CN113690877B - 一种考虑能源消纳的有源配电网与集中能源站互动方法 - Google Patents

一种考虑能源消纳的有源配电网与集中能源站互动方法 Download PDF

Info

Publication number
CN113690877B
CN113690877B CN202110885071.4A CN202110885071A CN113690877B CN 113690877 B CN113690877 B CN 113690877B CN 202110885071 A CN202110885071 A CN 202110885071A CN 113690877 B CN113690877 B CN 113690877B
Authority
CN
China
Prior art keywords
distribution network
power distribution
energy
centralized
constraint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110885071.4A
Other languages
English (en)
Other versions
CN113690877A (zh
Inventor
吕超贤
梁睿
张鸽
张小彤
靳维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN202110885071.4A priority Critical patent/CN113690877B/zh
Publication of CN113690877A publication Critical patent/CN113690877A/zh
Application granted granted Critical
Publication of CN113690877B publication Critical patent/CN113690877B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Power Engineering (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种考虑能源消纳的有源配电网与集中能源站互动方法,根据有源配电网与集中能源站相关参数与运行约束,构建以配电网与集中能源站运行成本最小为目标的主从博弈优化调度模型,充分发挥多个集中能源站热储能的灵活调节能力和用能行为对配网电价的敏感性,通过配电网灵活制定日前电价进行集中能源站的需求侧管理,提高分布式能源的消纳水平;充分发挥软开关的有功传输和无功支撑能力,进一步改善***运行状态。本发明所提出的有源配电网和集中能源站供需互动方法可利用日前电价对集中能源站用能行为进行引导,发挥集中能源站蓄热装置的有序充放能和智能软开关的有功/无功调节能力,减少分布式电源缩减,提升***运行水平。

Description

一种考虑能源消纳的有源配电网与集中能源站互动方法
技术领域
本发明属于能源优化调度领域,具体涉及一种考虑分布式能源消纳的有源配电网与集中能源站供需互动策略。
背景技术
随着全球能源枯竭和环境污染问题日益严重,转变能源结构和消费模式成为能源可持续发展亟待解决的问题。大规模开发利用可再生能源,构建能源高效传输、终端多能协同的供给结构,建立网侧与荷侧供需互动模式,通过灵活电价引导终端多能协同灵活调度,可实现分布式能源的集成和能源的高效率利用,提升***运行的经济性,是能源清洁替代和可持续发展重要手段。
近年来,以光伏和风机为代表的分布式能源被大量集成于配电网中。随着其渗透率的不断增长,使得有源配电网(activedistribution network,ADN)面临电压越限等一系列安全问题,对配电网运行模式和调节手段提出了更高要求。以软开关为代表的电力电子装置可实现网络柔性闭环运行,具有较好的潮流控制能力,被广泛应用于ADN中。此外,集中能源站(centralenergystation,CES)贴近终端用户可实现多能源的互动和转换,大幅提高能源利用效率和运行经济性,是园区综合能源***供能的核心和实现多能协同的关键;现阶段,由于较为完备的配电网络设施和以电代煤(气)能源政策的大力支持,使得以电力为核心的集中能源站大量普及。因此,以有源配电网为能量传输骨架、集中能源站为终端提供综合能源服务的供能架构较为典型,且配电网络和集中能源站为不同的利益主体。如何协调网络、能源站的运行,发挥其互动行为特性,改善配电网络运行状态面临较大挑战。
目前,有源配电网与集中能源站的供需互动优化调度多以经济性为单一目标,未考虑通过多利益主体之间的灵活互动引导以减少分布式能源缩减,无法实现有源配电网与集中能源站之间的灵活互动。因此,急需一种能够兼顾分布式能源消纳与经济性的有源配电网与集中能源站供需互动策略,通过配电网运营商作为领导者制定灵活电价引导集中能源站多能协同灵活调度,在满足***用能需求的前提下促进分布式能源的消纳。
发明内容
本发明所要解决的技术问题是,针对有源配电网-集中能源站***的优化调度问题,建立考虑分布式能源消纳的有源配电网与集中能源站供需互动调度模型,综合考虑多种约束条件,灵活制定日前电价,发挥软开关的有功传输与无功支撑能力,优化协调集中能源站各能源机组、蓄能设备的运行,最终制定经济性与可再生能源消纳率最优的有源配电网与集中能源站优化调度方案。
本发明所采用的技术方案是:
步骤1:输入已知的有源配电网与集中能源站结构与参数信息;
步骤2:依据步骤1提供的有源配电网与集中能源站结构和参数,建立上层有源配电网运行约束与目标数学模型;
步骤3:依据步骤1提供的有源配电网与集中能源站结构和参数,建立下层集中能源站运行约束与目标数学模型;
步骤4:基于步骤2与步骤3构建主动配电网与集中能源站主从博弈供需互动策略;
步骤5:对步骤2与步骤3中配电网Distflow潮流约束与SOP约束中的非线性项进行凸转换处理,得到易于求解的二阶锥模型;
步骤6:基于步骤4与步骤5所建立的互动模式和运行模型,构建基于割平面的单层博弈均衡方法进行供需均衡的迭代求解,并进行算法有效性验证;
步骤7:生成主动配电网与集中能源站主从博弈供需均衡调度方案。
本发明提出的考虑分布式能源消纳的有源配电网与集中能源站供需互动策略,立足于解决有源配电网与集中能源站互联***的优化调度问题,充分考虑多个集中能源站热储能的灵活调节能力和用能行为对配网电价的敏感性,通过配电网灵活制定日前电价进行集中能源站的需求侧管理,提高分布式能源的消纳水平,建立考虑分布式能源消纳的有源配电网与集中能源站供需互动调度模型,并调用相关数学求解器进行求解,得到***日前调度计划。
附图说明
图1是考虑分布式能源消纳的有源配电网与集中能源站供需互动策略流程图;
图2是基于割平面的加强二阶锥主从博弈求解流程图;
图3是改进的IEEE-33节点***结构图;
图4是互动机制下配网运营商日前电价;
图5是集中能源站1的冷功率供需平衡;
图6是集中能源站1的蓄冷水箱存储冷量变化图。
具体实施方式
下面结合实施案例和附图对本发明提出的考虑分布式能源消纳的有源配电网与集中能源站供需互动策略做出详细说明。
本发明的考虑分布式能源消纳的有源配电网与集中能源站供需互动策略,如图1所示,包括如下步骤:
1)根据选定的配电网-集中能源站***,输入有源配电网节点参数信息,读取电负荷、冷负荷、分布式能源出力的预测值,输入集中能源站设备组成、设备运行参数、蓄冷设备(地源热泵、冷水罐、冰蓄冷***)初始蓄冷量、有功功率损耗成本、分布式能源缩减成本、调度时间间隔等参数;
2)依据步骤1)提供的有源配电网-集中能源站***的结构和参数,建立上层配电网运行模型,上层模型以配电网网络损耗费用和分布式能源缩减费用最小为目标,以Distflow支路潮流约束、配电网安全运行约束、分布式电源运行约束、软开关运行约束为约束条件,建立其数学模型;
(1)所述的上层配电网网络损耗和分布式能源缩减费用最小的优化目标表示为
Figure GDA00040815317700000314
式中,NT为一个完整调度周期的总时段数,Δt为调度时间间隔,closs表示有功损耗成本、ccur表示分布式电源有功缩减成本。
(2)所述的Distflow支路潮流约束表示为
Figure GDA0004081531770000031
Figure GDA0004081531770000032
Figure GDA0004081531770000033
Figure GDA0004081531770000034
Figure GDA0004081531770000035
Figure GDA0004081531770000036
式中,Pt,ij、Qt,ij为t时刻从节点i流向节点j的有功和无功功率,It,ij为t时刻线路ij的电流,rij、xij分别为线路ij的电阻和电抗,Vt,i为t时刻节点i的电压,
Figure GDA0004081531770000037
Figure GDA0004081531770000038
分别为t时刻分布式电源j注入的有功和无功功率,
Figure GDA0004081531770000039
分别为t时刻节点j负荷的有功功率和无功功率,
Figure GDA00040815317700000310
分别为t时刻智能软开关注入节点j的有功和无功功率;
Figure GDA00040815317700000311
为t时刻与节点j相连的集中能源站用能功率。
(3)所述的配电网安全运行约束表示为
Figure GDA00040815317700000312
Figure GDA00040815317700000313
式中,Vmin和Vmax分别为节点电压的允许的运行上限和下限;Iij,max为线路ij允许的最大电流。
(4)所述的分布式电源运行约束表示为
Figure GDA0004081531770000041
Figure GDA0004081531770000042
Figure GDA0004081531770000043
Figure GDA0004081531770000044
式中,
Figure GDA0004081531770000045
分别为t时刻节点i上分布式电源注入的有功功率和无功功率,
Figure GDA0004081531770000046
为对应的预测功率和有功功率缩减量;
Figure GDA0004081531770000047
为节点i上分布式电源的功率因数;
Figure GDA0004081531770000048
节点i上分布式电源的容量。
(5)所述的SOP运行约束表示为
Figure GDA0004081531770000049
Figure GDA00040815317700000410
Figure GDA00040815317700000411
Figure GDA00040815317700000412
Figure GDA00040815317700000413
式中,
Figure GDA00040815317700000414
分别为t时刻节点i上SOP注入的有功功率和无功功率;
Figure GDA00040815317700000415
为节点i上SOP的有功损耗;
Figure GDA00040815317700000416
为节点i上SOP的损耗系数;
Figure GDA00040815317700000417
为节点i上SOP的容量。
3)依据步骤1)提供的有源配电网-集中能源站***的结构和参数,建立下层集中能源站运行模型。下层模型以集中能源站购电成本最小为目标,以地源热泵***运行约束、冷水罐运行约束、常规冷水机组运行约束、冰蓄冷***运行约束、供需平衡约束为约束,建立其数学模型;
(1)所述的下层集中能源站经济费用最小的优化目标表示为
Figure GDA00040815317700000418
式中,
Figure GDA00040815317700000419
表示集中能源站t时段购电电价,
Figure GDA00040815317700000420
为t时段***联络线功率(购电功率)。
(2)所述的地源热泵***运行约束表示为
Figure GDA00040815317700000421
Figure GDA0004081531770000051
式中,
Figure GDA0004081531770000052
分别为t时刻地源热泵供冷、蓄冷功率;Q HP
Figure GDA0004081531770000053
分别为地源热泵供能功率下、上限;
Figure GDA0004081531770000054
为t时刻地源热泵耗电功率;COPHP为地源热泵性能系数。
(3)所述的冷水罐运行约束表示为
Figure GDA0004081531770000055
Figure GDA0004081531770000056
Figure GDA0004081531770000057
式(22)表示常规冷水机总蓄冷量与充、放冷功率之间的关系,式(23)限制常规冷水机的蓄冷总量在一定范围内。
Figure GDA0004081531770000058
分别为t时刻蓄冷水箱蓄冷量、蓄冷量上限;εCWT为蓄冷水箱能量损耗率;
Figure GDA0004081531770000059
为t时刻蓄冷水箱放冷功率;
Figure GDA00040815317700000510
为t时刻热泵机组向常规冷水机蓄冷功率;
Figure GDA00040815317700000511
为常规冷水机耗电功率;COPCWT为常规冷水机性能系数。
(4)所述的常规冷水机组运行约束表示为
Figure GDA00040815317700000512
Figure GDA00040815317700000513
式中,
Figure GDA00040815317700000514
为t时刻常规冷水主机供冷功率,
Figure GDA00040815317700000515
为对应的耗电功率;Q WC
Figure GDA00040815317700000516
分别为常规冷水主机制冷功率下、上限;COPWC为常规冷水主机性能系数。
(5)所述的冰蓄冷***运行约束表示为
Figure GDA00040815317700000517
Figure GDA00040815317700000518
Figure GDA00040815317700000519
Figure GDA00040815317700000520
式中,
Figure GDA00040815317700000521
分别为t时刻双工况主机供冷、蓄冷功率;Q DC
Figure GDA00040815317700000522
分别为双工况主机供能功率下、上限;
Figure GDA00040815317700000523
为t时刻双工况主机耗电功率;COPDC,C、COPDC,I分别为双工况主机制冷、制冰性能系数;
Figure GDA00040815317700000524
分别为t时刻蓄冰槽蓄冷量、蓄冷量上限;εIT为蓄冰槽能量损耗率;
Figure GDA00040815317700000525
为t时刻蓄冰槽放冷功率。
(6)所述的供需平衡约束表示为
Figure GDA00040815317700000526
Figure GDA0004081531770000061
Figure GDA0004081531770000062
式中,
Figure GDA0004081531770000063
为t时刻集中能源站冷负荷,
Figure GDA0004081531770000064
PTL,max分别为t时刻联络线功率和允许上限。
4)基于步骤2)与步骤3)所建立的数学模型,构建主动配电网与集中能源站主从博弈供需互动策略,设定配电网日前电价上下限约束,引导集中能源站跟随配电网进行需求侧管理;集中能源站发挥储能的灵活调节能力,响应上层配电网电价引导;发挥软开关有功传输与无功支撑的能力,改善***运行状态;
所述的日前电价约束可表示为
Figure GDA0004081531770000065
Figure GDA0004081531770000066
式中,
Figure GDA0004081531770000067
为配网运营商设定的t时刻电价;CP,min、CP,max为日前电价下限和上限;NT为一个完整调度周期调度间隔数目;Cave,min、Cave,max为日前电价平均值的下限和上限。
5)将步骤2)与步骤3)所建立约束中的非线性项进行凸转换处理,将配网潮流约束中的非线性项利用辅助变量转化为标准二阶锥形式,对软开关约束进行旋转锥转化得到易于求解的线性模型;
(1)对所述运行约束中的配电网潮流约束进行二阶锥转换,可表示为
Figure GDA0004081531770000068
Figure GDA0004081531770000069
Figure GDA00040815317700000610
Figure GDA00040815317700000611
Figure GDA00040815317700000612
对于配网潮流中电压幅值平方
Figure GDA00040815317700000613
和电流平方
Figure GDA00040815317700000614
用vt,i和lt,ij代替,则式(2)-(5)变为式(36)-(40),对式(39)进行二阶锥松弛转换,转变为如式(41)的标准二阶锥形式。
Figure GDA00040815317700000615
(2)对SOP约束进行旋转锥转化以简化求解模型,则式(15)-(18)转化为
Figure GDA00040815317700000617
Figure GDA00040815317700000618
Figure GDA0004081531770000071
Figure GDA0004081531770000072
6)基于步骤4)与步骤5)所建立的互动模式和运行模型,采用基于割平面的单层博弈均衡方法进行供需均衡的迭代求解,即通过不断添加割平面约束增强二阶锥松弛的准确性,并利用Karush-Kuhn-Tucker(KKT)条件将下层集中能源站运行问题转换为上层配网运行问题的约束条件,从而将主从博弈双层优化问题变为单层优化问题;
基于割平面的单层博弈均衡方法迭代求解流程为:
(1)输入网络和集中能源站基本参数。设置收敛精度ε和最大迭代次数kmax,并令迭代次数k=1;
(2)检查迭代次数k是否小于最大迭代次数kmax。如果满足则继续,不满足则迭代终止;
(3)基于前文建立的配电网-集中能源站双层供需互动模型,采用KKT转换方式建立MISOCP优化模型并求解;
构建拉格朗日函数L如下:
Figure GDA0004081531770000073
式中,F″为下层集中能源站运行目标,gi为下层第i个等式约束,hi为第j个不等式约束,μi为第i个等式约束的对偶变量,λj为第j个不等式约束的对偶变量,Ωg、Ωh分别为等式约束和不等式约束的集合。
下层优化模型的KKT条件表示为:
Figure GDA0004081531770000074
式中,Ωx为集中能源站优化变量的集合。式(46)的最后一项为具有非线性的互补松弛条件,采用Big-M法对其线性化:
0≤λj≤(1-θj)M (48)
jM≤hj≤0 (49)式中,M为一充分大的正实数,θj为二进制变量。
(4)为评价松弛后最优解的准确性,定义松弛误差的无穷范数gapk
Figure GDA0004081531770000075
式中,Pt,ij,k、Qt,ij,k分别为第k次迭代线路ij的有功、无功功率;vt,i,k为第k次迭代节点i电压幅值的平方;lt,ij,k为第k次迭代线路ij电流的平方。
(5)判断最大收敛误差gapk是否小于松弛精度ε,若是则输出优化结果并结束;若否,则令k=k+1,且增加割平面约束,跳至步骤(2)。
割平面约束可表示为:
Figure GDA0004081531770000081
式中,Pt,ij,k、Qt,ij,k分别为第k次迭代线路ij的有功、无功功率;vt,i,k为第k次迭代节点i电压幅值的平方。
7)生成主动配电网与集中能源站主从博弈供需互动经济调度方案:根据日前调度周期内分布式能源出力、冷负荷和电负荷预测信息和蓄能***信息,进行上述步骤所建立的混合整数二阶锥规划模型的求解,获得配电网与集中能源站供需互动调度方案。
仿真验证
对于本实施例,首先输入改进的IEEE-33节点***参数,其额定电压是12.66kV。为充分考虑高渗透率下分布式能源主动配电网和集中能源站的互动模式,***安装了3台光伏***和2台风电机组。不考虑分布式电源的无功支撑作用,认为所有分布式电源按照固定的功率因素运行,均为0.9。***接入三个不同的集中能源站,集中能源站和分布式能源接入IEEE33节点***情况以及集中能源站***结构图见图3。调度周期为1天,调度间隔为1h。同时,两组容量为1000kVA的SOP分别安装在节点12-22节点、18-33节点,SOP每个变换器的损耗系数为0.02,且设定SOP功率注入节点方向为正方向。***节点电压的下限和上限分别为0.95p.u.和1.05p.u.。集中能源站主要设备运行参数见表1。
为验证主从博弈互动模型的有效性,并分析SOP接入对互动和运行的影响,构建以下场景:1)未接入SOP,分析考虑主从博弈策略对***运行目标影响;2)接入SOP,验证SOP有功传输/无功调节能力对促进分布式电源消纳的作用。
执行优化计算的计算机硬件环境为Intel I9-10900K,主频为3.70GHz,内存为32GB,软件环境为Windows 10操作***。算法采用MATLAB脚本程序实现,并通过YALMIP工具包调用GUROBI 9.1求解器进行优化计算。
有源配电网与集中能源站供需互动博弈机制下,配网运营商日前电价见图4。从图中可以看出,在风电和光伏出力较大时段(如午夜和中午时段),配网运营商售电电价较低;响应配网电价,集中能源站在电价较低时购电,最小化自身运行费用,促进分布式电源功率的消纳。
集中能源站根据配网运营商日前电价,协调供能、蓄能装置运行,在满足负荷需求的前提下通过蓄冷装置的有序充放电促进高峰时段分布式电源功率消纳;主从博弈模型平均求解耗时约25min,求解结果的MISOCP松弛误差如表2所示,所有时段的松弛误差均在1.0e-5以下,完全可满足日前小时级的配网与集中能源站互动需求精确快速且精确求解。可见,所提主从博弈和混合整数二阶锥规划模型统一求解方法可较好地实现配网运行目标和集中能源站购能成本最小的利益平衡及精确求解,并通过需求侧响应策略提升集中能源站的能源利用效率。
对比是否考虑供需互动策略的不同电价场景下***运行情况,见表3。主从博弈机制下配网运营商制定灵活电价优化网络运行,日前电价呈现“峰-谷-平”特性;集中个能源站可根据冷热用户用能行为和日前电价,协调多种供能、蓄能装置的运行,如图5和图6所示的冷平衡与蓄冷装置变化曲线,在电价较低时蓄冷装置蓄能并在电价较高时释放所蓄能量实现峰谷套利,减少运行费用;考虑配电网和集中能源站主从博弈的策略可根据分布式能源出力和集中能源站负荷信息灵活制定日前电价发挥集中能源站蓄热装置作用以改善自身运行情况,实现自身能源消纳需求和能源站购能费用最小化的利益均衡。可见,所提互动策略通过配网运营商电价的优化引导集中能源站用能策略,充分发挥集中能源站蓄热装置“低蓄高释”特性,提升了需求侧能源利用效率,在最小化自身费用的同时大幅提升配网分布式能源消纳水平。
对比是否接入SOP***整体运行结果,见表4。由于SOP支路间有功功率的转移和无功补偿对电压的支撑作用,可较大幅度减少了网络损耗、幅促进分布式电源功率消纳;虽然SOP有一定的有功损耗,但是由于网络损耗和缩减功率的大幅减少,考虑SOP后目标费用减少645.8元。可见,软开关的接入提升了***灵活调节能力,通过其有功功率转移和无功功率补偿实现不同支路功率传输和电压调节,优化了网络有功/无功功率分布,改善了节点电压并进一步促进了分布式能源的消纳。
综上,考虑分布式能源消纳的有源配电网与集中能源站供需互动策略充分考虑了多个集中能源站热储能的灵活调节能力和用能行为对配网电价的敏感性,较好实现有源配电网和集中能源站的利益均衡,并充分发挥能源站热储能和SOP调节潜力,大幅提升分布式能源消纳水平,改善电压质量。
表1 CES主要设备参数
Figure GDA0004081531770000101
表2 MISOCP松弛误差
Figure GDA0004081531770000102
表3是否考虑供需互动策略运行结果对比
Figure GDA0004081531770000103
表4是否接入SOP运行结果对比
Figure GDA0004081531770000104

Claims (5)

1.一种考虑能源消纳的有源配电网与集中能源站互动方法,其特征在于,包括如下步骤:
1)根据选定的有源配电网与集中能源站***,输入有源配电网节点参数信息,读取电负荷、冷负荷、分布式能源出力的预测值,输入集中能源站设备组成、设备运行参数、蓄冷设备初始蓄冷量、有功功率损耗成本、分布式能源缩减成本、调度时间间隔等参数;
2)依据步骤1)提供的有源配电网与集中能源站***的结构和参数,建立上层配电网运行模型,上层模型以配网的网损费用和分布式能源缩减费用最小为目标,以Distflow支路潮流约束、配电网安全运行约束、分布式电源运行约束、软开关运行约束为约束条件;
3)依据步骤1)提供的有源配电网与集中能源站***的结构和参数,建立下层集中能源站运行模型,蓄冷设备包括地源热泵、冷水罐、冰蓄冷***,下层模型以集中能源站购电成本最小为目标,以地源热泵***运行约束、冷水罐运行约束、常规冷水机组运行约束、冰蓄冷***运行约束、供需平衡约束为约束条件;
4)基于步骤2)与步骤3)所建立的数学模型,构建主动配电网与集中能源站主从博弈供需互动策略,设定配电网日前电价约束,引导集中能源站跟随配电网进行需求侧管理;发挥集中能源站热储能的灵活调节能力,响应上层配电网电价引导;发挥软开关有功传输与无功支撑能力,改善***运行状态;
5)将步骤2)与步骤3)所建立约束中的非线性项进行凸转换处理,构建易于求解的二阶锥模型;
6)基于步骤4)与步骤5)所建立的互动模式和运行模型,利用基于割平面的单层博弈均衡方法进行供需均衡的迭代求解,并进行算法的有效性验证;
7)生成主动配电网与集中能源站主从博弈供需均衡调度方案,包括运行费用、配网运营商日前电价、集中能源站内各设备出力及储能情况、SOP有功传输功率及无功补偿功率、分布式能源消纳情况。
2.根据权利要求1所述的一种考虑能源消纳的有源配电网与集中能源站互动方法,其特征在于,步骤2)所述的上层模型以网络损耗和分布式能源缩减费用最小为目标,可表述为:
Figure FDA0004081531760000011
式中,F为配电网运行成本,包含网络损耗和分布式能源缩减费用,NT为一个完整调度周期的总时段数,Δt为调度时间间隔,closs表示有功损耗成本、ccur表示分布式电源有功缩减成本。
3.根据权利要求1所述的一种考虑能源消纳的有源配电网与集中能源站互动方法,其特征在于,步骤4)所述的设定配电网日前电价约束,引导集中能源站跟随配电网进行需求侧管理,可表述为:
Figure FDA0004081531760000021
Figure FDA0004081531760000022
式中,
Figure FDA0004081531760000023
为配网运营商设定的t时刻电价;CP,min、CP,max分别为日前电价的下限和上限;Cave,min、Cave,max分别为日前电价平均值的下限和上限。
4.根据权利要求1所述的一种考虑能源消纳的有源配电网与集中能源站互动方法,其特征在于,步骤4)所述的发挥软开关有功传输与无功支撑能力,改善***运行状态,其中软开关运行约束可表述为:
Figure FDA0004081531760000024
Figure FDA0004081531760000025
Figure FDA0004081531760000026
Figure FDA0004081531760000027
Figure FDA0004081531760000028
式中,
Figure FDA0004081531760000029
分别为t时刻节点i上SOP注入的有功功率和无功功率;
Figure FDA00040815317600000210
为节点i上SOP的有功损耗;
Figure FDA00040815317600000211
为节点i上SOP的损耗系数;
Figure FDA00040815317600000212
为节点i上SOP的容量。
5.根据权利要求1所述的一种考虑能源消纳的有源配电网与集中能源站互动方法,其特征在于,步骤6)所述的基于割平面的单层博弈均衡方法进行供需均衡的迭代求解,可表述为:
1)输入配网和集中能源站基本参数,设置收敛精度ε和最大迭代次数kmax,并令初始迭代次数k=1;
2)检查迭代次数k是否小于最大迭代次数kmax,如果满足则继续,不满足则迭代终止;
3)基于前文所建立的上层有源配电网和下层集中能源站的供需主从博弈模型,利用Karush-Kuhn-Tucker转换方式将有源配电网与集中能源站主从博弈双层互动模型转变为可进行统一求解的混合整数二阶锥规划模型;
构建拉格朗日函数L如下:
Figure FDA00040815317600000213
式中,F″为下层集中能源站运行目标,gi为下层第i个等式约束,hi为第j个不等式约束,μi为第i个等式约束的对偶变量,λj为第j个不等式约束的对偶变量,Ωg、Ωh分别为等式约束和不等式约束的集合;
下层优化模型的KKT条件表示为:
Figure FDA0004081531760000031
式中,Ωx为集中能源站优化变量的集合,式(9)的最后一项为具有非线性的互补松弛条件,采用Big-M法对其线性化:
0≤λj≤(1-θj)M(11)
jM≤hj≤0(12)
式中,M为一充分大的正实数,θj为二进制变量;
将下层集中能源站的KKT条件作为上层约束,构建基于MISOCP的有源配电网与集中能源站单层博弈模型;
5)对基于MISOCP的单层博弈模型进行第k次迭代求解;
6)判断最大收敛误差gapk是否小于松弛精度ε,若是则输出优化结构并结束;若否,则令k=k+1,并增加割平面约束:
Figure FDA0004081531760000032
跳至步骤2)。
CN202110885071.4A 2021-08-03 2021-08-03 一种考虑能源消纳的有源配电网与集中能源站互动方法 Active CN113690877B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110885071.4A CN113690877B (zh) 2021-08-03 2021-08-03 一种考虑能源消纳的有源配电网与集中能源站互动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110885071.4A CN113690877B (zh) 2021-08-03 2021-08-03 一种考虑能源消纳的有源配电网与集中能源站互动方法

Publications (2)

Publication Number Publication Date
CN113690877A CN113690877A (zh) 2021-11-23
CN113690877B true CN113690877B (zh) 2023-04-18

Family

ID=78578891

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110885071.4A Active CN113690877B (zh) 2021-08-03 2021-08-03 一种考虑能源消纳的有源配电网与集中能源站互动方法

Country Status (1)

Country Link
CN (1) CN113690877B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114188940B (zh) * 2021-11-30 2023-08-11 国网浙江杭州市萧山区供电有限公司 一种考虑多主体利益的主动配电网调度方法
CN115310651A (zh) * 2022-05-13 2022-11-08 中国矿业大学 基于物质流-能量流协同的煤矿能源***低碳运行方法
CN116384536B (zh) * 2023-01-06 2024-05-07 国网江苏省电力有限公司扬州供电分公司 一种中大型能源用户综合能源协同规划方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106655177B (zh) * 2017-01-18 2018-12-28 中国南方电网有限责任公司电网技术研究中心 基于扩展二阶锥规划的分布式电源最大接入能力计算方法
CN108494015B (zh) * 2018-02-09 2020-09-25 中国科学院电工研究所 一种源-荷-储协调互动的综合能源***设计方法
CN109934487A (zh) * 2019-03-11 2019-06-25 国网福建省电力有限公司 一种考虑多主体利益博弈的主动配电网协调规划方法
CN110110913B (zh) * 2019-04-26 2022-06-07 国网福建省电力有限公司 大型园区综合能源***能源站优化配置方法
CN111952958B (zh) * 2020-07-14 2024-06-25 清华大学 一种考虑控制模式转换的配电网柔性软开关优化配置方法

Also Published As

Publication number Publication date
CN113690877A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
Abdi et al. A review of optimal power flow studies applied to smart grids and microgrids
Gao et al. Robust coordinated optimization of active and reactive power in active distribution systems
CN113690877B (zh) 一种考虑能源消纳的有源配电网与集中能源站互动方法
Shen et al. Expansion planning of active distribution networks with centralized and distributed energy storage systems
CN112467722B (zh) 一种考虑电动汽车充电站的主动配电网源-网-荷-储协调规划方法
Karagiannopoulos et al. Active distribution grids providing voltage support: The swiss case
Yang et al. Optimal energy flow control strategy for a residential energy local network combined with demand-side management and real-time pricing
Ranamuka et al. Flexible AC power flow control in distribution systems by coordinated control of distributed solar-PV and battery energy storage units
Nikoobakht et al. Stochastic flexible transmission operation for coordinated integration of plug-in electric vehicles and renewable energy sources
CN106655207A (zh) 基于多数据分析的配电网无功优化***及方法
Yang et al. A comprehensive review on electric vehicles integrated in virtual power plants
CN109948849B (zh) 一种计及储能接入的配电网网架规划方法
Zhang et al. A systematic review of optimal planning and deployment of distributed generation and energy storage systems in power networks
CN114597969B (zh) 计及智能软开关和虚拟电厂技术的配电网双层优化方法
Cerbantes et al. Incorporating a nodal reactive power pricing scheme into the DisCo’s short-term operation
CN116388153A (zh) 一种有源配电网中柔性互联装备优化配置方法
Wang et al. Bi-stage operation optimization of active distribution networks with soft open point considering violation risk
Lv et al. Energy accommodation-oriented interaction of active distribution network and central energy station considering soft open points
Tian et al. Coordinated RES and ESS Planning Framework Considering Financial Incentives Within Centralized Electricity Market
Zhang et al. Day-ahead stochastic optimal dispatch of LCC-HVDC interconnected power system considering flexibility improvement measures of sending system
Savvopoulos et al. A long-term reactive power planning framework for transmission grids with high shares of variable renewable generation
CN115841217A (zh) 计及逆变器无功支撑能力的主动配电网双层优化配置方法
CN114977155A (zh) 基于运行灵活性价格引导的配电***运行灵活性提升方法
You et al. Optimal dispatch of battery storage in an industrial microgrid with a mixed portfolio of renewables
Bazmohammadi et al. An efficient decision-making approach for optimal energy management of microgrids

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant