing miniaturization. Can do.
  • the wiring board 3 according to the third embodiment is different from the first embodiment in that an electronic component is mounted in the insulating layer of the wiring board according to the first embodiment.
  • FIG. 7 is a schematic cross-sectional view of the wiring board according to the third embodiment.
  • a land 12B is integrally formed on the lower wiring pattern 12 of the wiring board 3 according to the third embodiment.
  • An electronic component 15 is mounted on the land 12B. For this reason, the wiring board 3 can be reduced in size by incorporating the electronic component 15 in the insulating layer 10.
  • the electronic component 15 includes, for example, active elements such as silicon semiconductor elements and gallium arsenide semiconductor elements, or passive elements such as capacitors and inductors.
  • 8A, 8B, 8C, 8D, and 8E are schematic views sequentially illustrating the manufacturing process of the wiring board 3 according to the third embodiment.
  • a dry film resist (not shown) having a thickness of 15 ⁇ m is attached to both surfaces facing each other in the thickness direction of a copper plate 120 having a thickness of 0.3 mm. Then, etching is performed so that the convex portion 12A of the truncated cone having a diameter of 0.6 mm remains on one surface of the copper plate 120 to which the dry film resist is attached.
  • the copper plate 120 after the etching process in FIG. 8A is further etched to form lands 12B.
  • the length of the convex portion 12A formed in FIG. 8A becomes longer by the amount etched for forming the land 12B.
  • the resist remaining on the joining end portion of the convex portion 12A and the land 12B is peeled off.
  • the electronic component 15 is mounted on the formed land 12B.
  • the insulating resin 23 is laminated on the copper plate 120.
  • the insulating resin 23 is in a liquid state, and after being applied on the copper plate 120, vacuum-degassed and heated to seal the electronic component 15 in a semi-cured state.
  • the convex portion 12 ⁇ / b> A protrudes from the insulating resin 23 by 0.15 mm.
  • the joint end portion of the convex portion 11A formed integrally with the copper plate 110 and the joint end portion of the convex portion 12A formed up to FIG. 8C are formed in the same manner as in the step described in the first embodiment.
  • pressure bonding is performed by heating and pressurizing at 180 ° C. and 10 MPa for 1 hour.
  • one interlayer connection conductor 13 in which the convex portions 11A and 12A are joined is formed.
  • the upper wiring pattern 11 and the lower wiring pattern 12 are formed. Thereby, the wiring board 3 is formed.
  • the wiring board 3 can be downsized by incorporating the electronic component 15 in the insulating layer 10.
  • the wiring board according to the present invention has been described in detail above. However, the specific configuration of the wiring board can be appropriately changed in design, and the functions and effects described in the above-described embodiment are most caused by the present invention. The preferred operations and effects are merely listed, and the operations and effects according to the present invention are not limited to those described in the above-described embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

 絶縁層(10)と、絶縁層(10)を挟んで配置された上側配線パターン(11)および下側配線パターン(12)とを備える。下側配線パターン(12)には、上側配線パターン(11)側に突出する円錐台の凸部(12A)が、上側配線パターン(11)には、下側配線パターン(12)側に突出する円錐台の凸部(11A)がそれぞれ一体形成されている。凸部(11A,12A)の接合端部が接合され、層間接続導体(13)を形成している。層間接続導体(13)は、上側配線パターン(11)および下側配線パターン(12)を導通している。これにより、小型化の弊害とならないように、層間接続導体における信頼性を低下させることがない配線基板を提供する。

Description

配線基板
 本発明は、絶縁層に導体パターンが形成された配線基板に関する。
 配線基板において、異なる層間の配線パターンを電気的に接続する層間接続導体(ビアホール導体)は、一般的には、配線基板に貫通孔(スルーホール)を設けて、スルーホールの内壁にメッキを施すことで形成される。しかし、スルーホールへのメッキの付着が悪いと、加熱冷却時のストレスによるメッキの剥離または切断等、スルーホールにおける信頼性に問題が生じることがあった。
 特許文献1には、スルーホールの信頼性に優れたプリント配線板の製造方法が開示されている。図1は特許文献1に記載の配線基板の模式的な断面図である。図1に示すプリント配線基板は、金属板100の片面に、銀ペースト101Aが付着した円錐台形突起101の突起を形成し、突起側に絶縁層102を形成し、その外側に金属箔103を置いて、加熱、加圧下に積層成形している。そして、両面金属板103,104に回路形成、貴金属メッキを施してプリント配線基板としている。この特許文献1では、スルーホールの内壁に施したメッキではなく、金属板100に形成した台形突起101を、ビアホール導体とすることで、加熱冷却時のメッキの剥離等を発生させず、スルーホールにおける信頼性が低下しないようにしている。
特開2000-68641号公報
 しかしながら、特許文献1では、ビアホール導体とする金属板100の台形突起101は、配線基板の面方向に広がりを有しているため、配線基板の小型化の弊害となるといった問題がある。斯かる問題は、配線基板の厚み方向、すなわち、台形突起101の高さが高くなるほど顕著に表れる。
 そこで、本発明の目的は、小型化の弊害とならないように、層間接続導体における信頼性を低下させることがない配線基板を提供することにある。
 本発明に係る配線基板は、絶縁層と、該絶縁層を挟んで配置され、平面方向に延びる第1導電パターンおよび第2導電パターンと、前記絶縁層を厚み方向に貫通して前記第1導電パターンおよび前記第2導電パターンを導通する層間接続導体と、を備え、前記層間接続導体は、前記第1導電パターンおよび前記第2導電パターンのそれぞれから、前記厚み方向において、対向する前記第1導電パターンおよび前記第2導電パターンに向かって細くなっている部分を有する。
 この構成では、第1導電パターンおよび第2導電パターンを導通する層間接続導体が、厚み方向の中央部に向かって徐々に細くなった部分を有する構成としてある。従って、従来のように、台形状とした場合との対比において、高さを高くしても基板の平面方向における広がりを抑えることができ、配線基板の小型化を実現できる。
 本発明に係る配線基板において、前記層間接続導体は、先端に向かって細くなっている二つの接続導体が、先端部で接合されて形成されている構成でもよい。
 この構成では、先端に向かって細くなっている二つの接続導体を接合して層間接続導体を形成している。この二つの接続導体の高さを同じにすることで、面方向への広がりを最小限に抑えることができ、配線基板のより小型化を実現できる。
 本発明に係る配線基板において、二つの前記接続導体の一方は、前記厚み方向において前記第2導電パターン側に突出して、前記第1導電パターンに一体形成され、他方は、前記厚み方向において前記第1導電パターン側に突出して、前記第2導電パターンに一体形成されている構成が好ましい。
 この構成では、層間接続導体が、第1導電パターンおよび第2導電パターンに一体形成されているため、第1導電パターンおよび第2導電パターンには層間接続導体との接合界面が存在しない。なお、一体形成とは、一つの同じ金属部材から形成されることをいう。
 温度変化(過熱冷却)に伴う膨張と収縮とにより、絶縁層および導電パターンの接合部分では膨張率の違いから応力が生じる。仮に、層間接続導体と第1導電パターンまたは第2導電パターンとの間に接合界面が存在する場合、生じた応力が接合界面に集中し、接合界面に剥離が生じるおそれがある。これにより、第1導電パターンと第2導電パターンとの導通不良が発生したり、配線基板にクラック等が生じたりする可能性がある。
 このため、層間接続導体を形成する接続導体のそれぞれが第1導電パターンおよび第2導電パターンと一体形成されることで、剥離による導通不良や、配線基板に生じるクラック等を防止することができる。
 また、第1導電パターンと第2導電パターンとを、従来のようにスルーホールの内壁にメッキを施して接続する場合、接続部分での抵抗値が大きくなる。これに対し、本発明のように、層間接続導体とする層間接続導体を第1導電パターンおよび第2導電パターンに一体形成することで、接続部分の抵抗値が大きくなることがないため、斯かる問題を回避できる。
 本発明に係る配線基板において、前記第1導電パターンは前記絶縁層側に一体形成されたランドを有しており、前記ランドに実装され、前記絶縁層内に配置された電子部品をさらに備える構成でもよい。
 上述の通り、本発明の層間接続導体は、面方向への広がりが小さいため、この構成では、絶縁層内に電子部品を内蔵する場合に、配線基板を小型化することができる点で有利である。
 本発明によれば、配線基板の小型化の弊害とならないように、層間接続導体における信頼性を低下させないようにできる。
特許文献1に記載の配線基板の模式的な断面図。 実施形態1に係る配線基板の模式的な断面図。 実施形態1に係る配線基板の製造工程を順に示した模式図。 実施形態1に係る配線基板の製造工程を順に示した模式図。 実施形態1に係る配線基板の製造工程を順に示した模式図。 実施形態1に係る配線基板の製造工程を順に示した模式図。 実施形態1に係る配線基板の製造工程を順に示した模式図。 実施形態2に係る配線基板の模式的な断面図。 実施形態2に係る配線基板の製造工程を順に示した模式図。 実施形態2に係る配線基板の製造工程を順に示した模式図。 実施形態2に係る配線基板の製造工程を順に示した模式図。 実施形態2に係る配線基板の製造工程を順に示した模式図。 実施形態2に係る配線基板の製造工程を順に示した模式図。 実施形態2に係る配線基板の製造工程を順に示した模式図。 実施形態3に係る配線基板の模式的な断面図。 実施形態3に係る配線基板の製造工程を順に示した模式図。 実施形態3に係る配線基板の製造工程を順に示した模式図。 実施形態3に係る配線基板の製造工程を順に示した模式図。 実施形態3に係る配線基板の製造工程を順に示した模式図。 実施形態3に係る配線基板の製造工程を順に示した模式図。
 本発明に係る配線基板は、絶縁樹脂からなる絶縁層と、絶縁層に設けられた導電性の配線パターン(導電パターン)とを備えている。絶縁層は一層であってもよいし、複数層であってもよい。また、絶縁層を形成する絶縁樹脂は、例えば、ガラスエポキシ樹脂、エポキシ樹脂、フェノール樹脂、シアネート樹脂等が挙げられる。特に、エポキシ樹脂は、接着性や強度が優れている点で好ましい。
 配線基板は、配線パターンを介して絶縁層の表面に搭載された電子部品と配線基板を搭載する主基板(例えば、マザーボード)とを電気的に接続する。配線基板に搭載される電子部品は、例えばシリコン半導体素子、ガリウム砒素半導体素子等の能動素子、または、コンデンサ、インダクタ等の受動素子等である。
(実施形態1)
 図2は実施形態1に係る配線基板の模式的な断面図である。実施形態1に係る配線基板1は、絶縁層10の上面に上側配線パターン11が形成され、下面に下側配線パターン12が形成された構成である。
 絶縁層10は0.10mmの厚みを有している。絶縁層10の上面には上側配線パターン11が形成され、下面には下側配線パターン12が形成されている。上側配線パターン11および下側配線パターン12は、それぞれ0.10mmの厚みを有し、絶縁層10の厚み方向において略一致する位置に形成されている。
 上側配線パターン11には、厚み方向に沿った下側、すなわち、下側配線パターン12側に突出した凸部11Aが一体形成されている。換言すれば、上側配線パターン11および凸部11Aは、同一の金属部材から形成され、間には接合界面が存在しない。凸部11Aは、上側配線パターン11および下側配線パターン12間の略中央までの高さ(厚さ方向の長さ)を有し、下側配線パターン12側に向かって徐々に細くなった円錐台である。下側配線パターン12側となる凸部11Aの先端部(以下、接合端部という)の径は、約0.6mmとなっている。なお、凸部11Aは、台形の側面を有する四角柱であってもよい。
 また、下側配線パターン12には、上側配線パターン11側に突出した凸部12Aが一体形成されている。すなわち、下側配線パターン12および凸部12Aは、同一の金属部材から形成され、間には接合界面が存在しない。凸部12Aは、凸部11Aと略同形状を有している。
 上側配線パターン11の凸部11Aと、下側配線パターン12の凸部12Aとは、接合端部同士が密着して接合している。以下、凸部11Aと凸部12Aとが接合したものを、層間接続導体13という。上側配線パターン11および下側配線パターン12は、層間接続導体13により導通するようになっている。
 このように、層間接続導体13を二つの凸部11A,12Aを接合して形成することで、凸部11A,12Aの高さを、上側配線パターン11および下側配線パターン12間の長さの約1/2にすることができる。その結果、層間接続導体13を一の部材から形成した場合との対比において、絶縁層10の厚み方向に直交する方向(以下、平面方向という)における凸部11A,12Aの広がりを小さくすることができる。これにより、配線基板1の小型化が可能となる。
 また、凸部11A,12Aは、それぞれ上側配線パターン11および下側配線パターン12に一体形成されているため、接合界面が凸部11A,12Aの間以外に存在しない。これにより、膨張率の違いから生じる応力を原因とする剥離による導通不良や、配線基板1に生じるクラック等を防止することができ、層間接続導体13における接続信頼性を向上させることができる。
 次に、配線基板1の製造方法について説明する。図3A、図3B、図3C、図3Dおよび図3Eは、実施形態1に係る配線基板1の製造工程を順に示した模式図である。第1工程から第3工程では、同じものを二つ、すなわち、図2の上側配線パターン11側と、下側配線パターン12側とを製造するが、以下では、上側配線パターン11について説明し、下側配線パターン12については対応する符号を括弧書きで記載する。
 最初の第1工程では(図3A)、厚さ0.3mmの銅板110の厚み方向において対向する両面に厚さ15μmのドライフィルムレジスト21を貼り付ける。なお、図3A、図3B、図3C、図3Dおよび図3Eでは、銅板110の側面方向から見た図である。
 次に、第2工程では(図3B)、ドライフィルムレジスト21を貼り付けた銅板110の片面に、接合端部の径が0.6mmとなる円錐台の凸部11A(12A)が残るようにしてエッチングする。また、エッチング後にドライフィルムレジスト21を剥離する。
 第3工程では(図3C)、第2工程でエッチング処理を施した銅板110に絶縁樹脂22を塗布する。このとき、凸部11A(12A)は、絶縁樹脂22(23)よりも0.05mm突出する状態とする。絶縁樹脂22,23は前述の絶縁層10となる。
 第4工程では(図3D)、第3工程までに製造したものを凸部11A,12Aが向かい合わせて、凸部11Aおよび凸部12Aの接合端部同士を密着させ、その状態で、180℃、10MPaで1時間、加熱、加圧することで圧着接合する。これにより、凸部11A,12Aが結合した一つの層間接続導体13が形成されるようになる。
 第5工程では(図3E)、第4工程で得られた積層体を圧着プレスした後、積層体の両面をサブトラクティブ法(不要な部分を取り除いて回路を残す方法)によりパターン形成を行うことで、上側配線パターン11および下側配線パターン12が形成される。これにより、配線基板1が形成される。
 このように、層間接続導体13を二つの凸部11A,12Aを接合して構成することで、配線基板1の平面方向における広がりを抑えることができ、配線基板1の小型化を実現できる。また、凸部11A,12Aはそれぞれ、上側配線パターン11および下側配線パターン12に一体形成されている。換言すれば、凸部11A,12Aの接合界面以外に、接合界面が存在しない。これにより、膨張率の違いから生じる応力を原因とする剥離による導通不良や、配線基板1に生じるクラック等を防止することができ、層間接続導体13における接続信頼性を向上させることができる。
 なお、上側配線パターン11の凸部11Aと下側配線パターン12の凸部12Aとの接合界面に導電性接着剤が塗布されていてもよい。導電性接着剤は、例えば、ナノ銀またはナノ銅の低抵抗導電性ペーストである。なお、導電性接着剤としては、金属粉末を含む樹脂組成物であってもよい。導電性接着剤を塗布することで、層間接続導体13の接続信頼性をさらに向上させることができる。
(実施形態2)
 次に、実施形態2に係る配線基板について説明する。実施形態2に係る配線基板は、上側配線パターン11および下側配線パターン12の間にさらに配線パターンが積層されている点で、実施形態1と相違する。以下、その相違点についてのみ説明する。
 図4は、実施形態2に係る配線基板の模式的な断面図である。実施形態2に係る配線基板2は、図4に示すように、絶縁層10内の上側配線パターン11および下側配線パターン12の間に第1中間層配線パターン14および第2中間層配線パターン15がさらに積層されている。第1中間層配線パターン14は下側配線パターン12側に積層され、第2中間層配線パターン15は上側配線パターン11側に積層されている。すなわち、絶縁層10の上面側から、上側配線パターン11、第2中間層配線パターン15、第1中間層配線パターン14および下側配線パターン12の順に積層されている。
 第1中間層配線パターン14には、第2中間層配線パターン15側に突出する凸部14Aおよび上側配線パターン11側に突出する凸部14Bが一体形成されている。すなわち、第1中間層配線パターン14、および凸部14A,14Bは、同一の金属部材から形成され、間には接合界面が存在しない。凸部14A,14Bは、凸部11Aおよび凸部12Aと同形状および同サイズである。凸部14Aは、後述の第2中間層配線パターン15の凸部15Bと接合端部同士が接合されている。凸部14Bは、下側配線パターン12の凸部12Aと接合端部同士が接合されている。
 第2中間層配線パターン15には、上側配線パターン11側に突出する凸部15Aおよび第1中間層配線パターン14側に突出する凸部15Bが一体形成されている。すなわち、第2中間層配線パターン15、および凸部15A,15Bは、同一の金属部材から形成され、間には接合界面が存在しない。凸部15A,15Bは、凸部11Aおよび凸部12Aと同形状および同サイズである。凸部15Aは、上側配線パターン11の凸部11Aと接合端部同士が接合している。また、凸部15Bは、第1中間層配線パターン14の凸部14Aと接合端部同士が接合している。
 凸部11A,15Aにより、上側配線パターン11および第2中間層配線パターン15が導通するようになっている。凸部15B,14Aにより、第1中間層配線パターン14および第2中間層配線パターン15が導通するようになっている。凸部14B,12Aにより、第1中間層配線パターン14および下側配線パターン12が導通するようになっている。
 このように、絶縁層10に配線パターンを内蔵させ、多層化することにより、配線基板2を平面方向に大きくなることを抑制することができ、小型化を実現することができる。
 以下に、実施形態2に係る配線基板2の製造方法について説明する。図5A、図5B、図5Cおよび図5Dならびに図6Aおよび図6Bは、実施形態2に係る配線基板2の製造工程を順に示した模式図である。
 実施形態1で説明した図3Aから図3Cまでの製造工程を行い、図5Aに示すように、銅板150に一体形成した凸部15Bと、銅板140に一体形成した凸部14Aとの接合端部同士を接合し、間に絶縁樹脂24を積層させた積層体を形成する。以下、凸部15Bが形成された面と反対側の銅板150の面を上面とする。また、凸部14Aが形成された面と反対側の銅板140の面を下面とする。
 次の工程では、図5Bに示すように、銅板150には、凸部15Bと対向する上面の位置に、上面の法線方向に突出する凸部15Aを一体形成する。また、銅板140には、凸部14Aと対向する下面の位置に、下面の法線方向に突出する凸部14Bを一体形成する。
 さらに、図5Cに示すように、積層体の両面をサブトラクティブ法によりパターン形成を行うことで、第1中間層配線パターン14および第2中間層配線パターン15を形成する。この工程では、凸部14B,15Aの接合端部に残存しているレジストを剥離する。
 続いて、図5Dに示すように、積層体の凸部15A側に絶縁樹脂25を塗布し、凸部14B側に絶縁樹脂26を塗布する。このとき、凸部15A,14Bはそれぞれ、絶縁樹脂25,26よりも0.05mm突出する状態とする。
 次の工程では、実施形態1で説明した図3Aから図3Cまでの製造工程を行って生成した、銅板110に一体形成した凸部11Aおよび銅板120に一体形成した凸部12Aを、図5Dまでに生成した積層体にさらに積層する。
 続いての工程では(図6A)では、凸部11Aと凸部15Aとの接合端部同士を接合し、また、凸部12Aと凸部14Bとの接合端部同士を接合する。各接合端部同士を密着させ、その状態で、180℃、10MPaで1時間、加熱、加圧することで圧着接合する。
 次の工程では(図6B)、圧着した積層体の上下面をサブトラクティブ法によりパターン形成を行うことで、上側配線パターン11および下側配線パターン12を形成する。これにより、配線基板2が形成される。
 以上のように、本実施形態2では、絶縁層10に配線パターンを内蔵させ、多層化することにより、配線基板2を平面方向に大きくなることを抑制することができ、小型化を実現することができる。
(実施形態3)
 次に、実施形態3に係る配線基板について説明する。実施形態3に係る配線基板3は、実施形態1に係る配線基板の絶縁層内に電子部品を実装している点で、実施形態1と相違する。
 図7は、実施形態3に係る配線基板の模式的な断面図である。実施形態3に係る配線基板3の下側配線パターン12には、ランド12Bが一体形成されている。ランド12Bには、電子部品15が実装されている。このため、電子部品15を絶縁層10に内蔵することにより配線基板3を小型化することができる。
 なお、電子部品15には、例えばシリコン半導体素子、ガリウム砒素半導体素子等の能動素子、または、コンデンサ、インダクタ等の受動素子等が挙げられる。
 以下に、実施形態3に係る配線基板3の製造方法について説明する。図8A、図8B、図8C、図8Dおよび図8Eは、実施形態3に係る配線基板3の製造工程を順に示した模式図である。
 最初の第1工程では(図8A)、厚さ0.3mmの銅板120の厚み方向において対向する両面に厚さ15μmのドライフィルムレジスト(不図示)を貼り付ける。そして、ドライフィルムレジストを貼り付けた銅板120の片面に、径が0.6mmとなる円錐台の凸部12Aが残るようにしてエッチングする。
 次に第2工程では(図8B)、図8Aでのエッチング処理後の銅板120をさらにエッチングしてランド12Bを形成する。このランド12Bを形成することで、図8Aで形成した凸部12Aの長さは、ランド12Bの形成のためにエッチングした分長くなる。また、この工程では、凸部12Aの接合端部およびランド12Bに残存しているレジストを剥離する。
 第3工程では(図8C)、形成したランド12Bに電子部品15を搭載する。この後、第4工程では(図8D)、絶縁樹脂23を銅板120上に積層する。絶縁樹脂23は液状であり、銅板120上に塗布した後、真空脱泡し、加熱することにより半硬化状態で電子部品15を封止する。このとき、凸部12Aは、絶縁樹脂23より0.15mm突出する状態とする。
 次の工程では(図8E)、実施形態1で説明した工程と同様に形成した、銅板110に一体形成した凸部11Aの接合端部と、図8Cまでに形成した凸部12Aの接合端部とを密着させ、その状態で、180℃、10MPaで1時間、加熱、加圧することで圧着接合する。これにより、凸部11A,12Aが結合した一つの層間接続導体13が形成されるようになる。
 その後、図8Eまでに生成された積層体を圧着プレスした後、積層体の両面をサブトラクティブ法によりパターン形成を行うことで、上側配線パターン11および下側配線パターン12が形成される。これにより、配線基板3が形成される。
 以上のように、本実施形態3では、電子部品15を絶縁層10に内蔵することにより配線基板3を小型化することができる。
 以上、本発明に係る配線基板について詳述に説明したが、配線基板の具体的構成などは、適宜設計変更可能であり、上述の実施形態に記載された作用および効果は、本発明から生じる最も好適な作用および効果を列挙したに過ぎず、本発明による作用および効果は、上述の実施形態に記載されたものに限定されるものではない。
1-配線基板
10-絶縁層
11-上側配線パターン
11A-凸部
12-下側配線パターン
12A-凸部
13-層間接続導体

Claims (4)

  1.  絶縁層と、
     該絶縁層を挟んで配置され、平面方向に延びる第1導電パターンおよび第2導電パターンと、
     前記絶縁層を厚み方向に貫通して前記第1導電パターンおよび前記第2導電パターンを導通する層間接続導体と、
     を備え、
     前記層間接続導体は、
     前記第1導電パターンおよび前記第2導電パターンのそれぞれから、前記厚み方向において、対向する前記第1導電パターンおよび前記第2導電パターンに向かって細くなっている部分を有する、
     配線基板。
  2.  前記層間接続導体は、
     先端に向かって細くなっている二つの接続導体が、先端部で接合されて形成されている、
     請求項1に記載の配線基板。
  3.  二つの前記接続導体の一方は、
     前記厚み方向において前記第2導電パターン側に突出して、前記第1導電パターンに一体形成され、
     他方は、
     前記厚み方向において前記第1導電パターン側に突出して、前記第2導電パターンに一体形成されている、
     請求項2に記載の配線基板。
  4.  前記第1導電パターンは前記絶縁層側に一体形成されたランドを有しており、
     前記ランドに実装され、前記絶縁層内に配置された電子部品、
     をさらに備える請求項1から3の何れか一つに記載の配線基板。
PCT/JP2012/065719 2011-07-08 2012-06-20 配線基板 WO2013008592A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280033749.5A CN103650653A (zh) 2011-07-08 2012-06-20 布线基板
US14/147,611 US20140118977A1 (en) 2011-07-08 2014-01-06 Wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-151430 2011-07-08
JP2011151430 2011-07-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/147,611 Continuation US20140118977A1 (en) 2011-07-08 2014-01-06 Wiring board

Publications (1)

Publication Number Publication Date
WO2013008592A1 true WO2013008592A1 (ja) 2013-01-17

Family

ID=47505890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065719 WO2013008592A1 (ja) 2011-07-08 2012-06-20 配線基板

Country Status (4)

Country Link
US (1) US20140118977A1 (ja)
JP (1) JPWO2013008592A1 (ja)
CN (1) CN103650653A (ja)
WO (1) WO2013008592A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022015757A (ja) * 2020-07-09 2022-01-21 イビデン株式会社 配線基板及び配線基板の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280743A (ja) * 2001-03-21 2002-09-27 Toyota Industries Corp 多層配線基板およびその製造方法
JP2006100789A (ja) * 2004-09-29 2006-04-13 Kinko Denshi Kofun Yugenkoshi 電気配線構造の製作方法
JP2009188145A (ja) * 2008-02-06 2009-08-20 Murata Mfg Co Ltd 配線基板の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135645A (ja) * 2006-11-29 2008-06-12 Toshiba Corp 多層プリント配線板および多層プリント配線板の層間接合方法
JP5388676B2 (ja) * 2008-12-24 2014-01-15 イビデン株式会社 電子部品内蔵配線板
US20110048775A1 (en) * 2009-08-31 2011-03-03 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280743A (ja) * 2001-03-21 2002-09-27 Toyota Industries Corp 多層配線基板およびその製造方法
JP2006100789A (ja) * 2004-09-29 2006-04-13 Kinko Denshi Kofun Yugenkoshi 電気配線構造の製作方法
JP2009188145A (ja) * 2008-02-06 2009-08-20 Murata Mfg Co Ltd 配線基板の製造方法

Also Published As

Publication number Publication date
JPWO2013008592A1 (ja) 2015-02-23
US20140118977A1 (en) 2014-05-01
CN103650653A (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
JP4341588B2 (ja) 多層基板及びその製造方法
JP5109662B2 (ja) 積層回路基板の製造方法および回路板の製造方法
JP6009228B2 (ja) 電子部品内蔵基板の製造方法
JPWO2007046459A1 (ja) 多層プリント配線基板及びその製造方法
JP2011060875A (ja) 電子部品内蔵基板及びその製造方法とこれを用いた半導体装置
JP5163806B2 (ja) 部品内蔵モジュールの製造方法及び部品内蔵モジュール
JP5772949B2 (ja) 配線基板
JP4460341B2 (ja) 配線基板およびその製造方法
JPWO2005004567A1 (ja) 部品内蔵基板の製造方法
JP6673304B2 (ja) 多層基板
JP2014063981A (ja) 配線基板およびその製造方法
WO2013008592A1 (ja) 配線基板
JP6536751B2 (ja) 積層コイルおよびその製造方法
JP4684454B2 (ja) プリント配線基板の製造方法及びプリント配線基板
JP2006049536A (ja) 多層回路基板
JP4892924B2 (ja) 多層プリント配線基板及びその製造方法
JP5671857B2 (ja) 埋め込み部品具有配線板の製造方法
JP2013165149A (ja) 多層セラミック基板、およびその製造方法
WO2020203724A1 (ja) 樹脂多層基板、および樹脂多層基板の製造方法
US11540396B2 (en) Circuit board structure and manufacturing method thereof
US11991824B2 (en) Circuit board structure and manufacturing method thereof
JP5585035B2 (ja) 回路基板の製造方法
JP4797910B2 (ja) 半導体パッケージ多層基板の製造方法
JP2011513965A (ja) プリント回路基板及びその製造方法
JP2004342631A (ja) 多層プリント配線板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523872

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811624

Country of ref document: EP

Kind code of ref document: A1