WO2012155494A1 - Procédé de vérification de paramètre de commande optimale dans l'ensemble du réseau pour un système de régulation de tension automatique - Google Patents

Procédé de vérification de paramètre de commande optimale dans l'ensemble du réseau pour un système de régulation de tension automatique Download PDF

Info

Publication number
WO2012155494A1
WO2012155494A1 PCT/CN2011/083161 CN2011083161W WO2012155494A1 WO 2012155494 A1 WO2012155494 A1 WO 2012155494A1 CN 2011083161 W CN2011083161 W CN 2011083161W WO 2012155494 A1 WO2012155494 A1 WO 2012155494A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
avc
substation
power
model
Prior art date
Application number
PCT/CN2011/083161
Other languages
English (en)
Chinese (zh)
Inventor
杨潇
侯双林
王芷路
王晓蔚
唐宝锋
Original Assignee
河北省电力研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北省电力研究院 filed Critical 河北省电力研究院
Publication of WO2012155494A1 publication Critical patent/WO2012155494A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/16Electric power substations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the method belongs to the technical field of voltage control of power systems, in particular, the optimal control parameter verification method for the entire network of automatic voltage control systems.
  • AVC is automatic voltage control, which is a system that optimizes and coordinates the voltage and reactive power of the grid. According to the operation data of the whole power grid, the AVC main station takes the central point bus voltage as the constraint condition, takes the minimum network loss as the control target, optimizes the calculation for the power grid model, and delivers the result to each AVC sub-station, and each AVC sub-station Controlled equipment according to
  • the AVC master station requires adjustment of reactive power and voltage to achieve optimized closed-loop control of the entire network voltage and reactive power.
  • the current AVC system optimal parameter verification can only verify that the AVC substation setting parameter is the optimal parameter of the substation or power plant, and it is impossible to verify whether the whole network is optimal.
  • the power grid structure is constantly changing due to the change of load at all times.
  • the manufacturers and models of AVC substations used in different power plants are different, resulting in the inability to use a unified power grid structure, uniform load parameters and uniformity in the actual power grid.
  • the AVC model is used to verify the optimal control parameters. Summary of the invention
  • the technical problem to be solved by the present invention is to provide an automatic voltage control system full network optimal control parameter verification method, and comprehensive comparison analysis of voltage control rate, voltage control qualification rate and total network loss for different control parameter groups .
  • the technical solution adopted by the present invention is: An automatic voltage control system network-wide optimal control parameter verification method, which is based on EMS system real-time information and network-wide state estimation. Based on a unified AVC model and a unified grid model, it is substituted into a unified typical load day history. Data, by comparing the voltage regulation rate of the central point bus, the control pass rate and the total network loss, to verify the optimal control parameters and the optimal reactive power layout optimization scheme;
  • step (2.1) determines whether it is necessary to enter the reactive power optimization subsystem: when there is no need to add a virtual power plant or substation, enter step (2.1); when it is necessary to add a virtual power plant or / and substation, enter the reactive power optimization subsystem, That is, the virtual plant model is established, and then proceeds to step (2.2);
  • step (2) reading the actual grid model parameters and the virtual plant model parameters in step (1), and then periodically mapping the actual grid model to the total load days of the EMS real-time database.
  • the model performs initial measurement mapping, that is, splicing with the actual power grid model, generating a virtual power grid model, performing periodic state estimation on the virtual power grid model, and storing the result in the virtual database;
  • the relevant AVC sub-station of the plant accepts and executes the control instructions; calculates the change of the central point bus voltage regulation rate and the central point bus voltage, and judges whether the regulation is qualified. When it is qualified, it enters step (5); when it fails, it enters the step ( 6);
  • the user defines the range of the network loss statistical area by using the human-machine interface, and enables the automatic modeling mode to establish the network loss calculation model.
  • the automatic modeling mode refers to: when the virtual power grid model changes, Perform automatic topology search, update the electrical equipment in the network loss statistical area, and automatically adapt to the change of the power grid;
  • a control parameter group to be verified sets the corresponding time period of operation in step 4;
  • c reads a operation in a, and then performs power flow calculation, and statistics the network loss result of the group parameter, and saves it to the database;
  • the effect of different parameters on the network loss is displayed in the form of a three-dimensional geographic wiring diagram or a comparison report of the entire network.
  • step (4) The method for judging whether the regulation is qualified in step (4) is as follows:
  • Substation side Under typical load daily section data, the analog master station issues control commands that require the central point bus voltage to decrease or increase IkV.
  • the relevant AVC substation requires the cutting or input capacitor after receiving the command, and the power is injected along the capacitor node. Change direction to calculate the trend of the whole network and the voltage of the central point Situation
  • the analog AVC main station issues the control command that requires the central point bus voltage to decrease or increase the IkV. After the relevant AVC substation accepts the command, the unit is required to increase the absorption or increase the reactive power. Calculating the change of the power flow and the central point voltage of the whole network along the direction of the change of the injected power of the generator node;
  • the invention verifies the AVC sub-station optimal control parameters by using a unified grid structure, unified load parameters and a unified AVC model, and solves the problem that the AVC sub-station parameters cannot be verified to be optimal for the entire network, in order to realize the grid node.
  • the criteria for voltage qualification and minimum network loss are provided.
  • the invention verifies the optimal control parameter scheme and the optimality by comparing the central point voltage regulation rate, the control qualification rate and the whole network loss on the basis that the AVC substation parameters satisfy the basic control requirements. Work layout plan.
  • FIG. 1 is a flow chart of a method for verifying optimal control parameters of an entire network of an automatic voltage control system;
  • FIG. 2 is a logic diagram of voltage regulation calculation;
  • Figure 3 is a data flow diagram of the optimal control parameter verification method for the entire network of the automatic voltage control system.
  • the AVC automatic voltage control system of the present invention has an overall network optimal control parameter verification method including five subsystems: AVC substation model parameter subsystem, reactive power layout optimization subsystem, voltage regulation calculation subsystem, network loss analysis Computation subsystem and display verification result subsystem; wherein AVC sub-station model parameter subsystem is used for parameter setting and modification; reactive power layout optimization subsystem is used to provide virtual substation capacitor capacity setting, virtual power plant equipment related parameters and The modeling of the grid access point layout; the voltage regulation calculation subsystem is used to calculate the influence of different AVC substation parameters or different reactive power compensation equipment layouts on the target of voltage regulation rate and control pass rate; network loss analysis and calculation The system is used to define the range of the network loss statistical area, define the network loss calculation model, and automatically initialize the network loss real-time database after the model is updated, and finally realize the network loss calculation function; display the verification result subsystem to the whole network three-dimensional geographic connection diagram Or report form to display information such as network voltage, reactive power layout
  • step (2.1) when no new virtual power is needed When the plant or substation, enter step (2.1); when it is necessary to add a virtual power plant or / and substation, enter the reactive layout optimization subsystem, that is, establish a virtual plant model, and then enter step (2.2);
  • the virtual substation Select the desired virtual substation, set the outlet line model, length, thermal stability parameters, set the capacitor parameters such as single group capacity, group number, switching time.
  • the virtual power plant selecting the access substation of the required virtual power plant, setting the outlet line model, length, thermal stability parameter, number of power plant units, single unit capacity, unit rated reactive output, rated power factor and other unit related parameters .
  • the program After loading the actual grid model or virtual grid model parameters, the program reads the typical load daily measurement data in the EMS real-time database and periodically performs state estimation.
  • the virtual grid model refers to the model formed by the actual grid model and the virtual plant model.
  • step (2) reading the actual grid model parameters and the virtual plant model parameters in step (1), and then periodically mapping the actual grid model to the total load days of the EMS real-time database.
  • the model performs initial measurement mapping, that is, splicing with the actual power grid model, generating a virtual power grid model, performing periodic state estimation on the virtual power grid model, and storing the result in the virtual database;
  • the measurement data of the typical load day includes the target bus voltage measurement data, the tidal current measurement data with the surrounding power grid, the unit active output measurement data, the unit reactive output measurement data, and the substation capacitor switching measurement data.
  • the state estimation refers to identifying and rejecting bad data in the measurement.
  • the virtual plant model is spliced with the actual grid model, and the virtual grid model is generated by the virtual grid. The main function of the model splicing program.
  • control parameter group In the actual substation or power plant model, input the control parameter group to be verified by the AVC substation and store it, and establish the AVC substation model parameters.
  • AVC substation control of the virtual substation or power plant can also be added and set. Model parameters.
  • Each substation can have multiple control parameter sets.
  • the substation AVC substation model contains the following parameters: regulation command delay time, bus voltage fluctuation limit, bus voltage effective range - high, bus voltage effective range - low, bus voltage high blocking value, bus voltage low blocking value, capacitor capacity input high blocking Value, capacitor capacity input low blocking value, single adjustment maximum input / number of cut capacitor banks.
  • the AVC substation model of the power plant contains the following parameters: regulation command delay time, bus voltage fluctuation limit, bus voltage effective range - high, bus voltage effective range - low, bus voltage high blocking value, bus voltage low blocking value, stator voltage fluctuation limit , stator voltage effective range - high, stator voltage effective range - low, stator voltage high blocking value, stator voltage low blocking value, stator current fluctuation limit, stator current high blocking value, stator current low blocking value, active power fluctuation limit, active power Power effective range - high, active power effective range - low, reactive power fluctuation limit, reactive power effective range - high, reactive power effective range - low, reactive power high blocking value, reactive power low blocking value, factory The operating voltage fluctuation range, the factory power voltage high blocking value, the factory power voltage low blocking value, the tracking (adjustment) accuracy, the maximum pulse width, the minimum pulse width, and the pulse calculation slope.
  • This step is mainly to determine whether the parameters of the AVC substation of the substation or power plant meet the basic control requirements, namely the voltage regulation calculation subsystem.
  • the relevant AVC sub-station of the plant accepts and executes the control instructions; calculates the change of the central point bus voltage regulation rate and the central point bus voltage, and judges whether the regulation is qualified. When it is qualified, it enters step (5); when it fails, it enters the step ( 6);
  • Substation side Under typical load daily section data (5min), the analog master station issues control commands that require the central point bus voltage to decrease or increase lkV.
  • the relevant AVC substation requires the cutting or input capacitor after receiving the command, along the capacitor. The direction of the node injection power changes to calculate the trend of the whole network power flow and the central point voltage;
  • the analog AVC main station Under typical load daily section data (5min), the analog AVC main station issues a control command that requires the central point bus voltage to decrease or increase lkV.
  • the relevant AVC substation requires the unit to increase absorption or increase after receiving the command.
  • the power of the power, the change of the power flow and the central point voltage of the whole network is calculated along the direction of the power change of the generator node;
  • step (6) When the reactive power of the generator has reached the reactive power high blocking value or the reactive power low blocking value, and the central point bus voltage has not reached the target value, the adjustment is stopped, and the prompt "AVC substation parameters do not meet the regulation requirements" pops up. Go to step (6); When the regulation time is less than lmin and the central point bus voltage is qualified, proceed to step (5).
  • the main function of this step is to use the network loss calculation to compare the advantages and disadvantages of different control parameter sets, namely the network loss analysis and calculation subsystem.
  • the user uses the human-machine interface to define the range of the network loss statistical area, and enables the automatic modeling method to establish the network loss calculation model.
  • the automatic modeling method refers to: After the virtual grid model changes, re-perform Automatic topology search, update the electrical equipment in the network loss statistical area, automatically adapt to the change of the grid; When the initialization is unsuccessful, output the alarm message: "The grid model is updated incorrectly", proceed to step 6;
  • the subsystem provides grid loss calculation and analysis based on grid power. During the typical load day (take all the data for one day), perform network loss analysis and calculation on the grid.
  • the specific calculation method when verifying multiple sets of parameter schemes is as follows:
  • c reads a operation in a, and then performs power flow calculation, and statistics the network loss result of the group parameter, and saves it to the database;
  • the network loss value of each AVC system parameter control scheme can be listed based on the basic network loss; or the network loss of each AVC system parameter control scheme can be listed based on the optimal control parameters that need to be verified.
  • the battery comparison value can be listed based on the basic network loss; or the network loss of each AVC system parameter control scheme can be listed based on the optimal control parameters that need to be verified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

La présente invention a trait à un procédé de vérification de paramètre de commande optimale dans l'ensemble du réseau pour un système de régulation de tension automatique. Sur la base d'un modèle unifié de commande automatique de volume et d'une structure unifiée de réseau électrique, remplaçant les données historiques unifiées d'une journée de charge typique, en comparant la vitesse de réglage et la vitesse de régulation de la tension centrale, la vitesse de passage de commande et la perte réseau de l'ensemble du réseau, le procédé se base sur des informations en temps réel du système de gestion d'énergie du réseau électrique et sur l'estimation de l'état de l'ensemble du réseau, de manière à vérifier un schéma de paramètre de commande optimale et un schéma de disposition réactive optimale. Le procédé permet de vérifier si les paramètres de sous-station de commande automatique de volume sont optimaux dans l'ensemble du réseau, et de fournir les conditions permettant d'atteindre les objectifs d'une tension de nœud de réseau électrique répondant aux normes et d'une perte réseau minimale de l'ensemble du réseau. Le procédé peut également être utilisé de manière à vérifier le schéma de disposition réactive optimale et à fournir une aide à la décision pour l'investissement dans la construction d'un réseau électrique.
PCT/CN2011/083161 2011-05-16 2011-11-29 Procédé de vérification de paramètre de commande optimale dans l'ensemble du réseau pour un système de régulation de tension automatique WO2012155494A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110124904.1 2011-05-16
CN201110124904.1A CN102289223B (zh) 2011-05-16 2011-05-16 自动电压控制***全网最优控制参数校验方法

Publications (1)

Publication Number Publication Date
WO2012155494A1 true WO2012155494A1 (fr) 2012-11-22

Family

ID=45335712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083161 WO2012155494A1 (fr) 2011-05-16 2011-11-29 Procédé de vérification de paramètre de commande optimale dans l'ensemble du réseau pour un système de régulation de tension automatique

Country Status (2)

Country Link
CN (1) CN102289223B (fr)
WO (1) WO2012155494A1 (fr)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106991505A (zh) * 2017-05-15 2017-07-28 发联(上海)网络科技有限公司 用于运维电动医疗设备的管理***
CN108233324A (zh) * 2017-12-29 2018-06-29 国家电网公司 基于多电源式继电保护整定计算的电网模型及计算方法
CN109167398A (zh) * 2018-10-31 2019-01-08 国网河北省电力有限公司 基于数据编码的发电机组avc投运率和合格率计算方法
CN109214055A (zh) * 2018-08-06 2019-01-15 中国南方电网有限责任公司 一种基于公式驱动的psd-bpa卡片参数校核方法
CN109286185A (zh) * 2017-07-19 2019-01-29 中国电力工程顾问集团华东电力设计院有限公司 一种确定变电站最大供电能力的***及方法
CN110034565A (zh) * 2019-05-10 2019-07-19 武汉大学 一种基于同步向量信息的配电网馈线负荷实时控制方法
CN110148964A (zh) * 2019-05-27 2019-08-20 武汉理工大学 一种面向煤改电工程的分布式光伏发电***的控制方法
CN110264110A (zh) * 2019-07-08 2019-09-20 国网湖南省电力有限公司 基于配电网多应用场景的储能电站选址定容方法
CN111725814A (zh) * 2020-07-13 2020-09-29 国网新疆电力有限公司 特高压换流站调相机与变电站无功设备的无功置换方法
CN112260399A (zh) * 2020-09-18 2021-01-22 国网河北省电力有限公司行唐县供电分公司 一种利用配电监测***的中压线损管控方法
CN112332409A (zh) * 2020-10-22 2021-02-05 云南电网有限责任公司 一种电力***输电断面潮流调整方法及装置
CN112446137A (zh) * 2020-11-03 2021-03-05 北京清能互联科技有限公司 多时间梯度下切负荷方案自动生成方法、***及存储介质
CN112529614A (zh) * 2020-11-27 2021-03-19 国网湖北省电力有限公司 电力市场出清流程的建立方法及***
CN112615380A (zh) * 2020-12-09 2021-04-06 国家电网公司西北分部 一种基于母线电压历史数据分析的逆调压控制方法
CN112803430A (zh) * 2021-01-15 2021-05-14 广东电网有限责任公司梅州供电局 一种变电站电压的自动控制方法及装置
CN112952923A (zh) * 2021-03-09 2021-06-11 上海明华电力科技有限公司 一种用于avc***的无功裕度分配方法
CN112993982A (zh) * 2021-02-24 2021-06-18 国网河北省电力有限公司电力科学研究院 自动电压控制***的限值参数获取方法、装置和终端设备
CN113204586A (zh) * 2021-04-29 2021-08-03 西安热工研究院有限公司 基于Excel报表的变压器电磁计算方法、***、介质及设备
CN113746104A (zh) * 2021-09-02 2021-12-03 云南电网有限责任公司 一种柴储供电模式的配电网协调控制方法及***
CN113742897A (zh) * 2021-08-11 2021-12-03 国网上海市电力公司 一种电气一次设备图形数据与模型数据联动校验方法
CN113824127A (zh) * 2021-09-21 2021-12-21 费莱(浙江)科技有限公司 一种地区电网avc的控制方法
CN113870051A (zh) * 2021-09-27 2021-12-31 南京四方亿能电力自动化有限公司 一种配电网图模双向无差校验方法
CN113872238A (zh) * 2021-09-26 2021-12-31 国网江苏省电力有限公司 一种电力***自动电压控制方法、装置、电子设备及存储介质
CN114142483A (zh) * 2021-11-23 2022-03-04 国网辽宁省电力有限公司本溪供电公司 一种基于改进粒子群算法的avc差分控制***及方法
CN114204566A (zh) * 2021-11-30 2022-03-18 国网天津市电力公司电力科学研究院 一种自动电压控制中的变电站智能建模方法
CN114372338A (zh) * 2022-01-11 2022-04-19 北京博超时代软件有限公司 一种变电站电气间隔断面出图标注的方法
CN115085208A (zh) * 2022-08-04 2022-09-20 云南电网有限责任公司西双版纳供电局 无功电压调控方案管理方法
CN115586014A (zh) * 2022-12-09 2023-01-10 中国航发沈阳发动机研究所 一种航空发动机核心机压气机特征验证方法
CN115629576A (zh) * 2022-09-16 2023-01-20 清华大学 非侵入式柔性负荷聚合特性辨识与优化方法、装置及设备
CN116260154A (zh) * 2023-05-11 2023-06-13 华北电力科学研究院有限责任公司 调相机组控制方法、装置及***
CN116565848A (zh) * 2023-05-12 2023-08-08 华北电力大学(保定) 一种限流参数全局优化方法
CN116820057A (zh) * 2023-08-30 2023-09-29 四川远方云天食品科技有限公司 一种基于物联网的火锅底料生产监测方法和***
CN117674311A (zh) * 2023-12-04 2024-03-08 南方电网调峰调频发电有限公司检修试验分公司 机组无功出力测量方法、装置和计算机设备
CN117874470A (zh) * 2024-03-11 2024-04-12 中电装备山东电子有限公司 一种专变采集终端监测数据分析处理方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102541049A (zh) * 2011-12-26 2012-07-04 四川中鼎科技有限公司 自动电压控制***的试验方法
CN102629761B (zh) * 2012-03-14 2014-05-28 广东电网公司珠海供电局 一种avc***电网模型维护方法及其***
CN102901868A (zh) * 2012-09-14 2013-01-30 安徽省电力公司 一种对电能量采集***数据校核的方法
JP6199203B2 (ja) * 2014-02-28 2017-09-20 アズビル株式会社 最適化システム
CN108964071B (zh) * 2018-10-22 2020-09-25 广东电网有限责任公司 一种基于ems历史数据的avc调节灵敏度计算方法
CN112003285B (zh) * 2020-08-14 2022-04-08 贵州电网有限责任公司 一种电网电压优化调控方法
CN112865108B (zh) * 2021-01-11 2022-09-13 国网山西省电力公司忻州供电公司 一种基于连续潮流仿真的电网自动电压控制仿真方法
CN113098021B (zh) * 2021-04-20 2022-11-18 山东科技职业学院 电力***自动电压控制方法
CN115276024B (zh) * 2022-09-26 2022-12-09 山东中奥电力设备有限公司 一种电力预制舱的自动化调度***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101039031A (zh) * 2007-04-17 2007-09-19 清华大学 一种大区电网与省级电网的协调电压控制方法
CN101272051A (zh) * 2008-05-06 2008-09-24 江苏省电力公司南京供电公司 电网生产控制大区和管理信息大区的信息***集成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800428B (zh) * 2009-12-31 2011-12-28 清华大学 省地协调母线电压协调约束上下限值获得方法
CN101937490B (zh) * 2010-08-27 2012-11-21 河北省电力研究院 一种规划态电网网损分析计算方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101039031A (zh) * 2007-04-17 2007-09-19 清华大学 一种大区电网与省级电网的协调电压控制方法
CN101272051A (zh) * 2008-05-06 2008-09-24 江苏省电力公司南京供电公司 电网生产控制大区和管理信息大区的信息***集成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, TAO: "The Technical Support System of Intelligent and Integrated Dispatching of Tangshan", ENGINEERING SCIENCE AND TECHNOLOGY EDITION IL CHINA MASTER'S THESES FULL-TEXT DATABASE, 16 April 2011 (2011-04-16) *
SUN, HAIXIN: "Research and Application of Real-time Voltage and Reactive Power Control Systems in Cangzhou Power Grid", ENGINEERING SCIENCE AND TECHNOLOGY EDITION II, CHINA MASTER'S THESES FULL-TEXT DATABASE, 16 December 2007 (2007-12-16) *

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106991505A (zh) * 2017-05-15 2017-07-28 发联(上海)网络科技有限公司 用于运维电动医疗设备的管理***
CN109286185B (zh) * 2017-07-19 2024-02-23 中国电力工程顾问集团华东电力设计院有限公司 一种确定变电站最大供电能力的***及方法
CN109286185A (zh) * 2017-07-19 2019-01-29 中国电力工程顾问集团华东电力设计院有限公司 一种确定变电站最大供电能力的***及方法
CN108233324A (zh) * 2017-12-29 2018-06-29 国家电网公司 基于多电源式继电保护整定计算的电网模型及计算方法
CN109214055A (zh) * 2018-08-06 2019-01-15 中国南方电网有限责任公司 一种基于公式驱动的psd-bpa卡片参数校核方法
CN109214055B (zh) * 2018-08-06 2022-12-02 中国南方电网有限责任公司 一种基于公式驱动的psd-bpa卡片参数校核方法
CN109167398A (zh) * 2018-10-31 2019-01-08 国网河北省电力有限公司 基于数据编码的发电机组avc投运率和合格率计算方法
CN109167398B (zh) * 2018-10-31 2021-07-09 国网河北省电力有限公司 基于数据编码的发电机组avc投运率和合格率计算方法
CN110034565A (zh) * 2019-05-10 2019-07-19 武汉大学 一种基于同步向量信息的配电网馈线负荷实时控制方法
CN110034565B (zh) * 2019-05-10 2022-11-29 武汉大学 一种基于同步向量信息的配电网馈线负荷实时控制方法
CN110148964A (zh) * 2019-05-27 2019-08-20 武汉理工大学 一种面向煤改电工程的分布式光伏发电***的控制方法
CN110148964B (zh) * 2019-05-27 2022-12-02 武汉理工大学 一种面向煤改电工程的分布式光伏发电***的控制方法
CN110264110B (zh) * 2019-07-08 2022-11-18 国网湖南省电力有限公司 基于配电网多应用场景的储能电站选址定容方法
CN110264110A (zh) * 2019-07-08 2019-09-20 国网湖南省电力有限公司 基于配电网多应用场景的储能电站选址定容方法
CN111725814A (zh) * 2020-07-13 2020-09-29 国网新疆电力有限公司 特高压换流站调相机与变电站无功设备的无功置换方法
CN111725814B (zh) * 2020-07-13 2024-04-09 国网新疆电力有限公司 特高压换流站调相机与变电站无功设备的无功置换方法
CN112260399B (zh) * 2020-09-18 2024-01-26 国网河北省电力有限公司行唐县供电分公司 一种利用配电监测***的中压线损管控方法
CN112260399A (zh) * 2020-09-18 2021-01-22 国网河北省电力有限公司行唐县供电分公司 一种利用配电监测***的中压线损管控方法
CN112332409B (zh) * 2020-10-22 2023-08-22 云南电网有限责任公司 一种电力***输电断面潮流调整方法及装置
CN112332409A (zh) * 2020-10-22 2021-02-05 云南电网有限责任公司 一种电力***输电断面潮流调整方法及装置
CN112446137B (zh) * 2020-11-03 2023-10-03 北京清能互联科技有限公司 多时间梯度下切负荷方案自动生成方法、***及存储介质
CN112446137A (zh) * 2020-11-03 2021-03-05 北京清能互联科技有限公司 多时间梯度下切负荷方案自动生成方法、***及存储介质
CN112529614A (zh) * 2020-11-27 2021-03-19 国网湖北省电力有限公司 电力市场出清流程的建立方法及***
CN112529614B (zh) * 2020-11-27 2023-10-24 国网湖北省电力有限公司 电力市场出清流程的建立方法及***
CN112615380A (zh) * 2020-12-09 2021-04-06 国家电网公司西北分部 一种基于母线电压历史数据分析的逆调压控制方法
CN112803430A (zh) * 2021-01-15 2021-05-14 广东电网有限责任公司梅州供电局 一种变电站电压的自动控制方法及装置
CN112803430B (zh) * 2021-01-15 2023-03-31 广东电网有限责任公司梅州供电局 一种变电站电压的自动控制方法及装置
CN112993982B (zh) * 2021-02-24 2024-02-02 国网河北省电力有限公司电力科学研究院 自动电压控制***的限值参数获取方法、装置和终端设备
CN112993982A (zh) * 2021-02-24 2021-06-18 国网河北省电力有限公司电力科学研究院 自动电压控制***的限值参数获取方法、装置和终端设备
CN112952923A (zh) * 2021-03-09 2021-06-11 上海明华电力科技有限公司 一种用于avc***的无功裕度分配方法
CN112952923B (zh) * 2021-03-09 2022-12-13 上海明华电力科技有限公司 一种用于avc***的无功裕度分配方法
CN113204586A (zh) * 2021-04-29 2021-08-03 西安热工研究院有限公司 基于Excel报表的变压器电磁计算方法、***、介质及设备
CN113742897A (zh) * 2021-08-11 2021-12-03 国网上海市电力公司 一种电气一次设备图形数据与模型数据联动校验方法
CN113742897B (zh) * 2021-08-11 2024-05-03 国网上海市电力公司 一种电气一次设备图形数据与模型数据联动校验方法
CN113746104B (zh) * 2021-09-02 2023-08-22 云南电网有限责任公司 一种柴储供电模式的配电网协调控制方法及***
CN113746104A (zh) * 2021-09-02 2021-12-03 云南电网有限责任公司 一种柴储供电模式的配电网协调控制方法及***
CN113824127A (zh) * 2021-09-21 2021-12-21 费莱(浙江)科技有限公司 一种地区电网avc的控制方法
CN113872238A (zh) * 2021-09-26 2021-12-31 国网江苏省电力有限公司 一种电力***自动电压控制方法、装置、电子设备及存储介质
CN113872238B (zh) * 2021-09-26 2024-01-30 国网江苏省电力有限公司 一种电力***自动电压控制方法、装置、电子设备及存储介质
CN113870051A (zh) * 2021-09-27 2021-12-31 南京四方亿能电力自动化有限公司 一种配电网图模双向无差校验方法
CN114142483A (zh) * 2021-11-23 2022-03-04 国网辽宁省电力有限公司本溪供电公司 一种基于改进粒子群算法的avc差分控制***及方法
CN114142483B (zh) * 2021-11-23 2023-10-13 国网辽宁省电力有限公司本溪供电公司 一种基于改进粒子群算法的avc差分控制***及方法
CN114204566B (zh) * 2021-11-30 2024-04-23 国网天津市电力公司电力科学研究院 一种自动电压控制中的变电站智能建模方法
CN114204566A (zh) * 2021-11-30 2022-03-18 国网天津市电力公司电力科学研究院 一种自动电压控制中的变电站智能建模方法
CN114372338A (zh) * 2022-01-11 2022-04-19 北京博超时代软件有限公司 一种变电站电气间隔断面出图标注的方法
CN114372338B (zh) * 2022-01-11 2024-06-07 北京博超时代软件有限公司 一种变电站电气间隔断面出图标注的方法
CN115085208A (zh) * 2022-08-04 2022-09-20 云南电网有限责任公司西双版纳供电局 无功电压调控方案管理方法
CN115629576A (zh) * 2022-09-16 2023-01-20 清华大学 非侵入式柔性负荷聚合特性辨识与优化方法、装置及设备
CN115586014B (zh) * 2022-12-09 2023-04-07 中国航发沈阳发动机研究所 一种航空发动机核心机压气机特征验证方法
CN115586014A (zh) * 2022-12-09 2023-01-10 中国航发沈阳发动机研究所 一种航空发动机核心机压气机特征验证方法
CN116260154B (zh) * 2023-05-11 2023-08-18 华北电力科学研究院有限责任公司 调相机组控制方法、装置及***
CN116260154A (zh) * 2023-05-11 2023-06-13 华北电力科学研究院有限责任公司 调相机组控制方法、装置及***
CN116565848B (zh) * 2023-05-12 2023-10-13 华北电力大学(保定) 一种限流参数全局优化方法
CN116565848A (zh) * 2023-05-12 2023-08-08 华北电力大学(保定) 一种限流参数全局优化方法
CN116820057B (zh) * 2023-08-30 2023-12-01 四川远方云天食品科技有限公司 一种基于物联网的火锅底料生产监测方法和***
CN116820057A (zh) * 2023-08-30 2023-09-29 四川远方云天食品科技有限公司 一种基于物联网的火锅底料生产监测方法和***
CN117674311A (zh) * 2023-12-04 2024-03-08 南方电网调峰调频发电有限公司检修试验分公司 机组无功出力测量方法、装置和计算机设备
CN117874470A (zh) * 2024-03-11 2024-04-12 中电装备山东电子有限公司 一种专变采集终端监测数据分析处理方法
CN117874470B (zh) * 2024-03-11 2024-06-07 中电装备山东电子有限公司 一种专变采集终端监测数据分析处理方法

Also Published As

Publication number Publication date
CN102289223B (zh) 2014-02-19
CN102289223A (zh) 2011-12-21

Similar Documents

Publication Publication Date Title
WO2012155494A1 (fr) Procédé de vérification de paramètre de commande optimale dans l'ensemble du réseau pour un système de régulation de tension automatique
CN102074954B (zh) 一种城乡配电网综合节能评估与决策方法
CN102751737B (zh) 一种含风电的电力***自动发电控制仿真分析方法
CN108879706A (zh) 一种自动电压控制***
CN113725913B (zh) 一种适应源网荷储多类型资源协同的自动功率控制方法
US20140148966A1 (en) Decentralized Volt/VAR Control for Advanced Distribution Automation Systems
CN105703364A (zh) 光伏电站等效建模方法
CN108599259B (zh) 一种基于灵敏度分析的微电网主动运行决策方法
CN103187806A (zh) 用于调频的电池储能电站功率控制方法及其***
CN102930078B (zh) 一种孤立微网分布式电源容量与布点优化方法
CN107959296A (zh) 基于主动配电网的无功电压协调控制策略
CN112260322B (zh) 源网荷储仿真平台、方法及***
CN102340140A (zh) 一种自动快速求取大型互联电网稳定极限及稳控策略的方法
CN112909937B (zh) 一种轨道交通牵引供电***的多模态数字孪生仿真方法和装置
CN102915396A (zh) 一套计算电网风电消纳能力的方法
CN111461919A (zh) 一种风电场功率控制一体化监控***
CN113690877B (zh) 一种考虑能源消纳的有源配电网与集中能源站互动方法
CN104868471A (zh) 一种省级电网静态安全辅助决策方法
CN108879667A (zh) 一种电网闭环控制潮流仿真方法
CN107658864A (zh) 配电网的控制方法
CN104158199A (zh) 对电力***实时状态进行无功电压优化控制的***和方法
CN105893714B (zh) 基于大电网仿真***下的自动电压控制***闭环检测及评估方法
CN110752598B (zh) 多点分布式储能***灵活性评价方法和装置
CN111224398A (zh) 一种含分布式电源的配电网降损规划方法和装置
Duan et al. Hierarchical power flow control in smart grids: Enhancing rotor angle and frequency stability with demand-side flexibility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11865950

Country of ref document: EP

Kind code of ref document: A1