WO2015087781A1 - 排ガス浄化用触媒 - Google Patents

排ガス浄化用触媒 Download PDF

Info

Publication number
WO2015087781A1
WO2015087781A1 PCT/JP2014/082148 JP2014082148W WO2015087781A1 WO 2015087781 A1 WO2015087781 A1 WO 2015087781A1 JP 2014082148 W JP2014082148 W JP 2014082148W WO 2015087781 A1 WO2015087781 A1 WO 2015087781A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystallite
oxide
catalyst
exhaust gas
crystallites
Prior art date
Application number
PCT/JP2014/082148
Other languages
English (en)
French (fr)
Inventor
悟司 松枝
章雅 平井
健一 滝
Original Assignee
株式会社キャタラー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キャタラー filed Critical 株式会社キャタラー
Priority to CN201480067268.5A priority Critical patent/CN105813734B/zh
Priority to JP2015552414A priority patent/JP6532825B2/ja
Priority to EP14869674.3A priority patent/EP3081297B1/en
Priority to US15/037,345 priority patent/US9849441B2/en
Publication of WO2015087781A1 publication Critical patent/WO2015087781A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2045Calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2061Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2068Neodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purifying catalyst provided in an exhaust system of an internal combustion engine. Note that this international application claims priority based on Japanese Patent Application No. 2013-254479 filed on December 9, 2013, the entire contents of which are incorporated herein by reference. ing.
  • a three-way catalyst that can simultaneously reduce x is used.
  • a porous support made of a metal oxide such as alumina (Al 2 O 3 ), a noble metal (PGM) belonging to a platinum group such as platinum (Pt), rhodium (Rh), and palladium (Pd). The thing which carried
  • supported is used.
  • CZ complex oxide a complex oxide mainly composed of ceria (CeO 2 ) and zirconia (ZrO 2 ) has been conventionally used as the OSC material.
  • CZ complex oxide a complex oxide mainly composed of ceria (CeO 2 ) and zirconia (ZrO 2 )
  • Patent Document 1 discloses a CZ composite oxide in which the solubility of zirconium oxide in cerium oxide is 50% or more, and the average diameter of crystallites constituting the particles of the CZ composite oxide is 100 nm or less.
  • An example of a conventional exhaust gas purifying catalyst provided with an OSC material made of a CZ composite oxide characterized by the above is disclosed.
  • Patent Document 2 listed below introduces a method for producing CZ composite oxide particles, which are CZ composite oxides used as OSC materials and have a crystallite diameter of about 10 nm.
  • one of the weak points of the CZ composite oxide used as the OSC material is low heat resistance. That is, in the particles (primary particles) made of the conventional CZ composite oxide, crystal growth of the crystallites constituting the particles is likely to occur at a high temperature (for example, during an endurance test), and accordingly, the particles are made of the CZ composite oxide. Aggregation of the noble metal supported on the OSC material also proceeds, and as a result, there is a risk of reducing the active sites. Therefore, improving the heat resistance of the CZ composite oxide used as the OSC material, more specifically, suppressing the crystal growth of the crystallites constituting the CZ composite oxide particles, aggregating noble metals and lowering the OSC function. There is a demand for improvement in heat resistance that can suppress the above.
  • the present inventor mixed two kinds of crystallites having different crystal structures (more specifically, different lattice constants) in order to suppress crystal growth of the crystallites constituting the CZ composite oxide particles.
  • by mixing two kinds of crystallites having different crystal structures from each other different crystallites can serve as a barrier to prevent crystal growth, and noble metal aggregation and OSC function can be prevented. The decrease can be suppressed.
  • the present invention aims to further improve the catalyst performance in an exhaust gas purifying catalyst in which two kinds of crystallites having different crystal structures are mixed.
  • the inventor supports a noble metal on a crystallite having a lower Ce content, and contains Ce. It has been found that the catalyst performance can be further improved by not supporting the noble metal on the crystallite having a higher rate, and the present invention has been completed.
  • the exhaust gas purifying catalyst disclosed herein includes oxide particles in which crystallites A on which noble metals are supported and crystallites B on which noble metals are not supported are mixed.
  • the crystallite A on which the noble metal is supported is made of an oxide containing at least one of zirconium (Zr) and cerium (Ce), and the crystallite B on which the noble metal is not supported is cerium (Ce). It is an oxide containing,
  • the Ce content rate (mol%) in this oxide consists of an oxide whose content rate (mol%) in the oxide of the said crystallite A is higher.
  • the configuration of the present invention by including what consists of oxide particles in which crystallite A and crystallite B are mixed, crystal growth is suppressed even when used under high temperature conditions such as a thermal endurance test, Aggregation of the noble metal composed of PGM supported on the crystallite A can be suppressed.
  • the noble metal is supported on the crystallite A having a lower Ce content, and the noble metal is not supported on the crystallite B having a higher Ce content, thereby maintaining a good metal state of the noble metal and having a high OSC function. Can be demonstrated. Therefore, according to the present invention, it is possible to provide a high-performance exhaust gas purification catalyst in which the three-way performance of the three-way catalyst is further improved.
  • the specific surface area after heat treatment in air for 5 hours 30 m 2 / g or more. Since crystal growth can be suppressed even when used under high temperature conditions, such a high specific surface area can be maintained, and high catalytic ability (typically ternary performance) can be maintained. Further, by maintaining such a high specific surface area, more crystallites A supporting noble metal are arranged around the crystallites B not supporting the noble metal, and the distance between the crystallite B and the noble metal becomes closer. The OSC function of the crystallite B is better expressed. Therefore, it is possible to provide a high-performance exhaust gas purification catalyst capable of exhibiting a high OSC function even though the noble metal is not supported on the crystallite B.
  • the Ce content contained in the oxide constituting the crystallite A is 0 to 30 mol% of the whole oxide in terms of oxide, and the crystal The Ce content contained in the oxide constituting the child B is 35 to 99 mol% of the whole oxide in terms of oxide. According to this configuration, particularly high crystal growth suppressing ability and OSC function (and hence ternary performance) can be exhibited.
  • the crystallite A is made of an oxide containing yttrium (Y) together with Zr. According to the crystallite A made of an oxide containing such a metal component, higher crystal growth suppressing ability can be exhibited.
  • the crystallite B is made of an oxide containing Zr together with Ce. According to the crystallite B made of an oxide containing such a metal component, higher crystal growth suppressing ability and OSC function can be exhibited.
  • the crystallite A and the crystallite B are in a highly dispersed state, typically 10 or more of the same type of crystallite in both A and B under observation with an electron microscope. It is characterized by being mixed in the oxide particles in a highly dispersed state so as not to be in contact with each other.
  • “more than ten crystallites of the same kind do not exist in contact with each other” means other crystals existing around the crystallites selected arbitrarily in an electron microscope observation (typically a TEM image).
  • TEM image electron microscope observation
  • FIG. 1 is a perspective view schematically showing an example of an exhaust gas purifying catalyst.
  • FIG. 2 is a diagram schematically illustrating a main part of the catalyst layer according to the embodiment.
  • FIG. 3 is a graph showing the relationship between the specific surface area of the powder and the NOx 50% purification temperature.
  • FIG. 4 is a graph showing the relationship between the number of continuous contacts and the NOx 50% purification temperature.
  • FIG. 5 is a graph showing the relationship between the Ce content and the NOx 50% purification temperature.
  • crystallite refers to the largest collection (particles) of basic structures that consist of a series of continuous crystal lattices and can be regarded as a single crystal.
  • the properties of the crystallites can be examined by performing, for example, XRD (X-ray diffraction) measurement and Rietveld analysis. Further, the existence state of the crystallite can be clarified by observation with an electron microscope (typically, TEM). Further, elemental analysis and composition analysis of the target crystallite can be performed by combining electron microscope observation and EDX (energy dispersive X-ray spectroscopy) (for example, TEM-EDX).
  • EDX energy dispersive X-ray spectroscopy
  • the exhaust gas-purifying catalyst disclosed herein is provided with at least a part of the catalyst layer with oxide particles composed of the above-described two different crystallites (A and B) mixed (dispersed).
  • the exhaust gas purifying catalyst characterized by the above, and other configurations are not particularly limited.
  • the catalyst is used as an exhaust gas purification catalyst disposed in an exhaust pipe of an internal combustion engine as a three-way catalyst, and is a base material and a catalyst layer formed on the base material, and is an oxidation catalyst and / or a reduction catalyst. And a catalyst layer containing the above-mentioned oxide particles.
  • the exhaust gas-purifying catalyst disclosed herein is selected from various types of precious metals, oxide particles, and base materials, which will be described later, and formed into a desired shape according to the application, thereby various internal combustion engines, particularly automobile gasoline engines. It can arrange in the exhaust system (exhaust pipe). In the following description, it is assumed that the exhaust gas purifying catalyst of the present invention is mainly applied to a three-way catalyst provided in the exhaust pipe of an automobile gasoline engine. It is not intended to be limited to the embodiments described below.
  • the exhaust gas purifying catalyst disclosed herein is installed in the exhaust pipe, various materials and forms conventionally used for this type of application can be adopted as the base material constituting the catalyst skeleton.
  • a cordierite having high heat resistance, a ceramic such as silicon carbide (SiC), or a base material made of an alloy (such as stainless steel) can be used.
  • the shape may be the same as that of a conventional exhaust gas purification catalyst.
  • the exhaust gas purification catalyst 10 shown in FIG. 1 is a honeycomb substrate 1 having a cylindrical outer shape, and through holes (cells) 2 serving as exhaust gas passages are provided in the cylinder axis direction.
  • the thing which exhaust gas can contact the partition (rib wall) 4 which divides the cell 2 is mentioned.
  • the shape of the substrate 1 can be a foam shape, a pellet shape, or the like in addition to the honeycomb shape. Moreover, about the external shape of the whole base material, it may replace with a cylindrical shape and may employ
  • the catalyst layer formed on the substrate is the main component of this type of exhaust gas purification catalyst as a place for purifying exhaust gas, and typically, as shown in FIG. It is comprised from the oxide particle in which the crystallite A with which the noble metal particle is carry
  • a catalyst layer having a predetermined thickness and porosity is formed on the rib walls 4 constituting the cells of the substrate 1.
  • the catalyst layer as a whole may be composed of a single layer having substantially the same configuration, or may be a layered structure type catalyst layer formed on the substrate 1 and having two or more different upper and lower layers or three or more layers. .
  • the noble metal 20 provided in the catalyst layer of the exhaust gas purifying catalyst disclosed herein may employ various metal species that can function as an oxidation catalyst or a reduction catalyst.
  • rhodium which is PGM
  • Platinum Pt
  • palladium Pd
  • Ruthenium Ru
  • osmium Os
  • Ir iridium
  • silver Au
  • Cu copper
  • An alloy of two or more of these noble metals may be used. Alternatively, it may be one containing other metal species (typically an alloy).
  • Rh having a high reduction activity and Pd or Pt having a high oxidation activity in order to construct a three-way catalyst.
  • Such noble metal is preferably used as fine particles having a sufficiently small particle diameter from the viewpoint of increasing the contact area with the exhaust gas.
  • the average particle diameter of the metal particles is about 1 to 15 nm, particularly 10 nm or less, 7 nm or less, and further 5 nm or less. preferable.
  • the supporting rate of the noble metal 20 (the noble metal content when the carrier is 100% by mass) is preferably 5% by mass or less, more preferably 3% by mass or less. For example, it is preferably 0.05% by mass or more and 5% by mass or less, and more preferably 0.1% by mass or more and 3% by mass or less.
  • the loading rate is too smaller than the above range, the catalytic effect of the metal is difficult to obtain. If the loading rate is too much higher than the above range, there is a risk that the metal grain growth proceeds, which is also disadvantageous in terms of cost.
  • the oxide particles disclosed herein are composed of a mixture of a crystallite A carrying the noble metal 20 (that is, used as a carrier) and a crystallite B not carrying the noble metal 20. Oxide particles. Oxide particles containing such different crystallites A and B are provided upstream and / or downstream in the exhaust gas flow direction in the catalyst layer.
  • the crystallite A on which the noble metal is supported is composed of an oxide containing at least one of Zr and Ce.
  • the crystallite B on which noble metal is not supported is an oxide containing Ce, and the Ce content (mol%) in the oxide is higher than the content (mol%) in the oxide of the crystallite A. Is also composed of a high oxide.
  • crystal growth is suppressed even after heat treatment in air at 1150 ° C. for 5 hours, typically 30 m 2 / g or more (particularly preferably A high specific surface area of 35 m 2 / g or more, particularly preferably 40 m 2 / g or more.
  • the noble metal is supported on the crystallite A having a lower Ce content, and the noble metal is not supported on the crystallite B having a higher Ce content, thereby maintaining a good metal state of the noble metal and having a high OSC function. Can be demonstrated.
  • the crystallite A and the crystallite B have different crystal structures, more specifically, different lattice constants from each other, so that the different crystallites can serve as a barrier to prevent crystal growth at high temperatures.
  • ⁇ Crystallite A> when the crystallite A (A and B are only symbols for classification) on which the noble metal 20 is supported is mainly composed of Zr, the other element is Ce, and one or two of the other elements.
  • the above rare earth elements such as yttrium (Y), lanthanum (La), neodymium (Nd), praseodymium (Pr), samarium (Sm), europium (Eu), etc.
  • alkaline earth elements such as.
  • a suitable example is a crystallite A composed of a composite oxide having a Zr content of 75 to 99 mol% in terms of oxide and a small amount of Y (for example, 5 mol% or less, or 10 mol% or less). It is done. Further, it is mainly composed of Zr, and the Ce content is 30 mol% or less (preferably 20 mol% or less, more preferably 10 mol% or less, for example 0 mol% (that is, including Ce) in terms of oxide. There is a preferred example of the crystallite A comprising an oxide.
  • the crystallite B on which the noble metal 20 is not supported needs only to contain Ce at a higher rate than the crystallite A, and other elements include Zr and other one or more rare earth elements (La , Y, Nd, Pr, Sm, Eu, etc.).
  • a crystallite B made of an oxide having a Ce content of 35 to 99 mol% in terms of oxide and containing a small amount of La is preferable.
  • the average size of the crystallites A and B may be the same as that constituting an OSC material (for example, a CZ composite oxide) used for a conventional exhaust gas purification catalyst, and is typically 2 in an electron microscope observation such as TEM.
  • the thickness is about 100 to 100 nm, preferably about 5 to 50 nm.
  • the oxide particles composed of the crystallite A and the crystallite B having different crystal structures (lattice constants) as described above may contain various compounds (typically constituent metals) so as to include elements constituting the crystallite A in advance.
  • a precursor (non-fired product) A prepared from a metal salt containing an element, such as a salt of Zr, Ce, or a rare earth element, such as a nitrate, ammonium salt, or phosphate salt, is similarly composed of a crystallite B in advance.
  • a precursor (non-calcined product) B prepared from various compounds (typically various metal salts) so as to contain an element to be mixed with an appropriate oxidizing agent such as various organic acids and hydrogen peroxide. And calcining under oxidizing conditions (typically in the atmosphere).
  • an appropriate oxidizing agent such as various organic acids and hydrogen peroxide.
  • This manufacturing method includes a step (crystallite A precursor preparation step) in which a coprecipitate is precipitated from an aqueous solution containing a constituent element of crystallite A to obtain a crystallite A precursor.
  • the solvent (aqueous solvent) constituting the aqueous solution is typically water, and may be a mixed solvent containing water as a main component.
  • an aqueous solution containing a compound capable of supplying Ce ions, Zr ions and the like in an aqueous solvent may be used.
  • the aqueous solution is heated to 80 ° C. to 100 ° C. (preferably 90 ° C.
  • the crystallite A precursor preparation step may include a process of supporting a noble metal on the crystallite A precursor.
  • a noble metal may be added under the condition of pH 12 or higher so that the noble metal is supported on the crystallite A precursor.
  • the production method disclosed herein can be preferably carried out in such a manner that a noble metal is supported on the unsintered crystallite A precursor.
  • this manufacturing method includes a step (crystallite B precursor preparation step) in which a coprecipitate is precipitated from an aqueous solution containing the constituent element of crystallite B to obtain a crystallite B precursor.
  • the solvent (aqueous solvent) constituting the aqueous solution is typically water, and may be a mixed solvent containing water as a main component.
  • an aqueous solution containing a compound that can supply Ce ions or the like in an aqueous solvent may be used.
  • the aqueous solution is heated to 80 ° C. to 100 ° C. (preferably 90 ° C.
  • the pH can be adjusted by supplying an alkaline agent (a compound having a function of tilting liquidity to alkaline, such as urea) to the aqueous solution.
  • an alkaline agent a compound having a function of tilting liquidity to alkaline, such as urea
  • the crystallite A precursor and the crystallite B precursor thus produced are mixed to prepare a mixed slurry (slurry preparation step).
  • a mixed slurry typically, the crystallite A precursor and the crystallite B precursor are added to water, and an organic acid and hydrogen peroxide solution are added and stirred to obtain a mixed slurry.
  • the organic acid for example, malonic acid can be preferably used.
  • the production method disclosed herein can be preferably implemented in an embodiment using such an organic acid and hydrogen peroxide solution.
  • the slurry preparation step may include a process of stirring the mixed slurry and then stirring with a disperser (for example, a homogenizer). The heating temperature can be set to 75 ° C. to 90 ° C.
  • the stirring time may be a time until the mixed slurry is uniformly mixed, for example, 5 minutes or more (for example, 5 minutes to 120 minutes), preferably 15 minutes or more, more preferably 30 minutes or more, and further preferably It can be set to 60 minutes or more. Within such a stirring time range, oxide particles having a smaller number of contacts between the crystallites A and B can be obtained.
  • ⁇ Baking process> After stirring the mixed slurry as described above, it is washed and dried. And the oxide particle which consists of a crystallite A and a crystallite B is obtained by baking this mixture (baking process).
  • This firing step is preferably performed in the atmosphere or in an atmosphere richer in oxygen than in the atmosphere.
  • the maximum firing temperature is determined in the range of 700 ° C. or more and 900 ° C. or less in the air atmosphere.
  • the firing time can be set to 3 to 8 hours, for example. In this way, oxide particles composed of crystallite A and crystallite B can be obtained.
  • the catalyst layer of the exhaust gas-purifying catalyst disclosed herein may include one or more carriers in addition to the oxide particles composed of different crystallites A and B.
  • a porous carrier made of an inorganic compound having a specific surface area (referred to as a specific surface area measured by the BET method; hereinafter the same) is suitably used.
  • Suitable supports include, for example, alumina (Al 2 O 3 ), ceria (CeO 2 ), zirconia (ZrO 2 ), silica (SiO 2 ), titania (TiO 2 ), and solid solutions thereof (eg, ceria-zirconia composites).
  • ceramics such as alumina and zirconia having good heat resistance are supported or non-supported (noble metal). May be included in the catalyst layer as a constituent component of the catalyst layer not supporting the same.
  • the carrier or non-supported particles (for example, alumina powder) preferably have a specific surface area of 30 m 2 / g or more.
  • the carrier such as alumina is preferably 50 m 2 / g or more, for example, 50 to 500 m 2 / g (for example, 200 to 400 m 2 / g) from the viewpoints of heat resistance and structural stability.
  • the average particle size of the carrier particles is not particularly limited, but is preferably about 1 nm to 500 nm (more preferably 10 nm to 200 nm).
  • the precious metal content per catalyst unit volume (1 L) is preferably about 0.1 to 10 g / L, and 0.2 to 5 g / L. About L is preferable. If the precious metal content is too large, it is not preferable in terms of cost.
  • the catalyst unit volume (1 L) includes the bulk volume (1 L) including the internal void volume (cell) volume (that is, including the catalyst layer formed in the void (cell)) in addition to the pure volume of the base material.
  • the exhaust gas-purifying catalyst having the above-described configuration can be manufactured by a manufacturing process similar to the conventional one. For example, first, a desired carrier powder carrying a noble metal such as Pd, Pt, or Rh (which may include a general carrier such as an oxide made of crystallite A, alumina, or zirconia) and a noble metal are carried. A non-supported body (which may include an unsupported body such as oxide composed of crystallite B, alumina, zirconia, etc.) powder is coated on the honeycomb substrate by a known wash coat method or the like. Thereafter, the catalyst layer can be formed on the substrate by firing at a predetermined temperature and time.
  • a noble metal such as Pd, Pt, or Rh
  • a noble metal which may include a general carrier such as an oxide made of crystallite A, alumina, or zirconia
  • a non-supported body which may include an unsupported body such as oxide composed of crystallite B, alumina, zirconia, etc.
  • the catalyst layer can be
  • the firing conditions of the wash-coated slurry vary depending on the shape and size of the substrate or carrier, and are not particularly limited. Typically, by performing firing at about 400 to 1000 ° C. for about 1 to 4 hours, The target catalyst layer can be formed.
  • the drying conditions before firing are not particularly limited, but drying at a temperature of 80 to 300 ° C. (for example, 150 to 250 ° C.) for about 1 to 12 hours is preferable.
  • a binder is added to the slurry in order to suitably adhere the upper layer forming slurry to the surface of the base material, and in the case of a laminated catalyst layer, to the lower layer surface. You may make it contain.
  • a binder for example, use of alumina sol, silica sol or the like is preferable.
  • Example 1 Production of exhaust gas purification catalyst>
  • cerium nitrate solution (20 mass% as CeO 2 )
  • zirconium oxynitrate solution (10 mass% as ZrO 2 )
  • neodymium nitrate solution (10 mass% as Nd 2 O 3 )
  • 13.19 g, 13.28 g of yttrium nitrate solution (10% by mass as Y 2 O 3 )
  • PVP K-30 polyvinylpyrrolidone
  • this mixed solution was heated to 90 to 95 ° C., and urea was added to adjust the pH to 11 to obtain a coprecipitate. Thereafter, 13 g of hydrazine was added and stirred at 90 to 95 ° C. for 12 hours. The obtained coprecipitate was filtered and washed with pure water to obtain a precursor a1.
  • the entire amount of the precursor a1 was added and dispersed in 1000 mL of ion-exchanged water, and after adjusting the pH to 12 by adding an aqueous sodium hydroxide solution, 10 g of a rhodium nitrate solution (5% by mass as Rh) was added. Then, Rh was supported on the precursor a1, and the aqueous solution was removed by suction filtration to obtain an Rh-supported precursor a1. When the filtrate was analyzed by ICP emission spectroscopy, the Rh loading efficiency was 100%.
  • the whole amount of the Rh-supported precursor a1 and the precursor b1 was added to 1000 mL of ion-exchanged water, and 1 g of malonic acid and 10 g of 3% hydrogen peroxide water were further added and stirred as organic acids.
  • the mixed slurry thus prepared was heated to 80 to 85 ° C. and then stirred for 60 minutes with a homogenizer. Then, after filtering and washing
  • the obtained powder A1B1 was subjected to TEM-EDX measurement (200,000 to 400,000 times, 50 visual fields), and the properties of the powder were examined.
  • the elemental composition of 50 consecutive crystallites on an arbitrary straight line is analyzed by TEM-EDX measurement (200,000 to 400,000 times, 50 visual fields), and crystallite A and crystallite B are analyzed. And the maximum value of the number of crystallites A that are in continuous contact and the maximum value of the number of crystallites B that are in continuous contact were determined for the 50 crystallites analyzed. This was similarly performed in 50 visual fields, and the average value of the maximum values in each visual field was defined as the number of crystallites A or B continuously contacting. The results are shown in the corresponding column of Table 1. As shown in Table 1, in the powder A1B1 according to Example 1, the number of crystallites A that are in continuous contact is two, and the number of crystallites B that are in continuous contact is three.
  • the powder A1B1 was compacted and pulverized to obtain a pellet-shaped catalyst I for a catalytic activity evaluation test described later having a particle size of 0.5 to 1.0 mm.
  • Example 2 Except that the stirring time in the homogenizer was changed from 60 minutes to 15 minutes, a pellet-like catalyst II for catalytic activity evaluation test was obtained by the same process as in Example 1 described above. Properties of catalyst II such as TEM-EDX measurement results are shown in the corresponding column of Table 1.
  • Example 3 Except that the stirring time in the homogenizer was changed from 60 minutes to 5 minutes, a pellet-shaped catalyst III for catalytic activity evaluation test was obtained by the same process as in Example 1 described above. Properties of catalyst III such as TEM-EDX measurement results are shown in the corresponding column of Table 1.
  • Example 4 A pellet-like catalyst IV for catalytic activity evaluation test was obtained in the same process as in Example 1 except that the malonic acid and hydrogen peroxide solution were not used. Properties of catalyst IV such as TEM-EDX measurement results are shown in the corresponding column of Table 1.
  • Example 1 The catalytic activity was the same as in Example 1 except that the malonic acid and hydrogen peroxide solution were not used, the mixed slurry was not heated, and the homogenizer was not used. A pellet-shaped catalyst V for evaluation test was obtained. Properties of catalyst V such as TEM-EDX measurement results are shown in the corresponding column of Table 1.
  • the powder Rh / A1 (25 g) and the powder B1 (25 g) were dispersed in 400 mL of ion exchange water and stirred to prepare a mixed slurry. Next, the mixed slurry was subjected to suction filtration to remove the aqueous solution, then dried at 110 ° C. for 12 hours, and baked at 500 ° C. in the air to obtain powder A1 + B1.
  • This catalyst was compacted and pulverized to obtain a pellet-like catalyst VI for a catalytic activity evaluation test described later having a particle size of 0.5 to 1.0 mm.
  • the properties of the catalyst VI such as the TEM-EDX measurement results are shown in the corresponding column of Table 1.
  • Example 5 The catalyst was prepared in the same process as in Example 1 except that 10 g of dinitrodiamine Pt nitric acid solution (5 mass% as Pt) was used instead of 10 g of the rhodium nitrate solution (5 mass% as Rh) used in Example 1 above. A pellet catalyst VII for activity evaluation test was obtained. Properties of catalyst VII such as TEM-EDX measurement results are shown in the corresponding column of Table 1.
  • Example 6 Evaluation of catalytic activity in the same process as in Example 1 except that 10 g of palladium nitrate solution (5% by mass as Pd) was used instead of 10 g of rhodium nitrate solution (5% by mass as Rh) used in Example 1 above. A pellet-like catalyst IX for test was obtained. Properties of catalyst IX such as TEM-EDX measurement results are shown in the corresponding column of Table 1.
  • the entire amount of the precursor b1 was added and dispersed in 1000 mL of ion-exchanged water, and after adding a sodium hydroxide aqueous solution to adjust the pH to 12, 10 g of a rhodium nitrate solution (5% by mass as Rh) was added. Then, Rh was supported on the precursor b1, and the aqueous solution was removed by suction filtration to obtain an Rh-supported precursor b1. When the filtrate was analyzed by ICP emission spectroscopy, the Rh loading efficiency was 100%.
  • the catalyst powder Rh / A1B1 was compacted and pulverized to obtain a pellet-shaped catalyst XI for a catalytic activity evaluation test described later having a particle size of 0.5 to 1.0 mm.
  • the properties of catalyst XI, such as TEM-EDX measurement results, are shown in the corresponding column of Table 1.
  • Example 7 In 700 mL of ion-exchanged water, 537.5 g of zirconium oxynitrate solution (10% by mass as ZrO 2 ), 4.98 g of yttrium nitrate solution (10% by mass as Y 2 O 3 ), 0.05 g of PVP K-30 (trade name) A mixed solution was prepared by adding and stirring. Next, this mixed solution was heated to 90 to 95 ° C., and urea was added to adjust the pH to 11 to obtain a coprecipitate. Thereafter, 13 g of hydrazine was added and stirred at 90 to 95 ° C. for 12 hours. The obtained coprecipitate was filtered and washed with pure water to obtain a precursor a2.
  • Rh rhodium nitrate solution (5% by mass as Rh) was added. Then, Rh was supported on the precursor a1, and the aqueous solution was removed by suction filtration to obtain an Rh-supported precursor a2. When the filtrate was analyzed by ICP emission spectroscopy, the Rh loading efficiency was 100%.
  • Rh-supported precursor a2 and precursor b2 was added to 1000 mL of ion-exchanged water, and 1 g of malonic acid and 10 g of 3% hydrogen peroxide water were further added and stirred as organic acids.
  • the mixed slurry thus prepared was heated to 80 to 85 ° C. and then stirred for 60 minutes with a homogenizer. Then, after filtration, washing with pure water, drying at 110 ° C., and firing in the air at 800 ° C. for 5 hours, an exhaust gas purifying catalyst (Rh / A2B2) according to Example 7 was obtained. .
  • the catalyst powder Rh / A2B2 was compacted and pulverized to obtain a pellet-like catalyst XII for a catalytic activity evaluation test described later having a particle size of 0.5 to 1.0 mm. Properties of catalyst XII such as TEM-EDX measurement results are shown in the corresponding column of Table 1.
  • Example 8 In 700 mL of ion-exchanged water, 36.59 g of cerium nitrate solution (20 mass% as CeO 2 ), 445.3 g of zirconium oxynitrate solution (10 mass% as ZrO 2 ), yttrium nitrate solution (10 mass% as Y 2 O 3 ) 24 0.000 g and 0.05 g of PVP K-30 (trade name) were added and stirred to prepare a mixed solution. Next, this mixed solution was heated to 90 to 95 ° C., and urea was added to adjust the pH to 11 to obtain a coprecipitate. Thereafter, 13 g of hydrazine was added and stirred at 90 to 95 ° C. for 12 hours.
  • the obtained coprecipitate was filtered and washed with pure water to obtain a precursor a3.
  • a pellet-shaped catalyst XIII for catalytic activity evaluation test was obtained in the same process as in Example 7 except that the powder A3B2 was used instead of the powder A2B2.
  • the properties of the catalyst XIII, such as TEM-EDX measurement results, are shown in the corresponding column of Table 1.
  • Example 9 70.24 g of cerium nitrate solution (20 mass% as CeO 2 ), 378.4 g of zirconium oxynitrate (10 mass% as ZrO 2 ), 7008.4 g of yttrium nitrate solution (10 mass% as Y 2 O 3 ) in 700 mL of ion-exchanged water 12 g and 0.05 g of PVP K-30 (trade name) were added and stirred to prepare a mixed solution. Next, this mixed solution was heated to 90 to 95 ° C., and urea was added to adjust the pH to 11 to obtain a coprecipitate. Thereafter, 13 g of hydrazine was added and stirred at 90 to 95 ° C. for 12 hours.
  • the obtained coprecipitate was filtered and washed with pure water to obtain a precursor a4.
  • a pellet catalyst XIV for catalytic activity evaluation test was obtained by the same process as in Example 7 except that the powder A4B2 was used instead of the powder A2B2.
  • the properties of catalyst XIV, such as TEM-EDX measurement results, are shown in the corresponding column of Table 1.
  • Example 10 10. 700 g of ion-exchanged water, 101.9 g of cerium nitrate solution (20 mass% as CeO 2 ), 316.3 g of zirconium oxynitrate (10 mass% as ZrO 2 ), yttrium nitrate solution (10 mass% as Y 2 O 3 ) 30 g and 0.05 g of PVP K-30 (trade name) were added and stirred to prepare a mixed solution. Next, this mixed solution was heated to 90 to 95 ° C., and urea was added to adjust the pH to 11 to obtain a coprecipitate. Thereafter, 13 g of hydrazine was added and stirred at 90 to 95 ° C. for 12 hours.
  • the obtained coprecipitate was filtered and washed with pure water to obtain a precursor a5. And it replaced with the precursor a2 used in the above-mentioned Example 7, and obtained powder A5B2 with the process similar to the above-mentioned Example 7 except having used the said precursor a5.
  • a pellet-shaped catalyst XV for catalytic activity evaluation test was obtained by the same process as in Example 7 except that the powder A5B2 was used instead of the powder A2B2.
  • the properties of the catalyst XV such as TEM-EDX measurement results are shown in the corresponding column of Table 1.
  • the obtained coprecipitate was filtered and washed with pure water to obtain a precursor a6. And it replaced with the precursor a2 used in the above-mentioned Example 7, and obtained powder A6B2 with the process similar to the above-mentioned Example 7 except having used the said precursor a6.
  • a pellet catalyst XVI for catalytic activity evaluation test was obtained by the same process as in Example 7 described above except that the powder A6B2 was used instead of the powder A2B2. Properties of catalyst XVI such as TEM-EDX measurement results are shown in the corresponding column of Table 1.
  • [Comparative Example 7] 15. 700 g of ion-exchanged water, 158.6 g of cerium nitrate solution (20 mass% as CeO 2 ), 204.4 g of zirconium oxynitrate (10 mass% as ZrO 2 ), yttrium nitrate solution (10 mass% as Y 2 O 3 ) 81 g and PVP K-30 (trade name) 0.05 g were added and stirred to prepare a mixed solution. Next, this mixed solution was heated to 90 to 95 ° C., and urea was added to adjust the pH to 11 to obtain a coprecipitate. Thereafter, 13 g of hydrazine was added and stirred at 90 to 95 ° C. for 12 hours.
  • the obtained coprecipitate was filtered and washed with pure water to obtain a precursor a7.
  • Example 11 Powder A1B2 was obtained by the same process as in Example 1 except that precursor b2 was used instead of precursor b1 used in Example 1 described above. Further, a pellet catalyst for a catalytic activity evaluation test was obtained by the same process as in Example 1 except that the powder A1B2 was used instead of the powder A1B1. The properties of the catalyst such as TEM-EDX measurement results are shown in the corresponding column of Table 1.
  • ⁇ Test Example 2 Degree of crystal growth during high temperature treatment -Measurement of specific surface area-> The BET specific surface area (m 2 / g) after heat-treating each of the catalysts of Examples 1 to 10 and Comparative Examples 1 to 7 obtained in Test Example 1 was examined. Specifically, each catalyst (powder) was heat-treated (fired) at 1150 ° C. for 5 hours in the air (Air atmosphere). Thereafter, the surface area was measured based on a general BET method. The results are shown in Table 1.
  • the specific surface areas of the catalyst powders (oxide particles) of each Example were all 30 m 2 / g or more, and some were 40 m 2 / g or more.
  • the specific surface areas of the catalyst powders (oxide particles) of Comparative Examples 1 to 4 were all 25 m 2 / g or less. This indicates that in the catalyst of the example in which different kinds of crystallites are mixed in a dispersed state, the different kinds of crystallites serve as a barrier to prevent crystal growth, and as a result, it is possible to effectively prevent a decrease in specific surface area. .
  • ⁇ Test Example 3 Evaluation of catalytic activity> The catalyst activity of each of the catalysts of Examples 1 to 10 and Comparative Examples 1 to 7 obtained in Test Example 1 was examined for thermal durability and then evaluated for catalytic activity. Specifically, each catalyst (the above-mentioned pellet-shaped catalyst) is placed in a flow-type thermal durability test apparatus, lean gas obtained by adding 6 mol% of oxygen (O 2 ) to nitrogen gas, and carbon monoxide (CO ) was added to the rich gas with a gas flow rate of 500 mL / min at a catalyst bed temperature of 850 ° C. for 100 hours alternately for 3 hours.
  • O 2 oxygen
  • CO carbon monoxide
  • the treated catalyst is placed in an atmospheric pressure fixed bed flow reactor, and the temperature is increased from 100 ° C. to 500 ° C. at a rate of 12 ° C./min while a stoichiometric model gas is passed through the catalyst in the device.
  • the HC purification rate and the NO x purification rate were continuously measured.
  • the temperature at which the purification rate was 50% was determined as the 50% purification temperature.
  • the results are shown in the corresponding column of Table 1. Part of the results (Examples 1 to 4, 7 to 10 and Comparative Examples 1, 2, 6, and 7) are shown in FIGS.
  • the 50% HC purification temperature and 50% NO x purification temperature of the catalyst according to the example are It was lower than the 50% HC purification temperature and 50% NO x purification temperature of the catalyst of the comparative example. This is because, in the catalyst of each Example in which different kinds of crystallites are mixed in a dispersed state, the different kinds of crystallites serve as a barrier to prevent crystal growth, resulting in aggregation of noble metal (here, PGM) and deterioration of OSC function. It shows that it can be prevented to maintain high catalytic activity.
  • the catalyst of each Example in which a noble metal was supported on a crystallite A having a low Ce content was a catalyst of Comparative Example 5 in which a noble metal was supported on a crystallite B having a high Ce content.
  • the 50% HC purification temperature and the 50% NO x purification temperature were lower than the above. From this, in the aggregate composed of mixed particles of different crystallites having different Ce contents, the noble metal is supported on the crystallite A having a low Ce content, and the noble metal is supported on the crystallite B having a high Ce content. It was confirmed that even higher catalytic activity could be obtained by not using the above.
  • the catalyst of Example 2 using the powder A1B1 (that is, the powder having a Ce content of 5 mol% of the crystallite A and the Ce content of 35 mol% of the crystallite B) is the powder A1B2 (that is, the Ce content of 5 mol of the crystallite A).
  • the 50% HC purification temperature and 50% the NO x purification temperature showed a downward trend. From this, it can be seen that higher catalytic activity can be obtained by lowering the Ce content of the crystallite B.
  • the Ce content of the crystallite B is generally 50% or less (for example, 25% to 50%), preferably 40% or less (for example, 25% to 40%), and more preferably 35%. % Or less (for example, 25% to 35%).
  • the Ce content of the crystallite A is approximately 20% or less (for example, 1% to 20%), preferably 10% or less (for example, 1% to 10%).
  • the use of the exhaust gas purifying catalyst disclosed herein prevents aggregation of noble metals due to crystal growth and a decrease in OSC ability.
  • the catalytic activity (three-way performance) of a three-way catalyst Can be exhibited stably.
  • the catalytic performance in the exhaust gas purifying catalyst in which two kinds of crystallites are mixed, the catalytic performance can be further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 本発明に係る排ガス浄化用触媒は、貴金属が担持されている結晶子Aと、貴金属が担持されていない結晶子Bとが混在した酸化物粒子を含んでいる。貴金属が担持されている結晶子Aは、ジルコニウム(Zr)およびセリウム(Ce)のうちの少なくとも一方を含む酸化物からなり、金属が担持されていない結晶子Bは、セリウム(Ce)を含む酸化物であって、該酸化物中のCeの含有率(mol%)が前記結晶子Aの酸化物中の含有率(mol%)よりも高い酸化物からなる。該酸化物粒子の1150℃、5時間の大気中での熱処理後における比表面積が30m/g以上である。

Description

排ガス浄化用触媒
 本発明は、内燃機関の排気系に設けられる排ガス浄化用触媒に関する。
 なお、本国際出願は2013年12月9日に出願された日本国特許出願第2013-254479号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 自動車エンジン等の内燃機関の排ガスに含まれる一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NO)等の有害成分を効率よく除去するために、CO、HCの酸化とNOの還元とを同時に行うことができるいわゆる三元触媒が利用されている。かかる三元触媒としては、アルミナ(Al)等の金属酸化物からなる多孔質担体に、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)等の白金族に属する貴金属(PGM)を担持させたものが利用されている。このような複数種のPGMからなる貴金属を備える三元触媒は、理論空燃比(ストイキ:A/F=14.7)近傍の混合気が内燃機関で燃焼して生じる排ガスに対して特に高い排ガス浄化触媒機能を発揮し得る。
 しかし、実際に内燃機関を使用する場合(典型的には自動車を運転する場合)に供給される混合気の空燃比をストイキ近傍に維持し続けることは難しく、例えば自動車の走行条件などによって混合気の空燃比が燃料過剰(リッチ:A/F<14.7)になったり、酸素過剰(リーン:A/F>14.7)になったりする。そこで、近年、酸素吸蔵放出能(OSC:Oxygen Storage Capacity)を有する無機材料、即ちOSC材を担体に含ませることが一般化している。
 三元触媒では、OSC材として、セリア(CeO)とジルコニア(ZrO)を主体とする複合酸化物(以下「CZ複合酸化物」ともいう。)が従来から使用されている。例えば下記特許文献1には、セリウム酸化物に対するジルコニウム酸化物の固溶度が50%以上であるCZ複合酸化物であって該CZ複合酸化物の粒子を構成する結晶子の平均径が100nm以下であることを特徴とするCZ複合酸化物から成るOSC材を備えた従来の排ガス浄化用触媒の一例が開示されている。また、下記特許文献2には、OSC材として使用されるCZ複合酸化物であって結晶子径が10nm程度のCZ複合酸化物粒子の製造方法が紹介されている。
日本国特許出願公開平成09年第155192号公報 日本国特許出願公開2008-289985号公報
 ところで、かかるOSC材として用いられるCZ複合酸化物の弱点の一つとして耐熱性の低さが挙げられる。即ち、従来のCZ複合酸化物から成る粒子(一次粒子)では、該粒子を構成する結晶子の結晶成長が高温時(例えば耐久試験時)に起こり易く、それに伴って該CZ複合酸化物から成るOSC材に担持された貴金属の凝集も進行し、結果、活性点の減少を招く虞がある。そこで、OSC材として用いられるCZ複合酸化物の耐熱性を向上させること、より具体的には、CZ複合酸化物粒子を構成する結晶子の結晶成長を抑制し、貴金属の凝集及びOSC機能の低下を抑制し得る耐熱性の向上が求められている。
 本発明者は、上記CZ複合酸化物粒子を構成する結晶子の結晶成長を抑制するために、相互に結晶構造が異なる(より具体的には格子定数が異なる)2種の結晶子を混在させたCZ複合酸化物粒子を採用することを検討している。本発明者の知見によれば、相互に結晶構造が異なる2種の結晶子を混在させることにより、異種結晶子同士が障壁となって結晶成長を阻むことができ、貴金属の凝集及びOSC機能の低下を抑制することができる。本発明は、このような相互に結晶構造が異なる2種の結晶子を混在させた排ガス浄化用触媒において、更なる触媒性能の向上を図るものである。
 本発明者は、相互に結晶構造が異なる2種の結晶子を混在させた複合酸化物粒子を含む排ガス浄化用触媒において、Ce含有率がより低い結晶子に貴金属を担持させ、かつ、Ce含有率がより高い結晶子に貴金属を担持させないことにより、触媒性能がさらに向上し得ることを見出し、本発明を完成した。
 即ち、ここで開示される排ガス浄化用触媒は、貴金属が担持されている結晶子Aと、貴金属が担持されていない結晶子Bとが混在した酸化物粒子を含んでいる。前記貴金属が担持されている結晶子Aは、ジルコニウム(Zr)およびセリウム(Ce)のうちの少なくとも一方を含む酸化物からなり、前記貴金属が担持されていない結晶子Bは、セリウム(Ce)を含む酸化物であって、該酸化物中のCeの含有率(mol%)が前記結晶子Aの酸化物中の含有率(mol%)よりも高い酸化物からなる。
 本発明の構成によると、結晶子Aおよび結晶子Bが混在して成る酸化物粒子からなるものを含むことにより、熱耐久試験のような高温条件下での使用時にも結晶成長を抑制し、結晶子Aに担持されるPGMから成る貴金属の凝集を抑制することができる。また、Ce含有率がより少ない結晶子Aに貴金属を担持させ、かつ、Ce含有率がより多い結晶子Bに貴金属を担持させないことにより、貴金属のメタル状態を良好に維持し、なおかつ高いOSC機能を発揮させることができる。したがって、本発明によれば、三元触媒の三元性能をより良く向上させた高性能な排ガス浄化触媒を提供することができる。
 好ましくは、ここで開示される排ガス浄化用触媒は、上記結晶子Aと上記結晶子Bとが混在した酸化物粒子の1150℃、5時間の大気中での熱処理後における比表面積が30m/g以上であることを特徴とする。高温条件下での使用時にも結晶成長を抑制し得るため、かかる高比表面積を維持することができ、高い触媒能(典型的には三元性能)を維持することができる。また、かかる高比表面積を維持することにより、貴金属を担持していない結晶子Bの周りに貴金属を担持している結晶子Aがより多く配置され、結晶子Bと貴金属との距離が近づくため、結晶子BのOSC機能をより良く発現する。したがって、結晶子Bに貴金属を担持していないにも拘わらず、高いOSC機能を発揮し得る高性能な排ガス浄化触媒とすることができる。
 ここで開示される排ガス浄化用触媒の好ましい一態様では、前記結晶子Aを構成する酸化物に含まれるCeの含有率は酸化物換算で該酸化物全体の0~30mol%であり、前記結晶子Bを構成する酸化物に含まれるCeの含有率は酸化物換算で該酸化物全体の35~99mol%である。かかる構成によると、特に高い結晶成長抑制能とOSC機能(ひいては三元性能)を発揮させることができる。
 ここで開示される排ガス浄化用触媒の好ましい一態様では、前記結晶子Aは、Zrとともにイットリウム(Y)を含む酸化物からなる。 かかる金属成分を含む酸化物からなる結晶子Aによると、より高い結晶成長抑制能を発揮させることができる。
 ここで開示される排ガス浄化用触媒の好ましい一態様では、前記結晶子Bは、CeとともにZrを含む酸化物からなる。かかる金属成分を含む酸化物からなる結晶子Bによると、より高い結晶成長抑制能およびOSC機能を発揮させることができる。
 また、ここで開示される排ガス浄化用触媒では、結晶子Aおよび結晶子Bは、高度に分散した状態、典型的には電子顕微鏡観察下でAおよびBのいずれについても同種の結晶子が10個以上互いに接して存在しないように高度に分散した状態で酸化物粒子中に混在していることを特徴とする。
 ここで「同種の結晶子が10個以上互いに接して存在しない」とは、電子顕微鏡観察(典型的にはTEM像)において任意に選択した一つの結晶子からみてその周囲に存在する他の結晶子のうち、最も近い位置にある9個が全て同種の結晶子とはならない、換言すれば、電子顕微鏡観察(典型的にはTEM像)において10個以上の同種の結晶子が偏って存在せず、相互に近接する10個の結晶子を電子顕微鏡観察下で任意にピックアップしたとき、そのうちの少なくとも1個は他の9個の結晶子とは異なる種類の結晶子となる程度の高度な分散状態にあることをいう。電子顕微鏡観察を複数の視野(例えば異なるTEM画像)において行う場合は、各視野における平均値をいう。
 このような高度な分散状態を維持した酸化物粒子では、特に高い結晶成長抑制能およびOSC機能を発揮させることができる。さらに同種の結晶子が7個以上(さらには5個以上、特には3個以上)互いに接して存在しない分散状態が特に好ましい。
図1は、排ガス浄化用触媒の一例を模式的に示す斜視図である。 図2は、一実施形態に係る触媒層の要部を模式的に示す図である。 図3は、粉末の比表面積とNOx50%浄化温度との関係を示すグラフである。 図4は、連続接触個数とNOx50%浄化温度との関係を示すグラフである。 図5は、Ceの含有率とNOx50%浄化温度との関係を示すグラフである。
 以下、図面を参照しつつ本発明の好適ないくつかの実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術知識とに基づいて実施することができる。
 本明細書において「結晶子」とは、一連の連続した結晶格子から成り、単結晶とみなせる基本構造の最大の集まり(粒子)をいう。結晶子の性状は、例えばXRD(X線回折)測定を行い、リートベルト解析等を行うことにより調べることができる。また、結晶子の存在状態は、電子顕微鏡(典型的にはTEM)観察によって明らかにすることができる。また、電子顕微鏡観察とEDX(エネルギー分散型X線分光法)を組み合わせて行うことにより(例えばTEM-EDX)、対象とする結晶子の元素分析や組成分析を行うことができる。
 ここで開示される排ガス浄化用触媒は、上述した2つの異種結晶子(AおよびB)が混在(分散)した状態で構成される酸化物粒子を触媒層の少なくとも一部に備えられていることで特徴付けられる排ガス浄化用触媒であり、その他の構成は特に限定されない。典型的には、三元触媒として内燃機関の排気管に配置される排ガス浄化用触媒として用いられ、基材と、該基材上に形成された触媒層であって酸化触媒及び/又は還元触媒として機能する貴金属と上記酸化物粒子とを含む触媒層とを備える。
 ここで開示される排ガス浄化用触媒は、後述する貴金属、酸化物粒子、基材の種類を適宜選択し、用途に応じて所望する形状に成形することによって種々の内燃機関、特に自動車のガソリンエンジンの排気系(排気管)に配置することができる。
 以下の説明では、主として本発明の排ガス浄化用触媒を自動車のガソリンエンジンの排気管に設けられる三元触媒に適用することを前提として説明しているが、ここで開示される排ガス浄化用触媒を以下に説明する実施形態に限定することを意図したものではない。
<基材>
 ここで開示される排ガス浄化用触媒を排気管に設置する場合において触媒の骨格を構成する基材としては、従来この種の用途に用いられる種々の素材及び形態のものを採用することができる。例えば、高耐熱性を有するコージェライト、炭化ケイ素(SiC)等のセラミックス、或いは合金(ステンレス鋼等)製の基材を使用することができる。
 形状についても従来の排ガス浄化用触媒と同様でよい。一例として図1に示す排ガス浄化用触媒10のように、外形が円筒形状であるハニカム基材1であって、その筒軸方向に排ガス流路としての貫通孔(セル)2が設けられ、各セル2を仕切る隔壁(リブ壁)4に排ガスが接触可能となっているものが挙げられる。基材1の形状はハニカム形状の他にフォーム形状、ペレット形状などとすることができる。また基材全体の外形については、円筒形に代えて楕円筒形、多角筒形を採用してもよい。
<触媒層>
 基材上に形成される触媒層は、排ガスを浄化する場として、この種の排ガス浄化用触媒の主体をなすものであり、図2に示すように、典型的には貴金属粒子20と、該貴金属粒子が担持されている結晶子Aと該貴金属粒子が担持されていない結晶子Bとが混在した酸化物粒子とから構成される。例えば上述した図1に示すハニカム基材1を採用した場合には、当該基材1のセルを構成するリブ壁4上に所定の厚み、気孔率の触媒層が形成される。触媒層は全体がほぼ同一の構成の一層からなるものでもよく、或いは、基材1上に形成された相互に異なる上下二層若しくは三層以上を有する積層構造タイプの触媒層であってもよい。
<貴金属>
 ここで開示される排ガス浄化用触媒の触媒層に備えられる貴金属20は、種々の酸化触媒や還元触媒として機能し得る金属種が採用され得るが、典型的には、PGMであるロジウム(Rh)、白金(Pt)、パラジウム(Pd)等が挙げられる。ルテニウム(Ru)、オスミウム(Os)、イリジウム(Ir)、銀(Ag)、銅(Cu)等を使用してもよい。これら貴金属の2種以上が合金化したものを用いてもよい。或いは他の金属種を含むもの(典型的には合金)であってもよい。
 この中で、還元活性が高いRhと、酸化活性が高いPdやPtとを組み合わせて用いることが三元触媒を構築するうえで特に好ましい。例えば、ここで開示される異種結晶子A及びBから成るOSC材には、Rh或いはPt若しくはPdを担持させることが好ましい。
 かかる貴金属は、排ガスとの接触面積を高める観点から十分に小さい粒径の微粒子として使用されることが好ましい。典型的には上記金属粒子の平均粒径(TEM観察により求められる粒径の平均値。以下同じ。)は1~15nm程度であり、10nm以下、7nm以下、更には5nm以下であることが特に好ましい。
 かかる貴金属20の担持率(担体を100質量%としたときの貴金属含有率)は、5質量%以下が好ましく、より好ましくは3質量%以下である。例えば、0.05質量%以上5質量%以下であることが好ましく、0.1質量%以上3質量%以下であることがより好ましい。担持率が上記範囲より少なすぎると、金属による触媒効果が得られにくい。かかる担持率が上記範囲より多すぎると、金属の粒成長が進行する虞があり、さらにコスト面でも不利である。
<酸化物粒子>
 ここで開示される酸化物粒子は、上記貴金属20が担持されている結晶子A(つまり担体として用いられる。)と、上記貴金属20が担持されていない結晶子Bとが混在して構成される酸化物粒子である。かかる異種結晶子AおよびBを含む酸化物粒子を触媒層における排ガス流動方向の上流側及び/又は下流側に備える。貴金属が担持されている結晶子Aは、ZrおよびCeのうちの少なくとも一方を含む酸化物から構成されている。一方、貴金属が担持されていない結晶子Bは、Ceを含む酸化物であって該酸化物中のCeの含有率(mol%)が結晶子Aの酸化物中の含有率(mol%)よりも高い酸化物から構成されている。このような2種の結晶子AおよびBを混在させることにより、例えば1150℃、5時間の大気中での熱処理後においても結晶成長を抑え、典型的には30m/g以上(特に好ましくは35m/g以上、特に好ましくは40m/g以上)であるような高い比表面積を維持することができる。また、Ce含有率がより少ない結晶子Aに貴金属を担持させ、かつ、Ce含有率がより多い結晶子Bに貴金属を担持させないことにより、貴金属のメタル状態を良好に維持し、なおかつ高いOSC機能を発揮させることができる。
 結晶子Aと結晶子Bとは相互に結晶構造が異なる、より具体的には相互に格子定数が異なることによって当該異種結晶子同士が障壁となり得て高温時の結晶成長が阻まれるように構成されていればよく、各結晶子の構成元素の種類や数に特に制限はない。
<結晶子A>
 例えば、貴金属20が担持されている結晶子A(A、Bは区分のための記号にすぎない。)がZrを主体とするものである場合、その他の元素としてCe、その他1種又は2種以上の希土類元素、例えば、イットリウム(Y)、ランタン(La)、ネオジム(Nd)、プラセオジム(Pr)、サマリウム(Sm)、ユウロピウム(Eu)等のうちの1種又は2種以上、さらにはカルシウムなどのアルカリ土類元素を含むものでもよい。例えばZrの含有率が酸化物換算で酸化物全体の75~99mol%であるとともにYを少量(例えば5mol%以下、或いは10mol%以下)含む複合酸化物から成る結晶子Aが好適な一例として挙げられる。また、Zrを主体とするものであって、Ceの含有率が酸化物換算で酸化物全体の30mol%以下(好ましくは20mol%以下、より好ましくは10mol%以下、例えば0mol%(つまりCeを含まない))である酸化物から成る結晶子Aが好適な一例として挙げられる。
<結晶子B>
 他方、貴金属20が担持されていない結晶子Bは、結晶子AよりもCeを高率に含有するものであればよく、その他の元素としてZr、その他1種又は2種以上の希土類元素(La、Y、Nd、Pr、Sm、Eu等)を含むものでもよい。例えばCeの含有率が酸化物換算で酸化物全体の35~99mol%であるとともにLaを少量(例えば5mol%以下、或いは10mol%以下)含む酸化物から成る結晶子Bが好ましい。
 結晶子AおよびBの平均サイズは、従来の排ガス浄化用触媒に使用されるOSC材(例えばCZ複合酸化物)を構成するものと同様でよく、典型的にはTEM等の電子顕微鏡観察において2~100nm、好ましくは5~50nm程度である。
 上述したような相互に結晶構造(格子定数)が異なる結晶子Aおよび結晶子Bから成る酸化物粒子は、予め結晶子Aを構成する元素を含むように種々の化合物(典型的には構成金属元素を含む金属塩、例えばZr、Ce、希土類元素それぞれの硝酸塩、アンモニウム塩、リン酸塩等の塩)から調製された前駆体(非焼成物)Aと、同様に、予め結晶子Bを構成する元素を含むように種々の化合物(典型的には種々の金属塩)から調製された前駆体(非焼成物)Bとを、適当な酸化剤、例えば種々の有機酸や過酸化水素と共に混合して酸化条件下(典型的には大気中)で焼成することによって得ることができる。以下、かかる酸化物粒子の好適な一実施態様につき説明する。
<結晶子A前駆体調製工程>
 この製造方法は、結晶子Aの構成元素を含む水性溶液から共沈物を析出させて結晶子A前駆体を得る工程(結晶子A前駆体調製工程)を含む。上記水性溶液を構成する溶媒(水性溶媒)は、典型的には水であり、水を主成分とする混合溶媒であってもよい。例えば、水性溶媒中にCeイオン、Zrイオン等を供給し得る化合物を含む水性溶液を使用するとよい。この結晶子A前駆体調製工程は、上記水性溶液を80℃~100℃(好ましくは90℃~95℃)に加熱した後、pH11以上の条件下で上記水性溶液から共沈物を析出させる段階を含み得る。上記pHは、アルカリ剤(液性をアルカリ性に傾ける作用のある化合物、例えば尿素)を上記水性溶液に供給することにより調整することができる。また、この結晶子A前駆体調製工程は、上記結晶子A前駆体に貴金属を担持させる処理を含み得る。例えば、上記結晶子A前駆体を水に分散させた後、pH12以上の条件下で貴金属を添加して結晶子A前駆体に貴金属を担持させるとよい。ここで開示される製造方法は、このように未焼成の結晶子A前駆体に貴金属を担持させる態様で好ましく実施され得る。
<結晶子B前駆体調製工程>
 また、この製造方法は、結晶子Bの構成元素を含む水性溶液から共沈物を析出させて結晶子B前駆体を得る工程(結晶子B前駆体調製工程)を含む。上記水性溶液を構成する溶媒(水性溶媒)は、典型的には水であり、水を主成分とする混合溶媒であってもよい。例えば、水性溶媒中にCeイオン等を供給し得る化合物を含む水性溶液を使用するとよい。この結晶子B前駆体調製工程は、上記水性溶液を80℃~100℃(好ましくは90℃~95℃)に加熱した後、pH11以上の条件下で上記水性溶液から共沈物を析出させる段階を含み得る。上記pHは、アルカリ剤(液性をアルカリ性に傾ける作用のある化合物、例えば尿素)を上記水性溶液に供給することにより調整することができる。
<スラリー調製工程>
 本実施態様では、このようにして生成した結晶子A前駆体と結晶子B前駆体とを混合して混合スラリーを調製する(スラリー調製工程)。このスラリー調製工程では、典型的には、結晶子A前駆体および結晶子B前駆体を水中に添加し、有機酸および過酸化水素水を添加して攪拌することにより混合スラリーを得る。有機酸としては、例えばマロン酸を好ましく用いることができる。ここで開示される製造方法は、このような有機酸および過酸化水素水を用いる態様で好ましく実施され得る。また、スラリー調製工程は、上記混合スラリーを加熱した後、分散機(例えばホモジナイザー)で攪拌する処理を含み得る。加熱温度としては、75℃~90℃(好ましくは80℃~85℃)に設定され得る。また、攪拌時間としては、混合スラリーが均一に混ざるまでの時間であればよく、例えば5分以上(例えば5分~120分)、好ましくは15分以上、より好ましくは30分以上、さらに好ましくは60分以上に設定され得る。このような攪拌時間の範囲内であると、結晶子Aと結晶子Bとの接触個数がより少ない酸化物粒子が得られうる。
<焼成工程>
 上記のように混合スラリーを攪拌した後、洗浄して乾燥させる。そして、この混合物を焼成することにより結晶子Aおよび結晶子Bから成る酸化物粒子を得る(焼成工程)。この焼成工程は、大気中や大気よりも酸素がリッチな雰囲気中で行うことが望ましい。好ましくは、大気雰囲気中において700℃以上900℃以下の範囲内に最高焼成温度を決定するとよい。焼成時間としては、例えば3時間~8時間に設定され得る。このようにして、結晶子Aおよび結晶子Bから成る酸化物粒子を得ることができる。
 ここで開示される排ガス浄化用触媒の触媒層は、異種結晶子AおよびBからなる酸化物粒子以外にも1種又は2種以上の担体を備えていてもよい。例えば、比表面積(BET法により測定される比表面積をいう。以下同じ。)がある程度大きい無機化合物から成る多孔質担体が好適に用いられる。好適な担体としては、例えば、アルミナ(Al)、セリア(CeO)、ジルコニア(ZrO)、シリカ(SiO)、チタニア(TiO)、及びそれらの固溶体(例えばセリア-ジルコニア複合酸化物(CZ複合酸化物)、或いはそれらの組み合わせが挙げられる。排ガス浄化用触媒の熱安定性を高めるという観点からは、耐熱性のよいアルミナ、ジルコニア等のセラミックスを担体若しくは非担持体(貴金属を担持させていない触媒層の構成成分をいう。以下同じ。)として触媒層に含ませてもよい。
 担体又は非担持体の粒子(例えばアルミナ粉末)としては、比表面積が30m/g以上であることが好ましい。アルミナ等の担体としては50m/g以上、例えば50~500m/g(例えば200~400m/g)であることが耐熱性、構造安定性の観点から好ましい。また、担体粒子の平均粒径は特に限定するものではないが、1nm以上500nm以下(より好ましくは10nm以上200nm以下)程度であることが好ましい。
 また、このような無機化合物(セラミックス)を担体として使用する場合、好ましくは触媒単位容積(1L)あたりの貴金属含有量が0.1~10g/L程度が適当であり、0.2~5g/L程度が好ましい。貴金属含有量が多すぎるとコスト的に好ましくなく、少なすぎると排ガス浄化能が低いために好ましくない。ここで触媒単位容積(1L)は、基材の純容積に加えて内部の空隙(セル)容積を含む(即ち当該空隙(セル)内に形成された触媒層を含む)嵩容積(1L)をいう。
 上述したような構成の排ガス浄化用触媒は、従来と同様の製造プロセスによって製造することができる。
 例えば、先ず、Pd、Pt、Rh等の貴金属を担持した所望の担体粉末(結晶子Aから成る酸化物、アルミナ、ジルコニア等の一般的な担体を含んでもよい。)と、貴金属を担持していない非担持体(結晶子Bから成る酸化物、アルミナ、ジルコニア等の非担持体を含んでもよい。)粉末を含むスラリーを公知のウォッシュコート法等によってハニカム基材にコートする。その後、所定の温度及び時間で焼成することにより、基材上に触媒層を形成することができる。
 ウォッシュコートされたスラリーの焼成条件は基材または担体の形状及びサイズによって変動するので、特に限定しないが、典型的には400~1000℃程度で約1~4時間程度の焼成を行うことによって、目的の触媒層を形成することができる。なお、焼成前の乾燥条件については特に限定されるものではないが、80~300℃の温度(例えば150~250℃)で1~12時間程度の乾燥が好ましい。また、触媒層をこのようなウォッシュコート法により形成する場合、基材の表面、さらに積層構造触媒層の場合には下層の表面に上層形成用スラリーを好適に密着させるため、スラリーにはバインダーを含有させてもよい。かかる目的のバインダーとしては、例えばアルミナゾル、シリカゾル等の使用が好ましい。
 以下、本発明に関するいくつかの実施例につき説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。
<試験例1:排ガス浄化用触媒の製造>
[実施例1]
 イオン交換水700mLに、硝酸セリウム溶液(CeOとして20質量%)16.87g、オキシ硝酸ジルコニウム溶液(ZrOとして10質量%)434.8g、硝酸ネオジム溶液(Ndとして10質量%)13.19g、硝酸イットリウム溶液(Yとして10質量%)13.28g、ポリビニルピロリドン(PVP K-30(商品名))0.05gを添加し、攪拌して混合溶液を調製した。
 次いで、この混合溶液を90~95℃に加熱した後、尿素を添加してpHを11に調整して共沈物を得た。その後、ヒドラジン13gを添加し、90~95℃で12時間攪拌した。得られた共沈物を濾過し、純水で洗浄することにより前駆体a1を得た。
 次に、イオン交換水1000mLに上記前駆体a1を全量添加して分散させ、水酸化ナトリウム水溶液を添加してpHを12に調整した後、硝酸ロジウム溶液(Rhとして5質量%)10gを投入して前駆体a1にRhを担持させ、吸引濾過により水溶液を除去し、Rh担持前駆体a1を得た。濾液をICP発光分光で分析したところRh担持効率は100%であった。
 一方、イオン交換水700mLに、硝酸セリウム溶液(CeOとして20質量%)105.7g、オキシ硝酸ジルコニウム溶液(ZrOとして10質量%)259.5g、硝酸ネオジム溶液(Ndとして10質量%)17.71g、硝酸ランタン溶液(Laとして10質量%)11.43g、PVP K-30(商品名)0.05gを添加し、攪拌して混合溶液を調製した。
 次いで、この混合溶液を90~95℃に加熱した後、尿素を添加してpHを11に調整して共沈物を得た。その後、ヒドラジン13gを添加し、90~95℃で12時間攪拌した。得られた共沈物を濾過し、純水で洗浄することにより前駆体b1を得た。
 イオン交換水1000mLに、上記Rh担持前駆体a1および前駆体b1を全量添加し、さらに有機酸としてマロン酸1gと3%過酸化水素水10gを添加して攪拌した。このようにして調製した混合スラリーを80~85℃に加熱した後にホモジナイザーで60分間の攪拌を行った。その後、濾過し、純水で洗浄した後に110℃で乾燥させ、大気中、800℃で5時間の焼成を行うことにより、粉末A1B1を得た。得られた粉末A1B1をTEM-EDX測定(20万倍~40万倍、50視野)に供し、粉末の性状を調べた。
 TEM-EDX測定結果から、本実施例1に係る粉末A1B1は、酸化物換算で構成金属元素の含有率(mol%)がZr/Ce/Nd/Y/=90/5/2/3/であるRh担持結晶子A1と、酸化物換算で構成金属元素の含有率(mol%)がCe/Zr/Nd/La=35/60/3/2である結晶子B1とが存在することが確認された。
 また、得られた粉末A1B1中では、結晶子A1、結晶子B1の何れについても同種の結晶子が10個以上互いに接して存在しない高度な分散状態で結晶子A1と結晶子B1が混在していることが確認された。具体的には、TEM-EDX測定(20万倍~40万倍、50視野)により、任意の直線上にある連続する50個の結晶子について元素組成を分析し、結晶子Aと結晶子Bを区別するとともに、分析した上記50個の結晶子について、結晶子Aが連続して接触する個数の最大値、及び結晶子Bが連続して接触する個数の最大値を求めた。これを50視野において同様に行い、各視野での最大値の平均値を結晶子A又は結晶子Bが連続して接触する個数とした。結果を表1の該当欄に示す。表1に示すように、本実施例1に係る粉末A1B1では、結晶子Aが連続して接触する個数は2個であり、結晶子Bが連続して接触する個数は3個であった。
 かかる粉末A1B1を圧粉成型し、粉砕して粒度0.5~1.0mmの後述する触媒活性評価試験用のペレット状触媒Iを得た。
[実施例2]
 上記ホモジナイザーでの攪拌時間を60分から15分に変更した以外は上述した実施例1と同様のプロセスで触媒活性評価試験用のペレット状触媒IIを得た。TEM-EDX測定結果等の触媒IIの性状は、表1の該当欄に示す。
[実施例3]
 上記ホモジナイザーでの攪拌時間を60分から5分に変更した以外は上述した実施例1と同様のプロセスで触媒活性評価試験用のペレット状触媒IIIを得た。TEM-EDX測定結果等の触媒IIIの性状は、表1の該当欄に示す。
[実施例4]
 上記マロン酸および過酸化水素水を用いなかったこと以外は上述した実施例1と同様のプロセスで触媒活性評価試験用のペレット状触媒IVを得た。TEM-EDX測定結果等の触媒IVの性状は、表1の該当欄に示す。
[比較例1]
 上記マロン酸および過酸化水素水を用いなかったことと、上記混合スラリーを加熱しなかったことと、さらに上記ホモジナイザーを使用しなかったこと以外は、上述した実施例1と同様のプロセスで触媒活性評価試験用のペレット状触媒Vを得た。TEM-EDX測定結果等の触媒Vの性状は、表1の該当欄に示す。
[比較例2]
 イオン交換水700mLに、硝酸セリウム溶液(CeOとして20質量%)16.87g、オキシ硝酸ジルコニウム溶液(ZrOとして10質量%)434.8g、硝酸ネオジム溶液(Ndとして10質量%)13.19g、硝酸イットリウム溶液(Yとして10質量%)13.28g、PVP K-30(商品名)0.05gを添加し、攪拌して混合溶液を調製した。
 次いで、この混合溶液を90~95℃に加熱した後、尿素を添加してpHを11に調整して共沈物を得た。その後、ヒドラジン13gを添加し、90~95℃で12時間攪拌した。得られた共沈物を濾過し、純水で洗浄した後、110℃で乾燥させ、大気中、800℃で5時間の焼成を行うことにより粉末A1を得た。
 次に、イオン交換水1000mLに上記粉末A1を全量添加して分散させ、水酸化ナトリウム水溶液を添加してpHを12に調整した後、硝酸ロジウム溶液(Rhとして5質量%)10gを投入して粉末A1にRhを担持させ、吸引濾過により水溶液を除去し、Rh担持粉末A1を得た。濾液をICP発光分光で分析したところRh担持効率は100%であった。
 Rh担持粉末A1を110℃で乾燥させ、大気中、800℃で5時間の焼成を行うことにより、本比較例2に係る粉末Rh担持A1(Rh/A1)を得た。
 TEM-EDX測定結果から、本比較例3に係る粉末Rh/A1は、酸化物換算で構成金属元素の含有率(mol%)がZr/Ce/Nd/Y/=90/5/2/3であるRh担持結晶子A1が存在することが確認された。
 一方、イオン交換水700mLに、硝酸セリウム溶液(CeOとして20質量%)105.7g、オキシ硝酸ジルコニウム溶液(ZrOとして10質量%)259.5g、硝酸ネオジム溶液(Ndとして10質量%)17.71g、硝酸ランタン溶液(Laとして10質量%)11.43g、PVP K-30(商品名)0.05gを添加し、攪拌して混合溶液を調製した。
 次いで、この混合溶液を90~95℃に加熱した後、尿素を添加してpHを11に調整して共沈物を得た。その後、ヒドラジン13gを添加し、90~95℃で12時間攪拌した。得られた共沈物を濾過し、純水で洗浄した後、110℃で乾燥させ、大気中、800℃で5時間の焼成を行うことにより粉末B1を得た。
 TEM-EDX測定結果から、本比較例2に係る粉末B1は、酸化物換算で構成金属元素の含有率(mol%)がCe/Zr/Nd/La=35/60/3/2である結晶子B1が存在することが確認された。
 上記粉末Rh/A1(25g)および粉末B1(25g)をイオン交換水400mLに分散させ、攪拌して混合スラリーを調製した。次いで、この混合スラリーを吸引濾過し、水溶液を除去した後、110℃、12時間乾燥させ、大気中、500℃で焼成を行うことにより、粉末A1+B1を得た。この触媒を圧粉成型し、粉砕して粒度0.5~1.0mmの後述する触媒活性評価試験用のペレット状触媒VIを得た。TEM-EDX測定結果等の触媒VIの性状は、表1の該当欄に示す。
[実施例5]
 上記実施例1において使用した硝酸ロジウム溶液(Rhとして5質量%)10gに代えてジニトロジアミンPt硝酸溶液(Ptとして5質量%)10gを用いた以外は上述した実施例1と同様のプロセスで触媒活性評価試験用のペレット状触媒VIIを得た。TEM-EDX測定結果等の触媒VIIの性状は、表1の該当欄に示す。
[比較例3]
 上記比較例2において使用した硝酸ロジウム溶液(Rhとして5質量%)10gに代えてジニトロジアミンPt硝酸溶液(Ptとして5質量%)10gを用いた以外は上述した比較例2と同様のプロセスで触媒活性評価試験用のペレット状触媒VIIIを得た。TEM-EDX測定結果等の触媒VIIIの性状は、表1の該当欄に示す。
[実施例6]
 上記実施例1において使用した硝酸ロジウム溶液(Rhとして5質量%)10gに代えて硝酸パラジウム溶液(Pdとして5質量%)10gを用いた以外は上述した実施例1と同様のプロセスで触媒活性評価試験用のペレット状触媒IXを得た。TEM-EDX測定結果等の触媒IXの性状は、表1の該当欄に示す。
[比較例4]
 上記比較例2において使用した硝酸ロジウム溶液(Rhとして5質量%)10gに代えて硝酸パラジウム溶液(Pdとして5質量%)10gを用いた以外は上述した比較例2と同様のプロセスで触媒活性評価試験用のペレット状触媒Xを得た。TEM-EDX測定結果等の触媒Xの性状は、表1の該当欄に示す。
[比較例5]
 イオン交換水700mLに、硝酸セリウム溶液(CeOとして20質量%)17.04g、オキシ硝酸ジルコニウム溶液(ZrOとして10質量%)439.2g、硝酸ネオジム溶液(Ndとして10質量%)13.32g、硝酸イットリウム溶液(Yとして10質量%)13.41g、PVP K-30(商品名)0.05gを添加し、攪拌して混合溶液を調製した。次いで、この混合溶液を90~95℃に加熱した後、尿素を添加してpHを11に調整して共沈物を得た。その後、ヒドラジン13gを添加し、90~95℃で12時間攪拌した。得られた共沈物を濾過し、純水で洗浄することにより前駆体a1を得た。
 一方、イオン交換水700mLに、硝酸セリウム溶液(CeOとして20質量%)104.6g、オキシ硝酸ジルコニウム溶液(ZrOとして10質量%)256.9g、硝酸ネオジム溶液(Ndとして10質量%)17.53g、硝酸ランタン溶液(Laとして10質量%)11.32g、PVP K-30(商品名)0.05gを添加し、攪拌して混合溶液を調製した。次いで、この混合溶液を90~95℃に加熱した後、尿素を添加してpHを11に調整して共沈物を得た。その後、ヒドラジン13gを添加し、90~95℃で12時間攪拌した。得られた共沈物を濾過し、純水で洗浄することにより前駆体b1を得た。
 次に、イオン交換水1000mLに上記前駆体b1を全量添加して分散させ、水酸化ナトリウム水溶液を添加してpHを12に調整した後、硝酸ロジウム溶液(Rhとして5質量%)10gを投入して前駆体b1にRhを担持させ、吸引濾過により水溶液を除去し、Rh担持前駆体b1を得た。濾液をICP発光分光で分析したところRh担持効率は100%であった。
 イオン交換水1000mLに、上記前駆体a1およびRh担持前駆体b1を全量添加し、さらに有機酸としてマロン酸1gと3%過酸化水素水10gを添加して攪拌した。このようにして調製した混合スラリーを80~85℃に加熱した後にホモジナイザーで60分間の攪拌を行った。その後、濾過し、純水で洗浄した後に110℃で乾燥させ、大気中、800℃で5時間の焼成を行うことにより、本比較例5に係る排ガス浄化用触媒(Rh/A1B1)を得た。
 TEM-EDX測定結果から、本比較例5に係る粉末Rh/A1B1は、酸化物換算で構成金属元素の含有率(mol%)がZr/Ce/Nd/Y/=90/5/2/3/である結晶子A1と、酸化物換算で構成金属元素の含有率(mol%)がCe/Zr/Nd/La=35/60/3/2であるRh担持結晶子B1とが存在することが確認された。
 かかる触媒粉末Rh/A1B1を圧粉成型し、粉砕して粒度0.5~1.0mmの後述する触媒活性評価試験用のペレット状触媒XIを得た。TEM-EDX測定結果等の触媒XIの性状は、表1の該当欄に示す。
[実施例7]
 イオン交換水700mLにオキシ硝酸ジルコニウム溶液(ZrOとして10質量%)537.5g、硝酸イットリウム溶液(Yとして10質量%)4.98g、PVP K-30(商品名)0.05gを添加し、攪拌して混合溶液を調製した。次いで、この混合溶液を90~95℃に加熱した後、尿素を添加してpHを11に調整して共沈物を得た。その後、ヒドラジン13gを添加し、90~95℃で12時間攪拌した。得られた共沈物を濾過し、純水で洗浄することにより前駆体a2を得た。
 次に、イオン交換水1000mLに上記前駆体a2を全量添加して分散させ、水酸化ナトリウム水溶液を添加してpHを12に調整した後、硝酸ロジウム溶液(Rhとして5質量%)15gを投入して前駆体a1にRhを担持させ、吸引濾過により水溶液を除去し、Rh担持前駆体a2を得た。濾液をICP発光分光で分析したところRh担持効率は100%であった。
 一方、イオン交換水700mLに、硝酸セリウム溶液(CeOとして20質量%)151.4g、オキシ硝酸ジルコニウム溶液(ZrOとして10質量%)126.5g、硝酸カルシウム溶液(CaOとして5質量%)3.29g、硝酸ランタン溶液(Laとして10質量%)19.11g、PVP K-30(商品名)0.05gを添加し、攪拌して混合溶液を調製した。次いで、この混合溶液を90~95℃に加熱した後、尿素を添加してpHを11に調整して共沈物を得た。その後、ヒドラジン13gを添加し、90~95℃で12時間攪拌した。得られた共沈物を濾過し、純水で洗浄することにより前駆体b2を得た。
 イオン交換水1000mLに、上記Rh担持前駆体a2および前駆体b2を全量添加し、さらに有機酸としてマロン酸1gと3%過酸化水素水10gを添加して攪拌した。このようにして調製した混合スラリーを80~85℃に加熱した後にホモジナイザーで60分間の攪拌を行った。その後、濾過し、純水で洗浄した後に110℃で乾燥させ、大気中、800℃で5時間の焼成を行うことにより、本実施例7に係る排ガス浄化用触媒(Rh/A2B2)を得た。
 TEM-EDX測定結果から、本実施例7に係る粉末Rh/A2B2は、酸化物換算で構成金属元素の含有率(mol%)がZr/Y/=99/1であるRh担持結晶子A2と、酸化物換算で構成金属元素の含有率(mol%)がCe/Zr/La/Ca=60/35/4/1である結晶子B2とが存在することが確認された。かかる触媒粉末Rh/A2B2を圧粉成型し、粉砕して粒度0.5~1.0mmの後述する触媒活性評価試験用のペレット状触媒XIIを得た。TEM-EDX測定結果等の触媒XIIの性状は、表1の該当欄に示す。
[実施例8]
 イオン交換水700mLに硝酸セリウム溶液(CeOとして20質量%)36.59g、オキシ硝酸ジルコニウム溶液(ZrOとして10質量%)445.3g、硝酸イットリウム溶液(Yとして10質量%)24.00g、PVP K-30(商品名)0.05gを添加し、攪拌して混合溶液を調製した。次いで、この混合溶液を90~95℃に加熱した後、尿素を添加してpHを11に調整して共沈物を得た。その後、ヒドラジン13gを添加し、90~95℃で12時間攪拌した。得られた共沈物を濾過し、純水で洗浄することにより前駆体a3を得た。
 そして、上述の実施例7において使用した前駆体a2に代えて上記前駆体a3を使用した以外は上述した実施例7と同様のプロセスで粉末A3B2を得た。TEM-EDX測定結果から、本実施例8に係る粉末A3B2は、酸化物換算で構成金属元素の含有率(mol%)がZr/Ce/Y=85/10/5であるRh担持結晶子A3と、酸化物換算で構成金属元素の含有率(mol%)がCe/Zr/La/Ca=60/35/4/1である結晶子B2とが存在することが確認された。
 さらに、粉末A2B2に代えて上記粉末A3B2を用いた以外は、上述した実施例7と同様のプロセスで触媒活性評価試験用のペレット状触媒XIIIを得た。TEM-EDX測定結果等の触媒XIIIの性状は、表1の該当欄に示す。
[実施例9]
 イオン交換水700mLに硝酸セリウム溶液(CeOとして20質量%)70.24g、オキシ硝酸ジルコニウム(ZrOとして10質量%)378.4g、硝酸イットリウム溶液(Yとして10質量%)23.12g、PVP K-30(商品名)0.05gを添加し、攪拌して混合溶液を調製した。次いで、この混合溶液を90~95℃に加熱した後、尿素を添加してpHを11に調整して共沈物を得た。その後、ヒドラジン13gを添加し、90~95℃で12時間攪拌した。得られた共沈物を濾過し、純水で洗浄することにより前駆体a4を得た。
 そして、上述の実施例7において使用した前駆体a2に代えて上記前駆体a4を使用した以外は上述した実施例7と同様のプロセスで粉末A4B2を得た。TEM-EDX測定結果から、本実施例7に係る粉末A4B2は、酸化物換算で構成金属元素の含有率(mol%)がZr/Ce/Y=75/20/5であるRh担持結晶子A4と、酸化物換算で構成金属元素の含有率(mol%)がCe/Zr/La/Ca=60/35/4/1である結晶子B2とが存在することが確認された。
 さらに、粉末A2B2に代えて上記粉末A4B2を用いた以外は、上述した実施例7と同様のプロセスで触媒活性評価試験用のペレット状触媒XIVを得た。TEM-EDX測定結果等の触媒XIVの性状は、表1の該当欄に示す。
[実施例10]
 イオン交換水700mLに硝酸セリウム溶液(CeOとして20質量%)101.9g、オキシ硝酸ジルコニウム(ZrOとして10質量%)316.3g、硝酸イットリウム溶液(Yとして10質量%)22.30g、PVP K-30(商品名)0.05gを添加し、攪拌して混合溶液を調製した。次いで、この混合溶液を90~95℃に加熱した後、尿素を添加してpHを11に調整して共沈物を得た。その後、ヒドラジン13gを添加し、90~95℃で12時間攪拌した。得られた共沈物を濾過し、純水で洗浄することにより前駆体a5を得た。
 そして、上述の実施例7において使用した前駆体a2に代えて上記前駆体a5を使用した以外は上述した実施例7と同様のプロセスで粉末A5B2を得た。TEM-EDX測定結果から、本実施例10に係る粉末A5B2は、酸化物換算で構成金属元素の含有率(mol%)がZr/Ce/Y=65/30/5であるRh担持結晶子A5と、酸化物換算で構成金属元素の含有率(mol%)がCe/Zr/La/Ca=60/35/4/1である結晶子B2とが存在することが確認された。
 さらに、粉末A2B2に代えて上記粉末A5B2を用いた以外は、上述した実施例7と同様のプロセスで触媒活性評価試験用のペレット状触媒XVを得た。TEM-EDX測定結果等の触媒XVの性状は、表1の該当欄に示す。
[比較例6]
 イオン交換水700mLに硝酸セリウム溶液(CeOとして20質量%)131.3g、オキシ硝酸ジルコニウム(ZrOとして10質量%)258.4g、硝酸イットリウム溶液(Yとして10質量%)21.53g、PVP K-30(商品名)0.05gを添加し、攪拌して混合溶液を調製した。次いで、この混合溶液を90~95℃に加熱した後、尿素を添加してpHを11に調整して共沈物を得た。その後、ヒドラジン13gを添加し、90~95℃で12時間攪拌した。得られた共沈物を濾過し、純水で洗浄することにより前駆体a6を得た。
 そして、上述の実施例7において使用した前駆体a2に代えて上記前駆体a6を使用した以外は上述した実施例7と同様のプロセスで粉末A6B2を得た。TEM-EDX測定結果から、本比較例6に係る粉末A6B2は、酸化物換算で構成金属元素の含有率(mol%)がZr/Ce/Y=55/40/5であるRh担持結晶子A6と、酸化物換算で構成金属元素の含有率(mol%)がCe/Zr/La/Ca=60/35/4/1である結晶子B2とが存在することが確認された。
 さらに、粉末A2B2に代えて上記粉末A6B2を用いた以外は、上述した実施例7と同様のプロセスで触媒活性評価試験用のペレット状触媒XVIを得た。TEM-EDX測定結果等の触媒XVIの性状は、表1の該当欄に示す。
[比較例7]
 イオン交換水700mLに硝酸セリウム溶液(CeOとして20質量%)158.6g、オキシ硝酸ジルコニウム(ZrOとして10質量%)204.4g、硝酸イットリウム溶液(Yとして10質量%)20.81g、PVP K-30(商品名)0.05gを添加し、攪拌して混合溶液を調製した。次いで、この混合溶液を90~95℃に加熱した後、尿素を添加してpHを11に調整して共沈物を得た。その後、ヒドラジン13gを添加し、90~95℃で12時間攪拌した。得られた共沈物を濾過し、純水で洗浄することにより前駆体a7を得た。
 そして、上述の実施例7において使用した前駆体a2に代えて上記前駆体a7を使用したこと以外は上述した実施例7と同様のプロセスで粉末A7B2を得た。TEM-EDX測定結果から、本比較例7に係る粉末A7B2は、酸化物換算で構成金属元素の含有率(mol%)がZr/Ce/Y=45/50/5であるRh担持結晶子A7と、酸化物換算で構成金属元素の含有率(mol%)がCe/Zr/La/Ca=60/35/4/1である結晶子B2とが存在することが確認された。
 さらに、粉末A2B2に代えて上記粉末A7B2を用いた以外は、上述した実施例7と同様のプロセスで触媒活性評価試験用のペレット状触媒XVIIを得た。TEM-EDX測定結果等の触媒XVIIの性状は、表1の該当欄に示す。
[実施例11]
 上述した実施例1において使用した前駆体b1に代えて前駆体b2を使用したこと以外は上述した実施例1と同様のプロセスで粉末A1B2を得た。さらに、粉末A1B1に代えて上記粉末A1B2を用いた以外は、上述した実施例1と同様のプロセスで触媒活性評価試験用のペレット状触媒を得た。TEM-EDX測定結果等の触媒の性状は、表1の該当欄に示す。
Figure JPOXMLDOC01-appb-T000001
結晶子Aの組成(mol%)
A1:Zr/Ce/Nd/Y Oxide
       =90/5/2/3
A2:Zr/Y Oxide
       =99/1
A3:Zr/Ce/Y Oxide
       =85/10/5  
A4:Zr/Ce/Y Oxide
       =75/20/5
A5:Zr/Ce/Y Oxide
       =65/30/5
A6:Zr/Ce/Y Oxide
       =55/40/5
A7:Zr/Ce/Y Oxide
       =45/50/5
 
結晶子Bの組成(mol%)
B1:Ce/Zr/Nd/La Oxide
       =35/60/3/2
B2:Ce/Zr/La/Ca Oxide
       =60/35/4/1
 表1に示すように、各実施例に係る触媒では、結晶子Aと結晶子Bのいずれについても電子顕微鏡観察下で同種の結晶子が10個以上互いに接して存在しないように高度に分散した状態で存在している。換言すれば、上述した規定による同種の結晶子が連続して接触する個数は9個以下であった。他方、各比較例1~4に係る触媒では、電子顕微鏡観察下で同種の結晶子が10個以上互いに接して存在することが認められ、上述した規定による同種の結晶子が連続して接触する個数も実施例の触媒と比較して多く、同種の結晶子が連続して接触する個数が20個以上のものも認められた。
<試験例2:高温処理時の結晶成長の度合い~比表面積の測定~>
 試験例1で得られた実施例1~10および比較例1~7の各触媒を熱処理した後のBET比表面積(m/g)を調べた。
 具体的には、各触媒(粉末)について大気(Air雰囲気)中で1150℃、5時間の熱処理(焼成)を行った。その後、一般的なBET法に基づいて表面積を測定した。結果を表1に示す。
 表1に示すように、各実施例の触媒粉末(酸化物粒子)の比表面積は何れも30m/g以上であり、いくつかは40m/g以上であった。その一方で、比較例1~4の触媒粉末(酸化物粒子)の比表面積は何れも25m/g以下であった。このことは、分散状態で異種結晶子が混在する実施例の触媒では、異種結晶子同士が障壁となって結晶成長を阻み、結果、比表面積の低下を効果的に防ぎ得ることを示している。
<試験例3:触媒活性評価>
 試験例1で得られた実施例1~10および比較例1~7の各触媒を熱耐久試験に供試した後の触媒活性の評価を調べた。
 具体的には、各触媒(上記ペレット状触媒)を、流通式の熱耐久試験装置に配置し、窒素ガスに酸素(O)を6mol%加えたリーンガスと、窒素ガスに一酸化炭素(CO)を6mol%加えたリッチガスを、触媒床温度850℃において500mL/分のガス流で3分周期で交互に100時間流通させる熱耐久処理を行った。
 次いで、処理後の触媒を、常圧固定床流通反応装置に配置し、ストイキ相当のモデルガスを該装置内の触媒に流通させつつ、100℃から500℃まで12℃/分の速度で昇温していき、その間のHC浄化率及びNO浄化率を連続的に測定した。そして当該浄化率が50%となるときの温度を50%浄化温度として求めた。結果を表1の該当欄に示す。また、結果の一部(実施例1~4、7~10および比較例1、2、6、7)を図3~図5に示す。
 表1ならびに図3~図5に示すように、担持されるPGM(Pd,Pt,Rh)の種類にかかわらず、実施例に係る触媒の50%HC浄化温度および50%NO浄化温度は、比較例の触媒の50%HC浄化温度および50%NO浄化温度よりも低かった。このことは、分散状態で異種結晶子が混在する各実施例の触媒では、異種結晶子同士が障壁となって結晶成長を阻み、結果、貴金属(ここではPGM)の凝集やOSC機能の低下を防止して高い触媒活性を維持し得ることを示している。
 さらに、表1から明らかなように、Ce含有率が低い結晶子Aに貴金属を担持させた各実施例の触媒は、Ce含有率が高い結晶子Bに貴金属を担持させた比較例5の触媒に比べて、50%HC浄化温度および50%NO浄化温度が低かった。このことから、上記Ce含有率が異なる異種結晶子の混合粒子からなる凝集体において、Ce含有率が低い結晶子Aに貴金属を担持させ、かつ、Ce含有率が高い結晶子Bに貴金属を担持させないことにより、さらに高い触媒活性が得られることが確認された。なお、粉末A1B1(すなわち結晶子AのCe含有率5mol%、結晶子BのCe含有率35mol%の粉末)を用いた実施例2の触媒は、粉末A1B2(すなわち結晶子AのCe含有率5mol%、結晶子BのCe含有率60mol%の粉末)を用いた実施例11の触媒に比べて、連続接触個数および比表面積が同程度であるにもかかわらず、50%HC浄化温度および50%NO浄化温度が低下傾向を示した。このことから、結晶子BのCe含有率を低くすることによって、より高い触媒活性が得られることが判る。より高い触媒活性を得る観点からは、結晶子BのCe含有率としては概ね50%以下(例えば25%~50%)、好ましくは40%以下(例えば25%~40%)、より好ましくは35%以下(例えば25%~35%)である。また、結晶子AのCe含有率としては概ね20%以下(例えば1%~20%)、好ましくは10%以下(例えば1%~10%)である。
 以上の試験例から明らかなように、ここで開示される排ガス浄化用触媒を用いることによって結晶成長による貴金属の凝集、OSC能の低下を防止し、例えば三元触媒の触媒活性(三元性能)を安定して発揮させることができる。さらに、Ce含有率が低い結晶子Aに貴金属を担持させ、かつ、Ce含有率が高い結晶子Bに貴金属を担持させないことにより、貴金属のメタル状態の維持とOSC機能を高度に両立させることができる。従って、より高性能な三元触媒その他の排ガス浄化用触媒を提供することができる。
 本発明によれば、2種の結晶子を混在させた排ガス浄化用触媒において、更なる触媒性能の向上を図ることができる。

Claims (5)

  1.  内燃機関の排気管に配置されて該内燃機関から排出される排ガスの浄化を行う排ガス浄化用触媒であって、
     貴金属が担持されている結晶子Aと、貴金属が担持されていない結晶子Bとが混在した酸化物粒子を含んでおり、
     前記貴金属が担持されている結晶子Aは、ジルコニウム(Zr)およびセリウム(Ce)のうちの少なくとも一方を含む酸化物からなり、
     前記貴金属が担持されていない結晶子Bは、セリウム(Ce)を含む酸化物であって、該酸化物中のCeの含有率(mol%)が前記結晶子Aの酸化物中の含有率(mol%)よりも高い酸化物からなり、
     ここで前記酸化物粒子の1150℃、5時間の大気中での熱処理後における比表面積が30m/g以上であり、
     前記結晶子Aおよび前記結晶子Bのいずれについても電子顕微鏡観察下で同種の結晶子が10個以上互いに接して存在しないように高度に分散した状態で前記酸化物粒子中に混在している、排ガス浄化用触媒。
  2.  前記結晶子Aを構成する酸化物に含まれるCeの含有率は酸化物換算で該酸化物全体の0~30mol%であり、
     前記結晶子Bを構成する酸化物に含まれるCeの含有率は酸化物換算で該酸化物全体の35~99mol%である、請求項1に記載の排ガス浄化用触媒。
  3.  前記結晶子Aは、Zrとともにイットリウム(Y)を含む酸化物からなる、請求項1または2に記載の排ガス浄化用触媒。
  4.  前記結晶子Bは、CeとともにZrを含む酸化物からなる、請求項1~3の何れか一つに記載の排ガス浄化用触媒。
  5.  前記結晶子Aおよび前記結晶子Bのいずれについても電子顕微鏡観察下で同種の結晶子が7個以上互いに接して存在しないように高度に分散した状態で前記酸化物粒子中に混在している、請求項1~4の何れか一つに記載の排ガス浄化用触媒。
     
PCT/JP2014/082148 2013-12-09 2014-12-04 排ガス浄化用触媒 WO2015087781A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480067268.5A CN105813734B (zh) 2013-12-09 2014-12-04 排气净化用催化剂
JP2015552414A JP6532825B2 (ja) 2013-12-09 2014-12-04 排ガス浄化用触媒
EP14869674.3A EP3081297B1 (en) 2013-12-09 2014-12-04 Exhaust gas purifying catalyst
US15/037,345 US9849441B2 (en) 2013-12-09 2014-12-04 Exhaust gas purifying catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013254479 2013-12-09
JP2013-254479 2013-12-09

Publications (1)

Publication Number Publication Date
WO2015087781A1 true WO2015087781A1 (ja) 2015-06-18

Family

ID=53371086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082148 WO2015087781A1 (ja) 2013-12-09 2014-12-04 排ガス浄化用触媒

Country Status (5)

Country Link
US (1) US9849441B2 (ja)
EP (1) EP3081297B1 (ja)
JP (1) JP6532825B2 (ja)
CN (1) CN105813734B (ja)
WO (1) WO2015087781A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016198762A (ja) * 2015-04-14 2016-12-01 日産自動車株式会社 排気ガス浄化触媒、排気ガス浄化触媒の製造方法及び排気ガス浄化モノリス触媒

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9724644B2 (en) * 2013-12-09 2017-08-08 Cataler Corporation Exhaust gas purifying catalyst
WO2019043346A1 (fr) 2017-09-01 2019-03-07 Rhodia Operations Oxyde mixte a base de cerium et de zirconium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155192A (ja) 1995-12-07 1997-06-17 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒
JP2008013423A (ja) * 2006-06-30 2008-01-24 Daiichi Kigensokagaku Kogyo Co Ltd 酸化セリウム−酸化ジルコニウム系複合酸化物及びその製造方法
JP2008289985A (ja) 2007-05-23 2008-12-04 Toyota Motor Corp 排ガス浄化触媒担体の製造方法
JP2009106858A (ja) * 2007-10-30 2009-05-21 Mazda Motor Corp 排ガス成分浄化用触媒材及び同触媒材付パティキュレートフィルタ
WO2011108457A1 (ja) * 2010-03-01 2011-09-09 第一稀元素化学工業株式会社 酸化セリウム-酸化ジルコニウム系複合酸化物及びその製造方法
JP2011255272A (ja) * 2010-06-07 2011-12-22 Mazda Motor Corp 排気ガス浄化用触媒
JP2014171971A (ja) * 2013-03-08 2014-09-22 Cataler Corp 排ガス浄化用触媒

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958827A (en) 1995-12-07 1999-09-28 Toyota Jidosha Kabushiki Kaisha Solid solution particle of oxides, a process for producing the same and a catalyst for purifying exhaust gases
US20060217263A1 (en) * 2005-03-24 2006-09-28 Tokyo Roki Co., Ltd Exhaust gas purification catalyst
JP2006334490A (ja) 2005-06-01 2006-12-14 Mazda Motor Corp 排気ガス浄化用触媒
US8993475B2 (en) * 2006-07-06 2015-03-31 Cataler Corporation Oxygen storage material
JP2009050791A (ja) * 2007-08-27 2009-03-12 Toyota Motor Corp 排ガス浄化用触媒
US8187548B2 (en) 2007-10-30 2012-05-29 Mazda Motor Corporation Catalyst-supported particulate filter
JP4956801B2 (ja) * 2009-03-04 2012-06-20 日産自動車株式会社 排気ガス浄化触媒及びその製造方法
EP2431092B1 (en) 2009-04-14 2019-07-17 Cataler Corporation Exhaust gas purifying catalyst and method for producing same
JP5515939B2 (ja) * 2010-03-26 2014-06-11 マツダ株式会社 排気ガス浄化用触媒
JP5732297B2 (ja) 2011-03-31 2015-06-10 エヌ・イーケムキャット株式会社 アンモニア酸化触媒、および排気ガス浄化装置並びに排気ガス浄化方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155192A (ja) 1995-12-07 1997-06-17 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒
JP2008013423A (ja) * 2006-06-30 2008-01-24 Daiichi Kigensokagaku Kogyo Co Ltd 酸化セリウム−酸化ジルコニウム系複合酸化物及びその製造方法
JP2008289985A (ja) 2007-05-23 2008-12-04 Toyota Motor Corp 排ガス浄化触媒担体の製造方法
JP2009106858A (ja) * 2007-10-30 2009-05-21 Mazda Motor Corp 排ガス成分浄化用触媒材及び同触媒材付パティキュレートフィルタ
WO2011108457A1 (ja) * 2010-03-01 2011-09-09 第一稀元素化学工業株式会社 酸化セリウム-酸化ジルコニウム系複合酸化物及びその製造方法
JP2011255272A (ja) * 2010-06-07 2011-12-22 Mazda Motor Corp 排気ガス浄化用触媒
JP2014171971A (ja) * 2013-03-08 2014-09-22 Cataler Corp 排ガス浄化用触媒

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016198762A (ja) * 2015-04-14 2016-12-01 日産自動車株式会社 排気ガス浄化触媒、排気ガス浄化触媒の製造方法及び排気ガス浄化モノリス触媒

Also Published As

Publication number Publication date
CN105813734B (zh) 2019-10-18
CN105813734A (zh) 2016-07-27
JP6532825B2 (ja) 2019-06-19
EP3081297B1 (en) 2019-11-06
EP3081297A4 (en) 2017-01-18
US20160279607A1 (en) 2016-09-29
US9849441B2 (en) 2017-12-26
JPWO2015087781A1 (ja) 2017-03-16
EP3081297A1 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
EP2050497B1 (en) Exhaust gas purifying catalyst and method of preparation
JP4835595B2 (ja) 触媒担体粒子、排ガス浄化触媒、及びそれらの製造方法
WO2015087836A1 (ja) 排ガス浄化用触媒
EP2921226B1 (en) Catalyst carrier for exhaust gas and exhaust gas-cleaning catalyst
JP5014845B2 (ja) 排ガス浄化用触媒、その製造方法、およびかかる触媒を用いた排ガスの浄化方法
JP2006334490A (ja) 排気ガス浄化用触媒
JP2005262201A (ja) 排ガス浄化用触媒およびその製造方法
JP6514112B2 (ja) 排ガス浄化用触媒
EP1722889A1 (en) Exhaust gas purifying catalyst, metal oxide particle and production process thereof
JP4831753B2 (ja) 排ガス浄化用触媒
JP2007098200A (ja) 排気ガス浄化用触媒及び排気ガス浄化用触媒材の製造方法
WO2015087781A1 (ja) 排ガス浄化用触媒
JP2007069076A (ja) 排気ガス浄化用触媒並びに触媒付きディーゼルパティキュレートフィルタ
JP6050703B2 (ja) 排ガス浄化用触媒
JP7211709B2 (ja) 排ガス浄化用三元触媒及びその製造方法、並びに一体構造型排ガス浄化用触媒
JP5478947B2 (ja) 排ガス浄化触媒、排ガス浄化触媒の製造方法及びモノリス触媒
JP6556376B2 (ja) 排気ガス浄化用触媒、および排気ガスの浄化方法
JP2006298759A (ja) 排ガス浄化用触媒
JP2016209862A (ja) 排ガス浄化触媒
JP2009078203A (ja) 排ガス浄化用触媒材、同触媒材の製造方法、及び同触媒材を用いた触媒
JP6194699B2 (ja) 触媒付パティキュレートフィルタの製造方法
JP5402334B2 (ja) 排ガス浄化触媒
JP3309711B2 (ja) 排気ガス浄化用触媒及びその製造方法
JP6909402B2 (ja) 排ガス浄化用触媒担体、それを用いた排ガス浄化用触媒、及び排ガス浄化用触媒担体の製造方法
JP4836188B2 (ja) 排ガス浄化用触媒、並びにその製造方法及びその再生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869674

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15037345

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015552414

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014869674

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014869674

Country of ref document: EP