WO2012132095A1 - アンモニア酸化触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法 - Google Patents

アンモニア酸化触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法 Download PDF

Info

Publication number
WO2012132095A1
WO2012132095A1 PCT/JP2011/076490 JP2011076490W WO2012132095A1 WO 2012132095 A1 WO2012132095 A1 WO 2012132095A1 JP 2011076490 W JP2011076490 W JP 2011076490W WO 2012132095 A1 WO2012132095 A1 WO 2012132095A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
exhaust gas
ammonia
oxidation catalyst
composite oxide
Prior art date
Application number
PCT/JP2011/076490
Other languages
English (en)
French (fr)
Inventor
友章 伊藤
岡島 利典
永田 誠
Original Assignee
エヌ・イー ケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌ・イー ケムキャット株式会社 filed Critical エヌ・イー ケムキャット株式会社
Priority to US14/008,460 priority Critical patent/US8865615B2/en
Priority to CN201180069695.3A priority patent/CN103442805B/zh
Priority to EP11861929.5A priority patent/EP2692430A4/en
Publication of WO2012132095A1 publication Critical patent/WO2012132095A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9436Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/52712Plural layers on a support, each layer having a distinct function
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/52712Plural layers on a support, each layer having a distinct function
    • Y10S502/52713More than two overlapping layers

Definitions

  • the present invention relates to an ammonia oxidation catalyst, an exhaust gas purification apparatus using the same, and an exhaust gas purification method. More specifically, the present invention relates to a boiler, a gas, by spraying urea water or ammonia water as a reducing component to a selective reduction catalyst.
  • the present invention relates to a gas purification method.
  • Exhaust gas discharged from lean combustion engines such as boilers, lean burn gasoline engines, and diesel engines contains various harmful substances derived from fuel and combustion air depending on the structure and type.
  • harmful substances include hydrocarbon (HC), soluble organic fraction (also called SOF), soot, carbon monoxide (CO), nitrogen oxide (NOx), etc. It is regulated by the Air Pollution Control Law.
  • HC hydrocarbon
  • SOF soluble organic fraction
  • SOF soot
  • CO carbon monoxide
  • NOx nitrogen oxide
  • the combustion temperature is controlled by an operation such as supplying an optimum amount of air in accordance with the type and supply amount of the fuel, so that the incompletely combusted products such as CO and THC are controlled.
  • the combustion temperature may be increased, leading to generation of NOx.
  • nitrogen oxide is easily discharged because the engine is operated by lean combustion.
  • the operating conditions are constantly changing, and thus it has been particularly difficult to appropriately suppress the generation of harmful substances.
  • the catalyst used depends on the harmful components emitted from the engine and the exhaust gas regulations, but mainly the oxidation catalyst for purifying the SOF component, the catalyst for oxidizing and purifying the unburned gas component, and the combination of these with the filter Catalytic systems that collect and oxidize and purify components have been proposed. These catalysts mainly use noble metals such as Pt and Pd for the purpose of promoting the oxidation reaction. Diesel engines have a relatively large displacement compared to gasoline engines, etc., and the amount of exhaust gas that flows out is large.
  • a catalyst system using a NOx storage catalyst or a selective reduction catalyst (hereinafter also referred to as SCR) has been proposed as a NOx purification catalyst in accordance with NOx emission regulation.
  • SCR selective reduction catalyst
  • Several types of reducing agents used for NOx purification are known for SCR catalysts.
  • NOx is finally reduced by the following reaction formulas (1) to (3). reduced to N 2. 4NO + 4NH 3 + O 2 ⁇ 4N 2 + 6H 2 O (1) 6NO 2 + 8NH 3 + O 2 ⁇ 7N 2 + 12H 2 O (2) NO + NO 2 + 2NH 3 ⁇ 2N 2 + 3H 2 O (3)
  • NH 3 gasified as a reducing component may be used, but NH 3 itself has a harmful effect such as an irritating odor. Therefore, a method has been proposed in which urea water is added as an NH 3 component from the upstream of the denitration catalyst, NH 3 is generated by thermal decomposition or hydrolysis, and denitration performance is expressed by the reaction of the above formula as a reducing agent.
  • reaction formula for obtaining NH 3 by decomposition of urea is as follows.
  • a purification catalyst in which a component having oxidative decomposition activity of NH 3 is arranged in the lower layer and a denitration component is arranged in the upper layer (Patent Document 5).
  • Patent Document 5 This not only purifies NH 3 by NH 3 oxidation, but also NOx produced by NH 3 oxidation in the above reaction formulas (5) to (7) reacts with slip NH 3 not yet used in the oxidation reaction. It can also be interpreted as a catalyst responsible for the reaction.
  • an exhaust gas purification catalyst using one or more oxides selected from titanium, tungsten, molybdenum, or vanadium see Patent Document 2
  • an upper layer as a Ce—Ti—SO 4 —Zr component Also proposed is an ammonia oxidative decomposition catalyst using a mixed system of Fe and Si-Al oxide components (see Patent Document 3), and a purification catalyst using an Fe or Ce-containing zeolite in the upper layer (see Patent Document 6).
  • Noble metals are also used as NH 3 oxidizing components in these catalysts responsible for NH 3 purification.
  • a reverse micelle method is used to prevent the noble metal salt inside the catalyst micelle so that the contact area between the noble metal particles and the promoter component is not reduced by sintering. It has been proposed to form composite fine particles in the state in which the metal salt is present at the same time, and thereby, the co-catalyst effect of the metal compound is exhibited, and a high heat-resistant catalyst with high catalytic activity and low cost is obtained. (Patent Document 7). For example, many studies have been made on exhaust gas catalysts using Au as an alternative metal for platinum group elements in automobile catalysts.
  • Patent Document 8 As an exhaust gas purification catalyst made of an Au catalyst having high CO oxidation activity, a catalyst in which Au is supported on a carrier made of a ceria-zirconia solid solution having a ceria content of 40 to 80 wt% has been proposed (Patent Document 8). )
  • an object of the present invention is to supply urea water or ammonia water as a reducing component to the selective reduction catalyst by spraying, so that lean combustion of boilers, gas turbines, lean burn gasoline engines, diesel engines, etc.
  • the ammonia slipped from the selective reduction catalyst is oxidized while effectively suppressing N 2 O by-product even under high space velocity (SV).
  • SV space velocity
  • a catalyst layer (lower layer) containing a catalyst in which a noble metal element is supported on a composite oxide (A) mainly composed of titania and silica, and substantially tungsten oxide, ceria, and zirconia are formed on the surface of the monolithic structure type carrier.
  • urea or ammonia is added to the exhaust gas discharged from the lean combustion engine as a nitrogen oxide reducing agent, and the nitrogen oxide is selected by the selective reduction catalyst (SCR).
  • SCR selective reduction catalyst
  • a MOX ammonia oxidation catalyst
  • a noble metal element is added to the composite oxide (A) mainly composed of titania and silica on the surface of the monolithic support.
  • a composite layer comprising a catalyst layer (lower layer) containing a supported catalyst and a catalyst layer (upper layer) containing a composite oxide (C) composed of tungsten oxide, ceria, and zirconia.
  • Ammonia characterized in that the composition of the oxide (C) is tungsten oxide: 1 to 50% by weight, ceria: 1 to 60% by weight, and zirconia: 30 to 90% by weight A oxidation catalyst.
  • the composition of the composite oxide (A) is titania: 60 to 99% by weight and silica: 1 to 40% by weight.
  • An ammonia oxidation catalyst is provided.
  • the composite oxide (A) further contains one or more selected from zirconia or alumina, and the content thereof is 30% by weight. % Or less, an ammonia oxidation catalyst is provided.
  • the composite oxide (C) has a composition of tungsten oxide: 3 to 30% by weight, ceria: 5 to 40% by weight, and zirconia: 50
  • An ammonia oxidation catalyst characterized in that it is ⁇ 90% by weight is provided.
  • the noble metal element supported on the composite oxide (A) contains platinum, and the content thereof is 0 per unit volume of the monolithic structure type carrier.
  • an ammonia oxidation catalyst characterized in that the amount is 0.01 to 1.0 g / L.
  • the coating amount of the composite oxide (A) of the catalyst layer (lower layer) is 10 to 120 g / L per unit volume of the monolithic support.
  • An ammonia oxidation catalyst is provided.
  • the coating amount of the composite oxide (C) in the catalyst layer (upper layer) is 30 to 150 g / unit volume of the monolithic support.
  • An ammonia oxidation catalyst characterized by being L is provided.
  • an oxidation catalyst having a function of oxidizing nitrogen monoxide and hydrocarbons and a particulate in the exhaust gas flow path.
  • a filter that collects and removes matter, spray means for supplying urea aqueous solution or aqueous ammonia solution, selective reduction catalyst (SCR), and ammonia oxidation catalyst (AMOX) are arranged in this order.
  • An exhaust gas purifying apparatus is provided.
  • the selective reduction catalyst is a composite oxidation comprising a zeolite (D) containing at least an iron element, tungsten oxide, ceria, and zirconia.
  • the exhaust gas exhausted from the lean combustion engine is passed through the oxidation catalyst (DOC) and the filter (DPF) using the exhaust gas purification device of the eighth or ninth aspect.
  • DOC oxidation catalyst
  • DPF filter
  • SCR selective reduction catalyst
  • NH 3 component as a reducing agent is selectively reduced, for example, from 130 to 560 ° C. from a low temperature to a high temperature.
  • the slipped NH 3 is purified with high efficiency even with a low noble metal loading compared to the prior art, and a new product accompanying N 2 O by-product and NH 3 oxidation is obtained.
  • Generation of NOx can be suppressed.
  • no harmful heavy metal such as vanadium is contained as a catalyst component, safety is high. Furthermore, since pressure loss can be reduced, it is possible to meet demands for lower fuel consumption and higher output.
  • FIG. 1 is a graph showing the ammonia conversion rate when the ammonia oxidation catalyst of the present invention (Example) or a conventional ammonia oxidation catalyst (Comparative Example) is used.
  • FIG. 2 is a graph showing the N 2 O emission concentration when the ammonia oxidation catalyst of the present invention (Example) or the conventional ammonia oxidation catalyst (Comparative Example) is used.
  • FIG. 3 is a graph showing the NOx emission concentration when the ammonia oxidation catalyst of the present invention (Example) or the conventional ammonia oxidation catalyst (Comparative Example) is used.
  • ammonia oxidation catalyst of the present invention the exhaust gas purification apparatus using the same, and the exhaust gas purification method will be described in detail by taking a diesel engine mainly used in an automobile as an example.
  • ammonia oxidation catalyst (AMOX)
  • the ammonia oxidation catalyst of the present invention (hereinafter, also referred to as “the catalyst”) is a process in which urea or ammonia is added as a nitrogen oxide reducing agent to exhaust gas discharged from a lean combustion engine, and nitrogen oxidation is performed by a selective reduction catalyst (SCR).
  • SCR selective reduction catalyst
  • the composite oxide (A) mainly composed of titania and silica is formed on the surface of the monolithic structure type carrier.
  • At least two catalyst layers having a catalyst layer (lower layer) containing a catalyst supporting a noble metal element and a catalyst layer (upper layer) containing a composite oxide (C) substantially composed of tungsten oxide, ceria and zirconia
  • the composite oxide (C) has a composition of tungsten oxide: 1 to 50% by weight, ceria: 1 to 60% by weight, and zirconia: 30 to 90% by weight. It is characterized in.
  • the lower catalyst layer includes a catalyst in which a noble metal element is supported on a composite oxide (A) mainly composed of titania and silica, and has an ammonia oxidation function.
  • A composite oxide
  • the noble metal component is one or more elements selected from platinum, palladium, or rhodium. Of these, platinum has high oxidation activity and exhibits excellent NH 3 oxidation performance, so it is desirable to contain it as a main noble metal component in the lower catalyst layer.
  • the main noble metal component refers to a component that is contained in an amount of 50 wt% or more based on the total amount of noble metals used in the catalyst of the present invention, and all of the noble metals may be platinum.
  • the amount of platinum used is preferably 0.01 to 1.0 g / L per unit volume of the monolithic structure type carrier when the lower layer catalyst layer component of the present invention is coated on the monolithic structure type carrier. And 0.02 to 0.5 g / L is more preferable. If it is less than 0.01 g / L, the activity of platinum cannot be fully utilized, and if it exceeds 1.0 g / L, the amount of reduction in the amount of noble metal used is not sufficient.
  • the catalyst component forming the lower catalyst layer exhibits excellent oxidation performance when the noble metal is particularly Pt or Pd.
  • Pt is an excellent oxidizing catalytically active species, maintaining its specific surface area high can increase the active surface and exhibit high activity. Therefore, in the present invention, it is preferable that at least platinum is supported on the composite oxide (A) mainly composed of titania and silica.
  • the precious metal can be supported in a highly dispersed state, and since the heat resistance is high, the precious metal component is difficult to sinter, and the high dispersion of the precious metal during use can be maintained for a long time.
  • the composite oxide (A) is an inorganic base material mainly containing titania and silica having a high specific surface area and excellent heat resistance, and can support a noble metal component such as platinum in a highly dispersed manner.
  • the composition of the composite oxide (A) is preferably titania: 60 to 99% by weight and silica: 1 to 40% by weight.
  • the composite oxide (A) further contains at least one of zirconia and alumina, and it is more preferable that at least one of zirconia and alumina in the composite oxide (A) is 0 to 30% by weight.
  • the composite oxide (A) essentially contains titania and silica, and a composite oxide containing at least one of zirconia and alumina of 30% by weight or less, such as titania-silica, titania-silica-zirconia, titania.
  • Inorganic oxides such as silica-alumina and titania-silica-zirconia-alumina can be used.
  • Such inorganic oxide (inorganic base material) is, speaking in terms of the dispersibility of the noble metal component, (by the BET method, hereinafter the same) specific surface area is preferably is 30 m 2 / g or more, further 100 m 2 / What is more than g is more preferable. If the specific surface area value is 30 m 2 / g or more, the noble metal can be stably supported in a highly dispersed state.
  • platinum chloride (IV) acid diammine platinum nitrite (II), platinic acid amine solution, chloroplatinic acid, platinum nitrate, dinitrodiammine palladium, palladium nitrate, chloride
  • a metal salt such as palladium, rhodium (III) chloride, or rhodium nitrate (III)
  • the content of the composite oxide (A) in the lower catalyst layer is 10 to 120 g / L, preferably 15 to 100 g / L, per unit volume of the monolithic structure type carrier.
  • the reason is that if the composite oxide (A) is too much, an excessive amount is supported in order to improve the dispersibility of Pt. As a result, the pressure loss may increase and the price may be increased. This is because the degree of dispersion cannot be ensured, and NH 3 oxidation is not promoted and NH 3 slip may occur.
  • the lower layer coated with the integral catalyst carrier of the present invention may have a material having a NOx purification function, in addition to the composite oxide (A) as the inorganic base material.
  • Materials having NOx purification function include transition oxides such as titania, zirconia, tungsten oxide, ceria, lanthanum, praseodymium, samarium, gadolinium, neodymium, etc. as well as composite oxide (C) and zeolite (D) described later.
  • Transition oxides such as titania, zirconia, tungsten oxide, ceria, lanthanum, praseodymium, samarium, gadolinium, neodymium, etc.
  • C composite oxide
  • D zeolite
  • the upper catalyst layer is composed of a composite oxide (C) composed of tungsten oxide, ceria, and zirconia as an essential component and does not include a noble metal component, and NOx present with slip NH 3. That is, it has the function of promoting NOx purification by reacting with NOx produced by oxidation of slip NH 3 or NOx that has not been sufficiently purified by the SCR catalyst.
  • C composite oxide
  • the composite oxide (C) is composed of tungsten oxide: 1 to 50% by weight, ceria: 1 to 60% by weight, and zirconia: 30 to 90% by weight, and more preferably tungsten oxide: 3 to The composition is 30% by weight, ceria: 5 to 40% by weight, and sirconia: 50 to 90% by weight.
  • tungsten oxide includes not only tungsten oxide but also tungsten element alone.
  • each component in the composite oxide (C) is considered as follows, for example.
  • Ceria is known as a NOx adsorption functional material, and also has the function of promoting the SCR reaction between NH 3 and NOx by promoting NOx adsorption in this material system.
  • Zirconia functions as a dispersion-holding material for highly dispersing other components in a thermally stable state.
  • tungsten oxide has strong acidity and has a large adsorption power for urea and ammonia, which are alkali components. Therefore, the use of tungsten oxide increases the denitration performance.
  • starting materials having forms such as nitrates, sulfates, carbonates, acetates, and chlorides containing tungsten, cerium, and zirconium are dissolved in an aqueous solution at a time, and then mixed, resulting in a precipitate by adjusting pH, etc.
  • Solids obtained by sedimentation or evaporation to dryness may be calcined, or after the oxides are formed by performing the above treatment on a single or multiple metal salts, the remaining metal salts are It may be carried at once or sequentially.
  • Each element is manufactured by adding all elements at once, or by first producing a core powder from one or several kinds of elements and then loading the remaining elements at once or sequentially, so that each element has an optimal composition.
  • the composite oxide (C) contained in can be prepared.
  • the coating amount of the composite oxide (C) is 30 to 150 g / L, more preferably 30 to 120 g / L, per unit volume of the monolithic structure type carrier.
  • the amount is less than 30 g / L, the reaction between NH 3 and NOx decreases, the SCR function becomes insufficient, and the NH 3 adsorption capacity decreases, so NH 3 that could not come into contact with Pt in the lower catalyst layer slips. There is.
  • the catalyst upper layer of the present invention may contain a material having a NOx purification function, in addition to the composite oxide (C).
  • Materials having NOx purification function include zeolite (D) described later, transition metal oxides such as titania, zirconia and tungsten oxide, rare earth oxides such as ceria, lanthanum, praseodymium, samarium, gadolinium and neodymium, gallium oxide , Iron oxides such as tin oxide, or complex oxides thereof.
  • the monolithic structure type carrier in the present invention is not particularly limited by the type.
  • a honeycomb structure type carrier a sheet-like structure knitted with a fine fibrous material, and a felt-like noncombustible structure made of a relatively thick fibrous material can be used.
  • a honeycomb structure type carrier is preferable, and a honeycomb structure type carrier whose surface is coated with a catalyst component may be hereinafter referred to as a honeycomb structure type catalyst.
  • the type of the honeycomb structure type carrier is not particularly limited, and can be selected from known honeycomb structure type carriers. Such a type includes a flow-through type carrier and a wall-flow type carrier used for DPF and CSF.
  • the present catalyst only purifies slip NH 3 after the selective reduction catalyst (SCR). Since it is used as an object, a flow-through type carrier is preferable.
  • the honeycomb structure has an arbitrary overall shape, and can be appropriately selected according to the structure of the exhaust system to be applied, such as a cylindrical shape, a quadrangular prism shape, or a hexagonal prism shape.
  • an appropriate number of holes can be determined in consideration of the type of exhaust gas to be processed, gas flow rate, pressure loss, removal efficiency, etc. It is preferably about 10 to 1500 per square inch, particularly preferably 100 to 900. If the cell density per square inch is 10 or more, the contact area between the exhaust gas and the catalyst can be secured, and a sufficient exhaust gas purification function can be obtained, and the cell density per square inch should be 1500 or less. In this case, no significant exhaust gas pressure loss occurs, so that the performance of the internal combustion engine is not impaired.
  • the lower layer when the catalyst component of the present invention is used by coating it on a permeable structural carrier such as ceramics, the lower layer component penetrates the structural carrier, and all or part of the lower layer is a structural carrier. And may be integrated. Further, the structural carrier may be composed of lower layer components, and the upper layer components may be coated thereon. In some cases, a bottom layer is provided between the lower layer and the structural support for the purpose of improving the adhesion of the catalyst layer. In this case, the relationship between the bottom layer and the lower layer is the same as the relationship between the structural support and the lower layer. It is. Further, in such a honeycomb structure type carrier, the thickness of the cell wall is preferably 2 to 12 mil (milli inch), more preferably 4 to 8 mil.
  • the material of the honeycomb structure type carrier includes metals such as stainless steel and ceramics such as cordierite.
  • a sheet-like structure knitted from a fine fibrous material and a felt-like non-combustible structure made of a relatively thick fibrous material can be used.
  • the coating amount is 200 to 900 holes per square inch and the cell wall thickness is 4 to 8 mil.
  • the upper layer has a coating amount of 50% or more of the lower layer, and the total coating amount of the upper layer and lower layer is preferably 40 g / L or more, more preferably 50 g / L or more per unit volume.
  • the upper limit of the coating amount is not particularly limited as long as the production cost does not increase, the pores of the honeycomb are clogged, or the back pressure of the exhaust gas does not increase remarkably, but the flow-through type honeycomb carrier is not limited. Is preferably about 230 g / L or less, and more preferably about 170 g / L. Although it depends on the cell density of the carrier used, when a honeycomb structure having an actual cell density is used, the back pressure rises when the catalyst is loaded in an amount exceeding 230 g / L, and the performance of the combustion engine is increased. May interfere.
  • a solid acid, a binder, or the like can be mixed and used in addition to the above materials.
  • solid acids include WO 3 / ZrO 2 , WO 3 / TiO 2 , SO 3 / ZrO 2 , metallosilicates, etc.
  • binders include alumina, silica, titania, silica-alumina, zirconia and their A sol, gel, solution, or the like is preferably used.
  • each layer is not particularly limited and may be, for example, 1 to 430 ⁇ m, and particularly preferably 20 to 250 ⁇ m.
  • the thickness of the upper layer is preferably 40 to 250 ⁇ m, and the thickness of the lower layer is preferably 1 to 180 ⁇ m.
  • the thickness of each layer may be non-uniform, but the average value is preferably within the above range. If the thickness of each layer is too thin, the catalyst component will be insufficient and it will be difficult to perform the function as a layer. On the other hand, if it is too thick, gas diffusibility will be reduced and mass transfer will be hindered.
  • a lower layer catalyst material, an upper layer catalyst material, and an integral structure type carrier are prepared.
  • the catalyst material is produced by mixing an additive such as a binder or a surfactant with an aqueous medium as necessary to form a slurry mixture, coating the monolithic support, drying and firing. That is, the catalyst material and the aqueous medium are mixed at a predetermined ratio to obtain a slurry mixture.
  • the aqueous medium may be used in such an amount that each catalyst component can be uniformly dispersed in the slurry.
  • the lower layer catalyst material contains a noble metal component containing at least platinum and a composite oxide (A) mainly composed of titania and silica as an inorganic base material.
  • the noble metal component can also be supported on an inorganic base material in advance.
  • a metal catalyst component and an inorganic base material are mixed in an aqueous medium to prepare a slurry.
  • a known method can be adopted as appropriate.
  • An example thereof is as follows. First, as raw materials for precious metal components, compounds such as nitrates, sulfates, carbonates, acetates, specifically platinum (IV) chloride, diammineplatinum (II) nitrite, amine hydroxide platinate, chloroplatinic acid , Platinum nitrate, dinitrodiammine palladium, palladium nitrate, palladium chloride, rhodium (III) chloride, rhodium (III) nitrate. From these, a noble metal component raw material is selected and dissolved in water or an organic solvent to form a solution. Note that water or a solvent obtained by adding a water-soluble organic solvent to water is hereinafter referred to as “aqueous medium”.
  • this noble metal component raw material solution is mixed with an inorganic base material together with an aqueous medium, dried at 50 to 200 ° C. to remove the solvent, and then fired at 300 to 1200 ° C.
  • a known catalyst material may be blended as a binder or the like.
  • known catalyst materials include alumina, silica, titania, zirconia, silica-alumina, ceria, alkali metal materials, alkaline earth metal materials, transition metal materials, rare earth metal materials, silver, silver salts, and the like. If necessary, a dispersant and a pH adjuster can be used in combination.
  • the catalyst composition is applied to the monolithic support as a slurry mixture to coat the catalyst composition.
  • a coating method is not particularly limited, but a wash coat method is preferable.
  • drying and firing are performed to obtain a monolithic structure type catalyst on which the catalyst composition is supported.
  • the drying temperature is preferably from 100 to 300 ° C, more preferably from 100 to 200 ° C.
  • the firing temperature is preferably 300 to 700 ° C., more preferably 400 to 600 ° C.
  • the drying time is preferably 0.5 to 2 hours, and the firing time is preferably 1 to 3 hours.
  • a heating means it can carry out by well-known heating means, such as an electric furnace and a gas furnace.
  • the upper catalyst material contains a composite oxide (C) substantially consisting of tungsten oxide, ceria, and zirconia, and separately from this, zeolite can be blended as necessary as an upper catalyst material.
  • C composite oxide
  • zeolite can be blended as necessary as an upper catalyst material.
  • the thickness of the layer may vary depending on the part of the honeycomb. It is in the range of 1 to 250 ⁇ m, more preferably in the range of 20 to 250 ⁇ m. If the upper layer is too thin and less than 5 ⁇ m, the gas diffusibility may decrease. If the total layer is too thick and exceeds 430 ⁇ m, there is a concern about the load on the engine due to an increase in pressure loss. Particularly preferred thicknesses are the upper layer: 40 to 250 ⁇ m and the lower layer: 1 to 180 ⁇ m.
  • an exhaust gas flow path collects and removes oxidation catalyst (DOC) having a function of oxidizing nitric oxide and hydrocarbons and particulate matter in an exhaust gas passage.
  • An exhaust gas purification catalyst device is configured by arranging a filter (DPF), a spray means for supplying an aqueous urea solution or an aqueous ammonia solution, a selective reduction catalyst (SCR), and the ammonia oxidation catalyst (AMOX) in this order. Is done.
  • Diesel engines have a relatively low exhaust gas temperature compared to gasoline engines due to their structural characteristics, and the temperature is generally room temperature to 700 ° C.
  • the exhaust gas temperature is particularly low during start-up and low loads. However, when the temperature of the exhaust gas is low, the temperature of the catalyst does not rise sufficiently, the purification performance is not sufficiently exhibited, and NOx in the exhaust gas is easily exhausted without being sufficiently purified.
  • an oxidation catalyst that oxidizes HC and CO in the exhaust gas, and a filter that collects combustible particle components contained in the exhaust gas (DPF) is arranged.
  • DOC oxidation catalyst
  • a known platinum or a catalyst mainly composed of activated alumina on which at least one of palladium is supported can be used.
  • the carrier of the oxidation catalyst activated alumina containing La can be used, and a catalyst containing ⁇ -type zeolite ion-exchanged with cerium may be used.
  • the DOC preferably contains a platinum component or a palladium component as a noble metal component, and the amount of the noble metal component is preferably 0.1 to 4 g / L, more preferably 0.5 to 3 g / L in terms of metal. . And the noble metal component is too much becomes a high cost, sometimes not too little Suitable NO 2 / NOx ratio.
  • the noble metal component preferably contains 30 to 100 w% platinum in terms of metal, and more preferably 50 to 100 w% platinum.
  • Many diesel oils used in diesel automobile fuel contain 50 ppm or more of sulfur components, and exhaust gases containing such sulfur components may poison noble metals in the catalyst components. Palladium tends to be easily poisoned by sulfur, whereas platinum tends to be hardly poisoned by sulfur. Therefore, it is preferable to use platinum as a precious metal component as a main component in the DOC used in the present invention.
  • the combustible particle components collected by the DPF are then burned and removed, and the DPF function is regenerated.
  • NO 2 is used for burning soot in the DPF. Combustion of soot by NO 2 is milder than oxygen and hardly induces damage to the DPF due to combustion heat.
  • Some DPFs are coated with an oxidation catalyst for the purpose of promoting this combustion regeneration, and are called CSFs. In the present invention, DPF includes CSF unless otherwise specified.
  • An SCR catalyst is disposed after the DOC and DPF.
  • the combustion engine to which the present invention is applied ranges from a small automobile having a displacement of about 1 L to a heavy-duty diesel engine having a displacement of more than 50 L, and exhausted from these diesel engines.
  • NOx in the exhaust gas varies greatly depending on its operating state, combustion control method, and the like.
  • the SCR catalyst which purifies NOx in the exhaust gas discharged from these diesel engines can also be selected according to the diversity of diesel engine exhaust amount exceeding about 1L to more than 50L.
  • a NOx occlusion catalyst may be used separately from the SCR, which is referred to as LNT (Lean NOx Trap).
  • LNT Lean NOx Trap
  • the NOx occluded in the LNT purifies the NOx using HC and CO, which are reducing components in the exhaust gas, as a reducing agent, but the SCR may be combined with such an LNT.
  • a selective catalytic reduction catalyst formed by coating the surface of a monolithic support with a catalyst layer containing a composite oxide comprising at least an iron element and a tungsten oxide, ceria, and zirconia.
  • a composite oxide in addition to the composite oxide (C) that is a component of the catalyst, a material obtained by adding silica to the composite oxide (C) can also be used.
  • Zeolite (D) described below is preferred as the zeolite that is a component of the SCR catalyst.
  • examples of the zeolite (D) include ⁇ -type and MFI-type zeolites having a three-dimensional pore structure, and zeolites such as A, X, Y, MOR, CHA, and SAPO. Among them, ⁇ -type zeolite or MFI-type zeolite is preferable.
  • the ⁇ -type zeolite preferably used in the present catalyst is classified, for example, as a tetragonal synthetic zeolite whose unit cell composition is represented by the following average composition formula.
  • M m / x [Al m Si (64-m) O 128 ] .pH 2 O (Wherein M is a cationic species, x is the valence of M, m is a number greater than 0 and less than 64, and p is a number greater than or equal to 0)
  • This ⁇ -type zeolite has a relatively complicated three-dimensional pore structure composed of linear pores having a relatively large diameter and unidirectionally aligned pores and curved pores intersecting with the pores. And diffusion of gas molecules such as NH 3 are easy.
  • such a structure has only a linear hole in which mordenite, faujasite, etc. are aligned in one direction, whereas it is a unique structure, and because it is such a complicated hole structure, ⁇ -zeolite is highly effective because it is difficult to cause structural breakdown due to heat and has high stability.
  • zeolite needs to have an acid point capable of adsorbing a basic compound such as NH 3 , but the number of acid points varies depending on the Si / Al ratio.
  • zeolite with a low Si / Al ratio has a large number of acid sites, but the degree of deterioration is large in durability in the presence of water vapor, and on the contrary, zeolite with a high Si / Al ratio is excellent in heat resistance.
  • NH 3 is adsorbed on the acid sites of the zeolite, and these serve as active sites to reduce and remove nitrogen oxides such as NO 2, so the one with more acid sites (the one with a lower Si / Al ratio). This is advantageous for the denitration reaction.
  • a molar ratio of SiO 2 and Al 2 O 3 (hereinafter abbreviated as SAR) by component analysis is generally used.
  • SAR has a trade-off relationship between durability and activity, but considering these, the SAR of zeolite is preferably 15 to 300, more preferably 17 to 60. Such characteristics are also possessed by ⁇ -type zeolite and MFI-type zeolite.
  • the zeolite (D) contains a zeolite containing an iron element as a main component.
  • zeolite has a cation as a counter ion as a solid acid point. As the cation, ammonium ions and protons are generally used.
  • an iron element is added as a cation species to the ⁇ -type zeolite used in the present catalyst.
  • Fe- ⁇ an iron element added as a cation species to the ⁇ -type zeolite used in the present catalyst.
  • Fe- ⁇ an iron element added as a cation species to the ⁇ -type zeolite used in the present catalyst.
  • NO is oxidized to NO 2 on the zeolite surface to increase the reaction activity with NH 3
  • the framework structure of the zeolite is It is thought that it is stabilized and contributes to the improvement of heat resistance.
  • the amount of Fe added to the zeolite is preferably 0.1 to 5 wt%, more preferably 0.5 to 4.5 wt% in terms of Fe 2 O 3 .
  • the amount of the iron element exceeds 5 wt% in terms of Fe 2 O 3 , the number of active solid acid points cannot be secured and the activity is lowered. If the amount of iron element is less than 0.1 wt% in terms of Fe 2 O 3 , it is not preferable because sufficient NOx purification performance cannot be obtained and exhaust gas purification performance is lowered. In addition, although all of the iron element added as an ion exchange seed may be ion-exchanged, a part thereof may exist in the state of iron oxide.
  • the method for supporting the iron element may be an ion exchange method or an impregnation method.
  • a metal catalyst component it is desirable that at least a part of the zeolite is ion-exchanged with the metal catalyst component.
  • the metal catalyst component may not be completely ion-exchanged, and a part thereof may exist as an oxide.
  • Zeolite to which such an iron element is added can be purchased in various grades from major zeolite manufacturers, and can also be produced as described in JP-A-2005-502451.
  • nitrates, acetates, chlorides and the like containing iron element may be solubilized in an aqueous solution, and then zeolite may be added and supported by an impregnation method.
  • the precipitate obtained by adjusting the pH with the above may be dried and calcined, or the zeolite may be immersed in an aqueous solution of nitrate, acetate, chloride, etc.
  • the firing temperature is preferably 300 to 800 ° C, more preferably 400 to 600 ° C.
  • a heating means it can carry out by well-known heating means, such as an electric furnace and a gas furnace.
  • MFI type zeolite As a zeolite having a three-dimensional pore structure preferable as a zeolite of the present catalyst, for example, MFI type zeolite is also known as an SCR component.
  • the Si / Al ratio of the MFI type zeolite is also the same as that of the ⁇ type zeolite described above.
  • the MFI type zeolite contains an iron element like the ⁇ type zeolite.
  • the MFI-type zeolite containing an iron element may be hereinafter referred to as “Fe-MFI”.
  • the zeolite species may be used in combination with one or more of various types of zeolite such as A, X, Y, MOR, CHA, and SAPO.
  • the total proportion of the various ⁇ -type zeolites or MFI-type zeolites in the total zeolite is preferably 50 to 100%.
  • the zeolite may contain other transition metals, rare earth metals, noble metals, and the like.
  • transition metals such as nickel, cobalt, zirconium and copper, and rare earth metals such as cerium, lanthanum, praseodymium and neodymium.
  • noble metals such as gold, silver, platinum, palladium, rhodium, iridium, ruthenium, niobium, tungsten, tantalum, ceria, cerium-zirconium composite oxide, lanthanum oxide, alumina, silica, zirconia, vanadia, tin, gallium, etc.
  • Materials that can generally be used as catalyst materials such as alkali elements and alkaline earth elements, can be appropriately added within a range that does not impair the object of the present invention.
  • composition of the material system in which silica is added to the composite oxide (C) is as follows: silica: 20% by weight or less, tungsten oxide: 1-50% by weight, ceria: 1-60% by weight, and zirconia: 30-90% by weight More preferred are silica: 5 wt% or less, tungsten oxide: 3-30 wt%, ceria: 5-40 wt%, and zirconia: 50-90 wt%.
  • the coating amount is preferably 10 to 80% by weight with respect to the entire catalyst layer.
  • the SCR catalyst When the reducing agent is urea, the SCR catalyst includes a composite oxide (E) as a hydrolysis component of the urea component in addition to the zeolite (D) or the composite oxide (C) as the denitration component. It is desirable to contain.
  • the composite oxide (E) is preferably a composite oxide substantially composed of titania, silica, and zirconia. More preferably, the composition is titania: 70 to 95% by weight, silica: 1 to 10% by weight, and zirconia: 5 to 20% by weight.
  • the coating amount of the zeolite (D), composite oxide (C) and urea hydrolysis component (E) constituting the catalyst layer is preferably 200 to 350 g / L, more preferably 220 to 330 g / L. . If the coating amount is too small, the denitration effect may not be obtained sufficiently. If the coating amount is too large, the pores of the honeycomb may be clogged, the exhaust gas back pressure may increase significantly, and the engine performance may be reduced. is there.
  • the coating amount of zeolite (D) is 10 to 80% by weight with respect to the entire catalyst layer, and the coating amount of composite oxide (C) is 10 to 80% with respect to the entire catalyst layer. It is preferable that the coating amount of the composite oxide (E) is 1 to 30% by weight with respect to the entire catalyst layer.
  • the SCR catalyst may be coated with a single layer structure on a monolithic structure type carrier, but it may be formed by coating and laminating two or more layers.
  • composite oxide (C) which can contain silica, and substantially titania, silica and zirconia
  • the catalyst layer containing the composite oxide (E) made of is coated in two upper and lower layers.
  • the lower layer contains 50 to 90% by weight of zeolite (D), 10 to 40% by weight of composite oxide (C), and 1 to 30% by weight of composite oxide (E), while the upper layer contains zeolite (D).
  • the coating amount of the lower layer is preferably 20 to 50% by weight, and the coating amount of the upper layer is preferably 50 to 80% by weight.
  • the coating amount of the upper layer is 30 to 45% by weight, and the coating amount of the upper layer is 55 to 70% by weight.
  • the present catalyst having an NH 3 purification function is disposed downstream of the SCR catalyst.
  • the catalyst is excellent in NH 3 purifying performance with respect to exhaust gas flow, it is possible to oxidize NH 3 coming slipping from the SCR catalyst efficiently.
  • the ammonia oxidation catalyst (AMOX) of the present invention is disposed at the rear stage of the SCR catalyst, and the slip NH 3 is oxidized and purified. Further, the NOx generated by NOx or NH 3 oxidation flowing out SCR catalyst, is reacted with a slip NH 3 that is not already being used in the oxidation reaction promotes NOx purification. That is, NO and NO 2 in the exhaust gas flow into the upper layer of AMOX, react with the supplied NH 3, and are reduced to nitrogen, and then surplus ammonia is supplied to the upper layer of the catalyst and partially adsorbed and retained. Is done.
  • NO that passes through the upper layer and reaches the lower layer is oxidized to NO 2 by the noble metal component (Pt), this NO 2 moves to the upper layer, reacts with NH 3 adsorbed and held in the upper layer, and N 2 It is discharged as H 2 O. Then, in the lower layer react with NH 3 to NO 2, which is oxidized from NO to NO 2 by the noble metal is adsorbed and held in the lower layer is discharged as N 2 and H 2 O. In this way, the NOx purification may be further improved by AMOX.
  • the performance of the NH 3 oxidation catalyst is high, it is possible to oxidize and purify NH 3 from a lower temperature as long as the amount of the noble metal supported is the same as that of the conventional catalyst technology.
  • NH 3 oxidation purification performance equivalent to the above can be obtained.
  • the temperature of exhaust gas exhausted from automobile diesel engines covers a wide range, and when this is divided into a low temperature range of about 150 to 250 ° C. and a high temperature range of about 300 to 600 ° C., the NH 3 oxidation of the present invention.
  • the catalyst Since the catalyst has excellent NOx purification activity in the low temperature range and excellent heat resistance, if a SCR catalyst with excellent denitration performance in the high temperature range is selected and placed in the previous stage, a wide temperature range from the low temperature range to the high temperature range is possible. High denitration performance can be demonstrated.
  • an integral structure carrier that is, a honeycomb flow-through cordierite carrier (300 cells, 5 mil, ⁇ 25.4 mm ⁇ 24 mm length) is immersed in the slurry A, and the catalyst loading per unit volume is 30 g / L. It was applied by a wash coat method. Then, it was dried at 150 ° C. for 1 hour and calcined at 500 ° C. for 2 hours in an air atmosphere to obtain catalyst B with a lower layer applied.
  • a honeycomb flow-through cordierite carrier 300 cells, 5 mil, ⁇ 25.4 mm ⁇ 24 mm length
  • Table 1 has shown content of each component by a weight part when a W / Ce / Zr material is 100 weight part. Then, by using the NH 3 oxidation catalysts obtained were carried out following the catalyst performance evaluation. The evaluation results of the catalyst performance are shown in FIGS.
  • Pt-supported titania powder and water Pt terms 0 as the base material .332 wt%
  • an integral structure carrier that is, a honeycomb flow-through cordierite carrier (300 cells, 5 mil, ⁇ 25.4 mm ⁇ 24 mm length) is immersed in the slurry F, and the catalyst loading per unit volume is 30 g / L. It was applied by a wash coat method. Then, it was dried at 150 ° C. for 1 hour, and calcined at 500 ° C. for 2 hours in an air atmosphere to obtain a catalyst G coated with a lower layer.
  • a honeycomb flow-through cordierite carrier 300 cells, 5 mil, ⁇ 25.4 mm ⁇ 24 mm length
  • Example 3 Production of NH 3 oxidation catalyst AMOX (3); Instead of titania powder D with a base material for the noble metal-supported (90wt% TiO 2 / 10wt% SiO 2), was used titania powder E (80wt% TiO 2 / 15wt % SiO 2 / 5wt% Al 2 O 3) Except that, AMOX (3) shown in Table 1 was obtained in the same manner as in the method described in Example 2. Then, by using the NH 3 oxidation catalyst obtained was carried catalyst performance evaluation in the same manner as described in Example 1. The evaluation results of the catalyst performance are shown in FIGS.
  • Example 4 Production of NH 3 oxidation catalyst AMOX (4); AMOX (4) shown in Table 1 was obtained in the same manner as in Example 3 except that the amount of the catalyst supported on the upper layer was changed to 110 g / L and changed to 55 g / L. Then, by using the NH 3 oxidation catalyst obtained was carried catalyst performance evaluation in the same manner as described in Example 1. The evaluation results of the catalyst performance are shown in FIGS.
  • the slurry L was immersed in an integral structure carrier, that is, a honeycomb flow-through cordierite carrier (300 cells / 5 mil, ⁇ 25.4 mm ⁇ 24 mm length), and the catalyst loading per unit volume was 85 g / L. It was applied by a wash coat method so that Then, it was dried at 150 ° C. for 1 hour, and calcined at 500 ° C. for 2 hours in an air atmosphere to obtain catalyst H with a lower layer applied. The lower layer-coated catalyst H thus obtained carries 1.0 g / L of Pt per unit volume.
  • an integral structure carrier that is, a honeycomb flow-through cordierite carrier (300 cells / 5 mil, ⁇ 25.4 mm ⁇ 24 mm length)
  • the catalyst loading per unit volume was 85 g / L. It was applied by a wash coat method so that Then, it was dried at 150 ° C. for 1 hour, and calcined at 500 ° C. for 2 hours in an air atmosphere to obtain catalyst H with
  • the lower layer-coated catalyst H was immersed in this slurry I and applied by a wash coat method so that the amount of the catalyst supported per unit volume was 115 g / L. Then, it was dried at 150 ° C. for 1 hour, and calcined at 500 ° C. for 2 hours in an air atmosphere to obtain a comparative AMOX (5) shown in Table 1.
  • the numerical value of Table 1 has shown content of each component by a weight part when Fe zeolite is 100 weight part.
  • Comparative Example 2 In Comparative Example 1, ammonia concentration was changed except that the noble metal concentration of the Pt-supported titania powder under the ammonia oxidation catalyst AMOX (5) was changed so that the final amount of Pt supported per unit volume of the catalyst was 0.7 g / L. An ammonia oxidation catalyst AMOX (6) was obtained in the same manner as the oxidation catalyst AMOX (5). Similarly, it was installed in a model gas test apparatus and the catalyst performance was evaluated. The evaluation results of the catalyst performance are shown in FIGS.
  • Comparative Example 3 In Comparative Example 1, except that the noble metal concentration of the Pt-supported titania powder under the ammonia oxidation catalyst AMOX (5) was changed so that the final amount of Pt supported per unit volume of the catalyst was 0.5 g / L. An ammonia oxidation catalyst AMOX (7) was obtained in the same manner as the oxidation catalyst AMOX (5). Similarly, it was installed in a model gas test apparatus and the catalyst performance was evaluated. The evaluation results of the catalyst performance are shown in FIGS.
  • Comparative Example 4 In Comparative Example 1, except that the noble metal concentration of the Pt-supported titania powder under the ammonia oxidation catalyst AMOX (5) was changed so that the final amount of Pt supported per unit volume of the catalyst was 0.1 g / L. An ammonia oxidation catalyst AMOX (8) was obtained in the same manner as the oxidation catalyst AMOX (5).
  • the ammonia oxidation catalysts AMOX (1) to (4) contain a specific composite oxide as a catalyst component of the present invention, so that although the amount of Pt is small.
  • the NH 3 conversion at 230 ° C. is excellent.
  • N 2 O emission concentration is low, it can be seen that excellent N 2 O ability of suppressing the formation.
  • the NOx emission concentration is not inferior even though the amount of Pt is small.
  • the ammonia oxidation catalysts AMOX (5) to (8) do not contain a specific complex oxide unlike the present invention, so that the graph shows a large amount of Pt.
  • the NH 3 conversion rate at 230 ° C. is low, and as shown in FIG. 2, the N 2 O emission concentration is high and the N 2 O production suppressing ability is inferior. Further, as shown in FIG. Since the amount is large, it can be seen that the NOx emission concentration is relatively low.
  • the present invention is widely applicable to the removal technology of nitrogen oxides exhausted from automobiles such as diesel engines whose fuel is light oil, and the purification of slip NH 3 . Further, the present invention can be applied to exhaust gas emitted from a combustion engine using gasoline, heavy oil, biofuel such as alcohol as a fuel, biofuel and light oil, or mixed fuel of biofuel and gasoline. Furthermore, the present invention is also effective when used in combination with an exhaust gas purification catalyst device that involves regeneration of a filter on which combustible particle components are deposited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 選択還元触媒に尿素水などを噴霧供給することで、ボイラーなどから排気される窒素酸化物を浄化する際に、低貴金属担持量でもNOの副生およびアンモニアの漏出を抑制することができる、耐熱性に優れたアンモニア酸化触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法を提供する。 排気ガスに、尿素またはアンモニアを添加し選択還元型触媒(SCR)により窒素酸化物を選択的に還元する際に、余剰のアンモニアを酸化除去するためのアンモニア酸化触媒(AMOX)において、一体構造型担体の表面に、チタニア及びシリカを主成分とする複合酸化物(A)に貴金属元素を担持した触媒を含む触媒層(下層)と、酸化タングステン、セリア、及びジルコニアからなる複合酸化物(C)を含む触媒層(上層)を有する、少なくとも二層の触媒層を被覆してなり、複合酸化物(C)の組成が、酸化タングステン:1~50重量%、セリア:1~60重量%、及びジルコニア:30~90重量%であるアンモニア酸化触媒などによって提供する。

Description

アンモニア酸化触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法
 本発明は、アンモニア酸化触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法に関し、より詳しくは、選択還元触媒に還元成分として尿素水やアンモニア水を噴霧供給することで、ボイラー、ガスタービン、またリーンバーン型ガソリンエンジン、ディーゼルエンジン等希薄燃焼機関から排気される窒素酸化物(NOやNO)を浄化する際に、高い空間速度(Space Velocity:SVともいう)下でも効果的にNOの副生およびアンモニアの漏出を抑制することができ、耐熱性に優れ圧力損失が小さく、かつ貴金属の使用量を低減可能なアンモニア酸化触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法に関するものである。
 ボイラー、リーンバーン型ガソリンエンジン、ディーゼルエンジン等の希薄燃焼機関から排出される排気ガスには、その構造、種類に応じて、燃料や燃焼空気に由来した様々な有害物質が含まれる。このような有害物質には炭化水素(HC)、可溶性有機成分(Soluble Organic Fraction:SOFともいう)、煤(Soot)、一酸化炭素(CO)、窒素酸化物(NOx)などがあり、これらは大気汚染防止法で規制されている。そして、それらの浄化方法として、排気ガスを触媒に接触させ、浄化する接触処理法が実用化されている。
 また、このような希薄燃焼機関では、燃料の種類や供給量に応じて燃焼に最適な量の空気を供給するなどの操作により燃焼温度を制御し、不完全燃焼物であるCOやTHCなどの有害物質の発生量を抑制することがあるが、一方で燃焼温度が高くなりNOxの生成を招く場合もある。このような状況は内燃機関でも同様であり、ディーゼル機関の場合は希薄燃焼によってエンジンを稼動する構造であることから、窒素酸化物が排出されやすい。中でも自動車に搭載されるディーゼルエンジンの場合、その稼動条件は常に変化することから、有害物質の発生を適切に抑制することは特に困難であった。
 このように排出される有害物質の浄化方法として、排ガス流路に触媒を設置する方法が広く検討されてきた。エンジンから排出される有害成分や排気ガス規制により使用する触媒は異なるが、主にSOF成分を浄化する目的の酸化触媒や未燃ガス成分を酸化浄化する目的の触媒、またそれらとフィルターを組み合わせ煤成分を捕集・酸化浄化させる触媒システムなどが提案されてきた。これらの触媒には酸化反応を促進させる目的で主にPtやPdなどの貴金属が使用されている。ディーゼルエンジンはガソリンエンジンなどに比べると比較的排気量が大きく流出する排気ガス量が多いことから、十分な浄化性能を得る為には必然的に触媒の容積もガソリンエンジン用触媒などと比べると大きくなり、使用される貴金属量も多い。自動車からの排出ガス規制が先行していたガソリンエンジン用触媒も従来から貴金属成分を使用しており、ディーゼルエンジンの排出ガス規制の強化により、地球上の資源のなかでも比較的希少で高価な貴金属がますます使用される状況となった。
 加えてNOxの排出ガス規制に伴いNOx浄化触媒としてNOx吸蔵触媒や選択還元触媒(Selective Catalytic Reduction:以下、SCRということがある)を用いた触媒システムも提案されてきた。 SCR触媒にはNOx浄化に用いる還元剤が数種知られているが、NH成分を還元剤として用いるSCRでは、主として次に示す反応式(1)~(3)によって、NOxを最終的にNに還元する。
  4NO + 4NH + O → 4N + 6HO  ・・・(1)
  6NO + 8NH + O → 7N + 12HO ・・・(2)
  NO + NO + 2NH → 2N + 3HO  ・・・(3)
 このような反応機構を利用した脱硝触媒システムには、還元成分としてガス化したNHを用いても良いが、NHはそれ自体、刺激臭があるなど有害性を有する。そのため、NH成分として脱硝触媒の上流から尿素水を添加して、熱分解や加水分解によりNHを発生させ、還元剤として前記式の反応により脱硝性能を発現させる方式が提案されている。
 このように尿素の分解でNHを得る反応式は以下のとおりである。
  NH-CO-NH → NH + HNCO    (尿素熱分解)
  HNCO + HO → NH + CO     (イソシアン酸加水分解)
  NH-CO-NH + HO → 2NH + CO  (尿素加水分解)
 排気ガス中のNOxの浄化に際しては、供給されたNHが前記脱硝反応(1)~(3)においてすべて消費されるのが理想的である。しかし、実走行条件で過渡的な運転条件が想定されるディーゼルエンジン搭載車両でのNOx浄化においては、あらゆる走行条件で効果的にNOx浄化できるように、反応消費分よりも過剰な還元剤を供給し意図的にSCR触媒表面上に吸着させたNHを用いることも想定されている。このようにNHがSCR触媒に吸着した状態で急加速されるなどにより排気ガス温度が急昇温すると、脱離したNHがNOx浄化反応には寄与せず、SCR触媒下流に漏出(以下、スリップ、またはNHスリップということがある)し、新たな環境汚染などの二次公害を引き起こす危険性が指摘されていた。
 このような問題の対策として、吸着NHを用いたNOx浄化を必要としない程度にSCRの容量を大きくする事も考えられるが、自動車用途では触媒の搭載容量や配置に制限があり、単純にSCRの触媒容量を増やすという対応は現実的な解決策とは言い難い。
 この他に、SCR触媒だけでなくその他の触媒を加えた後処理システムとして様々な触媒技術が検討されてきた(例えば特許文献1)。また、SCRからスリップしたNHを浄化するために、SCRの後段に白金(Pt)やパラジウム(Pd)、ロジウム(Rh)などをアルミナなどの母材に担持したNH浄化触媒を設置して、スリップしたNHを下記反応式(4)のように酸化することで浄化する方法も検討されてきた。
  2NH + 3/2O → N + 3HO・・・(4)
 しかし、上記のNHを浄化する触媒では、触媒活性種として酸化性能が高い白金や、パラジウム、ロジウムなどの貴金属成分を用いることから、下記反応式(5)~(7)のように、NHの酸化と同時に新たにNOやNO、NOなどのNOx成分の発生を引き起こす問題があった。
  2NH + 5/2O → 2NO + 3HO   ・・・(5)
  2NH + 7/2O → 2NO + 3HO  ・・・(6)
  2NH + 2O → NO + 3HO     ・・・(7)
 このようなNOxの発生を抑制するため、下層にNHの酸化分解活性を有する成分を配し、上層に脱硝成分を配した浄化触媒が提案されている(特許文献5)。これはNH酸化によりNHを浄化するのみならず、上述反応式(5)~(7)のNH酸化によって生じるNOxを、酸化反応にまだ使用されていないスリップNHと反応させNOx浄化反応も担う触媒とも解釈できる。上層の脱硝成分としてはチタン、タングステン、モリブデン、又はバナジウムから選ばれる1種以上の酸化物を用いた排ガス浄化用触媒(特許文献2参照)や、上層にCe-Ti-SO-Zr系成分とFe-Si-Al酸化物系成分の混合系を用いたアンモニア酸化分解触媒(特許文献3参照)、上層にFeあるいはCe含有ゼオライトを用いた浄化触媒(特許文献6参照)も提案されている。これらのNH浄化を担う触媒にもNH酸化成分として貴金属が使用されている。
 ここまで述べたように年々排出ガス規制が厳しくなる中で、排ガス浄化触媒システムが車に搭載される比率が高くなり、希少で高価な貴金属を多量に使用する状況で貴金属価格が高騰してきた。一方で自動車排気ガス浄化触媒としてはあまりにも高価な触媒は車両価格が高くなる一因となるために現実的ではなく、より少量の貴金属使用量で十分な浄化性能が発揮されるように、より安価な活性成分による浄化技術が検討されている。
 例えば貴金属粒子と助触媒成分および基材で構成される触媒系において、シンタリングにより貴金属粒子と助触媒成分の接触面積が減少しないように、逆ミセル法を用いて触媒のミセル内部に貴金属塩と金属塩とを同時に存在した状態として複合微粒子を形成することが提案され、これにより、金属化合物の有する助触媒効果が発揮されるようになり、触媒活性が高く低コストの高耐熱性触媒を得る事ができると記載されている(特許文献7)。
 また、例えば、自動車触媒における白金族元素の代替金属としてAuを用いた排ガス触媒について多くの研究がなされている。例えば、高いCO酸化活性を有するAu触媒からなる排気ガス浄化触媒として、セリア含有量が40~80wt%のセリア-ジルコニア固溶体からなる担体にAuを担持した触媒などが提案されている(特許文献8)
 このような状況の中で、上述のNHを還元剤として用いるSCR触媒システムにおいて、スリップNHの浄化を目的とした触媒の貴金属使用量を低減でき、NOxの発生を抑制する機能も有するスリップNH浄化触媒が切望されていた。
特表2004-524962号公報 特開平10-5591号公報 特開2005-238195号公報 特表2002-502927号公報 特開平07-328438号公報 特願2008―279334号公報 特開2008―264703号公報 特開2008―296107号公報
 本発明の目的は、上記従来の課題に鑑み、選択還元触媒に還元成分として尿素水やアンモニア水を噴霧供給することで、ボイラー、ガスタービン、またリーンバーン型ガソリンエンジン、ディーゼルエンジン等の希薄燃焼機関から排気される窒素酸化物(NOやNO)を浄化する際に、選択還元触媒からスリップしたアンモニアを高い空間速度(SV)下でも効果的にNOの副生を抑制しつつ酸化浄化することが可能なアンモニア酸化触媒において、耐熱性に優れ圧力損失が小さくかつ使用する貴金属量を低減可能なアンモニア酸化触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法を提供することにある。
 本発明者らは、このような上記課題を解決するために鋭意研究を重ねた結果、NH成分を還元剤として用いてNOx成分を選択還元型触媒により浄化する際、選択還元型触媒の後段に、一体構造型担体の表面に、チタニア及びシリカを主成分とする複合酸化物(A)に貴金属元素を担持した触媒を含む触媒層(下層)と、実質的に酸化タングステン、セリア、及びジルコニアからなる複合酸化物(C)を含む触媒層(上層)を有する、少なくとも二層の触媒層を被覆した触媒を配置することで、選択還元型触媒からのスリップNHを低貴金属担持量でも高貴金属担持量と同等レベルで酸化浄化可能になることを確認して、本発明を完成するに至った。
 すなわち、本発明の第1の発明によれば、希薄燃焼機関から排出される排気ガスに、窒素酸化物の還元剤として尿素またはアンモニアを添加し選択還元型触媒(SCR)により窒素酸化物を選択的に還元する際に、余剰のアンモニアを酸化除去するためのアンモニア酸化触媒(AMOX)において、一体構造型担体の表面に、チタニア及びシリカを主成分とする複合酸化物(A)に貴金属元素を担持した触媒を含む触媒層(下層)と、酸化タングステン、セリア、及びジルコニアからなる複合酸化物(C)を含む触媒層(上層)を有する、少なくとも二層の触媒層を被覆してなり、複合酸化物(C)の組成が酸化タングステン:1~50重量%、セリア:1~60重量%、及びジルコニア:30~90重量%であることを特徴とするアンモニア酸化触媒が提供される。
 また、本発明の第2の発明によれば、第1の発明において、複合酸化物(A)の組成が、チタニア:60~99重量%及びシリカ:1~40重量%であることを特徴とするアンモニア酸化触媒が提供される。
 また、本発明の第3の発明によれば、第1又は2の発明において、複合酸化物(A)が、さらに、ジルコニア、又はアルミナから選ばれる一種以上を含み、その含有量が、30重量%以下であることを特徴とするアンモニア酸化触媒が提供される。
 また、本発明の第4の発明によれば、第1の発明において、複合酸化物(C)の組成が、酸化タングステン:3~30重量%、セリア:5~40重量%、及びジルコニア:50~90重量%であることを特徴とするアンモニア酸化触媒が提供される。
 また、本発明の第5の発明によれば、第1の発明において、複合酸化物(A)に担持される貴金属元素が白金を含み、その含有量が、一体構造型担体の単位体積あたり0.01~1.0g/Lであることを特徴とするアンモニア酸化触媒が提供される。
 また、本発明の第6の発明によれば、第1の発明において、触媒層(下層)の複合酸化物(A)の被覆量が、一体構造型担体の単位体積あたり10~120g/Lであることを特徴とするアンモニア酸化触媒が提供される。
 また、本発明の第7の発明によれば、第1又は4の発明において、触媒層(上層)の複合酸化物(C)の被覆量が、一体構造型担体の単位体積あたり30~150g/Lであることを特徴とするアンモニア酸化触媒が提供される。
 また、本発明の第8の発明によれば、第1~7のいずれかの発明において、排気ガス流路に、一酸化窒素、炭化水素の酸化機能を有する酸化触媒(DOC)と、パティキュレートマターを捕集し燃焼除去するフィルター(DPF)と、尿素水溶液もしくはアンモニア水溶液を供給する噴霧手段と、選択還元型触媒(SCR)と、アンモニア酸化触媒(AMOX)をこの順序で配置したことを特徴とする排気ガス浄化装置が提供される。
 さらに、本発明の第9の発明によれば、第8の発明において、選択還元型触媒(SCR)が、少なくとも鉄元素を含むゼオライト(D)と、酸化タングステン、セリア、及びジルコニアからなる複合酸化物(C)を含む触媒層を一体構造型担体の表面に被覆してなることを特徴とする排気ガス浄化装置が提供される。
 一方、本発明の第10の発明によれば、第8または9の発明の排気ガス浄化装置を用いて、希薄燃焼機関から排出される排気ガスを酸化触媒(DOC)とフィルター(DPF)に通過させ、排気ガス中の炭化水素成分、一酸化炭素を浄化するとともに、一酸化窒素の多くを二酸化窒素に転化した後、尿素水溶液またはアンモニア水溶液を噴霧供給して、選択還元型触媒(SCR)を通過させて排気ガス中の窒素酸化物を還元し、余剰のアンモニアをアンモニア酸化触媒(AMOX)で酸化除去することを特徴とする排気ガス浄化方法が提供される。
 本発明のアンモニア酸化触媒によれば、各種希薄燃焼機関から排出される排気ガス中のNOxに対して、還元剤としてNH成分を選択還元型触媒により、例えば130~560℃という低温から高温にかけての広い温度範囲で処理した場合に、スリップしたNHを従来技術に比べて低貴金属担持量であっても高い効率で浄化し、かつNOの副生やNHの酸化に伴う新たなNOxの発生を抑制することができる。また、触媒成分として、バナジウム等有害な重金属が含まれないことから、安全性が高い。さらに、圧力損失も軽減できることから低燃費化・高出力化の要請にも応えることができる。
図1は、本発明のアンモニア酸化触媒(実施例)又は従来のアンモニア酸化触媒(比較例)を用いた場合のアンモニア転化率を表すグラフである。 図2は、本発明のアンモニア酸化触媒(実施例)又は従来のアンモニア酸化触媒(比較例)を用いた場合のNO排出濃度を表すグラフである。 図3は、本発明のアンモニア酸化触媒(実施例)又は従来のアンモニア酸化触媒(比較例)を用いた場合のNOx排出濃度を表すグラフである。
 以下、本発明のアンモニア酸化触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法について、主に自動車に使用されるディーゼルエンジンを例にして詳細に説明する。
1.アンモニア酸化触媒(AMOX)
 本発明のアンモニア酸化触媒(以下、本触媒ともいう)は、希薄燃焼機関から排出される排気ガスに、窒素酸化物の還元剤として尿素またはアンモニアを添加し選択還元型触媒(SCR)により窒素酸化物を選択的に還元する際に、余剰のアンモニアを酸化除去するためのアンモニア酸化触媒(AMOX)において、一体構造型担体の表面に、チタニア及びシリカを主成分とする複合酸化物(A)に貴金属元素を担持した触媒を含む触媒層(下層)と、実質的に酸化タングステン、セリア、及びジルコニアからなる複合酸化物(C)を含む触媒層(上層)を有する、少なくとも二層の触媒層を被覆してなり、複合酸化物(C)の組成が、酸化タングステン:1~50重量%、セリア:1~60重量%、及びジルコニア:30~90重量%であることを特徴とする。
(1)下層触媒層
 本発明のアンモニア酸化触媒において、下層触媒層はチタニア及びシリカを主成分とする複合酸化物(A)に貴金属元素を担持した触媒を含んでおり、アンモニア酸化機能を有する。
(1-1)貴金属成分
 本発明において、貴金属成分とは、白金、パラジウム、又はロジウムから選ばれる一種以上の元素である。このうち白金は酸化活性が高く、優れたNH酸化性能を発揮するので、主要な貴金属成分として、下層触媒層に含有することが望ましい。ここで、主要な貴金属成分とは、本発明の触媒に使用される貴金属の総量に対して50wt%以上含有させる成分をいい、貴金属の全てが白金であっても良い。
 この場合、白金の使用量は、本発明の下層触媒層成分を一体構造型担体上に被覆した場合、一体構造型担体の単位体積あたり、0.01~1.0g/Lである事が好ましく、0.02~0.5g/Lである事がより好ましい。0.01g/L未満では白金の活性を充分に利用できず、1.0g/Lを超える場合は貴金属使用量の低減幅が十分でない。
 下層触媒層を形成する触媒成分は、貴金属が特にPt、Pdであると優れた酸化性能を発揮する。上記のとおりPtは優れた酸化性の触媒活性種であるから、その比表面積を高く維持することで活性面が増え、高い活性を発揮することができる。
 そのため、本発明では、チタニア及びシリカを主成分とする複合酸化物(A)に少なくとも白金が担持されることが好ましい。これにより貴金属を高分散に担持することができ、また耐熱性が高いので貴金属成分が焼結し難くなり、使用時における貴金属の高分散を長期間維持しうる。
(1-2)複合酸化物(A)
 複合酸化物(A)は、比表面積値が高く、耐熱性にも優れたチタニア及びシリカを主成分として含む無機母材であり、白金などの貴金属成分を高分散に担持することができる。
 複合酸化物(A)の組成は、チタニア:60~99重量%及びシリカ:1~40重量%であることが好ましい。複合酸化物(A)は、さらに、ジルコニア、アルミナの少なくとも一種以上を含み、複合酸化物(A)に占めるジルコニア、又はアルミナの少なくとも一つが0~30重量%であることがより好ましい。
 すなわち、本発明では複合酸化物(A)としてチタニアとシリカを必須とし、30重量%以下のジルコニア、又はアルミナの少なくとも一つを含む複合酸化物、例えばチタニア-シリカ、チタニア-シリカ-ジルコニア、チタニア-シリカ-アルミナ、チタニア-シリカ-ジルコニア-アルミナなどの無機酸化物が使用できる。
 このような無機酸化物(無機母材)は、貴金属成分の分散性の点からいえば、比表面積(BET法による、以下同様)が30m/g以上であることが好ましく、更に100m/g以上であるものがより好ましい。比表面積値が30m/g以上であれば貴金属を高分散状態で安定に担持させることができる。
 上記の無機母材に貴金属を担持させるには、塩化白金(IV)酸、亜硝酸ジアンミン白金(II)、水酸化白金酸アミン溶液、塩化白金酸、硝酸白金、ジニトロジアンミンパラジウム、硝酸パラジウム、塩化パラジウム、塩化ロジウム(III)、硝酸ロジウム(III)など金属塩との水溶液と、無機母材とを混合して乾燥、焼成を行う等、適宜公知の方法により行うことができる。
 下層触媒層中の複合酸化物(A)の含有量は、一体構造型担体の単位体積あたり10~120g/Lであり、特に15~100g/Lであることが望ましい。その理由は、複合酸化物(A)が多すぎるとPtの分散性を向上させるために過剰量を担持させることとなり、結果として圧損上昇や高価格となる場合があり、逆に少な過ぎるとPtの分散度が確保できずNH酸化が促進されずNHスリップを起こす場合があるからである。
 また、本発明の一体型触媒担体に被覆される下層には、上記無機母材である複合酸化物(A)とは別に、NOxの浄化機能を有する材料を有してもよい。NOxの浄化機能を有する材料としては後述する複合酸化物(C)、ゼオライト(D)の他、チタニア、ジルコニア、酸化タングステン等の遷移金属酸化物、セリア、ランタン、プラセオジム、サマリウム、ガドリニウム、ネオジム等の希土類酸化物、酸化ガリウム、酸化スズ等の碑金属酸化物、またはこれらの複合酸化物等があげられる。
(2)上層触媒層
 本発明において、上層触媒層は、酸化タングステン、セリア、及びジルコニアからなる複合酸化物(C)を必須成分とし貴金属成分を含まずに構成され、スリップNHと存在するNOx、すなわちスリップNHの酸化により生成したNOxあるいはSCR触媒で十分浄化し切れなかったNOxと反応し、NOx浄化を促進する機能を有する。
(2-1)複合酸化物(C)
 本触媒において、複合酸化物(C)は、酸化タングステン:1~50重量%、セリア:1~60重量%、及びジルコニア:30~90重量%から構成され、より好ましくは、酸化タングステン:3~30重量%、セリア:5~40重量%、及びシルコニア:50~90重量%の組成となるようにする。ここで、酸化タングステンとは、タングステンの酸化物のほか、タングステン元素単体で存在するものも含むものとする。
 複合酸化物(C)中の各成分の機能については、例えば次のように考えられる。
 セリアは、NOx吸着機能材料として知られており、本材料系においてもNOx吸着を促進することでNHとNOxのSCR反応を促進できる機能を有する。
 ジルコニアは、その他成分を熱的に安定な状態で高分散させる為の分散保持材料として機能する。
 一方、タングステンの酸化物は、酸性が強く、アルカリ成分である尿素やアンモニアの吸着力が大きいので、タングステンの酸化物を使用することで脱硝性能が高くなる。
 本触媒は、なかでもタングステン酸化物として、あるいはタングステン元素単体でも存在しうるタングステン(W)の役割が重要であり、セリウム(Ce)とWの界面がDeNOx反応を促進するような構造にすることが好ましい。これは、複合酸化物(C)を構成するW/Ce/Zr材料の内、Zrを除いたW/Ce材料と、Ceを除いたW/Zr材料の3種類の材料粉末を用い、触媒化せず粉末のままでアンモニア-SCRのモデルガス浄化性能を評価すると、W/Zr材料よりもW/Ce材料のNOx浄化性能が高くなるからである。
 この複合酸化物(C)は、上記の組成、構造になれば、製法によって特に限定されない。例えば、タングステン、セリウム、ジルコニウムを含む硝酸塩、硫酸塩、炭酸塩、酢酸塩、塩化物等の形態を有する出発原料を一度に水溶液中に溶解させた後、混合し、pH調整等により沈殿物として沈降させるか蒸発乾固させるかして得られた固形物を焼成してもよいし、単一もしくは複数の金属塩に上記処理を行うことにより酸化物を形成させた後、残りの金属塩を一度にまたは逐次に担持してもよい。
 一度にすべての元素を加えて製造するか、最初に核となる粉末を単数もしくは数種類の元素から製造した後、残りの元素を一度にまたは逐次に担持させることにより、各々の元素を最適な組成で含有する複合酸化物(C)を調製することができる。
 複合酸化物(C)の被覆量は、一体構造型担体の単位体積あたり30~150g/Lであり、より好ましくは30~120g/Lとする。30g/Lよりも少ないと、NHとNOxの反応が低下し、SCR機能が不十分となり、またNH吸着容量が少なくなるので下層触媒層でPtと接触できなかったNHがスリップすることがある。逆に150g/Lよりも多いと、圧損上昇や高コストとなるので好ましくない。
 また、本発明の触媒上層には、上記複合酸化物(C)とは別に、NOxの浄化機能を有する材料を含有させてもよい。NOxの浄化機能を有する材料としては後述するゼオライト(D)の他、チタニア、ジルコニア、酸化タングステン等の遷移金属酸化物、セリア、ランタン、プラセオジム、サマリウム、ガドリニウム、ネオジム等の希土類酸化物、酸化ガリウム、酸化スズ等の碑金属酸化物、またはこれらの複合酸化物等があげられる。
(3)一体構造型担体
 本発明における一体構造型担体は、その種類によって特に制限されない。ハニカム構造型担体をはじめ、細い繊維状物を編んだシート状構造体、比較的太い繊維状物からなるフェルト様の不燃性構造体が使用できる。中でもハニカム構造型担体が好ましく、このようなハニカム構造型担体の表面に触媒成分を被覆したものを、以下、ハニカム構造型触媒ということがある。
 ハニカム構造型担体の種類は、特に限定されるものではなく、公知のハニカム構造型担体の中から選択可能である。このようなものには、フロースルー型担体や、DPF、CSFに用いられるウォールフロー型担体があるが、本発明では、本触媒が選択還元触媒(SCR)の後段にスリップNHの浄化のみを目的として使用されるので、フロースルー型担体が好ましい。
 また、このようなハニカム構造体はその全体形状も任意であり、円柱型、四角柱型、六角柱型など、適用する排気系の構造に応じて適宜選択できる。さらに開口部の孔数についても処理すべき排気ガスの種類、ガス流量、圧力損失あるいは除去効率などを考慮して適正な孔数が決められるが、通常、ディーゼル自動車の排気ガス浄化用では、1平方インチ当たり10~1500個程度、特に100~900個であることが好ましい。1平方インチ当たりのセル密度が10個以上であれば、排気ガスと触媒の接触面積を確保でき、充分な排気ガスの浄化機能が得られ、1平方インチ当たりのセル密度が1500個以下であれば、著しい排気ガスの圧力損失が生じないので内燃機関の性能を損なう事がない。
 また、下層については、本発明の触媒成分を、セラミックス等の浸透性の構造担体に被覆して使用する場合、下層の成分が構造担体に浸透し、下層の全て、またはその一部が構造担体と一体化していてもよい。また、構造担体を下層の成分で構成し、その上に上層の成分を被覆しても良い。なお、下層と構造担体の間に、触媒層の密着性の向上などを目的としてボトム層を設ける場合もあるが、この場合、ボトム層と下層の関係は、前記構造担体と下層の関係に同じである。
 また、このようなハニカム構造型担体は、セルの壁の厚みを2~12mil(ミリインチ)とすることが好ましく、4~8milがより好ましい。また、ハニカム構造型担体の材質としては、ステンレス等の金属、コーディエライト等のセラミックスがある。
 なお、本発明では、細い繊維状物を編んだシート状構造体、比較的太い繊維状物からなるフェルト様の不燃性構造体も使用できるが、これらハニカム構造担体とは異なる一体構造型担体は、背圧が高まる恐れはあるものの、触媒成分の担持量が大きく、また排気ガスとの接触面積が大きいので、他の構造型担体よりも処理能力が高くなる場合がある。
 本触媒の成分が上記フロースルー型ハニカム担体に被覆される場合、その被覆量は、1平方インチ当たりの開口部の孔数200~900個、セルの壁の厚みが4~8milの担体において、上層は下層の50%以上の被覆量で、上層下層の合計の被覆量は単位体積あたり40g/L以上であることが好ましく、50g/L以上であることがより好ましい。
 なお、被覆量の上限は、生産コストが上昇したり、ハニカムの孔が目詰まりを起したり、排気ガスの背圧が著しく上昇しない程度であれば特に限定されないが、前記フロースルー型ハニカム担体において、凡そ230g/L以下が望ましく、170g/L程度に留める事がより望ましい。使用する担体のセル密度にもよるが、現実的なセル密度のハニカム構造体を使用する場合には、230g/Lを超える量の触媒を担時すると背圧が上昇し、燃焼機関の性能を阻害する場合がある。 
 本発明の下層触媒層又は上層触媒層を構成する材料としては、上記した材料の他、固体酸、あるいはバインダーなども混合して用いる事ができる。このような固体酸としてはWO/ZrO、WO/TiO、SO/ZrO、メタロシリケート等が挙げられ、バインダーとしては、アルミナ、シリカ、チタニア、シリカ-アルミナ、ジルコニア及びそれらのゾル・ゲル・溶液などが使用されることが好ましい。
 各層の厚さは、特に制限されず、例えば1~430μmであればよく、特に20~250μmの範囲が好ましい。上層の厚さは、40~250μm、下層の厚さは1~180μmであることが望ましい。各層の厚みは不均一であっても差し支えないが、平均値が上記範囲内であることが好ましい。各層の厚みが薄すぎると触媒成分が不足し層としての機能を発揮しづらくなり、一方、厚すぎると、ガス拡散性が低下し、物質移動が阻害されるので好ましくない。
2.アンモニア酸化触媒の製造方法
 本発明の触媒を調製するには、まず、下層触媒材料、上層触媒材料、一体構造型担体を用意する。触媒材料は必要に応じてバインダーや界面活性剤などの添加剤を水系媒体と混合してスラリー状混合物にしてから、一体構造型担体へ塗工した後、乾燥、焼成する事により製造される。すなわち、触媒材料と水系媒体を所定の比率で混合してスラリー状混合物を得る。本発明においては、水系媒体は、スラリー中で各触媒成分が均一に分散できる量を用いれば良い。
 下層触媒材料は、少なくとも白金を含む貴金属成分と、チタニア及びシリカを主成分とする複合酸化物(A)を無機母材として含んでいる。貴金属成分は、予め無機母材に担持させておくこともできる。金属触媒成分と無機母材を水系媒体中で混合してスラリーを調製しておく。
 下層触媒材料を調製するにあたり、貴金属を予め無機母材に担持させておく場合、適宜公知の方法を採用できるが、その一例を示すと以下のとおりである。
 まず、貴金属成分の原料として硝酸塩、硫酸塩、炭酸塩、酢酸塩等の化合物、具体的には塩化白金(IV)酸、亜硝酸ジアンミン白金(II)、水酸化白金酸アミン溶液、塩化白金酸、硝酸白金、ジニトロジアンミンパラジウム、硝酸パラジウム、塩化パラジウム、塩化ロジウム(III)、硝酸ロジウム(III)として用意する。これらから貴金属成分原料を選択して水、有機溶媒に溶解して溶液とする。なお、水または水に水溶性有機溶媒を加えた溶媒については以下「水系媒体」という。
 次に、この貴金属成分原料の溶液を、水系媒体と共に無機母材と混合した後、50~200℃で乾燥して溶媒を除去した後、300~1200℃で焼成する。なお、上記成分以外に、バインダー等として公知の触媒材料を配合してもよい。このような公知の触媒材料としてはアルミナ、シリカ、チタニア、ジルコニア、シリカ-アルミナ、セリア、アルカリ金属材料、アルカリ土類金属材料、遷移金属材料、希土類金属材料、銀、銀塩等が挙げられ、必要に応じて分散剤、pH調整剤を合わせて使用することができる。
 次に、触媒組成物をスラリー状混合物として一体構造型担体に塗工し、触媒組成物を被覆する。塗工方法は、特に限定されないが、ウオッシュコート法が好ましい。塗工した後、乾燥、焼成を行う事により触媒組成物が担持された一体構造型触媒が得られる。なお、乾燥温度は、100~300℃が好ましく、100~200℃がより好ましい。また、焼成温度は、300~700℃が好ましく、特に400~600℃がより好ましい。乾燥時間は0.5~2時間、焼成時間は1~3時間が好ましい。加熱手段については、電気炉やガス炉等の公知の加熱手段によって行う事ができる。
 上記のようにして一体構造型担体へ下層触媒材料を塗工した後に乾燥、焼成し、次に、この層の上に上層触媒材料を塗工し、乾燥、焼成して本発明のアンモニア酸化触媒を調製する。上層触媒材料は、実質的に酸化タングステン、セリア、及びジルコニアからなる複合酸化物(C)を含み、これとは別に、上層触媒原料としてゼオライトを必要により配合することができる。
 このほか、ウオッシュコート法により下層触媒材料、上層触媒材料を2回続けて塗工した後に、一度で乾燥、焼成したり、あるいは、ウオッシュコート法により下層触媒材料を塗工した後に乾燥し、その上に二層目以降の材料を被覆した後乾燥し、一度に焼成してもよい。
 ハニカム型一体構造型担体に触媒組成物を被覆する場合、ハニカム形状が多角形であると、層の厚みはハニカムの部位により異なることがあるが、実質的に殆どの部位で上層、下層とも、1~250μmの範囲であり、特に20~250μmの範囲である事がより好ましい。
 上層が薄すぎて5μm未満であると、先のガス拡散性が低下することがあり、トータルの層が厚すぎて430μmを超えると、圧損上昇によるエンジンへの負荷が懸念される。特に好ましい厚さは、上層:40~250μm、下層:1~180μmである。
3.排気ガス浄化触媒装置、それを用いた浄化方法
 本発明では、排気ガス流路に、一酸化窒素、炭化水素の酸化機能を有する酸化触媒(DOC)と、パティキュレートマターを捕集し燃焼除去するフィルター(DPF)と、尿素水溶液もしくはアンモニア水溶液を供給する噴霧手段と、選択還元型触媒(SCR)と、前記のアンモニア酸化触媒(AMOX)をこの順序で配置することで排気ガス浄化触媒装置が構成される。
 ディーゼルエンジンは、その構造上の特徴からガソリンエンジンと比べると比較的排気ガスの温度が低く、その温度は概ね室温~700℃である。特に始動時や低負荷時には排気ガス温度が低い。しかし、排気ガスの温度が低い場合には触媒の温度も充分に上昇せず、浄化性能が充分に発揮されず、排気ガス中のNOxが充分に浄化されずに排出されやすい。
 排気ガス中のNOxの浄化においては、排気ガス中のNOとNOの比が1:1の状態でSCR触媒に接触させる事が望ましい。前述の脱硝反応式(3)の反応速度が最も速いためである。そのため、排気ガス流れに対し、本触媒の前段にNO酸化手段として、排気ガス中のHC、COを酸化する酸化触媒(DOC)や、排気ガス中に含まれる可燃性粒子成分を捕集するフィルター(DPF)を配置するのである。
 酸化触媒としては、公知の白金、またはパラジウムのうち少なくとも一種が担持された活性アルミナを主成分とする触媒を用いることができる。なおその酸化触媒の担体としては、Laを含む活性アルミナを使用することができ、さらにセリウムでイオン交換したβ型ゼオライトを含有する触媒を用いても良い。
 このようにDOCには、貴金属成分として白金成分またはパラジウム成分を含むことが好ましく、この貴金属成分の量は金属換算で0.1~4g/Lが好ましく、0.5~3g/Lがより好ましい。貴金属成分が多すぎると高コストとなってしまい、少なすぎると好適なNO/NOx比にならない事がある。
 また、この貴金属成分には金属換算で30~100w%の白金を含む事が好ましく、50~100w%の白金を含む事がより好ましい。ディーゼル自動車の燃料に使用される軽油には硫黄成分を50ppm以上含むものも少なくなく、このような硫黄成分を含む排気ガスにより、触媒成分中の貴金属が被毒してしまうことがある。パラジウムは硫黄被毒し易い傾向があり、これに対し白金は硫黄被毒し難い傾向があるため、本発明に使用されるDOCには貴金属成分として白金を主成分として使用する事が好ましい。
 なお、DPFで捕集した可燃性粒子成分は、その後燃焼して除去され、DPF機能が再生される。DPFにおける煤の燃焼にはNOを使用する。NOによる煤の燃焼は酸素に比べて穏やかであり、燃焼熱によるDPFの破損を誘発し難い。DPFにはこの燃焼再生を促進する目的で酸化触媒を被覆したものがあり、CSFといわれている。本発明では特に断りの無い限り、DPFはCSFを包含するものとする。
 これらDOC、DPFの後段には、SCR触媒が配置される。本発明が適用される燃焼機関は、ディーゼルエンジンの場合、排気量1L程度の小型自動車から、排気量50Lを超えるような重機用(ヘビーデューティー)ディーゼルエンジンまであり、また、それらディーゼルエンジンから排出される排気ガス中のNOxは、その稼動状態、また燃焼制御の方法等により大きく異なる。そして、これらディーゼルエンジンから排出される排気ガス中のNOxを浄化するSCR触媒も、1L程度から50Lを超えるディーゼルエンジン排気量の多様性にあわせて選定できる。
 また、排気ガス中のNOxを浄化する手段として、SCRとは別にNOx吸蔵触媒を使用する場合があり、LNT(Lean NOx Trap)といわれる。LNTに吸蔵されたNOxは、排気ガス中の還元成分であるHCやCOを還元剤としてNOxを浄化するが、SCRはこのようなLNTと組み合わせても良い。
 本発明では、SCRとして、少なくとも鉄元素を含むゼオライトと、酸化タングステン、セリア、及びジルコニアからなる複合酸化物を含む触媒層を一体構造型担体の表面に被覆してなる選択還元型触媒(SCR)を使用することが好ましい。複合酸化物としては、本触媒の成分である複合酸化物(C)のほか、この複合酸化物(C)にシリカが添加された材料も使用できる。このSCR触媒の成分であるゼオライトとしては次に記載するゼオライト(D)が好ましい。
 本発明においてゼオライト(D)は、例えば三次元の細孔構造を有するβ型、MFI型のゼオライトをはじめ、A、X、Y、MOR、CHA、SAPOなどのゼオライトが挙げられる。中でも好ましいのは、β型ゼオライト、又はMFI型のゼオライトである。
 本触媒において好ましく使用されるβ型ゼオライトは、例えば、単位胞組成が下記の平均組成式で表され、かつ正方晶系の合成ゼオライトとして分類される。
   Mm/x[AlSi(64-m)128]・pH
(式中、Mはカチオン種であり、xは前記Mの価数であり、mは0を越え64未満の数であり、pは0以上の数である)
 このβ型ゼオライトは、比較的大きな径を有する一方向に整列した直線的細孔とこれに交わる曲線的細孔とからなる比較的複雑な3次元細孔構造を有し、イオン交換時のカチオンの拡散、およびNH等のガス分子の拡散が容易である。また、このような構造はモルデナイト、ホージャサイト等が一方向に整列した直線的な空孔のみを有するのに対して、特異な構造であり、このような複雑な空孔構造であるがゆえに、βゼオライトは、熱による構造破壊が生じ難く安定性が高く、自動車用触媒にとって有効な材料である。
 一般にゼオライトは、NHのような塩基性化合物が吸着できる酸点を有していることが必要であるが、そのSi/Al比に応じてその酸点の数が異なる。一般的にはSi/Al比が低いゼオライトは酸点の数が多いが、水蒸気共存での耐久において劣化度合いが大きく、逆にSi/Al比が高いゼオライトは耐熱性に優れている。本触媒において、ゼオライトの酸点にNHが吸着し、そこが活性点となってNOなどの窒素酸化物を還元除去するので、酸点が多い方(Si/Al比が低い方)が脱硝反応には有利である。Si/Al比に相当する指標として、成分分析によるSiOとAlのモル比(以下でSARと略記する)が一般的に使用される。上述のようにSARについては耐久性と活性がトレードオフの関係であるが、これらを考慮すると、ゼオライトのSARは15~300が好ましく、17~60がより好ましい。このような特性はβ型ゼオライト、そしてMFI型ゼオライトも同様に有している。
 ゼオライト(D)には、鉄元素を含むゼオライトが主成分として含有されることが好ましい。通常、ゼオライトには固体酸点として、カチオンがカウンターイオンとして存在する。カチオンとしては、アンモニウムイオンやプロトンが一般的であるが、本触媒に使用されるβ型ゼオライトにはカチオン種として鉄元素が添加され、以下、本発明では「Fe-β」ということがある。
 鉄元素でイオン交換されたβ型ゼオライトによって本発明の作用が向上する理由は定かではないが、ゼオライト表面においてNOをNOに酸化してNHとの反応活性を高め、ゼオライトの骨格構造が安定化され、耐熱性の向上に寄与していると考えられる。
 ゼオライトに対するFeの添加量は、Fe換算で0.1~5wt%が好ましく、0.5~4.5wt%がより好ましい。鉄元素の量がFe換算で5wt%を超えると、活性な固体酸点の数が確保できなくなり活性が下がる。鉄元素の量がFe換算で0.1wt%未満では、充分なNOx浄化性能が得られず排気ガスの浄化性能が低下するので好ましくない。なお、イオン交換種として添加される鉄元素は、その全てがイオン交換されても良いが、その一部が酸化鉄の状態で存在していても良い。
 すなわち、鉄元素(以下、これを金属触媒成分ともいう)の担持の方法は、イオン交換でも含浸による方法でも構わない。本発明では、ゼオライトの少なくとも一部が、金属触媒成分によりイオン交換されていることが望ましい。適切にイオン交換されることにより、ゼオライトの骨格構造が安定化され、ゼオライトそのものの耐熱性が向上する。なお、金属触媒成分は、完全にイオン交換されなくてもよく、その一部が酸化物として存在しても良い。
 ゼオライトへの鉄元素の担持方法については特に制限はない。このような鉄元素を添加したゼオライトは、主要なゼオライトメーカーから様々なグレードのものが購入でき、また、特開2005-502451号公報などに記載された要領で製造できる。一般的な担持方法としては、イオン交換法の他、鉄元素を含む硝酸塩、酢酸塩、塩化物等を水溶液に可溶させた後、ゼオライトを加えて含浸法で担持してもよいし、アルカリ等でpH調整することにより得られた沈殿物を乾燥・焼成してもよいし、ゼオライトを上記鉄元素を含む硝酸塩、酢酸塩、塩化物等の水溶液に浸漬した後、蒸発乾固させてもよい。焼成温度は、300~800℃が好ましく、400~600℃がより好ましい。加熱手段については、電気炉やガス炉等の公知の加熱手段によって行う事ができる。
 本触媒のゼオライトとして好ましい三次元細孔構造を有するゼオライトとして、例えばMFI型ゼオライトもSCR成分として知られている。ここでMFI型ゼオライトのSi/Al比も上述したβ型ゼオライトと同様である。MFI型ゼオライトは、β型ゼオライト同様に鉄元素が含まれていることが好ましい。このうち、鉄元素が含まれるMFI型ゼオライトについては、以下「Fe-MFI」ということがある。
 また、ゼオライト種としては上記のゼオライトに加え、他にA、X、Y、MOR、CHA、SAPO等様々なタイプのゼオライトの一種以上と組み合わせて使用してもよい。
 本触媒を他のタイプのゼオライトと併用する場合には、全ゼオライト中、前記各種β型ゼオライト若しくはMFI型ゼオライトのトータルの比率が50~100%であることが好ましい。
 また、ゼオライトは、前記鉄元素の他に、他の遷移金属、希土類金属、また貴金属などを含んでいてもよい。具体的には、ニッケル、コバルト、ジルコニウム、銅などの遷移金属、セリウム、ランタン、プラセオジム、ネオジウムなどの希土類金属、などを挙げることができる。
 また、金、銀、白金、パラジウム、ロジウム、イリジウム、ルテニウム等の貴金属やニオブ、タングステン、タンタル、セリア、セリウム・ジルコニウム複合酸化物、酸化ランタン、アルミナ、シリカ、ジルコニア、バナジアや、スズ、ガリウムなどアルカリ元素、アルカリ土類元素など一般に触媒材料として使用可能な材料を、本発明の目的を阻害しない範囲で適宜添加することができる。
 また、複合酸化物(C)にシリカを添加した材料系の組成は、シリカ:20重量%以下、酸化タングステン:1~50重量%、セリア:1~60重量%、及びジルコニア:30~90重量%であり、より好ましくは、シリカ:5重量%以下、酸化タングステン:3~30重量%、セリア:5~40重量%、及びジルコニア:50~90重量%である。複合酸化物(C)の場合には前述の通りである。その被覆量は、触媒層の全体に対して、10~80重量%とすることが好ましい。
 また、還元剤が尿素である場合は、SCR触媒には、前記の脱硝成分であるゼオライト(D)、あるいは複合酸化物(C)に加え、尿素成分の加水分解成分として複合酸化物(E)を含有することが望ましい。複合酸化物(E)は、実質的にチタニア、シリカ、及びジルコニアからなる複合酸化物であることが好ましい。また、その組成が、チタニア:70~95重量%、シリカ:1~10重量%、及びジルコニア:5~20重量%であることがより好ましい。
 また、触媒層を構成するゼオライト(D)、複合酸化物(C)及び尿素加水分解成分(E)の被覆量が、200~350g/Lであることが好ましく、220~330g/Lがより好ましい。被覆量が少なすぎると、脱硝効果が充分に得られない場合があり、多すぎるとハニカムの孔が目詰まりを起たり、排気ガスの背圧が著しく上昇し、エンジンの性能を低下させる恐れがある。
 そして、ゼオライト(D)の被覆量が、触媒層の全体に対して、10~80重量%であること、複合酸化物(C)の被覆量が、触媒層の全体に対して、10~80重量%であること、複合酸化物(E)の被覆量が、触媒層の全体に対して、1~30重量%であることが好ましい。
 また、SCR触媒は、一体構造型担体の上に一層構造で被覆してもよいが、二層構造以上を被覆し積層したものでもよい。一体構造型担体の表面に、少なくとも鉄元素を含むゼオライト(D)と、酸化タングステン、セリア、及びジルコニアからなり、シリカを含みうる複合酸化物(C)と、実質的にチタニア、シリカ、及びジルコニアからなる複合酸化物(E)を含む触媒層が上下二層に被覆されていることが好ましい。
 そして、下層がゼオライト(D)50~90重量%、複合酸化物(C)10~40重量%、及び複合酸化物(E)1~30重量%を含むこと、一方、上層がゼオライト(D)10~40重量%、複合酸化物(C)50~90重量%、及び複合酸化物(E)1~30重量%を含むことがより好ましい。このように、下層でゼオライト(D)の比率を高め、上層では複合酸化物(C)の比率を高めることで、排気ガス中のNOxの浄化性能を向上させることができる。
 特に、下層の被覆量が全体の20~50重量%であり、上層の被覆量が全体の50~80重量%であることが好ましい。このように下層の被覆量に対して、上層の被覆量を多くすることで、十分に高い脱硝性能をあげることができる。下層の被覆量が全体の30~45重量%であり、上層の被覆量が全体の55~70重量%であることがより好ましい。
 上記のSCR触媒は、優れた脱硝性能を有することから、従来よりもアンモニアを効率的に活用することができる。
 本発明では、SCR触媒の後段に、NH浄化機能を有する本触媒が配置される。本触媒は、NH浄化性能に優れることから、排気ガス流れに対し、SCR触媒からスリップしてくるNHを効率的に酸化することができる。
 このように、本発明のアンモニア酸化触媒(AMOX)をSCR触媒後段に配置し、スリップNHを酸化浄化する。更に、SCR触媒から流出するNOxあるいはNH酸化により生じるNOxを、酸化反応にまだ使用されていないスリップNHと反応させNOx浄化を促進する。すなわち、排気ガス中のNO、NOがAMOXの上層に流入し、供給されるNHと反応し、窒素に還元された後に、余剰のアンモニアが本触媒の上層に供給され、一部吸着保持される。また、上層を通過して下層に届いたNOが貴金属成分(Pt)によってNOに酸化され、このNOが上層に移行して、上層に吸着保持されたNHと反応し、NとHOとして排出される。そして、下層では貴金属によってNOからNOに酸化されたNOが下層に吸着保持されたNHと反応し、NとHOとして排出される。このようにしてAMOXでNOxの浄化が更に向上する場合がある。
 本発明によれば、NH酸化触媒の性能が高いので、従来触媒技術と同じ貴金属担持量であれば、より低温からNHの酸化浄化が可能であるから、より少ない貴金属担持量で従来触媒と同等のNH酸化浄化性能が得られることとなる。
 また、自動車用ディーゼルエンジンから排出される排気ガスの温度は広範囲にわたり、これを概ね150~250℃を低温域として、また概ね300~600℃を高温域として分けた場合、本発明のNH酸化触媒は、低温域のNOx浄化活性に優れ、しかも耐熱性も優れることから、高温域の脱硝性能に優れたSCR触媒を選択して前段に配置すれば、低温域から高温域まで、広い温度範囲で高い脱硝性能を発揮することができる。
 以下に実施例及び比較例を示し、本発明の特徴を一層明確にする。なお、本発明は、これら実施例の態様に限定されるものではない。なお、本実施例、並びに比較例に使用する触媒は次に示す方法によって調製した。
[実施例1]
NH酸化触媒 AMOX(1)の製造;
 =下層(NH酸化機能を有する触媒層)=
 貴金属成分原料としての塩化白金水溶液を、母材としてのチタニア粉末A(87wt%TiO/10wt%ZrO/3wt%SiO)に含浸担持させてPt担持チタニア粉末(Pt換算0.332wt%)を得た。次に、得られたPt担持チタニア粉末(1003g)と水をボールミルに投入し、所定の粒径となるまでミリングして、NH酸化触媒層用スラリーAを得た。
 続いて、このスラリーAに一体型構造担体、すなわちハニカムフロースルー型コージェライト担体(300セル5ミル、φ25.4mm×24mm長さ)を浸漬させ、単位体積あたりの触媒担持量が30g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成して下層塗布済み触媒Bを得た。
 =上層(SCR機能層)=
 W/Ce/Zr材料(10wt%WO/23wt%CeO/67wt%ZrO)893gと、バインダー107gを水とともにボールミルに投入し、所定の粒径となるまでミリングして、SCR機能層用スラリーCを得た。
 続いて、このスラリーCに前記の下層塗布済み触媒Bを浸漬させ、単位体積あたりの触媒担持量が110g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成して、表1に示すAMOX(1)を得た。なお、表1の数値は、W/Ce/Zr材料を100重量部としたときの、各成分の含有量を重量部で示している。
 その後、得られたNH酸化触媒を用いて、以下の触媒性能評価を実施した。この触媒性能の評価結果を図1~3に示す。
<触媒性能評価>(NOx・NH-スリップ評価)
 以下に記載の測定条件のもと、触媒入口出口のNH、NO、NO、NOのガス濃度を計測し、NH転化率、NOx排出濃度、NO排出濃度の3つの指標でAMOX(1)の触媒性能を評価した。その結果を図1~3に示した。
 なお、ガス計測は所定温度に到達し所定濃度ガス流通開始後20分経過した後に、各種ガス成分の濃度が安定した状態で測定した。
 なおNH転化率、NOx排出濃度は次の算出式に基づき計算した。
  (NH転化率)[%] ={(入口NH濃度)-(出口NH濃度)}/(入口NH濃度)
×100
  (NOx排出濃度)[ppm] =(出口NO濃度)+(出口NO濃度)
<測定条件>
  ・評価装置;モデルガス試験装置(菱明技研製)
  ・定量分析装置;FTIR(サーモエレクトロン製NEXUS-670、2mガスセル)
  ・触媒サイズ;φ25.4mm×24mm、300セル/5ミル、12.2mL/unit
  ・空間速度;100,000/h
  ・全ガス流量;20.3L/min
  ・モデルガス組成(表2参照)
[実施例2]
NH酸化触媒 AMOX(2)の製造;
 =下層(NH酸化機能を有する触媒層)=
 実施例1に記載した要領で、貴金属成分原料としての塩化白金水溶液を、母材としてのチタニア粉末D(90wt%TiO/10wt%SiO)に含浸担持させてPt担持チタニア粉末(Pt換算0.332wt%)を得た。得られたPt担持チタニア粉末と水をボールミルに投入し、所定の粒径となるまでミリングして、NH酸化触媒層用スラリーFを得た。
 続いて、このスラリーFに一体型構造担体、すなわちハニカムフロースルー型コージェライト担体(300セル5ミル、φ25.4mm×24mm長さ)を浸漬させ、単位体積あたりの触媒担持量が30g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成して下層塗布済み触媒Gを得た。
 =上層(SCR機能層)=
 W/Ce/Zr材料(10wt%WO/23wt%CeO/67wt%ZrO)893gと、バインダー107gを水とともにボールミルに投入し、所定の粒径となるまでミリングして、SCR機能層用スラリーHを得た。
 続いて、このスラリーHに前記の下層塗布済み触媒Gを浸漬させ、単位体積あたりの触媒担持量が110g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成して、表1に示すAMOX(2)を得た。
 その後、得られたNH酸化触媒を用いて、実施例1の要領で触媒性能評価を実施した。この触媒性能の評価結果を図1~3に示す。
[実施例3]
NH酸化触媒 AMOX(3)の製造;
 貴金属担持用の母材としたチタニア粉末D(90wt%TiO/10wt%SiO)の代わりに、チタニア粉末E(80wt%TiO/15wt%SiO/5wt%Al)を用いた以外は実施例2に記載の方法と同様にして、表1に示すAMOX(3)を得た。
 その後、得られたNH酸化触媒を用いて、実施例1の要領で触媒性能評価を実施した。この触媒性能の評価結果を図1~3に示す。
[実施例4]
NH酸化触媒 AMOX(4)の製造;
 実施例3で上層の触媒担持量を110g/Lとしたところを55g/Lに変更した以外は同様にして、表1に示すAMOX(4)を得た。
 その後、得られたNH酸化触媒を用いて、実施例1の要領で触媒性能評価を実施した。この触媒性能の評価結果を図1~3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[比較例1]
 上記のアンモニア酸化触媒AMOX(1)に代えて、下記の方法で調製したアンモニア酸化触媒AMOX(5)を用い、同様にモデルガス試験装置に設置し、触媒性能を評価した。この触媒性能の評価結果を図1~3に示す。
NH酸化触媒 AMOX(5)の製造;
 =下層(NH酸化機能を有する触媒層)=
 貴金属成分原料としての塩化白金水溶液を、母材としてのチタニア粉末D(90wt%TiO/10wt%SiO、BET値:100m/g)に含浸担持させPt担持チタニア粉末(Pt換算2.1wt%)を得た。
 得られたPt担持チタニア粉末540gと、鉄元素でイオン交換したβ型ゼオライト(Feイオン交換量;1.76wt%(Fe換算)、SAR=28)115gと、鉄元素でイオン交換したMFI型ゼオライト(Feイオン交換量;1.35wt%(Fe換算)、SAR=23)230gと、バインダー115gを水と一緒にボールミルに投入し、所定の粒径となるまでミリングして、NH酸化触媒層用スラリーLを得た。
 続いて、このスラリーLを一体型構造担体、すなわちハニカムフロースルー型コージェライト担体(300セル/5ミル、φ25.4mm×24mm長さ)に浸漬させ、単位体積あたりの触媒担持量が85g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成して下層塗布済み触媒Hを得た。このようにして得た下層塗布済み触媒Hには単位体積あたりPtが1.0g/L担持されることとなる。
 =上層(SCR層)=
 鉄元素でイオン交換したβ型ゼオライト(Feイオン交換量;1.76wt%(Fe換算)、SAR=28)355gと、鉄元素でイオン交換したMFI型ゼオライト(Feイオン交換量;1.35wt%(Fe換算)、SAR=23)535gと、酸化セリウム(BET値:150m/g)20gと、バインダー90gと水を一緒にボールミルに投入し所定の粒径となるまでミリングして、SCR機能層塗布用スラリーIを得た。
 続いて、このスラリーIに下層塗布済み触媒Hを浸漬させ、単位体積あたりの触媒担持量が115g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成して表1に示す比較用のAMOX(5)を得た。なお、表1の数値は、Feゼオライトを100重量部としたときの、各成分の含有量を重量部で示している。
[比較例2]
 比較例1において、アンモニア酸化触媒AMOX(5)の下層のPt担持チタニア粉末の貴金属濃度を変更し、最終的な触媒の単位体積あたりのPt担持量を0.7g/Lとする以外は、アンモニア酸化触媒AMOX(5)と同様にしてアンモニア酸化触媒AMOX(6)を得た。同様にモデルガス試験装置に設置し、触媒性能を評価した。この触媒性能の評価結果を図1~3に示す。
[比較例3]
 比較例1において、アンモニア酸化触媒AMOX(5)の下層のPt担持チタニア粉末の貴金属濃度を変更し、最終的な触媒の単位体積あたりのPt担持量を0.5g/Lとする以外は、アンモニア酸化触媒AMOX(5)と同様にしてアンモニア酸化触媒AMOX(7)を得た。同様にモデルガス試験装置に設置し、触媒性能を評価した。この触媒性能の評価結果を図1~3に示す。
[比較例4]
 比較例1において、アンモニア酸化触媒AMOX(5)の下層のPt担持チタニア粉末の貴金属濃度を変更し、最終的な触媒の単位体積あたりのPt担持量を0.1g/Lとする以外は、アンモニア酸化触媒AMOX(5)と同様にしてアンモニア酸化触媒AMOX(8)を得た。
[評価]
 図1に示すとおり、実施例1~4では、アンモニア酸化触媒AMOX(1)~(4)が本発明の触媒成分として特定の複合酸化物を含んでいるために、Pt量が少ないにもかかわらず図1に示すとおり、230℃でのNH転化率が優れている。また、図2に示すとおり、NO排出濃度が低く、NO生成抑制能に優れることがわかる。さらに、図3に示したように、Pt量が少ないにもかかわらずNOx排出濃度も遜色がないことがわかる。
 これに対して、比較例1~4では、アンモニア酸化触媒AMOX(5)~(8)が本発明とは異なり特定の複合酸化物を含んでいないために、Pt量が多いにもかかわらず図1に示すとおり、230℃でのNH転化率が低く、図2に示すとおり、NO排出濃度が高く、NO生成抑制能に劣り、さらに、図3に示したように、Pt量が多いのでNOx排出濃度が比較的低くなっていることがわかる。
 本発明は、燃料が軽油であるディーゼルエンジンなど自動車から排気される窒素酸化物の除去技術、スリップNHの浄化に対しても広く適用可能である。また、燃料としてガソリン、重油をはじめ、アルコール等のバイオ燃料、またバイオ燃料と軽油、バイオ燃料とガソリンの混合燃料を使用した燃焼機関から排出された排気ガスに対しても適用できる。さらに、本発明は、可燃性粒子成分が堆積したフィルターの再生を伴う排気ガス浄化触媒装置と併用しても効果が発揮される。

Claims (10)

  1.  希薄燃焼機関から排出される排気ガスに、窒素酸化物の還元剤として尿素またはアンモニアを添加し選択還元型触媒(SCR)により窒素酸化物を選択的に還元する際に、余剰のアンモニアを酸化除去するためのアンモニア酸化触媒(AMOX)において、
     一体構造型担体の表面に、チタニア及びシリカを主成分とする複合酸化物(A)の無機母材に貴金属元素を担持した触媒を含む触媒層(下層)と、酸化タングステン、セリア、及びジルコニアからなる複合酸化物(C)を含む触媒層(上層)を有する、少なくとも二層の触媒層を被覆してなり、複合酸化物(C)の組成が、酸化タングステン:1~50重量%、セリア:1~60重量%、及びジルコニア:30~90重量%であることを特徴とするアンモニア酸化触媒。
  2.  複合酸化物(A)の組成が、チタニア:60~99重量%及びシリカ:1~40重量%であることを特徴とする請求項1記載のアンモニア酸化触媒。
  3.  複合酸化物(A)が、さらに、ジルコニア、又はアルミナから選ばれる一種以上を含み、その含有量が、30重量%以下であることを特徴とする請求項1又は2に記載のアンモニア酸化触媒。
  4.  複合酸化物(C)の組成が、酸化タングステン:3~30重量%、セリア:5~40重量%、及びジルコニア:50~90重量%であることを特徴とする請求項1記載のアンモニア酸化触媒。
  5.  複合酸化物(A)に担持される貴金属元素が、白金を含み、その含有量が、一体構造型担体の単位体積あたり0.01~1.0g/Lであることを特徴とする請求項1~3のいずれかに記載のアンモニア酸化触媒。
  6.  触媒層(下層)の複合酸化物(A)の被覆量が、一体構造型担体の単位体積あたり10~120g/Lであることを特徴とする請求項1に記載のアンモニア酸化触媒。
  7.  触媒層(上層)の複合酸化物(C)の被覆量が、一体構造型担体の単位体積あたり30~150g/Lであることを特徴とする請求項1又は4に記載のアンモニア酸化触媒。
  8.  排気ガス流路に、一酸化窒素、炭化水素の酸化機能を有する酸化触媒(DOC)と、パティキュレートマターを捕集し燃焼除去するフィルター(DPF)と、尿素水溶液もしくはアンモニア水溶液を供給する噴霧手段と、選択還元型触媒(SCR)と、請求項1~7のいずれかに記載のアンモニア酸化触媒(AMOX)をこの順序で配置したことを特徴とする排気ガス浄化装置。
  9.  選択還元型触媒(SCR)が、少なくとも鉄元素を含むゼオライト(D)と、酸化タングステン、セリア、及びジルコニアからなる複合酸化物(C)を含む触媒層を一体構造型担体の表面に被覆してなることを特徴とする請求項8記載の排気ガス浄化装置。
  10.  請求項8に記載の排気ガス浄化装置を用いて、希薄燃焼機関から排出される排気ガスを酸化触媒(DOC)とフィルター(DPF)に通過させ、排気ガス中の炭化水素成分、一酸化炭素を浄化するとともに、一酸化窒素の多くを二酸化窒素に転化した後、尿素水溶液またはアンモニア水溶液を噴霧供給して、選択還元型触媒(SCR)を通過させて排気ガス中の窒素酸化物を還元し、余剰のアンモニアをアンモニア酸化触媒(AMOX)で酸化除去することを特徴とする排気ガス浄化方法。
PCT/JP2011/076490 2011-03-31 2011-11-17 アンモニア酸化触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法 WO2012132095A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/008,460 US8865615B2 (en) 2011-03-31 2011-11-17 Ammonia oxidation catalyst, exhaust gas purification device using same, and exhaust gas purification method
CN201180069695.3A CN103442805B (zh) 2011-03-31 2011-11-17 氨氧化催化剂以及使用了其的废气净化装置和废气净化方法
EP11861929.5A EP2692430A4 (en) 2011-03-31 2011-11-17 AMMONIA OXIDATION CATALYST, EXHAUST GAS PURIFYING DEVICE USING THE SAME, AND EXHAUST GAS PURIFICATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-077177 2011-03-31
JP2011077177A JP5732297B2 (ja) 2011-03-31 2011-03-31 アンモニア酸化触媒、および排気ガス浄化装置並びに排気ガス浄化方法

Publications (1)

Publication Number Publication Date
WO2012132095A1 true WO2012132095A1 (ja) 2012-10-04

Family

ID=46929894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076490 WO2012132095A1 (ja) 2011-03-31 2011-11-17 アンモニア酸化触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法

Country Status (5)

Country Link
US (1) US8865615B2 (ja)
EP (1) EP2692430A4 (ja)
JP (1) JP5732297B2 (ja)
CN (1) CN103442805B (ja)
WO (1) WO2012132095A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9611773B2 (en) 2012-11-22 2017-04-04 Johnson Matthey Public Limited Company Zoned catalysed substrate monolith
DE102018121503A1 (de) 2017-09-05 2019-03-07 Umicore Ag & Co. Kg Abgasreinigung mit NO-Oxidationskatalysator und SCR-aktivem Partikelfilter
CN111992223A (zh) * 2020-08-03 2020-11-27 山东清硕环境科技有限公司 一种用于燃气锅炉烟气净化的催化剂及其制备方法
WO2021065577A1 (ja) * 2019-10-03 2021-04-08 エヌ・イーケムキャット株式会社 排ガス浄化装置
CN114832829A (zh) * 2022-04-08 2022-08-02 南京工业大学 一种燃气尾气高温脱硝催化剂及其制备方法
US11865517B2 (en) * 2020-08-18 2024-01-09 Umicore Ag & Co. Kg Catalyst for reducing ammonia emissions

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011103346B4 (de) * 2011-02-16 2014-06-26 Mtu Friedrichshafen Gmbh Verfahren zur modellbasierten Bestimmung der Temperaturverteilung einer Abgasnachbehandlungseinheit
US9333462B2 (en) * 2012-05-03 2016-05-10 Scania Cv Ab Exhaust aftertreatment system and method pertaining to such a system
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
JP6326580B2 (ja) * 2013-04-24 2018-05-23 株式会社 Acr NOx還元触媒手段を備えた排気ガス浄化装置
WO2015004530A2 (en) 2013-07-11 2015-01-15 Sabic Global Technologies B.V. Use of lanthanide oxides to reduce sintering of catalysts
WO2015087781A1 (ja) * 2013-12-09 2015-06-18 株式会社キャタラー 排ガス浄化用触媒
US8883102B1 (en) * 2014-01-14 2014-11-11 Ford Global Technologies, Llc Methods for controlling nitrous oxide emissions
CN106414983B (zh) * 2014-02-27 2018-12-28 庄信万丰股份有限公司 具有在egr回路中的n2o催化剂的排气***
WO2015130219A1 (en) 2014-02-28 2015-09-03 Scania Cv Ab Method and system for controlling nitrogen oxide emissions from a combustion engine
CN103816891B (zh) * 2014-03-04 2017-01-25 中国科学院生态环境研究中心 一种铈钼锆复合氧化物催化剂、其制备方法及用途
WO2015186819A1 (ja) 2014-06-06 2015-12-10 国立研究開発法人産業技術総合研究所 アンモニア吸着材
JP2017521246A (ja) * 2014-07-02 2017-08-03 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company アンモニア酸化触媒として上部層scrコンポーネントを有するペロブスカイト、及びディーゼル機関における排気エミッション制御のためのシステム
JP2016043320A (ja) * 2014-08-25 2016-04-04 エヌ・イーケムキャット株式会社 尿素加水分解触媒及び尿素加水分解材料を用いた選択還元触媒
SE539803C2 (en) 2015-06-05 2017-12-05 Scania Cv Ab A method and a system for determining a composition of a gas mix in a vehicle
US10201807B2 (en) * 2015-06-18 2019-02-12 Johnson Matthey Public Limited Company Ammonia slip catalyst designed to be first in an SCR system
EP3310479A1 (en) * 2015-06-18 2018-04-25 Johnson Matthey Public Limited Company Ammonia slip catalyst with low n2o formation
BR112017028424B1 (pt) * 2015-07-01 2021-11-03 Basf Corporation Compósito catalisador de remoção de óxido nitroso, sistema de tratamento de emissões, e, método para tratar gases de escape
CN106362582A (zh) * 2015-07-24 2017-02-01 中船重工海博威(江苏)科技发展有限公司 一种催化氧化处理含氨废气的方法及装置
CN105370350A (zh) * 2015-10-28 2016-03-02 苏州莲池环保科技发展有限公司 一种汽车三元催化器的封装方法
CN105435620A (zh) * 2015-12-07 2016-03-30 山东骏飞化工有限公司 一种脱硝剂及其制备方法
DE102015225579A1 (de) * 2015-12-17 2017-06-22 Umicore Ag & Co. Kg Verfahren zur Verhinderung der Kontamination eines SCR-Katalysators mit Platin
CN106944130A (zh) * 2017-03-09 2017-07-14 无锡威孚环保催化剂有限公司 一种净化柴油机尾气的scr‑aoc组合催化剂及其制备方法
GB201705158D0 (en) * 2017-03-30 2017-05-17 Johnson Matthey Plc Catalyst article for use in a emission treatment system
CN111036241B (zh) * 2018-10-12 2022-11-15 中国石油化工股份有限公司 规整结构催化剂及其制备方法和应用以及含氨废气催化氧化处理方法
CN110075907A (zh) * 2019-05-08 2019-08-02 中自环保科技股份有限公司 一种用于柴油车尾气净化的氨氧化催化剂及其制备方法
CN112536061B (zh) * 2019-09-23 2023-05-02 中国石油化工股份有限公司 一种废气处理催化剂及其制备方法
JP6921261B1 (ja) * 2020-03-26 2021-08-18 株式会社キャタラー 排ガス浄化触媒装置
EP4132687A1 (en) * 2020-04-09 2023-02-15 BASF Corporation Multi-functional catalysts for the oxidation of no, the oxidation of nh3 and the selective catalytic reduction of nox
CN111841624A (zh) * 2020-07-08 2020-10-30 凯龙蓝烽新材料科技有限公司 一种高效amox整体式催化剂的制备方法
CN114247450B (zh) * 2020-12-28 2024-07-02 中化学环保催化剂有限公司 一种催化组合物、催化剂层、催化装置和气体处理***
CN114797893B (zh) * 2022-04-25 2023-08-11 昆明理工大学 一种氨氧化催化剂及其制备方法和应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07289897A (ja) * 1994-03-02 1995-11-07 Nippon Shokubai Co Ltd アンモニア分解用触媒およびその触媒を用いるアンモニアの分解方法
JPH07328438A (ja) 1994-06-08 1995-12-19 Mitsubishi Heavy Ind Ltd アンモニア分解用触媒
JPH105591A (ja) 1996-06-20 1998-01-13 Babcock Hitachi Kk 排ガス浄化用触媒およびそれを用いた排ガス浄化装置
JP2002502927A (ja) 1998-02-06 2002-01-29 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 排ガス中のNOxの還元機構
JP2004524962A (ja) 2001-03-12 2004-08-19 エンゲルハード・コーポレーシヨン N2oの触媒による選択的還元及びそのための触媒
JP2005502451A (ja) 2001-09-07 2005-01-27 エンゲルハード・コーポレーシヨン NOx還元用の水熱的に安定な金属による助触媒作用を受けているゼオライトベータ
JP2005238195A (ja) 2004-02-27 2005-09-08 Tokyo Roki Co Ltd 窒素酸化物浄化用触媒システム及び窒素酸化物浄化方法
JP2007504945A (ja) * 2003-09-10 2007-03-08 エンゲルハード・コーポレーシヨン 多層化アンモニア酸化触媒
JP2008264703A (ja) 2007-04-20 2008-11-06 Nissan Motor Co Ltd 排気ガス浄化触媒及びその製造方法
JP2008279334A (ja) 2007-05-09 2008-11-20 Ne Chemcat Corp 選択還元型触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法
JP2008296107A (ja) 2007-05-30 2008-12-11 Toyota Motor Corp 排ガス浄化用触媒及びその製造方法
JP2009291764A (ja) * 2008-06-09 2009-12-17 Tokyo Roki Co Ltd 内燃機関用の排ガス浄化フィルタ、及び内燃機関用の排ガス浄化装置
JP2010209783A (ja) * 2009-03-10 2010-09-24 Toyota Industries Corp 排気ガス浄化装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145606A (ja) * 1990-10-05 1992-05-19 Murata Mfg Co Ltd 巻線型インダクタ
JP3436567B2 (ja) * 1993-06-23 2003-08-11 バブコック日立株式会社 排ガス浄化触媒およびその製造方法
US5679313A (en) * 1994-06-08 1997-10-21 Mitsubishi Jukogyo Kabushiki Kaisha Ammonia decomposition catalysts
WO2005046855A2 (en) * 2003-10-16 2005-05-26 Conocophillips Company Silica-alumina catalyst support, catalysts made therefrom and methods of making and using same
JP4547930B2 (ja) * 2004-02-17 2010-09-22 日産自動車株式会社 触媒、触媒の調製方法及び排ガス浄化用触媒
JP2007296514A (ja) * 2006-04-07 2007-11-15 Ngk Insulators Ltd 触媒体とその製造方法
FR2907444B1 (fr) * 2006-10-20 2008-12-19 Rhodia Recherches & Tech Composition a acidite elevee a base d'oxydes de zirconium,de silicium et d'au moins un autre element choisi parmi le titane,l'aluminium,le tungstene,le molybdene,le cerium,le fer et le manganese
US8636959B2 (en) * 2007-05-09 2014-01-28 N.E. Chemcat Corporation Selective catalytic reduction type catalyst, and exhaust gas purification equipment and purifying process of exhaust gas using the same
US8119558B2 (en) * 2008-03-14 2012-02-21 Süd-Chemie Inc. Ultra high temperature shift catalyst with low methanation
JP5422087B2 (ja) * 2008-08-08 2014-02-19 本田技研工業株式会社 低貴金属担持三元触媒
US8148295B2 (en) * 2009-02-16 2012-04-03 Millennium Inorganic Chemicals, Inc. Catalyst promoters in vanadium-free mobile catalyst
US7879759B2 (en) * 2009-02-16 2011-02-01 Augustine Steve M Mobile DeNOx catalyst
US7968492B2 (en) * 2009-05-11 2011-06-28 Millennium Inorganic Chemicals, Inc. Layered catalyst to improve selectivity or activity of manganese containing vanadium-free mobile catalyst
EP2535102A1 (en) * 2010-06-30 2012-12-19 N.E. Chemcat Corporation Flue gas-cleaning device and flue gas-cleaning method that use selective catalytic reduction catalyst
DE102010050312A1 (de) * 2010-11-03 2012-05-03 Süd-Chemie AG Ammoniak-Oxidationskatalysator mit geringer N2O Nebenproduktbildung
US8617502B2 (en) * 2011-02-07 2013-12-31 Cristal Usa Inc. Ce containing, V-free mobile denox catalyst
US9011809B2 (en) * 2011-03-31 2015-04-21 N.E. Chemcat Corporation Ammonia oxidation catalyst, exhaust gas purification device using same, and exhaust gas purification method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07289897A (ja) * 1994-03-02 1995-11-07 Nippon Shokubai Co Ltd アンモニア分解用触媒およびその触媒を用いるアンモニアの分解方法
JPH07328438A (ja) 1994-06-08 1995-12-19 Mitsubishi Heavy Ind Ltd アンモニア分解用触媒
JPH105591A (ja) 1996-06-20 1998-01-13 Babcock Hitachi Kk 排ガス浄化用触媒およびそれを用いた排ガス浄化装置
JP2002502927A (ja) 1998-02-06 2002-01-29 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 排ガス中のNOxの還元機構
JP2004524962A (ja) 2001-03-12 2004-08-19 エンゲルハード・コーポレーシヨン N2oの触媒による選択的還元及びそのための触媒
JP2005502451A (ja) 2001-09-07 2005-01-27 エンゲルハード・コーポレーシヨン NOx還元用の水熱的に安定な金属による助触媒作用を受けているゼオライトベータ
JP2007504945A (ja) * 2003-09-10 2007-03-08 エンゲルハード・コーポレーシヨン 多層化アンモニア酸化触媒
JP2005238195A (ja) 2004-02-27 2005-09-08 Tokyo Roki Co Ltd 窒素酸化物浄化用触媒システム及び窒素酸化物浄化方法
JP2008264703A (ja) 2007-04-20 2008-11-06 Nissan Motor Co Ltd 排気ガス浄化触媒及びその製造方法
JP2008279334A (ja) 2007-05-09 2008-11-20 Ne Chemcat Corp 選択還元型触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法
JP2008296107A (ja) 2007-05-30 2008-12-11 Toyota Motor Corp 排ガス浄化用触媒及びその製造方法
JP2009291764A (ja) * 2008-06-09 2009-12-17 Tokyo Roki Co Ltd 内燃機関用の排ガス浄化フィルタ、及び内燃機関用の排ガス浄化装置
JP2010209783A (ja) * 2009-03-10 2010-09-24 Toyota Industries Corp 排気ガス浄化装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. UESHIMA ET AL.: "New Technology for Selective Catalytic Oxidation of Ammonia to Nitrogen", RES. CHEM. INTERMED., vol. 24, no. 2, May 1998 (1998-05-01), pages 133 - 141, XP055127193 *
See also references of EP2692430A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9611773B2 (en) 2012-11-22 2017-04-04 Johnson Matthey Public Limited Company Zoned catalysed substrate monolith
DE102018121503A1 (de) 2017-09-05 2019-03-07 Umicore Ag & Co. Kg Abgasreinigung mit NO-Oxidationskatalysator und SCR-aktivem Partikelfilter
WO2021065577A1 (ja) * 2019-10-03 2021-04-08 エヌ・イーケムキャット株式会社 排ガス浄化装置
JP7510430B2 (ja) 2019-10-03 2024-07-03 エヌ・イーケムキャット株式会社 排ガス浄化装置
CN111992223A (zh) * 2020-08-03 2020-11-27 山东清硕环境科技有限公司 一种用于燃气锅炉烟气净化的催化剂及其制备方法
US11865517B2 (en) * 2020-08-18 2024-01-09 Umicore Ag & Co. Kg Catalyst for reducing ammonia emissions
CN114832829A (zh) * 2022-04-08 2022-08-02 南京工业大学 一种燃气尾气高温脱硝催化剂及其制备方法
CN114832829B (zh) * 2022-04-08 2023-09-26 南京工业大学 一种燃气尾气高温脱硝催化剂及其制备方法

Also Published As

Publication number Publication date
CN103442805B (zh) 2015-11-25
JP5732297B2 (ja) 2015-06-10
US8865615B2 (en) 2014-10-21
EP2692430A1 (en) 2014-02-05
US20140065044A1 (en) 2014-03-06
EP2692430A4 (en) 2015-04-15
JP2012210570A (ja) 2012-11-01
CN103442805A (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5989214B2 (ja) アンモニア酸化触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法
JP5732297B2 (ja) アンモニア酸化触媒、および排気ガス浄化装置並びに排気ガス浄化方法
JP5769708B2 (ja) 選択還元型触媒を用いた排気ガス浄化装置及び排気ガス浄化方法
JP5110954B2 (ja) 選択還元型触媒を用いた排気ガス浄化触媒装置並びに排気ガス浄化方法
JP5769732B2 (ja) 選択還元型触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法
JP6040232B2 (ja) 排気ガス浄化装置
JP4982241B2 (ja) 自動車用排気ガス浄化触媒、排気ガス浄化触媒系、および排気ガスの浄化方法
KR102515969B1 (ko) 배기 가스 촉매 및 필터 기재에 대한 촉매 결합제
US8636959B2 (en) Selective catalytic reduction type catalyst, and exhaust gas purification equipment and purifying process of exhaust gas using the same
EP2113296A2 (en) Exhaust gas purification method using selective reduction catalyst
JP5651727B2 (ja) 選択還元触媒を用いた排気ガス浄化方法
JP2012152744A (ja) 排気ガス浄化用選択還元触媒及びそれを用いた排気ガス浄化装置
WO2024029290A1 (ja) 排ガス処理用システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14008460

Country of ref document: US