JP4552385B2 - 無停電電源装置および無停電電源装置のバッテリのオンライン劣化判定方法 - Google Patents

無停電電源装置および無停電電源装置のバッテリのオンライン劣化判定方法 Download PDF

Info

Publication number
JP4552385B2
JP4552385B2 JP2003122348A JP2003122348A JP4552385B2 JP 4552385 B2 JP4552385 B2 JP 4552385B2 JP 2003122348 A JP2003122348 A JP 2003122348A JP 2003122348 A JP2003122348 A JP 2003122348A JP 4552385 B2 JP4552385 B2 JP 4552385B2
Authority
JP
Japan
Prior art keywords
voltage
battery
converter
transistor
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003122348A
Other languages
English (en)
Other versions
JP2004328928A (ja
Inventor
尚志 居林
信幸 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2003122348A priority Critical patent/JP4552385B2/ja
Publication of JP2004328928A publication Critical patent/JP2004328928A/ja
Application granted granted Critical
Publication of JP4552385B2 publication Critical patent/JP4552385B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Rectifiers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、商用交流電源やジェネレータなどの交流電源から、コンピュータなどの負荷機器までの電力供給経路に設けられる無停電電源装置に関する。また、無停電電源装置のバッテリのオンライン劣化判定方法に関する。
【0002】
【従来の技術】
無停電電源装置は、交流電源からの交流電力の供給が停止した場合などにおいて、その交流電力の替わりにバッテリの蓄電電力に基づく交流電力を負荷機器へ供給するものである。
【0003】
特許文献1には、無停電電源装置が開示されている。この無停電電源装置は、整流器と、整流器と交流電源との間に接続される開閉器と、インバータと、蓄電池と、整流器とインバータとの間の配線に蓄電池を接続する開閉器と、を有する。そして、バッテリの劣化判定の際には、整流器出力電圧を、蓄電池放電電圧に追従して変化させる制御を行う。これにより、放電試験開始時に、蓄電池から交流電源側に電力が回生しないようにすることができる。
【0004】
特許文献2には、無停電電源装置が開示されている。この無停電電源装置は、AC/DC変換部と、DC/AC変換部と、AC/DC変換部とDC/AC変換部との間の配線に接続されるバッテリと、を有する。そして、バッテリの劣化判定の際には、AC/DC変換部を電流制御型にして、AC/DC変換部から供給する電流が、負荷に供給する電流の10%となるように制御する。これにより、バッテリから出力される電流の一部が、商用電源側へ逆流してしまうことを防止することができる。
【0005】
【特許文献1】
特開2000−201485号公報(図面、発明の実施の形態)
【特許文献2】
特開2001−61237号公報(図面、発明の実施の形態)
【0006】
【発明が解決しようとする課題】
これら特許文献1および特許文献2に開示される従来の無停電電源装置では、バッテリの劣化を判定する際に、整流器やAC/DC変換部に対して、通常運転時とは異なる特殊な制御を実施する。これにより、バッテリの劣化を判定する際に、バッテリが劣化している場合には、整流器やAC/DC変換部からインバータやDC/AC変換部へ直流電圧を供給することができる。インバータやDC/AC変換部は、この直流電圧を交流電圧へ変換して、交流電力を出力し続けることができる。
【0007】
しかしながら、インバータやDC/AC変換部に入力される直流電圧の急激な降下に対応するために、これら従来の無停電電源装置では、整流器やAC/DC変換部の出力電圧を、バッテリの出力電圧よりも少しだけ低い電圧に維持されるように制御したり、あるいは、整流器やAC/DC変換部の電流分担率が所定の割合に維持されるように制御したりしている。その結果、これら従来の無停電電源装置では、バッテリの劣化判定が完了するまで、整流器やAC/DC変換部を、リアルタイムに且つ複雑に制御し続けなければならない。
【0008】
その結果、これら従来の無停電電源装置では、バッテリの劣化判定を行うために、整流器やAC/DC変換部に対して、通常運転時とは異なる特殊な制御を実施する制御手段を設ける必要がある。しかも、この制御手段は、バッテリの劣化判定が完了するまで、リアルタイムに且つ複雑に制御し続けなければならない。
【0009】
本発明は、上記の課題を解決するためになされたものであり、交直変換器に対して複雑な制御を行うことなく、直交変換器から交流電圧を出力するオンライン状態を維持し、しかも、その状態でバッテリの劣化を判定することができる無停電電源装置および無停電電源装置のバッテリのオンライン劣化判定方法を得ることを目的とする。
【0010】
【課題を解決するための手段】
本発明に係る無停電電源装置は、交流電圧を直流電圧へ変換してレール配線へ供給する交直変換器と、レール配線に接続される第1のコンデンサであって、交直変換器により変換された電圧を蓄積する第1のコンデンサと、バッテリの蓄電電圧を直流電圧へ変換してレール配線へ供給する直直変換器と、レール配線の直流電圧から他の交流電圧を生成する直交変換器と、交直変換器から、交流電圧を整流した整流電圧を出力させるとともに、この整流電圧よりも高い直流電圧を出力するように直直変換器を制御し、この状態でのレール配線の電圧に基づいてバッテリの劣化を判定する制御手段とを有し、交直変換器は、交流電圧が入力される入力端子に接続される入力コイルと、入力コイルからレール配線までの経路に設けられ、交流電圧を直流電圧へ変換する交直用ダイオードと、スイッチング動作により入力コイルに電圧を発生させる交直用トランジスタとを有し、直直変換器は、バッテリに接続されるバッテリコイルと、スイッチング動作によりバッテリコイルに電圧を発生させる直直用トランジスタと、レール配線に接続される第2のコンデンサであって、バッテリコイルに発生した電圧を蓄電する第2のコンデンサとを有し、制御手段は、
交直用トランジスタのスイッチング動作を停止させるとともに、バッテリが所定の電圧以上の蓄電電圧を有している場合に直直変換器からの直流電圧が、交直用トランジスタのスイッチング動作が停止した後の整流電圧よりも高い電圧となる単位時間あたりのスイッチング回数で直直変換器の直直用トランジスタを動作させ、その状態でのレール配線の電圧に基づいてバッテリの劣化を判定し、交直用トランジスタをスイッチング動作させる場合には、バッテリの劣化判定の際に直直変換器から出力させようとする電圧よりも高い直流電圧が出力される単位時間あたりのスイッチング回数で交直変換器の交直用トランジスタを動作させることを特徴とする。
【0011】
この構成を採用すると、バッテリ劣化判定を行っている際に、直交変換器は、少なくとも交直変換器から供給される整流電圧に基づいて、他の交流電圧を生成することができる。しかも、制御手段は、たとえば、レール配線の電圧が整流電圧であるか否かを確認することで、バッテリが寿命となっているか否かを判定することができる。
【0012】
その結果、この方法を採用すれば、交直変換器を制御することなく、直交変換器から他の交流電圧を出力するオンライン状態を維持し、しかも、その状態でバッテリの劣化を判定することができる。
【0014】
この無停電電源装置では、交直用トランジスタのスイッチング動作を停止した状態におけるコンデンサの電圧は、交直変換器に入力される交流電力を交直用ダイオードで整流した整流電圧と、直直変換器が直直用ダイオードあるいは直直用トランジスタを介して出力する直流電圧と、の中のいずれか高い方の電圧となる。そして、バッテリに寿命が来ている場合には、直直変換器が出力する直流電圧は、交直変換器が入力電圧に基づいて出力する整流電圧よりも低くなる。そのため、直流電圧検出器が検出する電圧は、整流電圧となる。したがって、たとえば、制御手段は、直流電圧検出器の検出電圧が整流電圧であるか否かを確認することで、バッテリが寿命となっているか否かを判定することができる。
【0015】
しかも、交直用トランジスタのスイッチング動作を停止したとしても、レール配線は交直用ダイオードを介して入力端子に接続されている。そのため、レール配線の電圧は、低くても整流電圧となる。そのため、直交変換器は、この整流電圧を他の交流電圧へ変換し、この他の交流電圧を出力することができる。
【0016】
その結果、この無停電電源装置では、交直変換器を制御することなく、直交変換器から他の交流電圧を出力するオンライン状態を維持し、しかも、その状態でバッテリの劣化を判定することができる。
【0017】
本発明に係る他の無停電電源装置は、さらに、制御手段が、バッテリの劣化判定の際には、交直用トランジスタのスイッチング動作を停止させる前に直流電圧検出器が検出する電圧と、停止させた後に直流電圧検出器が検出する電圧との電圧差が所定の電圧差以上になったら、あるいは、停止させた後の直流電圧検出器が検出する電圧が所定の電圧以下になったら、バッテリが劣化していると判定するものである。
【0018】
この無停電電源装置では、交直用トランジスタを停止した前後の直流電圧検出器の検出電圧同士の電圧差、あるいは、交直用トランジスタを停止した後の直流電圧検出器の検出電圧に基づいて、バッテリが劣化していると判定する。したがって、バッテリが寿命となって直直変換器から整流電圧よりも高い電圧が出力されないような場合には、直流電圧検出器の検出電圧のみに基づいて、バッテリが劣化していると簡単に判定することができる。
【0019】
本発明に係る他の無停電電源装置は、さらに、制御手段が、交直用トランジスタを停止した前後の検出電圧の電圧差あるいは交直用トランジスタを停止した後の電圧に基づいてバッテリが劣化していると判定しなかった場合には、さらに、交直用トランジスタのスイッチング動作を停止したまま、直流電圧検出器が検出する電圧の変化に基づいて、バッテリの劣化を判定するものである。
【0020】
この無停電電源装置では、さらに、直流電圧検出器が検出する電圧の変化に基づいて、バッテリの劣化を判定する。したがって、たとえば、直直変換器から整流電圧よりも高い電圧が出力されないほどには劣化していないけれども、交換が必要なほどに劣化しているバッテリの劣化を判定することができる。
【0021】
本発明に係る他の無停電電源装置は、さらに、入力端子に入力される入力電圧を検出する入力電圧検出器を有し、制御手段が、入力電圧検出器の検出電圧に基づいて入力電力が正常であるか否かを判定し、入力電力が正常であると判定した場合には、交直用トランジスタを停止してバッテリの劣化判定を行い、入力電力が正常であると判定しない場合には、交直用トランジスタを停止せずバッテリの劣化判定を行わないものである。
【0022】
この構成を採用すれば、入力電圧が所定の品質よりも低下しているなどの異常な状態になっているときに、バッテリの劣化判定のために交直用トランジスタを停止してしまうことを防止することができる。つまり、バッテリの劣化判定のために交直用トランジスタを停止したときに入力電圧の異常のために、レール配線の電圧が異常に低くあるいは無くなってしまうことをほぼ防止することができる。その結果、直交変換器から他の交流電圧を出力するオンライン状態を、ほぼ確実に維持することができる。
【0023】
本発明に係る他の無停電電源装置は、さらに、制御手段が、バッテリの劣化判定の際には、交直用トランジスタのスイッチング動作を停止させる前に直流電圧検出器が検出する電圧と、停止させた後に直流電圧検出器が検出する電圧との電圧差が所定の電圧差以上になったら、あるいは、停止させた後の直流電圧検出器が検出する電圧が所定の電圧以下になったら、直交変換器に、直流電圧の低下を補償する処理を行わせるものである。
【0024】
この無停電電源装置では、交直用トランジスタを停止した前後の直流電圧検出器の検出電圧同士の電圧差が所定の電圧差以上である場合には、直交変換器は、直流電圧の低下を補償する処理を行う。あるいは、交直用トランジスタを停止した後の直流電圧検出器の検出電圧が所定の電圧以下である場合には、直交変換器は、直流電圧の低下を補償する処理を行う。したがって、バッテリが劣化しているために、交直用トランジスタを停止することでレール配線の電圧が大きく変動してしまう場合であっても、直交変換器は、この変動に応じて直流電圧の低下を補償する処理を行う。その結果、直交変換器から出力される他の交流電圧は、安定した良好な品質のものとなる。
【0025】
また、このようにレール配線の電圧が大きく変動するときに、直交変換器に、直流電圧の低下を補償する処理を行わせる。通常運転時には、このレール配線の電圧は、レクチュファイヤによって、こののような大きなレール配線の電圧の変動が生じないように制御されている。したがって、通常運転時における直交変換器は、その通常運転時の状況下で生じ得るレール配線の電圧変動に対して対応することができるように、最適に設定することができる。その結果、通常運転時での直交変換器の動作特性は、レール配線の電圧に含まれるノイズ成分などに対して過剰に反応してしまわないように設定することができ、通常の状況下での出力電圧の品質を向上することができる。
【0026】
その結果、直交変換器は、バッテリの劣化判定をしている時も、通常の時も、安定した高品質の他の交流電圧を出力することができる。
【0027】
本発明に係る、交流電圧を直流電圧へ変換してレール配線へ供給する交直変換器と、レール配線に接続される第1のコンデンサであって、交直変換器により変換された電圧を蓄積する第1のコンデンサと、バッテリの蓄電電圧を直流電圧へ変換してレール配線へ供給する直直変換器と、レール配線の直流電圧から他の交流電圧を生成する直交変換器とを有する無停電電源装置のバッテリのオンライン劣化判定方法において、交直変換器から、交流電圧を整流した整流電圧を出力させるとともに、この整流電圧よりも高い直流電圧を出力するように直直変換器を制御し、この状態でのレール配線の電圧に基づいてバッテリの劣化を判定する制御ステップとを含み、交直変換器は、交流電圧が入力される入力端子に接続される入力コイルと、入力コイルからレール配線までの経路に設けられ、交流電圧を直流電圧へ変換する交直用ダイオードと、スイッチング動作により入力コイルに電圧を発生させる交直用トランジスタとを有し、直直変換器は、バッテリに接続されるバッテリコイルと、スイッチング動作によりバッテリコイルに電圧を発生させる直直用トランジスタと、レール配線に接続される第2のコンデンサであって、バッテリコイルに発生した電圧を蓄電する第2のコンデンサとを有し、制御ステップは、交直用トランジスタのスイッチング動作を停止させるとともに、バッテリが所定の電圧以上の蓄電電圧を有している場合に直直変換器からの直流電圧が、交直用トランジスタのスイッチング動作が停止した後の整流電圧よりも高い電圧となる単位時間あたりのスイッチング回数で直直変換器の直直用トランジスタを動作させ、その状態でのレール配線の電圧に基づいてバッテリの劣化を判定し、交直用トランジスタをスイッチング動作させる場合には、バッテリの劣化判定の際に直直変換器から出力させようとする電圧よりも高い直流電圧が出力される単位時間あたりのスイッチング回数で交直変換器の交直用トランジスタを動作させることを特徴とする。
【0028】
この方法を採用すると、バッテリ劣化判定を行っている際に、直交変換器は、少なくとも交直変換器から供給される整流電圧に基づいて、他の交流電圧を生成することができる。しかも、たとえばレール配線の電圧が整流電圧であるか否かを確認することで、バッテリが寿命となっているか否かを判定することができる。
【0029】
その結果、この方法を採用すれば、交直変換器を制御することなく、直交変換器から他の交流電圧を出力するオンライン状態を維持し、しかも、その状態でバッテリの劣化を判定することができる。
【0030】
【発明の実施の形態】
以下、本発明の実施の形態に係る無停電電源装置および無停電電源装置のバッテリのオンライン劣化判定方法を、図面に基づいて説明する。なお、無停電電源装置のバッテリのオンライン劣化判定方法は、無停電電源装置の動作の一部として説明する。
【0031】
図1は、本発明の実施の形態に係る無停電電源装置1を示す回路図である。
【0032】
無停電電源装置1は、一対の入力端子2,3と、一対の出力端子4,5とを有する。一対の入力端子2,3の間には、商用交流電源などの交流電源6が接続される。これにより、一対の入力端子2,3には、交流電圧が入力電圧として入力される。一対の出力端子4,5の間には、コンピュータなどの負荷機器7が接続される。
【0033】
一対の入力端子2,3の中の一方の入力端子2は、交直変換器としてのレクチュファイヤ11に接続されている。一対の入力端子2,3の中の他方の入力端子3は、グランド12に接続されている。
【0034】
レクチュファイヤ11は、一方の入力端子2が一端に接続される入力コイル31と、入力コイル31の他端にエミッタが接続される交直用トランジスタとしての第一トランジスタ32と、第一トランジスタ32のエミッタ−コレクタと並列に接続される交直用ダイオードとしての第一ダイオード33と、入力コイル31の他端にコレクタが接続される交直用トランジスタとしての第二トランジスタ34と、第二トランジスタ34のエミッタ−コレクタと並列に接続される交直用ダイオードとしての第二ダイオード35と、を有する。第一ダイオード33は、第一トランジスタ32のエミッタからコレクタへ電流を流す向きに接続される。第二ダイオード35は、第二トランジスタ34のエミッタからコレクタへ電流を流す向きに接続される。
【0035】
レクチュファイヤ11の第一トランジスタ32のコレクタは、レール配線としての第一レール配線13に接続される。これにより、第一ダイオード33は、入力コイル31から第一レール配線13までの経路に設けられることになる。また、第一レール配線13とグランド12との間に、コンデンサとしての第一コンデンサ14が接続される。
【0036】
このような接続関係の下で、第二トランジスタ34をオン状態とオフ状態との間でスイッチング制御すると、このスイッチングによって入力コイル31に電圧が励起される。一対の入力端子2,3に入力される電圧に、この入力コイル31に励起される電圧を加算して得られる加算電圧は、第一ダイオード33を介して、第一コンデンサ14に印加される。第一ダイオード33は、入力コイル31から第一コンデンサ14へ電流を流す向きに接続されている。したがって、この加算電圧で、第一コンデンサ14は、入力電圧よりも絶対値が大きい正の電圧まで充電され得る。
【0037】
なお、たとえば、第一コンデンサ14に蓄電される電荷が一定量ずつ消費されている状態で、第二トランジスタ34の単位時間あたりのスイッチング回数を増やすと、第一コンデンサ14の充電電圧の絶対値は、大きくなる。第二トランジスタ34の単位時間あたりのスイッチング回数を減らすと、第一コンデンサ14の充電電圧の絶対値は、小さくなる。つまり、第二トランジスタ34の単位時間あたりのスイッチング回数などを制御することで、第一コンデンサ14の充電電圧の絶対値を制御することができる。
【0038】
レクチュファイヤ11の第二トランジスタ34のエミッタは、レール配線としての第二レール配線15に接続される。これにより、第二ダイオード35は、入力コイル31から第二レール配線15までの経路に設けられることになる。また、第二レール配線15とグランド12との間に、コンデンサとしての第二コンデンサ16が接続される。
【0039】
このような接続関係の下で、第一トランジスタ32をオン状態とオフ状態との間でスイッチング制御すると、このスイッチングによって入力コイル31に電圧が励起される。一対の入力端子2,3に入力される電圧に、この入力コイル31に励起される電圧を加算した電圧は、第二ダイオード35を介して第二コンデンサ16に印加される。第二ダイオード35は、第二コンデンサ16から入力コイル31へ電流を流す向きに接続されている。したがって、この加算電圧によって、第二コンデンサ16は、入力電圧よりも絶対値が大きい負の電圧まで充電される。
【0040】
なお、たとえば、第二コンデンサ16に蓄電される電荷が一定量ずつ消費されている状態で、第一トランジスタ32の単位時間あたりのスイッチング回数を増やすと、第二コンデンサ16の充電電圧の絶対値は、大きくなる。第一トランジスタ32の単位時間あたりのスイッチング回数を減らすと、第二コンデンサ16の充電電圧の絶対値は、小さくなる。つまり、第一トランジスタ32の単位時間あたりのスイッチング回数などを制御することで、第二コンデンサ16の充電電圧の絶対値を制御することができる。
【0041】
以上のように、レクチュファイヤ11は、一対の入力端子2,3に入力される交流電圧を、直流電圧へ変換する。
【0042】
第一レール配線13および第二レール配線15は、直交変換器としてのインバータ17に接続される。なお、第一レール配線13と第二レール配線15との間の電圧は、レールトゥレール電圧と呼ばれる。
【0043】
インバータ17は、第一レール配線13がコレクタに接続される第三トランジスタ41と、第三トランジスタ41のエミッタ−コレクタと並列に接続される第三ダイオード42と、第二レール配線15がエミッタに接続される第四トランジスタ43と、第四トランジスタ43のエミッタ−コレクタと並列に接続される第四ダイオード44と、第三トランジスタ41のエミッタおよび第四トランジスタ43のコレクタが一端に接続される出力コイル45と、を有する。第三ダイオード42は、第三トランジスタ41のエミッタからコレクタへ電流を流す向きに接続される。第四ダイオード44は、第四トランジスタ43のエミッタからコレクタへ電流を流す向きに接続される。
【0044】
出力コイル45の他端は、一対の出力端子4,5の中の一方の出力端子4に接続されている。一対の出力端子4,5の中の他方の出力端子5は、グランド12に接続されている。
【0045】
第三トランジスタ41をオン状態にすると、第三トランジスタ41を介して、第一レール配線13が一方の出力端子4に接続される。第一レール配線13には、第一コンデンサ14が接続されている。したがって、第三トランジスタ41をオン状態にすると、一方の出力端子4には、正の電圧が印加される。
【0046】
また、第三トランジスタ41をオン状態とオフ状態との間でスイッチング制御すると、第三トランジスタ41をオン状態となる期間のみに、間欠的に第一コンデンサ14の充電電圧が一対の出力端子4,5から出力される。したがって、たとえば、オン時間の割合が時系列に沿って正弦分布に従った比率で変化するように第三トランジスタ41のスイッチング制御を行うと、一対の出力端子4,5からは、瞬時電力が正弦分布に従って変化する正の電圧が出力される。
【0047】
第四トランジスタ43をオン状態にすると、第四トランジスタ43を介して、第二レール配線15は、一方の出力端子4に接続される。第二レール配線15には、第二コンデンサ16が接続されている。したがって、第四トランジスタ43をオン状態にすると、一方の出力端子4には、負の電圧が印加される。
【0048】
また、第四トランジスタ43をオン状態とオフ状態との間でスイッチング制御すると、第四トランジスタ43をオン状態となる期間のみに、間欠的に第二コンデンサ16の充電電圧が一対の出力端子4,5から出力される。したがって、たとえば、オン時間の割合が時系列に沿って正弦分布に従った比率で変化するように第四トランジスタ43のスイッチング制御を行うと、一対の出力端子4,5からは、瞬時電力が正弦分布に従って変化する負の電圧が出力される。
【0049】
したがって、入力電圧の半周期に相当する期間毎に、第三トランジスタ41および第四トランジスタ43へ交互に、オン時間の割合が正弦分布に従った比率で変化するゲート信号を供給すると、一対の出力端子4,5からは、瞬時電力が正弦分布に従って変化する交流電圧(他の交流電圧)が出力される。つまり、インバータ17は、レールトゥレール電圧から交流電圧を生成する。負荷機器7は、正常な交流電力が供給された場合と同様に、この品質の良い交流電圧にて動作する。
【0050】
第一レール配線13と第二レール配線15との間には、直直変換器としてのDC/DCコンバータ18が接続されている。DC/DCコンバータ18には、バッテリ19が接続されている。
【0051】
図2は、図1中のDC/DCコンバータ18の構成を示す回路図である。DC/DCコンバータ18は、コンデンサ51と、コンデンサ51と並列に接続される第一アームと、コンデンサ51と並列に接続される第二アームと、第一コイル52と、第二コイル53と、を有する。
【0052】
第一アームは、コンデンサ51にコレクタが接続される正側トランジスタ54と、アーム内で正側トランジスタ54と直列に接続される負側トランジスタ55と、正側トランジスタ54と並列に接続される正側ダイオード56と、負側トランジスタ55と並列に接続される負側ダイオード57と、を有する。ダイオード56,57は、トランジスタ54,55のエミッタからコレクタへ電流を流す向きにそれぞれ接続される。そして、正側トランジスタ54と負側トランジスタ55との間と、第一レール配線13との間には、第一コイル52が接続される。
【0053】
第二アームは、コンデンサ51にコレクタが接続される正側トランジスタ58と、アーム内で正側トランジスタ58と直列に接続される負側トランジスタ59と、正側トランジスタ58と並列に接続される正側ダイオード60と、負側トランジスタ59と並列に接続される負側ダイオード61と、を有する。各ダイオード60,61は、トランジスタ58,59のエミッタからコレクタへ電流を流す向きに接続される。そして、正側トランジスタ58と負側トランジスタ59との間と、バッテリ19の高圧側端子との間には、第二コイル53が接続される。
【0054】
なお、バッテリ19の低圧側端子および第二レール配線15は、各アームの負側トランジスタ55,59のエミッタに接続される。
【0055】
第一アームの2つのトランジスタ54,55を、充電用のゲート信号で、スイッチング制御すると、レールトゥレール電圧を第一コイル52で昇圧した電圧がコンデンサ51に印加される。コンデンサ51は、この電圧に充電される。コンデンサ51が充電されている状態で第二アームの正側トランジスタ58をオン状態にすると、コンデンサ51の充電電圧が、バッテリ19に印加される。バッテリ19は、このコンデンサ51の充電電圧まで充電される。これにより、バッテリ19を、所望の蓄電電圧に充電することができる。
【0056】
また、第二アームの2つのトランジスタ58,59を放電用のゲート信号でスイッチング制御すると、バッテリ19の蓄電電圧を第二コイル53で昇圧した電圧が、コンデンサ51に印加される。コンデンサ51は、この電圧に充電される。コンデンサ51が充電されている状態で第一アームの正側トランジスタ54をオン状態にすると、コンデンサ51の充電電圧が、第一レール配線13と第二レール配線15との間に印加される。これにより、レールトゥレール電圧は、コンデンサ51から放電される電圧になる。
【0057】
なお、第二アームの2つのトランジスタ58,59の単位時間あたりのスイッチング回数を増やすと、コンデンサ51の充電電圧は、高くなる。第二アームの2つのトランジスタ58,59の単位時間あたりのスイッチング回数を減らすと、コンデンサ51の充電電圧は、低くなる。つまり、第二アームの2つのトランジスタ58,59の単位時間あたりのスイッチング回数などを制御することで、コンデンサ51の充電電圧、ひいてはレールトゥレール電圧を制御することができる。
【0058】
図1に戻り、無停電電源装置1は、さらに、一対の入力端子2,3から入力されている入力電圧を検出する入力電圧検出器としての第一検出器20と、一対のレール配線13,15間のレールトゥレール電圧を検出する直流電圧検出器としての第二検出器21と、一対の出力端子4,5から出力される出力電圧の実効値を検出する出力電圧検出器としての第三検出器22と、これら入力電圧、レールトゥレール電圧および出力電圧の実効値が入力される制御手段としてのDSP(Digital Signal Processor:デジタルシグナルプロセッサ)23と、を有する。
【0059】
DSP23は、レクチュファイヤ制御器71を有する。レクチュファイヤ制御器71は、第一トランジスタ32のゲートへ、交直変換用のゲート信号を出力する。また、第二トランジスタ34のゲートへ、それとは逆相で変化する交直変換用のゲート信号を出力する。各ゲート信号は、連続的な複数のゲートパルスで構成される。
【0060】
レクチュファイヤ制御器71は、入力電圧の周期と同期して、各ゲートパルスのパルス幅を制御する。また、レールトゥレール電圧がたとえば約400Vになるように、パルス幅を制御する。この制御によって、レールトゥレール電圧は、約400Vに安定する。
【0061】
DSP23は、DC/DCコンバータ制御器72を有する。DC/DCコンバータ制御器72は、DC/DCコンバータ18ヘ2種類のゲート信号を出力する。2種類のゲート信号の中の一方の信号は、充電用のゲート信号である。この充電用のゲート信号が入力されることで、DC/DCコンバータ18から所望の電圧の充電電圧がバッテリ19へ出力される。
【0062】
また、2種類のゲート信号の中の他方の信号は、放電用のゲート信号である。
DC/DCコンバータ制御器72は、放電時には、レールトゥレール電圧がたとえば約350Vとなるように、ゲート信号の各ゲートパルスのパルス幅を制御する。
【0063】
DSP23は、インバータ制御器73を有する。インバータ制御器73は、第三トランジスタ41のゲートへ、直交変換用のゲート信号を出力する。また、第四トランジスタ43のゲートへ、別の直交変換用のゲート信号を出力する。
【0064】
図3は、図1中のインバータ制御器73を示す回路図である。インバータ制御器73は、具体的には、出力電圧の実効値を周期的にサンプリングするADコンバータ81と、ADコンバータ81による出力電圧の実効値のサンプリング値を記憶する出力電圧バッファ82と、目標とする出力電圧の実効値を記憶する出力電圧レジスタ83と、出力電圧バッファ82に記憶されているサンプリング値から出力電圧レジスタ83に記憶されている値を減算する減算手段84と、を有する。減算手段84からは、目標とする出力電圧の実効値に対する、実際の出力電圧の実効値の差分に相当する差分電圧値が出力される。
【0065】
インバータ制御器73は、通常時のフィードバック係数を記憶する第一フィードバック係数レジスタ85と、緊急時のフィードバック係数を記憶する第二フィードバック係数レジスタ86と、これら2つのレジスタ85,86の中の一方を選択するセレクタ87と、セレクタ87により選択されたレジスタに記憶されているフィードバック係数と減算手段84から出力される差分電圧値とを乗算する乗算手段88と、を有する。これにより、乗算手段88は、差分電圧値に、選択されたフィードバック係数を乗算したフィードバック値を出力することになる。
【0066】
なお、後述するように、第一フィードバック係数レジスタ85には、正常時の制御安定性が確保でき、その結果出力電圧の品質を所望の品質に維持することができる程度に大きいフィードバック係数が記憶されている。第二フィードバック係数レジスタ86には、第一フィードバック係数レジスタ85よりも大きな値のフィードバック係数が記憶されている。
【0067】
インバータ制御器73は、さらに、乗算手段88から出力されるフィードバック値に基づいて、ゲート信号データ列を生成するゲート信号生成手段89と、ゲート信号データ列が書き込まれるゲート信号バッファ90と、第三トランジスタ41のゲートへ直交変換用のゲート信号を出力する第一DAコンバータ91と、第四トランジスタ43のゲートへ直交変換用のゲート信号を出力する第二DAコンバータ92と、を有する。
【0068】
ゲート信号生成手段89は、入力電圧の半周期に相当する期間分のゲート信号データ列を生成する。このゲート信号データ列は、2値のビット列であって、たとえば「100011001110111011001000」のように、ビット「0」とビット「1」とで構成されるビット列である。
【0069】
入力電圧の半周期に相当する時間分をTとし、第一DAコンバータ91および第二DAコンバータ92によるデータの読み込み周期をtとした場合、ゲート信号データ列のビット数は、[T/t]ビットとなる。[]は、ガウス記号である。Xを実数、nを整数としたとき、n≦X<n+1ならば、[X]=nとなる。
たとえば「T/t」が2.1である場合、[T/t]は2となる。なお、ゲート信号データ列のビット数は、「[T/t]+1」ビットであってもよい。
【0070】
ここで、第一DAコンバータ91および第二DAコンバータ92がビット「1」を読み込んだときに、ゲート信号がハイレベルとなって、第三トランジスタ41および第四トランジスタ43がオン状態となるものとする。なお、第一DAコンバータ91および第二DAコンバータ92がビット「0」を読み込んだときに、ゲート信号がハイレベルとなるようにしてもよい。
【0071】
ゲート信号生成手段89は、フィードバック値に基づいて、ビット「1」の個数を演算する。フィードバック値が大きくなればなるほど、ビット「1」の個数は多くなる。なお、ビット「1」の個数とフィードバック値の範囲とを対応付けたテーブルを予め記憶手段(たとえばROM(Read Only Memory:読出専用メモリ))などに記憶させておき、ゲート信号生成手段89は、乗算手段88から出力されるフィードバック値に基づいてテーブルを参照し、ビット「1」の個数をテーブルから選択するようにしてもよい。
【0072】
また、ゲート信号生成手段89は、所定のビット数のゲート信号データ列に、求めた個数のビット「1」を正弦分布にて分散して割り付ける。その結果、ビット列の中央寄りには、ビット列の両端寄りよりも多くのビット「1」が割り付けられることになる。なお、ビット「1」の個数とビット列を対応付けたテーブルを予め記憶手段などに記憶させておき、ゲート信号生成手段89は、ビット「1」の個数に基づいてテーブルを参照し、所定のビット列を選択するようにしてもよい。
【0073】
なお、以上の二段階の処理を高速化するために、フィードバック値の範囲とビット列とを対応付けたテーブルを、予め記憶手段などに記憶させておき、ゲート信号生成手段89は、乗算手段88から出力されるフィードバック値に基づいてこのテーブルを参照し、所定のビット列を選択するようにしてもよい。
【0074】
以上のような演算処理にて生成されるゲート信号データ列は、ゲート信号バッファ90に書き込まれる。
【0075】
第一DAコンバータ91は、入力電圧が負の電圧から正の電圧へ変化するゼロクロスタイミングを基準として、ゲート信号バッファ90に記憶されているゲート信号データ列の各ビットの読み込みを開始する。また、周期t毎に、ゲート信号バッファ90の次のビットの値を読み込む。そして、読み込んだビットが「0」である場合には、直交変換用のゲート信号をローレベルとし、「1」である場合には、直交変換用のゲート信号をハイレベルとする。これにより、第三トランジスタ41のゲートには、オン時間の割合が正弦分布に従った比率で変化するゲート信号が入力される。その結果、入力電圧が正の電圧である期間には、インバータ17から一対の出力端子4,5へ、正弦波の正の半周期に相当する波形の出力電圧が出力される。
【0076】
また、第二DAコンバータ92は、入力電圧が正の電圧から負の電圧へ変化するゼロクロスタイミングを基準として、ゲート信号バッファ90に記憶されているゲート信号データ列の各ビットの読み込みを開始する。また、周期t毎に、ゲート信号バッファ90の次のビットの値を読み込む。そして、読み込んだビットが「0」である場合には、直交変換用のゲート信号をローレベルとする。「1」である場合には、直交変換用のゲート信号をハイレベルとする。これにより、第四トランジスタ43のゲートには、オン時間の割合が正弦分布に従った比率で変化するゲート信号が入力される。その結果、入力電圧が負の電圧である期間には、インバータ17から一対の出力端子4,5へ、正弦波の負の半周期に相当する波形の出力電圧が出力される。
【0077】
このように、インバータ制御器73の制御によって、第三トランジスタ41から正弦波の正の半周期に相当する波形の出力電圧を出力させ、第四トランジスタ43から正弦波の負の半周期に相当する波形の出力電圧を出力させることができる。
【0078】
また、インバータ制御器73は、負荷機器7の消費電力の増加などに起因して、出力電圧バッファ82に記憶されている出力電圧の実効値に対する、インバータ17の実際の出力電圧の実効値の差分電圧値が大きくなると、この差分電圧値の増加を抑制するように、ゲート信号データ列に含まれるビット「1」の個数を調節する。
【0079】
その結果、インバータ17からは、入力電圧と同期する品質の良い、すなわち歪やノイズの少ない交流電圧を、出力電圧として出力することができる。
【0080】
なお、負荷機器7の消費電力とインバータ17の出力電力とが釣り合っている状態でのゲート信号データ列は、負荷機器7へ供給する電力の大きさに応じたものが選択される。負荷機器7には、第一コンデンサ14および第二コンデンサ16に蓄電されている電荷に基づく電力が供給される。したがって、負荷機器7が消費する電力と負荷機器へ供給しようとする電力とが釣り合って安定しているときには、ゲート信号データ列に含まれるビット「1」の個数は、負荷機器7の消費電力に応じた数になる。負荷機器7の消費電力が大きければ、ビット「1」の個数が多いゲート信号データ列にて、安定することになる。
【0081】
また、第一コンデンサ14および第二コンデンサ16に蓄電されている電荷がインバータ17を介して負荷機器7へ供給されると、第一コンデンサ14および第二コンデンサ16の蓄電電圧は小さくなる。第一コンデンサ14および第二コンデンサ16の蓄電電圧、すなわちレールトゥレール電圧が小さくなると、それに基づいてインバータ17から出力される出力電圧の振幅も小さくなってしまう。このような出力電圧の変動を抑制するために、レクチュファイヤ制御器71は、このレールトゥレール電圧がたとえば約400Vに安定するように、レクチュファイヤ11を制御する。また、インバータ制御器73は、出力電圧の実効値が目標とする実効値となるように、インバータ17を制御する。
【0082】
第一フィードバック係数レジスタ85に記憶されるフィードバック係数は、消費電力変動や入力電力の正常な範囲内での変動に起因してレールトゥレール電圧の変動が生じたとしても、出力電圧が安定するように、なるべく大きな値とするのが望ましい。ただし、フィードバック係数が大きすぎると、レールトゥレール電圧の変動に対して過剰に補正をかけてしまい、場合によっては発振してしまう。その結果、出力電圧の品質は、かえって低下してしまうことになる。それを防止するために、第一フィードバック係数レジスタ85に記憶させるフィードバック係数は、そのような発振を生じない程度に大きな値になっている。
【0083】
DSP23は、さらに、これらレクチュファイヤ制御器71、DC/DCコンバータ制御器72およびインバータ制御器73の動作を制御する制御本体74と、時間を計測するタイマ75と、を有する。無停電電源装置1は、バッテリ19の劣化を報知するためのランプ24を有する。制御本体74には、入力電圧の検出値と、レールトゥレール電圧の検出値とが入力される。
【0084】
次に、制御本体74の制御に基づく、無停電電源装置1の全体の動作を説明する。
【0085】
無停電電源装置1が起動されると、DSP23による制御が開始される。DSP23では、制御本体74が入力電圧の監視を開始する。なお、起動時には、DSP23から各種のゲート信号は出力されていない。
【0086】
制御本体74は、入力電圧に基づいて一対の入力端子2,3に入力される交流電力が正常であると判断すると、レクチュファイヤ制御器71に、交直変換用のゲート信号を出力させる。また、制御本体74は、セレクタ87に、第一フィードバック係数レジスタ85を選択させるとともに、インバータ制御器73に、直交変換用のゲート信号を出力させる。
【0087】
レクチュファイヤ制御器71は、レールトゥレール電圧がたとえば約400Vに安定するように、レクチュファイヤ11を制御する。
【0088】
インバータ制御器73は、出力電圧の実効値と目標出力電圧の実効値との差分に、通常時のフィードバック係数を乗算して、フィードバック値を生成する。また、フィードバック値に基づいてゲート信号データ列を生成し、このゲート信号データ列に基づくゲート信号を、第三トランジスタ41および第四トランジスタ43へ出力する。これにより、インバータ17から出力される交流の出力電圧は、その実効値が目標出力電圧の実効値となるように制御される。
【0089】
これにより、一対の入力端子2,3に入力される正常な交流電力は、レクチュファイヤ11によってたとえば約400Vの直流のレールトゥレール電圧へ変換された後、さらにインバータ17によって所望の交流電圧へ変換される。この交流電圧が、一対の出力端子4,5から負荷機器7へ供給される。
【0090】
また、図示外のバッテリ電圧検出器によって測定されるバッテリ19の蓄電電圧が所望の電圧よりも低い場合には、制御本体74は、DC/DCコンバータ制御器72に充電用のゲート信号を出力させる。DC/DCコンバータ18は、レールトゥレール電圧を充電電圧へ変換する。これにより、一対の入力端子2,3に入力される正常な交流電力の中の一部の電力で、バッテリ19を充電することができる。
【0091】
以上の常時インバータ給電制御を実施する一方で、制御本体74は、入力電圧を監視しつづける。そして、この入力電圧に基づいて一対の入力端子2,3に入力される交流電力が正常ではないと判断すると、制御本体74は、レクチュファイヤ制御器71からの交直変換用のゲート信号の出力を禁止する。また、DC/DCコンバータ制御器72に、放電用のゲート信号を出力させる。
【0092】
DC/DCコンバータ制御器72は、レールトゥレール電圧がたとえば約350Vに安定するように、DC/DCコンバータ18を制御する。つまり、この場合、レールトゥレール電圧は、約400Vから約350Vへ低下する。
【0093】
インバータ制御器73には、このレールトゥレール電圧の変動が、出力電圧の実効値の変動として入力される。インバータ制御器73は、このレールトゥレール電圧の変動に追従して、第三トランジスタ41および第四トランジスタ43へ出力するゲート信号を変化させる。
【0094】
これにより、レールトゥレール電圧がたとえば約400Vから約350Vへ約50V程度低下したとしても、インバータ17から出力される出力電圧の実効値は、目標とする実効値に維持される。つまり、インバータ17から出力される出力電圧は、安定している。
【0095】
その結果、一対の入力端子2,3に入力される交流電力が正常ではなくなったとしても、一対の出力端子4,5から負荷機器7へは、バッテリ19に蓄電されている蓄電電力に基づいて、安定した良好な品質の出力電圧が供給され続ける。
【0096】
そして、入力電圧に基づいて一対の入力端子2,3に入力される交流電力が正常な状態に復帰した場合には、制御本体74は、DC/DCコンバータ制御器72からの放電用のゲート信号の出力を禁止する。また、レクチュファイヤ制御器71に、交直変換用のゲート信号を出力させる。常時インバータ給電制御へ切り替えた後も、制御本体74は、入力電圧の監視を継続する。
【0097】
これにより、無停電電源装置1は、主に、一対の入力端子2,3に入力される入力電力を負荷機器7へ供給することになる。その結果、バッテリ19の蓄電電力を必要以上に消費しないようにすることができ、バッテリ19の短寿命化を効果的に抑制することができる。
【0098】
なお、制御本体74は、一対の入力端子2,3に入力される交流電力が正常な状態に復帰した後、必要に応じて、DC/DCコンバータ制御器72に、充電用のゲート信号を出力させてもよい。
【0099】
タイマ75は、時間を計測する。このタイマ75の計測時間は、制御本体74に入力される。制御本体74は、タイマ75の計測時間が予め定めた期間になる度に、バッテリ19のオンライン劣化判定モードを繰り返して実行する。
【0100】
オンライン劣化判定モードでは、制御本体74は、まず、入力電圧に基づいて判断される入力電力が正常であることを確認する。入力電力が正常ではない場合には、オンライン劣化判定モードへのモード切替を行わない。
【0101】
入力電力が正常であると判断すると、制御本体74は、レクチュファイヤ制御器71からの交直変換用のゲート信号の出力を禁止する。また、DC/DCコンバータ制御器72に、放電用のゲート信号を出力させる。この放電用のゲート信号は、新品のバッテリ19がフル充電されている場合には、約350Vの放電電圧がDC/DCコンバータ18から出力されるものである。
【0102】
したがって、フル充電の新品のバッテリ19がDC/DCコンバータ18に接続されている場合には、レールトゥレール電圧は、たとえば約350Vになる。
【0103】
そして、制御本体74は、レールトゥレール電圧の検出値あるいは検出値の変化に基づいて、バッテリ19の劣化状態を判定する。バッテリ19が劣化していると判定したら、ランプ24を点灯させる。
【0104】
ランプ24が点灯することで、無停電電源装置1のユーザは、バッテリ19が劣化して交換する時期に来ていることを知ることができる。なお、バッテリ19が劣化していると判定した場合に、制御本体74は、その旨をたとえば通信回線などを介して、ユーザへ通知するようにしてもよい。
【0105】
ところで、このような無停電電源装置1に用いられているバッテリ19は、経時的に劣化する。たとえば、充放電を繰り返すと、バッテリ19の容量は、次第に小さくなる。そのため、バッテリ19のフル充電時の電圧は、使用期間が長くなるほど、次第に小さくなる。特に、寿命となったバッテリ19は、充電しても全く蓄電しないので、バッテリ19の出力電圧は、0Vに近い電圧となってしまう。
【0106】
このようにバッテリ19が劣化していると、上述した放電用のゲート信号でDC/DCコンバータ18を動作させても、DC/DCコンバータ18から出力される電圧は、所望の電圧、たとえば約350Vにはならず、約350Vよりも低い電圧になる。特に、バッテリ19の寿命が尽きている場合には、DC/DCコンバータ18から出力される電圧は、0Vあるいはそれに近い電圧になる。
【0107】
制御本体74は、オンライン劣化判定モードを開始する際に、入力電力が正常であることを確認している。そのため、少なくともオンライン劣化判定モードを開始した直後には、レクチュファイヤ11には、正常な入力電圧が入力されている可能性が高い。一方の入力端子2は、第一ダイオード33を介して第一コンデンサ14に接続されている。そのため、交直変換用のゲート信号が入力されていないにもかかわらず、レクチュファイヤ11は、第一コンデンサ14を、入力電圧の正の振幅値まで充電することができる。同様に、レクチュファイヤ11は、第二コンデンサ16を、入力電圧の負の振幅値まで充電することができる。
【0108】
したがって、バッテリ19が劣化している場合、レクチュファイヤ11の動作を停止し、且つ、DC/DCコンバータ18を動作させているにもかかわらず、レールトゥレール電圧は、レクチュファイヤ11の出力電圧(整流電圧)となる。このときのレクチュファイヤ11の出力電圧は、たとえば入力電圧の振幅が約140Vである場合には、その二倍の電圧である約280Vとなる。
【0109】
その結果、バッテリ19が劣化している場合、オンライン劣化判定モードを開始すると、レールトゥレール電圧は、たとえば約400Vから約280Vまで、瞬時に降下することになる。
【0110】
そのため、制御本体74は、オンライン劣化判定モードに切り替えた直後から、レールトゥレール電圧の瞬時変化値を監視する。なお、レールトゥレール電圧の瞬時変化値は、たとえば、直前のレールトゥレール電圧をレジスタに記憶させるとともに、このレジスタの値から現在のレールトゥレール電圧を減算することで、得ることができる。
【0111】
そして、この瞬時変化値がたとえば100V以上の値になったら、制御本体74は、セレクタ87に、第二フィードバック係数レジスタ86を選択させる。第二フィードバック係数レジスタ86には、第一フィードバック係数レジスタ85よりも大きな値のフィードバック係数が記憶されている。
【0112】
したがって、乗算手段88から出力されるフィードバック値は、上述したレールトゥレール電圧の急激な変化によって出力電圧の実効値が大きく変化してしまう前に、大きな値へ変化する。その結果、ゲート信号データ列に含まれるビット「1」の個数が増えて、インバータ17は、より多くの直流電力を出力電力へ変換する。
【0113】
その結果、バッテリ19が劣化していて、オンライン劣化判定モードへ切り替えた直後にレールトゥレール電圧がたとえば約400Vから約280Vまで瞬時に降下することがあったとしても、その検出に基づいて直ちにフィードバック係数を大きな値に切り替えることができる。そのため、インバータ17は、フィードフォワード的にレールトゥレール電圧の低下を補償するように制御されるので、出力電圧の実効値の変動を効果的に抑え込むことができる。そして、バッテリ19が劣化している場合であっても、出力電圧の品質を所望の品質に維持することができる。
【0114】
また、オンライン劣化判定モードを中止する場合、制御本体74は、セレクタ87に第二フィードバック係数レジスタ86を選択させるとともに、DC/DCコンバータ制御器72からの放電用のゲート信号の出力を禁止し、レクチュファイヤ制御器71に、交直変換用のゲート信号を出力させる。
【0115】
これにより、オンライン劣化判定モードは中止される。レクチュファイヤ11から出力される直流電力で、レールトゥレール電圧は、元の電圧、たとえば約400Vに復帰する。
【0116】
その際、セレクタ87に第二フィードバック係数レジスタ86を選択させてから、入力電圧の2サイクルに相当する時間を経過したら、制御本体74は、セレクタ87に第一フィードバック係数レジスタ85を選択させる。
【0117】
これにより、オンライン劣化判定モードに切り替えてから、それを中断してレールトゥレール電圧が元の電圧、たとえば約400Vに復帰するまでの期間においては、通常よりも大きな値の第二フィードバック係数レジスタ86のフィードバック係数を使用することになる。その結果、インバータ17は、この間に生じるレールトゥレール電圧の大きく且つ急激な低下および上昇に対応して、出力電圧の品質を維持することができる。
【0118】
しかも、レールトゥレール電圧が元の電圧、たとえば約400Vに戻ってからは、第一フィードバック係数レジスタ85のフィードバック係数を使用する。そのため、第二フィードバック係数レジスタ86のフィードバック係数をそのまま利用することに起因して発生する出力電圧の発振を抑制することができる。また、正常時において、レールトゥレール電圧に含まれるノイズ成分に対して過剰に反応して、出力電圧が過敏に反応してしまわないようにすることができる。
【0119】
このように通常の動作モードへ復帰した後、制御本体74は、バッテリ交換が必要であることを示すランプ24を点灯させる。
【0120】
以上のように、この実施の形態に係る無停電電源装置1では、制御本体74は、バッテリ19のオンライン劣化判定モードを周期的に実行する。このバッテリ19のオンライン劣化判定モードでは、レクチュファイヤ11のトランジスタ32,34は、動作を停止し、入力電圧を整流したたとえば約280Vの整流電圧を出力する。また、DC/DCコンバータ18は、劣化していないバッテリ19との組合せにおいて整流電圧よりも高いたとえば約350Vの電圧を出力する。
【0121】
そして、制御本体74は、レクチュファイヤ11のトランジスタ32,34の動作を停止する前後におけるレールトゥレール電圧の変化量に基づいて、バッテリ19の劣化を判定する。これにより、バッテリ19の寿命が尽きている場合、レクチュファイヤ11のトランジスタ32,34の動作を停止した直後に、DC/DCコンバータ18の出力電圧が整流電圧よりも低くなってしまうほどに劣化したバッテリ19について、劣化していると判定することができる。
【0122】
また、制御本体74は、レクチュファイヤ11のトランジスタ32,34の動作を停止する前後におけるレールトゥレール電圧の変化量に基づいてバッテリ19が劣化していると判定しない場合には、さらに、そのレクチュファイヤ11を停止した状態でのレールトゥレール電圧の変化に基づいてバッテリ19の劣化を判定する。
【0123】
レールトゥレール電圧の変化量に基づいてバッテリ19の劣化を判定する方法としては、たとえば、以下の方法がある。まず、バッテリ19の出力電圧がバッテリ19出力へ切り替えたときの電圧の50%の電圧まで放電させる。そして、その放電がなされる放電時間をタイマ75で測定する。放電時間が所定の時間よりも短い場合には、バッテリ19が劣化していると判定する。他にもたとえば、以下の方法がある。バッテリ19を、その出力電圧がバッテリ19出力へ切り替えたときの電圧の70%程度の電圧となるまで放電させる。その後、バッテリ19から所定の電流値だけ放電させ、その前後のバッテリ19の出力電圧を測定する。この前後のバッテリ19の出力電圧の変化量を先の電流値で除算して、バッテリ19の内部抵抗値を算出する。この算出した内部抵抗値が所定の抵抗値よりも大きい場合には、バッテリ19が劣化していると判定する。
【0124】
これにより、レクチュファイヤ11のトランジスタ32,34の動作を停止した直後にDC/DCコンバータ18の出力電圧が整流電圧よりも低くなってしまうほどには劣化していないが、本来交換した方が良いほどに劣化しているバッテリ19について、劣化していると判定することができる。
【0125】
また、レクチュファイヤ11は整流電圧を出力しているので、バッテリ19が劣化していてDC/DCコンバータ18の出力電圧が低くなったとしても、レールトゥレール電圧は、最低でもこのレクチュファイヤ11が出力する整流電圧に維持される。インバータ17は、この整流電圧を交流電圧へ変換する。
【0126】
その結果、オンライン劣化判定モードでは、レクチュファイヤ11のトランジスタ32,34を動作させないため、交流電源6側への回生電流を防止することができる。しかも、インバータ17から出力電力を出力するオンライン状態を維持したまま、バッテリ19の劣化判定を行うことができる。そして、バッテリ19の寿命が尽きている場合、レクチュファイヤ11のトランジスタ32,34を停止した直後に、DC/DCコンバータ18の出力電圧が整流電圧よりも低くなってしまうバッテリ19と、そのような変化を生ずるほどは劣化していないバッテリ19との両方について、バッテリ19の劣化を判定することができる。
【0127】
また、この実施の形態に係る無停電電源装置1では、制御本体74は、レクチュファイヤ11による交直変換動作を停止した場合であって、その停止の前後におけるレールトゥレール電圧の変化量が所定の変化量以上である場合には、インバータ17に、第二フィードバック係数レジスタ86を選択させる。これにより、インバータ17に、直流電圧低下に対する補償処理を行わせることができる。
【0128】
したがって、バッテリ19が劣化していて、レクチュファイヤ11のトランジスタ32,34の動作を停止した直後にレール配線の電圧が大きく変化しても、インバータ17から出力される出力電圧の変化を効果的に抑制することができる。つまり、バッテリ劣化判定時において、出力電圧の安定性および品質を維持することができる。
【0129】
また、直流電圧低下補償処理をしない場合のインバータ17の応答特性は、通常時にはセレクタ87が第一フィードバック係数レジスタ85を選択しているため、インバータ17の出力電圧が発振しない程度の応答特性とすることができる。その結果、通常時のインバータ17の応答特性は、出力電圧の安定性および品質を確保できる特性にすることができる。
【0130】
その結果、通常時およびバッテリ判定時の全体にわたって、出力電圧の安定性および品質を確保することができる。
【0131】
なお、制御本体74が、レクチュファイヤ11のトランジスタ32,34の動作を停止した場合に、その停止直後においてレールトゥレール電圧が所定の電圧(たとえば約300V)以下になった場合には、インバータ17に、直流電圧低下補償処理を行わせるようにしてもよい。この場合にも、同様の出力電圧の安定性の効果を期待することができる。
【0132】
また、この実施の形態に係る無停電電源装置1では、制御本体74は、バッテリ19の劣化を判定するためにレクチュファイヤ11のトランジスタ32,34の動作を停止する前に、一対の入力端子2,3に入力される交流電力が正常であることを確認ている。そして、この交流電力が正常でない場合には、レクチュファイヤ11のトランジスタ32,34の動作の停止をしない。
【0133】
したがって、レクチュファイヤ11のトランジスタ32,34の動作を停止した場合には、その直前に入力電圧が正常であることを常に確認していることになるので、レール配線の電圧は、最低でも整流電圧を維持することになる。したがって、バッテリ19が劣化していたとしても、インバータ17は交流電力を出力し続けることができ、オンライン状態を維持することができる。
【0134】
この実施の形態に係る無停電電源装置1では、オンライン劣化判定モードにおいて、まず、入力電圧に基づいて判断される入力電力が正常であることを確認し、入力電力が正常ではない場合には、オンライン劣化判定モードへのモード切替を止めている。これにより、入力電圧が停電などの異常な状態になっているときに、バッテリ19の劣化判定のために交直用トランジスタを停止してしまうことを防止することができる。つまり、バッテリ19の劣化判定のために交直用トランジスタを停止したときに入力電圧の異常のために、レール配線の電圧が異常に低くあるいは無くなってしまうことをほぼ防止することができる。その結果、インバータ17から交流電圧を出力するオンライン状態を、ほぼ確実に維持することができる。
【0135】
以上の実施の形態は、本発明の好適な実施の形態の例であるが、本発明はこれに限定されるものではなく、種々の変形、変更が可能である。
【0136】
たとえば、この実施の形態では、レールトゥレール電圧の電圧降下量に基づいて、バッテリ19の劣化状態を判定している。この他にもたとえば、レールトゥレール電圧が、レクチュファイヤ11の整流電圧であるか否かに基づいて、バッテリ19が劣化しているか否かを判定してもよい。さらにたとえば、レクチュファイヤ11のトランジスタ32,34の動作を停止した後のレールトゥレール電圧が、交換が不要なバッテリ19ではありえない電圧以下、たとえば300V以下であるか否かに基づいて、バッテリ19が劣化しているか否かを判定してもよい。
【0137】
上記実施の形態では、DC/DCコンバータ18の正側トランジスタ54を介して、バッテリ19の充電電圧に基づく放電電圧を、一対のレール配線13,15へ供給している。この他にもたとえば、コンデンサ51と第一レール配線13との間に、直直用ダイオードとしてのダイオードを設け、このダイオードを介して、放電電圧を一対のレール配線13,15へ供給するようにしてもよい。
【0138】
【発明の効果】
本発明では、交直変換器に対して複雑な制御を行うことなく、直交変換器から交流電圧を出力するオンライン状態を維持し、しかも、その状態でバッテリの劣化を判定することがてきる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係る無停電電源装置を示す回路図である。
【図2】 図1中のDC/DCコンバータの構成を示す回路図である。
【図3】 図1中のインバータ制御器を示す回路図である。
【符号の説明】
2 一方の入力端子(入力端子)
3 他方の入力端子(入力端子)
11 レクチュファイヤ(交直変換器)
13 第一レール配線(レール配線)
14 第一コンデンサ(コンデンサ)
15 第二レール配線(レール配線)
16 第二コンデンサ(コンデンサ)
17 インバータ(直交変換器)
18 DC/DCコンバータ(直直変換器)
19 バッテリ
20 第一検出器(入力電圧検出器)
21 第二検出器(直流電圧検出器)
23 DSP(制御手段)
31 入力コイル
32 第一トランジスタ(交直用トランジスタ)
33 第一ダイオード(交直用ダイオード)
34 第二トランジスタ(交直用トランジスタ)
35 第二ダイオード(交直用ダイオード)
54 正側トランジスタ(直直用トランジスタ)

Claims (6)

  1. 交流電圧を直流電圧へ変換してレール配線へ供給する交直変換器と、
    上記レール配線に接続される第1のコンデンサであって、上記交直変換器により変換された電圧を蓄積する第1のコンデンサと、
    バッテリの蓄電電圧を直流電圧へ変換して上記レール配線へ供給する直直変換器と、
    上記レール配線の直流電圧から他の交流電圧を生成する直交変換器と、
    上記交直変換器から、上記交流電圧を整流した整流電圧を出力させるとともに、この整流電圧よりも高い直流電圧を出力するように上記直直変換器を制御し、この状態での上記レール配線の電圧に基づいて上記バッテリの劣化を判定する制御手段と
    を有し、
    上記交直変換器は、
    交流電圧が入力される入力端子に接続される入力コイルと、
    上記入力コイルから上記レール配線までの経路に設けられ、交流電圧を直流電圧へ変換する交直用ダイオードと、
    スイッチング動作により上記入力コイルに電圧を発生させる交直用トランジスタと
    を有し、
    上記直直変換器は、
    上記バッテリに接続されるバッテリコイルと、
    スイッチング動作により上記バッテリコイルに電圧を発生させる直直用トランジスタと、
    上記レール配線に接続される第2のコンデンサであって、上記バッテリコイルに発生した電圧を蓄電する第2のコンデンサと
    を有し、
    上記制御手段は、
    上記交直用トランジスタのスイッチング動作を停止させるとともに、上記バッテリが所定の電圧以上の蓄電電圧を有している場合に上記直直変換器からの直流電圧が、上記交直用トランジスタのスイッチング動作が停止した後の整流電圧よりも高い電圧となる単位時間あたりのスイッチング回数で上記直直変換器の上記直直用トランジスタを動作させ、その状態での上記レール配線の電圧に基づいて上記バッテリの劣化を判定し、
    上記交直用トランジスタをスイッチング動作させる場合には、上記バッテリの劣化判定の際に上記直直変換器から出力させようとする電圧よりも高い直流電圧が出力される単位時間あたりのスイッチング回数で上記交直変換器の上記交直用トランジスタを動作させる
    ことを特徴とする無停電電源装置。
  2. 前記制御手段は、前記バッテリの劣化判定の際には、前記交直用トランジスタのスイッチング動作を停止させる前に前記直流電圧検出器が検出する電圧と、停止させた後に前記直流電圧検出器が検出する電圧との電圧差が所定の電圧差以上になったら、あるいは、停止させた後の前記直流電圧検出器が検出する電圧が所定の電圧以下になったら、バッテリが劣化していると判定する
    ことを特徴とする請求項1記載の無停電電源装置。
  3. 前記制御手段は、前記交直用トランジスタを停止した前後の検出電圧の電圧差あるいは前記交直用トランジスタを停止した後の電圧に基づいてバッテリが劣化していると判定しなかった場合には、さらに、前記交直用トランジスタのスイッチング動作を停止したまま、前記直流電圧検出器が検出する電圧の変化に基づいて、バッテリの劣化を判定する
    ことを特徴とする請求項2記載の無停電電源装置。
  4. 前記入力端子に入力される入力電圧を検出する入力電圧検出器を有し、
    前記制御手段は、上記入力電圧検出器の検出電圧に基づいて入力電力が正常であるか否かを判定し、入力電力が正常であると判定した場合には、前記交直用トランジスタを停止してバッテリの劣化判定を行い、入力電力が正常であると判定しない場合には、前記交直用トランジスタを停止せずバッテリの劣化判定を行わない
    ことを特徴とする請求項1から3の中のいずれか1項記載の無停電電源装置。
  5. 前記制御手段は、前記バッテリの劣化判定の際には、前記交直用トランジスタのスイッチング動作を停止させる前に前記直流電圧検出器が検出する電圧と、停止させた後に前記直流電圧検出器が検出する電圧との電圧差が所定の電圧差以上になったら、あるいは、停止させた後の前記直流電圧検出器が検出する電圧が所定の電圧以下になったら、前記直交変換器に、直流電圧の低下を補償する処理を行わせる
    ことを特徴とする請求項1記載の無停電電源装置。
  6. 交流電圧を直流電圧へ変換してレール配線へ供給する交直変換器と、
    上記レール配線に接続される第1のコンデンサであって、上記交直変換器により変換された電圧を蓄積する第1のコンデンサと、
    バッテリの蓄電電圧を直流電圧へ変換して上記レール配線へ供給する直直変換器と、
    上記レール配線の直流電圧から他の交流電圧を生成する直交変換器と
    を有する無停電電源装置のバッテリのオンライン劣化判定方法において、
    上記交直変換器から、上記交流電圧を整流した整流電圧を出力させるとともに、この整流電圧よりも高い直流電圧を出力するように上記直直変換器を制御し、この状態での上記レール配線の電圧に基づいて上記バッテリの劣化を判定する制御ステップと
    を含み、
    上記交直変換器は、
    交流電圧が入力される入力端子に接続される入力コイルと、
    上記入力コイルから上記レール配線までの経路に設けられ、交流電圧を直流電圧へ変換する交直用ダイオードと、
    スイッチング動作により上記入力コイルに電圧を発生させる交直用トランジスタと
    を有し、
    上記直直変換器は、
    上記バッテリに接続されるバッテリコイルと、
    スイッチング動作により上記バッテリコイルに電圧を発生させる直直用トランジスタと、
    上記レール配線に接続される第2のコンデンサであって、上記バッテリコイルに発生した電圧を蓄電する第2のコンデンサと
    を有し、
    上記制御ステップは、
    上記交直用トランジスタのスイッチング動作を停止させるとともに、上記バッテリが所定の電圧以上の蓄電電圧を有している場合に上記直直変換器からの直流電圧が、上記交直用トランジスタのスイッチング動作が停止した後の整流電圧よりも高い電圧となる単位時間あたりのスイッチング回数で上記直直変換器の上記直直用トランジスタを動作させ、その状態での上記レール配線の電圧に基づいて上記バッテリの劣化を判定し、
    上記交直用トランジスタをスイッチング動作させる場合には、上記バッテリの劣化判定の際に上記直直変換器から出力させようとする電圧よりも高い直流電圧が出力される単位時間あたりのスイッチング回数で上記交直変換器の上記交直用トランジスタを動作させる
    ことを特徴とする無停電電源装置のバッテリのオンライン劣化判定方法。
JP2003122348A 2003-04-25 2003-04-25 無停電電源装置および無停電電源装置のバッテリのオンライン劣化判定方法 Expired - Lifetime JP4552385B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003122348A JP4552385B2 (ja) 2003-04-25 2003-04-25 無停電電源装置および無停電電源装置のバッテリのオンライン劣化判定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003122348A JP4552385B2 (ja) 2003-04-25 2003-04-25 無停電電源装置および無停電電源装置のバッテリのオンライン劣化判定方法

Publications (2)

Publication Number Publication Date
JP2004328928A JP2004328928A (ja) 2004-11-18
JP4552385B2 true JP4552385B2 (ja) 2010-09-29

Family

ID=33500607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003122348A Expired - Lifetime JP4552385B2 (ja) 2003-04-25 2003-04-25 無停電電源装置および無停電電源装置のバッテリのオンライン劣化判定方法

Country Status (1)

Country Link
JP (1) JP4552385B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2700534B1 (en) * 2011-04-22 2018-04-18 Mitsubishi Electric Corporation Charging apparatus
CN103187876B (zh) * 2011-12-28 2016-08-03 艾默生网络能源有限公司 一种不间断电源的dc/dc电路
JP6608767B2 (ja) * 2016-06-10 2019-11-20 日立オートモティブシステムズ株式会社 車両制御装置
CN117310546A (zh) * 2023-11-03 2023-12-29 北京迪赛奇正科技有限公司 一种ups电源健康管理监测***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709318A (en) * 1986-10-22 1987-11-24 Liebert Corporation UPS apparatus with control protocols
JP2000201485A (ja) * 1999-01-05 2000-07-18 Sanyo Denki Co Ltd 無停電電源装置
JP2000295790A (ja) * 1999-04-07 2000-10-20 Densei Lambda Kk バッテリー充放電部を備えた無停電電源装置
JP2000350384A (ja) * 1999-06-07 2000-12-15 Toshiba Corp 無停電電源装置
JP2001061237A (ja) * 1999-08-23 2001-03-06 Ntt Power & Building Facilities Inc 無停電電源装置およびその試験方法
JP2004180428A (ja) * 2002-11-27 2004-06-24 Densei Lambda Kk バッテリ劣化のオンライン判定方法、無停電電源装置に搭載されるバッテリの劣化判定方法および無停電電源装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2749502B2 (ja) * 1993-09-10 1998-05-13 富士電機株式会社 無停電電源装置の蓄電池良否判定方法
JPH07298503A (ja) * 1994-04-20 1995-11-10 Fuji Electric Co Ltd 無停電電源装置用バッテリーの良否判定装置
JPH10285827A (ja) * 1997-04-04 1998-10-23 Sansha Electric Mfg Co Ltd シール蓄電池の寿命検出方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709318A (en) * 1986-10-22 1987-11-24 Liebert Corporation UPS apparatus with control protocols
JP2000201485A (ja) * 1999-01-05 2000-07-18 Sanyo Denki Co Ltd 無停電電源装置
JP2000295790A (ja) * 1999-04-07 2000-10-20 Densei Lambda Kk バッテリー充放電部を備えた無停電電源装置
JP2000350384A (ja) * 1999-06-07 2000-12-15 Toshiba Corp 無停電電源装置
JP2001061237A (ja) * 1999-08-23 2001-03-06 Ntt Power & Building Facilities Inc 無停電電源装置およびその試験方法
JP2004180428A (ja) * 2002-11-27 2004-06-24 Densei Lambda Kk バッテリ劣化のオンライン判定方法、無停電電源装置に搭載されるバッテリの劣化判定方法および無停電電源装置

Also Published As

Publication number Publication date
JP2004328928A (ja) 2004-11-18

Similar Documents

Publication Publication Date Title
JP5154660B2 (ja) Upsの動作を制御するためのシステムおよび方法
USRE40528E1 (en) Voltage fluctuation compensating apparatus
JP4487009B2 (ja) 電源装置
US9297838B2 (en) Power supply monitoring circuit, AC/DC conversion apparatus and control method of power supply monitoring circuit
JP2001078370A (ja) 充電器および充電制御回路
JP4201750B2 (ja) 発電システム
JP4552385B2 (ja) 無停電電源装置および無停電電源装置のバッテリのオンライン劣化判定方法
JP5313810B2 (ja) 無停電電源装置
JP4490309B2 (ja) 電力変換装置
JP2003235162A (ja) 給電システムおよびその制御法
JP4054295B2 (ja) 充電装置、無停電電源装置
JP2006238514A (ja) 無停電電源装置
JP3819722B2 (ja) 電圧変動補償装置
JPH08126214A (ja) 蓄電池容量測定方法及び回路
JP2005185045A (ja) デジタル制御電源装置およびその制御方法
JP4349773B2 (ja) バッテリ充電方法及び該充電方法を実施するバックアップ電源装置
JP2002359928A (ja) 電圧変動補償装置
JP6677665B2 (ja) 電源システムおよび電源システムの制御方法
JP4485121B2 (ja) 無停電電源装置
JP2005176567A (ja) 二系統切換給電装置、無停電電源装置および二系統切換給電方法
JP3623766B2 (ja) 交流電源装置
JP2003224978A (ja) 電源電圧変動補償装置およびその適用方法
JP2002286820A (ja) バッテリ残量検出装置
JP2012019676A (ja) 電力伝達用絶縁回路および電力変換装置
JP4476580B2 (ja) 給電装置および給電方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100423

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100423

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4552385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term