WO2012160907A1 - 密閉型電池 - Google Patents

密閉型電池 Download PDF

Info

Publication number
WO2012160907A1
WO2012160907A1 PCT/JP2012/060331 JP2012060331W WO2012160907A1 WO 2012160907 A1 WO2012160907 A1 WO 2012160907A1 JP 2012060331 W JP2012060331 W JP 2012060331W WO 2012160907 A1 WO2012160907 A1 WO 2012160907A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure contact
battery
annular pressure
hole
battery case
Prior art date
Application number
PCT/JP2012/060331
Other languages
English (en)
French (fr)
Inventor
草間 和幸
松浦 智浩
貴司 原山
平川 靖
一郎 村田
伸也 室井
Original Assignee
トヨタ自動車株式会社
興国インテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, 興国インテック株式会社 filed Critical トヨタ自動車株式会社
Priority to KR1020137031050A priority Critical patent/KR101525345B1/ko
Priority to US14/119,743 priority patent/US9614200B2/en
Priority to CN201280025074.XA priority patent/CN103620827B/zh
Publication of WO2012160907A1 publication Critical patent/WO2012160907A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • H01M50/645Plugs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/191Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/195Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/561Hollow metallic terminals, e.g. terminal bushings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention includes a battery case having a through-hole communicating with the inside and outside of the battery case, an electrode body housed in the battery case, and a sealing member formed by sealing the through-hole of the battery case from the outside.
  • the present invention relates to a sealed battery.
  • a battery case provided with a through hole such as a liquid injection hole for injecting an electrolyte, an electrode body accommodated in the battery case, and a sealed case in which the through hole of the battery case is hermetically sealed from the outside.
  • a sealed battery including a stop member is known.
  • the sealing member for example, there is a member made only of a metal lid member. As shown in FIG. 23, this sealing member (metal lid member) 915 has its annular peripheral portion 915m and an annular peripheral portion 913m surrounding the liquid injection hole (through hole) 913e in the battery case 913. Next, welding is performed over the entire circumference, and the liquid injection hole 913e is hermetically sealed from the outside (from the top in FIG. 23).
  • the sealing member 915 when the peripheral portion 915m of the sealing member 915 is welded to the peripheral portion 913m of the battery case 913, the electrolytic solution adhering to the peripheral portion 913m or the electrolytic solution evaporated by the heat at the time of welding This may cause a sealing failure (welding failure). For this reason, it is difficult to reliably perform the hermetic sealing of the liquid injection hole 913e by welding the entire circumference of the sealing member 915.
  • the sealing member 925 has its elastic member (elastic portion) 926 fitted into a recess 923h provided around the liquid injection hole 923e in the battery case 923, and the liquid injection hole 923e is externally provided (in FIG. 24, Close (from above). Then, with the elastic portion 926 compressed between the metal lid member (metal lid portion) metal lid portion 915 and the battery case 923, the peripheral edge portion 915m of the metal lid portion 915 is welded to the peripheral portion 923m of the battery case 923.
  • the liquid injection hole 923e is hermetically sealed with the elastic portion 926.
  • a similar sealed battery is disclosed in Patent Document 1 (see FIG. 5 of Patent Document 1).
  • the radial dimension of the elastic part 926 (the horizontal dimension in FIG. 24) is made equal to the radial dimension of the concave part 923h, and the elastic part 926 fits into the concave part 923h without a gap. It is in form. For this reason, even if the elastic portion 926 is compressed between the metal lid portion 915 and the battery case 923, the elastic portion 926 cannot expand radially outward. A force is also applied from the side of the recess 923h. As a result, stress is generated in the elastic portion 926 not only in the thickness direction but also in the radial direction. In this state, it is difficult to keep the airtightness by the elastic portion 926 over a long period of time. In particular, in-vehicle sealed batteries such as hybrid vehicles and electric vehicles are used for a long period of time, for example, 10 years or longer, and therefore it is desired to keep the airtightness for a long period of time.
  • in-vehicle sealed batteries such as hybrid vehicles and electric vehicles are
  • the radial dimension of the elastic part 926 is made smaller than the dimension of the concave part 923h and a gap is provided between the elastic part 926 and the concave part 923h in the radial direction. It is done.
  • the elastic part 926 is disposed in the recess 923h, a new problem arises that positioning becomes difficult.
  • the dimension in the radial direction of the insertion part 936 (the dimension in the left-right direction in FIG. 25) is reduced, and the insertion part 936 is not press-fitted into the liquid injection hole 923e, but between the insertion part 936 and the liquid injection hole 923e. Even when the gap is formed (free fitting), when the insertion portion 936 is inserted into the liquid injection hole 923e, a part of the insertion portion 936 in the circumferential direction abuts against the liquid injection hole 923e. There is.
  • the insertion portion 936 is compressed radially inward, and accordingly, the annular pressure contact portion 937 is pulled radially inward, so that also in this case, the airtightness by the annular pressure contact portion 937 is maintained for a long time. It becomes difficult to keep. As described above, in the conventional sealed battery, it is difficult to keep the airtightness for a long period of time with respect to sealing of the through holes such as the liquid injection hole by the sealing member.
  • the present invention has been made in view of such a current situation, and can be kept airtight for a long period of time with respect to sealing by a sealing member of a through hole provided in a battery case (high long-term reliability of airtightness). ) To provide a sealed battery.
  • a sealing battery comprising the sealing member, the sealing member covering the through hole from the outside, a covering portion fixed to the battery case, and a rubber-like elastic body, An insertion portion that extends from the inner surface of the covering portion that is a surface located on the battery case side of the covering portion and is inserted into the through hole, and a rubber-like elastic body, and surrounds the insertion portion from the inner surface of the covering portion.
  • An annular pressure contact portion that extends annularly in a surrounding form, and is hermetically pressed against an annular hole peripheral portion located around the through hole in the battery case by pressing from the covering portion, and Between the insertion part and the annular pressure contact part An intermediate portion formed of a rubber-like elastic body, extending annularly from the inner side surface of the covering portion, interposed between the insertion portion and the annular pressure contact portion, and having an intermediate portion integrated therewith, the intermediate portion And an annular interposition groove that surrounds the periphery of the insertion portion, and the insertion portion and the annular pressure contact portion are directly connected and integrated, and the insertion portion has a through hole.
  • the base battery is located on the side of the covering part with respect to the inside of the hole, and the base part has a base concave groove constricted in the radial direction of the base part.
  • the insertion portion may be a sealed battery that is press-fitted into the through hole and tightly plugs the through hole.
  • the battery case may be a sealed battery that is depressurized from atmospheric pressure.
  • the covering portion may be a sealed battery in which a peripheral portion of the covering portion is welded to the battery case by a plurality of spot welded portions separated from each other. .
  • the outside of the annular pressure contact portion communicates with the outside of the battery case, and the annular pressure contact portion is part of its circumferential direction
  • a sealed battery having a recess that lowers the sealing performance by the annular pressure contact portion as compared with other portions in the circumferential direction may be used.
  • the battery case may be a sealed battery having a safety valve at a position close to the through hole and the sealing member.
  • FIG. 1 is a longitudinal sectional view showing a lithium ion secondary battery according to Embodiment 1.
  • FIG. 1 is a perspective view showing an electrode body according to Embodiment 1.
  • FIG. 3 is a partial plan view illustrating a state in which the positive electrode plate and the negative electrode plate are overlapped with each other via a separator according to the first embodiment.
  • FIG. 3 is an exploded perspective view illustrating a case lid member, a positive electrode terminal, a negative electrode terminal, and the like according to the first embodiment.
  • FIG. 4 is a partially enlarged longitudinal sectional view showing the vicinity of a liquid injection hole and a sealing member according to the first embodiment.
  • FIG. 6 is a partially enlarged plan view showing the vicinity of the sealing member according to the first embodiment when viewed from above in FIG. 5.
  • FIG. 4 is a partially enlarged longitudinal sectional view showing the vicinity of a liquid injection hole of a case lid member according to the first embodiment.
  • FIG. 9 is a partially enlarged plan view illustrating the vicinity of a liquid injection hole of a case lid member according to the first embodiment as viewed from above in FIG. 8. It is explanatory drawing which shows a mode that the insertion part of a sealing member is press-fit in a liquid injection hole regarding manufacture of the lithium ion secondary battery which concerns on Embodiment 1.
  • FIG. FIG. 10 is a partially enlarged longitudinal sectional view showing the vicinity of a liquid injection hole and a sealing member according to the second embodiment.
  • FIG. 10 is a partially enlarged longitudinal sectional view showing the vicinity of a liquid injection hole and a sealing member according to the third embodiment. It is a longitudinal cross-sectional view which concerns on Embodiment 3 and shows a sealing member.
  • FIG. 10 is a partially enlarged longitudinal sectional view showing the vicinity of a liquid injection hole and a sealing member according to the fourth embodiment. It is a longitudinal cross-sectional view which concerns on Embodiment 4 and shows a sealing member.
  • FIG. 17 is a plan view of the sealing member according to the fourth embodiment as viewed from below in FIG. 16.
  • FIG. 10 is an explanatory diagram showing a hybrid vehicle according to a fifth embodiment. It is explanatory drawing which shows the hammer drill which concerns on Embodiment 6.
  • FIG. It is a partial expanded longitudinal cross-sectional view which shows the vicinity of a liquid injection hole and a sealing member among the sealed batteries which concern on the prior art form 1.
  • FIG. 1 shows a lithium ion secondary battery (sealed battery) 100 (hereinafter also simply referred to as battery 100) according to the first embodiment.
  • 2 and 3 show a wound electrode body 120 constituting the battery 100 and a state in which the electrode body 120 is developed.
  • FIG. 4 shows details of the case lid member 113, the positive terminal 150, the negative terminal 160, and the like.
  • 5 and 6 show a form in the vicinity of the liquid injection hole (through hole) 113e and the sealing member 170.
  • FIG. 1, 4, and 5 the upper side is the upper side of the battery 100, and the lower side is the lower side of the battery 100.
  • the battery 100 is a prismatic battery mounted on a vehicle such as a hybrid vehicle or an electric vehicle, or a battery-powered device such as a hammer drill.
  • the battery 100 includes a rectangular parallelepiped battery case 110, a wound electrode body 120 accommodated in the battery case 110, a positive electrode terminal 150 and a negative electrode terminal 160 supported by the battery case 110 ( (See FIG. 1).
  • a non-aqueous electrolyte solution 117 is held in the battery case 110.
  • the battery case 110 is made of metal (aluminum in the first embodiment).
  • the battery case 110 includes a box-shaped case main body member 111 that is open only on the upper side, and a case lid member 113 that is welded so as to close the opening 111h of the case main body member 111 (see FIG. 1 and FIG. 1). (See FIG. 4).
  • the case lid member 113 has a rectangular plate shape having an inner main surface 113 c facing the inside of the battery case 110 and an outer main surface 113 d facing the outside of the battery case 110.
  • the case lid member 113 is provided with a safety valve 113j that breaks when the internal pressure of the battery case 110 reaches a predetermined pressure.
  • the case lid member 113 is provided with a liquid injection hole (through hole) 113e, which will be described later, which communicates the inside and outside of the battery case 110.
  • the liquid injection hole 113e is hermetically sealed by a sealing member 170 described later in a state where the inside of the battery case 110 is depressurized from the atmospheric pressure.
  • the case lid member 113 is fixedly provided with a positive electrode terminal 150 and a negative electrode terminal 160 each formed of an extended terminal member 151 and a bolt 153 via an insulating member 155 made of resin (FIGS. 1 and 3). 4).
  • the positive terminal 150 is connected to the positive plate 121 (its positive current collecting part 121 m) of the electrode body 120
  • the negative terminal 160 is connected to the negative plate 131 (its negative current collecting part 131 m) of the electrode body 120. (See FIG. 1).
  • the electrode body 120 is housed in an insulating film enclosure 115 formed in a bag shape having an insulating film opened only on the upper side, and is housed in the battery case 110 in a laid state (see FIG. 1).
  • This electrode body 120 is obtained by rolling a belt-like positive electrode plate 121 and a belt-like negative electrode plate 131 to each other via a belt-like separator 141 (see FIG. 3), winding around an axis line AX, and compressing to a flat shape. Yes (see FIG. 2).
  • the positive electrode plate 121 has a positive electrode current collector foil 122 made of a strip-shaped aluminum foil as a core material. On both main surfaces of the positive electrode current collector foil 122, the positive electrode active material layers 123 and 123 are strip-shaped in the longitudinal direction (left and right direction in FIG. 3) on a part extending in the longitudinal direction and extending in the longitudinal direction. Is provided. These positive electrode active material layers 123 and 123 are formed of a positive electrode active material, a conductive agent, and a binder.
  • a strip-shaped portion where the positive electrode current collector foil 122 and the positive electrode active material layers 123 and 123 exist in the thickness direction of the positive electrode plate 121 is the positive electrode portion 121 w.
  • the entire area of the positive electrode portion 121w is opposed to a later-described negative electrode portion 131w of the negative electrode plate 131 via the separator 141 (see FIG. 3).
  • one end part in the width direction (upward in FIG. 3) of the positive electrode current collector foil 122 extends in a band shape in the longitudinal direction, and has its own thickness.
  • the positive electrode current collector portion 121m has no positive electrode active material layer 123 in the direction. A part of the positive electrode current collector 121m in the width direction protrudes from the separator 141 in a spiral shape to one side SA in the axis AX direction, and is connected to the positive electrode terminal 150 (see FIG. 1).
  • the negative electrode plate 131 has a negative electrode current collector foil 132 made of a strip-shaped copper foil as a core material.
  • negative electrode active material layers 133 and 133 are band-like in the longitudinal direction (left and right direction in FIG. 3) on a portion extending in the longitudinal direction and extending in the longitudinal direction. Is provided.
  • These negative electrode active material layers 133 and 133 are formed of a negative electrode active material, a binder, and a thickener.
  • a strip-shaped portion where the negative electrode current collector foil 132 and the negative electrode active material layers 133 and 133 exist in the thickness direction of the negative electrode plate 131 is the negative electrode portion 131w.
  • the entire area of the negative electrode portion 131 w faces the separator 141 in a state where the electrode body 120 is configured.
  • one end portion (downward in FIG. 3) in the width direction of the negative electrode current collector foil 132 extends in a band shape in the longitudinal direction and has its own thickness.
  • the negative electrode current collector portion 131m has no negative electrode active material layer 133 in the direction.
  • a part of the negative electrode current collector 131m in the width direction protrudes from the separator 141 toward the other side SB in the axis AX direction in a spiral shape, and is connected to the negative electrode terminal 160 (see FIG. 1).
  • the separator 141 is a porous film made of resin, specifically, polypropylene (PP) and polyethylene (PE), and has a strip shape.
  • the liquid injection hole 113e, the recess 113h, and the sealing member 170 will be described (see FIGS. 5 to 9).
  • the liquid injection hole 113e, the recess 113h, and the sealing member 170 are disposed in the vicinity of the safety valve 113j (see FIG. 4).
  • the case lid member 113 is provided with a liquid injection hole 113e, a recess 113h and a safety valve 113j, and a positive electrode terminal 150 and a negative electrode terminal 160 are fixedly provided.
  • the distance from the liquid injection hole 113e and the sealing member 170 to the safety valve 113j is shorter than the distance from the liquid injection hole 113e and the sealing member 170 sealing the same to the positive electrode terminal 150 or the negative electrode terminal 160.
  • the liquid injection hole 113e and the sealing member 170 are disposed.
  • the recess 113h (see FIGS. 8 and 9) is recessed in the inner main surface 113c side (downward in FIG. 8) of the case lid member 113 and opened to the outer main surface 113d (upward in FIG. 8). It is a recessed part which makes circular shape.
  • the recess 113h includes a cylindrical recess side surface 113f2 and a recess bottom surface 113f3 forming a plane extending in parallel with the inner main surface 113c and the outer main surface 113d.
  • the recess bottom surface 113f3 corresponds to an annular “hole surrounding portion” positioned around the liquid injection hole 113e.
  • the liquid injection hole 113e penetrates between the inner main surface 113c and the concave bottom surface 113f3 in order to inject the electrolytic solution 117 into the battery case 110, and the concave bottom surface 113f3. Is a circular hole provided at the center of the battery case 110 and communicates with the inside and outside of the battery case 110.
  • the liquid injection hole 113e includes a cylindrical hole side surface 113f1.
  • the sealing member 170 (see FIG. 7) is composed of a covering member (covering portion) 171 and an elastic member 179.
  • the elastic member 179 has an insertion portion 173, an annular pressure contact portion 175, and an interposition portion 177. It consists of.
  • the boundary between the insertion part 173 and the interposition part 177 and the boundary between the interposition part 177 and the annular pressure contact part 175 are indicated by broken lines.
  • the covering member 171 is made of the same material as that of the battery case 110, specifically, aluminum.
  • the covering member 171 includes a covering portion inner side surface 171c, which is a main surface located on the battery case 110 side (case covering member 113 side) (downward in FIGS. 5 and 7), and the case covering member 113 parallel to the covering portion inner surface 171c. It has a covering portion outer surface 171d that is a main surface located on the opposite side (upward in FIGS. 5 and 7), and has a disk shape larger in diameter than the recess 113h.
  • the covering member 171 is fixed to the battery case 110 so as to cover the liquid injection hole 113e from the outside of the battery case 110 (see FIGS. 5 and 6). Specifically, the annular peripheral edge portion 171m along the outer peripheral edge of the covering member 171 is equidistant from the annular recess peripheral portion 113m surrounding the recess 113h in the case cover member 113 at four circumferential positions. Spot welded. As a result, four spot welds 171y spaced apart from each other at equal intervals in the circumferential direction are formed, and the covering member 171 is fixed to the battery case 110 (the case lid member 113). In particular, in the first embodiment, since the covering member 171 and the battery case 110 are made of the same material (aluminum), these weldings can be made more reliable.
  • the elastic member 179 includes the insertion portion 173, the annular pressure contact portion 175, and the interposition portion 177, which are integrally connected.
  • the elastic member 179 is made of a rubber-like elastic body, specifically, ethylene propylene diene rubber (EPDM).
  • EPDM ethylene propylene diene rubber
  • the insertion portion 173 has a top surface 173c smaller in diameter than the liquid injection hole 113e, a bottom surface 173d larger in diameter than the top surface 173c and larger in diameter than the liquid injection hole 113e, and a space therebetween. It forms a truncated cone shape having side surfaces 173f to be connected.
  • the bottom surface 173d of the insertion portion 173 is joined to the center of the covering portion inner side surface 171c of the covering member 171, extends from the covering portion inner side surface 171c, and is inserted into the liquid injection hole 113e.
  • the insertion portion 173 is press-fitted into the liquid injection hole 113e in such a manner that the side surface 173f of the insertion portion 173 is in pressure contact with the hole side surface 113f1 constituting the liquid injection hole 113e. For this reason, the insertion portion 173 is compressed radially inward over the entire circumference, and as shown by the left and right arrows in FIG. 5, stress toward the radially outer side is generated in the insertion portion 173. Yes. Thus, the liquid injection hole 113e is sealed with the insertion portion 173.
  • the annular pressure contact portion 175 has a substantially rectangular cross section and has an annular shape in plan view.
  • the outer diameter of the annular pressure contact portion 175 is smaller than the diameter of the recess 113h (the outer diameter of the recess bottom surface 113f3).
  • the inner diameter of the annular pressure contact portion 175 is larger than the diameter of the liquid injection hole 113e.
  • the height (thickness) of the annular pressure contact portion 175 is slightly larger than the depth of the recess 113h in the state before compression shown in FIG. 7, and in the compressed state shown in FIG. It is equal to the depth.
  • the annular pressure contact portion 175 is joined to the covering portion inner surface 171c of the covering member 171 so as to surround the insertion portion 173, and extends annularly from the covering portion inner surface 171c.
  • the annular pressure contact portion 175 is compressed in the thickness direction (vertical direction) over the entire circumference by pressing from the covering member 171. For this reason, stress is generated in the thickness direction as indicated by the up and down arrows in FIG. Thereby, the annular pressure contact portion 175 is in close contact with the recess bottom surface 113f3 of the recess 113h, and the inside (battery inside) and the outside (battery outside) of the liquid injection hole 113e located on the radially inner side of the annular pressure contact portion 175.
  • the space is hermetically sealed. As described above, since the liquid injection hole 113e is hermetically sealed by the insertion portion 173, it is doubly sealed by the insertion portion 173 and the annular pressure contact portion 175.
  • the interposition part 177 has an annular shape, is joined to the covering part inner side surface 171c of the covering member 171, and extends annularly from the covering part inner side surface 171c.
  • the interposition part 177 is interposed between the insertion part 173 and the annular pressure contact part 175, and is integrated therewith.
  • the interposition part 177 is provided with an annular interposition part groove 177v surrounding the insertion part 173.
  • the interposition groove 177v is recessed on the covering member 171 side (upward in FIGS. 5 and 7), and is open on the side opposite to the covering member 171 (on the case lid member 113 side, in FIGS. 5 and 7 downward). And, it is an annular U-shaped groove having a U-shaped cross section.
  • the interposition portion 177 When the insertion portion 173 is press-fitted into the liquid injection hole 113e and compressed radially inward, the interposition portion 177 has an inner portion 177p positioned radially inward of the interposition groove 177v. Pulled radially inward. However, since the interposition groove 177v is provided, the outer portion 177q of the interposition portion 177 located more radially outward than the interposition groove 177v is difficult to be pulled radially inward. For this reason, the annular pressure contact part 175 connected to the interposition part 177 (its outer part 177q) is also difficult to be pulled radially inward.
  • a space KC is provided on the radially outer side of the annular pressure contact portion 175. That is, among the surface 175c of the annular pressure contact portion 175, the space KC is located between the outer side surface 175c2 positioned on the radially outer side than the pressure contact surface 175c1 pressed against the recess bottom surface 113f3 of the recess 113h and the recess side surface 113f2 of the recess 113h. Is provided. For this reason, the annular pressure contact portion 175 expands radially outward as it is compressed in the thickness direction between the covering portion inner surface 171c of the covering member 171 and the recess bottom surface 113f3 of the recess 113h. Accordingly, no radial stress is generated in the annular pressure contact portion 175 by applying a force from the radially outer side (from the concave side surface 113f2).
  • the battery 100 includes the battery case 110 having the through hole (liquid injection hole) 113e that communicates with the inside and the outside of the battery 100, and the electrode body 120 housed in the battery case 110. , And a sealing member 170 formed by sealing the through hole 113e from the outside.
  • the sealing member 170 has a covering portion (covering member) 171 that covers the through hole 113 e from the outside and is fixed to the battery case 110.
  • the sealing member 170 is made of a rubber-like elastic body, and has an insertion portion 173 that extends from the covering portion inner side surface 171c that is a surface located on the battery case 110 side of the covering portion 171 and is inserted into the through hole 113e. .
  • the sealing member 170 is made of a rubber-like elastic body, and extends in a ring shape from the covering portion inner side surface 171c so as to surround the periphery of the insertion portion 173.
  • the through hole 113e of the battery case 110 is formed.
  • An annular pressure contact portion 175 formed by airtight pressure contact with an annular hole peripheral portion (concave bottom surface) 113f3 located in the periphery is provided.
  • the sealing member 170 is made of a rubber-like elastic body, and extends in an annular shape from the inner surface 171c of the covering portion.
  • the sealing member 170 is interposed between the insertion portion 173 and the annular pressure contact portion 175, and has an interposition portion 177 integrated therewith.
  • the interposition part 177 has an annular interposition part groove 177v surrounding the insertion part 173.
  • the insertion portion 173 and the annular pressure contact portion 175 are connected via an interposition portion 177 having an interposition groove 177v. For this reason, even if the insertion portion 173 inserted into the liquid injection hole 113e is compressed radially inward, the annular pressure contact portion 175 is difficult to be pulled radially inward. Almost no stress is generated. Therefore, the airtightness by the annular pressure contact portion 175 can be maintained for a long time.
  • the insertion portion 173 is press-fitted into the through hole (injection hole) 113e and the through hole 113e is sealed.
  • the inside of the battery case 110 is depressurized from the atmospheric pressure. For this reason, even when gas is generated in the battery case 110 due to use (charging / discharging), it is possible to suppress the internal pressure in the battery case 110 from increasing quickly. Therefore, the safety of the battery 100 can be further increased.
  • the covering portion (covering member) 171 is formed by welding the peripheral edge portion 171m of the covering portion (covering member) 171 to the battery case 110 by a plurality of spot welding portions 171y separated from each other.
  • the liquid injection hole 113e is hermetically sealed by the annular pressure contact portion 175. Therefore, the battery member 110 is not necessarily airtight until the covering member 171 is welded to the battery case 110 all around. There is no need to seal.
  • the entire circumference of the covering member 171 is welded to the battery case 110 (the recess surrounding portion 113m of the case lid member 113), man-hours are required and high costs are incurred.
  • the battery case 110 has the safety valve 113j at a position close to the through hole (injection hole) 113e and the sealing member 170. Therefore, when designing and configuring a discharge path for discharging the gas or electrolyte discharged from the safety valve 113j, the liquid injection hole 113e and the sealing member 170 are located close to the safety valve 113j.
  • the discharge path in the case where the gas is discharged can be easily designed and configured so that it can also be used as the discharge path for the safety valve 113j.
  • a method for manufacturing the battery 100 will be described. First, a separately formed belt-like positive electrode plate 121 and negative electrode plate 131 are overlapped with each other via a belt-like separator 141 (see FIG. 3) and wound around an axis AX using a winding core. Thereafter, this is compressed into a flat shape to form the electrode body 120 (see FIG. 2).
  • a case lid member 113 formed with a safety valve 113j, a liquid injection hole 113e, and the like, an extension terminal member 151 and a bolt 153 are prepared, and these are set in an injection mold. Then, the insulating member 155 is formed by injection molding, and the positive terminal 150 and the negative terminal 160 are fixed to the case lid member 113 (see FIG. 4).
  • the positive electrode terminal 150 and the positive electrode current collector 121m of the electrode body 120 are connected (welded). Further, the negative electrode terminal 160 and the negative electrode current collector 131m of the electrode body 120 are connected (welded). Thereafter, a case body member 111 and an insulating film enclosure 115 are prepared, and the electrode body 120 is accommodated in the case body member 111 via the insulation film enclosure 115, and the opening 111 h of the case body member 111 is formed in the case lid member 113. Close with. Then, the case body member 111 and the case lid member 113 are welded by laser welding to form the battery case 110 (see FIG. 1).
  • a sealing member 170 (see FIG. 7) composed of a covering member 171 and an elastic member 179 is formed.
  • a covering member 171 made of a metal plate is set in an injection molding die, and an elastic member 179 including an insertion portion 173, an annular pressure contact portion 175, and an interposition portion 177 is formed by injection molding.
  • the above-mentioned battery is put in a vacuum chamber, and the inside of the vacuum chamber is depressurized. Then, a liquid injection nozzle is inserted into the liquid injection hole 113e, and the electrolytic solution 117 is injected into the battery case 110 from the liquid injection nozzle. Thereafter, the periphery of the liquid injection hole 113e (such as the concave portion 113h and the concave portion peripheral portion 113m) is wiped and cleaned with a nonwoven fabric.
  • the first sealing is performed under reduced pressure. That is, the insertion portion 173 of the sealing member 170 is press-fitted into the liquid injection hole 113e from the outside of the battery case 110 (case cover member 113) (from above). Thereby, the space between the insertion portion 173 and the liquid injection hole 113e is hermetically sealed. At that time, since the insertion portion 173 also serves as a positioning guide, the sealing member 170 can be accurately positioned with respect to the liquid injection hole 113e.
  • the inside of the vacuum chamber is returned to atmospheric pressure, and this battery is taken out from the vacuum chamber.
  • the inside of the battery case 110 is in a state where the pressure is reduced from the atmospheric pressure. Therefore, the second sealing described below can be performed under atmospheric pressure while keeping the inside of the battery case 110 in a reduced pressure state.
  • the second sealing is performed under atmospheric pressure.
  • the covering member 171 of the sealing member 170 is pressed (downward) toward the case lid member 113 so that the annular pressure contact portion 175 is pressed against the bottom surface 113f3 of the recess 113h of the case lid member 113.
  • the peripheral edge portion 171m of the covering member 171 is brought into contact with the concave portion surrounding portion 113m of the case lid member 113.
  • the peripheral edge portion 171 m of the covering member 171 is welded to the concave portion surrounding portion 113 m of the case lid member 113. Specifically, in a state where the sealing member 170 is pressed to the case lid member 113 side, the peripheral edge portion 171m of the covering member 171 is moved to the recess peripheral portion 113m of the case lid member 113 at four locations in the circumferential direction by laser welding. Spot weld at regular intervals.
  • the annular pressure contact portion 175 and the recess bottom surface 113f3 are in close contact with each other, and therefore, between the inside (battery inside) and the outside (battery outside) of the liquid injection hole 113e located radially inward of the annular pressure contact portion 175 Is hermetically sealed.
  • the liquid injection hole 113e is hermetically sealed also by the insertion portion 173, it is sealed twice by the insertion portion 173 and the annular pressure contact portion 175.
  • the battery 100 is charged and discharged in a conditioning process (initial charge / discharge process). Thus, the battery 100 is completed.
  • the form of the sealing member 270 (see FIGS. 11 and 12) is different from the form of the sealing member 170 according to the first embodiment.
  • the second embodiment is the same as the first embodiment, and the description of the same parts as the first embodiment is omitted or simplified.
  • the elastic member 279 of the sealing member 270 according to the second embodiment has an insertion portion 173 and an annular pressure contact portion 175 similar to those of the first embodiment.
  • this elastic member 279 is configured as a separate body in which the insertion portion 173 and the annular pressure contact portion 175 are separated from each other, and does not have an interposition portion like the interposition portion 177 in the first embodiment.
  • the insertion portion 173 and the annular pressure contact portion 175 are separated from each other. Since the insertion portion 173 and the annular pressure contact portion 175 are independent from each other, even if the insertion portion 173 is compressed radially inward by the liquid injection hole 113e (hole side surface 113f1), the annular pressure contact portion 175 is pulled in the radial direction. Absent. Therefore, no radial stress is generated in the annular pressure contact portion 175, and airtightness by the annular pressure contact portion 175 can be maintained for a long period of time. In addition, the same part as Embodiment 1 has the same effect as Embodiment 1. FIG.
  • the form of the sealing member 370 is the form of the sealing members 170 and 270 according to Embodiment 1 or 2. And different.
  • the second embodiment is the same as the first embodiment, and the description of the same parts as the first embodiment is omitted or simplified.
  • the sealing member 370 according to the third embodiment has a covering member 171 similar to that of the first embodiment, but the form of the elastic member 379 is different.
  • the elastic member 379 of the sealing member 370 includes an insertion portion 373 and an annular pressure contact portion 375.
  • the insertion portion 373 and the annular pressure contact portion 375 are directly connected and integrated, and there is no interposition portion such as the interposition portion 177 according to the first embodiment.
  • the boundary between the insertion portion 373 and the annular pressure contact portion 375 is indicated by a broken line.
  • the insertion portion 373 is different from the first embodiment in that the insertion portion 373 has a constricted base concave groove 373v.
  • the insertion portion 373 has a truncated cone shape having a small-diameter top surface 373c, a large-diameter bottom surface 373d, and a side surface 373f connecting the same, as in the first embodiment.
  • the insertion portion 373 extends from the center of the covering portion inner surface 171c of the covering member 171 and is inserted into the liquid injection hole 113e.
  • the insertion portion 373 is divided into three parts in a vertical direction in FIG. 14, which is a tip portion 373s, a contact portion 373t, and a base portion 373k.
  • the contact portion 373t located at the center contacts (more specifically, the liquid injection hole 113e (hole side surface 113f1) when the insertion portion 373 is inserted into the liquid injection hole 113e (more specifically, press-fitted).
  • the distal end portion 373s is a truncated cone portion located on the battery inner side (lower side in FIG. 13) than the contact portion 373t.
  • the base 373k is a cylindrical portion located on the battery outer side (the covering member 171 side, upper in FIG. 13) than the contact portion 373t.
  • a base concave groove 373v narrowed in an annular shape in a U shape toward the radially inner side is formed in a boundary portion with the contact portion 373t in the base portion 373k.
  • the annular pressure contact portion 375 has a substantially rectangular cross section and has an annular shape in plan view.
  • the annular pressure contact portion 375 is directly connected to and integrated with the insertion portion 373 (its base portion 373k) so as to surround the periphery of the insertion portion 373, and is joined to the inner surface 171c of the covering portion of the covering member 171.
  • the annular pressure contact portion 375 is compressed in the thickness direction (vertical direction) over the entire circumference by pressing from the covering member 171. For this reason, in the annular pressure contact portion 375, stress is generated in the thickness direction as indicated by the up and down arrows in FIG. As a result, the annular pressure contact portion 375 is in close contact with the recess bottom surface 113f3 of the recess 113h, and the inside of the battery case 110 is hermetically sealed.
  • the insertion portion 373 is press-fitted into the liquid injection hole 113e in such a form that the insertion portion 373 (its abutting portion 373t) is pressed against the hole side surface 113f1 constituting the liquid injection hole 113e. .
  • the insertion portion 373 (its abutting portion 373t) is compressed radially inward over its entire circumference, and the insertion portion 373 has a radial direction as shown by the left and right arrows in FIG. Stress is directed to the outside.
  • the liquid injection hole 113e is tightly plugged by the insertion part 373 (its contact part 373t).
  • a base concave groove 373v is formed in a boundary portion with the contact portion 373t in the base portion 373k located on the covering member 171 side with respect to the contact portion 373t. For this reason, even if the contact portion 373t is compressed radially inward by the liquid injection hole 113e (hole side surface 113f1), the base member 373k is closer to the covering member 171 side (upward in FIG. 13) than the base groove 373v. It is difficult to compress the portion to the inside in the radial direction. Therefore, almost no radial stress is generated in the base 373k.
  • annular pressure contact portion 375 connected to the radially outer side of the base portion 373k is also difficult to be pulled radially inward, almost no radial stress is generated in the annular pressure contact portion 375. That is, the radial stress generated in the contact portion 373t due to the press-fitting is hardly transmitted to the annular pressure contact portion 375.
  • a space KC is provided outside the annular pressure contact portion 375 in the radial direction, as in the first and second embodiments. That is, among the surface 375c of the annular pressure contact portion 375, a space KC is provided between the outer surface 375c2 positioned on the radially outer side than the pressure contact surface 375c1 and the recess side surface 113f2 of the recess 113h. Therefore, no radial stress is generated in the annular pressure contact portion 375 by applying a force from the radially outer side (from the concave side surface 113f2).
  • the insertion portion 373 forming the elastic member 379 and the annular pressure contact portion 375 are directly connected to be integrated, and the insertion portion 373 includes a through hole (a liquid injection hole).
  • a base concave groove 373v constricted in the radial direction of the base portion 373k is formed on the base portion 373k located on the covering member 171 side with respect to the contact portion 373t that contacts the 113e. For this reason, even if the insertion portion 373 (its contact portion 373t) inserted into the liquid injection hole 113e is compressed radially inward, the annular pressure contact portion 375 is difficult to be pulled radially inward, so the annular pressure contact portion 375.
  • Embodiment 1 has the same effect as Embodiment 1.
  • the form of the sealing member 470 (see FIGS. 15 to 17) is the same as the sealing members 170, 270, and 370 according to the first to third embodiments. The form is different.
  • the second embodiment is the same as the first embodiment, and the description of the same parts as the first embodiment is omitted or simplified.
  • the sealing member 470 according to the fourth embodiment includes an elastic member 479 including an insertion portion 173, an annular pressure contact portion 475, and an interposition portion 177 in addition to the covering member 171.
  • the covering member 171 and the insertion portion 173 and the interposition portion 177 of the elastic member 479 are the same as those in the first embodiment.
  • the peripheral edge portion 171m of the covering member 171 is joined to the recess peripheral portion 113m of the case lid member 113 by four spot welded portions 171y in the circumferential direction (see FIGS. 5 and 6).
  • the fourth embodiment only three spot welds 171y are formed, and the spot weld 171y shown on the left side in FIGS. 5 and 6 is not formed (see FIG. 15).
  • the annular pressure contact portion 475 has a substantially rectangular cross section and has an annular shape in plan view.
  • the annular pressure contact portion 475 is joined to the covering portion inner surface 171c of the covering member 171 so as to surround the periphery of the insertion portion 173, and is pressed in the thickness direction (vertical direction) over the entire circumference by pressing from the covering member 171. It is compressed. For this reason, in the annular pressure contact portion 475, stress is generated in the thickness direction as indicated by the up and down arrows in FIG. Thus, the annular pressure contact portion 475 is in close contact with the recess bottom surface 113f3 of the recess 113h and hermetically seals the inside of the battery case 110.
  • the radial stress generated in the insertion part 173 is: It is difficult to reach the annular pressure contact portion 475.
  • the annular pressure contact portion 475 has a recess 475w1 in an adhesion reduction portion 475g which is a part of the circumferential direction (in the fourth embodiment, the portion closest to the safety valve 113j (left side in FIGS. 15 to 17)).
  • the concave portion 475w1 is an outer surface located on the outer side in the radial direction of the surface 475c of the annular pressure contact portion 475 in the close contact reduction portion 475g of the annular pressure contact portion 475 than the pressure contact surface 475c1 that is in pressure contact with the bottom surface 113f3 of the recess. 475c2.
  • this recessed part 475w1 is made into the form which is dented in radial direction inner side and opened to radial direction outer side.
  • the sealing performance of the close contact reduction portion 475g of the annular pressure contact portion 475 is lower than that of other portions in the circumferential direction of the annular pressure contact portion 475. That is, in the adhesion decreasing portion 475g provided with the recess 475w1, the pressure at which the pressure contact surface 475c1 of the annular pressure contact portion 475 is in pressure contact with the recess bottom surface 113f3 of the case lid member 113 is smaller than other portions in the circumferential direction. For this reason, in the contact
  • the insertion portion 173 and the annular pressure contact portion 475 are connected via the interposed portion 177 having the interposed groove 177v. It is in the form. For this reason, even if the insertion portion 173 inserted into the liquid injection hole 113e is compressed radially inward, the annular pressure contact portion 475 is difficult to be pulled radially inward. Stress is unlikely to occur. Therefore, the airtightness by the annular pressure contact portion 475 can be maintained for a long time.
  • the above-described concave portion 475 w 1 is provided in the close contact reduction portion 475 g of the annular pressure contact portion 475.
  • the covering member 171 of the sealing member 470 and the case lid member 113 are joined by spot welding instead of full circumference welding, the outside (radially outer side) of the annular pressure contact portion 475 is the battery case 110. It communicates with the outside.
  • the concave portion 475w1 for reducing the sealing performance by the adhesion reduction portion 475g of the annular pressure contact portion 475 is provided on the outer surface 475c2 of the surface 475c of the annular pressure contact portion 475. Is not limited to this.
  • the sealing performance is reduced by the adhesion reducing portion 475 g of the annular pressure contact portion 475. May be.
  • the sealing performance is reduced by the adhesion decreasing portion 475g of the annular pressure contact portion 475. You may let them.
  • the recess 475 w 4 is provided at the boundary between the outer surface 475 c 2 and the pressure contact surface 475 c 1 in the annular pressure contact portion 475, thereby reducing the sealing performance at the adhesion reduction portion 475 g of the annular pressure contact portion 475. May be.
  • the area (pressure contact area) of the pressure contact surface 475c1 in pressure contact with the recess bottom surface 113f3 in the adhesion reduction portion 475g is the circumferential direction of the annular pressure contact portion 475. It becomes smaller than other parts. For this reason, the sealing performance is reduced by the adhesion reduction portion 475g.
  • a hybrid vehicle (vehicle) 700 (hereinafter also simply referred to as a vehicle 700) according to the fifth embodiment is equipped with the battery 100 according to the first embodiment, and the electric energy stored in the battery 100 is used as the drive energy of the drive source. It is used as a whole or a part (see FIG. 21).
  • the automobile 700 is a hybrid automobile that is mounted with an assembled battery 710 in which a plurality of batteries 100 are combined and is driven by using an engine 740, a front motor 720, and a rear motor 730 in combination.
  • the automobile 700 includes an engine 740, a front motor 720 and a rear motor 730, an assembled battery 710 (battery 100), a cable 750, and an inverter 760 on the vehicle body 790.
  • the automobile 700 is configured to be able to drive the front motor 720 and the rear motor 730 using electrical energy stored in the assembled battery 710 (battery 100).
  • the battery 100 can hermetically seal the liquid injection hole 113e with the sealing member 170 for a long period of time, the durability of the automobile 700 can be increased.
  • the batteries 200, 300, and 400 according to the second to fourth embodiments may be mounted.
  • a hammer drill 800 according to the sixth embodiment is a battery using device equipped with the battery 100 according to the first embodiment (see FIG. 22).
  • a battery pack 810 including the battery 100 is accommodated in a bottom portion 821 of a main body 820, and the battery pack 810 is used as an energy source for driving the drill.
  • the battery 100 can hermetically seal the liquid injection hole 113e with the sealing member 170 for a long period of time, the durability of the hammer drill 800 can be increased.
  • the batteries 200, 300, and 400 according to the second to fourth embodiments may be mounted.
  • the present invention has been described with reference to the embodiments.
  • the present invention is not limited to the above-described first to sixth embodiments, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof. Yes.
  • the injection hole 113e for injecting the electrolytic solution 117 is exemplified as the “through hole” that communicates the inside and outside of the battery case, but is not limited thereto.
  • the through hole for example, a vent hole for venting gas in the battery case can be cited.
  • the “through hole” is provided in the case lid member 113 of the battery case 110, but the formation position of the through hole is not limited to this.
  • the through hole may be provided on a side surface or a bottom surface of the case main body member 111.
  • the shape of the “through hole” is a circular hole, the shape of the through hole is not limited to this. Examples of the shape of the through hole include a plan view elliptical shape, a plan view ellipse shape, a plan view rectangular shape, and a plan view polygonal shape.
  • the wound-type electrode body 120 is illustrated in which the positive electrode plate 121 and the negative electrode plate 131 each having a band shape are wound on each other via the separator 141.
  • the form of the electrode body 120 is not limited to this.
  • the electrode body may be a stacked type in which a plurality of positive and negative electrode plates each having a predetermined shape (for example, a rectangular shape) are alternately stacked via a separator.
  • the “covering portion” is exemplified by the covering member 171 made of the same material (aluminum) as the battery case 110, but the material of the covering portion can be changed as appropriate.
  • the covering member 171 is fixed to the battery case 110 by spot welding, but the fixing method is not limited to this.
  • the covering member 171 may be fixed to the battery case 110 by all-around welding.
  • the covering member 171 may be fixed to the battery case 110 using a brazing material or an adhesive.
  • the truncated cone-shaped insertion portions 173 and 373 are exemplified as the “insertion portion” of the sealing member, but the shape and size of the insertion portion can be changed as appropriate.
  • the insertion portions 171 and 373 that are press-fitted into the liquid injection hole 113e are exemplified as the “insertion portion”, but are not limited thereto.
  • the radial dimension of the insertion portion may be reduced, and the insertion portion and the liquid injection hole may be in contact with each other without being in pressure contact, or the insertion portion and the liquid injection hole may be in close proximity via a gap. .
  • the insertion portions 173, 373, the annular pressure contact portions 175, 375, 475, and the interposition portion 177 made of EPDM are exemplified as the “insertion portion”, the “annular pressure contact portion”, and the “interposition portion”.
  • the material of the rubber elastic body is not limited to this.
  • SBR styrene butadiene rubber
  • NBR nitrile rubber
  • PP polypropylene
  • PFA perfluoroalkoxy fluororesin
  • the “interposition groove” is exemplified as the interposition groove 177v made of a U-shaped groove, but the shape and size of the interposition groove can be changed as appropriate.
  • the base groove 373v formed of a U-shaped groove is illustrated as the “base groove”, but the shape and size of the base groove can be changed as appropriate.
  • the hybrid vehicle 700 is exemplified as a vehicle on which the battery 100 according to the present invention is mounted.
  • the present invention is not limited to this.
  • Examples of the vehicle on which the battery according to the present invention is mounted include an electric vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, a forklift, an electric wheelchair, an electrically assisted bicycle, and an electric scooter.
  • the hammer drill 800 was illustrated as a battery using apparatus which mounts the battery 100 which concerns on this invention, it is not restricted to this.
  • Examples of battery-powered devices equipped with the battery according to the present invention include personal computers, mobile phones, battery-powered electric tools, uninterruptible power supply devices, various home appliances driven by batteries, office equipment, industrial equipment, etc. Is mentioned.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

 密閉型電池(100)は、電池ケース(110)の貫通孔(113e)を外部から気密に封止する封止部材(170)を備える。この封止部材(170)は、外部から電池ケース(110)に固着された被覆部(171)と、貫通孔(113e)内に挿入された挿入部(173)と、電池ケース(110)の孔周囲部(113f3)に気密に圧接した環状圧接部(175)と、挿入部(173)と環状圧接部(175)との間にこれらと一体となって介在する介在部(177)とを有する。介在部(177)には、挿入部(173)の周囲を囲む環状の介在部凹溝(177v)が設けられている。

Description

密閉型電池
 本発明は、自身の内外を連通する貫通孔を有する電池ケースと、この電池ケース内に収容された電極体と、電池ケースの貫通孔を外部から気密に封止してなる封止部材とを備える密閉型電池に関する。
 従来より、電解液を注入するための注液孔などの貫通孔が設けられた電池ケースと、この電池ケースに収容された電極体と、電池ケースの貫通孔を外部から気密に封止した封止部材とを備える密閉型電池が知られている。封止部材としては、例えば、金属製の蓋部材のみからなるものがある。この封止部材(金属蓋部材)915は、図23に示すように、自身の環状の周縁部915mを、電池ケース913のうち注液孔(貫通孔)913eの周囲を囲む環状の周囲部913mに、全周にわたり溶接して、注液孔913eを外部から(図23中、上方から)気密に封止する。
 しかしながら、この封止部材915では、封止部材915の周縁部915mを電池ケース913の周囲部913mに溶接する際、周囲部913mに付着していた電解液や溶接時の熱により蒸発した電解液に起因して、封止不良(溶接不良)を生じることがある。このため、封止部材915の全周溶接による注液孔913eの気密封止を確実に行うのが難しい。
 その他、図24に示すように、前述の金属蓋部材915に、ゴムからなる円板状の弾性部材926を接合した封止部材925を用いた密閉型電池がある。この封止部材925は、その弾性部材(弾性部)926を、電池ケース923のうち注液孔923eの周囲に設けた凹部923h内に嵌めて、注液孔923eを外部から(図24中、上方から)塞ぐ。そして、金属蓋部材(金属蓋部)金属蓋部915と電池ケース923との間で弾性部926を圧縮した状態で、金属蓋部915の周縁部915mを電池ケース923の周囲部923mに溶接し、弾性部926で注液孔923eを気密に封止する。なお、これに類似した密閉型電池が特許文献1に開示されている(特許文献1の図5等を参照)。
 この封止部材925では、弾性部926の径方向の寸法(図24中、左右方向の寸法)を、凹部923hの径方向の寸法と等しくし、弾性部926が凹部923hに隙間無く嵌合する形態としている。このため、弾性部926を金属蓋部915と電池ケース923との間で圧縮しても、弾性部926は径方向外側に膨張することができないので、弾性部926には、径方向外側から(凹部923hの側面から)も力が掛かる。これにより、弾性部926内には、厚み方向だけでなく、径方向にも応力も生じる。この状態では、弾性部926による気密を長期間にわたって保つのが難しい。特に、ハイブリッド自動車や電気自動車などの車載用の密閉型電池は、例えば10年以上の長期間にわたって使用されるため、気密を長期間にわたって保つことが望まれる。
 一方、この問題を解決するために、弾性部926の径方向の寸法を凹部923hの寸法よりも小さくし、弾性部926と凹部923hとの径方向の間に隙間を設ける形態とすることが考えられる。しかしながら、弾性部926を凹部923h内に配置する際に、その位置決めが難しくなるという問題が新たに生じる。
 また、図25に示すように、注液孔923e内に圧入される挿入部936と、この挿入部936と一体に繋がり挿入部936の周囲を囲む環状の環状圧接部937とを、金属蓋部915に接合した封止部材935も提案されている。この封止部材935は、その挿入部936を位置決めガイドとして利用することで、注液孔923eに対する封止部材935の位置決めを精度良く行うことができる。なお、これに類似した密閉型電池が特許文献2に開示されている(特許文献2の図2等を参照)。
特開2004-119329号公報 特開2000-268811号公報
 しかしながら、挿入部936は、注液孔923eに圧入したときに径方向内側に圧縮されるので、挿入部936の周囲に一体に繋がった環状圧接部937も、径方向内側に引っ張られる。このため、環状圧接部937内には、厚み方向だけでなく、径方向にも応力が生じる。するとこの場合も、環状圧接部937による気密を長期間にわたって保つのが難しくなる。
 なお、挿入部936の径方向の寸法(図25中、左右方向の寸法)を小さくし、挿入部936を注液孔923eに圧入せずに、挿入部936と注液孔923eとの間に隙間ができる形態(遊嵌状)とした場合でも、挿入部936を注液孔923eに挿入する際、挿入部936の周方向の一部が注液孔923eに当接する(片当たりする)場合がある。すると、この当接部分において、挿入部936が径方向内側に圧縮され、これに伴い環状圧接部937が径方向内側に引っ張られるので、やはりこの場合も、環状圧接部937による気密を長期間にわたって保つのが難しくなる。このように、従来の密閉型電池では、封止部材による注液孔等の貫通孔の封止について、気密を長期間にわたって保つことが難しかった。
 本発明は、かかる現状に鑑みてなされたものであって、電池ケースに設けられた貫通孔の封止部材による封止について、気密を長期間にわたって保つことができる(気密の長期信頼性が高い)密閉型電池を提供することを目的とする。
 上記課題を解決するための本発明の一態様は、自身の内外を連通する貫通孔を有する電池ケースと、前記電池ケース内に収容された電極体と、前記貫通孔を外部から気密に封止してなる封止部材と、を備える密閉型電池であって、前記封止部材は、前記貫通孔を外部から覆い、前記電池ケースに固着された被覆部と、ゴム状弾性体からなり、前記被覆部のうち前記電池ケース側に位置する面である被覆部内側面から延びて前記貫通孔内に挿入された挿入部と、ゴム状弾性体からなり、前記被覆部内側面から前記挿入部の周囲を囲む形態で環状に延び、前記被覆部からの押圧により、前記電池ケースのうち前記貫通孔の周囲に位置する環状の孔周囲部に気密に圧接してなる環状圧接部と、を有し、前記挿入部と前記環状圧接部との間が相互に離間した形態、ゴム状弾性体からなり、前記被覆部内側面から環状に延び、前記挿入部と前記環状圧接部との間に介在し、これらと一体とされた介在部を有し、前記介在部に、前記挿入部の周囲を囲む環状の介在部凹溝を有する形態、及び、前記挿入部と前記環状圧接部とが直接繋がって一体とされてなり、前記挿入部のうち、前記貫通孔内に位置する孔内部よりも前記被覆部側に位置する基部に、前記基部の径方向にくびれた基部凹溝を有する形態、のいずれかとされてなる密閉型電池である。
 この密閉型電池では、電池ケースに設けられた貫通孔の封止部材による封止について、気密を長期間にわたって保つことができる。
 更に、上記の密閉型電池であって、前記挿入部は、前記貫通孔に圧入されて、前記貫通孔を密栓してなる密閉型電池とすると良い。
 更に、上記の密閉型電池であって、前記電池ケース内は、大気圧よりも減圧されてなる密閉型電池とすると良い。
 更に、上記のいずれかに記載の密閉型電池であって、前記被覆部は、互いに離間した複数のスポット溶接部により、自身の周縁部が前記電池ケースに溶接されてなる密閉型電池とすると良い。
 更に、上記のいずれかに記載の密閉型電池であって、前記環状圧接部の外部が、前記電池ケースの外部に連通してなり、前記環状圧接部は、自身の周方向の一部に、前記環状圧接部によるシール性能を、周方向の他の部位よりも低下させる凹部を有する密閉型電池とすると良い。
 更に、上記のいずれかに記載の密閉型電池であって、前記電池ケースは、前記貫通孔及び前記封止部材に近接した位置に、安全弁を有する密閉型電池とすると良い。
実施形態1に係るリチウムイオン二次電池を示す縦断面図である。 実施形態1に係り、電極体を示す斜視図である。 実施形態1に係り、正極板及び負極板をセパレータを介して互いに重ねた状態を示す部分平面図である。 実施形態1に係り、ケース蓋部材、正極端子及び負極端子等を示す分解斜視図である。 実施形態1に係り、注液孔及び封止部材の近傍を示す部分拡大縦断面図である。 実施形態1に係り、図5の上方から見た、封止部材の近傍を示す部分拡大平面図である。 実施形態1に係り、封止部材を示す縦断面図である。 実施形態1に係り、ケース蓋部材の注液孔の近傍を示す部分拡大縦断面図である。 実施形態1に係り、図8の上方から見た、ケース蓋部材の注液孔の近傍を示す部分拡大平面図である。 実施形態1に係るリチウムイオン二次電池の製造に関し、封止部材の挿入部を注液孔に圧入する様子を示す説明図である。 実施形態2に係り、注液孔及び封止部材の近傍を示す部分拡大縦断面図である。 実施形態2に係り、封止部材を示す縦断面図である。 実施形態3に係り、注液孔及び封止部材の近傍を示す部分拡大縦断面図である。 実施形態3に係り、封止部材を示す縦断面図である。 実施形態4に係り、注液孔及び封止部材の近傍を示す部分拡大縦断面図である。 実施形態4に係り、封止部材を示す縦断面図である。 実施形態4に係り、図16の下方から見た封止部材の平面図である。 実施形態4の変形形態1に係り、封止部材を示す縦断面図である。 実施形態4の変形形態2に係り、封止部材を示す縦断面図である。 実施形態4の変形形態3に係り、封止部材を示す縦断面図である。 実施形態5に係るハイブリッド自動車を示す説明図である。 実施形態6に係るハンマードリルを示す説明図である。 従来形態1に係る密閉型電池のうち、注液孔及び封止部材の近傍を示す部分拡大縦断面図である。 従来形態2に係る密閉型電池のうち、注液孔及び封止部材の近傍を示す部分拡大縦断面図である。 従来形態3に係る密閉型電池のうち、注液孔及び封止部材の近傍を示す部分拡大縦断面図である。
(実施形態1)
 以下、本発明の実施の形態を、図面を参照しつつ説明する。図1に、本実施形態1に係るリチウムイオン二次電池(密閉型電池)100(以下、単に電池100とも言う)を示す。また、図2及び図3に、この電池100を構成する捲回型の電極体120及びこれを展開した状態を示す。また、図4に、ケース蓋部材113、正極端子150及び負極端子160等の詳細を示す。また、図5及び図6に、注液孔(貫通孔)113e及び封止部材170の近傍の形態を示す。なお、図1,図4及び図5における上方を電池100の上側、下方を電池100の下側として説明する。
 この電池100は、ハイブリッド自動車や電気自動車等の車両や、ハンマードリル等の電池使用機器に搭載される角型電池である。この電池100は、直方体形状の電池ケース110、この電池ケース110内に収容された捲回型の電極体120、電池ケース110に支持された正極端子150及び負極端子160等から構成されている(図1参照)。また、電池ケース110内には、非水系の電解液117が保持されている。
 このうち電池ケース110は、金属(本実施形態1ではアルミニウム)により形成されている。この電池ケース110は、上側のみが開口した箱状のケース本体部材111と、このケース本体部材111の開口111hを閉塞する形態で溶接されたケース蓋部材113とから構成されている(図1及び図4参照)。ケース蓋部材113は、電池ケース110の内部を向く内側主面113cと、電池ケース110の外部を向く外側主面113dとを有する矩形板状をなす。
 ケース蓋部材113には、電池ケース110の内圧が所定圧力に達した際に破断する安全弁113jが設けられている。また、このケース蓋部材113には、電池ケース110の内外を連通する後述する注液孔(貫通孔)113eが設けられている。この注液孔113eは、電池ケース110内が大気圧よりも減圧された状態で、後述する封止部材170で気密に封止されている。
 また、ケース蓋部材113には、それぞれ延出端子部材151とボルト153により構成される正極端子150及び負極端子160が、樹脂からなる絶縁部材155を介して固設されている(図1及び図4参照)。電池ケース110内において、正極端子150は電極体120の正極板121(その正極集電部121m)に接続され、負極端子160は電極体120の負極板131(その負極集電部131m)に接続されている(図1参照)。
 次に、電極体120について説明する。この電極体120は、絶縁フィルムを上側のみが開口した袋状に形成した絶縁フィルム包囲体115内に収容され、横倒しにした状態で電池ケース110内に収容されている(図1参照)。この電極体120は、帯状の正極板121と帯状の負極板131とを、帯状のセパレータ141を介して互いに重ねて(図3参照)、軸線AX周りに捲回し、扁平状に圧縮したものである(図2参照)。
 正極板121は、芯材として、帯状のアルミニウム箔からなる正極集電箔122を有する。この正極集電箔122の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上には、それぞれ正極活物質層123,123が長手方向(図3中、左右方向)に帯状に設けられている。これらの正極活物質層123,123は、正極活物質、導電剤及び結着剤から形成されている。
 正極板121のうち、自身の厚み方向に正極集電箔122及び正極活物質層123,123が存在する帯状の部位が、正極部121wである。この正極部121wは、電極体120を構成した状態において、その全域がセパレータ141を介して負極板131の後述する負極部131wと対向している(図3参照)。また、正極板121に正極部121wを設けたことに伴い、正極集電箔122のうち、幅方向の片方の端部(図3中、上方)は、長手方向に帯状に延び、自身の厚み方向に正極活物質層123が存在しない正極集電部121mとなっている。この正極集電部121mの幅方向の一部は、セパレータ141から軸線AX方向の一方側SAに渦巻き状をなして突出しており、前述の正極端子150と接続している(図1参照)。
 また、負極板131は、芯材として、帯状の銅箔からなる負極集電箔132を有する。この負極集電箔132の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上には、それぞれ負極活物質層133,133が長手方向(図3中、左右方向)に帯状に設けられている。これらの負極活物質層133,133は、負極活物質、結着剤及び増粘剤から形成されている。
 負極板131のうち、自身の厚み方向に負極集電箔132及び負極活物質層133,133が存在する帯状の部位が、負極部131wである。この負極部131wは、電極体120を構成した状態において、その全域がセパレータ141と対向している。また、負極板131に負極部131wを設けたことに伴い、負極集電箔132のうち、幅方向の片方の端部(図3中、下方)は、長手方向に帯状に延び、自身の厚み方向に負極活物質層133が存在しない負極集電部131mとなっている。この負極集電部131mの幅方向の一部は、セパレータ141から軸線AX方向の他方側SBに渦巻き状をなして突出しており、前述の負極端子160と接続している(図1参照)。
 また、セパレータ141は、樹脂、具体的にはポリプロピレン(PP)とポリエチレン(PE)からなる多孔質膜であり、帯状をなす。
 次に、注液孔113e、凹部113h及び封止部材170について説明する(図5~図9参照)。注液孔113e、凹部113h及び封止部材170は、安全弁113jの近傍に配置されている(図4参照)。具体的には、ケース蓋部材113には、注液孔113e及び凹部113hと安全弁113jが設けられている他、正極端子150及び負極端子160が固設されている。そして、注液孔113e及びこれを封止する封止部材170から正極端子150または負極端子160までの距離よりも、注液孔113e及び封止部材170から安全弁113jまでの距離が短くなる位置に、注液孔113e及び封止部材170が配置されている。
 凹部113h(図8及び図9等を参照)は、ケース蓋部材113の内側主面113c側(図8中、下方)に凹み、外側主面113d(図8中、上方)に開口する平面視円形状をなす凹部である。この凹部113hは、円筒状をなす凹部側面113f2と、内側主面113c及び外側主面113dに平行に延びる平面をなす凹部底面113f3とにより構成されている。なお、本実施形態1では、凹部底面113f3が、注液孔113eの周囲に位置する環状の「孔周囲部」に相当する。
 注液孔113e(図8及び図9等を参照)は、電解液117を電池ケース110内に注入するために、内側主面113cと凹部底面113f3との間を貫通する形態で、凹部底面113f3の中央に設けられた円孔であり、電池ケース110の内外を連通している。この注液孔113eは、円筒状をなす孔側面113f1で構成されている。
 一方、封止部材170(図7参照)は、被覆部材(被覆部)171と弾性部材179とから構成されており、このうち弾性部材179は、挿入部173と環状圧接部175と介在部177とからなる。なお、図7中に、挿入部173と介在部177との境界、及び、介在部177と環状圧接部175との境界をそれぞれ破線で示す。
 このうち被覆部材171は、電池ケース110の材質と同じ材質、具体的には、アルミニウムからなる。この被覆部材171は、電池ケース110側(ケース蓋部材113側)(図5及び図7中、下方)に位置する主面である被覆部内側面171cと、これに平行でケース蓋部材113とは反対側(図5及び図7中、上方)に位置する主面である被覆部外側面171dとを有し、凹部113hよりも径大な円板状をなす。
 この被覆部材171は、注液孔113eを電池ケース110の外部から覆う形態で、電池ケース110に固着されている(図5及び図6参照)。具体的には、被覆部材171の外周縁に沿う円環状の周縁部171mが、ケース蓋部材113のうち凹部113hの周囲を囲む円環状の凹部周囲部113mに、周方向の4カ所で等間隔にスポット溶接されている。これにより、周方向に等間隔に互いに離間した4つのスポット溶接部171yが形成され、被覆部材171が電池ケース110(そのケース蓋部材113)に固着されている。特に本実施形態1では、被覆部材171と電池ケース110とを同じ材質(アルミニウム)にしているので、これらの溶接をより確実なものとすることができる。
 一方、弾性部材179は、前述のように、挿入部173と環状圧接部175と介在部177とからなり、これらが一体に繋がったものである。この弾性部材179は、ゴム状弾性体、具体的には、エチレンプロピレンジエンゴム(EPDM)からなる。このうち挿入部173は、注液孔113eよりも径小な頂面173cと、この頂面173cよりも径大で、かつ、注液孔113eよりも径大な底面173dと、これらの間を結ぶ側面173fとを有する円錐台状をなす。この挿入部173は、その底面173dが被覆部材171の被覆部内側面171cの中央に接合されており、被覆部内側面171cから延びて、注液孔113e内に挿入されている。
 本実施形態1では、挿入部173の側面173fが、注液孔113eを構成する孔側面113f1に圧接する形態で、挿入部173が注液孔113eに圧入されている。このため、挿入部173は、その全周にわたり径方向内側に圧縮されており、挿入部173内には、図5中に左右方向の矢印で示すように、径方向外側に向く応力が生じている。これにより、注液孔113eは、挿入部173で密栓されている。
 また、環状圧接部175は、その断面が概略矩形状で、平面視円環状をなす。この環状圧接部175の外径は、凹部113hの径(凹部底面113f3の外径)よりも小さくされている。一方、環状圧接部175の内径は、注液孔113eの径よりも大きくされている。また、この環状圧接部175の高さ(厚み)は、図7に示す圧縮前の状態で、凹部113hの深さよりも若干大きくされており、図5に示す圧縮された状態で、凹部113hの深さと等しくなっている。
 この環状圧接部175は、被覆部材171の被覆部内側面171cに、挿入部173の周囲を囲む形態で接合されており、被覆部内側面171cから環状に延びている。この環状圧接部175は、被覆部材171からの押圧により、その全周にわたり厚み方向(上下方向)に圧縮されている。このため、環状圧接部175内には、図5中に上下方向の矢印で示すように、厚み方向に応力が生じている。これにより、環状圧接部175は、凹部113hの凹部底面113f3に密着しており、環状圧接部175よりも径方向内側に位置する注液孔113eの内側(電池内部)と外側(電池外部)との間が気密に封止されている。前述のように、注液孔113eは、挿入部173によっても気密に封止されているので、挿入部173と環状圧接部175とにより2重にシールされている。
 また、介在部177は、円環状をなし、被覆部材171の被覆部内側面171cに接合されて、被覆部内側面171cから環状に延びている。この介在部177は、挿入部173と環状圧接部175との間に介在し、これらと一体とされている。この介在部177には、挿入部173の周囲を囲む円環状の介在部凹溝177vが設けられている。この介在部凹溝177vは、被覆部材171側(図5及び図7中、上方)に凹み、被覆部材171とは反対側(ケース蓋部材113側、図5及び図7中、下方)に開口し、断面がU字状をなす円環U字溝である。
 この介在部177は、挿入部173が注液孔113eに圧入されて径方向内側に圧縮されたとき、介在部177のうち、介在部凹溝177vよりも径方向内側に位置する内側部177pは、径方向内側に引っ張られる。しかし、介在部凹溝177vを設けているので、介在部177のうち、介在部凹溝177vよりも径方向外側に位置する外側部177qまでは径方向内側に引っ張られ難い。このため、介在部177(その外側部177q)に繋がる環状圧接部175も、径方向内側に引っ張られ難い。
 この弾性部材179では、図25と対比すると容易に理解できるように、その環状圧接部175内には径方向の応力が殆ど生じていない。前述のように、挿入部173は注液孔113eに圧入されて径方向内側に圧縮されているものの、挿入部173と環状圧接部175との間には、介在部凹溝177vを有する介在部177が存在する。このため、挿入部173内に生じた径方向の応力が、環状圧接部175までは伝わり難いからである。
 また、環状圧接部175の径方向外側には、空間KCが設けられている。即ち、環状圧接部175の表面175cのうち、凹部113hの凹部底面113f3に圧接する圧接面175c1よりも径方向外側に位置する外側面175c2と、凹部113hの凹部側面113f2との間に、空間KCが設けられている。このため、環状圧接部175は、被覆部材171の被覆部内側面171cと凹部113hの凹部底面113f3との間で厚み方向に圧縮されたことに伴って、径方向外側に膨張している。従って、径方向外側から(凹部側面113f2から)力が掛かることにより、環状圧接部175に径方向の応力が生じることもない。
 以上で説明したように、本実施形態1に係る電池100は、自身の内外を連通する貫通孔(注液孔)113eを有する電池ケース110と、電池ケース110内に収容された電極体120と、貫通孔113eを外部から気密に封止してなる封止部材170とを備える。このうち封止部材170は、貫通孔113eを外部から覆い、電池ケース110に固着された被覆部(被覆部材)171を有する。また、封止部材170は、ゴム状弾性体からなり、被覆部171のうち電池ケース110側に位置する面である被覆部内側面171cから延びて貫通孔113e内に挿入された挿入部173を有する。また、封止部材170は、ゴム状弾性体からなり、被覆部内側面171cから挿入部173の周囲を囲む形態で環状に延び、被覆部171からの押圧により、電池ケース110のうち貫通孔113eの周囲に位置する環状の孔周囲部(凹部底面)113f3に気密に圧接してなる環状圧接部175を有する。更に、封止部材170は、ゴム状弾性体からなり、被覆部内側面171cから環状に延び、挿入部173と環状圧接部175との間に介在し、これらと一体とされた介在部177を有し、この介在部177に、挿入部173の周囲を囲む環状の介在部凹溝177vを有する。
 この電池100では、挿入部173と環状圧接部175とが、介在部凹溝177vを有する介在部177を介して繋がった形態とされている。このため、注液孔113eに挿入された挿入部173が径方向内側に圧縮されても、環状圧接部175は、径方向内側に引っ張られ難いので、環状圧接部175内には、径方向の応力が殆ど生じない。従って、環状圧接部175による気密を長期間にわたって保つことができる。
 更に、本実施形態1では、挿入部173は、貫通孔(注液孔)113eに圧入されて、貫通孔113eを密栓してなる。これにより、この電池100では、環状圧接部175によるシールだけでなく、挿入部173によるシールも行われているので、封止部材170による気密を長期間にわたって保つことができる。
 また、本実施形態1では、電池ケース110内は、大気圧よりも減圧されてなる。このため、使用(充放電)に伴い電池ケース110内にガスが発生した場合でも、電池ケース110内の内圧が早期に高くなるのを抑制できる。従って、電池100の安全性をより高めることができる。
 また、本実施形態1では、被覆部(被覆部材)171は、互いに離間した複数のスポット溶接部171yにより、自身の周縁部171mが電池ケース110に溶接されてなる。この電池100は、前述のように、環状圧接部175により注液孔113eが気密封止されているので、必ずしも、被覆部材171を電池ケース110に全周溶接してまでこれらの間を気密に封止する必要はない。加えて、被覆部材171を電池ケース110(そのケース蓋部材113の凹部周囲部113m)に全周溶接すると、工数が掛かりコスト高を招く。これに対し、この電池100では、被覆部材171を電池ケース110に複数箇所でスポット溶接すれば足りるので、工数が少なく、電池100を安価にすることができる。
 また、本実施形態1では、電池ケース110は、貫通孔(注液孔)113e及び封止部材170に近接した位置に、安全弁113jを有する。このため、安全弁113jから放出されたガスや電解液を排出する排出路を設計、構成する際、注液孔113e及び封止部材170が安全弁113jから近い位置にあるので、注液孔113eからガス等が排出された場合の排出路も、安全弁113j用の排出路を兼用して用いることができるように、容易に設計構成できる。
 次いで、上記電池100の製造方法について説明する。まず、別途形成した帯状の正極板121及び負極板131を、帯状のセパレータ141を介して互いに重ね(図3参照)、巻き芯を用いて軸線AX周りに捲回する。その後、これを扁平状に圧縮して電極体120を形成する(図2参照)。
 また、安全弁113j及び注液孔113e等を形成したケース蓋部材113と、延出端子部材151及びボルト153とを用意し、これらを射出成形用の金型にセットする。そして、射出成形により絶縁部材155を形成して、ケース蓋部材113に正極端子150及び負極端子160を固設する(図4参照)。
 次に、正極端子150と電極体120の正極集電部121mとを接続(溶接)する。また、負極端子160と電極体120の負極集電部131mとを接続(溶接)する。その後、ケース本体部材111及び絶縁フィルム包囲体115を用意し、ケース本体部材111内に絶縁フィルム包囲体115を介して電極体120を収容すると共に、ケース本体部材111の開口111hをケース蓋部材113で塞ぐ。そして、レーザ溶接により、ケース本体部材111とケース蓋部材113とを溶接して、電池ケース110を形成する(図1参照)。
 また別途、被覆部材171と弾性部材179とからなる封止部材170(図7参照)を形成しておく。具体的には、金属板からなる被覆部材171を射出成形用の金型にセットし、射出成形により、挿入部173、環状圧接部175及び介在部177からなる弾性部材179を成形する。
 次に、前述の電池を、真空チャンバ内に入れて、真空チャンバ内を減圧する。そして、注液用ノズルを注液孔113e内に挿入して、注液用ノズルから電池ケース110内に電解液117を注液する。その後、注液孔113eの周囲(凹部113h及び凹部周囲部113m等)を不織布で拭いて清掃する。
 次に、減圧下で第1の封止を行う。即ち、この封止部材170のうちの挿入部173を、電池ケース110(ケース蓋部材113)の外部から(上方から)注液孔113e内に圧入する。これにより、挿入部173と注液孔113eとの間が気密に封止される。その際、挿入部173は位置決めガイドとしての役割も果たすので、注液孔113eに対する封止部材170の位置決めを精度良く行うことができる。
 その後、真空チャンバ内を大気圧に戻して、真空チャンバからこの電池を取り出す。これにより、電池ケース110内は大気圧よりも減圧された状態となる。従って、次述する第2の封止を、電池ケース110内を減圧状態に保ったまま、大気圧下で行うことができる。
 次に、大気圧下で第2の封止を行う。まず、図10に示すように、封止部材170の被覆部材171をケース蓋部材113側に(下方に)押圧して、環状圧接部175をケース蓋部材113の凹部113hの凹部底面113f3に圧接させると共に、被覆部材171の周縁部171mをケース蓋部材113の凹部周囲部113mに当接させる。
 その後、被覆部材171の周縁部171mを、ケース蓋部材113の凹部周囲部113mに溶接する。具体的には、封止部材170をケース蓋部材113側に押圧した状態で、レーザ溶接により、被覆部材171の周縁部171mをケース蓋部材113の凹部周囲部113mに、周方向の4カ所に等間隔にスポット溶接する。これにより、環状圧接部175と凹部底面113f3との間が密着するので、環状圧接部175よりも径方向内側に位置する注液孔113eの内側(電池内部)と外側(電池外部)との間が気密に封止される。前述のように、注液孔113eは、挿入部173によっても気密に封止されているので、挿入部173と環状圧接部175とにより2重にシールされる。
 次に、コンディショニング工程(初期充放電工程)において、この電池100の充放電を行う。かくして、電池100が完成する。
(実施形態2)
 次いで、第2の実施の形態について説明する。本実施形態2に係るリチウムイオン二次電池(密閉型電池)200では、封止部材270の形態(図11及び図12参照)が、実施形態1に係る封止部材170の形態と異なる。それ以外は、実施形態1と同様であるので、実施形態1と同様な部分の説明は、省略または簡略化する。
 本実施形態2に係る封止部材270の弾性部材279は、実施形態1と同様な挿入部173と環状圧接部175とを有する。但し、この弾性部材279は、挿入部173と環状圧接部175とが互いに離間した別体で構成されており、実施形態1における介在部177のような介在部を有しない。
 このため、この弾性部材279では、挿入部173を注液孔113eに挿入しても、環状圧接部175に径方向の応力は生じない。挿入部173が注液孔113eへの圧入により径方向内側に圧縮されても、挿入部173と環状圧接部175との間が相互に離間しており、挿入部173内に生じた径方向の応力が、環状圧接部175まで伝わらないからである。なお、環状圧接部175の径方向外側には、実施形態1と同様に空間KCが設けられている。このため、径方向外側から(凹部側面113f2から)力が掛かることにより、環状圧接部175に径方向の応力が生じることもない。
 このように、本実施形態2の電池200は、挿入部173と環状圧接部175との間が相互に離間した形態とされている。挿入部173と環状圧接部175とは互いに独立しているので、挿入部173が注液孔113e(孔側面113f1)により径方向内側に圧縮されても、環状圧接部175は径方向に引っ張られない。従って、環状圧接部175内には径方向の応力が生じず、環状圧接部175による気密を長期間にわたって保つことができる。その他、実施形態1と同様な部分は、実施形態1と同様な作用効果を奏する。
(実施形態3)
 次いで、第3の実施の形態について説明する。本実施形態3に係るリチウムイオン二次電池(密閉型電池)300では、封止部材370の形態(図13及び図14参照)が、実施形態1または2に係る封止部材170,270の形態と異なる。それ以外は、実施形態1と同様であるので、実施形態1と同様な部分の説明は、省略または簡略化する。
 本実施形態3に係る封止部材370は、実施形態1と同様な被覆部材171を有するが、弾性部材379の形態が異なる。この封止部材370の弾性部材379は、挿入部373と環状圧接部375とからなる。これら挿入部373と環状圧接部375とは、直接繋がって一体とされており、両者の間には実施形態1に係る介在部177のような介在部は存在しない。なお、図14中に、挿入部373と環状圧接部375との境界を破線で示す。加えて、後述するように、挿入部373にくびれ状の基部凹溝373vを有する点でも、実施形態1と相違している。
 このうち挿入部373は、実施形態1と同様に、径小な頂面373cと径大な底面373dとこれらの間を結ぶ側面373fとを有する円錐台状をなす。この挿入部373は、被覆部材171の被覆部内側面171cの中央から延びて、注液孔113e内に挿入される。この挿入部373は、図14中に破線で示すように、図14中、上下方向に、先端部373sと当接部373tと基部373kの3つの部位に分けられる。
 このうち中央に位置する当接部373tは、挿入部373を注液孔113eに挿入(より具体的には圧入)したときに、注液孔113e(孔側面113f1)に当接(より具体的には圧接)する部位である(図13参照)。また、先端部373sは、当接部373tよりも電池内部側(図13中、下方)に位置する円錐台状の部位である。また、基部373kは、当接部373tよりも電池外部側(被覆部材171側、図13中、上方)に位置する円柱状の部位である。そして、本実施形態3では、この基部373kのうち当接部373tとの境界部分に、径方向内側に向けてU字状で円環状にくびれた基部凹溝373vが形成されている。
 また、環状圧接部375は、その断面が概略矩形状で、平面視円環状をなす。この環状圧接部375は、挿入部373の周囲を囲む形態で挿入部373(その基部373k)と直接繋がって一体とされており、被覆部材171の被覆部内側面171cに接合されている。この環状圧接部375は、被覆部材171からの押圧により、その全周にわたり厚み方向(上下方向)に圧縮されている。このため、環状圧接部375内は、図13中に上下方向の矢印で示すように、厚み方向に応力が生じている。これにより、環状圧接部375は、凹部113hの凹部底面113f3に密着しており、電池ケース110内を気密に封止されている。
 本実施形態3の弾性部材379でも、挿入部373(その当接部373t)が注液孔113eを構成する孔側面113f1に圧接する形態で、挿入部373が注液孔113eに圧入されている。このため、挿入部373(その当接部373t)は、その全周にわたり径方向内側に圧縮されており、挿入部373内には、図13中に左右方向の矢印で示すように、径方向外側に向く応力が生じている。これにより、注液孔113eは、挿入部373(その当接部373t)で密栓されている。
 但し、本実施形態3では、この当接部373tよりも被覆部材171側に位置する基部373kのうち、当接部373tとの境界部分に、基部凹溝373vが形成されている。このため、当接部373tが注液孔113e(孔側面113f1)により径方向内側に圧縮されても、基部373kのうち、基部凹溝373vよりも被覆部材171側(図13中、上方)の部位までは、径方向内側に圧縮され難い。従って、基部373kには、径方向の応力が殆ど生じない。また、この基部373kの径方向外側に繋がる環状圧接部375も径方向内側に引っ張られ難いので、環状圧接部375内にも径方向の応力は殆ど生じない。即ち、圧入により当接部373tに生じた径方向の応力は、環状圧接部375まで伝わり難い。
 なお、本実施形態3でも、環状圧接部375の径方向外側には、実施形態1,2と同様に、空間KCが設けられている。即ち、環状圧接部375の表面375cのうち、圧接面375c1よりも径方向外側に位置する外側面375c2と、凹部113hの凹部側面113f2との間に、空間KCが設けられている。このため、径方向外側から(凹部側面113f2から)力が掛かることにより、環状圧接部375に径方向の応力が生じることもない。
 このように、本実施形態3に係る電池300は、弾性部材379をなす挿入部373と環状圧接部375とが直接繋がって一体とされてなり、挿入部373のうち、貫通孔(注液孔)113eに当接する当接部373tよりも被覆部材171側に位置する基部373kに、基部373kの径方向にくびれた基部凹溝373vを有する形態とされている。このため、注液孔113eに挿入された挿入部373(その当接部373t)が径方向内側に圧縮されても、環状圧接部375までは径方向内側に引っ張られ難いので、環状圧接部375内にも、径方向の応力が生じ難い。従って、環状圧接部375による気密を長期間にわたって保つことができる。その他、実施形態1と同様な部分は、実施形態1と同様な作用効果を奏する。
(実施形態4)
 次いで、第4の実施の形態について説明する。本実施形態4に係るリチウムイオン二次電池(密閉型電池)400では、封止部材470の形態(図15~図17参照)が、実施形態1~3に係る封止部材170,270,370の形態と異なる。それ以外は、実施形態1と同様であるので、実施形態1と同様な部分の説明は、省略または簡略化する。
 本実施形態4に係る封止部材470は、被覆部材171の他、挿入部173、環状圧接部475及び介在部177からなる弾性部材479から構成されている。このうち、被覆部材171と、弾性部材479のうちの挿入部173及び介在部177は、実施形態1と同様である。但し、実施形態1では、被覆部材171の周縁部171mを、ケース蓋部材113の凹部周囲部113mに、周方向の4カ所のスポット溶接部171yで接合した(図5及び図6参照)。これに対し、本実施形態4では、このうち3カ所のスポット溶接部171yのみを形成しており、図5及び図6中、左側に示すスポット溶接部171yを形成しない(図15参照)。
 環状圧接部475は、その断面が概略矩形状で、平面視円環状をなす。この環状圧接部475は、被覆部材171の被覆部内側面171cに、挿入部173の周囲を囲む形態で接合されており、被覆部材171からの押圧により、その全周にわたり厚み方向(上下方向)に圧縮されている。このため、環状圧接部475内は、図15中に上下方向の矢印で示すように、厚み方向に応力が生じている。これにより、環状圧接部475は、凹部113hの凹部底面113f3に密着しており、電池ケース110内を気密に封止している。なお、実施形態1と同様に、挿入部173と環状圧接部475との間には、介在部凹溝177vを有する介在部177が介在するため、挿入部173内に生じる径方向の応力は、環状圧接部475まで伝わり難い。
 加えて、この環状圧接部475は、その周方向の一部(本実施形態4では、安全弁113jに最も近い部位(図15~図17中、左側))である密着低下部475gに、凹部475w1を有している。具体的には、この凹部475w1は、環状圧接部475の密着低下部475gにおいて、環状圧接部475の表面475cのうち、凹部底面113f3に圧接する圧接面475c1よりも径方向外側に位置する外側面475c2に形成されている。また、この凹部475w1は、径方向内側に凹み、径方向外側に開口する形態とされている。
 このような凹部475w1を設けたことで、環状圧接部475の密着低下部475gは、環状圧接部475の周方向の他の部位よりも、シール性能が低下する。即ち、凹部475w1が設けられた密着低下部475gにおいて、環状圧接部475の圧接面475c1がケース蓋部材113の凹部底面113f3に圧接する圧力が、周方向の他の部位よりも小さくなっている。このため、環状圧接部475の密着低下部475gでは、密着性が低下し、周方向の他の部位よりもシール性能が低くされている。
 以上で説明したように、本実施形態4に係る電池400も、実施形態1と同様に、挿入部173と環状圧接部475とが、介在部凹溝177vを有する介在部177を介して繋がった形態とされている。このため、注液孔113eに挿入された挿入部173が径方向内側に圧縮されても、環状圧接部475は、径方向内側に引っ張られ難いので、環状圧接部475内には、径方向に応力が生じ難い。従って、環状圧接部475による気密を長期間にわたって保つことができる。
 加えて、本実施形態4では、環状圧接部475の密着低下部475gに前述の凹部475w1を設けている。加えて、封止部材470の被覆部材171とケース蓋部材113とを、全周溶接ではなく、スポット溶接により接合しているので、環状圧接部475の外部(径方向外側)が、電池ケース110の外部に連通している。
 このため、封止部材470の環状圧接部475及び挿入部173が経年劣化して、もし、環状圧接部475でのシールが十分にできなくなったときには、環状圧接部475のうちでも、まずシール性能が最も低くされた密着低下部475gを通じて、電池ケース110内に発生したガスや電解液が、環状圧接部475の径方向外側に放出される。そして更に、このガス等は、被覆部材171と凹部周囲部113mとの間を通じて、図15中に矢印で示すように、電池ケース110の外部に排出される。排出されたガス等は、安全弁113jに向かい易いので、安全弁113j用に設ける排出路を兼用させ易くなる。その他、実施形態1と同様な部分は、実施形態1と同様な作用効果を奏する。
 なお、本実施形態4では、環状圧接部475の密着低下部475gでシール性能を低下させる凹部475w1を、環状圧接部475の表面475cのうち外側面475c2に設けたが、凹部の形成位置や形態はこれに限定されない。例えば、図18に示すように、凹部475w2を、環状圧接部475の径方向内側から径方向外側に向けて凹む形態で設けることにより、環状圧接部475の密着低下部475gでシール性能を低下させてもよい。
 また、図19に示すように、凹部475w3を、環状圧接部475の圧接面475c1から被覆部材171側に向けて凹む形態で設けることにより、環状圧接部475の密着低下部475gでシール性能を低下させてもよい。また、図20に示すように、凹部475w4を、環状圧接部475のうち、外側面475c2と圧接面475c1との境界に設けることにより、環状圧接部475の密着低下部475gでシール性能を低下させてもよい。
 図18に示す凹部475w2を設けた場合には、図15及び図16に示す凹部475w1を設けた場合と同様に、密着低下部475gにおいて、圧接面475c1が凹部底面113f3に圧接する圧力が、環状圧接部475の周方向の他の部位よりも小さくなる。このため、この密着低下部475gでシール性能が低下する。一方、図19または図20に示す凹部475w3,475w4を設けた場合には、密着低下部475gにおいて、凹部底面113f3に圧接する圧接面475c1の面積(圧接面積)が、環状圧接部475の周方向の他の部位よりも小さくなる。このため、この密着低下部475gでシール性能が低下する。
(実施形態5)
 次いで、第5の実施の形態について説明する。本実施形態5に係るハイブリッド自動車(車両)700(以下、単に自動車700とも言う)は、実施形態1に係る電池100を搭載し、この電池100に蓄えた電気エネルギを、駆動源の駆動エネルギの全部または一部として使用するものである(図21参照)。
 この自動車700は、電池100を複数組み合わせた組電池710を搭載し、エンジン740、フロントモータ720及びリアモータ730を併用して駆動するハイブリッド自動車である。具体的には、この自動車700は、その車体790に、エンジン740と、フロントモータ720及びリアモータ730と、組電池710(電池100)と、ケーブル750と、インバータ760とを搭載する。そして、この自動車700は、組電池710(電池100)に蓄えられた電気エネルギを用いて、フロントモータ720及びリアモータ730を駆動できるように構成されている。
 前述したように、電池100は、長期間にわたり封止部材170で注液孔113eを気密に封止できるので、この自動車700の耐久性を高くできる。なお、実施形態1に係る電池100に代えて、実施形態2~4に係る電池200,300,400を搭載してもよい。
(実施形態6)
 次いで、第6の実施の形態について説明する。本実施形態6のハンマードリル800は、実施形態1に係る電池100を搭載した電池使用機器である(図22参照)。このハンマードリル800は、本体820の底部821に、電池100を含むバッテリパック810が収容されており、このバッテリパック810を、ドリルを駆動するためのエネルギー源として利用している。
 前述したように、電池100は、長期間にわたり封止部材170で注液孔113eを気密に封止できるので、このハンマードリル800の耐久性を高くできる。なお、実施形態1に係る電池100に代えて、実施形態2~4に係る電池200,300,400を搭載してもよい。
 以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態1~6に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
 例えば、実施形態1~4では、電池ケースの内外を連通する「貫通孔」として、電解液117を注入するための注液孔113eを例示したが、これに限られない。貫通孔としては、例えば、電池ケース内のガスを抜くための通気孔などが挙げられる。また、実施形態1~4では、「貫通孔」を、電池ケース110のうちケース蓋部材113に設けたが、貫通孔の形成位置はこれに限られない。貫通孔は、例えば、ケース本体部材111の側面や底面に設けてもよい。また、「貫通孔」の形状を円孔としたが、貫通孔の形状はこれに限られない。貫通孔の形状としては、例えば、平面視楕円状、平面視長円状、平面視矩形状、平面視多角形状などが挙げられる。
 また、実施形態1~4では、「電極体」として、各々帯状をなす正極板121及び負極板131をセパレータ141を介して互いに重ねて捲回してなる捲回型の電極体120を例示したが、電極体120の形態はこれに限られない。例えば、電極体を、各々所定形状(例えば矩形状など)をなす正極板及び負極板をセパレータを介して交互に複数積層してなる積層型としてもよい。
 また、実施形態1~4では、「被覆部」として、電池ケース110と同じ材質(アルミニウム)からなる被覆部材171を例示したが、被覆部の材質は適宜変更できる。また、実施形態1~4では、スポット溶接により、被覆部材171を電池ケース110に固着させたが、固着方法はこれに限られない。例えば、全周溶接により、被覆部材171を電池ケース110に固着させてもよい。また、ロウ材や接着剤を用いて、被覆部材171を電池ケース110に固着させてもよい。
 また、実施形態1~4では、封止部材の「挿入部」として、円錐台状の挿入部173,373を例示したが、挿入部の形状や大きさは適宜変更できる。また、実施形態1~4では、「挿入部」として、注液孔113eに圧入される形態の挿入部171,373を例示したが、これに限られない。例えば、挿入部の径方向の寸法を小さくして、挿入部と注液孔とが圧接することなく互いに当接する形態や、挿入部と注液孔とが隙間を介して近接する形態としてもよい。
 また、実施形態1~4では、「挿入部」、「環状圧接部」及び「介在部」として、EPDMからなる挿入部173,373、環状圧接部175,375,475及び介在部177を例示したが、ゴム弾性体の材質はこれに限られない。例えば、スチレンブタジエンゴム(SBR)、ニトリルゴム(NBR)、ポリプロピレン(PP)、ペルフルオロアルコキシフッ素樹脂(PFA)などを用いてもよい。
 また、実施形態1,4では、「介在部凹溝」として、U字溝からなる介在部凹溝177vを例示したが、介在部凹溝の形状や大きさは適宜変更できる。また、実施形態3では、「基部凹溝」として、U字溝からなる基部凹溝373vを例示したが、基部凹溝の形状や大きさは適宜変更できる。
 また、実施形態5では、本発明に係る電池100を搭載する車両として、ハイブリッド自動車700を例示したが、これに限られない。本発明に係る電池を搭載する車両としては、例えば、電気自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、フォークリフト、電気車いす、電動アシスト自転車、電動スクータなどが挙げられる。
 また、実施形態6では、本発明に係る電池100を搭載する電池使用機器して、ハンマードリル800を例示したが、これに限られない。本発明に係る電池を搭載する電池使用機器としては、例えば、パーソナルコンピュータ、携帯電話、電池駆動の電動工具、無停電電源装置など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。
100,200,300,400 リチウムイオン二次電池(密閉型電池)
110 電池ケース
111 ケース本体部材
113 ケース蓋部材
113e 注液孔(貫通孔)
113h 凹部
113j 安全弁
113m 凹部周囲部
120 電極体
150 正極端子
160 負極端子
170,270,370,470 封止部材
171 被覆部材(被覆部)
171c 被覆部内側面
171d 被覆部外側面
171m (被覆部材の)周縁部
171y スポット溶接部
173,373 挿入部
373s 先端部
373t 当接部
373k 基部
373v 基部凹溝
175,375,475 環状圧接部
175c,375c,475c (環状圧接部の)表面
175c1,375c1,475c1 (表面のうちの)圧接面
175c2,375c2,475c2 (表面のうちの)外側面
475g 密着低下部(環状圧接部の周方向一部)
475w1,475w2,475w3,475w4 凹部
177 介在部
177v 介在部凹溝
179,279,379,479 弾性部材
700 ハイブリッド自動車(車両)
710 組電池
800 ハンマードリル(電池使用機器)
810 バッテリパック

Claims (6)

  1.  自身の内外を連通する貫通孔を有する電池ケースと、
     前記電池ケース内に収容された電極体と、
     前記貫通孔を外部から気密に封止してなる封止部材と、を備える
    密閉型電池であって、
     前記封止部材は、
      前記貫通孔を外部から覆い、前記電池ケースに固着された被覆部と、
      ゴム状弾性体からなり、前記被覆部のうち前記電池ケース側に位置する面である被覆部内側面から延びて前記貫通孔内に挿入された挿入部と、
      ゴム状弾性体からなり、前記被覆部内側面から前記挿入部の周囲を囲む形態で環状に延び、前記被覆部からの押圧により、前記電池ケースのうち前記貫通孔の周囲に位置する環状の孔周囲部に気密に圧接してなる環状圧接部と、を有し、
      前記挿入部と前記環状圧接部との間が相互に離間した形態、
      ゴム状弾性体からなり、前記被覆部内側面から環状に延び、前記挿入部と前記環状圧接部との間に介在し、これらと一体とされた介在部を有し、前記介在部に、前記挿入部の周囲を囲む環状の介在部凹溝を有する形態、及び、
      前記挿入部と前記環状圧接部とが直接繋がって一体とされてなり、前記挿入部のうち、前記貫通孔に当接し得る当接部よりも前記被覆部側に位置する基部に、前記基部の径方向にくびれた基部凹溝を有する形態、のいずれかとされてなる
    密閉型電池。
  2. 請求項1に記載の密閉型電池であって、
     前記挿入部は、前記貫通孔に圧入されて、前記貫通孔を密栓してなる
    密閉型電池。
  3. 請求項2に記載の密閉型電池であって、
     前記電池ケース内は、大気圧よりも減圧されてなる
    密閉型電池。
  4. 請求項1~請求項3のいずれか一項に記載の密閉型電池であって、
     前記被覆部は、
      互いに離間した複数のスポット溶接部により、自身の周縁部が前記電池ケースに溶接されてなる
    密閉型電池。
  5. 請求項1~請求項4のいずれか一項に記載の密閉型電池であって、
     前記環状圧接部の外部が、前記電池ケースの外部に連通してなり、
     前記環状圧接部は、
      自身の周方向の一部に、前記環状圧接部によるシール性能を、周方向の他の部位よりも低下させる凹部を有する
    密閉型電池。
  6. 請求項1~請求項5のいずれか一項に記載の密閉型電池であって、
     前記電池ケースは、
      前記貫通孔及び前記封止部材に近接した位置に、安全弁を有する
    密閉型電池。
PCT/JP2012/060331 2011-05-25 2012-04-17 密閉型電池 WO2012160907A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137031050A KR101525345B1 (ko) 2011-05-25 2012-04-17 밀폐형 전지
US14/119,743 US9614200B2 (en) 2011-05-25 2012-04-17 Hermetically sealed battery
CN201280025074.XA CN103620827B (zh) 2011-05-25 2012-04-17 密闭型电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011117343A JP5814000B2 (ja) 2011-05-25 2011-05-25 密閉型電池
JP2011-117343 2011-05-25

Publications (1)

Publication Number Publication Date
WO2012160907A1 true WO2012160907A1 (ja) 2012-11-29

Family

ID=47216992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060331 WO2012160907A1 (ja) 2011-05-25 2012-04-17 密閉型電池

Country Status (5)

Country Link
US (1) US9614200B2 (ja)
JP (1) JP5814000B2 (ja)
KR (1) KR101525345B1 (ja)
CN (1) CN103620827B (ja)
WO (1) WO2012160907A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872380A (zh) * 2012-12-10 2014-06-18 上海航天设备制造总厂 卫星用锂离子电池的注液孔封口方法
JP2015099688A (ja) * 2013-11-19 2015-05-28 株式会社豊田自動織機 蓄電装置、及び蓄電装置の製造方法
CN107851738A (zh) * 2015-05-05 2018-03-27 江森自控科技公司 用于电解液填充孔的密封片
WO2019013326A1 (ja) * 2017-07-14 2019-01-17 株式会社Gsユアサ 蓄電素子
DE112013005284B4 (de) * 2012-11-05 2020-12-31 Kokoku Intech Co., Ltd. Herstellungsverfahren einer abgedichteten Batterie, Abdichtelement für abgedichtete Batterie und abgedichtete Batterie
US20220013848A1 (en) * 2020-07-10 2022-01-13 Contemporary Amperex Technology Co., Limited Battery box, battery cell, battery, and method and apparatus for preparing battery box

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5814000B2 (ja) 2011-05-25 2015-11-17 トヨタ自動車株式会社 密閉型電池
CN203013829U (zh) * 2012-09-27 2013-06-19 惠州比亚迪电池有限公司 一种锂离子电池封口阀及锂离子电池
KR101498853B1 (ko) * 2014-02-18 2015-03-05 세방전지(주) 배터리의 밸브 밀폐구조
JP6181593B2 (ja) * 2014-04-16 2017-08-16 トヨタ自動車株式会社 密閉型電池および密閉型電池の製造方法
CN105364327B (zh) * 2014-08-25 2019-03-15 中国电子科技集团公司第十八研究所 锂离子电池螺纹极柱注液孔的焊接方法
CN106549122B (zh) * 2015-09-18 2020-01-03 光宝电子(广州)有限公司 防水电池收容结构
CN110061157B (zh) * 2019-05-24 2022-09-13 惠州亿纬锂能股份有限公司 一种顶盖组件及包含其的二次电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005190689A (ja) * 2003-12-24 2005-07-14 Sanyo Electric Co Ltd 密閉型電池
JP2010198941A (ja) * 2009-02-26 2010-09-09 Furukawa Battery Co Ltd:The 蓄電池用液口栓

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4111621B2 (ja) * 1999-03-17 2008-07-02 三洋電機株式会社 密閉式電池、密閉式電池用封止栓及び注液孔封止方法
JP2001313022A (ja) 2000-04-28 2001-11-09 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2004119329A (ja) 2002-09-30 2004-04-15 Sanyo Electric Co Ltd 二次電池
JP5063895B2 (ja) * 2003-11-05 2012-10-31 株式会社Gsユアサ 電池
JP2007018915A (ja) 2005-07-08 2007-01-25 Nec Tokin Corp 密閉型電池
JP2008041548A (ja) * 2006-08-09 2008-02-21 Sanyo Electric Co Ltd 非水電解液二次電池
KR20080072132A (ko) * 2007-02-01 2008-08-06 삼성에스디아이 주식회사 이차 전지
JP2009087659A (ja) 2007-09-28 2009-04-23 Sanyo Electric Co Ltd 密閉型電池
JP2010157414A (ja) * 2008-12-26 2010-07-15 Sanyo Electric Co Ltd 密閉型電池の製造方法
US20110091765A1 (en) * 2009-10-19 2011-04-21 Samsung Sdi Co., Ltd. Secondary battery including sealing structure for electrolyte injection hole and method of manufacturing the secondary battery
JP2011210691A (ja) * 2010-03-30 2011-10-20 Toshiba Corp 密閉形電池
CN202042559U (zh) 2011-03-30 2011-11-16 比亚迪股份有限公司 一种锂离子电池
JP5814000B2 (ja) 2011-05-25 2015-11-17 トヨタ自動車株式会社 密閉型電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005190689A (ja) * 2003-12-24 2005-07-14 Sanyo Electric Co Ltd 密閉型電池
JP2010198941A (ja) * 2009-02-26 2010-09-09 Furukawa Battery Co Ltd:The 蓄電池用液口栓

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013005284B4 (de) * 2012-11-05 2020-12-31 Kokoku Intech Co., Ltd. Herstellungsverfahren einer abgedichteten Batterie, Abdichtelement für abgedichtete Batterie und abgedichtete Batterie
CN103872380A (zh) * 2012-12-10 2014-06-18 上海航天设备制造总厂 卫星用锂离子电池的注液孔封口方法
CN103872380B (zh) * 2012-12-10 2017-06-09 上海航天设备制造总厂 卫星用锂离子电池的注液孔封口方法
JP2015099688A (ja) * 2013-11-19 2015-05-28 株式会社豊田自動織機 蓄電装置、及び蓄電装置の製造方法
CN107851738A (zh) * 2015-05-05 2018-03-27 江森自控科技公司 用于电解液填充孔的密封片
WO2019013326A1 (ja) * 2017-07-14 2019-01-17 株式会社Gsユアサ 蓄電素子
JPWO2019013326A1 (ja) * 2017-07-14 2020-05-07 株式会社Gsユアサ 蓄電素子
US11251509B2 (en) 2017-07-14 2022-02-15 Gs Yuasa International Ltd. Energy storage device
JP7103356B2 (ja) 2017-07-14 2022-07-20 株式会社Gsユアサ 蓄電素子
US20220013848A1 (en) * 2020-07-10 2022-01-13 Contemporary Amperex Technology Co., Limited Battery box, battery cell, battery, and method and apparatus for preparing battery box
US11581610B2 (en) * 2020-07-10 2023-02-14 Contemporary Amperex Technology Co., Limited Battery box, battery cell, battery, and method and apparatus for preparing battery box

Also Published As

Publication number Publication date
KR101525345B1 (ko) 2015-06-02
JP5814000B2 (ja) 2015-11-17
US20140322565A1 (en) 2014-10-30
JP2012248336A (ja) 2012-12-13
CN103620827A (zh) 2014-03-05
CN103620827B (zh) 2016-07-06
US9614200B2 (en) 2017-04-04
KR20140004782A (ko) 2014-01-13

Similar Documents

Publication Publication Date Title
JP5814000B2 (ja) 密閉型電池
JP5969356B2 (ja) 密閉型電池の製造方法,密閉型電池の封止部材および密閉型電池
JP5780308B2 (ja) 電池
JP5083326B2 (ja) 電池,その電池を搭載した車両および機器
US10305084B2 (en) Prismatic secondary battery and assembled battery using the same
JP4027561B2 (ja) 電池
JP5754280B2 (ja) 電池及びその製造方法
JP2016091720A (ja) 二次電池
KR101523064B1 (ko) 캡 조립체 및 이를 포함하는 이차 전지
KR101726891B1 (ko) 댐핑 부재를 포함하는 이차 전지
KR102360013B1 (ko) 이차 전지
JP5772348B2 (ja) 電池及び電池の製造方法
JP5742610B2 (ja) 電池及び電池の製造方法
JP2013084481A (ja) 電池の製造方法及び電池
JP2013182722A (ja) 電池及び電池の製造方法
JP5724696B2 (ja) 電池の製造方法
JP5675564B2 (ja) 電池、ゴム封止部材、電池の製造方法及びゴム封止部材の製造方法
WO2021132224A1 (ja) 蓄電装置および蓄電モジュール
KR102314084B1 (ko) 이차 전지
JP5918852B2 (ja) 二次電池の製造方法
JP5672042B2 (ja) 密閉型電池及び密閉型電池の製造方法
JP5742644B2 (ja) 電池の製造方法及び電池
US20240145786A1 (en) Battery
WO2021106629A1 (ja) 蓄電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12790238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137031050

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12790238

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14119743

Country of ref document: US