WO2013002073A1 - 多層インジェクション成形体 - Google Patents

多層インジェクション成形体 Download PDF

Info

Publication number
WO2013002073A1
WO2013002073A1 PCT/JP2012/065647 JP2012065647W WO2013002073A1 WO 2013002073 A1 WO2013002073 A1 WO 2013002073A1 JP 2012065647 W JP2012065647 W JP 2012065647W WO 2013002073 A1 WO2013002073 A1 WO 2013002073A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polyamide compound
mol
group
resin
Prior art date
Application number
PCT/JP2012/065647
Other languages
English (en)
French (fr)
Inventor
翔太 荒川
尚史 小田
大滝 良二
健太郎 石井
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to BR112013033368A priority Critical patent/BR112013033368A2/pt
Priority to MX2014000062A priority patent/MX2014000062A/es
Priority to US14/128,891 priority patent/US9731482B2/en
Priority to RU2013158147/05A priority patent/RU2013158147A/ru
Priority to EP12804957.4A priority patent/EP2724860B1/en
Priority to CN201280032112.4A priority patent/CN103635319B/zh
Priority to JP2013522776A priority patent/JP5928462B2/ja
Priority to CA2840333A priority patent/CA2840333A1/en
Priority to KR1020137034533A priority patent/KR20140034867A/ko
Publication of WO2013002073A1 publication Critical patent/WO2013002073A1/ja
Priority to ZA2014/00069A priority patent/ZA201400069B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1642Making multilayered or multicoloured articles having a "sandwich" structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/24Layered products comprising a layer of synthetic resin characterised by the use of special additives using solvents or swelling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0065Permeability to gases
    • B29K2995/0067Permeability to gases non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/02Open containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1386Natural or synthetic rubber or rubber-like compound containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide

Definitions

  • the present invention relates to a multilayer injection molded article having oxygen barrier performance and oxygen absorption performance, and a container obtained by processing the multilayer injection molded article.
  • Injection molding is widely used in mechanical parts, automobile parts, electrical / electronic parts, food / pharmaceutical containers, etc., because it can produce molded bodies having complicated shapes and has high productivity.
  • various plastic containers have been used as packaging containers because they have advantages such as light weight, transparency and easy moldability.
  • a typical plastic container for example, for a beverage container or the like, an injection molded body in which a screw shape is formed on a cap so that a lid can be sufficiently tightened is frequently used.
  • the material used for the injection molded article include general-purpose resins such as polyolefins such as polyethylene and polypropylene, polyesters, and polystyrene.
  • injection molded articles using plastic containers mainly composed of polyester such as polyethylene terephthalate (PET) are widely used for beverages such as tea, fruit juice beverages and carbonated beverages.
  • PET polyethylene terephthalate
  • the injection molded body mainly composed of thermoplastic resin is excellent as a packaging material, but unlike glass bottles and metal containers, it has the property that oxygen can permeate from the outside, and the contents filled and sealed in it are sealed. There remains a problem with shelf life.
  • multilayer injection molded bodies having a gas barrier layer as an intermediate layer have been put into practical use.
  • a polyamide obtained from a polycondensation reaction between xylylenediamine and an aliphatic dicarboxylic acid for example, a polyamide obtained from metaxylylenediamine and adipic acid (hereinafter referred to as nylon MXD6) has high strength, high elastic modulus, and oxygen. Since it exhibits low permeability to gaseous substances such as carbon dioxide, odor and flavor, it is widely used as a gas barrier material in the field of packaging materials.
  • Nylon MXD6 has better thermal stability when melted than other gas barrier resins, so co-extrusion and co-extrusion with thermoplastic resins such as polyethylene terephthalate (hereinafter abbreviated as PET), nylon 6 and polypropylene. Injection molding or the like is possible. Therefore, nylon MXD6 is used as a gas barrier layer constituting a multilayer structure. However, when nylon MXD6 is used as a gas barrier layer, it has a slight oxygen permeability, so that not only oxygen cannot be completely blocked, but also the head space existing above the contents after filling in the molded body. It is impossible to remove residual oxygen in the gas. For this reason, deterioration of contents sensitive to oxygen such as beer cannot be prevented.
  • thermoplastic resins such as polyethylene terephthalate (hereinafter abbreviated as PET), nylon 6 and polypropylene. Injection molding or the like is possible. Therefore, nylon MXD6 is used as a gas barrier layer constituting a multilayer structure. However, when nylon M
  • a three-layer structure of a PET resin layer / nylon MXD6 resin layer / PET resin layer which is a representative example of a multilayer injection molded product in practical use, or a PET resin layer / nylon MXD6 resin layer / PET resin layer / nylon MXD6
  • a multi-layer molded product obtained by biaxial stretching blow molding a parison having a five-layer structure of resin layer / PET resin layer is subjected to an impact or sudden pressure change after filling with a carbonated beverage, There is a problem that delamination tends to occur.
  • gas barrier layers such as ethylene-vinyl alcohol copolymer, polyacrylonitrile, polyvinylidene chloride, aluminum foil, carbon coat, and inorganic oxide deposition.
  • nylon MXD6 it is possible to remove residual oxygen in the headspace gas that exists above the contents after filling in the molded body. Impossible.
  • nylon MXD6 is added and mixed with a small amount of transition metal compound to give nylon MXD6 an oxygen-absorbing function, and this is used as an oxygen barrier material constituting containers and packaging materials.
  • Nylon MXD6 absorbs the incoming oxygen and nylon MXD6 also absorbs oxygen remaining inside the container, so that a method for improving the storage stability of the contents over conventional containers using oxygen-barrier thermoplastic resin is practical. (See, for example, Patent Documents 1 and 2).
  • Patent Documents 3 and 4 describe an oxygen-absorbing multilayer body in which an oxygen absorbent such as iron powder is dispersed in a resin.
  • Patent Document 5 describes a product having an oxygen scavenging layer containing an ethylenically unsaturated compound such as polybutadiene and a transition metal catalyst such as cobalt, and an oxygen barrier layer such as polyamide.
  • Patent Document 6 uses a backflow control device capable of causing a certain amount of backflow to the gas barrier layer side when the resin constituting the innermost layer and the outermost layer is finally injected into the mold cavity.
  • the delamination resistance is improved by forming a preform by interposing a roughly mixed resin between layers.
  • Patent Document 7 discloses that a gas barrier layer is mixed with an adjacent resin layer and a resin having high adhesiveness to improve delamination resistance.
  • JP 2003-341747 A Japanese Patent No. 2991437 Japanese Patent Laid-Open No. 2-72851 Japanese Patent Laid-Open No. 4-90848 Japanese Patent Laid-Open No. 5-115776 JP 2000-254963 A JP 2000-6939 A
  • Oxygen-absorbing multilayers in which oxygen absorbers such as iron powder are dispersed in the resin are opaque because the resin is colored by the oxygen absorber such as iron powder and is opaque, so it is used in the packaging field where transparency is required. There is a limitation in usage that cannot be done.
  • a resin composition containing a transition metal such as cobalt has an advantage that it can be applied to packaging containers that require transparency, but is not preferred because the resin composition is colored by a transition metal catalyst. In these resin compositions, the resin is oxidized by absorbing oxygen by the transition metal catalyst.
  • the problem to be solved by the present invention is that oxygen barrier performance is expressed and oxygen absorption performance can be expressed without containing a transition metal, and there is no generation of substances that cause off-flavors and flavor changes.
  • An object of the present invention is to provide a multilayer injection molded article that is excellent in the storage stability of the contents, is less likely to be delaminated due to dropping or impact, and has an extremely small decrease in strength of the oxygen absorption barrier layer as oxygen absorption proceeds.
  • the present invention provides the following multilayer injection molded article and container.
  • a multilayer injection molded article comprising a layer (X) formed from a resin composition containing a polyamide compound (A) and a resin (B), and a layer (Y) mainly composed of the resin (C).
  • the polyamide compound (A) is An aromatic diamine unit represented by the following general formula (I-1), an alicyclic diamine unit represented by the following general formula (I-2), and a straight chain represented by the following general formula (I-3) 25 to 50 mol% of diamine units containing a total of 50 mol% or more of at least one diamine unit selected from the group consisting of aliphatic diamine units; A dicarboxylic acid unit containing a total of 50 mol% or more of a linear aliphatic dicarboxylic acid unit represented by the following general formula (II-1) and / or an aromatic dicarboxylic acid unit represented by the following general formula (II-2) 25 to 50 mol%, A multilayer injection molded article containing 0.1 to 50 mol% of a structural unit represented by the following general formula (III).
  • III A multilayer injection molded article containing 0.1 to 50 mol% of a structural unit represented by the following general formula (III).
  • m represents an integer of 2 to 18.
  • n represents an integer of 2 to 18.
  • Ar represents an arylene group.
  • R represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
  • the multilayer injection molded article of the present invention exhibits oxygen barrier performance, can exhibit oxygen absorption performance without containing a transition metal, is less susceptible to delamination due to dropping or impact, and progresses in oxygen absorption. Accordingly, the decrease in strength of the oxygen absorption barrier layer is extremely small. Moreover, since the strength of the oxygen absorption barrier layer is maintained even during long-term use, delamination is unlikely to occur.
  • the container obtained by processing the multilayer injection molded article is excellent in suppressing oxidative deterioration of the contents, hardly generating substances that cause off-flavors and flavor changes, and excellent in flavor retention.
  • the multilayer injection molded article of the present invention includes a layer (X) formed from a resin composition containing the polyamide compound (A) and the resin (B) (hereinafter sometimes referred to as “oxygen absorption barrier layer”), And at least a layer (Y) containing the resin (C) as a main component.
  • the layer configuration in the multilayer injection molded article of the present invention is not particularly limited, and the number and type of layers (X) and layers (Y) are not particularly limited. For example, it may be an X / Y configuration consisting of one layer (X) and one layer (Y), or Y / X / consisting of one layer (X) and two layers (Y).
  • a three-layer structure of Y may be used.
  • a five-layer configuration of Y1 / Y2 / X / Y2 / Y1 composed of one layer (X) and two types and four layers (Y) of the layer (Y1) and the layer (Y2) may be used.
  • the multilayer injection molded article of the present invention may include an arbitrary layer such as an adhesive layer (AD) as necessary.
  • AD adhesive layer
  • it has a seven-layer configuration of Y1 / AD / Y2 / X / Y2 / AD / Y1. There may be.
  • Layer (X) formed from a resin composition containing the polyamide compound (A) and the resin (B) oxygen absorption barrier layer
  • the oxygen absorption barrier layer is formed from a resin composition, and the resin composition will be described later in addition to a conventionally known resin (hereinafter also referred to as “resin (B)”).
  • resin (B) a resin composition
  • polyamide compound (A) oxygen absorption performance and oxygen barrier performance can be exhibited.
  • the polyamide compound (A) contained in the resin composition may be one type or a combination of two or more types.
  • 1 type may be sufficient as resin (B) contained in a resin composition, and the combination of 2 or more types may be sufficient as it.
  • the suitable range of the mass ratio of the polyamide compound (A) and the resin (B) in the resin composition used in the present invention varies depending on the relative viscosity of the polyamide compound (A).
  • the mass ratio of the polyamide compound (A) / resin (B) can be selected from the range of 5/95 to 95/5. preferable.
  • the content of the polyamide compound (A) is more preferably 10 parts by mass or more with respect to a total of 100 parts by mass of the polyamide compound (A) and the resin (B). More preferably, it is 30 parts by mass or more.
  • the relative viscosity of the polyamide compound (A) is 1.01 or more and less than 1.8, it is desirable to contain a relatively large amount of the resin (B) from the viewpoint of moldability, and the polyamide compound (A) /
  • the mass ratio of the resin (B) is preferably selected from the range of 5/95 to 50/50.
  • the content of the polyamide compound (A) is more preferably 10 parts by mass or more with respect to a total of 100 parts by mass of the polyamide compound (A) and the resin (B). More preferably, it is 30 parts by mass or more.
  • the resin composition used in the present invention may be referred to as an additive described later (hereinafter referred to as “additive (D)”) depending on the desired performance and the like.
  • additive (D) an additive described later
  • the total content of the polyamide compound (A) and the resin (B) in the resin composition is 90% by mass to 100% from the viewpoint of molding processability, oxygen absorption performance, and oxygen barrier performance.
  • the mass is preferably 95% by mass, and more preferably 95% by mass to 100% by mass.
  • the thickness of the oxygen absorption barrier layer is preferably 2 to 100 ⁇ m from the viewpoint of ensuring various physical properties such as flexibility required for the multilayer injection molded article while improving oxygen absorption performance and oxygen barrier performance.
  • the thickness is preferably 5 to 90 ⁇ m, more preferably 10 to 80 ⁇ m.
  • polyamide compound (A) ⁇ Configuration of polyamide compound (A)>
  • the polyamide compound (A) includes an aromatic diamine unit represented by the following general formula (I-1), an alicyclic diamine unit represented by the following general formula (I-2), and the following general formula: 25 to 50 mol% of diamine units containing a total of 50 mol% or more of at least one diamine unit selected from the group consisting of linear aliphatic diamine units represented by (I-3), and the following general formula (II-1) 25 to 50 mol% of dicarboxylic acid units containing a total of 50 mol% or more of linear aliphatic dicarboxylic acid units represented by formula (II-2) and aromatic dicarboxylic acid units represented by the following general formula (II-2): Tertiary hydrogen-containing carboxylic acid unit (preferably a structural unit represented by the following general formula (III)) 0.1 to 50 mol%.
  • I-1 aromatic diamine unit represented by the following general formula (I-1)
  • m represents an integer of 2 to 18.
  • n represents an integer of 2 to 18.
  • Ar represents an arylene group.
  • R represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
  • the polyamide compound (A) may further contain structural units other than those described above as long as the effects of the present invention are not impaired.
  • the content of the tertiary hydrogen-containing carboxylic acid unit is 0.1 to 50 mol%. If the content of the tertiary hydrogen-containing carboxylic acid unit is less than 0.1 mol%, sufficient oxygen absorption performance is not exhibited. On the other hand, when the content of the tertiary hydrogen-containing carboxylic acid unit exceeds 50 mol%, the tertiary hydrogen content is too large, and the physical properties such as gas barrier properties and mechanical properties of the polyamide compound (A) are deteriorated.
  • the secondary hydrogen-containing carboxylic acid is an amino acid
  • the peptide bond is continuous, so that the heat resistance is not sufficient, and a cyclic product composed of a dimer of amino acids is formed, thereby inhibiting polymerization.
  • the content of the tertiary hydrogen-containing carboxylic acid unit is preferably 0.2 mol% or more, more preferably 1 mol% or more, and preferably from the viewpoint of oxygen absorption performance and properties of the polyamide compound (A). It is 40 mol% or less, More preferably, it is 30 mol% or less.
  • the diamine unit content is 25 to 50 mol%, and preferably 30 to 50 mol% from the viewpoint of oxygen absorption performance and polymer properties.
  • the content of dicarboxylic acid units is 25 to 50 mol%, preferably 30 to 50 mol%.
  • the proportion of the content of the diamine unit and the dicarboxylic acid unit is preferably substantially the same from the viewpoint of the polymerization reaction, and the content of the dicarboxylic acid unit is ⁇ 2 mol% of the content of the diamine unit. More preferred.
  • the degree of polymerization of the polyamide compound (A) becomes difficult to increase, so it takes a lot of time to increase the degree of polymerization, Deterioration is likely to occur.
  • the diamine unit in the polyamide compound (A) is an aromatic diamine unit represented by the general formula (I-1), an alicyclic diamine unit represented by the general formula (I-2), and the general formula.
  • a total of 50 mol% or more of diamine units selected from the group consisting of linear aliphatic diamine units represented by (I-3) is contained in the diamine units, and the content is preferably 70 mol% Above, more preferably 80 mol% or more, still more preferably 90 mol% or more, and preferably 100 mol% or less.
  • Examples of the compound that can constitute the aromatic diamine unit represented by the general formula (I-1) include orthoxylylenediamine, metaxylylenediamine, and paraxylylenediamine. These can be used alone or in combination of two or more.
  • Examples of the compound that can constitute the alicyclic diamine unit represented by the formula (I-2) include bis (amino) such as 1,3-bis (aminomethyl) cyclohexane and 1,4-bis (aminomethyl) cyclohexane. Methyl) cyclohexanes. These can be used alone or in combination of two or more. Bis (aminomethyl) cyclohexanes have structural isomers, but by increasing the cis-isomer ratio, the crystallinity is high and good moldability can be obtained. On the other hand, if the cis-isomer ratio is lowered, a transparent material with low crystallinity can be obtained.
  • the cis-isomer content ratio in the bis (aminomethyl) cyclohexane is preferably 70 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more.
  • the cis body content ratio in the bis (aminomethyl) cyclohexanes is preferably 50 mol% or less, more preferably 40 mol% or less, still more preferably 30 mol% or less.
  • m represents an integer of 2 to 18, preferably 3 to 16, more preferably 4 to 14, and still more preferably 6 to 12.
  • Examples of the compound that can constitute the linear aliphatic diamine unit represented by the general formula (I-3) include ethylenediamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, and heptamethylenediamine.
  • aliphatic diamines such as octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, and dodecamethylene diamine, but are not limited thereto.
  • hexamethylenediamine is preferable. These can be used alone or in combination of two or more.
  • a diamine unit in the polyamide compound (A) in addition to imparting excellent gas barrier properties to the polyamide compound (A), it improves transparency and color tone and facilitates moldability of general-purpose thermoplastic resins. From the viewpoint, it preferably contains an aromatic diamine unit represented by the general formula (I-1) and / or an alicyclic diamine unit represented by the general formula (I-2). From the standpoint of imparting appropriate crystallinity to (A), it is preferable to include a linear aliphatic diamine unit represented by the general formula (I-3). In particular, from the viewpoint of oxygen absorption performance and properties of the polyamide compound (A), it is preferable that the aromatic diamine unit represented by the general formula (I-1) is included.
  • the diamine unit in the polyamide compound (A) is a metaxylylenediamine unit from the viewpoint of facilitating moldability of a general-purpose thermoplastic resin in addition to exhibiting excellent gas barrier properties in the polyamide compound (A).
  • the content is preferably 50 mol% or more, and the content is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, and preferably 100 mol% or less.
  • Examples of the compound that can constitute a diamine unit other than the diamine unit represented by any one of the general formulas (I-1) to (I-3) include aromatic diamines such as paraphenylenediamine, and 1,3-diaminocyclohexane. Fats such as 1,4-diaminocyclohexane, alicyclic diamines, N-methylethylenediamine, 2-methyl-1,5-pentanediamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, etc. Examples include, but are not limited to, group diamines, polyether diamines having ether bonds represented by Huntsman's Jeffamine and elastamine (both are trade names), and the like. These can be used alone or in combination of two or more.
  • the dicarboxylic acid unit in the polyamide compound (A) is a linear aliphatic group represented by the general formula (II-1) from the viewpoints of reactivity during polymerization and crystallinity and moldability of the polyamide compound (A).
  • the dicarboxylic acid unit and / or the aromatic dicarboxylic acid unit represented by the general formula (II-2) is contained in the dicarboxylic acid unit in a total of 50 mol% or more, and the content is preferably 70 mol% or more, more Preferably it is 80 mol% or more, More preferably, it is 90 mol% or more, Preferably it is 100 mol% or less.
  • the linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) is necessary for a packaging material and a packaging container in addition to imparting an appropriate glass transition temperature and crystallinity to the polyamide compound (A). It is preferable at the point which can provide a softness
  • n represents an integer of 2 to 18, preferably 3 to 16, more preferably 4 to 12, and still more preferably 4 to 8.
  • Examples of the compound that can constitute the linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1, Examples include 10-decanedicarboxylic acid, 1,11-undecanedicarboxylic acid, 1,12-dodecanedicarboxylic acid, but are not limited thereto. These can be used alone or in combination of two or more.
  • the type of the linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) is appropriately determined according to the application.
  • the linear aliphatic dicarboxylic acid unit in the polyamide compound (A) provides excellent gas barrier properties to the polyamide compound (A), and from the viewpoint of maintaining heat resistance after heat sterilization of packaging materials and packaging containers.
  • At least one selected from the group consisting of an adipic acid unit, a sebacic acid unit, and a 1,12-dodecanedicarboxylic acid unit is contained in a total of 50 mol% or more in the linear aliphatic dicarboxylic acid unit,
  • the content is more preferably 70 mol% or more, still more preferably 80 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less.
  • the linear aliphatic dicarboxylic acid unit in the polyamide compound (A) is a linear aliphatic unit from the viewpoint of gas barrier properties of the polyamide compound (A) and thermal properties such as an appropriate glass transition temperature and melting point. It is preferable to contain 50 mol% or more in the dicarboxylic acid unit.
  • the linear aliphatic dicarboxylic acid unit in the polyamide compound (A) is converted from the sebacic acid unit to the linear aliphatic dicarboxylic acid unit from the viewpoint of imparting appropriate gas barrier properties and molding processability to the polyamide compound (A).
  • the 1,12-dodecanedicarboxylic acid unit is a linear aliphatic group. It is preferable to contain 50 mol% or more in the dicarboxylic acid unit.
  • the aromatic dicarboxylic acid unit represented by the general formula (II-2) facilitates the molding processability of packaging materials and packaging containers, in addition to imparting further gas barrier properties to the polyamide compound (A). It is preferable at the point which can do.
  • Ar represents an arylene group.
  • the arylene group is preferably an arylene group having 6 to 30 carbon atoms, more preferably 6 to 15 carbon atoms, and examples thereof include a phenylene group and a naphthylene group.
  • Examples of the compound that can constitute the aromatic dicarboxylic acid unit represented by the general formula (II-2) include terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid, but are not limited thereto. is not. These can be used alone or in combination of two or more.
  • the kind of the aromatic dicarboxylic acid unit represented by the general formula (II-2) is appropriately determined according to the use.
  • the aromatic dicarboxylic acid unit in the polyamide compound (A) is a total of at least one selected from the group consisting of an isophthalic acid unit, a terephthalic acid unit, and a 2,6-naphthalenedicarboxylic acid unit in the aromatic dicarboxylic acid unit.
  • the content is preferably 70 mol% or more, more preferably 80 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less. is there. Among these, it is preferable to contain isophthalic acid and / or terephthalic acid in the aromatic dicarboxylic acid unit.
  • the content ratio of the isophthalic acid unit to the terephthalic acid unit is not particularly limited and is appropriately determined according to the application.
  • the molar ratio is preferably 0/100 to 100/0, more preferably 0/100 to 60/40, More preferably, it is 0/100 to 40/60, and more preferably 0/100 to 30/70.
  • the content ratio of the linear aliphatic dicarboxylic acid unit to the aromatic dicarboxylic acid unit is particularly limited. Rather, it is determined appropriately according to the application.
  • the linear aliphatic dicarboxylic acid unit / aromatic dicarboxylic acid unit is When the total of these is 100, the molar ratio is preferably 0/100 to 60/40, more preferably 0/100 to 40/60, still more preferably 0/100 to 30/70.
  • the linear aliphatic dicarboxylic acid unit / aromatic dicarboxylic acid unit is When the total is 100, the molar ratio is preferably 40/60 to 100/0, more preferably 60/40 to 100/0, still more preferably 70/30 to 100/0.
  • Examples of the compound that can constitute a dicarboxylic acid unit other than the dicarboxylic acid unit represented by the general formula (II-1) or (II-2) include oxalic acid, malonic acid, fumaric acid, maleic acid, 1,3- Examples thereof include, but are not limited to, dicarboxylic acids such as benzenediacetic acid and 1,4-benzenediacetic acid.
  • the tertiary hydrogen-containing carboxylic acid unit in the polyamide compound (A) has at least one amino group and one carboxyl group or two or more carboxyl groups from the viewpoint of polymerization of the polyamide compound (A).
  • Specific examples include structural units represented by any of the following general formulas (III), (IV), or (V).
  • R, R 1 and R 2 each represent a substituent, and A 1 to A 3 each represent a single bond or a divalent linking group. However, the case where both A 1 and A 2 in the general formula (IV) are single bonds is excluded. ]
  • the polyamide compound (A) includes a tertiary hydrogen-containing carboxylic acid unit.
  • a tertiary hydrogen-containing carboxylic acid unit By containing such a tertiary hydrogen-containing carboxylic acid unit as a copolymerization component, the polyamide compound (A) can exhibit excellent oxygen absorption performance without containing a transition metal.
  • the mechanism by which the polyamide compound (A) having a tertiary hydrogen-containing carboxylic acid unit exhibits good oxygen absorption performance has not yet been clarified, but is estimated as follows.
  • a compound that can constitute a tertiary hydrogen-containing carboxylic acid unit an electron-withdrawing group and an electron-donating group are bonded to the same carbon atom, so that unpaired electrons existing on the carbon atom are energetic. It is considered that a very stable radical is generated by a phenomenon called a captodative effect that is stabilized in a stable manner.
  • the carboxyl group is an electron withdrawing group
  • the carbon to which the adjacent tertiary hydrogen is bonded becomes electron deficient ( ⁇ + )
  • the tertiary hydrogen also becomes electron deficient ( ⁇ + ) Dissociates as a radical.
  • oxygen and water it is considered that oxygen reacts with this radical to show oxygen absorption performance. It has also been found that the higher the humidity and temperature, the higher the reactivity.
  • R, R 1 and R 2 each represent a substituent.
  • substituent represented by R, R 1 and R 2 in the present invention include a halogen atom (eg, chlorine atom, bromine atom, iodine atom), alkyl group (1 to 15, preferably 1 to 6).
  • Linear, branched or cyclic alkyl groups having the following carbon atoms for example, methyl group, ethyl group, n-propyl group, isopropyl group, t-butyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl Group), an alkenyl group (a linear, branched or cyclic alkenyl group having 2 to 10, preferably 2 to 6 carbon atoms, such as a vinyl group, an allyl group), an alkynyl group (2 to 10, preferably Alkynyl groups having 2 to 6 carbon atoms, such as ethynyl groups, propargyl groups), aryl groups (aryls having 6 to 16, preferably 6 to 10 carbon atoms) 1 to 12 groups obtained by removing one hydrogen atom from a group, for example, phenyl group, naphthyl group, heterocyclic group (5-membered or 6-
  • An alkylthio group an alkylthio group having 1 to 10, preferably 1 to 6 carbon atoms, such as a methylthio group, an ethylthio group
  • an arylthio group (6 to 12, preferably 6 to 8 carbon atoms).
  • heterocyclic thio groups for example, heterocyclic thio groups having 2 to 10, preferably 2 to 6 carbon atoms, such as - benzothiazolylthio group
  • an imido group (2 to 10, preferably an imido group having 4 to 8 carbon atoms, for example, N- succinimido group, N- phthalimido group.
  • those having a hydrogen atom may be further substituted with the above groups, for example, an alkyl group substituted with a hydroxyl group (for example, hydroxyethyl group), an alkyl group substituted with an alkoxy group (Eg, methoxyethyl group), an alkyl group substituted with an aryl group (eg, benzyl group), an aryl group substituted with an alkyl group (eg, p-tolyl group), an aryloxy group substituted with an alkyl group ( Examples thereof include, but are not limited to, 2-methylphenoxy group.
  • the carbon number mentioned above shall not include the carbon number of the further substituent.
  • a benzyl group is regarded as a C 1 alkyl group substituted with a phenyl group, and is not regarded as a C 7 alkyl group substituted with a phenyl group.
  • the following description of the number of carbon atoms shall be similarly understood unless otherwise specified.
  • a 1 to A 3 each represents a single bond or a divalent linking group.
  • the divalent linking group include linear, branched or cyclic alkylene groups (C 1-12, preferably C 1-4 alkylene groups such as methylene and ethylene groups), aralkylene groups (carbon numbers). Examples thereof include an aralkylene group having 7 to 30 carbon atoms, preferably 7 to 13 carbon atoms, such as a benzylidene group, and an arylene group (arylene group having 6 to 30 carbon atoms, preferably 6 to 15 carbon atoms such as a phenylene group).
  • substituents represented by R, R 1 and R 2 examples include the functional groups exemplified above as substituents represented by R, R 1 and R 2 .
  • substituents represented by R, R 1 and R 2 examples include, but are not limited to, an arylene group substituted with an alkyl group (for example, a xylylene group).
  • the polyamide compound (A) preferably contains at least one structural unit represented by any one of the general formulas (III), (IV), and (V).
  • a carboxylic acid unit having tertiary hydrogen on the ⁇ -carbon (carbon atom adjacent to the carboxyl group) is more preferable, and is represented by the general formula (III).
  • the structural unit is particularly preferred.
  • R in the general formula (III) is as described above.
  • a substituted or unsubstituted alkyl group and a substituted or unsubstituted aryl group are more preferable, and a substituted or unsubstituted C 1-6 carbon atom is more preferable.
  • An alkyl group and a substituted or unsubstituted aryl group having 6 to 10 carbon atoms are more preferred, and a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms and a substituted or unsubstituted phenyl group are particularly preferred.
  • R examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, 1-methylpropyl group, 2-methylpropyl group, hydroxymethyl group, 1- Examples thereof include, but are not limited to, a hydroxyethyl group, a mercaptomethyl group, a methylsulfanylethyl group, a phenyl group, a naphthyl group, a benzyl group, and a 4-hydroxybenzyl group. Among these, a methyl group, an ethyl group, an isopropyl group, a 2-methylpropyl group, and a benzyl group are more preferable.
  • the compounds that can constitute the structural unit represented by the general formula (III) include alanine, 2-aminobutyric acid, valine, norvaline, leucine, norleucine, tert-leucine, isoleucine, serine, threonine, cysteine, methionine, 2 -Alpha-amino acids such as phenylglycine, phenylalanine, tyrosine, histidine, tryptophan, proline and the like can be exemplified, but are not limited thereto.
  • examples of the compound that can constitute the structural unit represented by the general formula (IV) include ⁇ -amino acids such as 3-aminobutyric acid, which constitute the structural unit represented by the general formula (V).
  • examples of the compound that can be used include, but are not limited to, dicarboxylic acids such as methylmalonic acid, methylsuccinic acid, malic acid, and tartaric acid. These may be any of D-form, L-form and racemate, or allo-form. Moreover, these can be used individually or in combination of 2 or more types.
  • ⁇ -amino acids having tertiary hydrogen in the ⁇ carbon are particularly preferable from the viewpoint of availability of raw materials and improvement of oxygen absorption.
  • alanine is most preferable from the viewpoints of ease of supply, inexpensive price, ease of polymerization, and low yellowness (YI) of the polymer. Since alanine has a relatively low molecular weight and a high copolymerization rate per 1 g of the polyamide compound (A), oxygen absorption performance per 1 g of the polyamide compound (A) is good.
  • the purity of the compound that can constitute the tertiary hydrogen-containing carboxylic acid unit is 95% or more from the viewpoint of the influence on the polymerization such as the delay of the polymerization rate and the influence on the quality such as the yellowness of the polymer. Preferably, it is 98.5% or more, more preferably 99% or more.
  • sulfate ions and ammonium ions contained as impurities are preferably 500 ppm or less, more preferably 200 ppm or less, and still more preferably 50 ppm or less.
  • ⁇ -aminocarboxylic acid unit In the present invention, when the polyamide compound (A) needs flexibility and the like, in addition to the diamine unit, the dicarboxylic acid unit and the tertiary hydrogen-containing carboxylic acid unit, An ⁇ -aminocarboxylic acid unit represented by the formula (P) may be further contained.
  • p represents an integer of 2 to 18.
  • the content of the ⁇ -aminocarboxylic acid unit is preferably from 0.1 to 49.9 mol%, more preferably from 3 to 40 mol%, still more preferably from 5 to 35, in all the structural units of the polyamide compound (A). Mol%.
  • the total of the diamine unit, dicarboxylic acid unit, tertiary hydrogen-containing carboxylic acid unit, and ⁇ -aminocarboxylic acid unit does not exceed 100 mol%.
  • p represents an integer of 2 to 18, preferably 3 to 16, more preferably 4 to 14, and still more preferably 5 to 12.
  • Examples of compounds that can constitute the ⁇ -aminocarboxylic acid unit represented by the general formula (P) include ⁇ -aminocarboxylic acids having 5 to 19 carbon atoms and lactams having 5 to 19 carbon atoms.
  • Examples of the ⁇ -aminocarboxylic acid having 5 to 19 carbon atoms include 6-aminohexanoic acid and 12-aminododecanoic acid, and examples of the lactam having 5 to 19 carbon atoms include ⁇ -caprolactam and laurolactam. However, it is not limited to these. These can be used alone or in combination of two or more.
  • the ⁇ -aminocarboxylic acid unit preferably contains 6-aminohexanoic acid units and / or 12-aminododecanoic acid units in a total of 50 mol% or more in the ⁇ -aminocarboxylic acid unit, and the content is More preferably, it is 70 mol% or more, More preferably, it is 80 mol% or more, More preferably, it is 90 mol% or more, Preferably it is 100 mol% or less.
  • the relative viscosity of the polyamide compound (A) is not particularly limited, but is preferably 1.01 to 4.2. As described above, the suitable range of the mass ratio of the polyamide compound (A) / resin (B) varies depending on the relative viscosity of the polyamide compound (A), and the relative viscosity of the polyamide compound (A) is 1.8 or more. When the ratio is 4.2 or less, the mass ratio of the polyamide compound (A) / resin (B) is preferably selected from the range of 5/95 to 95/5, and the relative viscosity of the polyamide compound (A) is 1.
  • the mass ratio of the polyamide compound (A) / resin (B) is preferably selected from the range of 5/95 to 50/50.
  • the oxygen absorption rate of the polyamide compound (A) and the oxidative deterioration of the polyamide compound (A) due to oxygen absorption can be controlled by changing the terminal amino group concentration of the polyamide compound (A).
  • the terminal amino group concentration of the polyamide compound (A) is preferably in the range of 5 to 150 ⁇ eq / g, more preferably 10 to 100 ⁇ eq / g, still more preferably 15 ⁇ 80 ⁇ eq / g.
  • the polyamide compound (A) includes a diamine component that can constitute the diamine unit, a dicarboxylic acid component that can constitute the dicarboxylic acid unit, and a tertiary hydrogen-containing carboxylic acid component that can constitute the tertiary hydrogen-containing carboxylic acid unit.
  • the ⁇ -aminocarboxylic acid component that can constitute the ⁇ -aminocarboxylic acid unit if necessary, can be produced by polycondensation, and the degree of polymerization can be controlled by adjusting the polycondensation conditions and the like. it can.
  • a small amount of monoamine or monocarboxylic acid may be added as a molecular weight modifier during polycondensation. Further, in order to suppress the polycondensation reaction and obtain a desired degree of polymerization, the ratio (molar ratio) between the diamine component and the carboxylic acid component constituting the polyamide compound (A) may be adjusted from 1.
  • Examples of the polycondensation method of the polyamide compound (A) include, but are not limited to, a reactive extrusion method, a pressurized salt method, an atmospheric pressure dropping method, and a pressure dropping method. Moreover, the one where reaction temperature is as low as possible can suppress the yellowing and gelation of a polyamide compound (A), and the polyamide compound (A) of the stable property is obtained.
  • a polyamide comprising a diamine component and a dicarboxylic acid component (polyamide corresponding to the precursor of the polyamide compound (A)) or a polyamide comprising a diamine component, a dicarboxylic acid component and an ⁇ -aminocarboxylic acid component (polyamide compound (A And a tertiary hydrogen-containing carboxylic acid component are melt-kneaded with an extruder and reacted.
  • a screw suitable for reactive extrusion is used, and a twin screw extruder having a large L / D is used. It is preferable to use it.
  • a polyamide compound (A) containing a small amount of a tertiary hydrogen-containing carboxylic acid unit it is a simple method and suitable.
  • the pressurized salt method is a method of performing melt polycondensation under pressure using a nylon salt as a raw material. Specifically, after preparing an aqueous nylon salt solution comprising a diamine component, a dicarboxylic acid component, a tertiary hydrogen-containing carboxylic acid component, and an ⁇ -aminocarboxylic acid component as necessary, the aqueous solution is concentrated, Next, the temperature is raised under pressure, and polycondensation is performed while removing condensed water. While the inside of the can is gradually returned to normal pressure, the temperature is raised to about the melting point of polyamide compound (A) + 10 ° C.
  • the pressurized salt method is useful when a volatile component is used as a monomer, and is a preferable polycondensation method when the copolymerization rate of the tertiary hydrogen-containing carboxylic acid component is high.
  • it is suitable for producing a polyamide compound (A) containing 15 mol% or more of tertiary hydrogen-containing carboxylic acid units in all structural units of the polyamide compound (A).
  • the pressurized salt method By using the pressurized salt method, transpiration of the tertiary hydrogen-containing carboxylic acid component can be prevented, and further, polycondensation between the tertiary hydrogen-containing carboxylic acid components can be suppressed, and the polycondensation reaction can proceed smoothly. Therefore, the polyamide compound (A) excellent in properties can be obtained.
  • Normal pressure dropping method In the atmospheric pressure dropping method, a diamine component is continuously dropped into a mixture obtained by heating and melting a dicarboxylic acid component, a tertiary hydrogen-containing carboxylic acid component, and, if necessary, an ⁇ -aminocarboxylic acid component under normal pressure. Then, polycondensation is performed while removing condensed water. The polycondensation reaction is performed while raising the temperature of the reaction system so that the reaction temperature does not fall below the melting point of the polyamide compound (A) to be produced. Compared with the pressurized salt method, the atmospheric pressure dropping method does not use water to dissolve the salt, so the yield per batch is large, and the reaction rate is not required for vaporization / condensation of raw material components. The process time can be shortened.
  • a dicarboxylic acid component, a tertiary hydrogen-containing carboxylic acid component, and, if necessary, an ⁇ -aminocarboxylic acid component are charged into a polycondensation can, and the components are agitated and melt mixed.
  • the diamine component is continuously dropped into the mixture while the inside of the can is preferably pressurized to about 0.3 to 0.4 MPaG, and polycondensation is performed while removing condensed water.
  • the polycondensation reaction is carried out while raising the temperature of the reaction system so that the reaction temperature does not fall below the melting point of the resulting polyamide compound (A).
  • the dropping of the diamine component is terminated, the temperature inside the can is gradually returned to normal pressure, and the temperature is raised to about the melting point of the polyamide compound (A) + 10 ° C. and held, and then ⁇ 0.02 MPaG The pressure is gradually reduced until it is maintained at the same temperature, and the polycondensation is continued.
  • the inside of the can is pressurized to about 0.3 MPaG with nitrogen to recover the polyamide compound (A).
  • the pressure dropping method is useful when a volatile component is used as a monomer, and is a preferred polycondensation method when the copolymerization rate of the tertiary hydrogen-containing carboxylic acid component is high. .
  • it is suitable for producing a polyamide compound (A) containing 15 mol% or more of tertiary hydrogen-containing carboxylic acid units in all structural units of the polyamide compound (A).
  • a polyamide compound (A) excellent in properties can be obtained. Furthermore, since the pressure drop method does not use water for dissolving the salt compared to the pressure salt method, the yield per batch is large, and the reaction time can be shortened as in the atmospheric pressure drop method. The polyamide compound (A) having a low yellowness can be obtained.
  • the polyamide compound (A) produced by the polycondensation method can be used as it is, but may be subjected to a step for further increasing the degree of polymerization.
  • Further examples of the step of increasing the degree of polymerization include reactive extrusion in an extruder and solid phase polymerization.
  • a heating device used in solid phase polymerization a continuous heating drying device, a tumble dryer, a conical dryer, a rotary drum heating device called a rotary dryer, etc., and a rotary blade inside a nauta mixer are provided.
  • a conical heating device can be preferably used, but a known method and device can be used without being limited thereto.
  • a rotating drum type heating device in the above-described device can seal the inside of the system and perform polycondensation in a state where oxygen that causes coloring is removed. It is preferably used because it is easy to proceed.
  • [Phosphorus atom-containing compound, alkali metal compound] In the polycondensation of the polyamide compound (A), it is preferable to add a phosphorus atom-containing compound from the viewpoint of promoting the amidation reaction.
  • the phosphorus atom-containing compound include phosphinic acid compounds such as dimethylphosphinic acid and phenylmethylphosphinic acid; hypophosphorous acid, sodium hypophosphite, potassium hypophosphite, lithium hypophosphite, magnesium hypophosphite, Diphosphite compounds such as calcium hypophosphite and ethyl hypophosphite; phosphonic acid, sodium phosphonate, potassium phosphonate, lithium phosphonate, magnesium phosphonate, calcium phosphonate, phenylphosphonic acid, ethylphosphonic acid, phenylphosphone Phosphonic acid compounds such as sodium phosphate, potassium phenylphosphonate, lithium phenylphosphonate,
  • a phosphoric acid compound etc. are mentioned.
  • hypophosphite metal salts such as sodium hypophosphite, potassium hypophosphite, lithium hypophosphite and the like are particularly preferable because they are highly effective in promoting amidation reaction and excellent in anti-coloring effect.
  • sodium hypophosphite is preferred.
  • the phosphorus atom containing compound which can be used by this invention is not limited to these compounds.
  • the addition amount of the phosphorus atom-containing compound is preferably 0.1 to 1000 ppm, more preferably 1 to 600 ppm, and still more preferably 5 to 400 ppm in terms of the phosphorus atom concentration in the polyamide compound (A).
  • the polyamide compound (A) is difficult to be colored during the polymerization, and the transparency becomes high. If it is 1000 ppm or less, the polyamide compound (A) is hardly gelled, and it is possible to reduce the mixing of fish eyes considered to be caused by the phosphorus atom-containing compound, and the appearance of the molded product is improved.
  • an alkali metal compound in combination with the phosphorus atom-containing compound in the polycondensation system of the polyamide compound (A).
  • an alkali metal compound in order to prevent the polyamide compound (A) from being colored during the polycondensation, it is necessary that a sufficient amount of the phosphorus atom-containing compound is present, but in some cases, the polyamide compound (A) may be gelled.
  • an alkali metal compound As the alkali metal compound, alkali metal hydroxide, alkali metal acetate, alkali metal carbonate, alkali metal alkoxide, and the like are preferable.
  • Sodium methoxide, sodium ethoxide, sodium propoxide, sodium butoxide, potassium methoxide, lithium methoxide, sodium carbonate and the like but can be used without being limited to these compounds.
  • the range of 1.0 / 1.5 is preferable, more preferably 1.0 / 0.1 to 1.0 / 1.2, and still more preferably 1.0 / 0.2 to 1.0 / 1. 1.
  • Resin (B) in the present invention, any resin can be used as the resin (B) and is not particularly limited.
  • a thermoplastic resin can be used, and specific examples thereof include polyolefin, polyester, polyamide, ethylene-vinyl alcohol copolymer, and plant-derived resin.
  • the resin (B) preferably contains at least one selected from the group consisting of these resins.
  • a resin having a high oxygen barrier property such as polyester, polyamide and ethylene-vinyl alcohol copolymer is more preferable in order to effectively exhibit the oxygen absorption effect.
  • a conventionally well-known method can be used for mixing of the polyamide compound (A) and the resin (B), and dry mixing and melt mixing are exemplified.
  • the polyamide compound (A) and the resin (B) are melt-mixed to produce desired pellets and molded bodies, they can be melt-blended using an extruder or the like.
  • the extruder may be a known extruder such as a single screw extruder or a twin screw extruder, but is not limited thereto.
  • polyolefin Specific examples of the polyolefin include olefins such as polyethylene (low density polyethylene, medium density polyethylene, high density polyethylene, linear (linear) low density polyethylene), polypropylene, polybutene-1, poly-4-methylpentene-1, and the like.
  • Homopolymer ethylene-propylene random copolymer, ethylene-propylene block copolymer, ethylene-propylene-polybutene-1 copolymer, ethylene-cyclic olefin copolymer, etc., copolymer of ethylene and ⁇ -olefin Ethylene- ⁇ , ⁇ -unsaturated carboxylic acid copolymer such as ethylene- (meth) acrylic acid copolymer, ethylene- ⁇ , ⁇ -unsaturated carboxylic acid such as ethylene- (meth) acrylic acid ethyl copolymer Ester copolymer, ionic cross-linked product of ethylene- ⁇ , ⁇ -unsaturated carboxylic acid copolymer, ethylene - Other ethylene copolymers such as vinyl acetate copolymer; may be mentioned graft-modified polyolefin grafted modifying these polyolefins with an acid anhydride such as maleic anhydride.
  • the polyester is composed of one or more selected from polycarboxylic acids containing dicarboxylic acids and ester-forming derivatives thereof, and one or more selected from polyhydric alcohols containing glycol. Or a hydroxycarboxylic acid and an ester-forming derivative thereof, or a cyclic ester.
  • Dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecanedicarboxylic acid, 3- Exemplified as cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2,5-norbornanedicarboxylic acid, dimer acid, etc.
  • Saturated aliphatic dicarboxylic acids or ester-forming derivatives thereof unsaturated aliphatic dicarboxylic acids exemplified by fumaric acid, maleic acid, itaconic acid or the like, or ester-forming derivatives thereof, orthophthalic acid, isophthalic acid, terephthalic acid 1,3- Phthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4 ′ Aromatic dicarboxylic acids exemplified by biphenylsulfone dicarboxylic acid, 4,4′-biphenyl ether dicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p′-dicarboxylic acid, anthracene dicarboxylic
  • Examples of forming derivatives such as 5-sodium sulfoisophthalic acid, 2-sodium sulfoterephthalic acid, 5-lithium sulfoisophthalic acid, 2-lithium sulfoterephthalic acid, 5-potassium sulfoisophthalic acid, 2-potassium sulfoterephthalic acid, etc.
  • Aromatic dicarboxylic acids containing metal sulfonate groups The like lower alkyl esters thereof derivative.
  • dicarboxylic acids the use of terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid is particularly preferable in terms of the physical properties of the resulting polyester, and other dicarboxylic acids may be copolymerized as necessary. .
  • carboxylic acids other than these dicarboxylic acids ethanetricarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3 ′, 4′-biphenyltetracarboxylic acid, And ester-forming derivatives thereof.
  • glycols ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,4 -Butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 1,10-decamethylene glycol, 1,12-dodecanediol, polyethylene glycol, polyto Aliphatic glycols, such as methylene glycol and polytetramethylene glycol, hydroquinone,
  • glycols it is particularly preferable to use ethylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, and 1,4-cyclohexanedimethanol as main components.
  • polyhydric alcohols other than these glycols include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, and hexanetriol.
  • Hydroxycarboxylic acids include lactic acid, citric acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid, 4-hydroxycyclohexanecarboxylic acid, or these And ester-forming derivatives thereof.
  • cyclic ester examples include ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -methyl- ⁇ -propiolactone, ⁇ -valerolactone, glycolide, lactide and the like.
  • ester-forming derivatives of polyvalent carboxylic acids and hydroxycarboxylic acids include these alkyl esters, acid chlorides, acid anhydrides, and the like.
  • the polyester used in the present invention is preferably a polyester in which the main acid component is terephthalic acid or an ester-forming derivative thereof or naphthalenedicarboxylic acid or an ester-forming derivative thereof, and the main glycol component is alkylene glycol.
  • the polyester in which the main acid component is terephthalic acid or an ester-forming derivative thereof is preferably a polyester containing 70 mol% or more of terephthalic acid or an ester-forming derivative thereof in total with respect to the total acid component.
  • a polyester containing 80 mol% or more is preferable, and a polyester containing 90 mol% or more is more preferable.
  • the polyester in which the main acid component is naphthalenedicarboxylic acid or an ester-forming derivative thereof is also preferably a polyester containing 70 mol% or more of naphthalenedicarboxylic acid or an ester-forming derivative thereof, more preferably 80 Polyesters containing at least mol%, more preferably polyesters containing at least 90 mol%.
  • naphthalenedicarboxylic acid or ester-forming derivative thereof used in the present invention examples include 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid exemplified in the above dicarboxylic acids, 6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, or ester-forming derivatives thereof are preferred.
  • the polyester whose main glycol component is an alkylene glycol is preferably a polyester containing 70 mol% or more of the total amount of alkylene glycol with respect to all glycol components, more preferably a polyester containing 80 mol% or more, More preferably, it is a polyester containing 90 mol% or more.
  • the alkylene glycol here may contain a substituent or an alicyclic structure in the molecular chain.
  • the copolymer components other than the terephthalic acid / ethylene glycol are isophthalic acid, 2,6-naphthalenedicarboxylic acid, diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,2-propanediol, 1,3-propane. It is preferably at least one selected from the group consisting of diol and 2-methyl-1,3-propanediol from the viewpoint of achieving both transparency and moldability.
  • a preferred example of the polyester used in the present invention is a polyester whose main repeating unit is composed of ethylene terephthalate, more preferably a linear polyester containing 70 mol% or more of ethylene terephthalate units, and still more preferably an ethylene terephthalate unit.
  • a linear polyester containing 80 mol% or more is preferable, and a linear polyester containing 90 mol% or more of ethylene terephthalate units is particularly preferable.
  • polyester used in the present invention is a polyester in which the main repeating unit is composed of ethylene-2,6-naphthalate, and more preferably contains 70 mol% or more of ethylene-2,6-naphthalate units.
  • a linear polyester more preferably a linear polyester containing 80 mol% or more of ethylene-2,6-naphthalate units, and particularly preferably a linear polyester containing 90 mol% or more of ethylene-2,6-naphthalate units. Polyester.
  • polyesters containing 70 mol% or more of propylene terephthalate units linear polyesters containing 70 mol% or more of propylene naphthalate units, and 1,4-cyclohexanedimethylene terephthalate.
  • the composition of the entire polyester is transparent in combination of terephthalic acid / isophthalic acid // ethylene glycol, terephthalic acid // ethylene glycol / 1,4-cyclohexanedimethanol, and terephthalic acid // ethylene glycol / neopentyl glycol.
  • terephthalic acid / isophthalic acid // ethylene glycol
  • terephthalic acid // ethylene glycol / neopentyl glycol.
  • a small amount (5 mol% or less) of diethylene glycol produced by dimerization of ethylene glycol may be included in the esterification (transesterification) reaction or polycondensation reaction.
  • polyester used in the present invention include polyglycolic acid obtained by polycondensation of glycolic acid or methyl glycolate or ring-opening polycondensation of glycolide.
  • This polyglycolic acid may be copolymerized with other components such as lactide.
  • polyamide Polyamide used in the present invention (herein, “polyamide” refers to a polyamide resin mixed with “polyamide compound (A)” of the present invention, and refers to “polyamide compound (A)” of the present invention itself.
  • monomer units other than the main structural unit may be copolymerized.
  • lactam or aminocarboxylic acid examples include lactams such as ⁇ -caprolactam and laurolactam, aminocarboxylic acids such as aminocaproic acid and aminoundecanoic acid, and aromatic aminocarboxylic acids such as para-aminomethylbenzoic acid.
  • an aliphatic diamine having 2 to 12 carbon atoms or a functional derivative thereof can be used.
  • an alicyclic diamine may be used.
  • the aliphatic diamine may be a linear aliphatic diamine or a branched chain aliphatic diamine.
  • linear aliphatic diamines include ethylenediamine, 1-methylethylenediamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, Examples include aliphatic diamines such as nonamethylenediamine, decamethylenediamine, undecamethylenediamine, and dodecamethylenediamine.
  • alicyclic diamine include cyclohexanediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, and the like.
  • the aliphatic dicarboxylic acid is preferably a linear aliphatic dicarboxylic acid or an alicyclic dicarboxylic acid, and more preferably a linear aliphatic dicarboxylic acid having an alkylene group having 4 to 12 carbon atoms.
  • linear aliphatic dicarboxylic acids include adipic acid, sebacic acid, malonic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, undecanoic acid, undecadioic acid, dodecanedioic acid, dimer Examples thereof include acids and functional derivatives thereof.
  • alicyclic dicarboxylic acid examples include alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, and hexahydroisophthalic acid.
  • aromatic diamine examples include metaxylylenediamine, paraxylylenediamine, para-bis (2-aminoethyl) benzene and the like.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, diphenoxyethanedicarboxylic acid, and functional derivatives thereof. It is done.
  • polyamides include polyamide 4, polyamide 6, polyamide 10, polyamide 11, polyamide 12, polyamide 4, 6, polyamide 6, 6, polyamide 6, 10, polyamide 6T, polyamide 9T, polyamide 6IT, polymetaxylylene azide.
  • a copolymerization component of the polyamide a polyether having at least one terminal amino group or terminal carboxyl group and a number average molecular weight of 2000 to 20000, or an organic carboxylate of the polyether having the terminal amino group, or An amino salt of a polyether having a terminal carboxyl group can also be used.
  • Specific examples include bis (aminopropyl) poly (ethylene oxide) (polyethylene glycol having a number average molecular weight of 2000 to 20000).
  • the partially aromatic polyamide may contain a structural unit derived from a polybasic carboxylic acid having three or more bases such as trimellitic acid and pyromellitic acid within a substantially linear range.
  • the polyamide is basically a conventionally known melt polycondensation method in the presence of water or a melt polycondensation method in the absence of water, or a polyamide obtained by these melt polycondensation methods. It can be manufactured by a method or the like.
  • the melt polycondensation reaction may be performed in one step or may be performed in multiple steps. These may be comprised from a batch-type reaction apparatus, and may be comprised from the continuous-type reaction apparatus.
  • the melt polycondensation step and the solid phase polymerization step may be operated continuously or may be operated separately.
  • the ethylene vinyl alcohol copolymer used in the present invention is not particularly limited, but preferably has an ethylene content of 15 to 60 mol%, more preferably 20 to 55 mol%, more preferably 29 to 44 mol%, The degree of saponification of the vinyl acetate component is preferably 90 mol% or more, more preferably 95 mol% or more.
  • the ethylene vinyl alcohol copolymer has a smaller amount of an ⁇ -olefin such as propylene, isobutene, ⁇ -octene, ⁇ -dodecene, ⁇ -octadecene, and unsaturated carboxylic acid as long as the effects of the present invention are not adversely affected.
  • it may contain a comonomer such as a salt, a partial alkyl ester, a complete alkyl ester, a nitrile, an amide, an anhydride, an unsaturated sulfonic acid or a salt thereof.
  • Plant-derived resin Specific examples of the plant-derived resin include a portion overlapping with the above resin, but are not particularly limited, and examples thereof include aliphatic polyester-based biodegradable resins other than various known petroleum materials.
  • examples of the aliphatic polyester-based biodegradable resin include poly ( ⁇ -hydroxy acids) such as polyglycolic acid (PGA) and polylactic acid (PLA); polybutylene succinate (PBS), polyethylene succinate (PES) and the like. And polyalkylene alkanoates.
  • resins Various conventionally known resins may be added as the resin (B) in accordance with the performance desired to be imparted to the resin composition as long as the object of the present invention is not impaired.
  • polyolefins such as polyethylene and polypropylene, various modified products thereof, polyolefin elastomers, polyamide elastomers, styrene-butadiene copolymer resins and hydrogens thereof.
  • Additives processed, various thermoplastic elastomers typified by polyester elastomers, various polyamides such as nylon 6, 66, 12 and nylon 12, etc. From the viewpoint of further imparting oxygen absorption performance, polybutadiene and modified polybutadiene And carbon-carbon unsaturated double bond-containing resins.
  • the resin composition for forming the oxygen absorption barrier layer may further contain an additive (D) as necessary in addition to the polyamide compound (A) and the resin (B) described above.
  • the additive (D) may be one type or a combination of two or more types.
  • the content of the additive (D) in the resin composition is preferably 10% by mass or less, more preferably 5% by mass or less, although it depends on the type of additive.
  • an aliphatic metal salt or diamide compound is used as a whitening inhibitor / delamination preventing agent.
  • at least one selected from the group consisting of diester compounds is preferably added to the resin composition.
  • the compound having an effect of preventing delamination include a reducible organic compound.
  • the aliphatic metal salt also has an effect as an oxidation reaction accelerator, and the reducible organic compound also has an effect as an oxygen absorber.
  • the carbon number of the fatty acid metal salt is preferably 18 to 50, more preferably 18 to 34.
  • the fatty acid constituting the fatty acid metal salt may have a side chain or a double bond, but stearic acid (C18), eicoic acid (C20), behenic acid (C22), montanic acid (C28), triacontanoic acid (C30).
  • Linear saturated fatty acids such as There are no particular restrictions on the metal that forms a salt with the fatty acid, but sodium, potassium, lithium, calcium, barium, magnesium, strontium, aluminum, zinc, etc. are exemplified, and sodium, potassium, and lithium, calcium, aluminum, and zinc are examples. Particularly preferred.
  • the diamide compound used in the present invention is preferably a diamide compound obtained from an aliphatic dicarboxylic acid having 8 to 30 carbon atoms and a diamine having 2 to 10 carbon atoms.
  • a whitening prevention effect can be expected.
  • the aliphatic dicarboxylic acid has 30 or less carbon atoms and the diamine has 10 or less carbon atoms, uniform dispersion in the resin composition is good.
  • the aliphatic dicarboxylic acid may have a side chain or a double bond, but a linear saturated aliphatic dicarboxylic acid is preferred.
  • One kind of diamide compound may be used, or two or more kinds may be used in combination.
  • Examples of the aliphatic dicarboxylic acid include stearic acid (C18), eicosanoic acid (C20), behenic acid (C22), montanic acid (C28), and triacontanoic acid (C30).
  • Examples of the diamine include ethylenediamine, butylenediamine, hexanediamine, xylylenediamine, and bis (aminomethyl) cyclohexane. A diamide compound obtained by combining these is preferred.
  • a diamide compound obtained from an aliphatic dicarboxylic acid mainly composed of stearic acid and a diamine mainly composed of ethylenediamine is particularly preferred.
  • the diester compound used in the present invention is preferably a diester compound obtained from an aliphatic dicarboxylic acid having 8 to 30 carbon atoms and a diol having 2 to 10 carbon atoms.
  • an effect of preventing whitening can be expected.
  • the aliphatic dicarboxylic acid has 30 or less carbon atoms and the diol has 10 or less carbon atoms, uniform dispersion in the resin composition is good.
  • the aliphatic dicarboxylic acid may have a side chain or a double bond, but a linear saturated aliphatic dicarboxylic acid is preferred.
  • diester compound may be used, or two or more types may be used in combination.
  • the aliphatic dicarboxylic acid include stearic acid (C18), eicosanoic acid (C20), behenic acid (C22), montanic acid (C28), and triacontanoic acid (C30).
  • the diol include ethylene glycol, propanediol, butanediol, hexanediol, xylylene glycol, and cyclohexanedimethanol.
  • a diester compound obtained by combining these is preferred.
  • Particularly preferred are diester compounds obtained from an aliphatic dicarboxylic acid mainly composed of montanic acid and a diol mainly composed of ethylene glycol and / or 1,3-butanediol.
  • the total addition amount of the fatty acid metal salt, the diamide compound and the diester compound is preferably 0.005 to 0.5% by mass, more preferably 0.05 to 0.5% by mass in the resin composition, More preferably, the content is 0.12 to 0.5% by mass.
  • a synergistic effect of preventing whitening can be expected by adding 0.005% by mass or more to the resin composition and using it together with the crystallization nucleating agent.
  • photoreducible pigments such as quinones and azo compounds, and carbonyl compounds having absorption in the UV spectrum can be preferably used.
  • quinones are particularly preferred.
  • Quinones are compounds in which two carbonyl groups (for example, a ketone structure) are present in a ring such as a benzene ring.
  • quinones such as benzoquinone, anthraquinone, and naphthoquinone, hydroxyl groups, methyl groups, ethyl groups, amino groups,
  • Derivatives such as quinones to which functional groups such as carboxyl groups are added may be mentioned.
  • hydrogen may be partially added to these quinones and derivatives thereof (hereinafter referred to as benzoquinones, anthraquinones, and naphthoquinones, respectively). ).
  • benzoquinones, anthraquinones, and naphthoquinones There is no restriction
  • the benzoquinones, anthraquinones, and naphthoquinones may be dimers or trimers.
  • benzoquinones examples include 1,2-benzoquinone (o-benzoquinone), 1,4-benzoquinone (p-benzoquinone), 2-chloro-1,4-benzoquinone, 2,3-dichloro-5,6-dicyanobenzoquinone, 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone, 2,5-dichloro-1,4-benzoquinone, 2,6-dichloro-1,4-benzoquinone, 2,5-dihydroxy-1, 4-benzoquinone, 2,6-di-tert-butyl-1,4-benzoquinone, 3,5-di-tert-butyl-1,2-benzoquinone, 2,6-dibromo-N-chloro-1,4- Benzoquinoneimine, 2,6-dibromo-N-chloro-1,4-benzoquinone monoimine, 2,5-dimethyl-1,4-benz
  • Anthraquinones include anthraquinone, 2-methylanthraquinone, 2-ethylanthraquinone, dihydroxyanthraquinone, trihydroxyanthraquinone, 1,2,3,4-tetrahydroanthraquinone, 1,4,4a, 9a-tetrahydroanthraquinone, hexahydroanthraquinone, 1-aminoanthraquinone, 1-amino-4-hydroxyanthraquinone, anthraquinone-2,6-disulfonic acid disodium salt, anthraquinone-1-sulfonic acid sodium salt, anthraquinone-2-sulfonic acid sodium salt monohydrate, 1-chloroanthraquinone, 2-chloroanthraquinone, 1,4-diaminoanthraquinone, 1,5-dichloroanthraquinone, 1,5-dihydroxy
  • naphthoquinones examples include 1,2-naphthoquinone, 1,4-naphthoquinone, 2-hydroxy-1,4-naphthoquinone, 5-hydroxy-1,4-naphthoquinone, 5,8-dihydroxy-1,4-naphthoquinone, -Methyl-1,4-naphthoquinone, 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone, 2,3-dichloro-1,4-naphthoquinone, sodium 1,2-naphthoquinone-4-sulfonate
  • the reducible organic compound is preferably selected from benzoquinones, anthraquinones and naphthoquinones.
  • the reducible organic compound is more preferably selected from partially hydrogenated benzoquinones, anthraquinones, and naphthoquinones.
  • the reducible organic compound is more preferably selected from partially hydrogenated benzoquinones, anthraquinones, and naphthoquinones having a functional group.
  • the reducible organic compound is particularly preferably selected from tetrahydroanthraquinone, tetrahydroanthraquinone having a functional group, hexahydroanthraquinone and hexahydroanthraquinone having a functional group.
  • the content of the reducible organic compound is preferably 1 to 10% by mass in the resin composition. When the content is within this range, a molded article having good delamination resistance can be obtained.
  • the resin composition may contain a layered silicate.
  • a layered silicate By adding the layered silicate, not only the oxygen gas barrier property but also the barrier property against gas such as carbon dioxide gas can be imparted to the multilayer injection molded article.
  • the layered silicate is a 2-octahedron or 3-octahedral layered silicate having a charge density of 0.25 to 0.6.
  • Examples of the 2-octahedron type include montmorillonite, beidellite, and the like.
  • Examples of the octahedron type include hectorite and saponite. Among these, montmorillonite is preferable.
  • the layered silicate is obtained by expanding an interlayer of the layered silicate by previously bringing an organic swelling agent such as a polymer compound or an organic compound into contact with the layered silicate.
  • an organic swelling agent such as a polymer compound or an organic compound
  • a quaternary ammonium salt can be preferably used.
  • a quaternary ammonium salt having at least one alkyl group or alkenyl group having 12 or more carbon atoms is used.
  • organic swelling agents include trimethyl dodecyl ammonium salts, trimethyl tetradecyl ammonium salts, trimethyl hexadecyl ammonium salts, trimethyl octadecyl ammonium salts, trimethyl alkyl ammonium salts such as trimethyl eicosyl ammonium salts; trimethyl octadecenyl ammonium salts Trimethylalkenylammonium salts such as trimethyloctadecadienylammonium salt; triethylalkylammonium salts such as triethyldodecylammonium salt, triethyltetradecylammonium salt, triethylhexadecylammonium salt, triethyloctadecylammonium salt; tributyldodecylammonium salt, tributyltetradecyl Ammonium salt, tribut
  • hydroxyl group and / or ether group-containing ammonium salts among them, methyl dialkyl (PAG) ammonium salt, ethyl dialkyl (PAG) ammonium salt, butyl dialkyl (PAG) ammonium salt, dimethyl bis (PAG) ammonium salt, diethyl bis (PAG) ) Ammonium salt, dibutyl bis (PAG) ammonium salt, methyl alkyl bis (PAG) ammonium salt, ethyl alkyl bis (PAG) ammonium salt, butyl alkyl bis (PAG) ammonium salt, methyl tri (PAG) ammonium salt, ethyl tri (PAG) ammonium Salt, butyltri (PAG) ammonium salt, tetra (PAG) ammonium salt (wherein alkyl is carbon number such as dodecyl, tetradecyl, hexadecyl, octadec
  • Salts can also be used as organic swelling agents.
  • organic swelling agents trimethyldodecyl ammonium salt, trimethyl tetradecyl ammonium salt, trimethyl hexadecyl ammonium salt, trimethyl octadecyl ammonium salt, dimethyl didodecyl ammonium salt, dimethyl ditetradecyl ammonium salt, dimethyl dihexadecyl ammonium salt, dimethyl dioctadecyl ammonium salt, dimethyl A ditallow ammonium salt is preferred.
  • organic swelling agents can be used alone or as a mixture of a plurality of types.
  • a layered silicate treated with an organic swelling agent is preferably added to the resin composition in an amount of 0.5 to 8% by mass, more preferably 1 to 6% by mass, and still more preferably 2 to 5%. % By mass. If the amount of layered silicate added is 0.5% by mass or more, the effect of improving the gas barrier property is sufficiently obtained, and if it is 8% by mass or less, pinholes are generated due to deterioration of the flexibility of the oxygen absorption barrier layer. Such problems are unlikely to occur.
  • the layered silicate is preferably uniformly dispersed without locally agglomerating.
  • the uniform dispersion here means that the layered silicate is separated into a flat plate in the oxygen absorption barrier layer, and 50% or more of them have an interlayer distance of 5 nm or more.
  • the interlayer distance refers to the distance between the centers of gravity of the flat objects. The larger the distance, the better the dispersion state, the better the appearance such as transparency, and the better the gas barrier properties such as oxygen and carbon dioxide.
  • Oxidation reaction accelerator In order to further enhance the oxygen absorption performance of the oxygen absorption barrier layer, a conventionally known oxidation reaction accelerator may be added as long as the effects of the present invention are not impaired.
  • the oxidation reaction accelerator can enhance the oxygen absorption performance of the oxygen absorption barrier layer by promoting the oxygen absorption performance of the polyamide compound (A).
  • Examples of the oxidation reaction accelerator include Group VIII metals such as iron, cobalt and nickel, Group I metals such as copper and silver, Group IV metals such as tin, titanium and zirconium, Group V of vanadium, Examples thereof include low-valent inorganic or organic acid salts of Group VI metals such as chromium and Group VII metals such as manganese, or complex salts of the above transition metals.
  • Group VIII metals such as iron, cobalt and nickel
  • Group I metals such as copper and silver
  • Group IV metals such as tin, titanium and zirconium
  • Group V of vanadium examples thereof include low-valent inorganic or organic acid salts of Group VI metals such as chromium and Group VII metals such as manganese, or complex salts of the above transition metals.
  • a cobalt salt excellent in an oxygen reaction promoting effect or a combination of a cobalt salt and a manganese salt is preferable.
  • the addition amount of the oxygen reaction accelerator is preferably 10 to 800 ppm, more preferably 50 to 600 ppm, and still more preferably 100 to 400 ppm as a metal atom concentration in the resin composition. Effect of the oxidation reaction accelerator is dependent on the terminal amino group concentration [NH 2] of the polyamide compound (A), as the oxidation-terminal amino group concentration [NH 2] is low is promoted.
  • oxygen absorbent In order to further enhance the oxygen absorption performance of the oxygen absorption barrier layer, a conventionally known oxygen absorbent may be added within a range not impairing the effects of the present invention.
  • the oxygen absorbent can enhance the oxygen absorption performance of the oxygen absorption barrier layer by imparting oxygen absorption performance to the oxygen absorption barrier layer separately from the oxygen absorption performance of the polyamide compound (A).
  • the oxygen absorbent include oxidizable organic compounds typified by compounds having a carbon-carbon double bond in the molecule, such as vitamin C, vitamin E, butadiene and isoprene.
  • the addition amount of the oxygen absorbent is preferably 0.01 to 5% by mass, more preferably 0.1 to 4% by mass, and further preferably 0.5 to 3% by mass in the resin composition. .
  • carboxylates selected from sodium acetate, calcium acetate, magnesium acetate, calcium stearate, magnesium stearate, sodium stearate and derivatives thereof.
  • the derivatives include 12-hydroxystearic acid metal salts such as calcium 12-hydroxystearate, magnesium 12-hydroxystearate, and sodium 12-hydroxystearate.
  • the addition amount of the carboxylate is preferably 400 to 10,000 ppm, more preferably 800 to 5000 ppm, and still more preferably 1000 to 3000 ppm as a concentration in the resin composition. If it is 400 ppm or more, the thermal deterioration of the polyamide compound (A) can be suppressed, and gelation can be prevented. Moreover, if it is 10000 ppm or less, a polyamide compound (A) will not raise
  • carboxylates which are basic substances, in the molten polyamide compound (A) delays the modification of the polyamide compound (A) by heat and suppresses the formation of a gel that is considered to be the final modified product.
  • the carboxylates described above are excellent in handling properties, and among them, metal stearate is preferable because it is inexpensive and has an effect as a lubricant, and can stabilize the molding process.
  • the shape of the carboxylates is not particularly limited, but when the powder and the smaller particle size are dry-mixed, it is easy to uniformly disperse in the resin composition, so the particle size is 0.2 mm or less is preferable.
  • sodium acetate having a high metal salt concentration per gram it is preferable to use as a more effective gelling prevention, fisheye reduction, and kogation prevention formulation.
  • sodium acetate it may be dry mixed with the polyamide compound (A) and the resin (B) and molded, but from the viewpoint of handling property and reduction of acetic acid odor, the polyamide compound (A) and the resin (B ) And sodium acetate are preferably dry mixed with the polyamide compound (A) and the resin (B) for molding. Since it is easy to disperse
  • antioxidant In the present invention, it is preferable to add an antioxidant from the viewpoint of controlling oxygen absorption performance and suppressing deterioration of mechanical properties.
  • the antioxidant include copper-based antioxidants, hindered phenol-based antioxidants, hindered amine-based antioxidants, phosphorus-based antioxidants, and thio-based antioxidants. Antioxidants and phosphorus antioxidants are preferred.
  • hindered phenol antioxidant examples include triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate, 4,4′-butylidenebis (3-methyl- 6-t-butylphenol), 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,4-bis- (n-octylthio) -6- (4-Hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- ( , 5-di-t-butyl-4
  • phosphorus antioxidants include triphenyl phosphite, trioctadecyl phosphite, tridecyl phosphite, trinonylphenyl phosphite, diphenylisodecyl phosphite, bis (2,6-di-tert-butyl- 4-methylphenyl) pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, tris (2,4-di-tert-butylphenyl) phosphite, distearyl pentaerythritol And organic phosphorus compounds such as diphosphite, tetra (tridecyl-4,4′-isopropylidene diphenyl diphosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl)
  • the content of the antioxidant can be used without particular limitation as long as it does not impair the various performances of the composition, but from the viewpoint of controlling the oxygen absorption performance and suppressing the deterioration of mechanical properties, it is preferably in the resin composition.
  • the amount is 0.001 to 3% by mass, more preferably 0.01 to 1% by mass.
  • Resin compositions are lubricants, matting agents, heat stabilizers, weathering stabilizers, UV absorbers, plasticizers, flame retardants, antistatic agents, anti-coloring agents, crystallization nuclei, depending on the required application and performance. You may contain additives, such as an agent. These additives can be contained as needed within a range not impairing the effects of the present invention.
  • the layer (Y) in this invention is a layer which has resin (C) as a main component.
  • the “main component” means that the resin (C) is contained in the layer (Y) in an amount of 70% by mass or more, preferably 80% by mass or more, more preferably 90 to 100% by mass.
  • the layer (Y) may contain the additive (D) in addition to the resin (C) depending on the desired performance and the like.
  • the multilayer injection molded article of the present invention may have a plurality of layers (Y), and the configurations of the plurality of layers (Y) may be the same as or different from each other.
  • the thickness of the layer (Y) can be appropriately determined according to the use, and is preferably 5 from the viewpoint of securing various physical properties such as strength and flexibility required for the multilayer injection molded article. It is ⁇ 200 ⁇ m, more preferably 10 to 150 ⁇ m, still more preferably 15 to 100 ⁇ m.
  • any resin can be used as the resin (C) and is not particularly limited.
  • resin (B) contained in the said resin composition can be used.
  • the resin (B) contained in the layer (X) and the resin (C) contained in the layer (Y) may be the same or different.
  • the multilayer injection molding of this invention may contain arbitrary layers according to the performance etc. which are desired. Examples of such an arbitrary layer include an adhesive layer.
  • the adhesive layer preferably contains a thermoplastic resin having adhesiveness.
  • a thermoplastic resin having adhesiveness for example, an acid modification obtained by modifying a polyolefin resin such as polyethylene or polypropylene with an unsaturated carboxylic acid such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid or itaconic acid
  • polyester-based thermoplastic elastomers mainly composed of a polyolefin resin and a polyester-based block copolymer.
  • the adhesive layer it is preferable to use a modified resin of the same type as the resin (C) used as the layer (Y) from the viewpoint of adhesiveness.
  • the thickness of the adhesive layer is preferably 2 to 100 ⁇ m, more preferably 5 to 90 ⁇ m, and still more preferably 10 to 80 ⁇ m, from the viewpoint of ensuring molding processability while exhibiting practical adhesive strength.
  • Multilayer injection molded article and method for producing the same The production method and layer structure of the multilayer injection molded article of the present invention are not particularly limited, and the multilayer injection molded article can be produced by a normal injection molding method. For example, using a molding machine equipped with two or more injection machines and an injection mold, the material constituting the layer (X) and the material constituting the layer (Y) are passed from the respective injection cylinders through a mold hot runner. By injecting into the cavity, a multilayer injection molded product corresponding to the shape of the injection mold can be manufactured.
  • the material constituting the layer (Y) is injected from the injection cylinder, then the material constituting the layer (X) is injected from another injection cylinder simultaneously with the resin constituting the layer (Y), and then By injecting a required amount of the resin constituting the layer (Y) to fill the cavity, a multilayer injection molded body having a three-layer structure Y / X / Y can be manufactured.
  • the material constituting the layer (Y) is injected, then the material constituting the layer (X) is injected alone, and finally the necessary amount of the material constituting the layer (Y) is injected to mold the mold cavity.
  • a multi-layer injection molded article having a five-layer structure Y / X / Y / X / Y can be produced.
  • the material constituting the layer (Y1) is injected from the injection cylinder, then the material constituting the layer (Y2) is injected from another injection cylinder at the same time as the material constituting the layer (Y1), and then By injecting the material constituting the layer (X) simultaneously with the material constituting the layer (Y1) and the layer (Y2), and then injecting a necessary amount of the material constituting the layer (Y1) to fill the cavity.
  • a multilayer injection molded article having a layer structure Y1 / Y2 / X / Y2 / Y1 can be produced.
  • a multilayer molded body may be obtained by a compression molding method.
  • a molded article can be obtained by providing an oxygen-absorbing resin agent in a thermoplastic resin melt, supplying the molten mass to a male mold, compressing the molten mass with a female mold, and cooling and solidifying the compression molded article.
  • the mouth and neck may be crystallized by heat treatment at this stage.
  • the degree of crystallinity is preferably 30 to 50%, more preferably 35 to 45%.
  • the multilayer injection molded article of the present invention itself is a container, it is possible to absorb oxygen in the container in addition to oxygen that slightly enters from the outside of the container, and to prevent alteration of the content article to be stored due to oxygen.
  • the shape of the multilayer injection molded article of the present invention is not particularly limited, and can be an arbitrary shape depending on the mold. Considering that the multilayer injection molded article of the present invention can exhibit oxygen barrier performance and oxygen absorption performance, the multilayer injection molded article of the present invention is a storage container such as a cup-shaped container (injection cup) or a bottle-shaped container. Preferably there is. Further, for secondary processing such as blow molding as will be described later, such as a PET bottle, the multilayer injection molded article of the present invention is preferably a test tubular preform (parison).
  • Container obtained by processing a multilayer injection molded article absorbs oxygen in the container in addition to oxygen that slightly enters from the outside of the container, and prevents alteration of the stored content article due to oxygen. Can do.
  • Examples of secondary processing include blow molding and stretch blow molding, and examples of containers obtained by secondary processing include bottles.
  • a test tubular preform (parison) is molded as the multilayer injection molded body of the present invention, and then the mouth of the heated preform is fixed with a jig, and the preform is formed into a final shape mold. It can be formed into a bottle shape by fitting, blowing air from the mouth, inflating the preform, bringing it into close contact with the mold, and solidifying by cooling.
  • injection stretch blow molding the mouth of a heated preform is fixed with a jig, the preform is fitted into a final shape mold, and air is blown from the mouth while stretching with a stretching rod. It can be formed into a bottle by blow-stretching, closely adhering to a mold, and solidifying by cooling.
  • the injection stretch blow molding method is roughly classified into a hot parison method and a cold parison method.
  • the former blow-molds in a softened state without completely cooling the preform.
  • the preform is formed as a supercooled bottomed preform that is considerably smaller than the dimensions of the final shape and the resin is amorphous, and this preform is preheated to its stretching temperature to obtain the final shape. It is suitable for mass production by drawing in the mold in the axial direction and blow-drawing in the circumferential direction.
  • the multilayer preform is heated to a stretching temperature equal to or higher than the glass transition point (Tg), and then stretched by a stretch rod molding method in a final shape mold heated to a heat treatment (heat set) temperature.
  • the film is stretched in the longitudinal direction and stretched in the transverse direction by blow air.
  • the draw ratio of the final blow molded article is preferably 1.2 to 6 times in the longitudinal direction and 1.2 to 4.5 times in the transverse direction.
  • the above-mentioned final shape mold is heated to a temperature at which resin crystallization is promoted, for example, 120 to 230 ° C., preferably 130 to 210 ° C. for PET resin, and blown by blowing
  • Heat treatment is performed by contacting the inner surface for a predetermined time. After the heat treatment for a predetermined time, the inner layer is cooled by switching the blowing fluid to the internal cooling fluid.
  • the heat treatment time varies depending on the thickness and temperature of the blow molded article, but is generally 1.5 to 30 seconds, particularly 2 to 20 seconds in the case of PET resin.
  • the cooling time varies depending on the heat treatment temperature and the type of cooling fluid, but is generally 0.1 to 30 seconds, particularly 0.2 to 20 seconds. Each part of the compact is crystallized by this heat treatment.
  • Cooling fluids include air at normal temperature, various cooled gases such as nitrogen at ⁇ 40 ° C. to + 10 ° C., air, carbon dioxide, etc., as well as chemically inert liquefied gases such as liquefied nitrogen gas, liquefied gases, etc.
  • Carbon dioxide gas, liquefied trichlorofluoromethane gas, liquefied dichlorodifluoromethane gas, other liquefied aliphatic hydrocarbon gases, and the like can be used.
  • a liquid mist having a large heat of vaporization such as water can coexist.
  • two molds are used for stretch blow molding, and after heat treatment within a predetermined temperature and time range in the first mold, the blow molded body is transferred to the second mold for cooling, and again. You may cool a blow molded object simultaneously with blowing. The outer layer of the blow molded article taken out from the mold is cooled by cooling or by blowing cold air.
  • the multilayer preform is formed into a primary blow molded article having a size larger than the final blow molded article using a primary stretch blow mold, and then the primary blow molded article is heated and shrunk. Then, a two-stage blow molding may be employed in which a stretch blow molding is performed using a secondary mold to obtain a final blow molded body. According to this method for producing a blow molded article, the bottom of the blow molded article is sufficiently stretched and thinned to obtain a blow molded article excellent in hot filling, deformation of the bottom during heat sterilization, and impact resistance. .
  • the multilayer injection molded article of the present invention and the container obtained by secondary processing thereof may be coated with an inorganic or inorganic oxide vapor-deposited film or an amorphous carbon film.
  • the inorganic substance or inorganic oxide include aluminum, alumina, and silicon oxide.
  • the vapor deposition film of an inorganic substance or an inorganic oxide can shield eluents such as acetaldehyde and formaldehyde from the injection molded article of the present invention and a container obtained by secondary processing thereof.
  • the formation method of a vapor deposition film is not specifically limited, For example, physical vapor deposition methods, such as a vacuum evaporation method, sputtering method, and an ion plating method, Chemical vapor deposition methods, such as PECVD, etc. are mentioned.
  • the thickness of the deposited film is preferably 5 to 500 nm, more preferably 5 to 200 nm, from the viewpoints of gas barrier properties, light shielding properties, bending resistance, and the like.
  • the amorphous carbon film is a diamond-like carbon film, which is a hard carbon film also called i-carbon film or hydrogenated amorphous carbon film.
  • Examples of the method for forming the film include a method in which the inside of the hollow molded body is evacuated by evacuation, a carbon source gas is supplied thereto, and plasma generating energy is supplied by supplying plasma generating energy, Thereby, an amorphous carbon film can be formed on the inner surface of the container.
  • the amorphous carbon film not only can remarkably reduce the permeability of low-molecular inorganic gases such as oxygen and carbon dioxide, but can also suppress the sorption of various low-molecular organic compounds having an odor.
  • the thickness of the amorphous carbon film is preferably 50 to 5000 nm from the viewpoints of the effect of suppressing sorption of low molecular organic compounds, the effect of improving gas barrier properties, adhesion to plastic, durability and transparency.
  • the multilayer injection molded article of the present invention and a container obtained by secondary processing thereof are excellent in oxygen absorption performance and oxygen barrier performance, and excellent in flavor retention of contents, and therefore suitable for packaging of various articles.
  • Preserved items include milk, dairy products, juice, coffee, tea, alcoholic beverages; liquid seasonings such as sauces, soy sauce, dressings, soups, stews, curries, infant foods, nursing foods, etc.
  • Cooked foods pasty foods such as jam and mayonnaise; marine products such as tuna and fish shellfish; dairy products such as cheese and butter; processed meat products such as meat, salami, sausage and ham; vegetables such as carrots Eggs, noodles, cooked rice, cooked rice, processed rice products such as rice bran; powdered seasonings, powdered coffee, powdered milk for infants, powdered diet foods, dried vegetables, rice crackers, and other dried foods
  • Chemicals such as agricultural chemicals and insecticides; pharmaceuticals and cosmetics; pet foods; miscellaneous goods such as shampoos, rinses and detergents; and various articles.
  • content that easily deteriorates in the presence of oxygen such as beer, wine, fruit juice, carbonated soft drink, etc. for beverages, fruits, nuts, vegetables, meat products, infant foods, coffee, jam, mayonnaise, ketchup It is suitable for packaging materials such as edible oils, dressings, sauces, boiled foods, dairy products, etc., and other medicines and cosmetics.
  • the multilayer injection molded article of the present invention and the container or the material to be preserved by secondary processing thereof can be sterilized in a form suitable for the materials to be preserved.
  • Sterilization methods include hot water treatment at 100 ° C. or lower, pressurized hot water treatment at 100 ° C. or higher, heat sterilization such as ultra-high temperature heat treatment at 130 ° C. or higher, electromagnetic wave sterilization of ultraviolet rays, microwaves, gamma rays, etc., ethylene oxide And gas sterilization such as hydrogen peroxide and hypochlorous acid.
  • the unit derived from metaxylylenediamine is “MXDA”
  • a unit derived from 1,3-bis (aminomethyl) cyclohexane is referred to as “1,3BAC”
  • the unit derived from hexamethylenediamine is “HMDA”
  • the unit derived from adipic acid is “AA”
  • the unit derived from isophthalic acid is “IPA”
  • the unit derived from DL-alanine is “DL-Ala”
  • the unit derived from DL-leucine is “DL-Leu”
  • a unit derived from ⁇ -caprolactam is referred to as “ ⁇ -CL”.
  • Polymetaxylylene adipamide is referred to as “N-MXD6”.
  • the ⁇ -amino acid content, relative viscosity, terminal amino group concentration, glass transition temperature and melting point of the polyamide compound obtained in the production example were measured by the following methods. Moreover, the film was produced from the polyamide compound obtained by the manufacture example, and the oxygen absorption amount was measured with the following method.
  • the oxygen concentration in the bag was measured with an oxygen concentration meter (trade name: LC-700F, manufactured by Toray Engineering Co., Ltd.). The amount of oxygen absorbed was calculated from the oxygen concentration.
  • a powder sample 2 g obtained by finely pulverizing a polyamide compound pellet or pulverized product with a pulverizer was used. The oxygen absorption amount was calculated in the same manner as described above.
  • Production Example 1 (Production of polyamide compound 1) Weighed precisely in a pressure-resistant reaction vessel with an internal volume of 50 L equipped with a stirrer, partial condenser, full condenser, pressure regulator, thermometer, dripping tank and pump, aspirator, nitrogen inlet pipe, bottom exhaust valve, and strand die.
  • Adipic acid (Asahi Kasei Chemicals Co., Ltd.) 13000 g (88.96 mol), DL-alanine (Musashino Chemical Laboratory Co., Ltd.) 880.56 g (9.88 mol), sodium hypophosphite 11.7 g (0.
  • the inside of the reaction vessel was gradually returned to normal pressure, and then the inside of the reaction vessel was reduced to 80 kPa using an aspirator to remove condensed water.
  • the stirring torque of the stirrer was observed during decompression.
  • stirring was stopped, the inside of the reaction tank was pressurized with nitrogen, the bottom drain valve was opened, and the polyamide compound was extracted from the strand die to form a strand. .
  • this pellet was charged into a stainless steel drum-type heating device and rotated at 5 rpm.
  • the atmosphere in the reaction system was raised from room temperature to 140 ° C. under a small nitrogen flow.
  • Production Example 5 (Production of polyamide compound 5)
  • An MXDA / AA / DL-Leu copolymer (polyamide compound 5) was obtained in the same manner as in Production Example 1 except that the amount was (mol%).
  • Production Example 6 (Production of polyamide compound 6)
  • Production Example 8 (Production of polyamide compound 8)
  • Production Example 9 (Production of polyamide compound 9)
  • Production Example 11 (Production of polyamide compound 11) An MXDA / AA / DL-Ala copolymer (polyamide compound 11) was obtained in the same manner as in Production Example 1 except that solid phase polymerization was not performed.
  • Production Example 12 (Production of polyamide compound 12) An MXDA / AA / DL-Ala copolymer (polyamide compound 12) was obtained in the same manner as in Production Example 2, except that solid phase polymerization was not performed.
  • Production Example 13 (Production of polyamide compound 13) An MXDA / AA / DL-Ala copolymer (polyamide compound 13) was obtained in the same manner as in Production Example 4 except that solid phase polymerization was not performed.
  • Production Example 14 (Production of polyamide compound 14) An MXDA / AA / IPA / DL-Ala copolymer (polyamide compound 14) was obtained in the same manner as in Production Example 6 except that solid phase polymerization was not performed.
  • Production Example 15 (Production of polyamide compound 15) N-MXD6 (polyamide compound 15) was obtained in the same manner as in Production Example 10 except that solid phase polymerization was not performed.
  • Table 1 shows the charged monomer compositions of polyamide compounds 1 to 15 and the measurement results of ⁇ -amino acid content, relative viscosity, terminal amino group concentration, glass transition temperature, melting point and oxygen absorption amount of the obtained polyamide compounds.
  • Bottle or cup oxygen transmission rate Oxygen permeation through bottles or cups after 1 day, 7 days, 15 days and 30 days after molding in accordance with ASTM D3985 in an atmosphere of 23 ° C, 50% relative humidity outside the molded body, and 100% relative humidity inside The rate was measured.
  • OTR oxygen transmission rate
  • an oxygen permeability measuring device manufactured by MOCON, trade name: OX-TRAN 2-61 was used. The lower the measured value, the better the oxygen barrier property.
  • Example 1 [Parison and biaxial stretch blow molded bottle with three-layer structure (Y / X / Y)]
  • the resin (C) constituting the layer (Y) is injected from the injection cylinder, and then the resin composition constituting the layer (X) is sent from another injection cylinder to the resin constituting the layer (Y) ( (C)) and then injection of a required amount of the resin (C) constituting the layer (Y) to fill the cavity, thereby injecting (Y) / (X) / (Y) into a three-layer structure.
  • a molded product (parison) (22.5 g) was obtained.
  • the resin composition which mixed the polyamide compound (A) and resin (B) is used, and a polyamide compound (A) is the polyamide manufactured in the manufacture example 1. Compound 1 was used, and the mixing ratio of the polyamide compound (A) was 50% by mass.
  • each parison layer was an outer layer (Y) barrel thickness of 1460 ⁇ m, a layer (X) barrel thickness of 290 ⁇ m, and an inner layer (Y) barrel thickness of 950 ⁇ m.
  • an injection molding machine manufactured by Meiki Seisakusho Co., Ltd., model: M200, 4 pieces
  • Injection cylinder temperature for layer (X) 250 ° C
  • Injection cylinder temperature for layer (Y) 280 ° C
  • Mold cooling water temperature 15 ° C
  • Bottom shape obtained by secondary processing The total length was 160 mm, the outer diameter was 60 mm, the inner volume was 370 ml, the wall thickness was 0.28 mm, the outer layer (Y) barrel thickness was 146 ⁇ m, the layer (X) barrel thickness was 29 ⁇ m, and the inner layer (Y) barrel thickness was 105 ⁇ m.
  • the draw ratio was 1.9 times in length and 2.7 times in width.
  • the bottom shape is a champagne type. The body has dimples.
  • a blow molding machine manufactured by Frontier Co., Ltd., model: EFB1000ET
  • Heating temperature of injection molded body 100 ° C Stretching rod pressure: 0.5 MPa Primary blow pressure: 0.5 MPa Secondary blow pressure: 2.4 MPa Primary blow delay time: 0.32 sec Primary blow time: 0.30 sec Secondary blow time: 2.0 sec Blow exhaust time: 0.6 sec Mold temperature: 30 °C
  • Examples 2 to 9 A parison and a bottle were produced in the same manner as in Example 1 except that the polyamide compound (A) was changed to the polyamide compounds 2 to 9 produced in Production Examples 2 to 9.
  • Comparative Example 1 A parison and a bottle were produced in the same manner as in Example 1 except that the polyamide compound (A) was changed to the polyamide compound 10 produced in Production Example 10.
  • Comparative Example 2 A parison and a bottle were prepared in the same manner as in Example 1 except that the polyamide compound (A) was changed to a dry blend of 100 parts by mass of the polyamide compound 10 and 0.42 parts by mass of cobalt stearate (II). Manufactured.
  • Examples 10-13 A parison and a bottle were produced in the same manner as in Example 2 except that the ratio of the polyamide compound (A) in the layer (X) was changed to 10, 30, 70, and 90% by mass.
  • Example 14 A parison and a bottle were produced in the same manner as in Example 4 except that the ratio of the polyamide compound (A) in the layer (X) was changed to 5% by mass.
  • the thickness of the parison was an outer layer (Y) barrel thickness of 1520 ⁇ m, a layer (X) barrel thickness of 140 ⁇ m, and an inner layer (Y) barrel thickness of 1040 ⁇ m.
  • the thickness of the bottle was such that the outer layer (Y) barrel thickness was 152 ⁇ m, the layer (X) barrel thickness was 14 ⁇ m, and the inner layer (Y) barrel thickness was 114 ⁇ m.
  • Examples 15 and 16 A parison and a bottle were produced in the same manner as in Example 14 except that the ratio of the polyamide compound (A) in the layer (X) was changed to 10, 90% by mass.
  • Comparative Examples 4-7 A parison and a bottle were produced in the same manner as in Comparative Example 1 except that the ratio of the polyamide compound (A) in the layer (X) was changed to 10, 30, 70, and 90% by mass.
  • Examples 17-20 A parison and a bottle were produced in the same manner as in Example 1 except that the polyamide compound (A) was changed to the polyamide compounds 11 to 14 produced in Production Examples 11 to 14.
  • Comparative Example 8 A parison and a bottle were produced in the same manner as in Example 1 except that the polyamide compound (A) was changed to the polyamide compound 15 produced in Production Example 15.
  • Comparative Example 9 A parison and a bottle were formed in the same manner as in Example 1 except that the polyamide compound (A) was changed to a dry blend of 100 parts by mass of the polyamide compound 15 and 0.42 parts by mass of cobalt stearate (II). Manufactured.
  • Examples 21 and 22 A parison and a bottle were produced in the same manner as in Example 17 or 18 except that the ratio of the polyamide compound (A) in the layer (X) was changed to 10% by mass.
  • Comparative Example 11 A parison and a bottle were produced in the same manner as in Comparative Example 8 except that the ratio of the polyamide compound (A) in the layer (X) was changed to 10% by mass.
  • Example 23 [Parison and biaxial stretch blow-molded bottle of 5-layer structure (Y / X / Y / X / Y)]
  • the resin (C) constituting the layer (Y) is injected, the resin composition constituting the layer (X) is then injected alone, and finally the layer (Y) is constituted.
  • a required amount of the resin (C) is injected to fill the mold cavity and injection molding is performed, so that the layer structure of the molded body is 5 (Y) / (X) / (Y) / (X) / (Y).
  • a bottle was obtained in the same manner as in Example 1 except that the layer configuration was changed.
  • each layer of the parison is as follows: layer (Y) trunk thickness 970 ⁇ m, layer (X) trunk thickness 80 ⁇ m, layer (Y) trunk thickness 880 ⁇ m, layer (X) trunk thickness 60 ⁇ m, layer (Y) The body thickness was 710 ⁇ m.
  • the thickness of each bottle layer is as follows: layer (Y) barrel thickness 99 ⁇ m, layer (X) barrel thickness 10 ⁇ m, layer (Y) barrel thickness 90 ⁇ m, layer (X) barrel thickness 8 ⁇ m, layer (Y) The body thickness was 73 ⁇ m.
  • Examples 24-31 A parison and a bottle were produced in the same manner as in Example 23 except that the polyamide compound (A) was changed to the polyamide compounds 2 to 9 produced in Production Examples 2 to 9.
  • Comparative Example 12 A parison and a bottle were produced in the same manner as in Example 23 except that the polyamide compound (A) was changed to the polyamide compound 10 produced in Production Example 10.
  • Comparative Example 13 A parison and a bottle were prepared in the same manner as in Example 23 except that the polyamide compound (A) was changed to a dry blend of 100 parts by mass of the polyamide compound 10 and 0.42 parts by mass of cobalt stearate (II). Manufactured.
  • Examples 32 and 33 A parison and a bottle were produced in the same manner as in Example 24 except that the ratio of the polyamide compound (A) in the layer (X) was changed to 10, 90% by mass.
  • Comparative Examples 15 and 16 A parison and a bottle were produced in the same manner as in Comparative Example 12 except that the ratio of the polyamide compound (A) in the layer (X) was changed to 10 and 90% by mass.
  • Example 34 Under the following conditions, the resin (C) constituting the layer (Y) is injected from the injection cylinder, and then the resin composition constituting the layer (X) is sent from another injection cylinder to the resin constituting the layer (Y) ( (C)) and then injection of a required amount of the resin (C) constituting the layer (Y) to fill the cavity, thereby injecting (Y) / (X) / (Y) into a three-layer structure. A cup (30.5 g) was obtained.
  • the polyamide compound (A) and the resin composition which mixed resin (B) are used, and a polyamide compound (A) is the polyamide manufactured in the manufacture example 2.
  • Compound 2 was used, and the mixing ratio of the polyamide compound (A) was 50% by mass.
  • the mass of the layer (X) with respect to the total mass of the obtained cup was 10% by mass.
  • Co., Ltd., trade name: BK-2180 was used.
  • Comparative Example 17 A cup was produced in the same manner as in Example 34 except that the polyamide compound (A) was changed to the polyamide compound 10 produced in Production Example 10.
  • Comparative Example 18 A cup was produced in the same manner as in Example 34 except that the polyamide compound (A) was changed to a dry blend of 100 parts by mass of the polyamide compound 10 and 0.42 parts by mass of cobalt stearate (II). .
  • Example 35 The polyamide compound (A) was changed to the polyamide compound 12 produced in Production Example 12, and the mixture ratio of the polyamide compound (A) in the layer (X) was changed to 30% by mass in the same manner as in Example 34. A cup was produced.
  • Comparative Example 20 A cup was produced in the same manner as in Example 35 except that the polyamide compound (A) was changed to the polyamide compound 15 produced in Production Example 15.
  • Comparative Example 21 A cup was produced in the same manner as in Example 36 except that the polyamide compound (A) was changed to the polyamide compound 10 produced in Production Example 10.
  • Comparative Example 22 A cup was produced in the same manner as in Example 36 except that the polyamide compound (A) was changed to a dry blend of 100 parts by mass of the polyamide compound 10 and 0.42 parts by mass of cobalt stearate (II). .
  • Example 37 The polyamide compound (A) was changed to the polyamide compound 12 produced in Production Example 12, and the same as Example 36 except that the mixing ratio of the polyamide compound (A) in the layer (X) was 30% by mass. A cup was produced.
  • Comparative Example 24 A cup was produced in the same manner as in Example 37 except that the polyamide compound (A) was changed to the polyamide compound 15 produced in Production Example 15.
  • Tables 2 and 3 show the OTR measurement results of each bottle or cup, and the evaluation results of delamination resistance and headspace odor when opened.
  • the bottles and cups of Examples 1 to 37 are all excellent in oxygen barrier properties and delamination resistance.
  • the decrease in strength of the oxygen-absorbing barrier layer over time is extremely small, and delamination hardly occurs even in long-term use.
  • the oxygen barrier property is excellent, but the resin is oxidatively decomposed by the cobalt catalyst over time and the delamination resistance decreases. did.
  • a bad odor was generated at the time of opening due to the generation of a low molecular weight compound accompanying the oxidative degradation of polybutadiene.
  • the multilayer injection molded article of the present invention and a container obtained by processing the same can be suitably used as a packaging material.

Landscapes

  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

 ポリアミド化合物(A)及び樹脂(B)を含有する樹脂組成物から形成される層(X)と、樹脂(C)を主成分とする層(Y)とを含む多層インジェクション成形体であって、該ポリアミド化合物(A)が、特定のジアミン単位を50モル%以上含むジアミン単位25~50モル%と、特定のジカルボン酸単位を50モル%以上含むジカルボン酸単位25~50モル%と、特定の構成単位0.1~50モル%とを含有する、多層インジェクション成形体。

Description

多層インジェクション成形体
 本発明は、酸素バリア性能及び酸素吸収性能を有する多層インジェクション成形体、並びに該多層インジェクション成形体を加工して得られる容器に関する。
 インジェクション成形(射出成形)は、複雑な形状を有する成形体を作製でき、生産性も高いため、機械部品、自動車部品、電気・電子部品、食品・医薬用容器等に広く普及している。近年、包装容器としては、軽量で透明且つ易成形性等の利点を有するため、各種プラスチック容器が使用されている。代表的なプラスチック容器としては、例えば、飲料等の容器については、蓋を十分に締めることができるように口栓にネジ形状が形成されたインジェクション成形体が多用されている。
 インジェクション成形体に用いられる材料としては、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエステル、ポリスチレン等の汎用性樹脂が挙げられる。特に、ポリエチレンテレフタレート(PET)等のポリエステルを主体とするプラスチック容器(ボトルなど)を用いたインジェクション成形体がお茶、果汁飲料、炭酸飲料等の飲料に広く利用されている。しかし、熱可塑性樹脂を主体としたインジェクション成形体は包装材として優れているが、ガラス瓶や金属製容器と異なり、外部から酸素が透過してしまう性質があり、それに充填され密閉された内容物の保存性に問題が残っている。このような汎用性樹脂からなるインジェクション成形体にガスバリア性を付与するために、ガスバリア層を中間層として有する多層インジェクション成形体が実用化されている。
 一方、キシリレンジアミンと脂肪族ジカルボン酸との重縮合反応から得られるポリアミド、例えばメタキシリレンジアミンとアジピン酸とから得られるポリアミド(以下ナイロンMXD6という)は、高強度、高弾性率、並びに酸素、炭酸ガス、臭気及びフレーバー等のガス状物質に対する低い透過性を示すことから、包装材料分野におけるガスバリア材料として広く利用されている。ナイロンMXD6は、その他のガスバリア性樹脂と比べて溶融時の熱安定性が良好であることから、ポリエチレンテレフタレート(以下PETと省略する)、ナイロン6及びポリプロピレン等の熱可塑性樹脂との共押出や共射出成形等が可能である。そのため、ナイロンMXD6は、多層構造物を構成するガスバリア層として利用されている。
 しかしながら、ナイロンMXD6をガスバリア層として用いた場合では、わずかの酸素透過性を有するので、完全に酸素を遮断することができないだけでなく、成形体内の充填後の内容物の上部に存在するヘッドスペースの気体中の残存酸素を除去することは不可能である。このため、ビール等の酸素に敏感な内容物の劣化は阻止できない。また、実用化されている多層インジェクション成形体の代表例であるPET樹脂層/ナイロンMXD6樹脂層/PET樹脂層の3層構造、あるいは、PET樹脂層/ナイロンMXD6樹脂層/PET樹脂層/ナイロンMXD6樹脂層/PET樹脂層の5層構造を有するパリソンを二軸延伸ブロー成形することによって得られた多層成形体には、衝撃が加わったり、炭酸飲料を充填した後に急激な圧力変化があると、層間剥離が発生しやすいといった問題がある。
 熱可塑性樹脂を用いたインジェクション成形体にガスバリア性を付与する手段としては他に、エチレン-ビニルアルコール共重合体、ポリアクリロニトリル、ポリ塩化ビニリデン、アルミ箔、カーボンコート、無機酸化物蒸着等のガスバリア層を構成材料として積層する方法が行われているが、ナイロンMXD6を用いた場合と同様に、成形体内の充填後の内容物の上部に存在するヘッドスペースの気体中の残存酸素を除去することは不可能である。
 近年、ナイロンMXD6に少量の遷移金属化合物を添加、混合して、ナイロンMXD6に酸素吸収機能を付与し、これを容器や包装材料を構成する酸素バリア材料として利用することで、容器外部から透過してくる酸素をナイロンMXD6が吸収すると共に容器内部に残存する酸素をもナイロンMXD6が吸収することにより、従来の酸素バリア性熱可塑性樹脂を利用した容器以上に内容物の保存性を高める方法が実用化されつつある(例えば特許文献1及び2を参照)。
 一方、容器内の酸素を除去するため、酸素吸収剤の使用は古くから行われている。例えば、特許文献3及び4には、鉄粉等の酸素吸収剤を樹脂中に分散させた酸素吸収多層体が記載されている。特許文献5には、ポリブタジエン等のエチレン性不飽和化合物及びコバルト等の遷移金属触媒を含む酸素掃除去層と、ポリアミド等の酸素遮断層とを有する製品が記載されている。
 ところで、ガスバリア層を構成材料として積層する方法では、衝撃による層間剥離やクラックの発生が起こることがある。層間剥離やクラックが発生すると、ガスバリア性能の低下を招き、商品価値を損ねてしまう。これに対し、特許文献6には、最内層及び最外層を構成する樹脂を最後に金型キャビティー内に射出する際に、ガスバリア層側に一定量逆流させることが可能な逆流調節装置を使用し、層間に粗混合樹脂を介在させてプリフォームを作成することによって耐層間剥離性を改善することが開示されている。また、特許文献7には、ガスバリア層に、隣接する樹脂層と接着性の高い樹脂を混合させ、耐層間剥離性を改善することが開示されている。
特開2003-341747号公報 特許第2991437号公報 特開平2-72851号公報 特開平4-90848号公報 特開平5-115776号公報 特開2000-254963号公報 特開2000-6939号公報
 鉄粉等の酸素吸収剤を樹脂中に分散させた酸素吸収多層体は、鉄粉等の酸素吸収剤により樹脂が着色して不透明であるため、透明性が要求される包装の分野には使用できないという用途上の制約がある。
 一方、コバルト等の遷移金属を含有する樹脂組成物は、透明性が必要な包装容器にも適用可能である利点を有するが、遷移金属触媒によって樹脂組成物が着色されるため好ましくない。また、これらの樹脂組成物では、遷移金属触媒によって、酸素を吸収することで樹脂が酸化される。具体的には、ナイロンMXD6では、遷移金属原子によるポリアミド樹脂のアリーレン基に隣接するメチレン鎖から水素原子の引き抜きに起因するラジカルの発生、前記ラジカルに酸素分子が付加することによるパーオキシラジカルの発生、パーオキシラジカルによる水素原子の引き抜き等の各反応により起こるものと考えられている。このような機構による酸素吸収により樹脂が酸化されるため、分解物が発生して容器内容物に好ましくない臭気が発生したり、樹脂の酸化劣化により容器の色調や強度等が損なわれ、経時による層間剥離を招く問題がある。
 層間剥離を防止する手段として、特許文献6に記載された方法では、特殊な装置を使用しなければならず、経済性や実用性に問題がある。また、特許文献7に記載された方法では、接着性を有するもののガスバリア性に劣る樹脂を混合するために、ガスバリア性がさらに低下する問題がある。
 本発明が解決しようとする課題は、酸素バリア性能を発現するとともに、遷移金属を含有せずに酸素吸収性能を発現することができ、異臭や風味変化の原因となるような物質の発生が無く、内容物の保存性に優れ、落下や衝撃による層間剥離が起こりにくく、かつ、酸素吸収が進行するにつれての酸素吸収バリア層の強度低下が極めて小さい多層インジェクション成形体を提供することにある。
 本発明は、以下の多層インジェクション成形体及び容器を提供する。
<1>ポリアミド化合物(A)及び樹脂(B)を含有する樹脂組成物から形成される層(X)と、樹脂(C)を主成分とする層(Y)とを含む多層インジェクション成形体であって、
 該ポリアミド化合物(A)が、
 下記一般式(I-1)で表される芳香族ジアミン単位、下記一般式(I-2)で表される脂環族ジアミン単位、及び下記一般式(I-3)で表される直鎖脂肪族ジアミン単位からなる群から選ばれる少なくとも1つのジアミン単位を合計で50モル%以上含むジアミン単位25~50モル%と、
 下記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位及び/又は下記一般式(II-2)で表される芳香族ジカルボン酸単位を合計で50モル%以上含むジカルボン酸単位25~50モル%と、
 下記一般式(III)で表される構成単位0.1~50モル%と
を含有する、多層インジェクション成形体。
Figure JPOXMLDOC01-appb-C000003
[前記一般式(I-3)中、mは2~18の整数を表す。前記一般式(II-1)中、nは2~18の整数を表す。前記一般式(II-2)中、Arはアリーレン基を表す。前記一般式(III)中、Rは置換もしくは無置換のアルキル基又は置換もしくは無置換のアリール基を表す。]
<2>上記多層インジェクション成形体を加工して得られる容器。
 本発明の多層インジェクション成形体は、酸素バリア性能を発現するとともに、遷移金属を含有せずに酸素吸収性能を発現することができ、落下や衝撃による層間剥離が起こりにくく、かつ、酸素吸収が進行するにつれての酸素吸収バリア層の強度低下が極めて小さい。また、長期の利用においても酸素吸収バリア層の強度が維持されるため、層間剥離が生じにくい。
 当該多層インジェクション成形体を加工して得られる容器は、内容物の酸化劣化の抑制に優れるとともに、異臭や風味変化の原因となるような物質の発生がほとんど無く、風味保持性にも優れる。
<<多層インジェクション成形体>>
 本発明の多層インジェクション成形体は、ポリアミド化合物(A)及び樹脂(B)を含有する樹脂組成物から形成される層(X)(以後、「酸素吸収バリア層」と称することもある)と、樹脂(C)を主成分とする層(Y)とを少なくとも含む。
 本発明の多層インジェクション成形体における層構成は特に限定されず、層(X)及び層(Y)の数や種類は特に限定されない。例えば、1層の層(X)及び1層の層(Y)からなるX/Y構成であってもよく、1層の層(X)及び2層の層(Y)からなるY/X/Yの3層構成であってもよい。また、1層の層(X)並びに層(Y1)及び層(Y2)の2種4層の層(Y)からなるY1/Y2/X/Y2/Y1の5層構成であってもよい。さらに、本発明の多層インジェクション成形体は、必要に応じて接着層(AD)等の任意の層を含んでもよく、例えば、Y1/AD/Y2/X/Y2/AD/Y1の7層構成であってもよい。
1.ポリアミド化合物(A)及び樹脂(B)を含有する樹脂組成物から形成される層(X)(酸素吸収バリア層)
 本発明において、酸素吸収バリア層は樹脂組成物から形成されるものであり、当該樹脂組成物が、従来公知の樹脂(以後「樹脂(B)」と呼ぶこともある)に加えて、後述する特定のポリアミド化合物(以後「ポリアミド化合物(A)」と呼ぶこともある)を含有することで酸素吸収性能及び酸素バリア性能を発揮することができる。
 本発明において、樹脂組成物に含有されるポリアミド化合物(A)は1種であってもよいし、2種以上の組合せであってもよい。また、樹脂組成物に含有される樹脂(B)は、1種であってもよいし、2種以上の組合せであってもよい。
 本発明に用いられる樹脂組成物中におけるポリアミド化合物(A)と樹脂(B)の質量比の好適な範囲は、ポリアミド化合物(A)の相対粘度に応じて異なる。
 ポリアミド化合物(A)の相対粘度が1.8以上4.2以下である場合、ポリアミド化合物(A)/樹脂(B)の質量比は、5/95~95/5の範囲から選択することが好ましい。酸素吸収性能及び酸素バリア性能の観点からは、ポリアミド化合物(A)と樹脂(B)の合計100質量部に対して、ポリアミド化合物(A)の含有量が10質量部以上であることがより好ましく、30質量部以上であることがさらに好ましい。
 ポリアミド化合物(A)の相対粘度が1.01以上1.8未満である場合、成形加工性の観点から樹脂(B)を比較的多量に含有しておくことが望ましく、ポリアミド化合物(A)/樹脂(B)の質量比は、5/95~50/50の範囲から選択することが好ましい。酸素吸収性能及び酸素バリア性能の観点からは、ポリアミド化合物(A)と樹脂(B)の合計100質量部に対して、ポリアミド化合物(A)の含有量が10質量部以上であることがより好ましく、30質量部以上であることがさらに好ましい。
 本発明に用いられる樹脂組成物は、ポリアミド化合物(A)及び樹脂(B)に加えて、所望する性能等に応じて、後述する添加剤(以後“添加剤(D)”と呼ぶこともある)を含んでいてもよいが、樹脂組成物中のポリアミド化合物(A)及び樹脂(B)の合計の含有量は、成形加工性や酸素吸収性能、酸素バリア性能の観点から90質量%~100質量%であることが好ましく、95質量%~100質量%であることがより好ましい。
 酸素吸収バリア層の厚みは、酸素吸収性能及び酸素バリア性能を高めつつ、多層インジェクション成形体に要求される柔軟性等の諸物性を確保するという観点から、2~100μmとすることが好ましく、より好ましくは5~90μmであり、更に好ましくは10~80μmである。
1-1.ポリアミド化合物(A)
<ポリアミド化合物(A)の構成>
 本発明において、ポリアミド化合物(A)は、下記一般式(I-1)で表される芳香族ジアミン単位、下記一般式(I-2)で表される脂環族ジアミン単位、及び下記一般式(I-3)で表される直鎖脂肪族ジアミン単位からなる群から選ばれる少なくとも1つのジアミン単位を合計で50モル%以上含むジアミン単位25~50モル%と、下記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位及び/又は下記一般式(II-2)で表される芳香族ジカルボン酸単位を合計で50モル%以上含むジカルボン酸単位25~50モル%と、3級水素含有カルボン酸単位(好ましくは下記一般式(III)で表される構成単位)0.1~50モル%とを含有する。
Figure JPOXMLDOC01-appb-C000004
[前記一般式(I-3)中、mは2~18の整数を表す。前記一般式(II-1)中、nは2~18の整数を表す。前記一般式(II-2)中、Arはアリーレン基を表す。前記一般式(III)中、Rは置換もしくは無置換のアルキル基又は置換もしくは無置換のアリール基を表す。]
 ただし、前記ジアミン単位、前記ジカルボン酸単位、前記3級水素含有カルボン酸単位の合計は100モル%を超えないものとする。ポリアミド化合物(A)は、本発明の効果を損なわない範囲で、前記以外の構成単位を更に含んでいてもよい。
 ポリアミド化合物(A)において、3級水素含有カルボン酸単位の含有量は0.1~50モル%である。3級水素含有カルボン酸単位の含有量が0.1モル%未満では十分な酸素吸収性能を発現しない。一方、3級水素含有カルボン酸単位の含有量が50モル%を超えると、3級水素含有量が多すぎるため、ポリアミド化合物(A)のガスバリア性や機械物性等の物性が低下し、特に3級水素含有カルボン酸がアミノ酸である場合は、ペプチド結合が連続するため耐熱性が十分でなくなるだけでなく、アミノ酸の2量体からなる環状物ができ、重合を阻害する。3級水素含有カルボン酸単位の含有量は、酸素吸収性能やポリアミド化合物(A)の性状の観点から、好ましくは0.2モル%以上、より好ましくは1モル%以上であり、また、好ましくは40モル%以下であり、より好ましくは30モル%以下である。
 ポリアミド化合物(A)において、ジアミン単位の含有量は25~50モル%であり、酸素吸収性能やポリマー性状の観点から、好ましくは30~50モル%である。同様に、ポリアミド化合物(A)において、ジカルボン酸単位の含有量は25~50モル%であり、好ましくは30~50モル%である。
 ジアミン単位とジカルボン酸単位との含有量の割合は、重合反応の観点から、ほぼ同量であることが好ましく、ジカルボン酸単位の含有量がジアミン単位の含有量の±2モル%であることがより好ましい。ジカルボン酸単位の含有量がジアミン単位の含有量の±2モル%の範囲を超えると、ポリアミド化合物(A)の重合度が上がりにくくなるため重合度を上げるのに多くの時間を要し、熱劣化が生じやすくなる。
[ジアミン単位]
 ポリアミド化合物(A)中のジアミン単位は、前記一般式(I-1)で表される芳香族ジアミン単位、前記一般式(I-2)で表される脂環族ジアミン単位、及び前記一般式(I-3)で表される直鎖脂肪族ジアミン単位からなる群から選ばれる少なくとも1つのジアミン単位を、ジアミン単位中に合計で50モル%以上含み、当該含有量は、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。
 前記一般式(I-1)で表される芳香族ジアミン単位を構成しうる化合物としては、オルトキシリレンジアミン、メタキシリレンジアミン、及びパラキシリレンジアミンが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
 前記式(I-2)で表される脂環族ジアミン単位を構成しうる化合物としては、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン等のビス(アミノメチル)シクロヘキサン類が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
 ビス(アミノメチル)シクロヘキサン類は、構造異性体を持つが、cis体比率を高くすることで、結晶性が高く、良好な成形性を得られる。一方、cis体比率を低くすれば、結晶性が低い、透明なものが得られる。したがって、結晶性を高くしたい場合は、ビス(アミノメチル)シクロヘキサン類におけるcis体含有比率を70モル%以上とすることが好ましく、より好ましくは80モル%以上、更に好ましくは90モル%以上とする。一方、結晶性を低くしたい場合は、ビス(アミノメチル)シクロヘキサン類におけるcis体含有比率を50モル%以下とすることが好ましく、より好ましくは40モル%以下、更に好ましくは30モル%以下とする。
 前記一般式(I-3)中、mは2~18の整数を表し、好ましくは3~16、より好ましくは4~14、更に好ましくは6~12である。
 前記一般式(I-3)で表される直鎖脂肪族ジアミン単位を構成しうる化合物としては、エチレンジアミン、1,3-プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン等の脂肪族ジアミンを例示できるが、これらに限定されるものではない。これらの中でも、ヘキサメチレンジアミンが好ましい。これらは単独で又は2種以上を組み合わせて用いることができる。
 ポリアミド化合物(A)中のジアミン単位としては、ポリアミド化合物(A)に優れたガスバリア性を付与することに加え、透明性や色調の向上や、汎用的な熱可塑性樹脂の成形性を容易にする観点からは、前記一般式(I-1)で表される芳香族ジアミン単位及び/又は前記一般式(I-2)で表される脂環族ジアミン単位を含むことが好ましく、ポリアミド化合物(A)に適度な結晶性を付与する観点からは、前記一般式(I-3)で表される直鎖脂肪族ジアミン単位を含むことが好ましい。特に、酸素吸収性能やポリアミド化合物(A)の性状の観点からは、前記一般式(I-1)で表される芳香族ジアミン単位を含むことが好ましい。
 ポリアミド化合物(A)中のジアミン単位は、ポリアミド化合物(A)に優れたガスバリア性を発現させることに加え、汎用的な熱可塑性樹脂の成形性を容易にする観点から、メタキシリレンジアミン単位を50モル%以上含むことが好ましく、当該含有量は、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。
 前記一般式(I-1)~(I-3)のいずれかで表されるジアミン単位以外のジアミン単位を構成しうる化合物としては、パラフェニレンジアミン等の芳香族ジアミン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン等の脂環族ジアミン、N-メチルエチレンジアミン、2-メチル-1,5-ペンタンジアミン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン等の脂肪族ジアミン、ハンツマン社製のジェファーミンやエラスタミン(いずれも商品名)に代表されるエーテル結合を有するポリエーテル系ジアミン等を例示できるが、これらに限定されるものではない。これらは単独で又は2種以上を組み合わせて用いることができる。
[ジカルボン酸単位]
 ポリアミド化合物(A)中のジカルボン酸単位は、重合時の反応性、並びにポリアミド化合物(A)の結晶性及び成形性の観点から、前記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位及び/又は前記一般式(II-2)で表される芳香族ジカルボン酸単位を、ジカルボン酸単位に合計で50モル%以上含み、当該含有量は、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。
 前記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位は、ポリアミド化合物(A)に適度なガラス転移温度や結晶性を付与することに加え、包装材料や包装容器として必要な柔軟性を付与できる点で好ましい。
 前記一般式(II-1)中、nは2~18の整数を表し、好ましくは3~16、より好ましくは4~12、更に好ましくは4~8である。
 前記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位を構成しうる化合物としては、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,10-デカンジカルボン酸、1,11-ウンデカンジカルボン酸、1,12-ドデカンジカルボン酸等を例示できるが、これらに限定されるものではない。これらは単独で又は2種以上を組み合わせて用いることができる。
 前記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位の種類は用途に応じて適宜決定される。ポリアミド化合物(A)中の直鎖脂肪族ジカルボン酸単位は、ポリアミド化合物(A)に優れたガスバリア性を付与することに加え、包装材料や包装容器の加熱殺菌後の耐熱性を保持する観点から、アジピン酸単位、セバシン酸単位、及び1,12-ドデカンジカルボン酸単位からなる群から選ばれる少なくとも1つを、直鎖脂肪族ジカルボン酸単位中に合計で50モル%以上含むことが好ましく、当該含有量は、より好ましくは70モル%以上、更に好ましくは80モル%以上、特に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。
 ポリアミド化合物(A)中の直鎖脂肪族ジカルボン酸単位は、ポリアミド化合物(A)のガスバリア性及び適切なガラス転移温度や融点等の熱的性質の観点からは、アジピン酸単位を直鎖脂肪族ジカルボン酸単位中に50モル%以上含むことが好ましい。また、ポリアミド化合物(A)中の直鎖脂肪族ジカルボン酸単位は、ポリアミド化合物(A)に適度なガスバリア性及び成形加工適性を付与する観点からは、セバシン酸単位を直鎖脂肪族ジカルボン酸単位中に50モル%以上含むことが好ましく、ポリアミド化合物(A)が低吸水性、耐候性、耐熱性を要求される用途に用いられる場合は、1,12-ドデカンジカルボン酸単位を直鎖脂肪族ジカルボン酸単位中に50モル%以上含むことが好ましい。
 前記一般式(II-2)で表される芳香族ジカルボン酸単位は、ポリアミド化合物(A)に更なるガスバリア性を付与することに加え、包装材料や包装容器の成形加工性を容易にすることができる点で好ましい。
 前記一般式(II-2)中、Arはアリーレン基を表す。前記アリーレン基は、好ましくは炭素数6~30、より好ましくは炭素数6~15のアリーレン基であり、例えば、フェニレン基、ナフチレン基等が挙げられる。
 前記一般式(II-2)で表される芳香族ジカルボン酸単位を構成しうる化合物としては、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸等を例示できるが、これらに限定されるものではない。これらは単独で又は2種以上を組み合わせて用いることができる。
 前記一般式(II-2)で表される芳香族ジカルボン酸単位の種類は用途に応じて適宜決定される。ポリアミド化合物(A)中の芳香族ジカルボン酸単位は、イソフタル酸単位、テレフタル酸単位、及び2,6-ナフタレンジカルボン酸単位からなる群から選ばれる少なくとも1つを、芳香族ジカルボン酸単位中に合計で50モル%以上含むことが好ましく、当該含有量は、より好ましくは70モル%以上、更に好ましくは80モル%以上、特に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。また、これらの中でもイソフタル酸及び/又はテレフタル酸を芳香族ジカルボン酸単位中に含むことが好ましい。イソフタル酸単位とテレフタル酸単位との含有比(イソフタル酸単位/テレフタル酸単位)は、特に制限はなく、用途に応じて適宜決定される。例えば、適度なガラス転移温度や結晶性を下げる観点からは、両単位の合計を100としたとき、モル比で好ましくは0/100~100/0、より好ましくは0/100~60/40、更に好ましくは0/100~40/60、更に好ましくは0/100~30/70である。
 ポリアミド化合物(A)中のジカルボン酸単位において、前記直鎖脂肪族ジカルボン酸単位と前記芳香族ジカルボン酸単位との含有比(直鎖脂肪族ジカルボン酸単位/芳香族ジカルボン酸単位)は、特に制限はなく、用途に応じて適宜決定される。例えば、ポリアミド化合物(A)のガラス転移温度を上げて、ポリアミド化合物(A)の結晶性を低下させることを目的とした場合、直鎖脂肪族ジカルボン酸単位/芳香族ジカルボン酸単位は、両単位の合計を100としたとき、モル比で好ましくは0/100~60/40、より好ましくは0/100~40/60、更に好ましくは0/100~30/70である。また、ポリアミド化合物(A)のガラス転移温度を下げてポリアミド化合物(A)に柔軟性を付与することを目的とした場合、直鎖脂肪族ジカルボン酸単位/芳香族ジカルボン酸単位は、両単位の合計を100としたとき、モル比で好ましくは40/60~100/0、より好ましくは60/40~100/0、更に好ましくは70/30~100/0である。
 前記一般式(II-1)又は(II-2)で表されるジカルボン酸単位以外のジカルボン酸単位を構成しうる化合物としては、シュウ酸、マロン酸、フマル酸、マレイン酸、1,3-ベンゼン二酢酸、1,4-ベンゼン二酢酸等のジカルボン酸を例示できるが、これらに限定されるものではない。
[3級水素含有カルボン酸単位]
 本発明において、ポリアミド化合物(A)における3級水素含有カルボン酸単位は、ポリアミド化合物(A)の重合の観点から、アミノ基及びカルボキシル基を少なくとも1つずつ有するか、又はカルボキシル基を2つ以上有する。具体例としては、下記一般式(III)、(IV)又は(V)のいずれかで表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000005
[前記一般式(III)~(V)中、R、R1及びR2はそれぞれ置換基を表し、A1~A3はそれぞれ単結合又は2価の連結基を表す。ただし、前記一般式(IV)においてA1及びA2がともに単結合である場合を除く。]
 本発明において、ポリアミド化合物(A)は、3級水素含有カルボン酸単位を含む。このような3級水素含有カルボン酸単位を共重合成分として含有することで、ポリアミド化合物(A)は、遷移金属を含有せずとも優れた酸素吸収性能を発揮することができる。
 本発明において、3級水素含有カルボン酸単位を有するポリアミド化合物(A)が良好な酸素吸収性能を示す機構についてはまだ明らかにされていないが以下のように推定される。3級水素含有カルボン酸単位を構成しうる化合物は、同一炭素原子上に電子求引性基と電子供与性基とが結合しているため、その炭素原子上に存在する不対電子がエネルギー的に安定化されるキャプトデーティブ(Captodative)効果と呼ばれる現象によって非常に安定なラジカルが生成すると考えられる。すなわち、カルボキシル基は電子求引性基であり、それに隣接する3級水素が結合している炭素が電子不足(δ+)になるため、当該3級水素も電子不足(δ+)となり、プロトンとして解離してラジカルを形成する。ここに酸素及び水が存在したときに、酸素がこのラジカルと反応することで、酸素吸収性能を示すと考えられる。また、高湿度かつ高温の環境であるほど、反応性は高いことが判明している。
 前記一般式(III)~(V)中、R、R1及びR2はそれぞれ置換基を表す。本発明におけるR、R1及びR2で表される置換基としては、例えば、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子)、アルキル基(1~15個、好ましくは1~6個の炭素原子を有する直鎖、分岐又は環状アルキル基、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、t-ブチル基、n-オクチル基、2-エチルヘキシル基、シクロプロピル基、シクロペンチル基)、アルケニル基(2~10個、好ましくは2~6個の炭素原子を有する直鎖、分岐又は環状アルケニル基、例えば、ビニル基、アリル基)、アルキニル基(2~10個、好ましくは2~6個の炭素原子を有するアルキニル基、例えば、エチニル基、プロパルギル基)、アリール基(6~16個、好ましくは6~10個の炭素原子を有するアリール基、例えば、フェニル基、ナフチル基)、複素環基(5員環又は6員環の芳香族又は非芳香族の複素環化合物から1個の水素原子を取り除くことによって得られる、1~12個、好ましくは2~6個の炭素原子を有する一価の基、例えば1-ピラゾリル基、1-イミダゾリル基、2-フリル基)、シアノ基、水酸基、ニトロ基、アルコキシ基(1~10個、好ましくは1~6個の炭素原子を有する直鎖、分岐又は環状アルコキシ基、例えば、メトキシ基、エトキシ基)、アリールオキシ基(6~12個、好ましくは6~8個の炭素原子を有するアリールオキシ基、例えば、フェノキシ基)、アシル基(ホルミル基、2~10個、好ましくは2~6個の炭素原子を有するアルキルカルボニル基、或いは7~12個、好ましくは7~9個の炭素原子を有するアリールカルボニル基、例えば、アセチル基、ピバロイル基、ベンゾイル基)、アミノ基(アミノ基、1~10個、好ましくは1~6個の炭素原子を有するアルキルアミノ基、6~12個、好ましくは6~8個の炭素原子を有するアニリノ基、或いは1~12個、好ましくは2~6個の炭素原子を有する複素環アミノ基、例えば、アミノ基、メチルアミノ基、アニリノ基)、メルカプト基、アルキルチオ基(1~10個、好ましくは1~6個の炭素原子を有するアルキルチオ基、例えば、メチルチオ基、エチルチオ基)、アリールチオ基(6~12個、好ましくは6~8個の炭素原子を有するアリールチオ基、例えば、フェニルチオ基)、複素環チオ基(2~10個、好ましくは2~6個の炭素原子を有する複素環チオ基、例えば2-ベンゾチアゾリルチオ基)、イミド基(2~10個、好ましくは4~8個の炭素原子を有するイミド基、例えば、N-スクシンイミド基、N-フタルイミド基)等が挙げられる。
 これらの官能基の中で水素原子を有するものは更に上記の基で置換されていてもよく、例えば、水酸基で置換されたアルキル基(例えば、ヒドロキシエチル基)、アルコキシ基で置換されたアルキル基(例えば、メトキシエチル基)、アリール基で置換されたアルキル基(例えば、ベンジル基)、アルキル基で置換されたアリール基(例えば、p-トリル基)、アルキル基で置換されたアリールオキシ基(例えば、2-メチルフェノキシ基)等を挙げられるが、これらに限定されるものではない。
 なお、官能基が更に置換されている場合、上述した炭素数には、更なる置換基の炭素数は含まれないものとする。例えば、ベンジル基は、フェニル基で置換された炭素数1のアルキル基と見なし、フェニル基で置換された炭素数7のアルキル基とは見なさない。以降の炭素数に記載についても、特に断りが無い限り、同様に解するものとする。
 前記一般式(IV)及び(V)中、A1~A3はそれぞれ単結合又は2価の連結基を表す。ただし、前記一般式(IV)においてA1及びA2がともに単結合である場合を除く。2価の連結基としては、例えば、直鎖、分岐もしくは環状のアルキレン基(炭素数1~12、好ましくは炭素数1~4のアルキレン基、例えばメチレン基、エチレン基)、アラルキレン基(炭素数7~30、好ましくは炭素数7~13のアラルキレン基、例えばベンジリデン基)、アリーレン基(炭素数6~30、好ましくは炭素数6~15のアリーレン基、例えば、フェニレン基)等が挙げられる。これらは更に置換基を有していてもよく、当該置換基としては、R、R1及びR2で表される置換基として上記に例示した官能基が挙げられる。例えば、アルキル基で置換されたアリーレン基(例えば、キシリレン基)等を挙げられるが、これらに限定されるものではない。
 本発明において、ポリアミド化合物(A)は、前記一般式(III)、(IV)又は(V)のいずれかで表される構成単位の少なくとも1種を含むことが好ましい。これらの中でも、原料の入手性や酸素吸収性向上の観点から、α炭素(カルボキシル基に隣接する炭素原子)に3級水素を有するカルボン酸単位がより好ましく、前記一般式(III)で表される構成単位が特に好ましい。
 前記一般式(III)中におけるRについては上述した通りであるが、その中でも置換もしくは無置換のアルキル基及び置換もしくは無置換のアリール基がより好ましく、置換もしくは無置換の炭素数1~6のアルキル基及び置換もしくは無置換の炭素数6~10のアリール基が更に好ましく、置換もしくは無置換の炭素数1~4のアルキル基及び置換もしくは無置換のフェニル基が特に好ましい。
 好ましいRの具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、1-メチルプロピル基、2-メチルプロピル基、ヒドロキシメチル基、1-ヒドロキシエチル基、メルカプトメチル基、メチルスルファニルエチル基、フェニル基、ナフチル基、ベンジル基、4-ヒドロキシベンジル基等を例示できるが、これらに限定されるものではない。これらの中でも、メチル基、エチル基、イソプロピル基、2-メチルプロピル基、及びベンジル基がより好ましい。
 前記一般式(III)で表される構成単位を構成しうる化合物としては、アラニン、2-アミノ酪酸、バリン、ノルバリン、ロイシン、ノルロイシン、tert-ロイシン、イソロイシン、セリン、トレオニン、システイン、メチオニン、2-フェニルグリシン、フェニルアラニン、チロシン、ヒスチジン、トリプトファン、プロリン等のα-アミノ酸を例示できるが、これらに限定されるものではない。
 また、前記一般式(IV)で表される構成単位を構成しうる化合物としては、3-アミノ酪酸等のβ-アミノ酸を例示でき、前記一般式(V)で表される構成単位を構成しうる化合物としては、メチルマロン酸、メチルコハク酸、リンゴ酸、酒石酸等のジカルボン酸を例示できるが、これらに限定されるものではない。
 これらはD体、L体、ラセミ体のいずれであってもよく、アロ体であってもよい。また、これらは単独で又は2種以上を組み合わせて用いることができる。
 これらの中でも、原料の入手性や酸素吸収性向上等の観点から、α炭素に3級水素を有するα-アミノ酸が特に好ましい。また、α-アミノ酸の中でも、供給しやすさ、安価な価格、重合しやすさ、ポリマーの黄色度(YI)の低さといった点から、アラニンが最も好ましい。アラニンは、分子量が比較的低く、ポリアミド化合物(A)1g当たりの共重合率が高いため、ポリアミド化合物(A)1g当たりの酸素吸収性能は良好である。
 また、前記3級水素含有カルボン酸単位を構成しうる化合物の純度は、重合速度の遅延等の重合に及ぼす影響やポリマーの黄色度等の品質面への影響の観点から、95%以上であることが好ましく、より好ましくは98.5%以上、更に好ましくは99%以上である。また、不純物として含まれる硫酸イオンやアンモニウムイオンは、500ppm以下が好ましく、より好ましくは200ppm以下、更に好ましくは50ppm以下である。
[ω-アミノカルボン酸単位]
 本発明において、ポリアミド化合物(A)は、ポリアミド化合物(A)に柔軟性等が必要な場合には、前記ジアミン単位、前記ジカルボン酸単位及び前記3級水素含有カルボン酸単位に加えて、下記一般式(P)で表されるω-アミノカルボン酸単位を更に含有してもよい。
Figure JPOXMLDOC01-appb-C000006
[前記一般式(P)中、pは2~18の整数を表す。]
 前記ω-アミノカルボン酸単位の含有量は、ポリアミド化合物(A)の全構成単位中、好ましくは0.1~49.9モル%、より好ましくは3~40モル%、更に好ましくは5~35モル%である。ただし、前記のジアミン単位、ジカルボン酸単位、3級水素含有カルボン酸単位、及びω-アミノカルボン酸単位の合計は100モル%を超えないものとする。
 前記一般式(P)中、pは2~18の整数を表し、好ましくは3~16、より好ましくは4~14、更に好ましくは5~12である。
 前記一般式(P)で表されるω-アミノカルボン酸単位を構成しうる化合物としては、炭素数5~19のω-アミノカルボン酸や炭素数5~19のラクタムが挙げられる。炭素数5~19のω-アミノカルボン酸としては、6-アミノヘキサン酸及び12-アミノドデカン酸等が挙げられ、炭素数5~19のラクタムとしては、ε-カプロラクタム及びラウロラクタムを挙げることができるが、これらに限定されるものではない。これらは単独で又は2種以上を組み合わせて用いることができる。
 前記ω-アミノカルボン酸単位は、6-アミノヘキサン酸単位及び/又は12-アミノドデカン酸単位を、ω-アミノカルボン酸単位中に合計で50モル%以上含むことが好ましく、当該含有量は、より好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。
[ポリアミド化合物(A)の重合度]
 ポリアミド化合物(A)の重合度については、相対粘度が使われる。ポリアミド化合物(A)の相対粘度は、特に限定されるわけではないが、好ましくは1.01~4.2である。
 上述したように、ポリアミド化合物(A)/樹脂(B)の質量比の好適な範囲は、ポリアミド化合物(A)の相対粘度に応じて異なり、ポリアミド化合物(A)の相対粘度が1.8以上4.2以下である場合、ポリアミド化合物(A)/樹脂(B)の質量比は、5/95~95/5の範囲から選択することが好ましく、ポリアミド化合物(A)の相対粘度が1.01以上1.8未満である場合、ポリアミド化合物(A)/樹脂(B)の質量比は、5/95~50/50の範囲から選択することが好ましい。
 なお、ここでいう相対粘度は、ポリアミド化合物(A)1gを96%硫酸100mLに溶解し、キャノンフェンスケ型粘度計にて25℃で測定した落下時間(t)と、同様に測定した96%硫酸そのものの落下時間(t0)の比であり、次式で示される。
   相対粘度=t/t0
[末端アミノ基濃度]
 ポリアミド化合物(A)の酸素吸収速度、及び酸素吸収によるポリアミド化合物(A)の酸化劣化は、ポリアミド化合物(A)の末端アミノ基濃度を変えることで制御することが可能である。本発明では、酸素吸収速度と酸化劣化のバランスの観点から、ポリアミド化合物(A)の末端アミノ基濃度は5~150μeq/gの範囲が好ましく、より好ましくは10~100μeq/g、更に好ましくは15~80μeq/gである。
<ポリアミド化合物(A)の製造方法>
 ポリアミド化合物(A)は、前記ジアミン単位を構成しうるジアミン成分と、前記ジカルボン酸単位を構成しうるジカルボン酸成分と、前記3級水素含有カルボン酸単位を構成しうる3級水素含有カルボン酸成分と、必要により前記ω-アミノカルボン酸単位を構成しうるω-アミノカルボン酸成分とを重縮合させることで製造することができ、重縮合条件等を調整することで重合度を制御することができる。重縮合時に分子量調整剤として少量のモノアミンやモノカルボン酸を加えてもよい。また、重縮合反応を抑制して所望の重合度とするために、ポリアミド化合物(A)を構成するジアミン成分とカルボン酸成分との比率(モル比)を1からずらして調整してもよい。
 ポリアミド化合物(A)の重縮合方法としては、反応押出法、加圧塩法、常圧滴下法、加圧滴下法等が挙げられるが、これらに限定されない。また、反応温度はできる限り低い方が、ポリアミド化合物(A)の黄色化やゲル化を抑制でき、安定した性状のポリアミド化合物(A)が得られる。
[反応押出法]
 反応押出法では、ジアミン成分及びジカルボン酸成分からなるポリアミド(ポリアミド化合物(A)の前駆体に相当するポリアミド)又はジアミン成分、ジカルボン酸成分及びω-アミノカルボン酸成分からなるポリアミド(ポリアミド化合物(A)の前駆体に相当するポリアミド)と、3級水素含有カルボン酸成分とを押出機で溶融混練して反応させる方法である。3級水素含有カルボン酸成分をアミド交換反応により、ポリアミドの骨格中に組み込む方法であり、十分に反応させるためには、反応押出に適したスクリューを用い、L/Dの大きい2軸押出機を用いるのが好ましい。少量の3級水素含有カルボン酸単位を含むポリアミド化合物(A)を製造する場合に、簡便な方法であり好適である。
[加圧塩法]
 加圧塩法では、ナイロン塩を原料として加圧下にて溶融重縮合を行う方法である。具体的には、ジアミン成分と、ジカルボン酸成分と、3級水素含有カルボン酸成分と、必要に応じてω-アミノカルボン酸成分とからなるナイロン塩水溶液を調製した後、該水溶液を濃縮し、次いで加圧下にて昇温し、縮合水を除去しながら重縮合させる。缶内を徐々に常圧に戻しながら、ポリアミド化合物(A)の融点+10℃程度まで昇温し、保持した後、更に、-0.02MPaGまで徐々に減圧しつつ、そのままの温度で保持し、重縮合を継続する。一定の撹拌トルクに達したら、缶内を窒素で0.3MPaG程度に加圧してポリアミド化合物(A)を回収する。
 加圧塩法は、揮発性成分をモノマーとして使用する場合に有用であり、3級水素含有カルボン酸成分の共重合率が高い場合には好ましい重縮合方法である。特に、3級水素含有カルボン酸単位をポリアミド化合物(A)の全構成単位中に15モル%以上含むポリアミド化合物(A)を製造する場合に、好適である。加圧塩法を用いることで、3級水素含有カルボン酸成分の蒸散を防ぎ、更には、3級水素含有カルボン酸成分同士の重縮合を抑制でき、重縮合反応をスムーズに進めることが可能であるため、性状に優れたポリアミド化合物(A)が得られる。
[常圧滴下法]
 常圧滴下法では、常圧下にて、ジカルボン酸成分と、3級水素含有カルボン酸成分と、必要に応じてω-アミノカルボン酸成分とを加熱溶融した混合物に、ジアミン成分を連続的に滴下し、縮合水を除去しながら重縮合させる。なお、生成するポリアミド化合物(A)の融点よりも反応温度が下回らないように、反応系を昇温しながら重縮合反応を行う。
 常圧滴下法は、前記加圧塩法と比較すると、塩を溶解するための水を使用しないため、バッチ当たりの収量が大きく、また、原料成分の気化・凝縮を必要としないため、反応速度の低下が少なく、工程時間を短縮できる。
[加圧滴下法]
 加圧滴下法では、まず、重縮合缶にジカルボン酸成分と、3級水素含有カルボン酸成分と、必要に応じてω-アミノカルボン酸成分とを仕込み、各成分を撹拌して溶融混合し混合物を調製する。次いで、缶内を好ましくは0.3~0.4MPaG程度に加圧しながら混合物にジアミン成分を連続的に滴下し、縮合水を除去しながら重縮合させる。この際、生成するポリアミド化合物(A)の融点よりも反応温度が下回らないように、反応系を昇温しながら重縮合反応を行う。設定モル比に達したらジアミン成分の滴下を終了し、缶内を徐々に常圧に戻しながら、ポリアミド化合物(A)の融点+10℃程度まで昇温し、保持した後、更に、-0.02MPaGまで徐々に減圧しつつ、そのままの温度で保持し、重縮合を継続する。一定の撹拌トルクに達したら、缶内を窒素で0.3MPaG程度に加圧してポリアミド化合物(A)を回収する。
 加圧滴下法は、加圧塩法と同様に、揮発性成分をモノマーとして使用する場合に有用であり、3級水素含有カルボン酸成分の共重合率が高い場合には好ましい重縮合方法である。特に、3級水素含有カルボン酸単位をポリアミド化合物(A)の全構成単位中に15モル%以上含むポリアミド化合物(A)を製造する場合に、好適である。加圧滴下法を用いることで3級水素含有カルボン酸成分の蒸散を防ぎ、更には、3級水素含有カルボン酸成分同士の重縮合を抑制でき、重縮合反応をスムーズに進めることが可能であるため、性状に優れたポリアミド化合物(A)が得られる。更に、加圧滴下法は、加圧塩法に比べて、塩を溶解するための水を使用しないため、バッチ当たりの収量が大きく、常圧滴下法と同様に反応時間を短くできることから、ゲル化等を抑制し、黄色度が低いポリアミド化合物(A)を得ることができる。
[重合度を高める工程]
 上記重縮合方法で製造されたポリアミド化合物(A)は、そのまま使用することもできるが、更に重合度を高めるための工程を経てもよい。更に重合度を高める工程としては、押出機内での反応押出や固相重合等が挙げられる。固相重合で用いられる加熱装置としては、連続式の加熱乾燥装置やタンブルドライヤー、コニカルドライヤー、ロータリードライヤー等と称される回転ドラム式の加熱装置およびナウタミキサーと称される内部に回転翼を備えた円錐型の加熱装置が好適に使用できるが、これらに限定されることなく公知の方法、装置を使用することができる。特にポリアミド化合物(A)の固相重合を行う場合は、上述の装置の中で回転ドラム式の加熱装置が、系内を密閉化でき、着色の原因となる酸素を除去した状態で重縮合を進めやすいことから好ましく用いられる。
[リン原子含有化合物、アルカリ金属化合物]
 ポリアミド化合物(A)の重縮合においては、アミド化反応を促進する観点から、リン原子含有化合物を添加することが好ましい。
 リン原子含有化合物としては、ジメチルホスフィン酸、フェニルメチルホスフィン酸等のホスフィン酸化合物;次亜リン酸、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム、次亜リン酸マグネシウム、次亜リン酸カルシウム、次亜リン酸エチル等のジ亜リン酸化合物;ホスホン酸、ホスホン酸ナトリウム、ホスホン酸カリウム、ホスホン酸リチウム、ホスホン酸マグネシウム、ホスホン酸カルシウム、フェニルホスホン酸、エチルホスホン酸、フェニルホスホン酸ナトリウム、フェニルホスホン酸カリウム、フェニルホスホン酸リチウム、フェニルホスホン酸ジエチル、エチルホスホン酸ナトリウム、エチルホスホン酸カリウム等のホスホン酸化合物;亜ホスホン酸、亜ホスホン酸ナトリウム、亜ホスホン酸リチウム、亜ホスホン酸カリウム、亜ホスホン酸マグネシウム、亜ホスホン酸カルシウム、フェニル亜ホスホン酸、フェニル亜ホスホン酸ナトリウム、フェニル亜ホスホン酸カリウム、フェニル亜ホスホン酸リチウム、フェニル亜ホスホン酸エチル等の亜ホスホン酸化合物;亜リン酸、亜リン酸水素ナトリウム、亜リン酸ナトリウム、亜リン酸リチウム、亜リン酸カリウム、亜リン酸マグネシウム、亜リン酸カルシウム、亜リン酸トリエチル、亜リン酸トリフェニル、ピロ亜リン酸等の亜リン酸化合物等が挙げられる。
 これらの中でも特に次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム等の次亜リン酸金属塩が、アミド化反応を促進する効果が高くかつ着色防止効果にも優れるため好ましく用いられ、特に次亜リン酸ナトリウムが好ましい。なお、本発明で使用できるリン原子含有化合物はこれらの化合物に限定されない。
 リン原子含有化合物の添加量は、ポリアミド化合物(A)中のリン原子濃度換算で0.1~1000ppmであることが好ましく、より好ましくは1~600ppmであり、更に好ましくは5~400ppmである。0.1ppm以上であれば、重合中にポリアミド化合物(A)が着色しにくく透明性が高くなる。1000ppm以下であれば、ポリアミド化合物(A)がゲル化しにくく、また、リン原子含有化合物に起因すると考えられるフィッシュアイの成形品中への混入も低減でき、成形品の外観が良好となる。
 また、ポリアミド化合物(A)の重縮合系内には、リン原子含有化合物と併用してアルカリ金属化合物を添加することが好ましい。重縮合中のポリアミド化合物(A)の着色を防止するためには十分な量のリン原子含有化合物を存在させる必要があるが、場合によってはポリアミド化合物(A)のゲル化を招くおそれがあるため、アミド化反応速度を調整するためにもアルカリ金属化合物を共存させることが好ましい。
 アルカリ金属化合物としては、アルカリ金属水酸化物やアルカリ金属酢酸塩、アルカリ金属炭酸塩、アルカリ金属アルコキシド等が好ましい。本発明で用いることのできるアルカリ金属化合物の具体例としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸ルビジウム、酢酸セシウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムプロポキシド、ナトリウムブトキシド、カリウムメトキシド、リチウムメトキシド、炭酸ナトリウム等が挙げられるが、これらの化合物に限定されることなく用いることができる。なお、リン原子含有化合物とアルカリ金属化合物の比率(モル比)は、重合速度制御の観点や、黄色度を低減する観点から、リン原子含有化合物/アルカリ金属化合物=1.0/0.05~1.0/1.5の範囲が好ましく、より好ましくは、1.0/0.1~1.0/1.2、更に好ましくは、1.0/0.2~1.0/1.1である。
1-2.樹脂(B)
 本発明において、樹脂(B)としては任意の樹脂を使用することができ、特に限定されない。樹脂(B)としては、例えば熱可塑性樹脂を用いることができ、具体的にはポリオレフィン、ポリエステル、ポリアミド、エチレン-ビニルアルコール共重合体及び植物由来樹脂を挙げることができる。本発明において樹脂(B)としては、これら樹脂からなる群から選ばれる少なくとも一種を含むことが好ましい。
 これらの中でも、酸素吸収効果を効果的に発揮するためには、ポリエステル、ポリアミド及びエチレン-ビニルアルコール共重合体のような酸素バリア性の高い樹脂がより好ましい。
 ポリアミド化合物(A)と樹脂(B)との混合は、従来公知の方法を用いることができ、乾式混合や溶融混合が例示される。ポリアミド化合物(A)と樹脂(B)とを溶融混合し、所望のペレット、成形体を製造する場合、押出機等を用いて溶融ブレンドすることができる。押出機は単軸押出機、2軸押出機などの公知の押出機を用いることができるが、これらに限定されない。
[ポリオレフィン]
 ポリオレフィンの具体例としては、ポリエチレン(低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン)、ポリプロピレン、ポリブテン-1、ポリ-4-メチルペンテン-1等のオレフィン単独重合体;エチレン-プロピレンランダム共重合体、エチレン-プロピレンブロック共重合体、エチレン-プロピレン-ポリブテン-1共重合体、エチレン-環状オレフィン共重合体等のエチレンとα-オレフィンとの共重合体;エチレン-(メタ)アクリル酸共重合体等のエチレン-α,β-不飽和カルボン酸共重合体、エチレン-(メタ)アクリル酸エチル共重合体等のエチレン-α,β-不飽和カルボン酸エステル共重合体、エチレン-α,β-不飽和カルボン酸共重合体のイオン架橋物、エチレン-酢酸ビニル共重合体等のその他のエチレン共重合体;これらのポリオレフィンを無水マレイン酸等の酸無水物等でグラフト変性したグラフト変性ポリオレフィン等を挙げることができる。
[ポリエステル]
 本発明において、ポリエステルとは、ジカルボン酸を含む多価カルボン酸およびこれらのエステル形成性誘導体から選ばれる一種又は二種以上とグリコールを含む多価アルコールから選ばれる一種又は二種以上とからなるもの、又はヒドロキシカルボン酸およびこれらのエステル形成性誘導体からなるもの、又は環状エステルからなるものをいう。
 ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、3-シクロブタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2,5-ノルボルナンジカルボン酸、ダイマー酸等に例示される飽和脂肪族ジカルボン酸又はこれらのエステル形成性誘導体、フマル酸、マレイン酸、イタコン酸等に例示される不飽和脂肪族ジカルボン酸又はこれらのエステル形成性誘導体、オルソフタル酸、イソフタル酸、テレフタル酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ビフェニルスルホンジカルボン酸、4,4’-ビフェニルエーテルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸、アントラセンジカルボン酸等に例示される芳香族ジカルボン酸又はこれらのエステル形成性誘導体、5-ナトリウムスルホイソフタル酸、2-ナトリウムスルホテレフタル酸、5-リチウムスルホイソフタル酸、2-リチウムスルホテレフタル酸、5-カリウムスルホイソフタル酸、2-カリウムスルホテレフタル酸等に例示される金属スルホネート基含有芳香族ジカルボン酸又はそれらの低級アルキルエステル誘導体等が挙げられる。
 上記のジカルボン酸のなかでも、特に、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸の使用が、得られるポリエステルの物理特性等の点で好ましく、必要に応じて他のジカルボン酸を共重合してもよい。
 これらジカルボン酸以外の多価カルボン酸として、エタントリカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3,4,3’,4’-ビフェニルテトラカルボン酸、およびこれらのエステル形成性誘導体などが挙げられる。
 グリコールとしてはエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール、1,10-デカメチレングリコール、1,12-ドデカンジオール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール等に例示される脂肪族グリコール、ヒドロキノン、4,4’-ジヒドロキシビスフェノール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-ビス(β-ヒドロキシエトキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)エーテル、ビス(p-ヒドロキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)メタン、1,2-ビス(p-ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールC、2,5-ナフタレンジオール、これらのグリコールにエチレンオキシドが付加されたグリコール等に例示される芳香族グリコールが挙げられる。
 上記のグリコールのなかでも、特に、エチレングリコール、1,3-プロピレングリコール、1,4-ブチレングリコール、1,4-シクロヘキサンジメタノールを主成分として使用することが好適である。これらグリコール以外の多価アルコールとして、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロール、ヘキサントリオール等が挙げられる。ヒドロキシカルボン酸としては、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3-ヒドロキシ酪酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸、4-ヒドロキシシクロヘキサンカルボン酸、又はこれらのエステル形成性誘導体等が挙げられる。
 環状エステルとしては、ε-カプロラクトン、β-プロピオラクトン、β-メチル-β-プロピオラクトン、δ-バレロラクトン、グリコリド、ラクチド等が挙げられる。
 多価カルボン酸、ヒドロキシカルボン酸のエステル形成性誘導体としては、これらのアルキルエステル、酸クロライド、酸無水物等が例示される。
 本発明で用いられるポリエステルとしては、主たる酸成分がテレフタル酸またはそのエステル形成性誘導体もしくはナフタレンジカルボン酸またはそのエステル形成性誘導体であり、主たるグリコール成分がアルキレングリコールであるポリエステルが好ましい。
 主たる酸成分がテレフタル酸またはそのエステル形成性誘導体であるポリエステルとは、全酸成分に対してテレフタル酸またはそのエステル形成性誘導体を合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。主たる酸成分がナフタレンジカルボン酸またはそのエステル形成性誘導体であるポリエステルも同様に、ナフタレンジカルボン酸またはそのエステル形成性誘導体を合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。
 本発明で用いられるナフタレンジカルボン酸またはそのエステル形成性誘導体としては、上述のジカルボン酸類に例示した1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、またはこれらのエステル形成性誘導体が好ましい。
 主たるグリコール成分がアルキレングリコールであるポリエステルとは、全グリコール成分に対してアルキレングリコールを合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。ここで言うアルキレングリコールは、分子鎖中に置換基や脂環構造を含んでいてもよい。
 上記テレフタル酸/エチレングリコール以外の共重合成分は、イソフタル酸、2,6-ナフタレンジカルボン酸、ジエチレングリコール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、1,2-プロパンジオール、1,3-プロパンジオールおよび2-メチル-1,3-プロパンジオールからなる群より選ばれる少なくとも1種以上であることが、透明性と成形性を両立する上で好ましく、特にイソフタル酸、ジエチレングリコール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノールからなる群より選ばれる少なくとも1種以上であることがより好ましい。
 本発明に用いられるポリエステルの好ましい一例は、主たる繰り返し単位がエチレンテレフタレートから構成されるポリエステルであり、より好ましくはエチレンテレフタレート単位を70モル%以上含む線状ポリエステルであり、さらに好ましくはエチレンテレフタレート単位を80モル%以上含む線状ポリエステルであり、特に好ましいのはエチレンテレフタレート単位を90モル%以上含む線状ポリエステルである。
 また本発明に用いられるポリエステルの好ましい他の一例は、主たる繰り返し単位がエチレン-2,6-ナフタレートから構成されるポリエステルであり、より好ましくはエチレン-2,6-ナフタレート単位を70モル%以上含む線状ポリエステルであり、さらに好ましくはエチレン-2,6-ナフタレート単位を80モル%以上含む線状ポリエステルであり、特に好ましいのは、エチレン-2,6-ナフタレート単位を90モル%以上含む線状ポリエステルである。
 また本発明に用いられるポリエステルの好ましいその他の例としては、プロピレンテレフタレート単位を70モル%以上含む線状ポリエステル、プロピレンナフタレート単位を70モル%以上含む線状ポリエステル、1,4-シクロヘキサンジメチレンテレフタレート単位を70モル%以上含む線状ポリエステル、ブチレンナフタレート単位を70モル%以上含む線状ポリエステル、またはブチレンテレフタレート単位を70モル%以上含む線状ポリエステルである。
 特にポリエステル全体の組成として、テレフタル酸/イソフタル酸//エチレングリコールの組合せ、テレフタル酸//エチレングリコール/1,4-シクロヘキサンジメタノールの組合せ、テレフタル酸//エチレングリコール/ネオペンチルグリコールの組合せは透明性と成形性とを両立する上で好ましい。なお、当然ではあるが、エステル化(エステル交換)反応、重縮合反応中に、エチレングリコールの二量化により生じるジエチレングリコールを少量(5モル%以下)含んでもよいことは言うまでもない。
 また本発明に用いられるポリエステルの好ましいその他の例としては、グリコール酸やグリコール酸メチルの重縮合もしくは、グリコリドの開環重縮合にて得られるポリグリコール酸が挙げられる。このポリグリコール酸には、ラクチド等の他成分を共重合しても構わない。
[ポリアミド]
 本発明で使用するポリアミド(ここで言う“ポリアミド”は、本発明の“ポリアミド化合物(A)”と混合されるポリアミド樹脂を指すものであり、本発明の“ポリアミド化合物(A)”自体を指すものではない)は、ラクタムもしくはアミノカルボン酸から誘導される単位を主構成単位とするポリアミドや、脂肪族ジアミンと脂肪族ジカルボン酸とから誘導される単位を主構成単位とする脂肪族ポリアミド、脂肪族ジアミンと芳香族ジカルボン酸とから誘導される単位を主構成単位とする部分芳香族ポリアミド、芳香族ジアミンと脂肪族ジカルボン酸とから誘導される単位を主構成単位とする部分芳香族ポリアミド等が挙げられ、必要に応じて、主構成単位以外のモノマー単位を共重合してもよい。
 前記ラクタムもしくはアミノカルボン酸としては、ε-カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等のアミノカルボン酸類、パラ-アミノメチル安息香酸のような芳香族アミノカルボン酸等が使用できる。
 前記脂肪族ジアミンとしては、炭素数2~12の脂肪族ジアミンあるいはその機能的誘導体が使用できる。さらに、脂環族のジアミンであってもよい。脂肪族ジアミンは直鎖状の脂肪族ジアミンであっても分岐を有する鎖状の脂肪族ジアミンであってもよい。このような直鎖状の脂肪族ジアミンの具体例としては、エチレンジアミン、1-メチルエチレンジアミン、1,3-プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン等の脂肪族ジアミンが挙げられる。また、脂環族ジアミンの具体例としては、シクロヘキサンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン等が挙げられる。
 また、前記脂肪族ジカルボン酸としては、直鎖状の脂肪族ジカルボン酸や脂環族ジカルボン酸が好ましく、さらに炭素数4~12のアルキレン基を有する直鎖状脂肪族ジカルボン酸が特に好ましい。このような直鎖状脂肪族ジカルボン酸の例としては、アジピン酸、セバシン酸、マロン酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、ウンデカン酸、ウンデカジオン酸、ドデカンジオン酸、ダイマー酸およびこれらの機能的誘導体等を挙げることができる。脂環族ジカルボン酸としては、1,4-シクロヘキサンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等の脂環式ジカルボン酸が挙げられる。
 また、前記芳香族ジアミンとしては、メタキシリレンジアミン、パラキシリレンジアミン、パラ-ビス(2-アミノエチル)ベンゼン等が挙げられる。
 また、前記芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、ジフェニル-4,4’-ジカルボン酸、ジフェノキシエタンジカルボン酸およびその機能的誘導体等が挙げられる。
 具体的なポリアミドとしては、ポリアミド4、ポリアミド6、ポリアミド10、ポリアミド11、ポリアミド12、ポリアミド4,6、ポリアミド6,6、ポリアミド6,10、ポリアミド6T、ポリアミド9T、ポリアミド6IT、ポリメタキシリレンアジパミド(ポリアミドMXD6)、イソフタル酸共重合ポリメタキシリレンアジパミド(ポリアミドMXD6I)、ポリメタキシリレンセバカミド(ポリアミドMXD10)、ポリメタキシリレンドデカナミド(ポリアミドMXD12)、ポリ1,3-ビス(アミノメチル)シクロヘキサンアジパミド(ポリアミドBAC6)、ポリパラキシリレンセバカミド(ポリアミドPXD10)等がある。より好ましいポリアミドとしては、ポリアミド6、ポリアミドMXD6、ポリアミドMXD6Iが挙げられる。
 また、前記ポリアミドの共重合成分として、少なくとも一つの末端アミノ基、もしくは末端カルボキシル基を有する数平均分子量が2000~20000のポリエーテル、又は前記末端アミノ基を有するポリエーテルの有機カルボン酸塩、又は前記末端カルボキシル基を有するポリエーテルのアミノ塩を用いることもできる。具体的な例としては、ビス(アミノプロピル)ポリ(エチレンオキシド)(数平均分子量が2000~20000のポリエチレングリコール)が挙げられる。
 また、前記部分芳香族ポリアミドは、トリメリット酸、ピロメリット酸等の3塩基以上の多価カルボン酸から誘導される構成単位を実質的に線状である範囲内で含有していてもよい。
 前記ポリアミドは、基本的には従来公知の、水共存下での溶融重縮合法あるいは水不存在下の溶融重縮合法や、これらの溶融重縮合法で得られたポリアミドを更に固相重合する方法等によって製造することが出来る。溶融重縮合反応は1段階で行ってもよいし、また多段階に分けて行ってもよい。これらは回分式反応装置から構成されていてもよいし、また連続式反応装置から構成されていてもよい。また溶融重縮合工程と固相重合工程は連続的に運転してもよいし、分割して運転してもよい。
[エチレン-ビニルアルコール共重合体]
 本発明で使用されるエチレンビニルアルコール共重合体としては、特に限定されないが、好ましくはエチレン含量15~60モル%、更に好ましくは20~55モル%、より好ましくは29~44モル%であり、酢酸ビニル成分のケン化度が好ましくは90モル%以上、更に好ましくは95モル%以上のものである。
 またエチレンビニルアルコール共重合体には、本発明の効果に悪影響を与えない範囲で、更に少量のプロピレン、イソブテン、α-オクテン、α-ドデセン、α-オクタデセン等のα-オレフィン、不飽和カルボン酸又はその塩・部分アルキルエステル・完全アルキルエステル・ニトリル・アミド・無水物、不飽和スルホン酸又はその塩等のコモノマーを含んでいてもよい。
[植物由来樹脂]
 植物由来樹脂の具体例としては、上記樹脂と重複する部分もあるが、特に限定されることなく公知の種々の石油以外を原料とする脂肪族ポリエステル系生分解性樹脂が挙げられる。脂肪族ポリエステル系生分解性樹脂としては、例えば、ポリグリコール酸(PGA)、ポリ乳酸(PLA)等のポリ(α-ヒドロキシ酸);ポリブチレンサクシネート(PBS)、ポリエチレンサクシネート(PES)等のポリアルキレンアルカノエート等が挙げられる。
[その他の樹脂]
 本発明の目的を阻害しない範囲で、樹脂組成物に付与したい性能等に応じて、従来公知の種々の樹脂を樹脂(B)として添加してもよい。例えば、耐衝撃性、耐ピンホール性、柔軟性を付与する観点からは、ポリエチレンやポリプロピレン等のポリオレフィンやそれらの各種変性物、ポリオレフィン系エラストマー、ポリアミド系エラストマー、スチレン-ブタジエン共重合樹脂やその水素添加処理物、ポリエステル系エラストマー等に代表される各種熱可塑性エラストマー、ナイロン6,66,12、ナイロン12等の各種ポリアミド等が挙げられ、酸素吸収性能をさらに付与する観点からは、ポリブタジエンや変性ポリブタジエン等の炭素-炭素不飽和二重結合含有樹脂、を挙げることができる。
1-3.添加剤(D)
 本発明において、酸素吸収バリア層を形成するための樹脂組成物には、前述したポリアミド化合物(A)及び樹脂(B)以外に、必要に応じて更に添加剤(D)を含有してもよい。添加剤(D)は1種であってもよいし、2種以上の組合せであってもよい。樹脂組成物中における添加剤(D)の含有量は、添加剤の種類にもよるが、10質量%以下が好ましく、5質量%以下がより好ましい。
[白化防止剤・層間剥離防止剤]
 本発明においては、熱水処理後や長時間の経時後の白化抑制、落下や衝撃による異なる樹脂層間の剥離防止のために、白化防止剤・層間剥離防止剤として、脂肪族金属塩、ジアミド化合物及びジエステル化合物からなる群から選ばれる少なくとも1種を樹脂組成物に添加することが好ましい。これらの化合物は白化防止及び層間剥離防止双方の効果が期待できる。層間剥離防止の効果を有する化合物としては、被還元性有機化合物が挙げられる。なお、後述するように、脂肪族金属塩は酸化反応促進剤としての効果も有し、被還元性有機化合物は酸素吸収剤としての効果も有する。
 脂肪酸金属塩の炭素数は、好ましくは18~50、より好ましくは炭素数18~34である。脂肪酸金属塩を構成する脂肪酸は側鎖や二重結合があってもよいが、ステアリン酸(C18)、エイコ酸(C20)、ベヘン酸(C22)、モンタン酸(C28)、トリアコンタン酸(C30)などの直鎖飽和脂肪酸が好ましい。脂肪酸と塩を形成する金属に特に制限はないが、ナトリウム、カリウム、リチウム、カルシウム、バリウム、マグネシウム、ストロンチウム、アルミニウム、亜鉛等が例示され、ナトリウム、カリウム、及びリチウム、カルシウム、アルミニウム、及び亜鉛が特に好ましい。
 本発明に用いられるジアミド化合物としては、炭素数8~30の脂肪族ジカルボン酸と炭素数2~10のジアミンから得られるジアミド化合物が好ましい。脂肪族ジカルボン酸の炭素数が8以上、ジアミンの炭素数が2以上であると白化防止効果が期待できる。また、脂肪族ジカルボン酸の炭素数が30以下、ジアミンの炭素数が10以下で樹脂組成物中への均一分散が良好となる。脂肪族ジカルボン酸は側鎖や二重結合があってもよいが、直鎖飽和脂肪族ジカルボン酸が好ましい。ジアミド化合物は1種類でもよいし、2種以上を併用してもよい。
 前記脂肪族ジカルボン酸としては、ステアリン酸(C18)、エイコサン酸(C20)、ベヘン酸(C22)、モンタン酸(C28)、トリアコンタン酸(C30)等が例示できる。前記ジアミンとしては、エチレンジアミン、ブチレンジアミン、ヘキサンジアミン、キシリレンジアミン、ビス(アミノメチル)シクロヘキサン等が例示できる。これらを組み合わせて得られるジアミド化合物が好ましい。
 炭素数8~30の脂肪族ジカルボン酸と主としてエチレンジアミンからなるジアミンから得られるジアミド化合物、または主としてモンタン酸からなる脂肪族ジカルボン酸と炭素数2~10のジアミンから得られるジアミド化合物が好ましく、特に好ましくは主としてステアリン酸からなる脂肪族ジカルボン酸と主としてエチレンジアミンからなるジアミンから得られるジアミド化合物である。
 本発明に用いられるジエステル化合物としては、炭素数8~30の脂肪族ジカルボン酸と炭素数2~10のジオールから得られるジエステル化合物が好ましい。脂肪族ジカルボン酸の炭素数が8以上、ジオールの炭素数が2以上であると白化防止効果が期待できる。また、脂肪族ジカルボン酸の炭素数が30以下、ジオールの炭素数が10以下で樹脂組成物中への均一分散が良好となる。脂肪族ジカルボン酸は側鎖や二重結合があってもよいが、直鎖飽和脂肪族ジカルボン酸が好ましい。ジエステル化合物は1種類でもよいし、2種以上を併用してもよい。
 前記脂肪族ジカルボン酸としては、ステアリン酸(C18)、エイコサン酸(C20)、ベヘン酸(C22)、モンタン酸(C28)、トリアコンタン酸(C30)等が例示できる。前記ジオールとしては、エチレングリコール、プロパンジオール、ブタンジオール、ヘキサンジオール、キシリレングリコール、シクロヘキサンジメタノール等が例示できる。これらを組み合わせて得られるジエステル化合物が好ましい。
 特に好ましくは主としてモンタン酸からなる脂肪族ジカルボン酸と主としてエチレングリコール及び/又は1,3-ブタンジオールからなるジオールから得られるジエステル化合物である。
 本発明において、脂肪酸金属塩、ジアミド化合物及びジエステル化合物の合計の添加量は、樹脂組成物中に好ましくは0.005~0.5質量%、より好ましくは0.05~0.5質量%、さらに好ましくは0.12~0.5質量%である。樹脂組成物中に0.005質量%以上添加し、かつ結晶化核剤と併用することにより白化防止の相乗効果が期待できる。また、添加量が樹脂組成物中に0.5質量%以下であると、当該樹脂組成物を成形して得られる成形体の曇値を低く保つことが可能となる。
 被還元性有機化合物は、好ましくはキノン類、アゾ化合物等の光被還元性顔料類、UVスペクトルに吸収のあるカルボニル化合物を使用できる。これらの中でもキノン類が特に好ましい。キノン類は、ベンゼン環等の環に2つのカルボニル基(例えばケトン構造)が存在する化合物であり、例えば、ベンゾキノン、アントラキノン、ナフトキノン等のキノンや、ヒドロキシル基、メチル基、エチル基、アミノ基、カルボキシル基等の官能基が付加したキノン等の誘導体が挙げられ、さらに、これらのキノンやその誘導体に部分的に水素が付加されてもよい(以下、それぞれベンゾキノン類、アントラキノン類、ナフトキノン類と称す)。官能基の種類、数及び位置に特に制限は無い。また、上記ベンゾキノン類、アントラキノン類、ナフトキノン類は、二量体や三量体などであってもよい。
 ベンゾキノン類としては、1,2-ベンゾキノン(o-ベンゾキノン)、1,4-ベンゾキノン(p-ベンゾキノン)、2-クロロ-1,4-ベンゾキノン、2,3-ジクロロ-5,6-ジシアノベンゾキノン、2,5-ジクロロ-3,6-ジヒドロキシ-1,4-ベンゾキノン、2,5-ジクロロ-1,4-ベンゾキノン、2,6-ジクロロ-1,4-ベンゾキノン、2,5-ジヒドロキシ-1,4-ベンゾキノン、2,6-ジ-tert-ブチル-1,4-ベンゾキノン、3,5-ジ-tert-ブチル-1,2-ベンゾキノン、2,6-ジブロモ-N-クロロ-1,4-ベンゾキノンイミン、2,6-ジブロモ-N-クロロ-1,4-ベンゾキノンモノイミン、2,5-ジメチル-1,4-ベンゾキノン、2,6-ジメチルベンゾキノン、2,6-ジメトキシ-1,4-ベンゾキノン、テトラクロロ-1,4-ベンゾキノン、テトラクロロ-1,2-ベンゾキノン、テトラヒドロキシ-1,4-ベンゾキノン、テトラフルオロ-1,4-ベンゾキノン、N,2,6-トリクロロ-1,4-ベンゾキノンモノイミン、トリメチル-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン、1,4-ベンゾキノンジオキシム、メチル-1,4-ベンゾキノン等が挙げられるがこれらに限定されない。
 アントラキノン類としては、アントラキノン、2-メチルアントラキノン、2-エチルアントラキノン、ジヒドロキシアントラキノン、トリヒドロキシアントラキノン、1,2,3,4-テトラヒドロアントラキノン、1,4,4a,9a-テトラヒドロアントラキノン、ヘキサヒドロアントラキノン、1-アミノアントラキノン、1-アミノ-4-ヒドロキシアントラキノン、アントラキノン-2,6-ジスルホン酸二ナトリウム、アントラキノン-1-スルホン酸ナトリウム、アントラキノン-2-スルホン酸ナトリウム一水和物、1-クロロアントラキノン、2-クロロアントラキノン、1,4-ジアミノアントラキノン、1,5-ジクロロアントラキノン、1,5-ジヒドロキシアントラキノン、1,8-ジヒドロキシアントラキノン、1,4-ジヒドロキシアントラキノン、4,5-ジヒドロキシアントラキノン-2-カルボン酸、1,4-ジメチルアントラキノン、1,2,4-トリヒドロキシアントラキノン、2-(ヒドロキシメチル)アントラキノン、2-tert-ブチルアントラキノン等が挙げられるがこれらに限定されない。
 ナフトキノン類としては、1,2-ナフトキノン、1,4-ナフトキノン、2-ヒドロキシ-1,4-ナフトキノン、5-ヒドロキシ-1,4-ナフトキノン、5,8-ジヒドロキシ-1,4-ナフトキノン、2-メチル-1,4-ナフトキノン、2,3-ジクロロ-5,8-ジヒドロキシ-1,4-ナフトキノン、2,3-ジクロロ-1,4-ナフトキノン、1,2-ナフトキノン-4-スルホン酸ナトリウム等が挙げられるがこれらに限定されない。
 被還元性有機化合物は、ベンゾキノン類、アントラキノン類及びナフトキノン類から選ばれることが好ましい。また、被還元性有機化合物は、部分的に水素化されたベンゾキノン類、アントラキノン類、ナフトキノン類から選ばれることがより好ましい。また、被還元性有機化合物は、官能基を有する部分的に水素化されたベンゾキノン類、アントラキノン類、ナフトキノン類から選ばれることがさらに好ましい。さらに、被還元性有機化合物が、テトラヒドロアントラキノン、官能基を有するテトラヒドロアントラキノン、ヘキサヒドロアントラキノン及び官能基を有するヘキサヒドロアントラキノンから選ばれることが特に好ましい。
 被還元性有機化合物の含有量は、樹脂組成物中に1~10質量%含まれていることが好ましく、この範囲であると、良好な耐層間剥離性を有する成形体が得られる。
[層状珪酸塩]
 本発明において、樹脂組成物は層状珪酸塩を含有してもよい。層状珪酸塩を添加することで、多層インジェクション成形体に酸素ガスバリア性だけでなく、炭酸ガス等のガスに対するバリア性を付与することができる。
 層状珪酸塩は、0.25~0.6の電荷密度を有する2-八面体型や3-八面体型の層状珪酸塩であり、2-八面体型としては、モンモリロナイト、バイデライト等、3-八面体型としてはヘクトライト、サボナイト等が挙げられる。これらの中でも、モンモリロナイトが好ましい。
 層状珪酸塩は、高分子化合物や有機系化合物等の有機膨潤化剤を予め層状珪酸塩に接触させて、層状珪酸塩の層間を拡げたものとすることが好ましい。有機膨潤化剤として、第4級アンモニウム塩が好ましく使用できるが、好ましくは、炭素数12以上のアルキル基又はアルケニル基を少なくとも一つ以上有する第4級アンモニウム塩が用いられる。
 有機膨潤化剤の具体例として、トリメチルドデシルアンモニウム塩、トリメチルテトラデシルアンモニウム塩、トリメチルヘキサデシルアンモニウム塩、トリメチルオクタデシルアンモニウム塩、トリメチルエイコシルアンモニウム塩等のトリメチルアルキルアンモニウム塩;トリメチルオクタデセニルアンモニウム塩、トリメチルオクタデカジエニルアンモニウム塩等のトリメチルアルケニルアンモニウム塩;トリエチルドデシルアンモニウム塩、トリエチルテトラデシルアンモニウム塩、トリエチルヘキサデシルアンモニウム塩、トリエチルオクタデシルアンモニウム等のトリエチルアルキルアンモニウム塩;トリブチルドデシルアンモニウム塩、トリブチルテトラデシルアンモニウム塩、トリブチルヘキサデシルアンモニウム塩、トリブチルオクタデシルアンモニウム塩等のトリブチルアルキルアンモニウム塩;ジメチルジドデシルアンモニウム塩、ジメチルジテトラデシルアンモニウム塩、ジメチルジヘキサデシルアンモニウム塩、ジメチルジオクタデシルアンモニウム塩、ジメチルジタロウアンモニウム塩等のジメチルジアルキルアンモニウム塩;ジメチルジオクタデセニルアンモニウム塩、ジメチルジオクタデカジエニルアンモニウム塩等のジメチルジアルケニルアンモニウム塩;ジエチルジドデシルアンモニウム塩、ジエチルジテトラデシルアンモニウム塩、ジエチルジヘキサデシルアンモニウム塩、ジエチルジオクタデシルアンモニウム等のジエチルジアルキルアンモニウム塩;ジブチルジドデシルアンモニウム塩、ジブチルジテトラデシルアンモニウム塩、ジブチルジヘキサデシルアンモニウム塩、ジブチルジオクタデシルアンモニウム塩等のジブチルジアルキルアンモニウム塩;メチルベンジルジヘキサデシルアンモニウム塩等のメチルベンジルジアルキルアンモニウム塩;ジベンジルジヘキサデシルアンモニウム塩等のジベンジルジアルキルアンモニウム塩;トリドデシルメチルアンモニウム塩、トリテトラデシルメチルアンモニウム塩、トリオクタデシルメチルアンモニウム塩等のトリアルキルメチルアンモニウム塩;トリドデシルエチルアンモニウム塩等のトリアルキルエチルアンモニウム塩;トリドデシルブチルアンモニウム塩等のトリアルキルブチルアンモニウム塩;4-アミノ-n-酪酸、6-アミノ-n-カプロン酸、8-アミノカプリル酸、10-アミノデカン酸、12-アミノドデカン酸、14-アミノテトラデカン酸、16-アミノヘキサデカン酸、18-アミノオクタデカン酸等のω-アミノ酸等が挙げられる。また、水酸基及び/又はエーテル基含有のアンモニウム塩、中でも、メチルジアルキル(PAG)アンモニウム塩、エチルジアルキル(PAG)アンモニウム塩、ブチルジアルキル(PAG)アンモニウム塩、ジメチルビス(PAG)アンモニウム塩、ジエチルビス(PAG)アンモニウム塩、ジブチルビス(PAG)アンモニウム塩、メチルアルキルビス(PAG)アンモニウム塩、エチルアルキルビス(PAG)アンモニウム塩、ブチルアルキルビス(PAG)アンモニウム塩、メチルトリ(PAG)アンモニウム塩、エチルトリ(PAG)アンモニウム塩、ブチルトリ(PAG)アンモニウム塩、テトラ(PAG)アンモニウム塩(ただし、アルキルはドデシル、テトラデシル、ヘキサデシル、オクタデシル、エイコシル等の炭素数12以上のアルキル基を表し、PAGはポリアルキレングリコール残基、好ましくは、炭素数20以下のポリエチレングリコール残基またはポリプロピレングリコール残基を表す)等の少なくとも一のアルキレングリコール残基を含有する4級アンモニウム塩も有機膨潤化剤として使用することができる。中でもトリメチルドデシルアンモニウム塩、トリメチルテトラデシルアンモニウム塩、トリメチルヘキサデシルアンモニウム塩、トリメチルオクタデシルアンモニウム塩、ジメチルジドデシルアンモニウム塩、ジメチルジテトラデシルアンモニウム塩、ジメチルジヘキサデシルアンモニウム塩、ジメチルジオクタデシルアンモニウム塩、ジメチルジタロウアンモニウム塩が好ましい。なお、これらの有機膨潤化剤は、単独でも複数種類の混合物としても使用できる。
 本発明では、有機膨潤化剤で処理した層状珪酸塩を樹脂組成物中に0.5~8質量%添加したものが好ましく用いられ、より好ましくは1~6質量%、更に好ましくは2~5質量%である。層状珪酸塩の添加量が0.5質量%以上であればガスバリア性の改善効果が十分に得られ、8質量%以下であれば酸素吸収バリア層の柔軟性が悪化することによるピンホールの発生等の問題が生じにくい。
 酸素吸収バリア層において、層状珪酸塩は局所的に凝集することなく均一に分散していることが好ましい。ここでいう均一分散とは、酸素吸収バリア層中において層状珪酸塩が平板状に分離し、それらの50%以上が5nm以上の層間距離を有することをいう。ここで層間距離とは平板状物の重心間距離のことをいう。この距離が大きい程分散状態が良好となり、透明性等の外観が良好で、かつ酸素、炭酸ガス等のガスバリア性を向上させることができる。
[酸化反応促進剤]
 酸素吸収バリア層の酸素吸収性能を更に高めるために、本発明の効果を損なわない範囲で従来公知の酸化反応促進剤を添加してもよい。酸化反応促進剤はポリアミド化合物(A)が有する酸素吸収性能を促進することで、酸素吸収バリア層の酸素吸収性能を高めることができる。酸化反応促進剤としては、鉄、コバルト、ニッケル等の周期律表第VIII族金属、銅や銀等の第I族金属、スズ、チタン、ジルコニウム等の第IV族金属、バナジウムの第V族、クロム等の第VI族、マンガン等の第VII族の金属の低価数の無機酸塩もしくは有機酸塩、又は上記遷移金属の錯塩を例示することができる。これらの中でも、酸素反応促進効果に優れるコバルト塩やコバルト塩とマンガン塩との組合せが好ましい。
 本発明において、酸素反応促進剤の添加量は、樹脂組成物中に好ましくは金属原子濃度として10~800ppm、より好ましくは50~600ppm、さらに好ましくは100~400ppmである。酸化反応促進の効果はポリアミド化合物(A)の末端アミノ基濃度〔NH2〕に依存し、末端アミノ基濃度〔NH2〕が低いほど酸化反応が促進される。
[酸素吸収剤]
 酸素吸収バリア層の酸素吸収性能を更に高めるために、本発明の効果を損なわない範囲で従来公知の酸素吸収剤を添加してもよい。酸素吸収剤はポリアミド化合物(A)が有する酸素吸収性能と別に酸素吸収バリア層に酸素吸収性能を付与することで、酸素吸収バリア層の酸素吸収性能を高めることができる。酸素吸収剤としては、ビタミンCやビタミンE、ブタジエンやイソプレンのように分子内に炭素-炭素二重結合をもつ化合物に代表される酸化性有機化合物を例示することできる。
 本発明において、酸素吸収剤の添加量は、樹脂組成物中に好ましくは0.01~5質量%、より好ましくは0.1~4質量%、さらに好ましくは0.5~3質量%である。
[ゲル化防止・フィッシュアイ低減剤]
 本発明においては、酢酸ナトリウム、酢酸カルシウム、酢酸マグネシウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸ナトリウムおよびそれらの誘導体から選択される1種以上のカルボン酸塩類を添加することが好ましい。ここで該誘導体としては、12-ヒドロキシステアリン酸カルシウム、12-ヒドロキシステアリン酸マグネシウム、12-ヒドロキシステアリン酸ナトリウム等の12-ヒドロキシステアリン酸金属塩等が挙げられる。前記カルボン酸塩類を添加することで、成形加工中に起こるポリアミド化合物(A)のゲル化防止や成形体中のフィッシュアイを低減することができ、成形加工の適性が向上する。
 前記カルボン酸塩類の添加量としては、樹脂組成物中の濃度として、好ましくは400~10000ppm、より好ましくは800~5000ppm、更に好ましくは1000~3000ppmである。400ppm以上であれば、ポリアミド化合物(A)の熱劣化を抑制でき、ゲル化を防止できる。また、10000ppm以下であれば、ポリアミド化合物(A)が成形不良を起こさず、着色や白化することもない。溶融したポリアミド化合物(A)中に塩基性物質であるカルボン酸塩類が存在すると、ポリアミド化合物(A)の熱による変性が遅延し、最終的な変性物と考えられるゲルの生成を抑制すると推測される。
 なお、前述のカルボン酸塩類はハンドリング性に優れ、この中でもステアリン酸金属塩は安価である上、滑剤としての効果を有しており、成形加工をより安定化することができるため好ましい。更に、カルボン酸塩類の形状に特に制限はないが、粉体でかつその粒径が小さい方が乾式混合する場合、樹脂組成物中に均一に分散させることが容易であるため、その粒径は0.2mm以下が好ましい。
 さらに、より効果的なゲル化防止、フィッシュアイ低減、更にはコゲ防止処方として、1g当たりの金属塩濃度が高い酢酸ナトリウムを用いることが好ましい。酢酸ナトリウムを用いる場合、ポリアミド化合物(A)及び樹脂(B)と乾式混合して成形加工してもよいが、ハンドリング性や酢酸臭の低減等の観点から、ポリアミド化合物(A)と樹脂(B)と酢酸ナトリウムとからなるマスターバッチを、ポリアミド化合物(A)及び樹脂(B)と乾式混合して成形加工することが好ましい。マスターバッチに用いる酢酸ナトリウムは、樹脂組成物中に均一に分散させることが容易であるため、その粒径は、0.2mm以下が好ましく、0.1mm以下がより好ましい。
[酸化防止剤]
 本発明においては、酸素吸収性能を制御する観点や機械物性低下を抑える観点から酸化防止剤を添加することが好ましい。酸化防止剤としては、銅系酸化防止剤、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、リン系酸化防止剤、チオ系酸化防止剤等を例示することができ、中でもヒンダードフェノール系酸化防止剤、リン系酸化防止剤が好ましい。
 ヒンダードフェノール系酸化防止剤の具体例としては、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2-チオビス(4-メチル-6-1-ブチルフェノール)、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロキシシンナムアミド)、3,5-ジ-t-ブチル-4-ヒドロキシ-ベンジルホスホネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルスルホン酸エチルカルシウム、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、2,6-ジ-t-ブチル-p-クレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-t-ブチル-4-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス-(4-メチル-6-t-ブチルフェノール)、2,2’-メチレン-ビス-(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス-(3-メチル-6-t-ブチルフェノール)、オクチル化ジフェニルアミン、2,4-ビス[(オクチルチオ)メチル]-O-クレゾール、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール、3,9-ビス[1,1-ジメチル-2-[β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス[3,3’-ビス-(4’-ヒドロキシ-3’-t-ブチルフェニル)ブチリックアシッド]グリコールエステル、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-sec-トリアジン-2,4,6-(1H,3H,5H)トリオン、d-α-トコフェロール等が挙げられる。これらは単独であるいはこれらの混合物で用いることができる。ヒンダードフェノール化合物の市販品の具体例としては、BASF社製のIrganox1010やIrganox1098が挙げられる(いずれも商品名)。
 リン系酸化防止剤の具体例としては、トリフェニルホスファイト、トリオクタデシルホスファイト、トリデシルホスファイト、トリノニルフェニルホスファイト、ジフェニルイソデシルホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、テトラ(トリデシル-4,4’-イソプロピリデンジフェニルジホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト等の有機リン化合物が挙げられる。これらは単独であるいはこれらの混合物で用いることができる。
 酸化防止剤の含有量は、組成物の各種性能を損なわない範囲であれば特に制限無く使用できるが、酸素吸収性能を制御する観点や機械物性低下を抑える観点から、樹脂組成物中に好ましくは0.001~3質量%、より好ましくは0.01~1質量%である。
[その他の添加剤]
 樹脂組成物は、要求される用途や性能に応じて、滑剤、艶消剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、可塑剤、難燃剤、帯電防止剤、着色防止剤、結晶化核剤等の添加剤を含有してもよい。これらの添加剤は、本発明の効果を損なわない範囲で、必要に応じて含有することができる。
2.樹脂(C)を主成分とする層(Y)
 本発明における層(Y)は、樹脂(C)を主成分とする層である。ここで、「主成分とする」とは、層(Y)中に、樹脂(C)を70質量%以上、好ましくは80質量%以上、より好ましくは90~100質量%含まれることを意味する。層(Y)は、樹脂(C)に加えて、所望する性能等に応じて、前記添加剤(D)を含んでいてもよい。
 本発明の多層インジェクション成形体は、層(Y)を複数有していてもよく、複数の層(Y)の構成は互いに同一であっても異なっていてもよい。
 層(Y)の厚みは、用途に応じて適宜決定することができ、多層インジェクション成形体に要求される落下耐性等の強度や柔軟性等の諸物性を確保するという観点からは、好ましくは5~200μm、より好ましくは10~150μm、更に好ましくは15~100μmである。
 本発明において、樹脂(C)としては任意の樹脂を使用することができ、特に限定されない。例えば、上記樹脂組成物に含まれる樹脂(B)として挙げられたものを使用することができる。本発明において、層(X)に含まれる樹脂(B)と、層(Y)に含まれる樹脂(C)とは、同一であっても異なっていてもよい。
3.任意の層
 本発明の多層インジェクション成形体は、前記層(X)及び(Y)に加えて、所望する性能等に応じて任意の層を含んでいてもよい。そのような任意の層としては、例えば、接着層等が挙げられる。
3-1.接着層
 本発明の多層インジェクション成形体において、隣接する2つの層の間で実用的な層間接着強度が得られない場合には、当該2つの層の間に接着剤層を設けることが好ましい。
 接着層は、接着性を有する熱可塑性樹脂を含むことが好ましい。接着性を有する熱可塑性樹脂としては、例えば、ポリエチレン又はポリプロピレン等のポリオレフィン系樹脂をアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン樹脂、ポリエステル系ブロック共重合体を主成分とした、ポリエステル系熱可塑性エラストマーが挙げられる。接着層としては、接着性の観点から、層(Y)として用いられている樹脂(C)と同種の樹脂を変性したものを用いることが好ましい。
 接着層の厚みは、実用的な接着強度を発揮しつつ成形加工性を確保するという観点から、好ましくは2~100μm、より好ましくは5~90μm、更に好ましくは10~80μmである。
4.多層インジェクション成形体及びその製造方法
 本発明の多層インジェクション成形体の製造方法及び層構成については特に限定されず、通常の射出成形法により製造することができる。例えば、2台以上の射出機を備えた成形機及び射出用金型を用いて、層(X)を構成する材料及び層(Y)を構成する材料をそれぞれの射出シリンダーから金型ホットランナーを通して、キャビティー内に射出して、射出用金型の形状に対応した多層インジェクション成形体を製造することができる。また、先ず、層(Y)を構成する材料を射出シリンダーから射出し、次いで層(X)を構成する材料を別の射出シリンダーから、層(Y)を構成する樹脂と同時に射出し、次に層(Y)を構成する樹脂を必要量射出してキャビティーを満たすことにより3層構造Y/X/Yの多層インジェクション成形体が製造できる。
 また、先ず、層(Y)を構成する材料を射出し、次いで層(X)を構成する材料を単独で射出し、最後に層(Y)を構成する材料を必要量射出して金型キャビティーを満たすことにより、5層構造Y/X/Y/X/Yの多層インジェクション成形体が製造できる。
 また、先ず、層(Y1)を構成する材料を射出シリンダーから射出し、次いで層(Y2)を構成する材料を別の射出シリンダーから、層(Y1)を構成する材料と同時に射出し、次に層(X)を構成する材料を層(Y1)、層(Y2)を構成する材料と同時に射出し、次に層(Y1)を構成する材料を必要量射出してキャビティーを満たすことにより5層構造Y1/Y2/X/Y2/Y1の多層インジェクション成形体が製造できる。
 また、射出成形法ではないが、圧縮成形法により多層成形体を得てもよい。例えば、熱可塑性樹脂溶融物中に酸素吸収樹脂剤を設け、その溶融塊を雄型に供給するとともに、雌型により圧縮し、圧縮成形物を冷却固化することにより成形体を得られる。
 得られた成形体の口頸部に耐熱性を与えるため、この段階で口頸部を熱処理により結晶化させてもよい。結晶化度は好ましくは30~50%、より好ましくは35~45%である。なお、結晶化は後述する二次加工を施した後に実施してもよい。
 本発明の多層インジェクション成形体自体が容器である場合、容器外からわずかに侵入する酸素のほか、容器内の酸素を吸収して、保存する内容物品の酸素による変質を防止することができる。
 本発明の多層インジェクション成形体の形状は特に限定されず、金型に応じて任意の形状とすることができる。本発明の多層インジェクション成形体が酸素バリア性能及び酸素吸収性能を発現することができることを考慮すると、本発明の多層インジェクション成形体は、カップ状容器(インジェクションカップ)やボトル状容器等の保存容器であることが好ましい。また、PETボトルのような後述するようなブロー成形等の二次加工のために、本発明の多層インジェクション成形体は、試験管状のプリフォーム(パリソン)であることも好ましい。
<<多層インジェクション成形体を加工して得られる容器>>
 本発明の多層インジェクション成形体を二次加工して得られる容器は、容器外からわずかに侵入する酸素のほか、容器内の酸素を吸収して、保存する内容物品の酸素による変質を防止することができる。
 二次加工としてはブロー成形や延伸ブロー成形等が挙げられ、二次加工して得られる容器としてはボトルが挙げられる。
 インジェクションブロー成形では、まず本発明の多層インジェクション成形体として試験管状のプリフォーム(パリソン)を成形し、次いで加熱したプリフォームの口部を治具で固定し、該プリフォームを最終形状金型に嵌め、口部から空気を吹込み、プリフォームを膨らませて金型に密着させ、冷却固化させることでボトル状に成形することができる。
 また、インジェクションストレッチブロー成形では、加熱したプリフォームの口部を治具で固定し、該プリフォームを最終形状金型に嵌め、口部から延伸ロッドで延伸しながら空気を吹込み、プリフォームをブロー延伸させて金型に密着させ、冷却固化させることでボトル状に成形することができる。
 なお、インジェクションストレッチブロー成形法としては、大別してホットパリソン方式とコールドパリソン方式とがある。前者はプリフォームを完全に冷却することなく、軟化状態でブロー成形する。一方、後者のコールドパリソン方式ではプリフォームを最終形状の寸法よりかなり小さく、樹脂が非晶質である過冷却有底プリフォームとして形成し、このプリフォームをその延伸温度に予備過熱し、最終形状金型中で軸方向に引張延伸するとともに、周方向にブロー延伸する方式で大量生産に向いている。いずれの方法においても、この多層プリフォームをガラス転移点(Tg)以上の延伸温度に加熱後、熱処理(ヒートセット)温度に加熱された最終形状金型内においてストレッチブロー成形法によって、延伸ロッドにより縦方向に延伸すると共にブローエアによって横方向に延伸する。最終ブロー成形体の延伸倍率は、縦方向で1.2~6倍、横方向で1.2~4.5倍が好ましい。
 上述した最終形状金型を、樹脂の結晶化が促進される温度、例えばPET樹脂では120~230℃、好ましくは130~210℃に加熱してブロー時に、成形体の器壁の外側を金型内面に所定時間接触させて熱処理を行う。所定時間の熱処理後、ブロー用流体を内部冷却用流体に切換えて内層を冷却する。熱処理時間は、ブロー成形体の厚みや温度によって相違するが、一般にPET樹脂の場合、1.5~30秒、特に2~20秒である。一方冷却時間も熱処理温度や冷却用流体の種類により異なるが、一般に0.1~30秒、特に0.2~20秒である。この熱処理により成形体各部は結晶化される。
 冷却用流体としては、常温の空気、冷却された各種気体、例えば-40℃~+10℃の窒素、空気、炭酸ガス等の他に、化学的に不活性な液化ガス、例えば液化窒素ガス、液化炭酸ガス、液化トリクロロフルオロメタンガス、液化ジクロロジフルオロメタンガス、他の液化脂肪族炭化水素ガス等が使用できる。この冷却用流体には、水等の気化熱の大きい液体ミストを共存させることもできる。上述した冷却用流体を使用することにより、著しく大きい冷却温度を得ることができる。また、ストレッチブロー成形に際して2個の金型を使用し、第1の金型では所定の温度及び時間の範囲内で熱処理した後、ブロー成形体を冷却用の第2の金型へ移し、再度ブローすると同時にブロー成形体を冷却してもよい。金型から取出したブロー成形体の外層は、放冷により、又は冷風を吹付けることにより冷却する。
 他のブロー成形体の製造方法としては、前記多層プリフォームを、一次ストレッチブロー金型を用いて最終ブロー成形体よりも大きい寸法の一次ブロー成形体とし、次いでこの一次ブロー成形体を加熱収縮させた後、二次金型を用いてストレッチブロー成形を行って最終ブロー成形体とする二段ブロー成形を採用してもよい。このブロー成形体の製造方法によれば、ブロー成形体の底部が十分に延伸薄肉化され、熱間充填、加熱滅菌時の底部の変形、耐衝撃性に優れたブロー成形体を得ることができる。
 本発明の多層インジェクション成形体及びそれを二次加工して得られる容器には、無機物又は無機酸化物の蒸着膜や、アモルファスカーボン膜をコーティングしてもよい。
 無機物又は無機酸化物としては、アルミニウムやアルミナ、酸化珪素等が挙げられる。無機物又は無機酸化物の蒸着膜は、本発明のインジェクション成形体及びそれを二次加工して得られる容器から、アセトアルデヒドやホルムアルデヒド等の溶出物を遮蔽できる。蒸着膜の形成方法は特に限定されず、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法や、PECVD等の化学蒸着法等が挙げられる。蒸着膜の厚みは、ガスバリア性、遮光性及び耐屈曲性等の観点から、好ましくは5~500nm、より好ましくは5~200nmである。
 アモルファスカーボン膜はダイヤモンド状炭素膜で、iカーボン膜または水素化アモルファスカーボン膜とも呼ばれる硬質炭素膜である。膜の形成法としては、排気により中空成形体の内部を真空にし、そこへ炭素源ガスを供給し、プラズマ発生用エネルギーを供給することにより、その炭素源ガスをプラズマ化させる方法が例示され、これにより、容器内面にアモルファスカーボン膜を形成させることができる。アモルファスカーボン膜は酸素や二酸化炭素のような低分子無機ガスの透過度を著しく減少させることができるだけでなく、臭いを有する各種の低分子有機化合物の収着を抑制することができる。アモルファスカーボン膜の厚みは、低分子有機化合物の収着抑制効果、ガスバリア性の向上効果、プラスチックとの密着性、耐久性および透明性等の観点から、50~5000nmが好ましい。
 本発明の多層インジェクション成形体及びそれを二次加工して得られる容器は、酸素吸収性能及び酸素バリア性能に優れ、かつ内容物の風味保持性に優れるため、種々の物品の包装に適している。
 被保存物としては、牛乳、乳製品、ジュース、コーヒー、茶類、アルコール飲料等の飲料;ソース、醤油、ドレッシング等の液体調味料、スープ、シチュー、カレー、乳幼児用調理食品、介護調理食品等の調理食品;ジャム、マヨネーズ等のペースト状食品;ツナ、魚貝等の水産製品;チーズ、バター等の乳加工品;肉、サラミ、ソーセージ、ハム等の畜肉加工品;にんじん、じゃがいも等の野菜類;卵;麺類;調理前の米類、調理された炊飯米、米粥等の加工米製品;粉末調味料、粉末コーヒー、乳幼児用粉末ミルク、粉末ダイエット食品、乾燥野菜、せんべい等の乾燥食品;農薬、殺虫剤等の化学品;医薬品、化粧品;ペットフード;シャンプー、リンス、洗剤等の雑貨品;種々の物品を挙げることができる。
 特に、酸素存在下で劣化を起こしやすい内容品、例えば、飲料ではビール、ワイン、フルーツジュース、炭酸ソフトドリンク等、食品では果物、ナッツ、野菜、肉製品、幼児食品、コーヒー、ジャム、マヨネーズ、ケチャップ、食用油、ドレッシング、ソース類、佃煮類、乳製品類等、その他では医薬品、化粧品等の包装材に好適である。
 また、これらの被保存物の充填前後に、被保存物に適した形で、本発明の多層インジェクション成形体及びそれを二次加工して得られる容器や被保存物の殺菌を施すことができる。殺菌方法としては、100℃以下での熱水処理、100℃以上の加圧熱水処理、130℃以上の超高温加熱処理等の加熱殺菌、紫外線、マイクロ波、ガンマ線等の電磁波殺菌、エチレンオキサイド等のガス処理、過酸化水素や次亜塩素酸等の薬剤殺菌等が挙げられる。
 以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、以下の実施例において、共重合体を構成する単位に関して、
  メタキシリレンジアミンに由来する単位を「MXDA」、
  1,3-ビス(アミノメチル)シクロヘキサンに由来する単位を「1,3BAC」、
  ヘキサメチレンジアミンに由来する単位を「HMDA」、
  アジピン酸に由来する単位を「AA」、
  イソフタル酸に由来する単位を「IPA」、
  DL-アラニンに由来する単位を「DL-Ala」、
  DL-ロイシンに由来する単位を「DL-Leu」、
  ε-カプロラクタムに由来する単位を「ε-CL」という。
 また、ポリメタキシリレンアジパミドを「N-MXD6」という。
 製造例で得られたポリアミド化合物のα-アミノ酸含有率、相対粘度、末端アミノ基濃度、ガラス転移温度及び融点は以下の方法で測定した。また、製造例で得られたポリアミド化合物からフィルムを作製し、その酸素吸収量を以下の方法で測定した。
(1)α-アミノ酸含有率
 1H-NMR(400MHz,日本電子(株)製、商品名:JNM-AL400、測定モード:NON(1H))を用いて、ポリアミド化合物のα-アミノ酸含有率の定量を実施した。具体的には、溶媒としてギ酸-dを用いてポリアミド化合物の5質量%の溶液を調製し、1H-NMR測定を実施した。
(2)相対粘度
 ポリアミド化合物1gを精秤し、96%硫酸100mlに20~30℃で撹拌溶解した。完全に溶解した後、速やかにキャノンフェンスケ型粘度計に溶液5mlを取り、25℃の恒温漕中で10分間放置後、落下時間(t)を測定した。また、96%硫酸そのものの落下時間(t0)も同様に測定した。t及びt0から次式により相対粘度を算出した。
   相対粘度=t/t0
(3)末端アミノ基濃度〔NH2
 ポリアミド化合物を精秤し、フェノール/エタノール=4/1容量溶液に20~30℃で撹拌溶解させ、完全に溶解した後、撹拌しつつ、メタノール5mlで容器内壁を洗い流し、0.01mol/L塩酸水溶液で中和滴定して末端アミノ基濃度〔NH2〕を求めた。
(4)ガラス転移温度及び融点
 示差走査熱量計((株)島津製作所製、商品名:DSC-60)を用い、昇温速度10℃/分で窒素気流下にDSC測定(示差走査熱量測定)を行い、ガラス転移温度(Tg)及び融点(Tm)を求めた。
(5)酸素吸収量
 Tダイを設置した30mmφ二軸押出機((株)プラスチック工学研究所製)を用い、(ポリアミド化合物の融点+20℃)のシリンダー・Tダイ温度にて、ポリアミド化合物から厚さ約100μmの無延伸単層フィルムを成形した。
 製造した無延伸単層フィルムから切り出した10cm×10cmの試験片2枚を、アルミ箔積層フィルムからなる25cm×18cmの3方シール袋に、水10mlを含ませた綿と共に仕込み、袋内空気量が400mlとなるようにして密封した。袋内の湿度は100%RH(相対湿度)とした。40℃下で7日保存後、14日保存後、28日保存後のそれぞれに袋内の酸素濃度を酸素濃度計(東レエンジニアリング(株)製、商品名:LC-700F)で測定し、この酸素濃度から酸素吸収量を計算した。
 なお、製造例11~15で得られたポリアミド化合物については、上記フィルムサンプルに代えて、ポリアミド化合物のペレット又は粉砕物を粉砕機で細かくした粉状サンプル2gを薬包紙に包んだものを用いて、上記と同様に酸素吸収量を計算した。
製造例1(ポリアミド化合物1の製造)
 撹拌機、分縮器、全縮器、圧力調整器、温度計、滴下槽及びポンプ、アスピレーター、窒素導入管、底排弁、ストランドダイを備えた内容積50Lの耐圧反応容器に、精秤したアジピン酸(旭化成ケミカルズ(株)製)13000g(88.96mol)、DL-アラニン((株)武蔵野化学研究所製)880.56g(9.88mol)、次亜リン酸ナトリウム11.7g(0.11mol)、酢酸ナトリウム6.06g(0.074mol)を入れ、十分に窒素置換した後、反応容器内を密閉し、容器内を0.4MPaに保ちながら撹拌下170℃まで昇温した。170℃に到達した後、反応容器内の溶融した原料へ滴下槽に貯めたメタキシリレンジアミン(三菱ガス化学(株)製)12082.2g(88.71mol)の滴下を開始し、容器内を0.4MPaに保ちながら生成する縮合水を系外へ除きながら反応槽内を連続的に240℃まで昇温した。メタキシリレンジアミンの滴下終了後、反応容器内を徐々に常圧に戻し、次いでアスピレーターを用いて反応槽内を80kPaに減圧して縮合水を除いた。減圧中に撹拌機の撹拌トルクを観察し、所定のトルクに達した時点で撹拌を止め、反応槽内を窒素で加圧し、底排弁を開け、ストランドダイからポリアミド化合物を抜き出してストランド化した。次にこのペレットをステンレス製の回転ドラム式の加熱装置に仕込み、5rpmで回転させた。十分窒素置換し、さらに少量の窒素気流下にて反応系内を室温から140℃まで昇温した。反応系内温度が140℃に達した時点で1torr以下まで減圧を行い、更に系内温度を110分間で180℃まで昇温した。系内温度が180℃に達した時点から、同温度にて180分間、固相重合反応を継続した。反応終了後、減圧を終了し窒素気流下にて系内温度を下げ、60℃に達した時点でペレットを取り出すことにより、MXDA/AA/DL-Ala共重合体(ポリアミド化合物1)を得た。
 なお、各モノマーの仕込み組成比は、メタキシリレンジアミン:アジピン酸:DL-アラニン=47.3:47.4:5.3(mol%)であった。
製造例2(ポリアミド化合物2の製造)
 各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL-アラニン=44.4:44.5:11.1(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/DL-Ala共重合体(ポリアミド化合物2)を得た。
製造例3(ポリアミド化合物3の製造)
 各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL-アラニン=41.1:41.3:17.6(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/DL-Ala共重合体(ポリアミド化合物3)を得た。
製造例4(ポリアミド化合物4の製造)
 各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL-アラニン=33.3:33.4:33.3(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/DL-Ala共重合体(ポリアミド化合物4)を得た。
製造例5(ポリアミド化合物5の製造)
 α-アミノ酸をDL-ロイシン(Ningbo Haishuo Bio-technology製)に変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL-ロイシン=44.3:44.6:11.1(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/DL-Leu共重合体(ポリアミド化合物5)を得た。
製造例6(ポリアミド化合物6の製造)
 ジカルボン酸成分をイソフタル酸(エイ・ジイ・インタナショナル・ケミカル(株)製)とアジピン酸の混合物に変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:イソフタル酸:DL-アラニン=44.3:39.0:5.6:11.1(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/IPA/DL-Ala共重合体(ポリアミド化合物6)を得た。
製造例7(ポリアミド化合物7の製造)
 コモノマーとしてε-カプロラクタム(宇部興産(株)製)を使用し、α-アミノ酸をDL-ロイシンに変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL-ロイシン:ε-カプロラクタム=41.0:41.3:11.8:5.9(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/DL-Leu/ε-CL共重合体(ポリアミド化合物7)を得た。
製造例8(ポリアミド化合物8の製造)
 ジアミン成分を1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学(株)製)とメタキシリレンジアミンの混合物に変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:1,3-ビス(アミノメチル)シクロヘキサン:アジピン酸:DL-アラニン=33.2:11.1:44.6:11.1(mol%)としたこと以外は製造例1と同様にしてMXDA/1,3BAC/AA/DL-Ala共重合体(ポリアミド化合物8)を得た。
製造例9(ポリアミド化合物9の製造)
 ジアミン成分をヘキサメチレンジアミン(昭和化学(株)製)とメタキシリレンジアミンの混合物に変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:ヘキサメチレンジアミン:アジピン酸:DL-アラニン=33.3:11.1:44.5:11.1(mol%)としたこと以外は製造例1と同様にしてMXDA/HMDA/AA/DL-Ala共重合体(ポリアミド化合物9)を得た。
製造例10(ポリアミド化合物10の製造)
 DL-アラニンを添加せず、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸=49.8:50.2(mol%)としたこと以外は製造例1と同様にしてN-MXD6(ポリアミド化合物10)を得た。
製造例11(ポリアミド化合物11の製造)
 固相重合を実施しなかったこと以外は製造例1と同様にしてMXDA/AA/DL-Ala共重合体(ポリアミド化合物11)を得た。
製造例12(ポリアミド化合物12の製造)
 固相重合を実施しなかったこと以外は製造例2と同様にしてMXDA/AA/DL-Ala共重合体(ポリアミド化合物12)を得た。
製造例13(ポリアミド化合物13の製造)
 固相重合を実施しなかったこと以外は製造例4と同様にしてMXDA/AA/DL-Ala共重合体(ポリアミド化合物13)を得た。
製造例14(ポリアミド化合物14の製造)
 固相重合を実施しなかったこと以外は製造例6と同様にしてMXDA/AA/IPA/DL-Ala共重合体(ポリアミド化合物14)を得た。
製造例15(ポリアミド化合物15の製造)
 固相重合を実施しなかったこと以外は製造例10と同様にしてN-MXD6(ポリアミド化合物15)を得た。
 表1に、ポリアミド化合物1~15の仕込みモノマー組成、並びに得られたポリアミド化合物のα-アミノ酸含有率、相対粘度、末端アミノ基濃度、ガラス転移温度、融点及び酸素吸収量の測定結果を示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 次に、実施例1~37及び比較例1~24において、上記ポリアミド化合物1~15を用いて多層インジェクション成形体及びそれを加工したボトルを作製した。
 実施例及び比較例で得られたボトル又はカップの酸素透過率、耐層間剥離性、及び開封時のヘッドスペース臭気について、以下の方法で測定し、評価した。
(1)ボトル又はカップの酸素透過率(OTR)
 23℃、成形体外部の相対湿度50%、内部の相対湿度100%の雰囲気下にてASTM D3985に準じて、成形後1日、7日、15日及び30日経過後のボトル又はカップの酸素透過率を測定した。測定は、酸素透過率測定装置(MOCON社製、商品名:OX-TRAN 2-61)を使用した。測定値が低いほど酸素バリア性が良好であることを示す。
(2)ボトル又はカップの耐層間剥離性
<実施例1~33、比較例1~17>
 ASTM D2463-95 Procedure Bに基づき、ボトルの落下試験により層間剥離高さを測定した。層間剥離高さが高いほど、耐層間剥離性が良好であることを示す。
 まず、ボトルに水を満たしキャップをした後、ボトルを落下させ層間剥離の有無を目視で判定した。ボトルは底部が床に接触するように垂直落下させた。落下高さ間隔は15cmとし、テスト容器数は30本とした。試験は、水の充填直後、及び水の充填後180日経過後に実施した。高さ450cmの落下試験で剥離しないものは、剥離なしとした。
<実施例34~37、比較例18~24>
 カップの胴部分をスライスして得た輪切りの切片について、酸素吸収バリア層と外側層とを手で引き剥がそうとしたときの剥離状態を下記のように評価した。試験は、成形直後、及び水を充填し180日保存後に実施した。
 a:剥離時に抵抗感がある。
 b:剥離時に抵抗感がない。
(3)開封時のヘッドスペース臭気
<実施例1~33、比較例1~17>
 ボトルに内容物として蒸留水350mlを充填して密封し、1ヶ月間25℃で保存後、開封時のヘッドスペース臭気の官能評価を行った。
<実施例34~37、比較例18~24>
 カップに内容物として蒸留水280mlを充填してアルミニウム箔により密封し、1ヶ月間25℃で保存後、開封時のヘッドスペース臭気の官能評価を行った。
 評価方法としては、5人のパネラーにより、開封直後の容器内の匂いを嗅ぎ、異臭の有無を評価した。
 ○:異臭が全くない。
 ×:少しでも異臭がある。
[3層構成(Y/X/Y)のパリソン及び2軸延伸ブロー成形ボトル]
実施例1
 下記の条件により、層(Y)を構成する樹脂(C)を射出シリンダーから射出し、次いで層(X)を構成する樹脂組成物を別の射出シリンダーから、層(Y)を構成する樹脂(C)と同時に射出し、次に層(Y)を構成する樹脂(C)を必要量射出してキャビティーを満たすことにより、(Y)/(X)/(Y)の3層構成のインジェクション成形体(パリソン)(22.5g)を得た。なお、層(X)を構成する樹脂組成物としては、ポリアミド化合物(A)と樹脂(B)とを混合した樹脂組成物を使用し、ポリアミド化合物(A)は、製造例1で製造したポリアミド化合物1を使用し、ポリアミド化合物(A)の混合割合は50質量%とした。樹脂(B)及び(C)としては、固有粘度(フェノール/テトラクロロエタン=6/4(質量比)の混合溶媒を使用、測定温度:30℃)が0.83のポリエチレンテレフタレート(日本ユニペット(株)製、商品名:BK-2180)を使用した。
 得られたパリソンを冷却後、二次加工として、パリソンを加熱し2軸延伸ブロー成形を行うことでボトルを製造した。得られたボトルの総質量に対する層(X)の質量は10質量%であった。
(パリソンの形状)
 全長95mm、外径22mm、肉厚2.7mm、パリソン各層の厚みは、外側層(Y)胴部厚み1460μm、層(X)胴部厚み290μm、内側層(Y)胴部厚み950μmとした。なお、パリソンの製造には、射出成形機(名機製作所(株)製、型式:M200、4個取り)を使用した。
(パリソンの成形条件)
 層(X)用の射出シリンダー温度:250℃
 層(Y)用の射出シリンダー温度:280℃
 金型内樹脂流路温度:280℃
 金型冷却水温度:15℃
(二次加工して得られたボトルの形状)
 全長160mm、外径60mm、内容積370ml、肉厚0.28mm、外側層(Y)胴部厚み146μm、層(X)胴部厚み29μm、内側層(Y)胴部厚み105μmとした。延伸倍率は縦1.9倍、横2.7倍とした。底部形状はシャンパンタイプである。胴部にディンプルを有する。なお、二次加工には、ブロー成形機((株)フロンティア製、型式:EFB1000ET)を使用した。
(二次加工条件)
 インジェクション成形体の加熱温度:100℃
 延伸ロッド用圧力:0.5MPa
 一次ブロー圧力:0.5MPa
 二次ブロー圧力:2.4MPa
 一次ブロー遅延時間:0.32sec
 一次ブロー時間:0.30sec
 二次ブロー時間:2.0sec
 ブロー排気時間:0.6sec
 金型温度:30℃
実施例2~9
 ポリアミド化合物(A)を、製造例2~9で製造したポリアミド化合物2~9に変更したこと以外はそれぞれ実施例1と同様にしてパリソン及びボトルを製造した。
比較例1
 ポリアミド化合物(A)を、製造例10で製造したポリアミド化合物10に変更したこと以外は実施例1と同様にしてパリソン及びボトルを製造した。
比較例2
 ポリアミド化合物(A)を、100質量部のポリアミド化合物10と0.42質量部のステアリン酸コバルト(II)とをドライブレンドしたものに変更したこと以外は実施例1と同様にしてパリソン及びボトルを製造した。
比較例3
 ポリアミド化合物(A)を、100質量部のポリアミド化合物10と0.3質量部のステアリン酸コバルト(II)と6質量部のマレイン酸変性ポリブタジエン(日本石油化学(株)製、商品名:M-2000-20)とをドライブレンドしたものに変更したこと以外は実施例1と同様にしてパリソン及びボトルを製造した。
実施例10~13
 層(X)における、ポリアミド化合物(A)の割合を10、30、70、90質量%に変更したこと以外はそれぞれ実施例2と同様にしてパリソン及びボトルを製造した。
実施例14
 層(X)における、ポリアミド化合物(A)の割合を5質量%に変更したこと以外は実施例4と同様にしてパリソン及びボトルを製造した。パリソンの厚みは、外側層(Y)胴部厚み1520μm、層(X)胴部厚み140μm、内側層(Y)胴部厚み1040μmとした。ボトルの厚みは外側層(Y)胴部厚み152μm、層(X)胴部厚み14μm、内側層(Y)胴部厚み114μmとした。
実施例15及び16
 層(X)における、ポリアミド化合物(A)の割合を10、90質量%に変更したこと以外はそれぞれ実施例14と同様にしてパリソン及びボトルを製造した。
比較例4~7
 層(X)における、ポリアミド化合物(A)の割合を10、30、70、90質量%に変更したこと以外はそれぞれ比較例1と同様にしてパリソン及びボトルを製造した。
実施例17~20
 ポリアミド化合物(A)を、製造例11~14で製造したポリアミド化合物11~14に変更したこと以外はそれぞれ実施例1と同様にしてパリソン及びボトルを製造した。
比較例8
 ポリアミド化合物(A)を、製造例15で製造したポリアミド化合物15に変更したこと以外は実施例1と同様にしてパリソン及びボトルを製造した。
比較例9
 ポリアミド化合物(A)を、100質量部のポリアミド化合物15と0.42質量部のステアリン酸コバルト(II)とをドライブレンドしたものに変更したこと以外は実施例1と同様にしてパリソン及びボトルを製造した。
比較例10
 ポリアミド化合物(A)を、100質量部のポリアミド化合物15と0.3質量部のステアリン酸コバルト(II)と6質量部のマレイン酸変性ポリブタジエン(日本石油化学(株)製、商品名:M-2000-20)とをドライブレンドしたものを使用したこと以外は実施例1と同様にしてパリソン及びボトルを製造した。
実施例21及び22
 層(X)における、ポリアミド化合物(A)の割合を10質量%に変更したこと以外はそれぞれ実施例17又は18と同様にしてパリソン及びボトルを製造した。
比較例11
 層(X)における、ポリアミド化合物(A)の割合を10質量%に変更したこと以外は比較例8と同様にしてパリソン及びボトルを製造した。
[5層構成(Y/X/Y/X/Y)のパリソン及び2軸延伸ブロー成形ボトル]
実施例23
 多層インジェクション成形体の層構成を、層(Y)を構成する樹脂(C)を射出し、次いで層(X)を構成する樹脂組成物を単独で射出し、最後に層(Y)を構成する樹脂(C)を必要量射出して金型キャビティーを満たして射出成形することにより、成形体の層構成を(Y)/(X)/(Y)/(X)/(Y)の5層構成に変更したこと以外は実施例1と同様にしてボトルを得た。パリソン各層の厚みは、成形体外側から層(Y)胴部厚み970μm、層(X)胴部厚み80μm、層(Y)胴部厚み880μm、層(X)胴部厚み60μm、層(Y)胴部厚み710μmとした。ボトル各層の厚みは、成形体外側から層(Y)胴部厚み99μm、層(X)胴部厚み10μm、層(Y)胴部厚み90μm、層(X)胴部厚み8μm、層(Y)胴部厚み73μmとした。
実施例24~31
 ポリアミド化合物(A)を、製造例2~9で製造したポリアミド化合物2~9に変更したこと以外はそれぞれ実施例23と同様にしてパリソン及びボトルを製造した。
比較例12
 ポリアミド化合物(A)を、製造例10で製造したポリアミド化合物10に変更したこと以外は実施例23と同様にしてパリソン及びボトルを製造した。
比較例13
 ポリアミド化合物(A)を、100質量部のポリアミド化合物10と0.42質量部のステアリン酸コバルト(II)とをドライブレンドしたものに変更したこと以外は実施例23と同様にしてパリソン及びボトルを製造した。
比較例14
 ポリアミド化合物(A)を、100質量部のポリアミド化合物10と0.3質量部のステアリン酸コバルト(II)と6質量部のマレイン酸変性ポリブタジエン(日本石油化学(株)製、商品名:M-2000-20)とをドライブレンドしたものに変更したこと以外は実施例23と同様にしてパリソン及びボトルを製造した。
実施例32及び33
 層(X)における、ポリアミド化合物(A)の割合を10、90質量%に変更したこと以外はそれぞれ実施例24と同様にしてパリソン及びボトルを製造した。
比較例15及び16
 層(X)における、ポリアミド化合物(A)の割合を10、90質量%に変更したこと以外はそれぞれ比較例12と同様にしてパリソン及びボトルを製造した。
[インジェクションカップ]
実施例34
 下記の条件により、層(Y)を構成する樹脂(C)を射出シリンダーから射出し、次いで層(X)を構成する樹脂組成物を別の射出シリンダーから、層(Y)を構成する樹脂(C)と同時に射出し、次に層(Y)を構成する樹脂(C)を必要量射出してキャビティーを満たすことにより、(Y)/(X)/(Y)の3層構成のインジェクションカップ(30.5g)を得た。なお、層(X)を構成する樹脂組成物としては、ポリアミド化合物(A)と樹脂(B)とを混合した樹脂組成物を使用し、ポリアミド化合物(A)は、製造例2で製造したポリアミド化合物2を使用し、ポリアミド化合物(A)の混合割合は50質量%とした。得られたカップの総質量に対する層(X)の質量は10質量%であった。樹脂(B)及び(C)としては、固有粘度(フェノール/テトラクロロエタン=6/4(質量比)の混合溶媒を使用、測定温度:30℃)が0.83のポリエチレンテレフタレート(日本ユニペット(株)製、商品名:BK-2180)を使用した。
(カップの形状)
 全長125mm、底径52mm、フランジ外径70mm、フランジ内径62mm、肉厚1.1mm、内容積320ml、外側層(Y)胴部厚み530μm、層(X)胴部厚み100μm、内側層(Y)胴部厚み470μmとした。なお、カップの製造には、射出成形機(名機製作所(株)製、型式:M200、4個取り)を使用した。
(カップの成形条件)
 層(X)用の射出シリンダー温度:280℃
 層(Y)用の射出シリンダー温度:280℃
 金型内樹脂流路温度:280℃
 金型冷却水温度:15℃
比較例17
 ポリアミド化合物(A)を、製造例10で製造したポリアミド化合物10に変更したこと以外は実施例34と同様にしてカップを製造した。
比較例18
 ポリアミド化合物(A)を、100質量部のポリアミド化合物10と0.42質量部のステアリン酸コバルト(II)とをドライブレンドしたものに変更したこと以外は実施例34と同様にしてカップを製造した。
比較例19
 ポリアミド化合物(A)を、100質量部のポリアミド化合物10と0.3質量部のステアリン酸コバルト(II)と6質量部のマレイン酸変性ポリブタジエン(日本石油化学(株)製、商品名:M-2000-20)とをドライブレンドしたものに変更したこと以外は実施例34と同様にしてカップを製造した。
実施例35
 ポリアミド化合物(A)を、製造例12で製造したポリアミド化合物12に変更し、層(X)における、ポリアミド化合物(A)の混合割合を30質量%としたこと以外は実施例34と同様にしてカップを製造した。
比較例20
 ポリアミド化合物(A)を、製造例15で製造したポリアミド化合物15に変更したこと以外は実施例35と同様にしてカップを製造した。
実施例36
 樹脂(B)及び(C)として、ポリプロピレン(日本ポリプロ(株)製、商品名:ノバテックMG03E、ランダムポリマー、MFR=30)を使用したこと、並びに成形条件を下記のように変更したこと以外は、実施例34と同様にして(Y)/(X)/(Y)の3層構成のインジェクションカップ(20.5g)を得た。
(インジェクション成形カップの成形条件)
 層(X)用の射出シリンダー温度:250℃
 層(Y)用の射出シリンダー温度:240℃
 金型内樹脂流路温度:250℃
 金型冷却水温度:15℃
比較例21
 ポリアミド化合物(A)を、製造例10で製造したポリアミド化合物10に変更したこと以外はそれぞれ実施例36と同様にしてカップを製造した。
比較例22
 ポリアミド化合物(A)を、100質量部のポリアミド化合物10と0.42質量部のステアリン酸コバルト(II)とをドライブレンドしたものに変更したこと以外は実施例36と同様にしてカップを製造した。
比較例23
 ポリアミド化合物(A)を、100質量部のポリアミド化合物10と0.3質量部のステアリン酸コバルト(II)と6質量部のマレイン酸変性ポリブタジエン(日本石油化学(株)製、商品名:M-2000-20)とをドライブレンドしたものに変更したこと以外は実施例36と同様にしてカップを製造した。
実施例37
 ポリアミド化合物(A)を、製造例12で製造したポリアミド化合物12に変更し、層(X)における、ポリアミド化合物(A)の混合割合を30質量%としたたこと以外はそれぞれ実施例36と同様にしてカップを製造した。
比較例24
 ポリアミド化合物(A)を、製造例15で製造したポリアミド化合物15に変更したこと以外はそれぞれ実施例37と同様にしてカップを製造した。
 表2及び3に、各ボトル又はカップのOTR測定結果、並びに耐層間剥離性及び開封時のヘッドスペース臭気の評価結果を示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 実施例1~37のボトル及びカップはいずれも、酸素バリア性及び耐層間剥離性に優れる。経時的な酸素吸収バリア層の強度低下が極めて小さく、長期の利用においても層間剥離が生じにくい。
 一方、酸素透過率を改善するためにステアリン酸コバルトやマレイン酸変性ポリブタジエンを用いた比較例では、酸素バリア性は優れるものの、経時的にコバルト触媒によって樹脂が酸化分解して耐層間剥離性が低下した。特に、マレイン酸変性ポリブタジエンを用いた比較例では、ポリブタジエンの酸化劣化に伴う低分子量化合物の発生により、開封時に異臭が発生した。
 本発明の多層インジェクション成形体及びそれを加工して得られる容器は、包装材料として好適に用いることができる。

Claims (12)

  1.  ポリアミド化合物(A)及び樹脂(B)を含有する樹脂組成物から形成される層(X)と、樹脂(C)を主成分とする層(Y)とを含む多層インジェクション成形体であって、
     該ポリアミド化合物(A)が、
     下記一般式(I-1)で表される芳香族ジアミン単位、下記一般式(I-2)で表される脂環族ジアミン単位、及び下記一般式(I-3)で表される直鎖脂肪族ジアミン単位からなる群から選ばれる少なくとも1つのジアミン単位を合計で50モル%以上含むジアミン単位25~50モル%と、
     下記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位及び/又は下記一般式(II-2)で表される芳香族ジカルボン酸単位を合計で50モル%以上含むジカルボン酸単位25~50モル%と、
     下記一般式(III)で表される構成単位0.1~50モル%と
    を含有する、多層インジェクション成形体。
    Figure JPOXMLDOC01-appb-C000001
    [前記一般式(I-3)中、mは2~18の整数を表す。前記一般式(II-1)中、nは2~18の整数を表す。前記一般式(II-2)中、Arはアリーレン基を表す。前記一般式(III)中、Rは置換もしくは無置換のアルキル基又は置換もしくは無置換のアリール基を表す。]
  2.  前記一般式(III)におけるRが、置換もしくは無置換の炭素数1~6のアルキル基又は置換もしくは無置換の炭素数6~10のアリール基である、請求項1に記載の多層インジェクション成形体。
  3.  前記ジアミン単位が、メタキシリレンジアミン単位を50モル%以上含む、請求項1又は2に記載の多層インジェクション成形体。
  4.  前記直鎖脂肪族ジカルボン酸単位が、アジピン酸単位、セバシン酸単位、及び1,12-ドデカンジカルボン酸単位からなる群から選ばれる少なくとも1つを合計で50モル%以上含む、請求項1~3のいずれかに記載の多層インジェクション成形体。
  5.  前記芳香族ジカルボン酸単位が、イソフタル酸単位、テレフタル酸単位、及び2,6-ナフタレンジカルボン酸単位からなる群から選ばれる少なくとも1つを合計で50モル%以上含む、請求項1~4のいずれかに記載の多層インジェクション成形体。
  6.  前記ポリアミド化合物(A)が更に、下記一般式(P)で表されるω-アミノカルボン酸単位を、ポリアミド化合物(A)の全構成単位中0.1~49.9モル%含有する、請求項1~5のいずれかに記載の多層インジェクション成形体。
    Figure JPOXMLDOC01-appb-C000002
    [前記一般式(P)中、pは2~18の整数を表す。]
  7.  前記ω-アミノカルボン酸単位が、6-アミノヘキサン酸単位及び/又は12-アミノドデカン酸単位を合計で50モル%以上含む、請求項6に記載の多層インジェクション成形体。
  8.  前記樹脂組成物が、前記樹脂(B)として、ポリオレフィン、ポリエステル、ポリアミド、エチレン-ビニルアルコール共重合体及び植物由来樹脂からなる群から選ばれる少なくとも1種を含有する、請求項1~7のいずれかに記載の多層インジェクション成形体。
  9.  前記ポリアミド化合物(A)の相対粘度が1.8以上4.2以下であり、かつ
     前記ポリアミド化合物(A)/前記樹脂(B)の質量比が、5/95~95/5である、請求項1~8のいずれかに記載の多層インジェクション成形体。
  10.  前記ポリアミド化合物(A)の相対粘度が1.01以上1.8未満であり、かつ
     前記ポリアミド化合物(A)/前記樹脂(B)の質量比が、5/95~50/50である、請求項1~8のいずれかに記載の多層インジェクション成形体。
  11.  請求項1~10のいずれかに記載の多層インジェクション成形体を加工して得られる容器。
  12.  延伸ブロー成形により得られる請求項11に記載の容器。
PCT/JP2012/065647 2011-06-27 2012-06-19 多層インジェクション成形体 WO2013002073A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BR112013033368A BR112013033368A2 (pt) 2011-06-27 2012-06-19 corpo moldado por injeção com multicamadas
MX2014000062A MX2014000062A (es) 2011-06-27 2012-06-19 Cuerpo moldeado por inyeccion de multiples capas.
US14/128,891 US9731482B2 (en) 2011-06-27 2012-06-19 Multilayer injection-molded body
RU2013158147/05A RU2013158147A (ru) 2011-06-27 2012-06-19 Многослойное изделие, полученное литьем под давлением
EP12804957.4A EP2724860B1 (en) 2011-06-27 2012-06-19 Multilayer injection-molded body
CN201280032112.4A CN103635319B (zh) 2011-06-27 2012-06-19 多层注射成型体
JP2013522776A JP5928462B2 (ja) 2011-06-27 2012-06-19 多層インジェクション成形体
CA2840333A CA2840333A1 (en) 2011-06-27 2012-06-19 Multilayer injection-molded body
KR1020137034533A KR20140034867A (ko) 2011-06-27 2012-06-19 다층 사출 성형체
ZA2014/00069A ZA201400069B (en) 2011-06-27 2014-01-06 Multilayer injection-molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011142172 2011-06-27
JP2011-142172 2011-06-27

Publications (1)

Publication Number Publication Date
WO2013002073A1 true WO2013002073A1 (ja) 2013-01-03

Family

ID=47423971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065647 WO2013002073A1 (ja) 2011-06-27 2012-06-19 多層インジェクション成形体

Country Status (13)

Country Link
US (1) US9731482B2 (ja)
EP (1) EP2724860B1 (ja)
JP (1) JP5928462B2 (ja)
KR (1) KR20140034867A (ja)
CN (1) CN103635319B (ja)
AR (1) AR086753A1 (ja)
BR (1) BR112013033368A2 (ja)
CA (1) CA2840333A1 (ja)
MX (1) MX2014000062A (ja)
RU (1) RU2013158147A (ja)
TW (1) TW201311818A (ja)
WO (1) WO2013002073A1 (ja)
ZA (1) ZA201400069B (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188883A1 (ja) * 2013-05-23 2014-11-27 東洋製罐グループホールディングス株式会社 液層を表面に有する多層構造体
WO2015012358A1 (ja) * 2013-07-26 2015-01-29 東洋製罐グループホールディングス株式会社 表面に液層を有する樹脂構造体
JP2015142986A (ja) * 2014-01-31 2015-08-06 三菱瓦斯化学株式会社 多層インジェクション成形体
JP2015178215A (ja) * 2014-03-19 2015-10-08 日本山村硝子株式会社 ガスバリア性に優れた樹脂製ボトル及び樹脂製ボトルの成形方法
JPWO2016039318A1 (ja) * 2014-09-08 2017-08-17 凸版印刷株式会社 中空容器及び中空容器の製造方法
WO2017150410A1 (ja) * 2016-03-03 2017-09-08 宇部興産株式会社 ポリアミド樹脂及びそれからなるフィルム
JP2018039264A (ja) * 2013-07-26 2018-03-15 東洋製罐グループホールディングス株式会社 表面に液層を有する構造体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102295420B1 (ko) * 2014-05-30 2021-08-31 어센드 퍼포먼스 머티리얼즈 오퍼레이션즈 엘엘씨 저인 저색상 폴리아미드
FR3028793B1 (fr) * 2014-11-25 2017-05-05 Plastic Omnium Cie Procede de surmoulage sur un insert plastique et piece automobile obtenue par ce procede
TWI715725B (zh) 2016-02-16 2021-01-11 日商三菱瓦斯化學股份有限公司 多層容器、注射器、預充式注射器、多層體、多層容器之製造方法、生物醫藥品包裝用物品、生物醫藥品之保存方法、及包括存在於容器內之生物醫藥品之物品之製造方法
EP3742033A4 (en) * 2018-01-16 2021-10-13 Ube Industries, Ltd. MULTI-LAYER HOSE
US11046473B2 (en) 2018-07-17 2021-06-29 The Procter And Gamble Company Blow molded article with visual effects
US11724847B2 (en) 2018-10-19 2023-08-15 The Procter & Gamble Company Blow molded article with debossing
JP2022526631A (ja) 2019-04-11 2022-05-25 ザ プロクター アンド ギャンブル カンパニー 視覚効果のあるブロー成形品
WO2021142194A1 (en) 2020-01-08 2021-07-15 The Procter & Gamble Company Blow molded multilayer article with color gradient

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273027A (ja) * 1990-03-13 1991-12-04 Ajinomoto Co Inc 新規ポリアミド
JP2008503371A (ja) * 2004-06-22 2008-02-07 アルケマ フランス 基材被覆用のポリアミドベースの多層構造体
WO2011081099A1 (ja) * 2009-12-28 2011-07-07 三菱瓦斯化学株式会社 ポリアミド化合物
WO2011132456A1 (ja) * 2010-04-20 2011-10-27 三菱瓦斯化学株式会社 ポリアミド化合物
WO2012090797A1 (ja) * 2010-12-27 2012-07-05 三菱瓦斯化学株式会社 ポリアミド組成物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2442391A1 (de) * 1974-09-04 1976-03-18 Hoechst Ag Thermoplastische polyamidformmassen
WO1987002680A2 (en) 1985-11-01 1987-05-07 Teijin Limited Polyamide packaging material
WO1989001012A1 (en) 1987-07-27 1989-02-09 Mb Group Plc Improvements in and relating to packaging
JP2782727B2 (ja) 1988-09-08 1998-08-06 三菱瓦斯化学株式会社 フィルム状脱酸素剤
JPH0657319B2 (ja) 1990-08-03 1994-08-03 東洋製罐株式会社 酸素吸収剤及び該酸素吸収剤を用いた樹脂組成物並びに樹脂組成物からなるフィルム又はシート,包装用容器
CA2062083C (en) 1991-04-02 2002-03-26 Drew Ve Speer Compositions, articles and methods for scavenging oxygen
JP2000006939A (ja) 1998-06-25 2000-01-11 Toppan Printing Co Ltd 多層延伸ブロー成形容器
JP4096440B2 (ja) 1999-03-11 2008-06-04 三菱瓦斯化学株式会社 多層成形品
JP2003341747A (ja) 2002-05-28 2003-12-03 Mitsubishi Gas Chem Co Inc 包装容器
US20060014035A1 (en) 2004-06-22 2006-01-19 Thibaut Montanari Polyamide-based multilayer structure for covering substrates
DK2532712T3 (en) * 2006-05-31 2014-02-24 Mitsubishi Gas Chemical Co polyamide resin
KR101409069B1 (ko) 2006-10-19 2014-06-18 미츠비시 가스 가가쿠 가부시키가이샤 배리어성이 뛰어난 사출 성형체
IT1399031B1 (it) * 2009-11-05 2013-04-05 Novamont Spa Copoliestere alifatico-aromatico biodegradabile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273027A (ja) * 1990-03-13 1991-12-04 Ajinomoto Co Inc 新規ポリアミド
JP2008503371A (ja) * 2004-06-22 2008-02-07 アルケマ フランス 基材被覆用のポリアミドベースの多層構造体
WO2011081099A1 (ja) * 2009-12-28 2011-07-07 三菱瓦斯化学株式会社 ポリアミド化合物
WO2011132456A1 (ja) * 2010-04-20 2011-10-27 三菱瓦斯化学株式会社 ポリアミド化合物
WO2012090797A1 (ja) * 2010-12-27 2012-07-05 三菱瓦斯化学株式会社 ポリアミド組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
I.ARVANITOYANNIS ET AL., POLYMER, vol. 36, no. 15, 1995, pages 2957 - 2967, XP004025677 *
I.ARVANITOYANNIS ET AL.: "Studies in Polymer Science", BIODEGRADABLE PLASTICS AND POLYMERS, vol. 12, 1994, pages 562 - 569, XP008172704 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5673905B1 (ja) * 2013-05-23 2015-02-18 東洋製罐グループホールディングス株式会社 液層を表面に有する多層構造体
WO2014188883A1 (ja) * 2013-05-23 2014-11-27 東洋製罐グループホールディングス株式会社 液層を表面に有する多層構造体
CN105246688A (zh) * 2013-05-23 2016-01-13 东洋制罐集团控股株式会社 在表面上具有液体层的多层结构体
US10786979B2 (en) 2013-05-23 2020-09-29 Toyo Seikan Group Holdings, Ltd. Multilayered structure having a liquid layer on the surface thereof
KR101821322B1 (ko) * 2013-05-23 2018-01-23 도요세이칸 그룹 홀딩스 가부시키가이샤 액층을 표면에 갖는 다층구조체
EA031396B1 (ru) * 2013-07-26 2018-12-28 Тойо Сейкан Груп Холдингз, Лтд. Полимерная структура, имеющая жидкий слой на своей поверхности
WO2015012358A1 (ja) * 2013-07-26 2015-01-29 東洋製罐グループホールディングス株式会社 表面に液層を有する樹脂構造体
JP5673870B1 (ja) * 2013-07-26 2015-02-18 東洋製罐グループホールディングス株式会社 表面に液層を有する樹脂構造体
JP2015042481A (ja) * 2013-07-26 2015-03-05 東洋製罐グループホールディングス株式会社 表面に液層を有する樹脂構造体
US11041058B2 (en) 2013-07-26 2021-06-22 Toyo Seikan Group Holdings, Ltd. Resin structure having a liquid layer on the surface thereof
JP2018039264A (ja) * 2013-07-26 2018-03-15 東洋製罐グループホールディングス株式会社 表面に液層を有する構造体
JP2015142986A (ja) * 2014-01-31 2015-08-06 三菱瓦斯化学株式会社 多層インジェクション成形体
JP2015178215A (ja) * 2014-03-19 2015-10-08 日本山村硝子株式会社 ガスバリア性に優れた樹脂製ボトル及び樹脂製ボトルの成形方法
JPWO2016039318A1 (ja) * 2014-09-08 2017-08-17 凸版印刷株式会社 中空容器及び中空容器の製造方法
WO2017150410A1 (ja) * 2016-03-03 2017-09-08 宇部興産株式会社 ポリアミド樹脂及びそれからなるフィルム

Also Published As

Publication number Publication date
AR086753A1 (es) 2014-01-22
EP2724860B1 (en) 2019-02-06
US9731482B2 (en) 2017-08-15
JP5928462B2 (ja) 2016-06-01
CN103635319B (zh) 2015-12-02
RU2013158147A (ru) 2015-08-10
TW201311818A (zh) 2013-03-16
US20140106103A1 (en) 2014-04-17
CA2840333A1 (en) 2013-01-03
EP2724860A4 (en) 2015-01-28
CN103635319A (zh) 2014-03-12
EP2724860A1 (en) 2014-04-30
MX2014000062A (es) 2014-09-08
KR20140034867A (ko) 2014-03-20
JPWO2013002073A1 (ja) 2015-02-23
BR112013033368A2 (pt) 2017-01-31
ZA201400069B (en) 2015-09-30

Similar Documents

Publication Publication Date Title
JP5928462B2 (ja) 多層インジェクション成形体
JP5971243B2 (ja) インジェクション成形体
JP5954324B2 (ja) 多層インジェクション成形体
JP2015131438A (ja) 多層インジェクション成形体
JP5975031B2 (ja) フィルム及びフィルム包装容器
JP2015137295A (ja) インジェクション成形体
JP5954323B2 (ja) 多層フィルム及びフィルム包装容器
JP5971244B2 (ja) ダイレクトブローボトル
JP2015142986A (ja) 多層インジェクション成形体
JP5954325B2 (ja) 多層シート
JP5895935B2 (ja) ダイレクトブロー多層ボトル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522776

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2840333

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20137034533

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14128891

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/000062

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2013158147

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013033368

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013033368

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131224