WO2012144079A1 - 充電装置 - Google Patents

充電装置 Download PDF

Info

Publication number
WO2012144079A1
WO2012144079A1 PCT/JP2011/059983 JP2011059983W WO2012144079A1 WO 2012144079 A1 WO2012144079 A1 WO 2012144079A1 JP 2011059983 W JP2011059983 W JP 2011059983W WO 2012144079 A1 WO2012144079 A1 WO 2012144079A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
storage device
power storage
charging
control
Prior art date
Application number
PCT/JP2011/059983
Other languages
English (en)
French (fr)
Inventor
修司 石倉
啓太 畠中
英俊 北中
寧 松村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012551430A priority Critical patent/JP5393901B2/ja
Priority to EP11863750.3A priority patent/EP2700534B1/en
Priority to CN201180070278.0A priority patent/CN103492222B/zh
Priority to US14/113,343 priority patent/US20140055080A1/en
Priority to PCT/JP2011/059983 priority patent/WO2012144079A1/ja
Publication of WO2012144079A1 publication Critical patent/WO2012144079A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/20Electric propulsion with power supplied within the vehicle using propulsion power generated by humans or animals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/24Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines
    • B60L9/28Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines polyphase motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/32Waterborne vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a charging device for charging an electric power storage device mounted on a vehicle.
  • a conventional charging apparatus that charges a power storage device mounted on a vehicle is configured to supply power necessary for rapidly charging the power storage device from a power supply facility installed on the ground.
  • the transportation system shown in Patent Document 1 below includes an AC circuit breaker, a rectifier transformer, a rectifier, an electric double layer capacitor, a chopper circuit, and a DC circuit breaker on the ground side, and is connected to an electric power system from an electric power company.
  • the AC circuit breaker was turned on, the AC power was converted to DC power by the rectifier, and the electric double layer capacitor (the power storage device on the ground side) was charged, and provided between the electric double layer capacitor and the electric car.
  • the electric double layer capacitor is discharged to charge the electric double layer capacitor (vehicle-side power storage device) mounted on the electric vehicle.
  • a conventional charging device for charging an electric power storage device mounted on a vehicle has a configuration in which charge / discharge control is switched by turning on / off an AC circuit breaker and a DC circuit breaker.
  • charge / discharge control is switched by turning on / off an AC circuit breaker and a DC circuit breaker.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a charging device that enables further miniaturization, weight reduction, cost reduction, and high reliability of the device.
  • a charging device includes a rectifier in an output stage, a power receiving unit that receives AC power and converts it into DC power, and power that stores DC power.
  • a storage device a DC / DC converter capable of bidirectional power flow control of charge control for the power storage device using the output of the rectifier and discharge control from the power storage device, the power receiving unit, and the power receiving unit
  • a controller that controls the operation of the DC / DC converter, and the output voltage of the rectifier is different from the output voltage of the DC / DC converter that is applied to the output terminal of the rectifier when the power storage device is discharged. The voltage is set.
  • the charging device of the present invention it is possible to omit the DC circuit breaker, and there is an effect that further downsizing, weight reduction, cost reduction, and high reliability of the device can be realized. .
  • FIG. 1 is a diagram illustrating a configuration example of a power supply system including the charging device according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of the electric vehicle according to the first embodiment.
  • FIG. 3 is a diagram showing an example of a charge / discharge pattern of the storage battery in the first embodiment.
  • FIG. 4 is a diagram illustrating a configuration example of the control unit according to the first embodiment.
  • FIG. 5 is a diagram illustrating a configuration example of the DC / DC converter control unit illustrated in FIG. 4.
  • FIG. 6 is a diagram showing an example of a charge / discharge pattern of the storage battery in the second embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a power supply system including the charging device according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of the electric vehicle according to the first embodiment.
  • a charging device 1 is installed in an electric vehicle 20 that is installed in a station or a vehicle base, receives AC power 2 received from an electric power company, and is stopped at the station or the vehicle base, for example.
  • the storage device 23 is configured as a device for charging.
  • the charging device 1 includes a power receiving unit 70 and a charging control device 80.
  • the power receiving unit 70 includes an AC circuit breaker 3, a transformer 4, and a rectifier 5, and receives AC power 2 and converts it into DC power.
  • the charging control device 80 includes a DC / DC converter 6, a power storage device 7, a first current detector 8, a first voltage detector 9, a control unit 10, a second current detector 11, and a second voltage detection.
  • a device 12 is provided.
  • AC breaker 3 turns on / off received AC power 2.
  • the transformer 4 steps down the AC voltage input via the AC circuit breaker 3 to a predetermined AC voltage.
  • the rectifier 5 converts AC voltage (AC power) into a predetermined DC voltage (DC power).
  • the power storage device 7 stores DC power.
  • the first current detector 8 detects the output current of the rectifier 5, and the first voltage detector 9 detects the output voltage of the rectifier 5.
  • the second current detector 11 detects the output current of the DC / DC converter 6, and the second voltage detector 12 detects the output voltage of the power storage device 7.
  • the DC / DC converter 6 is a bidirectional DC / DC converter capable of bidirectional power flow control, and performs control for charging the power storage device 7 using the DC power converted by the rectifier 5.
  • the control unit 10 includes an output current of the rectifier 5 detected by the first current detector 8, an output voltage of the rectifier 5 detected by the first voltage detector 9, and a DC / DC detected by the second current detector 11.
  • the control unit 10 controls the rectifier 5, the DC / DC converter 6, and the AC circuit breaker 3 using these pieces of information.
  • the vehicle system 90 includes an overhead wire 14, a rail 15, and an electric vehicle 20, and the electric vehicle 20 includes an electric power storage device 23, a DC / DC converter 22, an inverter 24, a motor 25, a pantograph 21 and wheels 26. It is configured (Fig. 2).
  • the DC power supplied from the charging device 1 is supplied to the electric vehicle 20.
  • a charging circuit is formed by the overhead wire 14, the DC / DC converter 22, the wheel 26 and the rail 15 via the pantograph 21. .
  • the DC / DC converter 22 charges the power storage device 23 using the DC power received via the overhead wire 14 and the pantograph 21.
  • the pantograph 21 is lowered, and the inverter 24 converts the DC power of the power storage device 23 into desired AC power, drives the motor 25, rotates the wheel 26, and the electric vehicle 20 Run.
  • the power supply system includes the charging device 1 and the overhead wire 14 and the rail 15 that form a part of the vehicle system 90.
  • the conductor portion constituting the overhead wire 14 is indicated by a single line, but the overhead wire 14 is preferably constituted by a plurality of parallel conductor portions. If the overhead wire 14 is composed of a plurality of parallel conductor portions, the resistance value of the overhead wire 14 can be reduced, so that loss during charging can be reduced, and further energy saving and higher efficiency of the charging device 1 can be achieved. It becomes possible.
  • the control unit 10 turns on the AC circuit breaker 3.
  • AC power 2 is supplied to the transformer 4.
  • the transformer 4 steps down the input AC voltage and supplies AC power to the rectifier 5.
  • the rectifier 5 converts the input AC power into DC power and outputs it to the overhead line 14.
  • the control unit 10 recognizes from the output of the first voltage detector 9 that the output voltage of the rectifier 5 has been boosted to a predetermined voltage, and secondly determines that the voltage of the power storage device 7 is within a predetermined range. Is recognized by the output of the voltage detector 12, the control of the DC / DC converter 6 is started. With the above operation, the charging device 1 is activated.
  • the control unit 10 When the charging apparatus 1 is activated, the control unit 10 starts charging control for the power storage device 7.
  • the control unit 10 charges the power storage device 7 by controlling the charging current that the DC / DC converter 6 supplies to the power storage device 7.
  • the capacity of the rectifier 5, the transformer 4, and the AC circuit breaker 3 can be reduced, and the power It is also possible to reduce costs by reducing the amount of contract power with the company.
  • the control unit 10 determines the state of charge of the power storage device 7 based on the voltage information or / and the SOC information of the power storage device 7.
  • the control unit 10 switches the DC / DC converter 6 from the charge control to the discharge control state, more precisely, the discharge control enabled state. Note that the SOC information of the power storage device 7 may be estimated by the control unit 10 without getting from the power storage device 7.
  • FIG. 3 is a diagram showing an example of a charge / discharge pattern of the power storage device 7 in the first embodiment, and is a time chart suitable for explaining the operation described so far over time.
  • a to B are charging control periods, and B to D are discharging control possible periods.
  • B to D are discharge standby periods, and C to D are discharge control periods.
  • the overhead line voltage (voltage of the overhead line 14) becomes the output voltage of the rectifier 5 (for example, a predetermined voltage lower than the rated voltage 1500V).
  • the DC / DC converter 6 performs a step-down operation, and charges the power storage device 7 using the DC power supplied from the rectifier 5.
  • the operation at this time is performed by charge control (preferably constant current charging) with a small current and time (charge time is longer than discharge time) as described above.
  • the DC / DC converter 6 When the charge control periods A to B are shifted to the discharge standby periods B to C, that is, when the DC / DC converter 6 is in a discharge control enabled state, the DC / DC converter 6 performs a boosting operation, and the overhead line voltage is DC / DC.
  • the output voltage of the DC converter 6 (for example, a predetermined voltage higher than the rated voltage 1500 V) is obtained.
  • the discharge waiting period B to C shifts to the discharge control period C to D.
  • the DC / DC converter 6 performs high-current and short-time rapid discharge.
  • the DC / DC converter 6 performs constant voltage control to a predetermined voltage so that the output voltage does not decrease.
  • the DC / DC converter 6 performs the boost operation. To stop. Therefore, the overhead line voltage becomes the output voltage of the rectifier 5.
  • the DC / DC converter 6 performs control to stop the boosting operation after the discharge of the power storage device 7 is completed and then charge the power storage device 7. If the decrease in the output voltage is small and the discharge control can be performed again in this state, the next electric vehicle 20 stops at the station or the vehicle base and is charged without reducing the output voltage of the DC / DC converter 6. You may make it wait in the discharge control possible state until it starts.
  • FIG. 4 is a diagram illustrating a configuration example of the control unit 10 according to the first embodiment.
  • the control unit 10 includes a display / operation screen 31, a power reception control unit 32, and a DC / DC converter control unit 33.
  • the display / operation screen 31 is a component that provides an interface between the user (operator of the charging device 1), the power reception control unit 32, and the DC / DC converter control unit 33, and each device (for example, the AC circuit breaker 3). , The status display of the rectifier 5 and the DC / DC converter 6) and operation input (for example, transmission of an operation command from the user).
  • the power reception control unit 32 controls the operation and stop of the AC circuit breaker 3 and the rectifier 5. In addition, the power reception control unit 32 receives state signals of the AC circuit breaker 3 and the rectifier 5 and transmits them to the display / operation screen 31.
  • the DC / DC converter control unit 33 is based on the detection currents of the first current detector 8 and the second current detector 11 and the detection voltages of the first voltage detector 9 and the second voltage detector 12. Thus, the DC / DC converter 6 is controlled.
  • the DC / DC converter control unit 33 receives the status signal of the DC / DC converter 6, and also detects the detection currents of the first current detector 8 and the second current detector 11 and the first voltage detector. 9 and the second voltage detector 12 are monitored, and the respective status signals are transmitted to the display / operation screen 31.
  • FIG. 5 is a diagram showing a configuration example of the DC / DC converter control unit 33 shown in FIG.
  • the DC / DC converter control unit 33 includes a sequence processing unit 41, a control target calculation unit 42, a voltage control unit 43, a control system switching unit 44, a conduction rate calculation unit 45, and a PWM circuit 46.
  • the sequence processing unit 41 generates an operable signal 51 based on the operation command input through the display / operation screen 31 and the detected voltage of the first voltage detector 9.
  • the operable signal 51 is a signal that makes the charge control and the discharge control executable, and is input to the control target calculation unit 42.
  • the sequence processing unit 41 monitors the detection voltage of the first voltage detector 9 and generates the operable signal 51 after detecting that the output voltage appears in the rectifier 5.
  • the sequence processing unit 41 generates the charge / discharge switching signal 52 based on the detection current of the first current detector 8.
  • the charge / discharge switching signal 52 is a control system switching signal and is input to the control system switching unit 44. More specifically, when charging the power storage device 7 of the charging apparatus 1 (that is, in the case of charge control), the control system switching unit 44 is switched to the a side, and the control target calculation unit 42 and the conduction rate calculation unit 45 are switched. Is connected. On the other hand, when charging the power storage device 23 mounted on the electric vehicle 20 (that is, in the case of discharge control), the control system switching unit 44 is switched to the b side, and the voltage control unit 43 and the conduction rate calculation unit 45 are connected.
  • the control target calculation unit 42 In the case of charge control for charging the power storage device 7 of the charging device 1, the control target calculation unit 42 generates a first current command 53 that is a command value of a charge current for the power storage device 7.
  • the control target calculation unit 42 sets the target value of the output voltage of the DC / DC converter 6 (for example, a voltage higher than the rated voltage 1500V).
  • a target voltage 54 is generated.
  • the voltage control unit 43 operates at the time of discharge control, and based on a difference value between the target voltage 54 and the detection voltage of the first voltage detector 9, a current command value for holding the overhead wire voltage at a constant voltage
  • a second current command 55 is generated.
  • the conduction ratio calculation unit 45 uses the first current command 53 or the second current command 55 that is input via the control system switching unit 44, and allows the conduction ratio to the switching element included in the DC / DC converter 6.
  • a conduction rate command 56 which is a rate command value is calculated and input to the PWM circuit 46.
  • the PWM circuit 46 In the case of charge control for charging the power storage device 7 of the charging device 1, the PWM circuit 46 generates a PWM signal 57 such that the detection current of the second current detector 11 becomes a predetermined constant current, and DC / DC The converter 6 is controlled.
  • the PWM circuit 46 performs discharge control for charging the power storage device 23 mounted on the electric vehicle 20, the PWM signal is such that the detection voltage of the second voltage detector 12 becomes a predetermined constant voltage. 58 is generated to control the DC / DC converter 6.
  • the output voltage of the DC / DC converter 6 is set higher than the output voltage of the rectifier 5.
  • the rectifier 5 is reversely pressurized to stop the output.
  • the output voltage of the DC / DC converter 6 is set higher than the output voltage of the rectifier 5. Therefore, it is possible to determine whether or not the charging device 1 is in a discharge control enabled state based only on the level (magnitude) of the overhead wire voltage. According to this embodiment, the preparation status of the charging device 1 can be determined from the electric vehicle 20 without providing a special interface between the charging device 1 and the electric vehicle 20.
  • the pantograph 21 is raised to increase the level (magnitude) of the overhead line voltage.
  • the display device that displays the information on the overhead line voltage can be visually recognized from the stop position of the electric vehicle 20. If it is provided at a place, the electric vehicle 20 can determine the state of the charging device 1 without performing control to raise the pantograph 21.
  • the charging device of the first embodiment when charging the power storage device 23 mounted on the electric vehicle 20, it can be quickly charged without opening the AC circuit breaker 3.
  • the service life of the apparatus can be extended, and the reliability of the apparatus can be further increased.
  • the charging device of the first embodiment when the electric vehicle 20 is stopped in the station or the vehicle base, when the charging of the power storage device 7 is not completed, or the SOC of the power storage device 7 decreases. In such a case, the operation of the DC / DC converter 6 is stopped and the electric power storage device 23 mounted on the electric vehicle 20 can be charged by supplying electric power from the rectifier 5 to the electric vehicle 20 via the overhead wire 14. As a result, the operating rate of the charging device 1 can be improved, and an unnecessary waiting time for charging can be shortened.
  • Embodiment 2 when charging the power storage device 23 mounted on the electric vehicle 20, the output voltage of the DC / DC converter 6 is set higher than the output voltage of the rectifier 5, and the rectifier 5 is reverse-pressurized to rectifier 5. The embodiment for stopping the output of the above has been described.
  • the second embodiment when charging the power storage device 23 of the electric vehicle 20, the AC circuit breaker 3 is opened, and the output voltage of the DC / DC converter 6 is set lower than the output voltage of the rectifier 5.
  • FIG. 6 is a diagram illustrating an example of a charge / discharge pattern of the power storage device 7 according to the second embodiment. Note that the configuration of the charging device 1 is the same as or equivalent to that of the first embodiment, and the description thereof is omitted.
  • the meanings of the periods A to D are the same as those in FIG. That is, A to B are charge control periods, and B to D are discharge control possible periods. Of the discharge controllable periods B to D, B to C are discharge standby periods, and C to D are discharge control periods.
  • the overhead line voltage becomes the output voltage of the rectifier 5 (for example, a predetermined voltage higher than the rated voltage 1500 V).
  • the DC / DC converter 6 performs a step-down operation, and uses the DC power supplied from the rectifier 5 to charge the power storage device 7 with a constant current.
  • the charging control period A to B shifts to the discharge standby period B to C, that is, when the DC / DC converter 6 is in a discharge control enabled state
  • the AC circuit breaker 3 is opened and the overhead line voltage is DC / DC converter. 6 output voltage (for example, a predetermined voltage lower than the rated voltage 1500 V).
  • the discharge waiting period B to C shifts to the discharge control period C to D.
  • the DC / DC converter 6 performs high-current and short-time rapid discharge.
  • the DC / DC converter 6 performs constant voltage control so that the output voltage does not decrease.
  • the AC circuit breaker 3 may be controlled to be turned on when the electric vehicle 20 starts charging, that is, at the time of transition from the discharge standby period B to C to the discharge control period C to D. If such control is performed, the power storage device 23 mounted on the electric vehicle 20 can be charged using the outputs of both the rectifier 5 and the DC / DC converter 6, so that the charging time can be shortened.
  • the determination as to whether or not the charging device 1 is in the discharge control enabled state can be made by determining that the overhead wire voltage is not more than a predetermined value during the discharge standby periods B to C. There is no problem even if the control to input 3 is performed.
  • the charging device of the second embodiment when charging the power storage device 23 mounted on the electric vehicle 20, the output of the rectifier 5 is stopped by providing a period for opening the AC circuit breaker 3 immediately before.
  • the output voltage of the DC / DC converter 6 is set lower than the output voltage of the rectifier 5.
  • the DC circuit breaker 3 provided in Patent Document 1 can be omitted, and the device can be further reduced in size, weight, cost, and reliability.
  • the output voltage of the DC / DC converter 6 is set lower than the output voltage of the rectifier 5 when the preparation of the power storage device 7 mounted in the charging device 1 is completed. Therefore, it is possible to determine whether or not the charging device 1 is in a discharge control enabled state based only on the level (magnitude) of the overhead wire voltage. According to this embodiment, the preparation status of the charging device 1 can be determined from the electric vehicle 20 without providing a special interface between the charging device 1 and the electric vehicle 20.
  • the pantograph 21 is raised to increase the level (size) of the overhead line voltage.
  • the display device that displays the information on the overhead line voltage can be visually recognized from the stop position of the electric vehicle 20. If it is provided in a place, the state of the charging device 1 can be determined without performing control to raise the pantograph 21.
  • the charging device of Embodiment 2 when the electric vehicle 20 stops in the station or the vehicle base, the charging of the power storage device 7 is not completed, or the SOC of the power storage device 7 decreases. If the power storage device 23 mounted on the electric vehicle 20 can be charged by stopping the operation of the DC / DC converter 6 and supplying electric power from the rectifier 5 to the electric vehicle 20, In addition to improving the rate, it is possible to shorten the unnecessary waiting time for charging.
  • the configurations shown in the first and second embodiments are examples of the configuration of the present invention, and can be combined with other known techniques, and can be combined within a range not departing from the gist of the present invention. Needless to say, the configuration may be modified by omitting the unit.
  • the present invention is useful as a charging device and a power supply system that can further reduce the size, weight, cost, and reliability of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 整流器5を具備し、交流電力2を受電して直流電力に変換する受電部70と、直流電力を貯蔵する電力貯蔵デバイス7と、整流器5の出力を用いた電力貯蔵デバイス7に対する充電制御と、電力貯蔵デバイス7からの放電制御との双方向の電力フロー制御が可能なDC/DCコンバータ6と、受電部70およびDC/DCコンバータ6の動作を制御する制御部10と、を備えて充電装置1が構成され、整流器5の出力電圧と電力貯蔵デバイス7の放電時に整流器5の出力端に印加されるDC/DCコンバータ6の出力電圧とが異なる電圧に設定されている。

Description

充電装置
 本発明は、車両に搭載した電力貯蔵デバイスを充電する充電装置に関する。
 車両に搭載した電力貯蔵デバイスを充電する従来の充電装置は、その電力貯蔵デバイスを急速充電するために必要な電力を地上に設置した電力供給設備から供給する構成となっている。例えば、下記特許文献1に示される交通システムでは、地上側に、交流遮断器、整流器用変圧器、整流器、電気二重層キャパシタ、チョッパ回路、直流遮断器を備え、電力会社からの電力系統に接続された交流遮断器を投入し、整流器にて交流電力を直流電力に変換して電気二重層キャパシタ(地上側の電力貯蔵デバイス)を充電し、電気二重層キャパシタと電気車との間に設けた直流遮断器を投入することで、電気二重層キャパシタの電力を放電して電気車に搭載した電気二重層キャパシタ(車両側の電力貯蔵デバイス)を充電している。
特開2006-232102号公報
 上記のように、車両に搭載した電力貯蔵デバイスを充電する従来の充電装置は、交流遮断器と直流遮断器の投入・開放により充放電制御を切替える構成となっている。特に、車両側の電力貯蔵デバイスを充電する場合には、時間の制約から、大電流かつ短時間の急速な充電を行う必要があり、充電経路には大きな電流が流れるため、性能のよい高価な直流遮断器を選定する必要があり、装置のコストおよび規模が増加するという問題点があった。
 また、この充電装置では、地上側および車両側それぞれの電力貯蔵デバイスを充電する都度、少なくとも直流遮断器の投入・開放を制御しなければならないので、直流遮断器の寿命を延ばすことが難しく、装置全体の信頼性の低下に繋がり、さらに、メンテナンスコストが増加するという問題点があった。
 本発明は、上記に鑑みてなされたものであって、装置の更なる小型化、軽量化、低コスト化および高信頼性化を可能とする充電装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、本発明に係る充電装置は、出力段に整流器を具備し、交流電力を受電して直流電力に変換する受電部と、直流電力を貯蔵する電力貯蔵デバイスと、前記整流器の出力を用いた前記電力貯蔵デバイスに対する充電制御と、前記電力貯蔵デバイスからの放電制御との双方向の電力フロー制御が可能なDC/DCコンバータと、前記受電部および前記DC/DCコンバータの動作を制御する制御部と、を備え、前記整流器の出力電圧と、前記電力貯蔵デバイスの放電時に前記整流器の出力端に印加する前記DC/DCコンバータの出力電圧と、が異なる電圧に設定されていることを特徴とする。
 本発明に係る充電装置によれば、直流遮断器を省略することが可能であり、装置の更なる小型化、軽量化、低コスト化および高信頼性化を実現することができるという効果を奏する。
図1は、実施の形態1に係る充電装置を備えた電力供給システムの一構成例を示す図である。 図2は、実施の形態1における電気車の一構成例を示す図である。 図3は、実施の形態1における蓄電池の充放電パターンの一例を示す図である。 図4は、実施の形態1における制御部の一構成例を示す図である。 図5は、図4に示したDC/DCコンバータ制御部の一構成例を示す図である。 図6は、実施の形態2における蓄電池の充放電パターンの一例を示す図である。
 以下、添付図面を参照し、本発明の実施の形態に係る充電装置および電力供給システムについて説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
実施の形態1.
 図1は、実施の形態1に係る充電装置を備えた電力供給システムの一構成例を示す図であり、図2は、実施の形態1における電気車の一構成例を示す図である。
 図1において、充電装置1は、例えば、駅または車両基地に設置され、電力会社から受電した交流電力2を入力電源とし、駅または車両基地に停止している電気車20に搭載されている電力貯蔵デバイス23を充電する装置として構成される。
 充電装置1は、受電部70および充電制御装置80を備えている。受電部70は、交流遮断器3、変圧器4および整流器5を備えて構成され、交流電力2を受電して直流電力に変換する。充電制御装置80は、DC/DCコンバータ6、電力貯蔵デバイス7、第1の電流検出器8、第1の電圧検出器9、制御部10、第2の電流検出器11および第2の電圧検出器12を備えて構成される。
 交流遮断器3は、受電した交流電力2を投入・遮断する。変圧器4は、交流遮断器3を介して入力される交流電圧を所定の交流電圧に降圧する。整流器5は、交流電圧(交流電力)を所定の直流電圧(直流電力)に変換する。電力貯蔵デバイス7は、直流電力を貯蔵する。
 第1の電流検出器8は、整流器5の出力電流を検出し、第1の電圧検出器9は、整流器5の出力電圧を検出する。また、第2の電流検出器11は、DC/DCコンバータ6の出力電流を検出し、第2の電圧検出器12は、電力貯蔵デバイス7の出力電圧を検出する。
 DC/DCコンバータ6は、双方向の電力フロー制御が可能な双方向DC/DCコンバータであり、整流器5で変換された直流電力を用いて電力貯蔵デバイス7を充電する制御を行う。制御部10には、第1の電流検出器8が検出する整流器5の出力電流、第1の電圧検出器9が検出する整流器5の出力電圧、第2の電流検出器11が検出するDC/DCコンバータ6の出力電流、第2の電圧検出器12が検出する電力貯蔵デバイス7の出力電圧、外部からの運転指令、電力貯蔵デバイス7に関する情報(例えば、電力貯蔵デバイスの充電状態に関する情報(State Of Charge:以下「SOC」という)、電力貯蔵デバイスもしくは電力貯蔵デバイス周辺の温度情報)が入力される他、交流遮断器3、整流器5、DC/DCコンバータ6の状態情報などが入力される。制御部10は、これらの情報を用いて、整流器5、DC/DCコンバータ6および交流遮断器3を制御する。
 一方、車両システム90は、架線14、レール15および電気車20を備えて構成され、電気車20は、電力貯蔵デバイス23、DC/DCコンバータ22、インバータ24、モータ25、パンタグラフ21および車輪26を備えて構成される(図2)。充電装置1が供給する直流電力は、電気車20に供給されるが、電気車20では、パンタグラフ21を介して架線14、DC/DCコンバータ22、車輪26およびレール15により充電回路が形成される。DC/DCコンバータ22は、架線14およびパンタグラフ21を介して受電した直流電力を用いて電力貯蔵デバイス23を充電する。電力貯蔵デバイス23の充電が完了するとパンタグラフ21を下げ、インバータ24は、電力貯蔵デバイス23の直流電力を所望の交流電力に変換してモータ25を駆動し、車輪26を回転させ、電気車20が走行する。
 上述した充電装置1および車両システム90のうち、実施の形態1に係る電力供給システムは、充電装置1と、車両システム90の一部を成す架線14およびレール15とにより構成される。
 なお、図1および図2では、架線14を構成する導体部を一本の線で示しているが、架線14を複数の並行導体部で構成することが好ましい。架線14を複数の並行導体部で構成すれば、架線14の抵抗値を小さくすることができるので、充電時の損失を低減することができ、充電装置1の更なる省エネルギー化、高効率化が可能となる。
 次に、充電装置1の起動動作、充電制御および放電制御について、図1および図2の図面を参照しながら説明する。
 (起動動作)
 制御部10に外部からの運転指令が入力されると、制御部10は、交流遮断器3を投入する。交流遮断器3が投入されると、変圧器4に交流電力2が供給される。変圧器4は、入力された交流電圧を降圧して整流器5に交流電力を供給する。整流器5は、入力された交流電力を直流電力に変換して架線14に出力する。制御部10は、整流器5の出力電圧が所定の電圧に加圧されたことを第1の電圧検出器9の出力により認識し、電力貯蔵デバイス7の電圧が所定の範囲にあることを第2の電圧検出器12の出力により認識すると、DC/DCコンバータ6の制御を開始する。以上の動作により、充電装置1が起動する。
 (充電制御)
 充電装置1が起動すると、制御部10は、電力貯蔵デバイス7に対する充電制御を開始する。制御部10は、DC/DCコンバータ6が電力貯蔵デバイス7に供給する充電電流を制御して電力貯蔵デバイス7を充電する。なお、充電制御を行う際、放電時に比して小電流で時間をかけて充電するようにすれば、整流器5、変圧器4、交流遮断器3の機器容量を小さくすることができると共に、電力会社との契約電力量を小さくして低コスト化することもできる。制御部10は、電力貯蔵デバイス7の電圧情報または/およびSOC情報により、電力貯蔵デバイス7の充電状態を判定する。電力貯蔵デバイス7が満充電状態であると判定した場合、制御部10は、DC/DCコンバータ6を充電制御から放電制御の状態、より正確には放電制御可能状態に切り替える。なお、電力貯蔵デバイス7のSOC情報は、電力貯蔵デバイス7から貰わずに制御部10で推定してもよい。
 (放電制御)
 DC/DCコンバータ6が放電制御可能状態にあるとき、DC/DCコンバータ6は、電力貯蔵デバイス7の電圧を所定の電圧まで昇圧して架線14に印加する。ここで、このときのDC/DCコンバータ6の出力電圧は、整流器5の出力電圧より高い電圧である。したがって、整流器5の出力側には自身の出力電圧(交流電圧を直流電圧に変換した)より高い電圧が印加される。このため、整流器5を構成する一方向性導通素子(例えばダイオード)によって阻止され、整流器5からの出力電流は停止する。この放電制御可能状態は、電気車20が駅や車両基地に停止して充電を開始するまで継続する。次に、電気車20が駅や車両基地に停止し、電気車20が充電を開始すると、電力貯蔵デバイス7の電力がDC/Dコンバータ6から供給され、電気車20に搭載の電力貯蔵デバイス23が充電される。
 図3は、実施の形態1における電力貯蔵デバイス7の充放電パターンの一例を示す図であり、これまで説明してきた動作を経時的に説明するのに好適なタイムチャートである。
 図3において、A~Bは充電制御期間、B~Dは放電制御可能期間である。また、放電制御可能期間B~Dのうち、B~Cは放電待機期間、C~Dは放電制御期間である。充電制御期間A~Bでは、架線電圧(架線14の電圧)は整流器5の出力電圧(例えば定格電圧1500Vよりも低い所定電圧)となる。DC/DCコンバータ6は降圧動作となり、整流器5から供給された直流電力を用いて電力貯蔵デバイス7を充電する。このときの動作は、上述したように小電流かつ時間をかけた(放電時間に比べて充電時間の方が長い)充電制御(好適には定電流充電)が行われる。
 充電制御期間A~Bから放電待機期間B~Cに移行するとき、すなわち、DC/DCコンバータ6が放電制御可能状態になるとき、DC/DCコンバータ6は昇圧動作を行い、架線電圧はDC/DCコンバータ6の出力電圧(例えば、定格電圧1500Vよりも高い所定電圧)となる。
 電気車20が駅や車両基地に停止して充電を開始すると、放電待機期間B~Cから放電制御期間C~Dに移行する。DC/DCコンバータ6は、大電流かつ短時間の急速放電を行う。電力貯蔵デバイス7の放電が始まると、DC/DCコンバータ6の出力電圧が低下するので、DC/DCコンバータ6は、出力電圧が低下しないように所定の電圧に定電圧制御を行う。電気車20に搭載の電力貯蔵デバイス23への充電が完了した後、図示のように電力貯蔵デバイス7の出力電圧が低下して再度の充電が必要となる場合、DC/DCコンバータ6は昇圧動作を停止する。したがって、架線電圧は整流器5の出力電圧となる。
 なお、図3の例では、DC/DCコンバータ6は、電力貯蔵デバイス7の放電完了後に昇圧動作を停止し、その後、電力貯蔵デバイス7を充電する制御を行っているが、電力貯蔵デバイス7の出力電圧の低下が小さく、この状態で再度の放電制御が可能であれば、DC/DCコンバータ6の出力電圧を低下させることなく、次の電気車20が駅または車両基地に停止して充電を開始するまで、放電制御可能状態で待機するようにしてもよい。
 図4は、実施の形態1における制御部10の一構成例を示す図である。制御部10は、表示・操作画面31、受電制御部32およびDC/DCコンバータ制御部33を備えて構成される。
 表示・操作画面31は、ユーザ(充電装置1の操作者)と受電制御部32およびDC/DCコンバータ制御部33との間のインタフェースを提供する構成部であり、各機器(例えば交流遮断器3、整流器5、およびDC/DCコンバータ6)の状態表示や、操作入力(例えば、ユーザからの運転指令の伝達)を行う。
 受電制御部32は、交流遮断器3および整流器5の運転、停止などを制御する。また、受電制御部32は、交流遮断器3および整流器5の状態信号を受信して表示・操作画面31に伝達する。
 DC/DCコンバータ制御部33は、第1の電流検出器8および第2の電流検出器11の各検出電流ならびに第1の電圧検出器9および第2の電圧検出器12の各検出電圧に基づいて、DC/DCコンバータ6を制御する。また、DC/DCコンバータ制御部33は、DC/DCコンバータ6の状態信号を受信すると共に、第1の電流検出器8および第2の電流検出器11の各検出電流ならびに第1の電圧検出器9および第2の電圧検出器12の各検出電圧を監視して、それぞれの状態信号を表示・操作画面31に伝達する。
 図5は、図4に示したDC/DCコンバータ制御部33の一構成例を示す図である。DC/DCコンバータ制御部33は、シーケンス処理部41、制御目標演算部42、電圧制御部43、制御系切替部44、通流率演算部45およびPWM回路46を備えて構成される。
 シーケンス処理部41は、表示・操作画面31を通じて入力される運転指令および第1の電圧検出器9の検出電圧に基づいて動作可能信号51を生成する。動作可能信号51は、充電制御および放電制御を実行可能状態にする信号であり、制御目標演算部42に入力される。シーケンス処理部41は、第1の電圧検出器9の検出電圧をモニタし、整流器5に出力電圧が現れていることを検知した後に動作可能信号51を生成する。
 また、シーケンス処理部41は、第1の電流検出器8の検出電流に基づいて充放電切替信号52を生成する。充放電切替信号52は、制御系の切替信号であり、制御系切替部44に入力される。より詳細に説明すると、充電装置1の電力貯蔵デバイス7を充電する場合(すなわち充電制御の場合)、制御系切替部44はa側に切り替えられ、制御目標演算部42と通流率演算部45が接続される。一方、電気車20に搭載した電力貯蔵デバイス23を充電する場合(すなわち放電制御の場合)、制御系切替部44はb側に切り替えられ、電圧制御部43と通流率演算部45が接続される。電気車20が駅や車両基地に停止していない場合、整流器5の出力側には電流が流れない。したがって、第1の電流検出器8の検出電流をモニタすることで放電制御系(第1の制御系:切替器a側)から充電制御系(第2の制御系:切替器b側)への切替を行うタイミングおよびその逆の切替のタイミングを判断することができる。
 充電装置1の電力貯蔵デバイス7を充電する充電制御の場合、制御目標演算部42は、電力貯蔵デバイス7に対する充電電流の指令値である第1の電流指令53を生成する。一方、電気車20に搭載した電力貯蔵デバイス23を充電するための放電制御の場合、制御目標演算部42は、DC/DCコンバータ6の出力電圧(例えば、定格電圧1500Vより高い電圧)の目標値である目標電圧54を生成する。電圧制御部43は、放電制御のときに動作し、目標電圧54と第1の電圧検出器9の検出電圧との差分値に基づいて、架線電圧を定電圧に保持するための電流の指令値である第2の電流指令55を生成する。
 通流率演算部45は、制御系切替部44を介して入力される第1の電流指令53または第2の電流指令55を用いて、DC/DCコンバータ6に具備されるスイッチング素子に対する通流率の指令値である通流率指令56を演算してPWM回路46に入力する。PWM回路46は、充電装置1の電力貯蔵デバイス7を充電する充電制御の場合、第2の電流検出器11の検出電流が所定の定電流になるようなPWM信号57を生成してDC/DCコンバータ6を制御する。一方、PWM回路46は、電気車20に搭載した電力貯蔵デバイス23を充電するための放電制御を実行する場合、第2の電圧検出器12の検出電圧が所定の定電圧になるようなPWM信号58を生成してDC/DCコンバータ6を制御する。
 以上のように、実施の形態1の充電装置によれば、電気車20に搭載した電力貯蔵デバイス23を充電する場合、整流器5の出力電圧よりもDC/DCコンバータ6の出力電圧を高く設定し、整流器5を逆加圧して出力停止としたものである。この構成により、上記特許文献1には設けられていた直流遮断器を省略することができ、装置の更なる小型化、軽量化、低コスト化および高信頼性化が可能となる。
 また、実施の形態1の充電装置によれば、充電装置1に搭載した電力貯蔵デバイス7の準備が完了した段階で、DC/DCコンバータ6の出力電圧を整流器5の出力電圧よりも高く設定しているので、充電装置1側が放電制御可能状態にあるか否かを架線電圧のレベル(大きさ)のみで判定することが可能となる。この実施態様により、充電装置1と電気車20との間に特別なインタフェースを設けることなく、充電装置1の準備状況を電気車20から判定することができる。
 また、電気車20がパンタグラフ21を下げた状態で、電力貯蔵デバイス23の電力を駆動源として駅や車両基地内に進入して停止した後に、パンタグラフ21を上昇させて架線電圧のレベル(大きさ)を確認することにより、充電装置1側が放電制御可能状態にあるか否かの判定が電気車20側で可能となる。
 なお、本実施の形態の場合、架線電圧の情報は、制御部10の表示操作画面にて表示可能であるため、この架線電圧の情報を表示する表示装置を電気車20の停止位置から視認できる場所に設けることとすれば、パンタグラフ21を上昇させる制御を行うことなく、電気車20は、充電装置1の状態を判定することができる。
 また、実施の形態1の充電装置によれば、電気車20に搭載した電力貯蔵デバイス23を充電する場合、交流遮断器3を開放することなく、急速充電することができるので、交流遮断器3の寿命を長くすることができ、装置の更なる高信頼性化が可能となる。
 さらに、実施の形態1の充電装置によれば、駅や車両基地内に電気車20が停止したときに電力貯蔵デバイス7の充電が完了していない場合あるいは、電力貯蔵デバイス7のSOCが低下している場合には、DC/DCコンバータ6の動作を停止して整流器5から架線14を介して電気車20に電力を供給して電気車20に搭載した電力貯蔵デバイス23を充電することができるので、充電装置1の稼働率を向上させることができると共に、充電のための不要な待ち時間を短縮することができるという効果を奏する。
実施の形態2.
 実施の形態1では、電気車20に搭載した電力貯蔵デバイス23を充電する場合、整流器5の出力電圧よりもDC/DCコンバータ6の出力電圧を高く設定し、整流器5を逆加圧して整流器5の出力を停止する実施形態について説明した。一方、実施の形態2では、電気車20の電力貯蔵デバイス23を充電する場合、交流遮断器3を開放し、かつ、DC/DCコンバータ6の出力電圧を整流器5の出力電圧よりも低く設定する実施形態について、図6を参照して説明する。図6は、実施の形態2における電力貯蔵デバイス7の充放電パターンの一例を示す図である。なお、充電装置1の構成は、実施の形態1と同一または同等であり、その説明を省略する。
 図6において、A~Dの各期間の意味は図3と同様である。すなわち、A~Bは充電制御期間、B~Dは放電制御可能期間である。また、放電制御可能期間B~Dのうち、B~Cは放電待機期間、C~Dは放電制御期間である。充電制御期間A~Bでは、架線電圧は整流器5の出力電圧(例えば、定格電圧1500Vよりも高い所定電圧)となる。DC/DCコンバータ6は降圧動作となり、整流器5から供給された直流電力を用いて電力貯蔵デバイス7を定電流充電する。
 一方、充電制御期間A~Bから放電待機期間B~Cに移行するとき、すなわちDC/DCコンバータ6が放電制御可能状態になるとき、交流遮断器3は開放され、架線電圧はDC/DCコンバータ6の出力電圧(例えば、定格電圧1500Vよりも低い所定電圧)となる。
 電気車20が駅や車両基地に停止して充電を開始すると、放電待機期間B~Cから放電制御期間C~Dに移行する。DC/DCコンバータ6は、大電流かつ短時間の急速放電を行う。放電が始まると、DC/DCコンバータ6の出力電圧が低下するので、DC/DCコンバータ6は、出力電圧が低下しないように定電圧制御を行う。なお、電気車20が充電を開始するとき、すなわち放電待機期間B~Cから放電制御期間C~Dへの移行時に合わせて交流遮断器3を投入する制御を行ってもよい。このような制御を行えば、整流器5とDC/DCコンバータ6の双方の出力を用いて電気車20に搭載した電力貯蔵デバイス23を充電することができるので、充電時間の短縮化が可能となる。なお、充電装置1側が放電制御可能状態にあるか否かの判断は、放電待機期間B~Cにおいて架線電圧が所定値以下であることで判断できるので、放電制御期間C~Dにおいて交流遮断器3を投入する制御を行っても問題ない。
 以上のように、実施の形態2の充電装置によれば、電気車20に搭載した電力貯蔵デバイス23を充電する場合、直前に交流遮断器3を開放する期間を設けて整流器5の出力を停止し、かつ、整流器5の出力電圧よりもDC/DCコンバータ6の出力電圧を低く設定したものである。この実施態様により、上記特許文献1には設けられていた直流遮断器3を省略することができ、装置の更なる小型化、軽量化、低コスト化および高信頼性化が可能となる。
 また、実施の形態2の充電装置によれば、充電装置1に搭載した電力貯蔵デバイス7の準備が完了した段階で、DC/DCコンバータ6の出力電圧を整流器5の出力電圧よりも低く設定しているので、充電装置1側が放電制御可能状態にあるか否かを架線電圧のレベル(大きさ)のみで判定することが可能となる。この実施態様により、充電装置1と電気車20との間に特別なインタフェースを設けることなく、充電装置1の準備状況を電気車20から判定することができる。
 また、電気車20がパンタグラフ21を下げ、電力貯蔵デバイス23の電力を駆動源として駅や車両基地内に進入して停止した場合には、パンタグラフ21を上昇させて架線電圧のレベル(大きさ)を確認することにより、充電装置1側が放電制御可能状態にあるか否かの判定が電気車20側で可能となる。
 なお、本実施の形態の場合、架線電圧の情報は、制御部10の表示操作画面にて表示可能であるため、この架線電圧の情報を表示する表示装置を電気車20の停止位置から視認できる場所に設けることとすれば、パンタグラフ21を上昇させる制御を行うことなく、充電装置1の状態を判定することができる。
 また、実施の形態2の充電装置によれば、駅や車両基地内に電気車20が停止したときに電力貯蔵デバイス7の充電が完了していない場合あるいは、電力貯蔵デバイス7のSOCが低下している場合には、DC/DCコンバータ6の動作を停止して整流器5から電気車20に電力を供給して電気車20に搭載した電力貯蔵デバイス23を充電することができるので、装置の稼働率を向上させることができると共に、充電のための不要な待ち時間を短縮することができるという効果を奏する。
 なお、以上の実施の形態1,2に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。
 また、上記の説明では、本発明の用途として鉄道システムの場合を例に説明したが、その他の自動車の場合や自動二輪、自転車、船舶、航空機等の電力貯蔵デバイスを搭載した移動体と移動体が特定の場所で停止するシステムの分野にも利用できることは言うまでもない。
 以上のように、本発明は、装置の更なる小型化、軽量化、低コスト化および高信頼性化を可能とする充電装置および電力供給システムとして有用である。
1 充電装置
2 交流電力
3 交流遮断器
4 変圧器
5 整流器
6,22 DC/DCコンバータ
7,23 電力貯蔵デバイス
8 第1の電流検出器
9 第1の電圧検出器
10 制御部
11 第2の電流検出器
12 第2の電圧検出器
14 架線
15 レール
20 電気車
21 パンタグラフ
24 インバータ
25 モータ
26 車輪
31 表示・操作画面
32 受電制御部
33 DC/DCコンバータ制御部
41 シーケンス処理部
42 制御目標演算部
43 電圧制御部
44 制御系切替部
45 通流率演算部
46 PWM回路
51 動作可能信号
52 充放電切替信号
53 第1の電流指令
54 目標電圧
55 第2の電流指令
56 通流率指令
57,58 PWM信号
70 受電部
80 充電制御装置
90 車両システム

Claims (9)

  1.  出力段に整流器を具備し、交流電力を受電して直流電力に変換する受電部と、
     直流電力を貯蔵する電力貯蔵デバイスと、
     前記整流器の出力を用いた前記電力貯蔵デバイスに対する充電制御と、前記電力貯蔵デバイスからの放電制御との双方向の電力フロー制御が可能なDC/DCコンバータと、
     前記受電部および前記DC/DCコンバータの動作を制御する制御部と、
     を備え、
     前記整流器の出力電圧と、前記電力貯蔵デバイスの放電時に前記整流器の出力端に印加する前記DC/DCコンバータの出力電圧とが異なる電圧に設定されていることを特徴とする充電装置。
  2.  前記整流器の出力電圧は、前記電力貯蔵デバイスの放電時に前記整流器の出力端に印加する前記DC/DCコンバータの出力電圧よりも低いことを特徴とする請求項1に記載の充電装置。
  3.  前記制御部には、前記整流器の出力を用いて前記電力貯蔵デバイスを定電流充電する充電制御系と、前記電力貯蔵デバイスの貯蔵電力を放電して外部に設けられる他の電力貯蔵デバイスを定電圧充電する放電制御系とが構成されることを特徴とする請求項2に記載の充電装置。
  4.  前記制御部には、
     前記電力貯蔵デバイスに対する充電電流の指令値である第1の電流指令もしくは前記他の電力貯蔵デバイスを充電するときの電圧の目標値である目標電圧を生成する制御目標演算部と、
     前記目標電圧と前記整流器の出力端に印加される印加電圧との差分値に基づいて当該印加電圧を定電圧に保持するための電流の指令値である第2の電流指令を生成する電圧制御部と、
     前記DC/DCコンバータに具備されるスイッチング素子の通流率を演算する通流率演算部と、
     前記制御部の制御系を前記充電制御系または前記放電制御系の何れかに切り替える制御系切替部と、
     が少なくとも設けられ、
     前記制御系が前記充電制御系に切り替えられるとき、前記制御目標演算部の出力が前記通流率演算部の入力とされ、
     前記制御系が前記放電制御系に切り替えられるとき、前記制御目標演算部の出力が前記電圧制御部の入力とされ、かつ、前記電圧制御部の出力が前記通流率演算部の入力とされる
     ことを特徴とする請求項3に記載の充電装置。
  5.  前記電力貯蔵デバイスの充電制御時に出力される前記整流器の出力電圧は、前記電力貯蔵デバイスの放電制御時に前記整流器の出力端に印加する前記DC/DCコンバータの出力電圧よりも高いことを特徴とする請求項1に記載の充電装置。
  6.  前記受電部には交流遮断器が設けられ、
     前記制御部は、前記電力貯蔵デバイスの放電待機時および放電制御時に前記交流遮断器を開放して受電電力を遮断することを特徴とする請求項5に記載の充電装置。
  7.  前記受電部には交流遮断器が設けられ、
     前記制御部は、前記電力貯蔵デバイスの放電待機時に前記交流遮断器を開放して受電電力を遮断し、前記電力貯蔵デバイスの放電制御時に前記交流遮断器を投入して受電電力を供給することを特徴とする請求項5に記載の充電装置。
  8.  前記制御部には、前記整流器の出力を用いて前記電力貯蔵デバイスを定電流充電する充電制御系と、前記電力貯蔵デバイスの貯蔵電力を放電して外部に設けられる他の電力貯蔵デバイスを定電圧充電する放電制御系とが構成されることを特徴とする請求項6または7に記載の充電装置。
  9.  前記制御部には、
     前記電力貯蔵デバイスに対する充電電流の指令値である第1の電流指令もしくは前記他の電力貯蔵デバイスを充電するときの電圧の目標値である目標電圧を生成する制御目標演算部と、
     前記目標電圧と前記整流器の出力端に印加される印加電圧との差分値に基づいて当該印加電圧を定電圧に保持するための電流の指令値である第2の電流指令を生成する電圧制御部と、
     前記DC/DCコンバータに具備されるスイッチング素子の通流率を演算する通流率演算部と、
     前記制御部の制御系を前記充電制御系または前記放電制御系の何れかに切り替える制御系切替部と、
     が少なくとも設けられ、
     前記制御系が前記充電制御系に切り替えられるとき、前記制御目標演算部の出力が前記通流率演算部の入力とされ、
     前記制御系が前記放電制御系に切り替えられるとき、前記制御目標演算部の出力が前記電圧制御部の入力とされ、かつ、前記電圧制御部の出力が前記通流率演算部の入力とされる
     ことを特徴とする請求項8に記載の充電装置。
PCT/JP2011/059983 2011-04-22 2011-04-22 充電装置 WO2012144079A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012551430A JP5393901B2 (ja) 2011-04-22 2011-04-22 充電装置
EP11863750.3A EP2700534B1 (en) 2011-04-22 2011-04-22 Charging apparatus
CN201180070278.0A CN103492222B (zh) 2011-04-22 2011-04-22 充电装置
US14/113,343 US20140055080A1 (en) 2011-04-22 2011-04-22 Charging apparatus
PCT/JP2011/059983 WO2012144079A1 (ja) 2011-04-22 2011-04-22 充電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/059983 WO2012144079A1 (ja) 2011-04-22 2011-04-22 充電装置

Publications (1)

Publication Number Publication Date
WO2012144079A1 true WO2012144079A1 (ja) 2012-10-26

Family

ID=47041225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059983 WO2012144079A1 (ja) 2011-04-22 2011-04-22 充電装置

Country Status (5)

Country Link
US (1) US20140055080A1 (ja)
EP (1) EP2700534B1 (ja)
JP (1) JP5393901B2 (ja)
CN (1) CN103492222B (ja)
WO (1) WO2012144079A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160268803A1 (en) * 2013-11-28 2016-09-15 Mitsubishi Electric Corporation Station-building power supply device
KR20190124224A (ko) * 2017-02-27 2019-11-04 가부시키가이샤 테크노 코먼즈 생체 신호 계측 장치

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5868836B2 (ja) * 2012-12-19 2016-02-24 三菱重工業株式会社 充放電制御装置、充放電制御方法、プログラム及び車両交通システム
JP6407775B2 (ja) * 2015-03-13 2018-10-17 株式会社東芝 蓄電装置
KR20170120000A (ko) * 2016-04-20 2017-10-30 엘에스산전 주식회사 전기자동차 충전 시스템 제어장치
CN106025408B (zh) * 2016-06-22 2019-07-19 高鸿新能源科技有限公司 一种公交车充电控制方法及***
CN108092371B (zh) * 2016-11-15 2020-04-03 华为技术有限公司 充放电装置
EP3593446A4 (en) * 2017-03-06 2020-11-18 Hubbell Incorporated SYSTEM AND PROCEDURE FOR POWER DISTRIBUTION
US10686385B2 (en) * 2017-03-23 2020-06-16 HELLA GmbH & Co. KGaA Apparatus to realize fast battery charging and motor driving for electric vehicles using one AC/DC converter
CN108933456B (zh) * 2017-05-23 2020-12-08 台达电子工业股份有限公司 电动车充电电路及其控制方法
TWI692173B (zh) * 2018-04-09 2020-04-21 茂達電子股份有限公司 非窄電壓直流充電器及其控制方法
JP7122875B2 (ja) * 2018-06-08 2022-08-22 株式会社日立製作所 充電装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003220859A (ja) * 2002-01-30 2003-08-05 Hitachi Ltd 直流機電用電力蓄積装置及び鉄道機電システム
JP2006232102A (ja) 2005-02-25 2006-09-07 Meidensha Corp 交通システム
JP2009067205A (ja) * 2007-09-12 2009-04-02 Toshiba Corp 蓄電要素を用いた変電所及び電気鉄道き電システム

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389608A (en) * 1981-09-30 1983-06-21 Dahl Ernest A Transformerless battery controlled battery charger
GB9107507D0 (en) * 1991-04-09 1991-05-22 Yang Tai Her A battery charging system
WO1993017890A1 (en) * 1992-03-06 1993-09-16 Hino Jidosha Kogyo Kabushiki Kaisha Braking and auxiliary power apparatus of internal combustion engine
AU731873B2 (en) * 1997-01-31 2001-04-05 Silverline Power Conversion, Llc Uninterruptible power supply
JPH10271611A (ja) * 1997-03-25 1998-10-09 Nissan Diesel Motor Co Ltd 電気自動車の電源システム
US6487096B1 (en) * 1997-09-08 2002-11-26 Capstone Turbine Corporation Power controller
JP2000197347A (ja) * 1998-12-25 2000-07-14 Hitachi Ltd 電源装置
US6124797A (en) * 1999-02-06 2000-09-26 Mercado; Luis Bernardo Backup battery monitoring device and method
JP2001268814A (ja) * 2000-03-17 2001-09-28 Internatl Business Mach Corp <Ibm> 電源供給装置、電気機器および電力供給方法
JP2002369407A (ja) * 2001-06-06 2002-12-20 Hitachi Ltd ピークカット機能付きバックアップ電源
JP3908077B2 (ja) * 2002-04-16 2007-04-25 株式会社日立製作所 直流バックアップ電源装置とその診断方法
US6914418B2 (en) * 2003-04-21 2005-07-05 Phoenixtec Power Co., Ltd. Multi-mode renewable power converter system
JP4552385B2 (ja) * 2003-04-25 2010-09-29 富士電機システムズ株式会社 無停電電源装置および無停電電源装置のバッテリのオンライン劣化判定方法
US6949843B2 (en) * 2003-07-11 2005-09-27 Morningstar, Inc. Grid-connected power systems having back-up power sources and methods of providing back-up power in grid-connected power systems
JP2005083195A (ja) * 2003-09-04 2005-03-31 Honda Motor Co Ltd 電源装置
JP2005176461A (ja) * 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd 直流無停電電源装置
US7923965B2 (en) * 2005-10-10 2011-04-12 General Electric Company Methods for coupling an energy storage system to a variable energy supply system
FR2892069B1 (fr) * 2005-10-17 2014-07-18 Pvi Poste de recharge et vehicule electrique associe
JP4572840B2 (ja) * 2006-02-10 2010-11-04 株式会社明電舎 直流電力貯蔵装置
GB0615562D0 (en) * 2006-08-04 2006-09-13 Ceres Power Ltd Power supply control for power
JP5124114B2 (ja) * 2006-08-28 2013-01-23 シャープ株式会社 蓄電機能を有するパワーコンディショナ
CN101150259B (zh) * 2006-09-18 2010-05-12 比亚迪股份有限公司 电动车充电***
CN200959529Y (zh) * 2006-09-29 2007-10-10 林志超 具有自动断电功能的充电器
US8253373B2 (en) * 2006-12-20 2012-08-28 Techtium Ltd Battery powered charger
US8159191B2 (en) * 2007-04-17 2012-04-17 Tsun-Yu Chang Advanced rechargeable battery system
WO2009073841A1 (en) * 2007-12-05 2009-06-11 Sunpower, Inc. Hybrid electrical power source
CN101946351B (zh) * 2008-02-19 2014-04-02 博隆能源股份有限公司 用于给电动交通工具充电的燃料电池***
US7977921B2 (en) * 2008-08-15 2011-07-12 National Semiconductor Corporation AC-to-DC voltage conversion and charging circuitry
CN201313514Y (zh) * 2008-11-26 2009-09-23 扬州飞驰动力科技有限公司 一种纯电动公交车的车身电源***
US8486570B2 (en) * 2008-12-02 2013-07-16 General Electric Company Apparatus for high efficiency operation of fuel cell systems and method of manufacturing same
US8164932B2 (en) * 2009-02-12 2012-04-24 Apple Inc. Power converter with automatic mode switching
US8125182B2 (en) * 2009-03-16 2012-02-28 Ford Global Technologies, Llc Automotive vehicle and method for charging/discharging a power storage unit therein
EP2428387A4 (en) * 2009-04-23 2017-03-22 Toyota Jidosha Kabushiki Kaisha Power supply system of electric vehicle and control method thereof
CN101604853B (zh) * 2009-05-22 2012-02-01 中国船舶重工集团公司第七一二研究所 蓄电池充放电装置
KR101169343B1 (ko) * 2009-09-11 2012-07-30 한국철도기술연구원 직류 전동차 탑재용 회생전력 저장 시스템
EP2325970A3 (en) * 2009-11-19 2015-01-21 Samsung SDI Co., Ltd. Energy management system and grid-connected energy storage system including the energy management system
KR101084214B1 (ko) * 2009-12-03 2011-11-18 삼성에스디아이 주식회사 계통 연계형 전력 저장 시스템 및 전력 저장 시스템 제어 방법
KR101093956B1 (ko) * 2009-12-04 2011-12-15 삼성에스디아이 주식회사 에너지 저장 시스템
KR101156535B1 (ko) * 2010-01-18 2012-06-21 삼성에스디아이 주식회사 전력 저장 장치와 그 동작 방법 및 전력 저장 시스템
JP2011205747A (ja) * 2010-03-24 2011-10-13 Sanyo Electric Co Ltd バッテリ充電装置
KR101113508B1 (ko) * 2010-05-06 2012-02-29 성균관대학교산학협력단 태양광 pcs 일체형 양방향 배터리 충방전 시스템 및 방법
WO2012081103A1 (ja) * 2010-12-16 2012-06-21 トヨタ自動車株式会社 電動車両の電源装置およびその制御方法
WO2013018167A1 (ja) * 2011-07-29 2013-02-07 三菱電機株式会社 電気車の推進制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003220859A (ja) * 2002-01-30 2003-08-05 Hitachi Ltd 直流機電用電力蓄積装置及び鉄道機電システム
JP2006232102A (ja) 2005-02-25 2006-09-07 Meidensha Corp 交通システム
JP2009067205A (ja) * 2007-09-12 2009-04-02 Toshiba Corp 蓄電要素を用いた変電所及び電気鉄道き電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2700534A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160268803A1 (en) * 2013-11-28 2016-09-15 Mitsubishi Electric Corporation Station-building power supply device
US10020653B2 (en) * 2013-11-28 2018-07-10 Mitsubishi Electric Corporation Station-building power supply device
KR20190124224A (ko) * 2017-02-27 2019-11-04 가부시키가이샤 테크노 코먼즈 생체 신호 계측 장치
KR102483256B1 (ko) * 2017-02-27 2022-12-30 가부시키가이샤 테크노 코먼즈 생체 신호 계측 장치

Also Published As

Publication number Publication date
US20140055080A1 (en) 2014-02-27
JP5393901B2 (ja) 2014-01-22
CN103492222A (zh) 2014-01-01
EP2700534A4 (en) 2014-11-19
EP2700534A1 (en) 2014-02-26
JPWO2012144079A1 (ja) 2014-07-28
EP2700534B1 (en) 2018-04-18
CN103492222B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5393901B2 (ja) 充電装置
JP5648211B2 (ja) プラグインハイブリッド自動車の充電装置
JP4989793B2 (ja) 電気車の推進制御装置
US9154000B2 (en) Uninterruptible power supply apparatus including a control circuit that executes a first mode when supply of a first AC electric power from a commercial AC power supply is resumed at a time of discharge end
US9236760B2 (en) Charging device for electromotive vehicle
US8487558B2 (en) Electric vehicle
US20160016483A1 (en) Control apparatus, power supply control apparatus, charge control method, charge control apparatus, and power supply apparatus for vehicles
JP6330822B2 (ja) 燃料電池システム及びその制御方法
US9083267B2 (en) Electric motor vehicle
CN110062989B (zh) 电源***
WO2013129231A1 (ja) 電源装置
US20160301233A1 (en) Power supply device and method for controlling power supply device
US9954454B2 (en) DC/DC converter and electrical storage system
JP4715928B2 (ja) 昇降圧コンバータ
KR20160038348A (ko) 저전압 dc-dc 컨버터 일체형 충전 장치
JP2013074733A (ja) 充電制御装置
WO2017058631A1 (en) Converter architecture
JP5288178B2 (ja) モータ駆動システム
JP2014110666A (ja) 放電制御システム及び放電装置
US11456669B2 (en) Voltage supply to a load and battery
JP2014133650A (ja) エレベータ制御装置
JP2017123703A (ja) Dcdcコンバータ
JP5772118B2 (ja) 昇降装置の駆動システム及びそれを備えた無動力昇降装置
JP2000152408A (ja) 電気自動車
JP6690573B2 (ja) 電気自動車

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012551430

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14113343

Country of ref document: US