WO2012111548A1 - 有機エレクトロルミネッセンス素子、照明装置及び表示装置 - Google Patents

有機エレクトロルミネッセンス素子、照明装置及び表示装置 Download PDF

Info

Publication number
WO2012111548A1
WO2012111548A1 PCT/JP2012/053077 JP2012053077W WO2012111548A1 WO 2012111548 A1 WO2012111548 A1 WO 2012111548A1 JP 2012053077 W JP2012053077 W JP 2012053077W WO 2012111548 A1 WO2012111548 A1 WO 2012111548A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
substituent
represent
nitrogen atom
Prior art date
Application number
PCT/JP2012/053077
Other languages
English (en)
French (fr)
Inventor
押山 智寛
北 弘志
池水 大
西関 雅人
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012557923A priority Critical patent/JP5853964B2/ja
Priority to EP12746917.9A priority patent/EP2677561B1/en
Priority to US13/985,316 priority patent/US9923154B2/en
Publication of WO2012111548A1 publication Critical patent/WO2012111548A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/002Osmium compounds
    • C07F15/0026Osmium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • C07F15/0093Platinum compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5022Aromatic phosphines (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the present invention relates to an organic electroluminescence element, an illuminating device, and a display device, and more particularly to a compound that can be preferably used for an organic electroluminescence element and an organic electroluminescence element.
  • ELD electroluminescence display
  • inorganic electroluminescent elements and organic electroluminescent elements (hereinafter also referred to as organic EL elements).
  • organic electroluminescent elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
  • an organic EL element has a configuration in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and injects electrons and holes into the light emitting layer to recombine excitons. It is an element that emits light by utilizing the emission of light (fluorescence / phosphorescence) when the exciton is deactivated, and can emit light at a voltage of several volts to several tens of volts. Therefore, it has a wide viewing angle, high visibility, and since it is a thin-film type complete solid-state device, it is attracting attention from the viewpoints of space saving and portability.
  • iridium complexes that are typical phosphorescent compounds, for example, dibenzofuran and pyridine can be used as described in JP-A No. 2002-332291, JP-A No. 2005-23071, JP-A No. 2002-23072, and the like.
  • the example which controlled the three-dimensional structure with the combined ligand is given.
  • Patent Documents 1 and 5 Iridium complexes complexed from phenylpyrazole derivatives (see Patent Documents 1 and 5), phenylimidazole derivatives (see Patent Documents 2 and 3), and derivatives containing a carbene moiety in the ligand (Patent Documents 4 and 1) But there are similar applications.
  • Non-patent Document 2 a complex having a ligand further expanded by ⁇ conjugation is synthesized on the benzene ring of the ligand.
  • An object of the present invention is to provide an organic electroluminescence device having a low driving voltage, high luminous efficiency, excellent durability, and excellent dark spot generation preventing effect. Moreover, it is providing the illuminating device and display apparatus provided with this organic electroluminescent element.
  • An organic electroluminescence device having an anode, a cathode, and a light emitting layer, which emits light on the shortest wavelength side of the light emission spectrum when measured at 300 K and the light emission maximum wavelength on the shortest wavelength side when measured at 77 K
  • An organic electroluminescence device comprising a layer containing a compound A having a difference from a maximum wavelength of 0 nm to 5 nm.
  • C 10 and C 11 represents a carbon atom.
  • a 1 and A 2 represent a nitrogen atom or CRa.
  • Ra represents a hydrogen atom or a substituent.
  • P 1 represents an oxygen atom, a nitrogen atom, or a sulfur atom.
  • P 2 , P 3 and P 4 each represent CRb, C (RcRd), a nitrogen atom, NRe, Si (RfRg), an oxygen atom or a sulfur atom.
  • Rb, Rc, Rd, Re, Rf and Rg each represents a hydrogen atom or a substituent.
  • Rb, Rc, Rd and Re are not bonded to each other to form a ring.
  • a 0 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • k represents 0 or an integer of 1.
  • B 1 to B 5 each represent a carbon atom, CR 0 , a nitrogen atom, an oxygen atom or a sulfur atom, at least one of which represents a nitrogen atom, and these five atoms form a 5-membered aromatic nitrogen-containing heterocyclic ring. It is formed.
  • R 0 represents a hydrogen atom or a substituent.
  • X 1 -L 1 -X 2 represents a bidentate ligand, and X 1 and X 2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom.
  • the bonds between C 11 and P 4 , C 11 and P 3 , P 4 and P 3 , P 3 and P 2 , P 2 and P 1, and P 1 and C 10 are single bonds or double bonds.
  • L 1 represents an atomic group to form a bidentate ligand with X 1 and X 2.
  • n represents an integer of 1 to 3.
  • m represents an integer of (3-n).
  • M represents a transition metal element of Group 8 to Group 10 in the periodic table. ] 5). 5.
  • a 1 and A 2 each represent a nitrogen atom or CRa.
  • Ra represents a hydrogen atom or a substituent.
  • D 1 , D 2 and D 3 represent CRb or a nitrogen atom.
  • Rb represents a hydrogen atom or a substituent. Moreover, Rb is not bonded to each other to form a ring.
  • a 0 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • B 1 to B 5 each represent a carbon atom, CR 0 , a nitrogen atom, an oxygen atom or a sulfur atom, and at least one of B 1 to B 5 is a nitrogen atom.
  • R 0 represents a hydrogen atom or a substituent.
  • X 1 -L 1 -X 2 represents a bidentate ligand, and X 1 and X 2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom.
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • n represents an integer of 1 to 3.
  • m represents an integer of (3-n).
  • M represents a transition metal element of Group 8 to Group 10 in the periodic table. ] 6). 5.
  • a 1 and A 2 are each nitrogen atom, or represents CRa.
  • Ra represents a hydrogen atom or a substituent.
  • R 61 , R 62 and R 63 represent a hydrogen atom or a substituent.
  • a 0 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • R 61 , R 62 and R 63 are not bonded to each other to form a ring.
  • B 1 to B 5 each represent a carbon atom, CR 0 , a nitrogen atom, an oxygen atom or a sulfur atom, and at least one of B 1 to B 5 is a nitrogen atom.
  • R 0 represents a hydrogen atom or a substituent.
  • X 1 -L 1 -X 2 represents a bidentate ligand, and X 1 and X 2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom.
  • L 1 represents an atomic group to form a bidentate ligand with X 1 and X 2.
  • n represents an integer of 1 to 3.
  • m represents an integer of (3-n).
  • M represents a transition metal element of Group 8 to Group 10 in the periodic table. ] 7). 5.
  • a 1 and A 2 represent a nitrogen atom or CRa.
  • Ra represents a hydrogen atom or a substituent.
  • Z 0 represents an oxygen atom or a sulfur atom.
  • Z 1 , Z 2 and Z 3 each represent C (RcRd), NRe, Si (RfRg), an oxygen atom or a sulfur atom.
  • Rc, Rd, Re, Rf and Rg each represents a hydrogen atom or a substituent.
  • Rc, Rd and Re do not combine with each other to form a ring.
  • a 0 is an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • B 1 to B 5 each represent a carbon atom, CR 0 , a nitrogen atom, an oxygen atom or a sulfur atom, and at least one of B 1 to B 5 is a nitrogen atom.
  • R 0 represents a hydrogen atom or a substituent.
  • X 1 -L 1- X 2 represents a bidentate ligand, and X 1 and X 2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom.
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • n represents an integer of 1 to 3.
  • m represents an integer of (3-n).
  • M represents a transition metal element of Group 8 to Group 10 in the periodic table. ] 8). 5.
  • a 1 and A 2 represent a nitrogen atom or CRa.
  • Ra represents a hydrogen atom or a substituent.
  • Y 1 represents an oxygen atom, a sulfur atom, C (RcRd), NRe, or Si (RfRg).
  • Rc, Rd, Re, Rf and Rg each represents a hydrogen atom or a substituent.
  • R 71 represents a hydrogen atom or a substituent.
  • R 71 , Rc and Rd are not bonded to each other to form a ring.
  • a 0 is an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • B 1 to B 5 each represent a carbon atom, CR 0 , a nitrogen atom, an oxygen atom or a sulfur atom, and at least one of B 1 to B 5 is a nitrogen atom.
  • R 0 represents a hydrogen atom or a substituent.
  • X 1 -L 1 -X 2 represents a bidentate ligand, and X 1 and X 2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom.
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • n represents an integer of 1 to 3.
  • m represents an integer of (3-n).
  • a 1 and A 2 represent a nitrogen atom or CRa.
  • Ra represents a hydrogen atom or a substituent.
  • Y 2 represents a nitrogen atom or CRb.
  • Rb represents a hydrogen atom or a substituent.
  • Y 3 represents an oxygen atom or a sulfur atom.
  • R 81 represents a hydrogen atom or a substituent.
  • R 81 and Rb are not bonded to each other to form a ring.
  • a 0 is an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • B 1 to B 5 each represent a carbon atom, CR 0 , a nitrogen atom, an oxygen atom or a sulfur atom, and at least one of B 1 to B 5 is a nitrogen atom.
  • R 0 represents a hydrogen atom or a substituent.
  • X 1 -L 1 -X 2 represents a bidentate ligand, and X 1 and X 2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom.
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • n represents an integer of 1 to 3.
  • m represents an integer of (3-n).
  • a 1 and A 2 represent a nitrogen atom or CRa.
  • Ra represents a hydrogen atom or a substituent.
  • Y 4 represents an oxygen atom or a sulfur atom.
  • Y 5 and Y 6 represent C (RcRd), NRe, Si (RfRg), an oxygen atom or a sulfur atom.
  • Rc, Rd, Re, Rf and Rg each represents a hydrogen atom or a substituent.
  • Rc, Rd and Re do not combine with each other to form a ring.
  • a 0 is an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • B 1 to B 5 each represent a carbon atom, CR 0 , a nitrogen atom, an oxygen atom or a sulfur atom, and at least one of B 1 to B 5 is a nitrogen atom.
  • R 0 represents a hydrogen atom or a substituent.
  • X 1 -L 1 -X 2 represents a bidentate ligand, and X 1 and X 2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom.
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • n represents an integer of 1 to 3.
  • m represents an integer of (3-n).
  • M represents a transition metal element of Group 8 to Group 10 in the periodic table. ] 11.
  • the organic electroluminescence device according to any one of 4 to 10, wherein the ring composed of B 1 to B 5 is an imidazole ring or a pyrazole ring.
  • An illumination device comprising the organic electroluminescence element according to any one of 1 to 13 above.
  • a display device comprising the organic electroluminescence element according to any one of 1 to 13 above.
  • an organic electroluminescence device having a low driving voltage, high luminous efficiency, excellent durability, and excellent dark spot generation preventing effect.
  • the illuminating device and display apparatus provided with this organic electroluminescent element can be provided.
  • FIG. 4 is a schematic diagram of a display unit A.
  • FIG. It is a schematic diagram of a pixel. It is a schematic diagram of a passive matrix type full-color display device. It is the schematic of an illuminating device. It is a schematic diagram of an illuminating device.
  • the organic electroluminescence device of the present invention is an organic electroluminescence device having an anode, a cathode, and a light emitting layer (hereinafter also referred to as an organic EL device), and the emission maximum wavelength on the shortest wavelength side of the emission spectrum measured at 300K. And a layer containing Compound A having a difference between the emission maximum wavelength on the shortest wavelength side of the emission spectrum measured at 77 K and not more than 0 nm and not more than 5 nm.
  • an organic EL device having a low driving voltage, high luminous efficiency, excellent durability, and excellent dark spot generation preventing effect can be obtained.
  • the present inventors have a large change in the molecular structure between the ground state (S0) and the excited triplet (T1) state when the phosphorescent compound emits light. As a result, it was estimated that non-radiation deactivation would increase, and that device lifetime and high light emission efficiency that could withstand practical use could not be obtained, and the problems were investigated.
  • the ligand is often composed of two different rings, but as a substituent of the ring, an aromatic hydrocarbon ring group or an aromatic heterocyclic group Are connected (in the figure below, A 0 as a substituent of the B ring), the rotation angle ( ⁇ 1) of the connecting portion of this ring and the substituent is the site having the largest structural change between S0 and T1. It has been found that It has been found that this structural change is reflected in the difference between the 0-0 transition band of the emission spectrum measured at 77K and the emission spectrum measured at 300K.
  • Compound A has a difference between the emission maximum wavelength on the shortest wavelength side of the emission spectrum measured at 300K and the emission maximum wavelength on the shortest wavelength side of the emission spectrum measured at 77K is 0 nm or more and 5 nm or less. It is a certain compound.
  • the emission maximum wavelength corresponds to the peak wavelength of the emission band (also referred to as 0-0 transition band) attributed to the 0-0 transition in the emission spectrum.
  • the 0-0 transition band is the maximum emission wavelength that appears at the shortest wavelength in the emission spectrum chart obtained by the following measurement method.
  • any solvent that can dissolve the compound may be used (substantially, the above-described measurement method has no problem because the solvent effect on the emission wavelength is negligible).
  • the 0-0 transition band is obtained.
  • the 0-0 transition band having the maximum emission wavelength that appears on the shortest wavelength side in the phosphorescence spectrum chart obtained by the above measurement method is Define.
  • the emission spectrum is measured at 300K, and the difference between the 0-0 transition band and the 0-0 transition band when measured at 77K is taken.
  • Compound A has a value of the above 0-0 transition band difference, and a specific compound typically includes a compound represented by the general formula (1).
  • C 10, C 11 represents a carbon atom.
  • a 1 and A 2 represent a nitrogen atom or CRa.
  • Ra represents a hydrogen atom or a substituent.
  • P 1 represents an oxygen atom, a nitrogen atom, or a sulfur atom.
  • P 2 , P 3 and P 4 each represent CRb, C (RcRd), a nitrogen atom, NRe, Si (RfRg), an oxygen atom or a sulfur atom.
  • Rb, Rc, Rd, Re, Rf, and Rg represent a hydrogen atom or a substituent.
  • Rb, Rc, Rd, and Re do not combine with each other to form a ring.
  • a 0 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • k represents 0 or an integer of 1.
  • B 1 to B 5 represent a carbon atom, CR 0 , a nitrogen atom, an oxygen atom or a sulfur atom, but at least one represents a nitrogen atom, and a five-membered aromatic nitrogen-containing heterocycle is formed by these five atoms.
  • the R 0 represents a hydrogen atom or a substituent.
  • X 1 -L 1 -X 2 represents a bidentate ligand, and X 1 and X 2 each independently represents a carbon atom, a nitrogen atom or an oxygen atom.
  • the bonds between C 11 and P 4 , C 11 and P 3 , P 4 and P 3 , P 3 and P 2 , P 2 and P 1 , P 1 and C 10 are single bonds or double bonds.
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • M represents a transition metal element of Group 8 to Group 10 in the periodic table.
  • Ra, Rb, Rc, Rd, Re, Rf, Rg, R 0 represents a substituent
  • the substituent is an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group).
  • cycloalkyl group eg cyclopentyl group, cyclohexyl group etc.
  • alkenyl group eg vinyl Group, allyl group, etc.
  • alkynyl group for example, ethynyl group, propargyl group, etc.
  • aromatic hydrocarbon ring group aromatic hydrocarbon group, aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group Fluorenyl group, phenanthryl group,
  • arylthio group eg, phenylthio group, naphthylthio group, etc.
  • alkoxycarbonyl group eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.
  • An aryloxycarbonyl group eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.
  • a sulfamoyl group eg, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexyl
  • Aminosulfonyl group octylaminosulfonyl group, dodecylaminos
  • Ra, Rb, Rc, Rd, Re, Rf, Rg, R 0 represent a substituent
  • examples of preferred substituents include an alkyl group, an aromatic hydrocarbon ring group, an aromatic group.
  • a heterocyclic group, an alkoxy group, and an amino group are mentioned.
  • a 0 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • the aromatic hydrocarbon ring group include phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl Group, biphenylyl group and the like.
  • aromatic heterocyclic group examples include a pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazol-1-yl).
  • oxazolyl group 1,2,3-triazol-1-yl group, etc.
  • benzoxazolyl group thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, benzofuryl group, dibenzofuryl group , Benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), quinoxalinyl Group, pyridazinyl group, triazinyl group, key Zoriniru group, phthalazinyl group).
  • a 0 preferably has a substituent, and preferred examples of the substituent include an alkyl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, and an alkoxy group. Preferably, it is an aromatic hydrocarbon ring group.
  • a 1 and A 2 represent a nitrogen atom or CRa.
  • Ra represents a hydrogen atom or a substituent.
  • D 1 , D 2 and D 3 represent CRb and a nitrogen atom.
  • Rb represents a hydrogen atom or a substituent.
  • a 0 is an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • B 1 to B 5 each represent a carbon atom, CR 0 , a nitrogen atom, an oxygen atom or a sulfur atom, and at least one of B 1 to B 5 is a nitrogen atom.
  • X 1 -L 1 -X 2 represents a bidentate ligand, and X 1 and X 2 each independently represents a carbon atom, a nitrogen atom or an oxygen atom.
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • M represents a transition metal element of Group 8 to Group 10 in the periodic table.
  • Ra, Rb, and R 0 represent a substituent, they are synonymous with Ra, Rb, and R 0 in the general formula (1). Moreover, Rb is not bonded to each other to form a ring.
  • a 0 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group, it has the same meaning as A 0 in the general formula (1).
  • a 1 and A 2 represent a nitrogen atom or CRa.
  • Ra represents a hydrogen atom or a substituent.
  • R 61 , R 62 and R 63 each represent a hydrogen atom or a substituent.
  • a 0 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • B 1 to B 5 each represent a carbon atom, CR 0 , a nitrogen atom, an oxygen atom or a sulfur atom, and at least one of B 1 to B 5 is a nitrogen atom.
  • X 1 -L 1 -X 2 represents a bidentate ligand, and X 1 and X 2 each independently represents a carbon atom, a nitrogen atom or an oxygen atom.
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • M represents a transition metal element of Group 8 to Group 10 in the periodic table.
  • Ra, R 61 , R 62 , R 63 , R 0 represent a substituent, they are synonymous with Ra, Rb, Rc, Rd, R 0 in the general formula (1).
  • a 0 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group, it has the same meaning as A 0 in General Formula (1).
  • a 1 and A 2 represent a nitrogen atom or CRa.
  • Ra represents a hydrogen atom or a substituent.
  • Z 0 represents an oxygen atom or a sulfur atom.
  • Z 1 , Z 2 and Z 3 represent C (RcRd), NRe, Si (RfRg), an oxygen atom or a sulfur atom.
  • Rc, Rd, Re, Rf, and Rg represent a hydrogen atom or a substituent.
  • a 0 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • B 1 to B 5 each represent a carbon atom, CR 0 , a nitrogen atom, an oxygen atom or a sulfur atom, and at least one of B 1 to B 5 is a nitrogen atom.
  • X 1 -L 1 -X 2 represents a bidentate ligand, and X 1 and X 2 each independently represents a carbon atom, a nitrogen atom or an oxygen atom.
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • M represents a transition metal element of Group 8 to Group 10 in the periodic table. R 61 , R 62 and R 63 are not bonded to each other to form a ring.
  • Ra, Rc, Rd, Re, Rf, and Rg represent a substituent, they are synonymous with Ra, Rb, Rc, Rd, and R 0 in the general formula (1).
  • a 0 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group, it has the same meaning as A 0 in the general formula (1). Also, Rc, Rd, Re is not able to bond to each other to form a ring.
  • a 1 and A 2 represent a nitrogen atom or CRa.
  • Ra represents a hydrogen atom or a substituent.
  • Y 1 represents an oxygen atom, a sulfur atom, C (RcRd), NRe, or Si (RfRg).
  • Rc, Rd, Re, Rf, and Rg represent a hydrogen atom or a substituent.
  • R 71 represents a hydrogen atom or a substituent.
  • a 0 is an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • B 1 to B 5 each represent a carbon atom, CR 0 , a nitrogen atom, an oxygen atom or a sulfur atom, and at least one of B 1 to B 5 is a nitrogen atom.
  • X 1 -L 1 -X 2 represents a bidentate ligand, and X 1 and X 2 each independently represents a carbon atom, a nitrogen atom or an oxygen atom.
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • M represents a transition metal element of Group 8 to Group 10 in the periodic table.
  • Ra, Rc, Rd, Re, Rf, and Rg represent a substituent, they are synonymous with Ra, Rb, Rc, Rd, and R 0 in the general formula (1).
  • a 0 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group, it has the same meaning as A 0 in the general formula (1).
  • R 71 , Rc and Rd are not bonded to each other to form a ring.
  • a 1 and A 2 represent a nitrogen atom or CRa.
  • Ra represents a hydrogen atom or a substituent.
  • Y 2 represents a nitrogen atom or CRb.
  • Rb represents a hydrogen atom or a substituent.
  • Y 3 represents an oxygen atom or a sulfur atom.
  • R 81 represents a hydrogen atom or a substituent.
  • a 0 is an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • B 1 to B 5 each represent a carbon atom, CR 0 , a nitrogen atom, an oxygen atom or a sulfur atom, and at least one of B 1 to B 5 is a nitrogen atom.
  • X 1 -L 1 -X 2 represents a bidentate ligand, and X 1 and X 2 each independently represents a carbon atom, a nitrogen atom or an oxygen atom.
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • M represents a transition metal element of Group 8 to Group 10 in the periodic table.
  • Ra, Rb, and R 81 represent a substituent, they are synonymous with Ra, Rb, Rc, Rd, and R 0 in the general formula (1).
  • R 81 and Rb are not bonded to each other to form a ring.
  • a 1, A 2 is nitrogen atom, or represents CRa.
  • Ra represents a hydrogen atom or a substituent.
  • Y 4 represents an oxygen atom or a sulfur atom.
  • Y 5 and Y 6 each represent C (RcRd), NRe, Si (RfRg), an oxygen atom or a sulfur atom.
  • Rc, Rd, Re, Rf, and Rg represent a hydrogen atom or a substituent.
  • a 0 is an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • B 1 to B 5 each represent a carbon atom, CR 0 , a nitrogen atom, an oxygen atom or a sulfur atom, and at least one of B 1 to B 5 is a nitrogen atom.
  • X 1 -L 1 -X 2 represents a bidentate ligand, and X 1 and X 2 each independently represents a carbon atom, a nitrogen atom or an oxygen atom.
  • L 1 represents an atomic group to form a bidentate ligand with X 1, X 2.
  • M represents a transition metal element of Group 8 to Group 10 in the periodic table.
  • Ra, Rc, Rd, Re, Rf, and Rg represent a substituent, they are synonymous with Ra, Rb, Rc, Rd, and R 0 in the general formula (1). Also, Rc, Rd, Re is not able to bond to each other to form a ring.
  • a 0 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group, it has the same meaning as A 0 in the general formula (1).
  • the compounds represented by the general formulas (2) to (7) can be preferably used.
  • the case represented by the general formulas (4) to (7) is preferred, and the case represented by the general formulas (4) and (7) is most preferred.
  • n represents an integer of 1 to 3.
  • m represents an integer of (3-n).
  • the ring composed of B 1 to B 5 is preferably an imidazole ring or a pyrazole ring, and most preferably an imidazole ring.
  • M represents a transition metal element of Group 8 to Group 10 in the periodic table, and is preferably iridium.
  • bidentate ligand represented by X 1 -L 1 -X 2 include substituted or unsubstituted Examples include phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyrazabole, acetylacetone, and picolinic acid.
  • each of the compounds represented by the general formulas (2) to (7) which are more specific compounds of the compound represented by the general formula (1).
  • the synthesis will be described as an example.
  • Exemplified Compound 1 (corresponding to General Formula (7)) was synthesized by the steps shown below.
  • reaction mixture was cooled to room temperature, filtered, thoroughly washed with methanol and dried to obtain 0.5 g of ⁇ complex (2).
  • Step 5 Synthesis of acac complex (3)
  • ⁇ complex (2) 0.5 g of ⁇ complex (2), 0.1 g of acetylacetone, 0.1 g of sodium carbonate and 20 ml of 2-ethoxyethanol were introduced, and nitrogen was blown into the flask.
  • a tube, a thermometer and a condenser were attached and set on an oil bath stirrer.
  • the reaction was performed for 2 hours at an internal temperature of about 90 ° C. under nitrogen flow.
  • reaction mixture was cooled to room temperature and the crystals were filtered.
  • the crystals were washed with 30 ml of water and 10 ml of MeOH and dried to obtain 0.4 g of acac complex (3).
  • acac complex (3) 0.4 g of acac complex (3), 0.2 g of ligand (1), and 20 ml of glycerin are placed, and a nitrogen blowing tube, thermometer, and air cooling tube are attached to an oil bath stirrer. It was set. The reaction was terminated by heating and stirring for 10 hours at a nitrogen gas stream inner temperature of around 170 ° C.
  • reaction mixture was cooled to room temperature and the crystals were filtered.
  • Exemplified Compound 111 (Equivalent to General Formula (4)) >> Exemplified compound 111 was synthesized by the same synthesis method as in Exemplified Compound 1 except that Ligand (1) was replaced by Ligand (2-1).
  • Exemplified Compound 84 (corresponding to General Formula (6))
  • Exemplified Compound 84 was synthesized by the same synthesis method as in Exemplified Compound 1 except that Ligand (1) was replaced with Ligand (4-1).
  • the organic EL device of the present invention preferably has a light emitting layer between the anode and the cathode, and preferably has a layer containing the compound A between the anode and the cathode, but the layer containing the compound A is a light emitting layer.
  • An embodiment that is is a preferred embodiment.
  • the aspect in which the compound A according to the present invention functions as a light-emitting dopant described below is a preferable aspect.
  • a display device using these is preferable. Further, a white light emitting layer may be formed by laminating at least three of these light emitting layers, and an illumination device using them may be used. Further, a non-light emitting intermediate layer may be provided between the light emitting layers.
  • the light-emitting layer according to the present invention is a layer that emits light by recombination of injected electrons and holes, and the light-emitting portion is the interface between the light-emitting layer and the adjacent layer even in the layer of the light-emitting layer. May be.
  • the total thickness of the light emitting layer is not particularly limited, but from the viewpoint of preventing the application of a high voltage unnecessary for the film uniformity and light emission, and improving the stability of the emitted color with respect to the driving current. It is preferable to adjust to the range of 5 ⁇ m, more preferably to the range of 2 nm to 200 nm, and particularly preferably in the range of 10 to 20 nm.
  • a light-emitting dopant or a host compound which will be described later, is formed by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink-jet method. it can.
  • the light emitting layer is preferably a layer formed using a coating solution containing the compound A according to the present invention.
  • the light emitting layer of the organic EL device of the present invention contains a host compound and a light emitting dopant (phosphorescent compound (also referred to as phosphorescent dopant), fluorescent dopant, etc.).
  • a light emitting dopant phosphorescent compound (also referred to as phosphorescent dopant), fluorescent dopant, etc.).
  • the compound A is preferably used, but other dopants that can be used will be described.
  • the host compound in the present invention is a phosphorescent quantum yield of phosphorescence emission at a room temperature (25 ° C.) having a mass ratio of 20% or more in the compound contained in the light emitting layer. Is defined as a compound of less than 0.1.
  • the phosphorescence quantum yield is preferably less than 0.01.
  • a known host compound may be used alone, or a plurality of types may be used in combination.
  • a plurality of types of host compounds it is possible to adjust the movement of charges, and the efficiency of the organic EL element can be increased.
  • the host compound used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (deposition polymerization property). Light emitting host).
  • a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of longer wavelengths, and has a high Tg (glass transition temperature) is preferable.
  • Luminescent dopant As the light emitting dopant, a fluorescent dopant (also referred to as a fluorescent compound) and a phosphorescent dopant can be used. From the viewpoint of obtaining an organic EL element with higher luminous efficiency, the light emitting layer and light emission of the organic EL element of the present invention can be used. As the light emitting dopant used in the unit (sometimes simply referred to as a light emitting material), it is preferable to contain a phosphorescent dopant simultaneously with the host compound.
  • the phosphorescent dopant is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield of 0.01 or more at 25 ° C.
  • the preferred phosphorescence quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. Bayoi.
  • phosphorescent dopants There are two types of light emission of phosphorescent dopants in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant. Energy transfer type to obtain light emission from the phosphorescent dopant, another is that the phosphorescent dopant becomes a carrier trap, carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained In any case, the excited state energy of the phosphorescent dopant is required to be lower than the excited state energy of the host compound.
  • the phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL element. Specific examples include compounds described in the following patent publications.
  • WO 00/70655 pamphlet JP 2002-280178, JP 2001-181616, JP 2002-280179, JP 2001-181617, JP 2002-280180, JP 2001-247859, JP 2002-299060, JP 2001-313178, JP 2002-302671, JP 2001-345183, JP 2002-324679, International Publication No. 02/15645 pamphlet, JP 2002-332291 A, JP 2002-50484 A, JP 2002-332292 A, JP 2002-83684 A, JP 2002-540572 A, JP 2002-2002 A. No.
  • the phosphorescent dopant according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex compound), Rare earth complexes, most preferably iridium compounds.
  • the compound used as the phosphorescent dopant is preferably an organometallic complex having a structure represented by any one of the above general formulas (2) to (7).
  • Fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes , Polythiophene dyes, rare earth complex phosphors, and the like.
  • Injection layer electron injection layer, hole injection layer >> The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. May be.
  • An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
  • Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer hole injection layer
  • copper phthalocyanine is used.
  • examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc.
  • Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. .
  • the injection layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method.
  • the buffer layer (injection layer) is preferably a very thin film, and although it depends on the material, the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m.
  • This injection layer may have a single layer structure composed of one or more of the above materials.
  • ⁇ Blocking layer hole blocking layer, electron blocking layer>
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer as needed.
  • the hole blocking layer preferably contains a carbazole derivative, a carboline derivative, or a diazacarbazole derivative (in which any one of carbon atoms constituting the carboline ring of the carboline derivative is replaced with a nitrogen atom).
  • the light emitting layer whose emission maximum wavelength is the shortest is the closest to the anode among all the light emitting layers.
  • a hole blocking layer is additionally provided between the shortest wave layer and the light emitting layer next to the anode next to the shortest wave layer.
  • 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.
  • the ionization potential is defined by the energy required to emit electrons at the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and can be obtained by, for example, the following method.
  • a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. or a method known as ultraviolet photoelectron spectroscopy can be suitably used.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved.
  • the structure of the hole transport layer described later can be used as an electron blocking layer as necessary.
  • the film thickness of the hole blocking layer and the electron blocking layer is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer and the electron blocking layer also have the function of a hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminoph
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • JP-A-11-251067 J. Org. Huang et. al.
  • a so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used.
  • these materials are preferably used because a light-emitting element with higher efficiency can be obtained.
  • the hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • This hole transport layer may have a single layer structure composed of one or more of the above materials.
  • a hole transport layer having a high p property doped with impurities examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • a hole transport layer having such a high p property because a device with lower power consumption can be produced.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material also serving as a hole blocking material used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode.
  • any material can be selected and used from among conventionally known compounds. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives Thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
  • the electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • an electron transport layer having a high n property doped with impurities examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • anode As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode substances include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • the anode may be formed by depositing a thin film of these electrode materials by vapor deposition or sputtering, and a pattern having a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 ⁇ m or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • a wet film forming method such as a printing method or a coating method can be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture
  • a magnesium / aluminum mixture a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is advantageously improved.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a thickness of 1 nm to 20 nm on the cathode, and applying this.
  • an element in which both the anode and the cathode are transmissive can be manufactured.
  • a support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. May be opaque. When light is taken out from the supporting substrate side is preferably the supporting substrate is transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Polyetherimide, polyether ketone imide, polyamide, fluorine resin, nylon, polymethyl methacrylate, acrylic or polyarylates, and cycloolefin resins such as ARTON (manufactured by JSR)
  • an inorganic film, an organic film, or a hybrid film of both may be formed, and the water vapor permeability (temperature 25 ⁇ 0.5) measured by a method according to JIS K 7129-1992.
  • C., relative humidity 90 ⁇ 2% RH is preferably 0.01 g / (m 2 ⁇ 24 h) or less, and the oxygen permeability measured by a method according to JIS K 7126-1987.
  • Is preferably a high-barrier film having a water vapor transmission rate of 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less and 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less.
  • the material for forming the barrier film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization A plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the external extraction quantum efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • the ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
  • the organic EL device of the present invention is preferably sealed by sealing with a sealing member in order to seal the anode, the cathode, and the layer between the cathode and the anode from the outside air.
  • sealing means used in the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive.
  • the sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the element can be thinned.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and a method according to JIS K 7129-1992. It is preferable that the water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured in (1) is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • Application of the adhesive to the sealing portion may be performed using a commercially available dispenser or may be printed like screen printing.
  • an inorganic or organic layer on the outer side of the electrode on the side facing the support substrate with the organic layer interposed therebetween, and form an inorganic or organic layer in contact with the support substrate to form a sealing film. it can.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • a laminated structure of these inorganic layers and layers made of organic materials it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials.
  • the method of forming these films There are no particular limitations on the method of forming these films. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • a vacuum can also be used.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, and the like used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • the organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.
  • a method of improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate and preventing total reflection at the transparent substrate and the air interface (US Pat. No. 4,774,435), A method for improving efficiency by giving light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on the side surface of an element (Japanese Patent Laid-Open No. 1-220394), and light emission from the substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No.
  • these methods can be used in combination with the organic EL device of the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction.
  • Bragg diffraction such as first-order diffraction and second-order diffraction.
  • light that cannot be emitted due to total reflection between layers, etc. is diffracted by introducing a diffraction grating into any layer or medium (inside a transparent substrate or transparent electrode), and the light is removed. I want to take it out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much.
  • the refractive index distribution a two-dimensional distribution
  • the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any interlayer or medium (in the transparent substrate or in the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL device of the present invention is processed on the light extraction side of the substrate so as to provide, for example, a microlens array structure, or combined with a so-called condensing sheet, for example, with respect to a specific direction, for example, the device light emitting surface.
  • a specific direction for example, the device light emitting surface.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 ⁇ m to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device.
  • a sheet for example, Sumitomo 3M brightness enhancement film (BEF) can be used.
  • BEF Sumitomo 3M brightness enhancement film
  • the base material may be formed by forming a ⁇ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • a desired electrode material for example, a thin film made of an anode material is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably 10 nm to 200 nm. .
  • organic compound thin films such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are organic EL element materials, are formed thereon.
  • Methods for forming these layers include the vapor deposition method and the wet process (spin coating method, casting method, ink jet method, printing method, etc.) as described above, but it is easy to obtain a uniform film and pinholes are generated. In view of difficulty, etc., film formation by vapor deposition, spin coating, ink jet, or printing is preferred in the present invention.
  • a different film forming method may be applied for each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 ° C. to 450 ° C., a vacuum degree of 10 ⁇ 6 Pa to 10 ⁇ 2 Pa, and a vapor deposition rate of 0 It is desirable to select appropriately within a range of 0.01 nm / second to 50 nm / second, a substrate temperature of ⁇ 50 ° C. to 300 ° C., and a film thickness of 0.1 ⁇ m to 5 ⁇ m.
  • examples of the liquid medium for dissolving or dispersing the organic EL material according to the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate and butyl acetate, and dichlorobenzene.
  • Halogenated hydrocarbons such as toluene, xylene, mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as DMF and DMSO can be used.
  • a dispersion method it can disperse
  • the light emitting layer is preferably a layer formed using a coating solution containing the compound A according to the present invention.
  • a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 nm to 200 nm, and a cathode is provided.
  • a desired organic EL element can be obtained.
  • the organic EL device is manufactured from the hole injection layer to the cathode consistently by a single vacuum, it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • lighting devices home lighting, interior lighting
  • clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light
  • the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned, and a conventionally known method may be used in the fabrication of the element. it can.
  • the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total CS-1000 (manufactured by Konica Minolta Sensing) is applied to the CIE chromaticity coordinates.
  • the display device of the present invention will be described.
  • the display device of the present invention has the organic EL element.
  • the display device of the present invention may be single color or multicolor, but here, the multicolor display device will be described.
  • a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, or the like.
  • the method is not limited, but is preferably a vapor deposition method, an inkjet method, or a printing method. In the case of using a vapor deposition method, patterning using a shadow mask is preferable.
  • the alternating current waveform to be applied may be arbitrary.
  • the multicolor display device can be used as a display device, a display, and various light sources.
  • a display device or display full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
  • Display devices and displays include televisions, personal computers, mobile devices, AV devices, teletext displays, information displays in automobiles, and the like. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
  • Light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. For example, it is not limited to this.
  • the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a display for directly viewing a still image or a moving image. It may be used as a device (display).
  • the drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside, and the pixels for each scanning line respond to the image data signal by the scanning signal.
  • the image information is sequentially emitted to scan the image and display the image information on the display unit A.
  • FIG. 2 is a schematic diagram of the display unit A.
  • the display unit A has a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 on the substrate.
  • the main members of the display unit A will be described below.
  • the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated). Not)
  • the pixel 3 When the scanning signal is applied from the scanning line 5, the pixel 3 receives the image data signal from the data line 6 and emits light according to the received image data.
  • a full color display can be achieved by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 3 is a schematic diagram of a pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • a full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6.
  • a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the power supply line 7 connects to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
  • the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 maintains the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the light emission of the organic EL element 10 is performed by providing the switching transistor 11 and the drive transistor 12 which are active elements with respect to the organic EL element 10 of each of the plurality of pixels, and the light emission of the organic EL element 10 of each of the plurality of pixels 3. It is carried out.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good.
  • the potential of the capacitor 13 may be maintained until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • the present invention not only the active matrix method described above, but also a passive matrix light emission drive in which an organic EL element emits light according to a data signal only when a scanning signal is scanned.
  • FIG. 4 is a schematic view of a passive matrix display device.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
  • the organic EL material of the present invention can be applied to an organic EL element that emits substantially white light as a lighting device.
  • a plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing.
  • the combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or two using the relationship of complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
  • a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and light from the light emitting material as excitation light. Any of those combined with a dye material that emits light may be used, but in the white organic EL device according to the present invention, only a combination of a plurality of light-emitting dopants may be mixed.
  • an electrode film can be formed by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is also improved. According to this method, unlike a white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
  • the light emitting material used for the light emitting layer is not particularly limited.
  • the metal complex according to the present invention is adapted so as to conform to a wavelength range corresponding to CF (color filter) characteristics.
  • CF color filter
  • the white light emitting organic EL element according to the present invention is used as a kind of lamp such as household illumination, interior lighting, and exposure light source as various light emitting light sources and lighting devices in addition to the display device and display. It is also useful for display devices such as backlights for liquid crystal display devices.
  • Example 1 Measurement of 0-0 transition band >> The 0-0 transition band of the emission spectrum of the compound of the present invention was measured at 77K and 300K. The 0-0 transition band of the emission spectrum was determined by the following measurement method.
  • any solvent that can dissolve the compound may be used (substantially, since the solvent effect of the emission wavelength is negligible in the above measurement method, the change in the measured value is almost zero. can not see).
  • the 0-0 transition band is obtained.
  • the emission maximum wavelength that appears on the shortest wavelength side in the spectrum chart obtained by the above measurement method is defined as the 0-0 transition band. .
  • the emission spectrum is measured at 300K, and the difference between the 0-0 transition band and the 0-0 transition band when measured at 77K is taken.
  • a quartz substrate of 100 mm ⁇ 100 mm ⁇ 1.1 mm was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • the quartz substrate was fixed to a substrate holder of a vacuum deposition apparatus available on the market, whereas, the H-1 was placed 200mg as a host compound to molybdenum resistance heating boat, put 100mg Comparative Compound 1 in a third resistive heating molybdenum boat, vacuum Attached to the vapor deposition equipment.
  • the pressure in the vacuum chamber was reduced to 4 ⁇ 10 ⁇ 4 Pa, and then the heating boat containing H-1 and Comparative Compound 1 was energized and heated, and the deposition rates were 0.2 nm / second and 0.018 nm / second, respectively. Then, a 40 nm-thick luminescent layer was provided by co-evaporation on the quartz substrate. In addition, the substrate temperature at the time of vapor deposition was room temperature.
  • an epoxy-based photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material using a 300 ⁇ m-thick sealing glass as a sealing substrate. Then, this was superimposed on the above quartz substrate, irradiated with UV light, cured, sealed, and an illumination device was produced and evaluated.
  • Organic EL elements 1-2 to 1-11 were respectively prepared in the same manner as in the production of the organic EL element 1-1 except that the comparative compound 1 as the light-emitting dopant was changed to the compounds shown in Table 1.
  • the organic EL elements 1-2 to 1-11 were evaluated with the peak area obtained with the organic EL element 1-1 (Comparative Compound 1) being 1. A large area indicates that the luminous efficiency is high.
  • Table 1 shows that, as in the compound of the present invention, a compound having a 0-0 transition band difference between 77K and 300K of 0 nm or more and 5 nm or less has higher luminous efficiency than the comparative compound.
  • Example 2 Preparation of organic EL element 2-1 >> Transparent support provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm ⁇ 100 mm ⁇ 1.1 mm as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • a substrate NH45 manufactured by NH Techno Glass Co., Ltd.
  • ITO indium tin oxide
  • This transparent support substrate was fixed to a substrate holder of a vacuum deposition apparatus available on the market, whereas, placed 200mg of alpha-NPD to molybdenum resistance heating boat, the H-1 was placed 200mg as a host compound in a third resistive heating molybdenum boat, 200mg placed BAlq in a third resistive heating molybdenum boat, comparison in a third resistive heating molybdenum boat compound 1 (Ir-12) was placed 100mg, further Alq 3 was placed 200mg in a third resistive heating molybdenum boat, vacuum deposition Attached to the device.
  • the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, heated by energizing the heating boat containing ⁇ -NPD, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second.
  • the hole transport layer was provided.
  • the heating boat containing H-1 and Comparative Compound 1 (Ir-12) was energized and heated, and both were deposited on the hole transport layer at a deposition rate of 0.2 nm / second and 0.012 nm / second, respectively. Evaporation was performed to provide a light emitting layer with a thickness of 40 nm.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • the heating boat containing BAlq was energized and heated, and deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 10 nm thick hole blocking layer.
  • the heating boat containing Alq 3 is further energized and heated, and deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to further provide an electron transport layer having a thickness of 40 nm. It was.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • lithium fluoride 0.5 nm and aluminum 110 nm were vapor-deposited to form a cathode, and an organic EL element 2-1 was produced.
  • each organic EL element after fabrication is covered with a glass case, a 300 ⁇ m thick glass substrate is used as a sealing substrate, and an epoxy photo-curing adhesive (LUX The track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, and sealed, as shown in FIGS.
  • the lighting device 2-1 was formed and evaluated.
  • FIG. 5 shows a schematic diagram of the lighting device, in which the organic EL element 101 is covered with a glass cover 102 (note that the sealing operation with the glass cover is performed without bringing the organic EL element 101 into contact with the atmosphere. (It was performed in a glove box under an atmosphere (under an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more)).
  • FIG. 6 shows a cross-sectional view of the lighting device.
  • 105 denotes a cathode
  • 106 denotes an organic EL layer
  • 107 denotes a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • organic EL elements 2-2 to 2-36 were produced in the same manner except that the host compound and the light emitting dopant were changed as shown in Table 2.
  • corresponding lighting devices 2-2 to 2-36 were produced from the organic EL elements 2-2 to 2-36 in the same manner as the lighting device 2-1.
  • Luminescent efficiency also called external extraction quantum efficiency
  • a spectral radiance meter CS-1000 manufactured by Konica Minolta Sensing was used in the same manner.
  • the measurement results of the external extraction quantum efficiency in Table 2 are expressed as relative values when the measurement value of the illumination device 2-1 using the organic EL element 2-1 is 100.
  • Each lighting device is driven at a constant current with a current that gives an initial luminance of 1000 cd / m 2 under a constant condition of 50 ° C., and a time that is 1 ⁇ 2 (500 cd / m 2 ) of the initial luminance is obtained.
  • the 50 ° C. driving life is expressed as a relative value when the comparative illumination device 2-1 is 100.
  • Illumination device 2-1 (comparative example) is taken as 100, and each is shown as a relative value.
  • Drive voltage (relative value) (drive voltage of each illumination device / drive voltage of illumination device 2-1 (comparative example)) ⁇ 100 A smaller value indicates a lower drive voltage for comparison.
  • the lighting device of the present invention has a low driving voltage, high luminous efficiency, small deterioration at high temperature, and reduced dark spot generation compared to the comparative lighting device. It is.
  • the difference in the 0-0 transition band of the luminescent dopant used in Table 2 between 77K and 300K was 0 nm or more and 5 nm or less.
  • Example 3 Preparation of organic EL element 3-1 >> Patterning was performed on a substrate (NA-45, manufactured by AvanStrate Co., Ltd.) in which ITO (indium tin oxide) was formed to a thickness of 100 nm on a glass substrate of 100 mm ⁇ 100 mm ⁇ 1.1 mm as an anode. Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • a substrate NA-45, manufactured by AvanStrate Co., Ltd.
  • ITO indium tin oxide
  • a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water is spin-coated. After that, the film was dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 30 nm.
  • a hole transport material Poly N, N′-bis (4-butylphenyl) -N, N′-bis (phenyl)) benzidine (manufactured by American Dye Source, ADS- 254) was formed into a film by spin coating. It heat-dried at 150 degreeC for 1 hour, and provided the 2nd hole transport layer with a film thickness of 40 nm.
  • a butyl acetate solution of the host compound H-1 and the comparative compound 1 as a luminescent dopant was formed by spin coating, dried by heating at 120 ° C. for 1 hour, and emitted light having a thickness of 40 nm. A layer was provided.
  • a 1-butanol solution of the electron transport material OC-18 was formed by spin coating to provide an insolubilized electron transport layer having a thickness of 20 nm.
  • CS-1000 manufactured by Konica Minolta Sensing
  • the external extraction quantum efficiency is expressed as a relative value where the illumination device 3-1 is 100.
  • initial deterioration (Initial deterioration) According to the measurement method shown below, initial deterioration was evaluated and used as an index of durability. When the half-life was measured, the time required for the luminance to reach 90% was measured and used as a measure of initial deterioration. The initial deterioration was 100 for the comparative lighting device 3-1. The initial deterioration was calculated based on the following formula.
  • Initial degradation (luminance 90% arrival time of lighting device 3-1) / (luminance 90% arrival time of each element) ⁇ 100 That is, the smaller the initial deterioration value, the smaller the initial deterioration.
  • the coating solution used for forming the light emitting layer (a solution in which a mixture of H-1 (60 mg) and comparative compound 1 (3.0 mg) was dissolved in 12 ml of butyl acetate) was obtained at room temperature. After being left for 1 hour, the presence or absence of precipitation was confirmed, and the stagnation stability of the coating solution was evaluated and used as an index of the effect of preventing dark spots.
  • the illumination device of the present invention has higher luminous efficiency, less degradation at high temperatures, and less dark spots, compared to the comparative illumination device.
  • the difference in the 0-0 transition band of the luminescent dopant used in Table 3 between 77K and 300K was 0 nm or more and 5 nm or less.
  • Example 4 Production of display device >> (Production of blue light emitting element)
  • the organic EL element 2-7 of Example 2 was used as a blue light emitting element.
  • a green light emitting device was produced in the same manner as in the organic EL device 2-1 of Example 2, except that the comparative compound 1 was changed to Ir-1, and this was used as a green light emitting device.
  • a red light emitting device was produced in the same manner as in the organic EL device 2-1 of Example 2, except that the comparative compound 1 was changed to Ir-9, and this was used as a red light emitting device.
  • the red, green, and blue light emitting organic EL elements produced above were juxtaposed on the same substrate to produce an active matrix type full color display device having a configuration as shown in FIG. In FIG. 2, only the schematic diagram of the display part A of the produced display device is shown.
  • a plurality of pixels 3 (light emission color is a red region pixel, a green region pixel, a blue region pixel, etc.) juxtaposed with a wiring portion including a plurality of scanning lines 5 and data lines 6 on the same substrate.
  • the scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions.
  • the plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is applied from a scanning line 5.
  • the image data signal is received from the data line 6 and light is emitted according to the received image data. In this way, a full color display device was produced by appropriately juxtaposing red, green, and blue pixels.
  • the difference in emission maximum wavelength on the shortest wavelength side of the emission spectrum measured at 77K and 300K of the blue emission dopant (Compound Example 1) used here was 0 nm or more and 5 nm or less.
  • the organic electroluminescence device of the present invention has a low driving voltage, high luminous efficiency, excellent durability, excellent dark spot generation preventing effect, and can be suitably used for lighting devices and display devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明の課題は、低駆動電圧であり発光効率が高く、耐久性に優れ、ダークスポット発生防止効果に優れる有機エレクトロルミネッセンス素子を提供することである。また、該有機エレクトロルミネッセンス素子を備えた照明装置及び表示装置を提供することである。本発明の有機エレクトロルミネッセンス素子は、陽極、陰極及び発光層を有する有機エレクトロルミネッセンス素子であって、300Kで測定した場合の発光スペクトルの、最短波長側の発光極大波長と、77Kで測定した場合の発光スペクトルの、最短波長側の発光極大波長との差が、0nm以上5nm以下である化合物Aを含有する層を有することを特徴とする。

Description

有機エレクトロルミネッセンス素子、照明装置及び表示装置
 本発明は、有機エレクトロルミネッセンス素子、照明装置及び表示装置に関し、更に詳しくは、有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子に好ましく用いることのできる化合物に関する。
 従来、発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(ELD)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)が挙げられる。無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。
 一方、有機EL素子は、発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用して発光する素子であり、数V~数十V程度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。
 実用化に向けた有機EL素子の開発としては、例えば、プリンストン大より、M.A.Baldo et al.,nature、395巻、151~154ページ(1998年)に記載のように、励起三重項からのリン光発光を用いる有機EL素子の報告がされ、以来、米国特許第6,097,147号明細書、M.A.Baldo et al.,nature、403巻、17号、750~753頁(2000年)などに記載のように、室温でリン光を示す材料の研究が活発になってきている。
 更に、最近発見されたリン光発光を利用する有機EL素子では、以前の蛍光発光を利用する素子に比べ原理的に約4倍の発光効率が実現可能であることから、その材料開発を初めとし、発光素子の層構成や電極の研究開発が世界中で行われている。
 例えば多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検討がなされており例えば、S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304頁(2001年)に記載のように、有機エレクトロルミネッセンス素子(有機EL素子ともいう)の発光層に使用されている。
 このように大変ポテンシャルの高い方式であるが、リン光発光を利用する有機ELデバイスにおいては、発光中心の位置をコントロールする方法、とりわけ発光層の内部で再結合を行い、いかに発光を安定に行わせることができるかと共に、リン光発光性化合物自身の発光性をいかに向上させるが、素子の効率・寿命の面から、重要な技術的な課題となっている。
 リン光発光性化合物の発光性を向上させるには、最低励起三重項(T1)から基底状態(S0)に失活する際の(1)輻射速度定数(kr)を大きくする(2)無輻射速度定数(knr)を小さくする、の二つのアプローチが考えられる。
 無輻射速度定数(knr)を小さくする具体的な手段として、リン光発光性化合物の配位子の構造を立体的に制御し、基底状態と励起状態の構造変化をより小さくさせる手法が考えられる。
 代表的なリン光発光性化合物であるイリジウム錯体では、例えば、特開2002-332291号公報、特開2005-23071号公報、特開2002-23072号公報などに記載のように、ジベンゾフランとピリジンで組み合わされた配位子で立体構造を制御した例が挙げられる。
 フェニルピラゾール誘導体(特許文献1、5参照)、フェニルイミダゾール誘導体(特許文献2、3参照)、配位子にカルベン部分を含む誘導体(特許文献4、非特許文献1)から錯形成されるイリジウム錯体でも同様な応用例が挙げられる。
 白金錯体では、配位子のベンゼン環上に、さらにπ共役を拡張させた配位子を有する錯体が合成されている(非特許文献2)。
 しかしながら、高発光効率、低駆動電圧であり、耐熱性、生保存性に優れ、なおかつ、長寿命である有機EL素子を提供するという観点からは、いまだに不十分であり、更なる解決方法が模索されている。
国際公開第2004/085450号パンフレット 国際公開第2009/060757号パンフレット 特開2010-135467号公報 国際公開第2009/003898号パンフレット 特開2010-254642号公報
笹部久宏ら.,Advanced Materials., 22巻、5003~5007頁(2010年) 櫻井芳昭ら,第71回応用物理学会学術講演会(2010年秋、長崎大学、17p-ZK-5)
 本発明の課題は、低駆動電圧であり発光効率が高く、耐久性に優れ、ダークスポット発生防止効果に優れる有機エレクトロルミネッセンス素子を提供することである。また、該有機エレクトロルミネッセンス素子を備えた照明装置及び表示装置を提供することである。
 本発明の上記目的は、以下の手段により達成することができる。
 1.陽極、陰極及び発光層を有する有機エレクトロルミネッセンス素子であって、300Kで測定した場合の発光スペクトルの、最短波長側の発光極大波長と、77Kで測定した場合の発光スペクトルの、最短波長側の発光極大波長との差が、0nm以上5nm以下である化合物Aを含有する層を有することを特徴とする有機エレクトロルミネッセンス素子。
 2.前記化合物Aを含有する層が、前記発光層であることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。
 3.前記化合物Aが、リン光発光性化合物であることを特徴とする前記1又は2に記載の有機エレクトロルミネッセンス素子。
 4.前記化合物Aが、下記一般式(1)で表される化合物であることを特徴とする前記1から3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000008
〔式中、C10及びC11は炭素原子を表す。A1及びA2は窒素原子、又は、CRaを表す。Raは水素原子、又は、置換基を表す。P1は酸素原子、窒素原子、又は、硫黄原子を表す。P2、P3及びP4は、各々CRb、C(RcRd)、窒素原子、NRe、Si(RfRg)、酸素原子又は硫黄原子を表す。Rb、Rc、Rd、Re、Rf及びRgは、各々水素原子、又は、置換基を表す。また、Rb、Rc、Rd及びReは、各々互いに結合して環を形成することはない。
 A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。kは0、又は、1の整数を表す。B1~B5は、各々炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表すが、少なくとも一つは窒素原子を表し、これら5つの原子により五員の芳香族含窒素複素環が形成される。R0は水素原子、又は、置換基を表す。X1-L1-X2は2座の配位子を表し、X1及びX2は各々独立に炭素原子、窒素原子又は酸素原子を表す。C11とP4、C11とP3、P4とP3、P3とP2、P2とP1及びP1とC10の間の結合は、単結合、又は、二重結合を表す。L1はX1及びX2と共に2座の配位子を形成する原子群を表す。nは1から3の整数を表す。mは、(3-n)の整数を表す。Mは元素周期表における8族~10族の遷移金属元素を表す。〕
 5.前記一般式(1)で表される化合物が、下記一般式(2)で表される化合物であることを特徴とする前記4に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000009
〔式中、A1及びA2は各々窒素原子、又は、CRaを表す。
 Raは、水素原子、又は、置換基を表す。
 D1、D2及びD3は、CRb又は窒素原子を表す。
 Rbは、水素原子、又は、置換基を表す。また、Rbは互いに結合して環を形成することはない。
 A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。B1~B5は、各々炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表し、B1~B5の少なくとも一つは窒素原子である。R0は水素原子、又は、置換基を表す。
 X1-L1-X2は2座の配位子を表し、X1及びX2は各々独立に炭素原子、窒素原子又は酸素原子を表す。L1はX1及びX2と共に2座の配位子を形成する原子群を表す。nは1から3の整数を表す。mは、(3-n)の整数を表す。Mは元素周期表における8族~10族の遷移金属元素を表す。〕
 6.前記一般式(1)で表される化合物が、下記一般式(3)で表される化合物であることを特徴とする前記4に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000010
〔式中、A1及びA2は、各々窒素原子、又は、CRaを表す。
 Raは水素原子、又は、置換基を表す。
 R61、R62及びR63は水素原子、又は、置換基を表す。A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。R61、R62及びR63は互いに結合して環を形成することはない。
 B1~B5は、各々炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表し、B1~B5の少なくとも一つは窒素原子である。R0は水素原子、又は、置換基を表す。
 X1-L1-X2は2座の配位子を表し、X1及びX2は各々独立に炭素原子、窒素原子又は酸素原子を表す。L1はX1及びX2と共に2座の配位子を形成する原子群を表す。nは1から3の整数を表す。mは、(3-n)の整数を表す。Mは元素周期表における8族~10族の遷移金属元素を表す。〕
 7.前記一般式(1)で表される化合物が、下記一般式(4)で表される化合物であることを特徴とする前記4に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000011
〔式中、A1及びA2は窒素原子、又は、CRaを表す。
 Raは水素原子、又は、置換基を表す。
 Z0は酸素原子、又は、硫黄原子を表す。
 Z1、Z2及びZ3は、各々C(RcRd)、NRe、Si(RfRg)、酸素原子又は硫黄原子を表す。
 Rc、Rd、Re、Rf及びRgは水素原子、又は、置換基を表す。また、Rc、Rd及びReは互いに結合して環を形成することはない。
 A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。
 B1~B5は、各々炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表し、B1~B5の少なくとも一つは窒素原子である。R0は水素原子、又は、置換基を表す。
 X1-L1-2は2座の配位子を表し、X1及びX2は各々独立に炭素原子、窒素原子又は酸素原子を表す。
 L1はX1及びX2と共に2座の配位子を形成する原子群を表す。nは1から3の整数を表す。mは、(3-n)の整数を表す。
 Mは元素周期表における8族~10族の遷移金属元素を表す。〕
 8.前記一般式(1)で表される化合物が、下記一般式(5)で表される化合物であることを特徴とする前記4に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000012
〔式中、A1及びA2は窒素原子、又は、CRaを表す。Raは水素原子、又は、置換基を表す。
 Y1は酸素原子、硫黄原子、C(RcRd)、NRe、又は、Si(RfRg)を表す。
 Rc、Rd、Re、Rf及びRgは、各々水素原子、又は、置換基を表す。
 R71は水素原子、又は、置換基を表す。また、R71、Rc及びRdは互いに結合して環を形成することはない。
 A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。
 B1~B5は、各々炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表し、B1~B5の少なくとも一つは窒素原子である。R0は水素原子、又は、置換基を表す。
 X1-L1-X2は2座の配位子を表し、X1及びX2は各々独立に炭素原子、窒素原子又は酸素原子を表す。
 L1はX1及びX2と共に2座の配位子を形成する原子群を表す。nは1から3の整数を表す。mは、(3-n)の整数を表す。
 Mは元素周期表における8族~10族の遷移金属元素を表す。〕
 9.前記一般式(1)で表される化合物が、下記一般式(6)で表される化合物であることを特徴とする前記4に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000013
〔式中、A1及びA2は窒素原子、又は、CRaを表す。
 Raは水素原子、又は、置換基を表す。
 Y2は窒素原子、又は、CRbを表す。
 Rbは水素原子、又は、置換基を表す。
 Y3は酸素原子、又は、硫黄原子を表す。
 R81は水素原子、又は、置換基を表す。また、R81、Rbは互いに結合して環を形成することはない。
 A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。
 B1~B5は、各々炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表し、B1~B5の少なくとも一つは窒素原子である。R0は水素原子、又は、置換基を表す。
 X1-L1-X2は2座の配位子を表し、X1及びX2は各々独立に炭素原子、窒素原子又は酸素原子を表す。
 L1はX1及びX2と共に2座の配位子を形成する原子群を表す。nは1から3の整数を表す。mは、(3-n)の整数を表す。
 Mは元素周期表における8族~10族の遷移金属元素を表す。〕
 10.前記一般式(1)で表される化合物が、下記一般式(7)で表される化合物であることを特徴とする前記4に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000014
〔式中、A1及びA2は窒素原子、又は、CRaを表す。
 Raは水素原子、又は、置換基を表す。Y4は酸素原子、又は、硫黄原子を表す。
 Y5及びY6はC(RcRd)、NRe、Si(RfRg)、酸素原子又は硫黄原子を表す。
 Rc、Rd、Re、Rf及びRgは水素原子、又は、置換基を表す。また、Rc、Rd及びReは互いに結合して環を形成することはない。
 A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。
 B1~B5は、各々炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表し、B1~B5の少なくとも一つは窒素原子である。R0は水素原子、又は、置換基を表す。
 X1-L1-X2は2座の配位子を表し、X1及びX2は各々独立に炭素原子、窒素原子又は酸素原子を表す。L1はX1及びX2と共に2座の配位子を形成する原子群を表す。nは1から3の整数を表す。mは、(3-n)の整数を表す。Mは元素周期表における8族~10族の遷移金属元素を表す。〕
 11.前記B1~B5で構成される環が、イミダゾール環又はピラゾール環であることを特徴とする前記4から10のいずれか1項に記載の有機エレクトロルミネッセンス素子。
 12.前記発光層が、前記化合物Aを含有する塗布液を用いて形成された層であることを特徴とする前記1から11のいずれか1項に記載の有機エレクトロルミネッセンス素子。
 13.前記発光層が、白色に発光することを特徴とする前記1から12のいずれか1項に記載の有機エレクトロルミネッセンス素子。
 14.前記1から13のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。
 15.前記1から13のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。
 本発明の上記手段により、低駆動電圧であり発光効率が高く、耐久性に優れ、ダークスポット発生防止効果に優れる有機エレクトロルミネッセンス素子を提供することができる。また、該有機エレクトロルミネッセンス素子を備えた照明装置及び表示装置を提供することができる。
有機EL素子から構成される表示装置の一例を示した模式図である。 表示部Aの模式図である。 画素の模式図である。 パッシブマトリクス方式フルカラー表示装置の模式図である。 照明装置の概略図である。 照明装置の模式図である。
 本発明の有機エレクトロルミネッセンス素子は、陽極、陰極及び発光層を有する有機エレクトロルミネッセンス素子(以下有機EL素子とも称する)であって、300Kで測定した場合の発光スペクトルの、最短波長側の発光極大波長と、77Kで測定した場合の発光スペクトルの、最短波長側の発光極大波長との差が、0nm以上5nm以下である化合物Aを含有する層を有することを特徴とする。
 本発明では、特に上記化合物Aを含有する層を設けることで、低駆動電圧であり発光効率が高く、耐久性に優れ、ダークスポット発生防止効果に優れる有機EL素子が得られる。
 本発明に係る、化合物Aが上記本発明の効果を奏する理由は、明確ではないが、以下のように推測される。
 本発明者らは従来の金属錯体の問題点のひとつとして、リン光発光性化合物が発光する際に、その分子構造が、基底状態(S0)と励起三重項(T1)状態で大きく変化することにより、無輻射失活が大きくなり、実用に耐えるような、素子寿命や高発光効率が得られていないのではないかと推定し、問題点について鋭意検討した。
 その結果、化合物Aである金属錯体を導入することにより、素子寿命が改善され、且つ、発光効率の上昇が見られることを見いだした。
 リン光発光性化合物が金属錯体で表される場合、その配位子は異なる二つの環から構成される場合が多いが、環の置換基として、芳香族炭化水素環基や芳香族複素環基が連結している場合(下記図でいえば、B環の置換基としてA0)、この環と置換基の連結部分の回転角(φ1)が、S0とT1で最も構造変化の大きな部位となることが分かってきた。この構造変化は、77Kで測定した発光スペクトルと、300Kで測定した発光スペクトルの0-0遷移バンドの差に反映されることが分かってきた。
 もう一方の環の置換基(下記図でいえば、A環の置換基としてP1)を適度に立体的に嵩高くすることで、励起に伴う回転角の変化が抑制され分子構造がリジッドになり、knrが低下することが本発明の効果をもたらしていると推定している。
 ただし、P1が大きすぎると、φ2が大きくなることにより錯体が形成しにくくなり、形成されたとしても不安定なものである。
 置換基P1は環を形成する(下記図でいえばA環とP1を結ぶ点線)とその効果がさらに大きくなることが分かった。77Kで測定した発光スペクトルと、300Kで測定した発光スペクトルの0-0遷移バンドの差が0nm以上5nm以下になるような化合物を用いた有機EL素子では、S0とT1の構造変化が非常に小さくなると推定され、本発明の効果が発現できることが分かってきた。この差が5nmより大きくなると、構造変化が大きくなることに伴いknrが大きくなることで、効率や安定性の低下につながると推定される。
Figure JPOXMLDOC01-appb-C000015
 (化合物A)
 化合物Aは、300Kで測定した場合の発光スペクトルの、最短波長側の発光極大波長と、77Kで測定した場合の発光スペクトルの、最短波長側の発光極大波長との差が、0nm以上5nm以下である化合物である。
 ここで、当該発光極大波長は、発光スペクトルにおいて、0-0遷移に帰属される発光帯(0-0遷移バンドともいう。)のピーク波長に相当する。上記0-0遷移バンドは、以下の測定方法により求められる、発光スペクトルチャートの中で、最も短波長に現れる発光極大波長である。
 《発光スペクトルの0-0遷移バンド測定方法》
 測定する化合物を、窒素バブリング等でよく脱酸素された2-メチルテトラヒドロフランに溶かし、測定用セルに入れた後液体窒素温度77Kで励起光を照射し、励起光照射後の発光スペクトルを測定する。
 また、上記溶剤系で溶解できない化合物については、その化合物を溶解しうる任意の溶剤を使用してもよい(実質上、上記測定法では発光波長の溶媒効果はごく僅かなので問題ない)。
 次に、0-0遷移バンドの求め方であるが、本発明においては、上記測定法で得られたリン光スペクトルチャートのなかで最も短波長側に現れる発光極大波長をもって0-0遷移バンドと定義する。
 さらに上記発光スペクトルを300Kで測定し、その0-0遷移バンドと、77Kで測定した場合の0-0遷移バンドの差をとる。
 化合物Aは、上記0-0遷移バンドの差の値を有するが、具体的化合物としては、一般式(1)で表される化合物が典型的に挙げられる。
 (一般式(1)で表される化合物)
 以下、一般式(1)で表される化合物について説明する。
 一般式(1)中、C10、C11は炭素原子を表す。A1、A2は窒素原子、又は、CRaを表す。Raは水素原子、又は、置換基を表す。P1は酸素原子、窒素原子、又は、硫黄原子を表す。P2、P3、P4はCRb、C(RcRd)、窒素原子、NRe、Si(RfRg)、酸素原子又は硫黄原子を表す。Rb、Rc、Rd、Re、Rf、Rgは水素原子、又は、置換基を表す。
 また、一般式(1)において、Rb、Rc、Rd、Reは互いに結合して環を形成することはない。A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。kは0、又は、1の整数を表す。B1~B5は炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表すが、少なくとも一つは窒素原子を表し、これら5つの原子により五員の芳香族含窒素複素環が形成される。R0は水素原子、又は、置換基を表す。X1-L1-X2は2座の配位子を表し、X1、X2は各々独立に炭素原子、窒素原子又は酸素原子を表す。C11とP4、C11とP3、P4とP3、P3とP2、P2とP1、P1とC10の間の結合は、単結合、又は、二重結合を表す。L1はX1、X2と共に2座の配位子を形成する原子群を表す。Mは元素周期表における8族~10族の遷移金属元素を表す。
 一般式(1)において、Ra、Rb、Rc、Rd、Re、Rf、Rg、R0が置換基を表す場合、その置換基としてはアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭化水素基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ジフェニルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。好ましくは、アルキル基、芳香族炭化水素環基、芳香族複素環基、アルコキシ基が挙げられる。
 また、これらの置換基は上記の置換基によって更に置換されていてもよい。
 一般式(1)において、Ra、Rb、Rc、Rd、Re、Rf、Rg、R0が置換基を表す場合、好ましい置換基の例としては、アルキル基、芳香族炭化水素環基、芳香族複素環基、アルコキシ基、アミノ基が挙げられる。
 一般式(1)中、A0は芳香族炭化水素環基、又は、芳香族複素環基を表す。芳香族炭化水素環基としては、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が挙げられる。芳香族複素環基としては、例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)が挙げられる。
 A0は置換基を有する場合が好ましく、好ましい置換基としては、アルキル基、芳香族炭化水素環基、芳香族複素環基、アルコキシ基が挙げられる。好ましくは、芳香族炭化水素環基である。
 一般式(2)中、A1、A2は窒素原子、又は、CRaを表す。Raは水素原子、又は、置換基を表す。D1、D2、D3はCRb、窒素原子を表す。Rbは水素原子、又は、置換基を表す。A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。B1~B5は炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表し、B1~B5の少なくとも一つは窒素原子である。X1-L1-X2は2座の配位子を表し、X1、X2は各々独立に炭素原子、窒素原子又は酸素原子を表す。L1はX1、X2と共に2座の配位子を形成する原子群を表す。Mは元素周期表における8族~10族の遷移金属元素を表す。
 一般式(2)において、Ra、Rb、R0が置換基を表す場合、一般式(1)におけるRa、Rb、R0と同義である。また、Rbは互いに結合して環を形成することはない。
 一般式(2)において、A0が芳香族炭化水素環基、又は、芳香族複素環基を表す場合、一般式(1)におけるA0と同義である。
 一般式(3)中、A1、A2は窒素原子、又は、CRaを表す。Raは水素原子、又は、置換基を表す。R61、R62、R63は水素原子、又は、置換基を表す。A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。B1~B5は炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表し、B1~B5の少なくとも一つは窒素原子である。X1-L1-X2は2座の配位子を表し、X1、X2は各々独立に炭素原子、窒素原子又は酸素原子を表す。L1はX1、X2と共に2座の配位子を形成する原子群を表す。Mは元素周期表における8族~10族の遷移金属元素を表す。
 一般式(3)において、Ra、R61、R62、R63、R0が置換基を表す場合、一般式(1)におけるRa、Rb、Rc、Rd、R0と同義である。
 一般式(3)において、A0が芳香族炭化水素環基、又は、芳香族複素環基を表す場合、一般式(1)におけるA0と同義である。
 一般式(4)中、A1、A2は窒素原子、又は、CRaを表す。Raは水素原子、又は、置換基を表す。Z0は酸素原子、又は、硫黄原子を表す。Z1、Z2、Z3はC(RcRd)、NRe、Si(RfRg)、酸素原子又は硫黄原子を表す。Rc、Rd、Re、Rf、Rgは水素原子、又は、置換基を表す。A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。B1~B5は炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表し、B1~B5の少なくとも一つは窒素原子である。X1-L1-X2は2座の配位子を表し、X1、X2は各々独立に炭素原子、窒素原子又は酸素原子を表す。L1はX1、X2と共に2座の配位子を形成する原子群を表す。Mは元素周期表における8族~10族の遷移金属元素を表す。R61、R62、R63は互いに結合して環を形成することはない。
 一般式(4)において、Ra、Rc、Rd、Re、Rf、Rgが置換基を表す場合、一般式(1)におけるRa、Rb、Rc、Rd、R0と同義である。
 一般式(4)において、A0が芳香族炭化水素環基、又は、芳香族複素環基を表す場合、一般式(1)におけるA0と同義である。また、Rc、Rd、Reは互いに結合して環を形成することはない。
 一般式(5)中、A1、A2は窒素原子、又は、CRaを表す。Raは水素原子、又は、置換基を表す。Y1は酸素原子、硫黄原子、C(RcRd)、NRe、又は、Si(RfRg)を表す。Rc、Rd、Re、Rf、Rgは水素原子、又は、置換基を表す。R71は水素原子、又は、置換基を表す。A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。B1~B5は炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表し、B1~B5の少なくとも一つは窒素原子である。X1-L1-X2は2座の配位子を表し、X1、X2は各々独立に炭素原子、窒素原子又は酸素原子を表す。L1はX1、X2と共に2座の配位子を形成する原子群を表す。Mは元素周期表における8族~10族の遷移金属元素を表す。
 一般式(5)において、Ra、Rc、Rd、Re、Rf、Rgが置換基を表す場合、一般式(1)におけるRa、Rb、Rc、Rd、R0と同義である。
 一般式(5)において、A0が芳香族炭化水素環基、又は、芳香族複素環基を表す場合、一般式(1)におけるA0と同義である。また、R71、Rc、Rdは互いに結合して環を形成することはない。
 一般式(6)中、A1、A2は窒素原子、又は、CRaを表す。Raは水素原子、又は、置換基を表す。Y2は窒素原子、又は、CRbを表す。Rbは水素原子、又は、置換基を表す。Y3は酸素原子、又は、硫黄原子を表す。R81は水素原子、又は、置換基を表す。A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。
 B1~B5は炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表し、B1~B5の少なくとも一つは窒素原子である。X1-L1-X2は2座の配位子を表し、X1、X2は各々独立に炭素原子、窒素原子又は酸素原子を表す。L1はX1、X2と共に2座の配位子を形成する原子群を表す。Mは元素周期表における8族~10族の遷移金属元素を表す。
 一般式(6)において、Ra、Rb、R81が置換基を表す場合、一般式(1)におけるRa、Rb、Rc、Rd、R0と同義である。また、R81、Rbは互いに結合して環を形成することはない。
 一般式(6)において、A0が芳香族炭化水素環基、又は、芳香族複素環基を表す場合、一般式(1)におけるA0と同義である。
 一般式(7)中、A1、A2は窒素原子、又は、CRaを表す。Raは水素原子、又は、置換基を表す。Y4は酸素原子、又は、硫黄原子を表す。Y5,Y6はC(RcRd)、NRe、Si(RfRg)、酸素原子又は硫黄原子を表す。Rc、Rd、Re、Rf、Rgは水素原子、又は、置換基を表す。A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。B1~B5は炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表し、B1~B5の少なくとも一つは窒素原子である。
 X1-L1-X2は2座の配位子を表し、X1、X2は各々独立に炭素原子、窒素原子又は酸素原子を表す。L1はX1、X2と共に2座の配位子を形成する原子群を表す。Mは元素周期表における8族~10族の遷移金属元素を表す。
 一般式(7)において、Ra、Rc、Rd、Re、Rf、Rgが置換基を表す場合、一般式(1)におけるRa、Rb、Rc、Rd、R0と同義である。また、Rc、Rd、Reは互いに結合して環を形成することはない。
 一般式(7)において、A0が芳香族炭化水素環基、又は、芳香族複素環基を表す場合、一般式(1)におけるA0と同義である。
 一般式(1)で表される化合物の中でも、特に、上記一般式(2)~(7)で表される化合物が好ましく用いることができる。
 本発明においては、好ましくは、一般式(4)~(7)で表される場合、最も好ましくは、一般式(4)、(7)で表される場合である。
 一般式(1)~(7)において、nは1から3の整数を表す。mは(3-n)の整数を表す。本発明においては、n=3、m=0の場合が、好ましい。
 一般式(1)~(7)において、B1~B5で構成される環が、イミダゾール環又はピラゾール環であることが好ましく、最も好ましくは、イミダゾール環である。
 Mは元素周期表における8族~10族の遷移金属元素を表すが、好ましくは、イリジウムである。
 本発明の一般式(1)から(7)のいずれかで表される構造において、X1-L1-X2表される2座の配位子の具体例としては、置換又は無置換のフェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラザボール、アセチルアセトン、ピコリン酸等が挙げられる。
 以下に化合物Aの具体例を挙げるが、これらに限られるものではない。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 一般式(1)で表される化合物の入手方法については、一般式(1)で表される化合物のさらに具体的な化合物である一般式(2)~(7)で表される各化合物の合成を例に説明する。
 《例示化合物1の合成》:上記例示化合物1(一般式(7)に相当)を下記に示す工程により合成した。
Figure JPOXMLDOC01-appb-C000030
 (μ-錯体の合成)
 100ml四つ口フラスコに配位子(1)0.7g、2-エトキシエタノール7.5ml、水2.5mlを入れ、窒素吹き込み管、温度計、コンデンサをつけて油浴スターラー上にセットした。
 これに、0.3gのIrCl3・3H2Oを添加し、内温100℃付近で5時間煮沸還流して反応終了とした。
 反応終了後室温まで冷却して濾過し、メタノールで良く洗浄して乾燥して、μ錯体(2)0.5gを得た。
 工程5:acac錯体(3)の合成
 50ml四つ口フラスコに、0.5gのμ錯体(2)、0.1gのアセチルアセトン、0.1gの炭酸ナトリウム、2-エトキシエタノール20mlを入れ、窒素吹き込み管、温度計、コンデンサをつけて油浴スターラー上にセットした。
 窒素気流化内温90℃付近で2時間反応した。
 反応終了後室温まで冷却し、結晶を濾過した。この結晶を水30ml、MeOH10mlで洗浄して乾燥し、0.4gのacac錯体(3)を得た。
 50ml四つ口フラスコに、0.4gのacac錯体(3)、0.2gの配位子(1)、グリセリン20mlを入れ、窒素吹き込み管、温度計、空冷管をつけて油浴スターラー上にセットした。窒素気流化内温170℃付近で10時間加熱攪拌して反応終了とした。
 反応終了後、室温まで冷却し、結晶を濾過した。
 結晶をカラムクロマトグラフィーで精製して、例示化合物1を0.10g得た。
 《例示化合物111の合成(一般式(4)に相当)》
 配位子(1)を、配位子(2-1)に置き換えて、例示化合物1の場合と同様の合成法で例示化合物111を合成した。
 《例示化合物75の合成(一般式(5)に相当)》
 配位子(1)を、配位子(3-1)に置き換えて、例示化合物1の場合と同様の合成法で例示化合物75を合成した。
 《例示化合物84の合成(一般式(6)に相当)》
 配位子(1)を、配位子(4-1)に置き換えて、例示化合物1の場合と同様の合成法で例示化合物84を合成した。
 《例示化合物69の合成(一般式(3)に相当)》
 配位子(1)を、配位子(5-1)に置き換えて、例示化合物1の場合と同様の合成法で例示化合物69を合成した。
 《例示化合物64の合成(一般式(2)に相当)》
 配位子(1)を、配位子(6-1)に置き換えて、例示化合物1の場合と同様の合成法で例示化合物64を合成した。
 得られた例示化合物構造は1H-NMR(核磁気共鳴スペクトル)、マススペクトルを用いて構造を確認した。
Figure JPOXMLDOC01-appb-C000031
 《有機EL素子の構成層》
 本発明の有機EL素子の構成層について説明する。
 本発明の有機EL素子は、陽極と陰極の間に発光層を有し、上記化合物Aを含有する層を陽極と陰極の間に有する場合が好ましいが、化合物Aを含有する層が、発光層である態様が好ましい態様である。
 即ち、本発明に係る化合物Aは、下述する発光ドーパントとして機能する態様が好ましい態様である。
 本発明において、有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
(i)陽極/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(vi)陽極/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰極
 本発明の有機EL素子においては、青色発光層の発光極大波長は430~480nmにあるものが好ましく、緑色発光層は発光極大波長が510~550nm、赤色発光層は発光極大波長が600~640nmの範囲にある単色発光層であることが好ましく、これらを用いた表示装置であることが好ましい。また、これらの少なくとも3層の発光層を積層して白色発光層としたものであってもよく、これらを用いた照明装置であることがよい。更に、発光層間には非発光性の中間層を有していてもよい。
 本発明の有機EL素子を構成する各層について説明する。
 《発光層》
 本発明に係る発光層は、注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
 発光層の膜厚の総和は特に制限はないが、膜の均質性や発光時に不必要な高電圧を印加するのを防止し、且つ駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲に調整することが好ましく、更に好ましくは2nm~200nmの範囲に調整され、特に好ましくは10~20nmの範囲である。
 発光層の作製には、後述する発光ドーパントやホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により成膜して形成することができる。その中でも、発光層が本発明に係る化合物Aを含有する塗布液を用いて形成された層であることが好ましい。
 本発明の有機EL素子の発光層には、ホスト化合物と発光ドーパント(リン光発光性化合物(リン光ドーパントとも言う)や蛍光ドーパント等)の少なくとも1種類とを含有する。発光ドーパントとしては、上記化合物Aを用いることが好ましいが、用いることができる他のドーパントについて説明する。
 (ホスト化合物(発光ホストとも言う))
 本発明に用いられるホスト化合物について説明する。
 ここで、本発明においてホスト化合物とは、発光層に含有される化合物の内でその層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。
 ホスト化合物としては公知のホスト化合物を単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光ドーパントを複数種用いることで異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
 また、本発明に用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位を持つ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。
 以下に、本発明に好ましく用いられるホスト化合物の具体例を示すが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
 併用してもよい公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、且つ、高Tg(ガラス転移温度)である化合物が好ましい。
 公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等。
 (発光ドーパント)
 発光ドーパントとしては、蛍光ドーパント(蛍光性化合物とも言う)、リン光ドーパントを用いることができるが、より発光効率の高い有機EL素子を得る観点からは、本発明の有機EL素子の発光層や発光ユニットに使用される発光ドーパント(単に、発光材料と言うこともある)としては、上記のホスト化合物を含有すると同時にリン光ドーパントを含有することが好ましい。
 (リン光ドーパント)
 リン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
 リン光ドーパントの発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型、もう一つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こり、リン光ドーパントからの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、リン光ドーパントの励起状態のエネルギーは、ホスト化合物の励起状態のエネルギーよりも低いことが条件である。
 リン光ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。具体的には以下の特許公報に記載されている化合物などが挙げられる。
 国際公開第00/70655号パンフレット、特開2002-280178号公報、特開2001-181616号公報、特開2002-280179号公報、特開2001-181617号公報、特開2002-280180号公報、特開2001-247859号公報、特開2002-299060号公報、特開2001-313178号公報、特開2002-302671号公報、特開2001-345183号公報、特開2002-324679号公報、国際公開第02/15645号パンフレット、特開2002-332291号公報、特開2002-50484号公報、特開2002-332292号公報、特開2002-83684号公報、特表2002-540572号公報、特開2002-117978号公報、特開2002-338588号公報、特開2002-170684号公報、特開2002-352960号公報、国際公開第01/93642号パンフレット、特開2002-50483号公報、特開2002-100476号公報、特開2002-173674号公報、特開2002-359082号公報、特開2002-175884号公報、特開2002-363552号公報、特開2002-184582号公報、特開2003-7469号公報、特表2002-525808号公報、特開2003-7471号公報、特表2002-525833号公報、特開2003-31366号公報、特開2002-226495号公報、特開2002-234894号公報、特開2002-235076号公報、特開2002-241751号公報、特開2001-319779号公報、特開2001-319780号公報、特開2002-62824号公報、特開2002-100474号公報、特開2002-203679号公報、特開2002-343572号公報、特開2002-203678号公報等。
 本発明に係るリン光ドーパントは、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物、又は白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
 リン光ドーパントとして用いられる化合物としては、上記の一般式(2)~(7)のいずれかで表される構造を含む有機金属錯体が好ましい。
 また、以下に示すような従来公知の発光ドーパントを併用してもよい。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 (蛍光ドーパント(蛍光性化合物とも言う))
 蛍光ドーパントとしては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。
 次に、本発明の有機EL素子の構成層として用いられる、注入層、阻止層、正孔輸送層、電子輸送層等について説明する。
 《注入層:電子注入層、正孔注入層》
 注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。
 この注入層は上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法、LB法等の公知の方法により、薄膜化することにより形成できる。
 上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm~5μmの範囲が好ましい。この注入層は上記材料の一種又は二種以上からなる一層構造であってもよい。
 《阻止層:正孔阻止層、電子阻止層》
 阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。
 正孔阻止層には、カルバゾール誘導体、カルボリン誘導体、ジアザカルバゾール誘導体(カルボリン誘導体のカルボリン環を構成する炭素原子のいずれか一つが窒素原子で置き換わったものを示す)を含有することが好ましい。
 また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。更には、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。
 イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば、下記に示すような方法により求めることができる。
 理研計器製の低エネルギー電子分光装置「Model AC-1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。
 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。上記正孔阻止層、電子阻止層の膜厚としては、好ましくは3~100nmであり、更に好ましくは5~30nmである。
 《正孔輸送層》
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層の機能を有する。正孔輸送層は単層又は複数層設けることができる。
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
 正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル、N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル、N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル、4,4′-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ(2-ジフェニルビニル)ベンゼン、3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
 更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。
 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。この正孔輸送層は上記材料の1種又は2種以上からなる一層構造であってもよい。
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。
 《電子輸送層》
 電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層又は複数層設けることができる。
 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。
 更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。電子輸送層は上記材料の1種又は2種以上からなる一層構造であってもよい。
 また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 このようなn性の高い電子輸送層を用いることは、より低消費電力の素子を作製することができるため好ましい。
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。
 また、IDIXO(In23-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度を余り必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
 あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
 《陰極》
 一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。
 これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
 陰極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。
 なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば、発光輝度が向上し好都合である。
 また、陰極に上記金属を1nm~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで透明又は半透明の陰極を作製でき、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
 《支持基板》
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(JSR製)あるいはアペル(三井化学製)といったシクロオレフィン系樹脂等を挙げられる。
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(温度25±0.5℃、相対湿度90±2%RH)が0.01g/(m2・24h)以下のバリア性フィルムであることが好ましく、更にはJIS K 7126-1987に準拠した方法で測定された酸素透過度が10-3ml/(m2・24h・atm)以下、水蒸気透過度が10-5g/(m2・24h)以下の高バリア性フィルムであることが好ましい。
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
 本発明の有機EL素子の発光の室温における外部取り出し量子効率は、1%以上であることが好ましく、より好ましくは5%以上である。
 ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
 《封止》
 本発明の有機EL素子は、陽極、陰極、及び陰極と陽極との間にある層を外気から密閉するために封止部材で遮断して封止しておくことが好ましい。
 本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
 封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また、透明性、電気絶縁性は特に問わない。
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。
 本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m2・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が1×10-3g/(m2・24h)以下のものであることが好ましい。
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。
 封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し、封止膜とすることも好適にできる。
 この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。
 更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
 《保護膜、保護板》
 有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量且つ薄膜化ということからポリマーフィルムを用いることが好ましい。
 《光取り出し》
 有機EL素子は空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)等がある。
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
 本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5~1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。
 また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
 全反射を起こす界面若しくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間若しくは媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
 回折格子を導入する位置としては前述のとおり、いずれかの層間若しくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。
 このとき、回折格子の周期は媒質中の光の波長の約1/2~3倍程度が好ましい。回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。
 《集光シート》
 本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10μm~100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
 また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
 《有機EL素子の作製方法》
 本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極からなる有機EL素子の作製法を説明する。
 まず、適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10nm~200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ陽極を作製する。
 次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層等の有機化合物薄膜を形成させる。
 これら各層の形成方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法等)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、本発明においては蒸着法、スピンコート法、インクジェット法、印刷法による成膜が好ましい。
 更に層ごとに異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は、使用する化合物の種類等により異なるが、一般にボート加熱温度50℃~450℃、真空度10-6Pa~10-2Pa、蒸着速度0.01nm/秒~50nm/秒、基板温度-50℃~300℃、膜厚0.1μm~5μmの範囲で適宜選ぶことが望ましい。
 層をウェットプロセスで製膜する場合、本発明に係る有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
 発光層は、本発明に係る化合物Aを含有する塗布液を用いて形成された層であることが好ましい。均質な膜が得られやすく、且つピンホールが生成しにくい利点がある。
 これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50nm~200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。
 この有機EL素子の作製は一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
 《用途》
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては従来公知の方法を用いることができる。
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタセンシング製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
 また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に1000cd/m2でのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることをいう。
 《表示装置》
 本発明の表示装置について説明する。本発明の表示装置は上記有機EL素子を有する。
 本発明の表示装置は、単色でも多色でもよいが、ここでは多色表示装置について説明する。多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
 発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、印刷法である。蒸着法を用いる場合においては、シャドーマスクを用いたパターニングが好ましい。
 また作製順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層、正孔輸送層、陽極の順に作製することも可能である。
 このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2V~40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。
 更に交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
 多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。
 表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これに限定するものではない。
 《照明装置》
 また、本発明の有機EL素子は照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。
 動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。又は、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
 以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
 図1は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
 ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。
 制御部Bは表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
 図2は表示部Aの模式図である。
 表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。
 図においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。
 配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。
 画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
 発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。
 次に、画素の発光プロセスを説明する。
 図3は画素の模式図である。
 画素は有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサ13等を備えている。複数の画素に有機EL素子10として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
 図3において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサ13と駆動トランジスタ12のゲートに伝達される。
 画像データ信号の伝達により、コンデンサ13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。
 制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサ13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。
 即ち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
 ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサ13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
 図4はパッシブマトリクス方式による表示装置の模式図である。図4において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
 順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
 パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。
 また本発明の有機EL材料は照明装置として、実質白色の発光を生じる有機EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。
 また複数の発光色を得るための発光材料の組み合わせは、複数のリン光又は蛍光で発光する材料を複数組み合わせたもの、蛍光又はリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、本発明に係る白色有機EL素子においては、発光ドーパントを複数組み合わせ混合するだけでよい。
 発光層若しくは正孔輸送層あるいは電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよく、他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性も向上する。この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。
 発光層に用いる発光材料としては、特に制限はなく、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。
 このように、本発明に係る白色発光有機EL素子は、前記表示デバイス、ディスプレイに加えて、各種発光光源、照明装置として、家庭用照明、車内照明、また露光光源のような一種のランプとして、また液晶表示装置のバックライト等、表示装置にも有用に用いられる。
 その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等、更には表示装置を必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
 実施例1
 《0-0遷移バンドの測定》
 本発明の化合物の発光スペクトルの0-0遷移バンドを77Kと300Kで測定した。発光スペクトルの0-0遷移バンドは以下の測定方法により求めた。
 《発光スペクトルの0-0遷移バンド測定方法》
 測定する化合物を、よく脱酸素された2-メチルテトラヒドロフランに溶かし、測定用セルに入れた後液体窒素温度77Kで励起光を照射し、励起光照射後の発光スペクトルを測定する。
 また、上記溶剤系で溶解できない化合物については、その化合物を溶解しうる任意の溶剤を使用してもよい(実質上、上記測定法では発光波長の溶媒効果はごく僅かなので測定値の変化はほとんど見られない)。
 次に、0-0遷移バンドの求め方であるが、本発明においては、上記測定法で得られたスペクトルチャートのなかで最も短波長側に現れる発光極大波長をもって0-0遷移バンドと定義する。
 さらに上記発光スペクトルを300Kで測定し、その0-0遷移バンドと、77Kで測定した場合の0-0遷移バンドの差をとる。
 《有機EL素子1-1の作製》
 100mm×100mm×1.1mmの石英基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。この石英基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにホスト化合物としてH-1を200mg入れ、別のモリブデン製抵抗加熱ボートに比較化合物1を100mg入れ、真空蒸着装置に取付けた。
 次いで、真空槽を4×10-4Paまで減圧した後、H-1と比較化合物1の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.018nm/秒で前記石英基板上に共蒸着して、膜厚40nmの発光層を設けた。なお、蒸着時の基板温度は室温であった。
 作製後の石英基板の発光面上に、厚み300μm封止ガラスを封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記の石英基板上に重ねてUV光を照射して、硬化させて、封止し、照明装置を作製して評価した。
 《有機EL素子1-2~1-11の作製》
 有機EL素子1-1の作製において、発光ドーパントである比較化合物1を表1に記載の化合物に変更した以外は同様にして、有機EL素子1-2~1-11を各々作製した。
 《PL相対量子収率の測定》
 得られた有機EL素子1-1~1-11の各々について、励起光照射により発光ドーパントを励起し、得られた発光スペクトルのピーク面積値を求めた。この面積値は励起光による吸収は補正した値である。なお、測定は日立製作所分光光度計U-3300及び蛍光光度計F-4500にて行った。
 有機EL素子1-1(比較化合物1)で得られたピーク面積を1として、有機EL素子1-2~1-11について評価を行った。この面積の大きいことは発光効率が高いことを示している。
 得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-C000042
 表1から、本発明の化合物のように、0-0遷移バンドの77Kと300Kでの差が0nm以上5nm以下の化合物では、比較の化合物に比べて発光効率が高いことを示している。
 実施例2
 《有機EL素子2-1の作製》
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにα-NPDを200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物としてH-1を200mg入れ、別のモリブデン製抵抗加熱ボートにBAlqを200mg入れ、別のモリブデン製抵抗加熱ボートに比較化合物1(Ir-12)を100mg入れ、更に別のモリブデン製抵抗加熱ボートにAlq3を200mg入れ、真空蒸着装置に取付けた。
 次いで、真空槽を4×10-4Paまで減圧した後、α-NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し、膜厚40nmの正孔輸送層を設けた。
 更に、H-1と比較化合物1(Ir-12)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.012nm/秒で前記正孔輸送層上に共蒸着して、膜厚40nmの発光層を設けた。なお、蒸着時の基板温度は室温であった。
 更に、BAlqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層の上に蒸着して膜厚10nmの正孔阻止層を設けた。
 その上に、更に、Alq3の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔阻止層の上に蒸着して更に膜厚40nmの電子輸送層を設けた。なお、蒸着時の基板温度は室温であった。
 引き続きフッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子2-1を作製した。
 作製後の各有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図5、図6に示すような照明装置2-1を形成して評価した。
 図5は、照明装置の概略図を示し、有機EL素子101は、ガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った)。
 図6は、照明装置の断面図を示し、図6において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
 《有機EL素子2-2~2-36の作製》
 有機EL素子2-1の作製において、表2に記載のようにホスト化合物、発光ドーパントを変更した以外は同様にして、有機EL素子2-2~2-36を作製した。
 次いで、照明装置2-1と同様な方法で有機EL素子2-2~2-36から、それぞれ対応する照明装置2-2~2-36を作製した。
 《照明装置2-1~2-36の評価》
 以下のようにして作製した有機EL素子2-1~2-36に対応する照明装置2-1~2-36の評価を行い、その結果を表2に示す。
 (発光効率(外部取り出し量子効率ともいう))
 作製した有機EL素子について、23℃、乾燥窒素ガス雰囲気下で2.5mA/cm2定電流を印加した時の外部取り出し量子効率(%)を測定し、発光効率の指標とした。なお、測定には同様に分光放射輝度計CS-1000(コニカミノルタセンシング社製)を用いた。
 表2の外部取り出し量子効率の測定結果は、有機EL素子2-1を用いた照明装置2-1の測定値を100とした時の相対値で表した。
 (50℃駆動寿命(高温保存時の半減寿命))
 下記に示す測定法に従って、耐久性(50℃駆動寿命)の評価を行った。
 各照明装置を50℃の一定条件で初期輝度1000cd/m2を与える電流で定電流駆動して、初期輝度の1/2(500cd/m2)になる時間を求め、これを50℃駆動寿命の尺度とし、耐久性の指標とした。なお、50℃駆動寿命は比較の照明装置2-1を100とした時の相対値で表示した。
 (駆動電圧)
 各照明装置を室温(約23℃~25℃)、2.5mA/cm2の定電流条件下により駆動した時の電圧を各々測定し、測定結果を下記に示した計算式により計算し、得られた結果を表2に示した。
 照明装置2-1(比較例)を100として各々相対値で示した。
 駆動電圧(相対値)=(各照明装置の駆動電圧/照明装置2-1(比較例)の駆動電圧)×100
 なお、値が小さいほうが比較に対して駆動電圧が低いことを示す。
 (ダークスポット)
 各照明装置を室温下、2.5mA/cm2の定電流条件下による連続点灯を行った際の発光面を目視で評価した。無作為に抽出した10人による目視評価により下記のランク評価を行い、ダークスポット(未発光部分)発生防止効果の指標とした。
 ○:ダークスポットを確認した人数が0人の場合
 △:ダークスポットを確認した人数が1~4人の場合
 ×:ダークスポットを確認した人数が5人以上の場合
Figure JPOXMLDOC01-appb-T000043
 表2から、比較の照明装置に比べて、本発明の照明装置は、駆動電圧が低く、発光効率が高く、高温での劣化が小さく、且つ、ダークスポットの生成も抑えられていることが明らかである。
 なお、表2で用いられた発光ドーパントの0-0遷移バンドの77Kと300Kでの差は0nm以上5nm以下であった。
 実施例3
 《有機EL素子3-1の作製》
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(AvanStrate株式会社製、NA-45)にパターニングを行った。その後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥して、UVオゾン洗浄を5分間行った。
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer株式会社製、Baytron P Al 4083)を純水で70%に希釈した溶液をスピンコート法により成膜した後、200℃にて1時間乾燥し、膜厚30nmの第1正孔輸送層を設けた。
 この第1正孔輸送層上に、正孔輸送材料Poly(N,N′-ビス(4-ブチルフェニル)-N,N′-ビス(フェニル))ベンジジン(American Dye Source株式会社製、ADS-254)のクロロベンゼン溶液をスピンコート法により成膜した。150℃で1時間加熱乾燥し、膜厚40nmの第2正孔輸送層を設けた。
 この第2正孔輸送層上に、ホスト化合物H-1及び発光ドーパントである比較化合物1の酢酸ブチル溶液をスピンコート法により成膜し、120℃で1時間加熱乾燥し、膜厚40nmの発光層を設けた。
 この発光層上に、電子輸送材料OC-18の1-ブタノールの溶液をスピンコート法により成膜し、膜厚20nmの不溶化した電子輸送層を設けた。
 これを、真空蒸着装置に取付け、真空槽を4×10-4Paまで減圧した。次いで、電子注入層としてフッ化リチウム1.0nm、陰極としてアルミニウム110nmを蒸着し、有機EL素子3-1を作製した。
 《有機EL素子3-2~3-25の作製》
 有機EL素子3-1の作製において、発光層のホスト化合物H-1、発光ドーパントの比較化合物1を表3に示す化合物に置き換えた以外は同様にして、有機EL素子3-2~3-28を各々作製した。
 《照明装置の評価》
 得られた有機EL素子3-1~3-28を評価するに際しては、作製後の各有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図5、図6に示すような有機EL素子3-1~3-28にそれぞれ対応する照明装置3-1~3-28を形成して評価した。
 (外部取り出し量子効率)
 照明装置を室温(約23~25℃)、2.5mA/cm2の定電流条件下による点灯を行い、点灯開始直後の発光輝度(L)[cd/m2]を測定することにより、外部取り出し量子効率(η)を算出し、発光効率の指標とした。
 ここで、発光輝度の測定はCS-1000(コニカミノルタセンシング製)を用いた。外部取り出し量子効率は照明装置3-1を100とする相対値で表した。
 (初期劣化)
 下記に示す測定法に従って、初期劣化の評価を行い、耐久性の指標とした。前記半減寿命の測定時に、輝度が90%に到達する時間を測定し、これを初期劣化の尺度とした。なお、初期劣化は比較の照明装置3-1を100とした。初期劣化は以下の計算式を基に計算した。
 初期劣化=(照明装置3-1の輝度90%到達時間)/(各素子の輝度90%到達時間)×100
 即ち、初期劣化の値は、小さいほど初期の劣化が小さいことを示す。
 (発光層の塗布溶液の停滞安定性)
 有機EL素子3-1の作製において、発光層の形成に用いた塗布溶液(H-1(60mg)と比較化合物1(3.0mg)の混合物を酢酸ブチル12mlに溶解した溶液)を室温にて1時間放置した後、析出の有無を確認し、塗布溶液の停滞安定性を評価して、ダークスポット発生防止効果の指標とした。
 ○:目視で析出なし
 △:目視で析出かすかにあり
 ×:目視で明らかに析出あり
Figure JPOXMLDOC01-appb-T000044
 表3から、比較の照明装置に比べて、本発明の照明装置は、発光効率が高く、高温での劣化が小さく、且つ、ダークスポットの生成も抑えられていることが明らかである。
 なお、表3で用いられた発光ドーパントの0-0遷移バンドの77Kと300Kでの差は0nm以上5nm以下であった。
 実施例4
 《表示装置の作製》
 (青色発光素子の作製)
 実施例2の有機EL素子2-7を青色発光素子として用いた。
 (緑色発光素子の作製)
 実施例2の有機EL素子2-1において、比較化合物1をIr-1に変更した以外は同様にして、緑色発光素子を作製し、これを緑色発光素子として用いた。
 (赤色発光素子の作製)
 実施例2の有機EL素子2-1において、比較化合物1をIr-9に変更した以外は同様にして、赤色発光素子を作製し、これを赤色発光素子として用いた。
 上記で作製した赤色、緑色、青色発光有機EL素子を同一基板上に並置し、図1に記載のような形態を有するアクティブマトリクス方式フルカラー表示装置を作製した。図2には、作製した前記表示装置の表示部Aの模式図のみを示した。
 即ち、同一基板上に複数の走査線5及びデータ線6を含む配線部と並置した複数の画素3(発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している。
 前記複数画素3は、それぞれの発光色に対応した有機EL素子、アクティブ素子であるスイッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動されており、走査線5から走査信号が印加されるとデータ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。このように赤、緑、青の画素を適宜、並置することによって、フルカラー表示装置を作製した。
 なお、ここで用いた青色発光ドーパント(化合物例1)の77Kと300Kで測定した発光スペクトルの、それぞれ最短波波長側の発光極大波長の差は0nm以上5nm以下であった。
 このフルカラー表示装置は駆動することにより、発光効率が高く、高耐久性を有し、且つダークスポットの少ないフルカラー動画表示が得られることが分かった。
 本発明の有機エレクトロルミネッセンス素子は低駆動電圧であり発光効率が高く、耐久性に優れ、ダークスポット発生防止効果に優れ、照明装置及び表示装置に好適に使用できる。
 1 ディスプレイ
 3 画素
 5 走査線
 6 データ線
 A 表示部
 B 制御部
 10、101 有機EL素子
 102 ガラスカバー
 105 陰極
 106 有機EL層
 107 透明電極付きガラス基板
 108 窒素ガス
 109 捕水剤

Claims (15)

  1.  陽極、陰極及び発光層を有する有機エレクトロルミネッセンス素子であって、300Kで測定した場合の発光スペクトルの、最短波長側の発光極大波長と、77Kで測定した場合の発光スペクトルの、最短波長側の発光極大波長との差が、0nm以上5nm以下である化合物Aを含有する層を有することを特徴とする有機エレクトロルミネッセンス素子。
  2.  前記化合物Aを含有する層が、前記発光層であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  前記化合物Aが、リン光発光性化合物であることを特徴とする請求項1又は2に記載の有機エレクトロルミネッセンス素子。
  4.  前記化合物Aが、下記一般式(1)で表される化合物であることを特徴とする請求項1から3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、C10及びC11は炭素原子を表す。A1及びA2は窒素原子、又は、CRaを表す。Raは水素原子、又は、置換基を表す。P1は酸素原子、窒素原子、又は、硫黄原子を表す。P2、P3及びP4は、各々CRb、C(RcRd)、窒素原子、NRe、Si(RfRg)、酸素原子又は硫黄原子を表す。Rb、Rc、Rd、Re、Rf及びRgは、各々水素原子、又は、置換基を表す。また、Rb、Rc、Rd及びReは、各々互いに結合して環を形成することはない。
     A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。kは0、又は、1の整数を表す。B1~B5は、各々炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表すが、少なくとも一つは窒素原子を表し、これら5つの原子により五員の芳香族含窒素複素環が形成される。R0は水素原子、又は、置換基を表す。X1-L1-X2は2座の配位子を表し、X1及びX2は各々独立に炭素原子、窒素原子又は酸素原子を表す。C11とP4、C11とP3、P4とP3、P3とP2、P2とP1及びP1とC10の間の結合は、単結合、又は、二重結合を表す。L1はX1及びX2と共に2座の配位子を形成する原子群を表す。nは1から3の整数を表す。mは、(3-n)の整数を表す。Mは元素周期表における8族~10族の遷移金属元素を表す。〕
  5.  前記一般式(1)で表される化合物が、下記一般式(2)で表される化合物であることを特徴とする請求項4に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002
    〔式中、A1及びA2は各々窒素原子、又は、CRaを表す。
     Raは、水素原子、又は、置換基を表す。
     D1、D2及びD3はCRb又は窒素原子を表す。
     Rbは、水素原子、又は、置換基を表す。また、Rbは互いに結合して環を形成することはない。
     A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。B1~B5は、各々炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表し、B1~B5の少なくとも一つは窒素原子である。R0は水素原子、又は、置換基を表す。
     X1-L1-X2は2座の配位子を表し、X1及びX2は各々独立に炭素原子、窒素原子又は酸素原子を表す。L1はX1及びX2と共に2座の配位子を形成する原子群を表す。nは1から3の整数を表す。mは、(3-n)の整数を表す。Mは元素周期表における8族~10族の遷移金属元素を表す。〕
  6.  前記一般式(1)で表される化合物が、下記一般式(3)で表される化合物であることを特徴とする請求項4に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003
    〔式中、A1及びA2は、各々窒素原子、又は、CRaを表す。
     Raは水素原子、又は、置換基を表す。
     R61、R62及びR63は水素原子、又は、置換基を表す。A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。R61、R62及びR63は互いに結合して環を形成することはない。
     B1~B5は、各々炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表し、B1~B5の少なくとも一つは窒素原子である。R0は水素原子、又は、置換基を表す。
     X1-L1-X2は2座の配位子を表し、X1及びX2は各々独立に炭素原子、窒素原子又は酸素原子を表す。L1はX1及びX2と共に2座の配位子を形成する原子群を表す。nは1から3の整数を表す。mは、(3-n)の整数を表す。Mは元素周期表における8族~10族の遷移金属元素を表す。〕
  7.  前記一般式(1)で表される化合物が、下記一般式(4)で表される化合物であることを特徴とする請求項4に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004
    〔式中、A1及びA2は窒素原子、又は、CRaを表す。
     Raは、水素原子、又は、置換基を表す。
     Z0は、酸素原子、又は、硫黄原子を表す。
     Z1、Z2及びZ3は、各々C(RcRd)、NRe、Si(RfRg)、酸素原子又は硫黄原子を表す。
     Rc、Rd、Re、Rf及びRgは水素原子、又は、置換基を表す。また、Rc、Rd、Reは互いに結合して環を形成することはない。
     A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。
     B1~B5は、各々炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表し、B1~B5の少なくとも一つは窒素原子である。R0は水素原子、又は、置換基を表す。
     X1-L1-2は2座の配位子を表し、X1及びX2は各々独立に炭素原子、窒素原子又は酸素原子を表す。
     L1はX1及びX2と共に2座の配位子を形成する原子群を表す。nは1から3の整数を表す。mは、(3-n)の整数を表す。
     Mは元素周期表における8族~10族の遷移金属元素を表す。〕
  8.  前記一般式(1)で表される化合物が、下記一般式(5)で表される化合物であることを特徴とする請求項4に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005
    〔式中、A1及びA2は、窒素原子、又は、CRaを表す。Raは、水素原子、又は、置換基を表す。
     Y1は、酸素原子、硫黄原子、C(RcRd)、NRe、又は、Si(RfRg)を表す。
     Rc、Rd、Re、Rf及びRgは、各々水素原子、又は、置換基を表す。
     R71は水素原子、又は、置換基を表す。また、R71、Rc及びRdは互いに結合して環を形成することはない。
     A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。
     B1~B5は、各々炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表し、B1~B5の少なくとも一つは窒素原子である。R0は水素原子、又は、置換基を表す。
     X1-L1-X2は2座の配位子を表し、X1及びX2は各々独立に炭素原子、窒素原子又は酸素原子を表す。
     L1はX1及びX2と共に2座の配位子を形成する原子群を表す。nは1から3の整数を表す。mは、(3-n)の整数を表す。
     Mは元素周期表における8族~10族の遷移金属元素を表す。〕
  9.  前記一般式(1)で表される化合物が、下記一般式(6)で表される化合物であることを特徴とする請求項4に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000006
    〔式中、A1及びA2は窒素原子、又は、CRaを表す。
     Raは、水素原子、又は、置換基を表す。
     Y2は、窒素原子、又は、CRbを表す。
     Rbは水素原子、又は、置換基を表す。
     Y3は酸素原子、又は、硫黄原子を表す。
     R81は水素原子、又は、置換基を表す。また、R81、Rbは互いに結合して環を形成することはない。
     A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。
     B1~B5は、各々炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表し、B1~B5の少なくとも一つは窒素原子である。R0は水素原子、又は、置換基を表す。
     X1-L1-X2は2座の配位子を表し、X1及びX2は各々独立に炭素原子、窒素原子又は酸素原子を表す。
     L1はX1及びX2と共に2座の配位子を形成する原子群を表す。nは1から3の整数を表す。mは、(3-n)の整数を表す。
     Mは元素周期表における8族~10族の遷移金属元素を表す。〕
  10.  前記一般式(1)で表される化合物が、下記一般式(7)で表される化合物であることを特徴とする請求項4に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000007
    〔式中、A1及びA2は窒素原子、又は、CRaを表す。
     Raは水素原子、又は、置換基を表す。Y4は酸素原子、又は、硫黄原子を表す。
     Y5及びY6はC(RcRd)、NRe、Si(RfRg)、酸素原子又は硫黄原子を表す。
     Rc、Rd、Re、Rf及びRgは水素原子、又は、置換基を表す。また、Rc、Rd、Reは互いに結合して環を形成することはない。
     A0は、芳香族炭化水素環基、又は、芳香族複素環基を表す。
     B1~B5は、各々炭素原子、CR0、窒素原子、酸素原子又は硫黄原子を表し、B1~B5の少なくとも一つは窒素原子である。R0は水素原子、又は、置換基を表す。
     X1-L1-X2は2座の配位子を表し、X1及びX2は各々独立に炭素原子、窒素原子又は酸素原子を表す。L1はX1及びX2と共に2座の配位子を形成する原子群を表す。nは1から3の整数を表す。mは、(3-n)の整数を表す。Mは元素周期表における8族~10族の遷移金属元素を表す。〕
  11.  前記B1~B5で構成される環が、イミダゾール環又はピラゾール環であることを特徴とする請求項4から10のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  12.  前記発光層が、前記化合物Aを含有する塗布液を用いて形成された層であることを特徴とする請求項1から11のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  13.  前記発光層が、白色に発光することを特徴とする請求項1から12のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  14.  請求項1から13のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。
  15.  請求項1から13のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。
PCT/JP2012/053077 2011-02-16 2012-02-10 有機エレクトロルミネッセンス素子、照明装置及び表示装置 WO2012111548A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012557923A JP5853964B2 (ja) 2011-02-16 2012-02-10 有機エレクトロルミネッセンス素子、照明装置及び表示装置
EP12746917.9A EP2677561B1 (en) 2011-02-16 2012-02-10 Organic electroluminescent element, lighting device, and display device
US13/985,316 US9923154B2 (en) 2011-02-16 2012-02-10 Organic electroluminescent element, lighting device, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-030626 2011-02-16
JP2011030626 2011-02-16

Publications (1)

Publication Number Publication Date
WO2012111548A1 true WO2012111548A1 (ja) 2012-08-23

Family

ID=46672473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053077 WO2012111548A1 (ja) 2011-02-16 2012-02-10 有機エレクトロルミネッセンス素子、照明装置及び表示装置

Country Status (4)

Country Link
US (1) US9923154B2 (ja)
EP (1) EP2677561B1 (ja)
JP (1) JP5853964B2 (ja)
WO (1) WO2012111548A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092014A1 (ja) 2012-12-10 2014-06-19 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2015046452A1 (ja) * 2013-09-27 2015-04-02 コニカミノルタ株式会社 イリジウム錯体、イリジウム錯体の製造方法、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2015530982A (ja) * 2012-08-07 2015-10-29 メルク パテント ゲーエムベーハー 金属錯体
US20160315273A1 (en) * 2013-12-09 2016-10-27 Konica Minolta, Inc. Organic electroluminescent element, lighting device, and display device
US11912724B2 (en) 2021-02-05 2024-02-27 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the same, and electronic apparatus including the organic light-emitting device
US12004416B2 (en) 2020-08-31 2024-06-04 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9871205B2 (en) 2013-08-02 2018-01-16 Samsung Display Co., Ltd. Organic light-emitting device
KR102086556B1 (ko) * 2013-08-02 2020-03-10 삼성디스플레이 주식회사 유기 발광 소자
US10839734B2 (en) * 2013-12-23 2020-11-17 Universal Display Corporation OLED color tuning by driving mode variation
CN104732921B (zh) * 2013-12-23 2019-03-01 环球展览公司 Oled通过驱动模式变化的色彩调谐和其用途
CN107799658B (zh) * 2016-08-29 2021-05-28 株式会社半导体能源研究所 发光元件、发光装置、电子设备、照明装置及有机金属配合物
EP3432381A1 (en) * 2017-07-20 2019-01-23 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
KR102206814B1 (ko) * 2018-05-14 2021-01-22 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR102206819B1 (ko) * 2018-05-14 2021-01-22 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
CN111253440A (zh) * 2019-12-24 2020-06-09 吉林奥来德光电材料股份有限公司 一种磷光化合物及其制备方法与应用
CN111057112A (zh) * 2019-12-24 2020-04-24 吉林奥来德光电材料股份有限公司 一种磷光化合物及其制备方法和应用
KR20230018117A (ko) * 2021-07-29 2023-02-07 엘지디스플레이 주식회사 유기금속 화합물 및 이를 포함하는 유기발광소자

Citations (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172691A (ja) 1986-01-24 1987-07-29 株式会社小松製作所 薄膜el素子
US4774435A (en) 1987-12-22 1988-09-27 Gte Laboratories Incorporated Thin film electroluminescent device
JPS63314795A (ja) 1987-06-18 1988-12-22 Komatsu Ltd 薄膜el素子
JPH01220394A (ja) 1988-02-29 1989-09-04 Hitachi Ltd 高輝度el素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04297076A (ja) 1991-01-31 1992-10-21 Toshiba Corp 有機el素子
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH06325871A (ja) 1993-05-18 1994-11-25 Mitsubishi Kasei Corp 有機電界発光素子
JPH08288069A (ja) 1995-04-07 1996-11-01 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
JPH0917574A (ja) 1995-04-27 1997-01-17 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH0945479A (ja) 1995-07-27 1997-02-14 Hewlett Packard Co <Hp> 有機エレクトロルミネセンス装置及び有機エレクトロルミネセンス装置の製造方法
JPH09260062A (ja) 1996-03-25 1997-10-03 Tdk Corp 有機エレクトロルミネセンス素子
JPH1074586A (ja) 1996-07-29 1998-03-17 Eastman Kodak Co エレクトロルミネセンスデバイスで用いられる二層電子注入電極
JPH10270172A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JPH11204258A (ja) 1998-01-09 1999-07-30 Sony Corp 電界発光素子及びその製造方法
JPH11204359A (ja) 1998-01-14 1999-07-30 Tokin Corp 圧粉磁芯の製造方法と製造装置
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JPH11283751A (ja) 1998-03-27 1999-10-15 Nec Corp 有機エレクトロルミネッセンス素子
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
US6097147A (en) 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
WO2000070655A2 (en) 1999-05-13 2000-11-23 The Trustees Of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence
JP2001102175A (ja) 1999-09-29 2001-04-13 Junji Kido 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法
JP2001181617A (ja) 1999-12-27 2001-07-03 Fuji Photo Film Co Ltd オルトメタル化白金錯体からなる発光素子材料および発光素子
JP2001181616A (ja) 1999-12-27 2001-07-03 Fuji Photo Film Co Ltd オルトメタル化パラジウム錯体からなる発光素子材料および発光素子
JP2001202827A (ja) 1999-11-10 2001-07-27 Matsushita Electric Works Ltd 透明導電性基板、発光素子、平面発光板、平面発光板の製造方法、平面蛍光ランプ、プラズマディスプレイ
JP2001247859A (ja) 1999-12-27 2001-09-14 Fuji Photo Film Co Ltd オルトメタル化イリジウム錯体からなる発光素子材料、発光素子および新規イリジウム錯体
JP2001257076A (ja) 2000-03-13 2001-09-21 Tdk Corp 有機el素子
JP2001313179A (ja) 2000-05-01 2001-11-09 Mitsubishi Chemicals Corp 有機電界発光素子
JP2001313178A (ja) 2000-04-28 2001-11-09 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
JP2001319780A (ja) 2000-05-02 2001-11-16 Fuji Photo Film Co Ltd 発光素子
JP2001319779A (ja) 2000-05-02 2001-11-16 Fuji Photo Film Co Ltd 発光素子
WO2001093642A1 (en) 2000-05-30 2001-12-06 The Trustees Of Princeton University Phosphorescent organic light emitting devices
JP2001345183A (ja) 2000-03-28 2001-12-14 Fuji Photo Film Co Ltd 高効率赤色発光素子、イリジウム錯体から成る発光素子材料及び新規イリジウム錯体
JP2001357977A (ja) 2000-06-12 2001-12-26 Fuji Photo Film Co Ltd 有機電界発光素子
JP2002008860A (ja) 2000-04-18 2002-01-11 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002015871A (ja) 2000-04-27 2002-01-18 Toray Ind Inc 発光素子
JP2002023072A (ja) 2000-07-06 2002-01-23 Mitsubishi Electric Corp 光スイッチ及びその調整方法並びに組み立て方法
JP2002043056A (ja) 2000-07-19 2002-02-08 Canon Inc 発光素子
JP2002050483A (ja) 2000-05-22 2002-02-15 Showa Denko Kk 有機エレクトロルミネッセンス素子および発光材料
JP2002050484A (ja) 2000-05-22 2002-02-15 Semiconductor Energy Lab Co Ltd 発光装置および電気器具
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
JP2002062824A (ja) 2000-06-05 2002-02-28 Semiconductor Energy Lab Co Ltd 発光装置
JP2002075645A (ja) 2000-08-29 2002-03-15 Semiconductor Energy Lab Co Ltd 発光装置
JP2002083684A (ja) 2000-06-23 2002-03-22 Semiconductor Energy Lab Co Ltd 発光装置
JP2002100474A (ja) 2000-09-25 2002-04-05 Kyocera Corp 有機エレクトロルミネッセンス素子
JP2002100476A (ja) 2000-07-17 2002-04-05 Fuji Photo Film Co Ltd 発光素子及びアゾール化合物
JP2002105445A (ja) 2000-09-29 2002-04-10 Fuji Photo Film Co Ltd 有機発光素子材料及びそれを用いた有機発光素子
JP2002117978A (ja) 2000-07-17 2002-04-19 Fuji Photo Film Co Ltd 発光素子及びイリジウム錯体
JP2002141173A (ja) 2000-08-22 2002-05-17 Semiconductor Energy Lab Co Ltd 発光装置
JP2002170684A (ja) 2000-09-21 2002-06-14 Fuji Photo Film Co Ltd 発光素子及びイリジウム錯体
JP2002175884A (ja) 2000-09-26 2002-06-21 Canon Inc 発光素子及び発光素子用金属配位化合物
JP2002173674A (ja) 2000-09-21 2002-06-21 Fuji Photo Film Co Ltd 発光素子および新規レニウム錯体
JP2002184582A (ja) 2000-09-28 2002-06-28 Semiconductor Energy Lab Co Ltd 発光装置
JP2002203679A (ja) 2000-12-27 2002-07-19 Fuji Photo Film Co Ltd 発光素子
JP2002203683A (ja) 2000-10-30 2002-07-19 Toyota Central Res & Dev Lab Inc 有機電界発光素子
JP2002203678A (ja) 2000-12-27 2002-07-19 Fuji Photo Film Co Ltd 発光素子
JP2002525833A (ja) 1998-09-25 2002-08-13 アイシス イノヴェイション リミテッド 二価ランタノイド金属錯体
JP2002226495A (ja) 2000-11-29 2002-08-14 Canon Inc 金属配位化合物、発光素子及び表示装置
JP2002231453A (ja) 2000-11-30 2002-08-16 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002235076A (ja) 2001-02-09 2002-08-23 Fuji Photo Film Co Ltd 遷移金属錯体及びそれからなる発光素子用材料、並びに発光素子
JP2002234894A (ja) 2000-11-29 2002-08-23 Canon Inc 金属配位化合物、発光素子及び表示装置
JP2002234888A (ja) 2001-02-09 2002-08-23 Mitsui Chemicals Inc アミン化合物および該化合物を含有する有機電界発光素子
JP2002241751A (ja) 2001-02-21 2002-08-28 Fuji Photo Film Co Ltd 発光素子用材料及び発光素子
JP2002255934A (ja) 2000-12-25 2002-09-11 Fuji Photo Film Co Ltd 新規化合物、その重合体、それらを利用した発光素子材料およびその発光素子
JP2002260861A (ja) 2001-01-02 2002-09-13 Eastman Kodak Co 有機発光デバイス
JP2002280178A (ja) 2001-03-16 2002-09-27 Canon Inc 有機発光素子
JP2002280180A (ja) 2001-03-16 2002-09-27 Canon Inc 有機発光素子
JP2002280179A (ja) 2001-03-16 2002-09-27 Canon Inc 有機発光素子
JP2002280183A (ja) 2000-12-28 2002-09-27 Toshiba Corp 有機el素子および表示装置
JP2002299060A (ja) 2001-03-30 2002-10-11 Fuji Photo Film Co Ltd 有機発光素子
JP2002302516A (ja) 2001-04-03 2002-10-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002305084A (ja) 2000-12-25 2002-10-18 Fuji Photo Film Co Ltd 新規インドール誘導体およびそれを利用した発光素子
JP2002305083A (ja) 2001-04-04 2002-10-18 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002302671A (ja) 2000-02-10 2002-10-18 Fuji Photo Film Co Ltd イリジウム錯体からなる発光素子材料及び発光素子
JP2002308855A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2002308837A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2002319491A (ja) 2000-08-24 2002-10-31 Fuji Photo Film Co Ltd 発光素子及び新規重合体子
JP2002324679A (ja) 2001-04-26 2002-11-08 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2002334788A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334786A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002332292A (ja) 2001-03-08 2002-11-22 Canon Inc 金属配位化合物、電界発光素子及び表示装置
JP2002334787A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334789A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002332291A (ja) 2001-03-08 2002-11-22 Canon Inc 金属配位化合物、電界発光素子及び表示装置
JP2002540572A (ja) 1999-03-23 2002-11-26 ザ ユニバーシティー オブ サザン カリフォルニア 有機ledの燐光性ドーパントとしてのシクロメタル化金属錯体
JP2002338579A (ja) 2001-03-16 2002-11-27 Fuji Photo Film Co Ltd ヘテロ環化合物及びそれを用いた発光素子
JP2002338588A (ja) 2001-03-14 2002-11-27 Canon Inc 金属配位化合物、電界発光素子及び表示装置
JP2002343568A (ja) 2001-05-10 2002-11-29 Sony Corp 有機電界発光素子
JP2002343572A (ja) 2001-03-14 2002-11-29 Canon Inc ポルフィリン誘導体化合物を用いた発光素子および表示装置
JP2002352957A (ja) 2001-05-23 2002-12-06 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2002352960A (ja) 2001-05-29 2002-12-06 Hitachi Ltd 薄膜電界発光素子
JP2002359082A (ja) 2001-03-28 2002-12-13 Semiconductor Energy Lab Co Ltd 有機発光素子および前記素子を用いた発光装置
JP2002363227A (ja) 2001-04-03 2002-12-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002363552A (ja) 2001-03-08 2002-12-18 Univ Of Hong Kong 有機金属発光材料
JP2003003165A (ja) 2001-06-25 2003-01-08 Showa Denko Kk 有機発光素子および発光材料
JP2003007471A (ja) 2001-04-13 2003-01-10 Semiconductor Energy Lab Co Ltd 有機発光素子および前記素子を用いた発光装置
JP2003007469A (ja) 2001-06-25 2003-01-10 Canon Inc 発光素子及び表示装置
JP2003027048A (ja) 2001-07-11 2003-01-29 Fuji Photo Film Co Ltd 発光素子
JP2003031366A (ja) 2001-07-11 2003-01-31 Semiconductor Energy Lab Co Ltd ドーパントを用いた有機発光素子および発光装置
JP2004068143A (ja) 2002-06-10 2004-03-04 Konica Minolta Holdings Inc 薄膜形成方法並びに該薄膜形成方法により薄膜が形成された基材
WO2004085450A2 (en) 2003-03-24 2004-10-07 The University Of Southern California Phenyl-pyrazole complexes of ir
JP2005023071A (ja) 2003-06-09 2005-01-27 Hitachi Chem Co Ltd 金属配位化合物、ポリマー組成物、およびこれらを用いた有機エレクトロルミネセンス素子
JP2007305783A (ja) * 2006-05-11 2007-11-22 Nippon Hoso Kyokai <Nhk> 発光素子
WO2008035571A1 (fr) * 2006-09-20 2008-03-27 Konica Minolta Holdings, Inc. Élément électroluminescent organique
WO2009003898A1 (de) 2007-07-05 2009-01-08 Basf Se Organische leuchtdioden enthaltend carben-übergangsmetall-komplex-emitter und mindestens eine verbindung ausgewählt aus disilylcarbazolen; disilyldibenzofuranen, disilyldibenzothiophenen, disilyldibenzophospholen, disilyldibenzothiophen-s-oxiden und disilyldibenzothiophen-s,s-dioxiden
JP2009004753A (ja) * 2007-05-18 2009-01-08 Fujifilm Corp 有機電界発光素子
WO2009060757A1 (ja) 2007-11-08 2009-05-14 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2009272339A (ja) * 2008-04-30 2009-11-19 Fujifilm Corp 有機電界発光素子
JP2010118381A (ja) * 2008-11-11 2010-05-27 Konica Minolta Holdings Inc 白色有機エレクトロルミネッセンス素子、表示装置、照明装置
JP2010135467A (ja) 2008-12-03 2010-06-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、該素子を備えた照明装置及び表示装置
JP2010254642A (ja) 2009-04-28 2010-11-11 Chemiprokasei Kaisha Ltd ジベンゾカルコゲニルピラゾールイリジウム錯体、それよりなる発光材料およびそれを含有する有機el素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7491823B2 (en) * 2004-05-18 2009-02-17 The University Of Southern California Luminescent compounds with carbene ligands
JP5040062B2 (ja) * 2005-01-17 2012-10-03 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2009267170A (ja) * 2008-04-25 2009-11-12 Fujifilm Corp 有機電界発光素子
WO2009133753A1 (ja) * 2008-04-30 2009-11-05 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2010044342A1 (ja) 2008-10-15 2010-04-22 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、白色有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5489610B2 (ja) * 2009-09-17 2014-05-14 キヤノン株式会社 有機el素子

Patent Citations (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172691A (ja) 1986-01-24 1987-07-29 株式会社小松製作所 薄膜el素子
JPS63314795A (ja) 1987-06-18 1988-12-22 Komatsu Ltd 薄膜el素子
US4774435A (en) 1987-12-22 1988-09-27 Gte Laboratories Incorporated Thin film electroluminescent device
JPH01220394A (ja) 1988-02-29 1989-09-04 Hitachi Ltd 高輝度el素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04297076A (ja) 1991-01-31 1992-10-21 Toshiba Corp 有機el素子
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH06325871A (ja) 1993-05-18 1994-11-25 Mitsubishi Kasei Corp 有機電界発光素子
JPH08288069A (ja) 1995-04-07 1996-11-01 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
JPH0917574A (ja) 1995-04-27 1997-01-17 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH0945479A (ja) 1995-07-27 1997-02-14 Hewlett Packard Co <Hp> 有機エレクトロルミネセンス装置及び有機エレクトロルミネセンス装置の製造方法
JPH09260062A (ja) 1996-03-25 1997-10-03 Tdk Corp 有機エレクトロルミネセンス素子
JPH1074586A (ja) 1996-07-29 1998-03-17 Eastman Kodak Co エレクトロルミネセンスデバイスで用いられる二層電子注入電極
JPH10270172A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JPH11204258A (ja) 1998-01-09 1999-07-30 Sony Corp 電界発光素子及びその製造方法
JPH11204359A (ja) 1998-01-14 1999-07-30 Tokin Corp 圧粉磁芯の製造方法と製造装置
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JPH11283751A (ja) 1998-03-27 1999-10-15 Nec Corp 有機エレクトロルミネッセンス素子
US6097147A (en) 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
JP2002525808A (ja) 1998-09-14 2002-08-13 ザ、トラスティーズ オブ プリンストン ユニバーシティ 高効率の電界発光デバイスのための構造
JP2002525833A (ja) 1998-09-25 2002-08-13 アイシス イノヴェイション リミテッド 二価ランタノイド金属錯体
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
JP2002540572A (ja) 1999-03-23 2002-11-26 ザ ユニバーシティー オブ サザン カリフォルニア 有機ledの燐光性ドーパントとしてのシクロメタル化金属錯体
WO2000070655A2 (en) 1999-05-13 2000-11-23 The Trustees Of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence
JP2001102175A (ja) 1999-09-29 2001-04-13 Junji Kido 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法
JP2001202827A (ja) 1999-11-10 2001-07-27 Matsushita Electric Works Ltd 透明導電性基板、発光素子、平面発光板、平面発光板の製造方法、平面蛍光ランプ、プラズマディスプレイ
JP2001247859A (ja) 1999-12-27 2001-09-14 Fuji Photo Film Co Ltd オルトメタル化イリジウム錯体からなる発光素子材料、発光素子および新規イリジウム錯体
JP2001181616A (ja) 1999-12-27 2001-07-03 Fuji Photo Film Co Ltd オルトメタル化パラジウム錯体からなる発光素子材料および発光素子
JP2001181617A (ja) 1999-12-27 2001-07-03 Fuji Photo Film Co Ltd オルトメタル化白金錯体からなる発光素子材料および発光素子
JP2002302671A (ja) 2000-02-10 2002-10-18 Fuji Photo Film Co Ltd イリジウム錯体からなる発光素子材料及び発光素子
JP2001257076A (ja) 2000-03-13 2001-09-21 Tdk Corp 有機el素子
JP2001345183A (ja) 2000-03-28 2001-12-14 Fuji Photo Film Co Ltd 高効率赤色発光素子、イリジウム錯体から成る発光素子材料及び新規イリジウム錯体
JP2002008860A (ja) 2000-04-18 2002-01-11 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002015871A (ja) 2000-04-27 2002-01-18 Toray Ind Inc 発光素子
JP2001313178A (ja) 2000-04-28 2001-11-09 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
JP2001313179A (ja) 2000-05-01 2001-11-09 Mitsubishi Chemicals Corp 有機電界発光素子
JP2001319779A (ja) 2000-05-02 2001-11-16 Fuji Photo Film Co Ltd 発光素子
JP2001319780A (ja) 2000-05-02 2001-11-16 Fuji Photo Film Co Ltd 発光素子
JP2002050483A (ja) 2000-05-22 2002-02-15 Showa Denko Kk 有機エレクトロルミネッセンス素子および発光材料
JP2002050484A (ja) 2000-05-22 2002-02-15 Semiconductor Energy Lab Co Ltd 発光装置および電気器具
WO2001093642A1 (en) 2000-05-30 2001-12-06 The Trustees Of Princeton University Phosphorescent organic light emitting devices
JP2002062824A (ja) 2000-06-05 2002-02-28 Semiconductor Energy Lab Co Ltd 発光装置
JP2001357977A (ja) 2000-06-12 2001-12-26 Fuji Photo Film Co Ltd 有機電界発光素子
JP2002083684A (ja) 2000-06-23 2002-03-22 Semiconductor Energy Lab Co Ltd 発光装置
JP2002023072A (ja) 2000-07-06 2002-01-23 Mitsubishi Electric Corp 光スイッチ及びその調整方法並びに組み立て方法
JP2002100476A (ja) 2000-07-17 2002-04-05 Fuji Photo Film Co Ltd 発光素子及びアゾール化合物
JP2002117978A (ja) 2000-07-17 2002-04-19 Fuji Photo Film Co Ltd 発光素子及びイリジウム錯体
JP2002043056A (ja) 2000-07-19 2002-02-08 Canon Inc 発光素子
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
JP2002141173A (ja) 2000-08-22 2002-05-17 Semiconductor Energy Lab Co Ltd 発光装置
JP2002319491A (ja) 2000-08-24 2002-10-31 Fuji Photo Film Co Ltd 発光素子及び新規重合体子
JP2002075645A (ja) 2000-08-29 2002-03-15 Semiconductor Energy Lab Co Ltd 発光装置
JP2002173674A (ja) 2000-09-21 2002-06-21 Fuji Photo Film Co Ltd 発光素子および新規レニウム錯体
JP2002170684A (ja) 2000-09-21 2002-06-14 Fuji Photo Film Co Ltd 発光素子及びイリジウム錯体
JP2002100474A (ja) 2000-09-25 2002-04-05 Kyocera Corp 有機エレクトロルミネッセンス素子
JP2002175884A (ja) 2000-09-26 2002-06-21 Canon Inc 発光素子及び発光素子用金属配位化合物
JP2002184582A (ja) 2000-09-28 2002-06-28 Semiconductor Energy Lab Co Ltd 発光装置
JP2002105445A (ja) 2000-09-29 2002-04-10 Fuji Photo Film Co Ltd 有機発光素子材料及びそれを用いた有機発光素子
JP2002203683A (ja) 2000-10-30 2002-07-19 Toyota Central Res & Dev Lab Inc 有機電界発光素子
JP2002226495A (ja) 2000-11-29 2002-08-14 Canon Inc 金属配位化合物、発光素子及び表示装置
JP2002234894A (ja) 2000-11-29 2002-08-23 Canon Inc 金属配位化合物、発光素子及び表示装置
JP2002231453A (ja) 2000-11-30 2002-08-16 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002305084A (ja) 2000-12-25 2002-10-18 Fuji Photo Film Co Ltd 新規インドール誘導体およびそれを利用した発光素子
JP2002255934A (ja) 2000-12-25 2002-09-11 Fuji Photo Film Co Ltd 新規化合物、その重合体、それらを利用した発光素子材料およびその発光素子
JP2002203678A (ja) 2000-12-27 2002-07-19 Fuji Photo Film Co Ltd 発光素子
JP2002203679A (ja) 2000-12-27 2002-07-19 Fuji Photo Film Co Ltd 発光素子
JP2002280183A (ja) 2000-12-28 2002-09-27 Toshiba Corp 有機el素子および表示装置
JP2002260861A (ja) 2001-01-02 2002-09-13 Eastman Kodak Co 有機発光デバイス
JP2002234888A (ja) 2001-02-09 2002-08-23 Mitsui Chemicals Inc アミン化合物および該化合物を含有する有機電界発光素子
JP2002235076A (ja) 2001-02-09 2002-08-23 Fuji Photo Film Co Ltd 遷移金属錯体及びそれからなる発光素子用材料、並びに発光素子
JP2002241751A (ja) 2001-02-21 2002-08-28 Fuji Photo Film Co Ltd 発光素子用材料及び発光素子
JP2002332291A (ja) 2001-03-08 2002-11-22 Canon Inc 金属配位化合物、電界発光素子及び表示装置
JP2002363552A (ja) 2001-03-08 2002-12-18 Univ Of Hong Kong 有機金属発光材料
JP2002332292A (ja) 2001-03-08 2002-11-22 Canon Inc 金属配位化合物、電界発光素子及び表示装置
JP2002334787A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334786A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334788A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334789A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002343572A (ja) 2001-03-14 2002-11-29 Canon Inc ポルフィリン誘導体化合物を用いた発光素子および表示装置
JP2002338588A (ja) 2001-03-14 2002-11-27 Canon Inc 金属配位化合物、電界発光素子及び表示装置
JP2002338579A (ja) 2001-03-16 2002-11-27 Fuji Photo Film Co Ltd ヘテロ環化合物及びそれを用いた発光素子
JP2002280179A (ja) 2001-03-16 2002-09-27 Canon Inc 有機発光素子
JP2002280180A (ja) 2001-03-16 2002-09-27 Canon Inc 有機発光素子
JP2002280178A (ja) 2001-03-16 2002-09-27 Canon Inc 有機発光素子
JP2002359082A (ja) 2001-03-28 2002-12-13 Semiconductor Energy Lab Co Ltd 有機発光素子および前記素子を用いた発光装置
JP2002299060A (ja) 2001-03-30 2002-10-11 Fuji Photo Film Co Ltd 有機発光素子
JP2002363227A (ja) 2001-04-03 2002-12-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002302516A (ja) 2001-04-03 2002-10-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002305083A (ja) 2001-04-04 2002-10-18 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002308837A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2002308855A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2003007471A (ja) 2001-04-13 2003-01-10 Semiconductor Energy Lab Co Ltd 有機発光素子および前記素子を用いた発光装置
JP2002324679A (ja) 2001-04-26 2002-11-08 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2002343568A (ja) 2001-05-10 2002-11-29 Sony Corp 有機電界発光素子
JP2002352957A (ja) 2001-05-23 2002-12-06 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2002352960A (ja) 2001-05-29 2002-12-06 Hitachi Ltd 薄膜電界発光素子
JP2003003165A (ja) 2001-06-25 2003-01-08 Showa Denko Kk 有機発光素子および発光材料
JP2003007469A (ja) 2001-06-25 2003-01-10 Canon Inc 発光素子及び表示装置
JP2003031366A (ja) 2001-07-11 2003-01-31 Semiconductor Energy Lab Co Ltd ドーパントを用いた有機発光素子および発光装置
JP2003027048A (ja) 2001-07-11 2003-01-29 Fuji Photo Film Co Ltd 発光素子
JP2004068143A (ja) 2002-06-10 2004-03-04 Konica Minolta Holdings Inc 薄膜形成方法並びに該薄膜形成方法により薄膜が形成された基材
WO2004085450A2 (en) 2003-03-24 2004-10-07 The University Of Southern California Phenyl-pyrazole complexes of ir
JP2006523231A (ja) * 2003-03-24 2006-10-12 ザ ユニバーシティ オブ サザン カリフォルニア イリジウム(Ir)のフェニル及びフルオレニル置換フェニル−ピラゾール錯体
JP2005023071A (ja) 2003-06-09 2005-01-27 Hitachi Chem Co Ltd 金属配位化合物、ポリマー組成物、およびこれらを用いた有機エレクトロルミネセンス素子
JP2007305783A (ja) * 2006-05-11 2007-11-22 Nippon Hoso Kyokai <Nhk> 発光素子
WO2008035571A1 (fr) * 2006-09-20 2008-03-27 Konica Minolta Holdings, Inc. Élément électroluminescent organique
JP2009004753A (ja) * 2007-05-18 2009-01-08 Fujifilm Corp 有機電界発光素子
WO2009003898A1 (de) 2007-07-05 2009-01-08 Basf Se Organische leuchtdioden enthaltend carben-übergangsmetall-komplex-emitter und mindestens eine verbindung ausgewählt aus disilylcarbazolen; disilyldibenzofuranen, disilyldibenzothiophenen, disilyldibenzophospholen, disilyldibenzothiophen-s-oxiden und disilyldibenzothiophen-s,s-dioxiden
WO2009060757A1 (ja) 2007-11-08 2009-05-14 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2009272339A (ja) * 2008-04-30 2009-11-19 Fujifilm Corp 有機電界発光素子
JP2010118381A (ja) * 2008-11-11 2010-05-27 Konica Minolta Holdings Inc 白色有機エレクトロルミネッセンス素子、表示装置、照明装置
JP2010135467A (ja) 2008-12-03 2010-06-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、該素子を備えた照明装置及び表示装置
JP2010254642A (ja) 2009-04-28 2010-11-11 Chemiprokasei Kaisha Ltd ジベンゾカルコゲニルピラゾールイリジウム錯体、それよりなる発光材料およびそれを含有する有機el素子

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Jikken Kagaku Koza, Bunko (spectrum) II", vol. 7, 1992, MARUZEN, pages: 398
"Shin-pen Shikisai Kagaku Handbook", 1985, UNIVERSITY OF TOKYO PRESS, pages: 108
"Yuki EL soshi to sono kogyoka saizensen", 30 November 1998, NTS INC, article "Part 2, Chapter 2: Denkyoku Zairyo", pages: 123 - 166
"Yuki EL soshi to sono kogyoka saizensen", 30 November 1998, NTS INC, pages: 237
HISAHIRO SASABE ET AL., ADVANCED MATERIALS, vol. 22, 2010, pages 5003 - 5007
J. APPL. PHYS., vol. 95, 2004, pages 5773
J. HUANG, APPLIED PHYSICS LETTERS, vol. 80, 2002, pages 139
M. A. BALDO ET AL., NATURE, vol. 395, 1998, pages 151 - 154
M. A. BALDO ET AL., NATURE, vol. 403, no. 17, 2000, pages 750 - 753
S. LAMANSKY ET AL., J. AM. CHEM. SOC., vol. 123, 2001, pages 4304
See also references of EP2677561A4
YOSHIAKI SAKURAI ET AL.: "The 71th Academic Lecture", 2010, NAGASAKI UNIVERSITY

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015530982A (ja) * 2012-08-07 2015-10-29 メルク パテント ゲーエムベーハー 金属錯体
US11917901B2 (en) 2012-08-07 2024-02-27 Udc Ireland Limited Metal complexes
WO2014092014A1 (ja) 2012-12-10 2014-06-19 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
EP2930763A4 (en) * 2012-12-10 2016-10-05 Konica Minolta Inc ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE
US10774261B2 (en) 2012-12-10 2020-09-15 Konica Minolta, Inc. Organic electroluminescence element, illumination device, and display device
WO2015046452A1 (ja) * 2013-09-27 2015-04-02 コニカミノルタ株式会社 イリジウム錯体、イリジウム錯体の製造方法、有機エレクトロルミネッセンス素子、表示装置及び照明装置
US9748501B2 (en) 2013-09-27 2017-08-29 Konica Minolta, Inc. Iridium complex, method for producing iridium complex, organic electroluminescent element, display device, and lighting device
US10177322B2 (en) 2013-09-27 2019-01-08 Konica Minolta, Inc. Iridium complex, method for producing iridium complex, organic electroluminescent element, display device, and lighting device
US20160315273A1 (en) * 2013-12-09 2016-10-27 Konica Minolta, Inc. Organic electroluminescent element, lighting device, and display device
US10797248B2 (en) * 2013-12-09 2020-10-06 Konica Minolta, Inc. Organic electroluminescent element, lighting device, and display device
US12004416B2 (en) 2020-08-31 2024-06-04 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
US11912724B2 (en) 2021-02-05 2024-02-27 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the same, and electronic apparatus including the organic light-emitting device

Also Published As

Publication number Publication date
US20130328037A1 (en) 2013-12-12
EP2677561A1 (en) 2013-12-25
US9923154B2 (en) 2018-03-20
EP2677561A4 (en) 2016-06-29
JP5853964B2 (ja) 2016-02-09
EP2677561B1 (en) 2019-08-07
JPWO2012111548A1 (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5533652B2 (ja) 白色発光有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5765223B2 (ja) 有機エレクトロルミネッセンス素子の製造方法、並びに有機エレクトロルミネッセンス素子を備えた照明装置及び表示装置
JP5853964B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5857754B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
JP5870782B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、照明装置及び表示装置
JP5577650B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
WO2010032663A1 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
JP5900001B2 (ja) 有機エレクトロルミネッセンス素子、それが具備された表示装置及び照明装置
JP5652083B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6094480B2 (ja) 有機エレクトロルミネッセンス素子、照明装置、表示装置及び有機エレクトロルミネッセンス素子の製造方法
JP5569531B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP2010278114A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5629970B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2011158544A1 (ja) 有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2012222268A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2012164731A (ja) 有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、表示装置および照明装置
JP5353006B2 (ja) 有機エレクトロルミネッセンス素子、液晶表示装置及び照明装置
JP5463897B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP5600884B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP6011535B2 (ja) 有機エレクトロルミネッセンス素子、照明装置、表示装置及び有機エレクトロルミネッセンス素子の製造方法
JP5320881B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
JP6044695B2 (ja) 有機エレクトロルミネッセンス素子、それが具備された表示装置及び照明装置
JP5833201B2 (ja) 有機エレクトロルミネッセンス素子その製造方法、照明装置及び表示装置
JP5691826B2 (ja) 有機エレクトロルミネッセンス素子、照明装置および表示装置
JP2013058673A (ja) 有機エレクトロルミネッセンス素子、照明装置および表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012557923

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012746917

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13985316

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE