WO2012111077A1 - 二次電池及び組電池 - Google Patents

二次電池及び組電池 Download PDF

Info

Publication number
WO2012111077A1
WO2012111077A1 PCT/JP2011/053058 JP2011053058W WO2012111077A1 WO 2012111077 A1 WO2012111077 A1 WO 2012111077A1 JP 2011053058 W JP2011053058 W JP 2011053058W WO 2012111077 A1 WO2012111077 A1 WO 2012111077A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
material layer
negative electrode
Prior art date
Application number
PCT/JP2011/053058
Other languages
English (en)
French (fr)
Inventor
森田 昌宏
裕喜 永井
聡美 川瀬
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2012557686A priority Critical patent/JP5664937B2/ja
Priority to US13/984,868 priority patent/US10680215B2/en
Priority to PCT/JP2011/053058 priority patent/WO2012111077A1/ja
Priority to CN201180067499.2A priority patent/CN103370810B/zh
Priority to KR1020137023634A priority patent/KR101572339B1/ko
Publication of WO2012111077A1 publication Critical patent/WO2012111077A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a secondary battery and an assembled battery formed by connecting a plurality of the secondary batteries in series.
  • lithium secondary batteries In recent years, lithium secondary batteries, nickel metal hydride batteries, and other secondary batteries have become increasingly important as on-vehicle power supplies or personal computers and portable terminals.
  • a lithium secondary battery (typically a lithium ion battery) that is lightweight and obtains a high energy density is expected to be preferably used as a high-output power source for mounting on a vehicle.
  • each unit cell (typical) is obtained by pressing each unit cell so that the length of the unit cell group (unit cell stack) arranged at the time of manufacture becomes a specified length. Even if an appropriate surface pressure can be applied mainly to the electrode body constituting the unit cell), the unit cell is deteriorated due to deterioration of the restraining member or the like in a long-term use. There was a problem that the length of the laminate changed and the surface pressure applied to each unit cell fluctuated.
  • an assembled battery typically, an assembled battery for a vehicle drive source mounted on a vehicle such as an automobile is frequently used in a state where the temperature changes drastically and vibrations occur. It is easy to change the surface pressure.
  • the present invention has been made in view of the above points, and its main purpose is a set capable of stably maintaining a surface pressure applied to each unit cell (typically, an electrode body mainly constituting the unit cell).
  • a battery and a battery that can be mounted on the assembled battery are provided.
  • the assembled battery according to the present invention is an assembled battery in which a plurality of chargeable / dischargeable cells are connected in series.
  • This assembled battery includes a plurality of unit cells each including a flat electrode body including a positive electrode and a negative electrode, and a container that accommodates the electrode body and an electrolyte.
  • the plurality of unit cells are arranged so that the flat surfaces of the electrode bodies are opposed to each other and are restrained in a state where a load is applied in the arrangement direction.
  • the spring constant with respect to the arrangement direction of the electrode bodies is 10,000 kgf / mm or less.
  • the “spring constant of the electrode body” is a proportional constant obtained by dividing the load by the displacement when a load is applied to the electrode body. Specifically, the load P is applied to the flat surface of the electrode body.
  • Spring constant k (kgf / mm) P (kgf) / X (mm) (1)
  • the “unit cell” is a term indicating individual storage elements that can be connected in series with each other to form an assembled battery, and includes batteries and capacitors of various compositions unless otherwise specified.
  • the “secondary battery” generally refers to a battery that can be repeatedly charged, and includes so-called storage batteries such as lithium ion secondary batteries and nickel metal hydride batteries.
  • the storage element constituting the lithium ion secondary battery is a typical example included in the “unit cell” referred to herein, and a lithium ion secondary battery module including a plurality of such unit cells is disclosed herein. This is a typical example of an “assembled battery”.
  • the arrangement direction of the electrode bodies Is 10000 kgf / mm or less (for example, 2000 kgf / mm to 10000 kgf / mm), particularly preferably 6000 kgf / mm or less (for example, 2000 kgf / mm to 6000 kgf / mm).
  • An assembled battery equipped with an electrode body that satisfies the above conditions is not limited to a single cell (typically, even if the length of the cell stack may fluctuate due to deterioration of the restraining member, etc.
  • the surface pressure mainly applied to the wound electrode body constituting the unit cell can be stably maintained. Therefore, even when used for a long time, the surface pressure applied to each unit cell (typically, the wound electrode body mainly constituting the unit cell) can be properly maintained, and the battery performance (particularly the output characteristics) can be improved. It can be maintained well.
  • the spring constant of the electrode body with respect to the unit cell arrangement direction (load direction) is generally about 2000 kgf / mm to 10,000 kgf / mm, preferably 2000 kgf / mm to 8000 kgf / mm, particularly preferably 2000 kgf / mm to It is 6000 kgf / mm.
  • the spring constant of the electrode body is less than 2000 kgf / mm, and the durability decreases due to a decrease in the dimensional stability of the electrode plate (positive electrode, negative electrode) and electrode body. Therefore, it is not preferable.
  • the spring constant with respect to the arrangement direction (load direction) of the electrode bodies is 5000 kgf / mm to 10,000 kgf / mm, sufficiently good performance can be obtained.
  • the electrode body includes a positive electrode in which a positive electrode active material layer containing a positive electrode active material is provided on a positive electrode current collector, and the positive electrode active material layer has a porous structure.
  • the degree is 30% to 60%.
  • the positive electrode is soft and has excellent stretchability. Therefore, it is possible to more appropriately obtain a wound electrode body having a spring constant that satisfies the above preferred range.
  • the positive electrode active material includes secondary particles in which a plurality of primary particles of a lithium transition metal oxide are aggregated, and a hollow portion formed in the secondary particles.
  • a positive electrode active material layer having an optimal porosity for example, 30% to 60%, more preferably 40% to 60%, particularly preferably 50% to 60%
  • the positive electrode active material may be a lithium transition metal oxide having a layered structure including nickel, cobalt, and manganese as constituent elements.
  • the positive electrode active material layer may have a conductive agent. In this case, it is preferable that the content rate of the electrically conductive agent in the said positive electrode active material layer is 8 mass% or more. Within the range of the content of such a conductive agent, the positive electrode is soft and excellent in stretchability. Therefore, it is possible to more appropriately obtain a wound electrode body having a spring constant that satisfies the above preferred range.
  • the electrode body includes a negative electrode in which a negative electrode current collector including a negative electrode active material is provided on a negative electrode current collector, and the negative electrode active material layer has a porous structure.
  • the degree is 30% to 60%. Within such a porosity range, the negative electrode is soft and has excellent stretchability. Therefore, it is possible to more appropriately obtain a wound electrode body having a spring constant that satisfies the above preferred range.
  • the electrode body includes a positive electrode obtained by adding a positive electrode active material layer to a long sheet-like positive electrode current collector, and a long sheet-like negative electrode current collector.
  • This is a flat wound electrode body in which a negative electrode provided with a negative electrode active material layer is wound through a separator.
  • An assembled battery formed by arranging a plurality of cells having the wound electrode body and restraining them in the arrangement direction is likely to deteriorate in performance due to variations in surface pressure (constraint pressure), and therefore the present invention can be applied. It is particularly useful.
  • the secondary battery disclosed here is a secondary battery including a flat electrode body to which a restraining load is applied from the outside of the battery container, and the spring constant of the electrode body in the load direction is 10,000 kgf / mm or less. According to this configuration, in the assembled battery in which a plurality of the secondary batteries are arranged and restrained in the arrangement direction, the surface pressure applied to each battery can be kept stable.
  • the electrode body includes a positive electrode in which a positive electrode current collector is provided with a positive electrode active material layer containing a positive electrode active material, and the positive electrode active material layer has a porosity of 30% to 60%.
  • the positive electrode active material may include secondary particles in which a plurality of primary particles of a lithium transition metal oxide are aggregated and a hollow portion formed in the secondary particles.
  • the positive electrode active material may be a lithium transition metal oxide having a layered structure including nickel, cobalt, and manganese as constituent elements.
  • the positive electrode active material layer may include a conductive agent, and the content ratio of the conductive agent in the positive electrode active material layer may be 8% by mass or more.
  • the electrode body includes a negative electrode in which a negative electrode current collector is provided with a negative electrode active material layer containing a negative electrode active material, and the porosity of the negative electrode active material layer is 30% to 60%. .
  • any of the assembled batteries disclosed herein is suitable as an assembled battery mounted on a vehicle because it can stably maintain the surface pressure applied to each unit cell even when used in a state where the temperature changes drastically and vibrations occur. With outstanding performance. Therefore, according to this invention, a vehicle provided with the assembled battery disclosed here is provided.
  • a vehicle for example, an automobile
  • the assembled battery as a power source (typically, a power source of a hybrid vehicle or an electric vehicle) is provided.
  • FIG. 1 is a perspective view schematically showing a configuration of an assembled battery according to an embodiment of the present invention.
  • FIG. 2 is a side view schematically showing the configuration of the assembled battery according to one embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a method of measuring the spring constant of the electrode body.
  • FIG. 4 is a graph showing the relationship between the displacement X and the load P.
  • FIG. 5 is a diagram schematically showing a configuration of a secondary battery according to an embodiment of the present invention.
  • FIG. 6 is a diagram schematically showing a configuration of a wound electrode body according to an embodiment of the present invention.
  • FIG. 7 is a graph showing the relationship between the electrode body spring constant and the ⁇ 30 ° C. output / 25 ° C. output.
  • FIG. 8 is a graph showing the relationship between the constraint displacement and the output change rate.
  • FIG. 9 is a diagram schematically showing the configuration of the positive electrode active material according to one embodiment of the present invention.
  • FIG. 10 is a diagram schematically showing the configuration of the positive electrode active material according to one embodiment of the present invention.
  • FIG. 11 is a side view schematically showing a vehicle (automobile) provided with the assembled battery according to one embodiment of the present invention.
  • the assembled battery according to the present invention can be suitably used particularly as a vehicle driving power source (motor (electric motor) power source) mounted on a vehicle such as an automobile.
  • a vehicle driving power source motor (electric motor) power source
  • the present invention is a vehicle (typically, an automobile equipped with an electric motor such as a hybrid automobile, an electric automobile, and a fuel cell automobile) provided with such an assembled battery 10 as a power source. 1 is provided.
  • the assembled battery disclosed herein may be an assembled battery in which single cells (typically, single cells having a flat outer shape) are arranged and constrained in the arrangement direction (stacking direction).
  • the type of is not particularly limited.
  • a nickel-metal hydride battery, an electric double layer capacitor, etc. are mentioned as a suitable cell for implementation of this invention.
  • the single battery suitable for carrying out the present invention is a lithium ion secondary battery. Since the lithium ion secondary battery is a secondary battery capable of realizing a high output with a high energy density, it is possible to construct a high-performance assembled battery, particularly an assembled battery (battery module) mounted on a vehicle.
  • the present invention will be described in detail below using an example of an assembled battery in which a flat lithium ion secondary battery is a single battery and a plurality of the single batteries are connected in series. Explained.
  • the unit cell used as a component of the assembled battery according to the embodiment described below may be the same as the unit cell equipped in a typical assembled battery except for the configuration of the wound electrode body 80 described later.
  • a wound electrode body provided with predetermined battery constituent materials positive and negative active materials, positive and negative current collectors, separators, etc.
  • the wound electrode body and an appropriate electrolyte are accommodated.
  • the assembled battery 10 has a predetermined number (typically 10 or more, preferably about 10 to 100, more preferably about 30 to 100, For example, 50) of unit cells 12 having the same shape.
  • the unit cell 12 includes a container 14 having a shape (a flat box shape in this embodiment) that can accommodate a flat wound electrode body to be described later.
  • the upper surface of the container 14 is provided with a positive electrode terminal 15 electrically connected to the positive electrode of the wound electrode body 80 and a negative electrode terminal 16 electrically connected to the negative electrode. As shown in the figure, one positive terminal 15 and the other negative terminal 16 are electrically connected by a connector 17 between adjacent unit cells 12.
  • the assembled battery 10 of the desired voltage is constructed
  • These containers 14 may be provided with a safety valve or the like for venting the gas generated inside the container as in the case of a conventional single cell container. Since the configuration of the container 14 itself does not characterize the present invention, a detailed description is omitted.
  • the material of the container 14 is not particularly limited as long as it is the same as that used in the conventional unit cell.
  • a thin metal or synthetic resin battery case may be used.
  • a metal container whose surface is preferably coated with an insulating resin coating, a polyolefin resin such as polypropylene, and other synthetic resin containers are suitable.
  • the container 14 according to the present embodiment is made of, for example, aluminum.
  • a plurality of unit cells 12 having the same shape are disposed in the container 14 while being inverted one by one so that the positive terminals 15 and the negative terminals 16 are alternately arranged at a constant interval.
  • a wide surface (that is, a surface corresponding to a flat surface of a wound electrode body 80 described later housed in the container 14) 14C is arranged in a facing direction.
  • a pair of end plates 18 and 19 are disposed on both outsides in the unit cell arrangement direction (unit cell stacking direction).
  • a fastening band 21 for fastening is attached so as to bridge both end plates 18 and 19.
  • the whole cell group and end plates 18 and 19 arranged in this way are defined in the cell arrangement direction by a fastening band 21 for fastening attached so as to bridge both end plates 18 and 19. It is restrained by the restraining pressure 92. More specifically, as shown in FIG. 2, by tightening and fixing the end portion of the restraining band 21 to the end plate 18 with screws 22, the unit cells 12 are subjected to a predetermined restraining pressure (for example, a container side wall is subjected to the arrangement direction).
  • the surface pressure can be constrained so that a pressure of about 5 kgf / cm 2 to 10 kgf / cm 2 is applied.
  • the length of the cell stack 20 constrained by such a prescribed restraining pressure is a prescribed length L.
  • each unit cell 12 (typically) is brought into pressure contact with each other so that the length of the arranged unit cell group (unit cell stack) 20 becomes the specified length L.
  • an appropriate surface pressure is mainly applied to the electrode body 80) constituting the unit cell 12.
  • the unit cells 12 are press-contacted so that the length of the unit cell group (unit cell stack) 20 arranged at the time of manufacture becomes the specified length L.
  • the cell unit 12 is restricted in long-term use.
  • the length of the unit cell stack 20 changes due to deterioration of the members (end plates 18 and 19, the restraining band 21 and the screw 22), and each unit cell 12 (typically, the unit cell mainly)
  • the surface pressure applied to the electrode body 80) constituting 12 will fluctuate.
  • an assembled battery typically, an assembled battery for a vehicle driving power source mounted on a vehicle such as an automobile is frequently used in a state where the temperature changes severely and vibrations occur. This is likely to occur and the surface pressure tends to fluctuate.
  • a wound electrode body 80 having a spring constant of 10000 kgf / mm or less with respect to the arrangement direction (load direction) is used.
  • the assembled battery 10 provided with the wound electrode body 80 that satisfies the above conditions is a single cell laminate as shown in a test example to be described later due to deterioration of a restraining member or the like. Even if the length of 20 may vary, the surface pressure applied to each unit cell 12 (typically, the wound electrode body 80 mainly constituting the unit cell) can be stably maintained. . Therefore, even when used for a long time, the surface pressure applied to each unit cell 12 can be maintained appropriately, and the battery performance (particularly the output characteristics) can be maintained well.
  • the spring constant of the wound electrode body 80 is a proportional constant obtained by dividing the load by the displacement when a load is applied to the wound electrode body 80.
  • the spring constant can be measured using, for example, a compression tester shown in FIG.
  • the wound electrode body 80 is accommodated in the container 14, and a pair of flat plates 90 are brought into contact with both sides of the wide surface 14 ⁇ / b> C of the container 14.
  • the container 14 is sandwiched between the pair of flat plates 90 from both sides, and a load is applied to the flat surface 80A of the wound electrode body 80 to compress it.
  • the relationship between the load magnitude P and the displacement X at this time is shown in FIG.
  • Curves A and B in FIG. 4 show the relationship between the load P and the displacement X for different wound electrode bodies 80, the horizontal axis is the displacement X (mm), and the vertical axis is the load P ( kgf).
  • the load P applied to the wound electrode body 80 is increased, the wound electrode body 80 is compressed and deformed in the thickness direction.
  • the load P applied to the wound electrode body 80 and the displacement X are approximately proportional to each other, and the inclination thereof is approximately represented by P / X.
  • the slope P / X of this curve corresponds to the spring constant k. That is, the spring constant k is expressed by the following formula (1), and is calculated from the load P applied to the wound electrode body 80 and the displacement X at that time.
  • Spring constant k P / X (1)
  • the wound electrode body according to the curve A in FIG. 4 has a gentler slope and a smaller spring constant than the wound electrode body according to the curve B.
  • the variation of the load P accompanying the increase / decrease of the displacement X (for example, X1 ⁇ X2) becomes small ( ⁇ P1 ⁇ P2). Therefore, in the assembled battery 10 provided with the wound electrode body 80, even if the length of the cell stack 20 (FIG. 2) may change due to deterioration of the restraining member or the like, By reducing the spring constant of the wound electrode body, it is possible to suppress the variation of the restraint load accompanying the change in the length of the unit cell stack 20 (FIG. 2) and to keep the battery performance favorable.
  • a spring constant with respect to the arrangement direction (load direction) of the wound electrode body about 2000 kgf / mm to 10,000 kgf / mm is appropriate, preferably 2000 kgf / mm to 8000 kgf / mm, particularly preferably 2000 kgf / mm to It is 6000 kgf / mm.
  • An assembled battery in which the spring constant of the electrode body exceeds 10,000 kgf / mm is obtained when each unit cell 12 (typically, when the length of the unit cell stack 20 changes due to deterioration of the restraining member or the like. May not be able to stably maintain the surface pressure mainly applied to the wound electrode body 80) constituting the unit cell 12.
  • the spring constant of the wound electrode body is less than 2000 kgf / mm, and durability is reduced by reducing the dimensional stability of the electrode plate (positive electrode, negative electrode) and electrode body. Since it falls, it is not preferable.
  • the spring constant with respect to the arrangement direction (load direction) 92 of the wound electrode body 80 is 5000 kgf / mm to 10,000 kgf / mm, sufficiently good performance can be obtained.
  • FIG. 5 is a diagram schematically showing a unit cell (unit cell used as a component of the assembled battery 10) 12 according to the present embodiment
  • FIG. 6 shows a wound electrode body 80 according to an embodiment of the present invention. It is a figure shown typically.
  • the lithium secondary battery (unit cell used as a component of the assembled battery 10) 12 according to the present embodiment 12 is a metal container 14 (a resin or a laminate film is also suitable). Is provided.
  • the container 14 includes a flat rectangular parallelepiped container body 14B having an open upper end, and a lid body 14A that closes the opening.
  • a positive electrode terminal 15 that is electrically connected to the positive electrode 30 of the wound electrode body 80 and a negative electrode terminal 16 that is electrically connected to the negative electrode 50 of the electrode body are provided. Yes.
  • a long sheet-like positive electrode (positive electrode sheet) 30 and a long sheet-like negative electrode (negative electrode sheet) 50 are laminated together with a total of two long sheet-like separators (separator sheets) 40.
  • a flat wound electrode body 80 produced by winding and then crushing the resulting wound body from the side direction and kidnapping is housed.
  • the wound electrode body 80 is formed by winding a sheet-like electrode body 85 as shown in FIG.
  • the sheet-like electrode body 85 has a long (strip-like) sheet structure in a stage before assembling the wound electrode body 80.
  • the sheet-like electrode body 85 is formed by laminating the positive electrode sheet 30 and the negative electrode sheet 50 together with two separator sheets 40 in the same manner as a typical wound electrode body.
  • the positive electrode sheet 30 is formed by adhering a positive electrode active material layer 34 to both surfaces of a long sheet-like foil-shaped positive electrode current collector 32.
  • the positive electrode active material layer 34 is not attached to one side edge along the edge in the width direction of the sheet-like electrode body, and the positive electrode current collector 32 is exposed with a certain width.
  • an aluminum foil (this embodiment) or other metal foil suitable for the positive electrode is preferably used.
  • the positive electrode active material layer 34 includes a positive electrode active material and other positive electrode active material layer forming components (for example, a conductive material and a binder) that are used as necessary.
  • the positive electrode active material layer 34 is coated on the positive electrode current collector 32 with a paint containing a positive electrode active material layer forming component and a solvent (a composition for forming a positive electrode active material layer), dried, and if necessary. It is formed by rolling.
  • the positive electrode active material one type or two or more types of materials conventionally used in lithium secondary batteries can be used without any particular limitation.
  • lithium and a transition metal element such as lithium manganese oxide (LiMn 2 O 4 ), lithium cobalt oxide (LiCoO 2 ), and lithium nickel oxide (LiNiO 2 ) are used.
  • a positive electrode active material mainly containing an oxide containing a constituent metal element lithium transition metal oxide
  • a positive electrode active material typically, substantially a lithium nickel cobalt manganese composite oxide substantially composed of lithium nickel cobalt manganese composite oxide (for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 ).
  • Application to a positive electrode active material comprising:
  • the lithium nickel cobalt manganese composite oxide is an oxide having Li, Ni, Co, and Mn as constituent metal elements, and at least one other metal element in addition to Li, Ni, Co, and Mn (that is, It also includes oxides containing transition metal elements and / or typical metal elements other than Li, Ni, Co, and Mn.
  • a metal element can be, for example, one or more elements selected from the group consisting of F, B, W, Mo, Cr, Ta, Nb, V, Zr, Ti, and Y. The same applies to lithium nickel oxide, lithium cobalt oxide, and lithium manganese oxide.
  • M is one or more elements selected from the group consisting of F, B, W, Mo, Cr, Ta, Nb, V, Zr, Ti and Y. 0 ⁇ x ⁇ 0. 2, 0.3 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 0.6, 0 ⁇ ⁇ ⁇ 0.3.) It can be.
  • lithium transition metal oxide typically particulate
  • a lithium transition metal oxide powder prepared by a conventionally known method can be used as it is.
  • lithium transition metal oxide powder substantially composed of secondary particles having an average particle size in the range of about 1 ⁇ m to 25 ⁇ m can be preferably used as the positive electrode active material.
  • Examples of the conductive material include carbon materials such as carbon powder and carbon fiber. One kind selected from such conductive materials may be used alone, or two or more kinds may be used in combination.
  • As the carbon powder various carbon blacks (for example, acetylene black, oil furnace black, graphitized carbon black, carbon black, graphite, ketjen black), graphite powder, and the like can be used.
  • a polymer that is soluble or dispersible in a solvent used in a coating material for forming a positive electrode active material layer (a composition for forming a positive electrode active material layer) can be used.
  • a cellulose polymer such as carboxymethyl cellulose (CMC) or hydroxypropylmethyl cellulose (HPMC)
  • PVA polyvinyl alcohol
  • PVP polytetrafluoro Fluorine resins
  • PTFE tetrafluoroethylene-hexafluoropropylene copolymer
  • SBR styrene butadiene rubber
  • Water-soluble or water-dispersible polymers such as rubbers such as latex
  • rubbers such as latex
  • a polymer such as polyvinylidene fluoride (PVDF) or polyvinylidene chloride (PVDC) can be preferably used.
  • PVDF polyvinylidene fluoride
  • PVDC polyvinylidene chloride
  • the polymer material illustrated above may be used for the purpose of exhibiting functions as a thickener and other additives of the composition in addition to the function as a binder.
  • the solvent any of an aqueous solvent and a non-aqueous solvent can be used.
  • a preferred example of the non-aqueous solvent is N-methyl-2-pyrrolidone (NMP).
  • the mass ratio of the positive electrode active material to the entire positive electrode active material layer is preferably about 50% by mass or more (typically 50 to 95% by mass), and usually about 70 to 95% by mass (for example, 75 to 90%). (Mass%) is more preferable.
  • the proportion of the conductive material in the entire positive electrode active material layer can be, for example, about 2 to 20% by mass, and is usually preferably about 5 to 15% by mass.
  • the ratio of the binder to the whole positive electrode active material layer can be, for example, about 1 to 10% by mass, and usually about 2 to 5% by mass is preferable.
  • the negative electrode sheet 50 is formed by adhering a negative electrode active material layer 54 to both surfaces of a long sheet-like foil-shaped negative electrode current collector 52.
  • the negative electrode active material layer 54 is not attached to one side edge along the edge in the width direction of the sheet-like electrode body, and the negative electrode current collector 52 is exposed with a certain width.
  • copper foil (this embodiment) or other metal foil suitable for the negative electrode is preferably used.
  • the negative electrode active material layer 54 is composed of a negative electrode active material and other negative electrode active material layer forming components (such as a binder) used as necessary.
  • the negative electrode active material layer 54 is coated on the negative electrode current collector 52 with a paint (a composition for forming a negative electrode active material layer) containing a negative electrode active material layer forming component and a solvent, dried, and if necessary. It is formed by rolling.
  • a paint a composition for forming a negative electrode active material layer
  • the negative electrode active material one type or two or more types of materials conventionally used in lithium secondary batteries can be used without any particular limitation.
  • a particulate carbon material including a graphite structure (layered structure) at least in part. More specifically, so-called graphitic (graphite), non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon), and a carbon material that combines these can be used.
  • graphite particles such as natural graphite can be used.
  • Other examples include lithium-containing transition metal oxides and transition metal nitrides.
  • the negative electrode active material layer the same binder and conductive material as those used for the positive electrode active material layer can be used.
  • the negative electrode active material layer may be mixed with various polymers that function as a thickener for the paint (a composition for forming a negative electrode active material layer).
  • the ratio of the negative electrode active material to the entire negative electrode active material layer can be about 80% by mass or more (for example, 80 to 99% by mass). Further, the proportion of the negative electrode active material in the entire negative electrode active material layer is preferably about 90% by mass or more (eg, 90 to 99% by mass, more preferably 95 to 99% by mass). In the composition using a binder, the proportion of the binder in the whole negative electrode active material layer can be, for example, about 0.5 to 10% by mass, and usually about 1 to 5% by mass.
  • the separator sheet 40 which is a member that separates the positive electrode sheet 30 and the negative electrode sheet 50, is composed of a strip-shaped sheet material having a predetermined width and having a plurality of minute holes.
  • a single layer structure separator or a multilayer structure separator made of a porous polyolefin-based resin can be used.
  • a separator is unnecessary (that is, in this case, the electrolyte itself can function as a separator).
  • the positive electrode sheet 30 and the negative electrode sheet 50 are laminated via the separator sheet 40.
  • the positive electrode sheet 30 and the negative electrode sheet so that the positive electrode active material layer non-formation portion 84 of the positive electrode sheet 30 and the negative electrode active material layer non-formation portion 86 of the negative electrode sheet 50 protrude from both sides in the width direction of the separator sheet 40. And 50 are slightly shifted in the width direction.
  • the laminated body thus stacked is wound, and then the obtained wound body is crushed from the side surface direction and ablated, whereby a flat wound electrode body 80 can be produced.
  • a wound core portion 82 (that is, the positive electrode active material layer 34 of the positive electrode sheet 30, the negative electrode active material layer 54 of the negative electrode sheet 50, and the separator sheet 40 is densely arranged in the central portion of the wound electrode body 80 in the winding axis direction. Laminated portions) are formed. Moreover, the electrode active material layer non-formation part of the positive electrode sheet 30 and the negative electrode sheet 50 protrudes outward from the winding core part 82 at both ends in the winding axis direction of the wound electrode body 80, respectively.
  • the positive electrode lead terminal 38 and the negative electrode lead terminal 58 are respectively provided on the positive electrode side protruding portion (that is, the portion where the positive electrode active material layer 34 is not formed) 84 and the negative electrode side protruding portion (that is, the portion where the negative electrode active material layer 54 is not formed) 86. Attached and electrically connected to the positive terminal 15 and the negative terminal 16 described above.
  • the wound electrode body 80 having such a configuration is accommodated in the container body 14B such that the flat surface thereof faces the wide surface of the container body 14B, and an appropriate nonaqueous electrolytic solution is disposed (injected) in the container body 14B.
  • the electrolyte is lithium salt such as LiPF 6, for example.
  • an appropriate amount (for example, concentration 1M) of a lithium salt such as LiPF 6 is dissolved in a non-aqueous electrolyte (non-aqueous electrolyte) such as a mixed solvent of diethyl carbonate and ethylene carbonate (for example, a mass ratio of 1: 1). It can be used as an electrolytic solution.
  • the opening of the container body 14B is sealed by welding or the like with the lid body 14A, whereby the lithium ion secondary battery (single battery used as a component of the assembled battery 10) 12 according to the present embodiment is constructed.
  • positioning (injection) process of electrolyte solution can be performed similarly to the method currently performed by manufacture of the conventional battery.
  • the battery is conditioned (initial charge / discharge). You may perform processes, such as degassing and a quality inspection, as needed.
  • the lithium secondary battery 12 including the wound electrode body 80 can be constructed.
  • the wound electrode body 80 has a spring constant of 10,000 kgf / mm. The following are used.
  • the wound electrode body 80 that satisfies the above conditions can be realized, for example, by appropriately selecting the porosity of the positive electrode active material layer 34. That is, the spring constant of the wound electrode body 80 can be controlled by appropriately selecting the porosity of the positive electrode active material layer.
  • the porosity of the positive electrode active material layer 34 approximately 30% or more is appropriate, preferably 40% or more, and particularly preferably 50% or more. Within such a porosity range, the positive electrode sheet 30 is soft and has excellent stretchability. Therefore, the wound electrode body 80 satisfying a spring constant of 10,000 kgf / mm or less can be formed more appropriately.
  • the porosity of the positive electrode active material layer 34 may reduce the contact between the positive electrode active material and the particles of the conductive material, thereby reducing the output characteristics.
  • the strength may be insufficient.
  • the porosity of the positive electrode active material layer is approximately 30% to 70%, preferably 30% to 65%, and particularly preferably 30% to 60%.
  • Other methods for realizing the wound electrode body 80 that satisfies the preferable spring constant conditions disclosed herein include a method of appropriately selecting the content ratio of the conductive material in the positive electrode active material layer. That is, the spring constant of the wound electrode body 80 can be controlled by appropriately selecting the content ratio of the conductive material in the positive electrode active material layer.
  • the content ratio of the conductive material in the positive electrode active material layer is generally about 5% by mass or more, preferably 6% by mass or more, and particularly preferably 8% by mass or more.
  • the positive electrode sheet 30 is soft and has excellent stretchability. Therefore, the wound electrode body 80 satisfying a spring constant of 10,000 kgf / mm or less can be formed more appropriately.
  • the content of the conductive material is appropriately 5% by mass to 20% by mass, and preferably 8% by mass to 15% by mass.
  • the spring constant of the wound electrode body 80 can be controlled by appropriately selecting the porosity of the negative electrode active material layer 54.
  • the porosity of the negative electrode active material layer 54 is appropriately about 30% or more, preferably 40% or more, and particularly preferably 50% or more. When the porosity is within such a range, the negative electrode sheet 50 is soft and excellent in stretchability. Therefore, the wound electrode body 80 satisfying a spring constant of 10,000 kgf / mm or less can be formed more appropriately.
  • the porosity of the negative electrode active material layer 54 may cause the strength of the negative electrode active material layer 54 to be insufficient.
  • the porosity is generally 70% or less (for example, 30% to 70%), preferably 65% or less (for example, 30% to 65%), and particularly preferably 60%. % Or less (for example, 30% to 60%).
  • the wound electrode body 80 can be formed by winding the positive electrode sheet 30, the negative electrode sheet 50, and the two separator sheets 40 while pulling.
  • the spring constant of the wound electrode body can be controlled by selecting the tension for winding the positive electrode sheet 30, the negative electrode sheet 50, and the two separator sheets 40. That is, by appropriately selecting the tension when winding the positive electrode sheet 30, the negative electrode sheet 50, and the two separator sheets 40, the wound electrode body 80 that satisfies a spring constant of 10,000 kgf / mm or less is more appropriately used. Can be formed.
  • the above-described methods for controlling the spring constant can be used alone or in combination.
  • the porosity is the ratio of pores in the positive electrode active material layer 34 and the negative electrode active material layer 54.
  • the porosity of the positive electrode active material layer 34 includes the mass W of the positive electrode active material layer 34, the apparent volume V of the positive electrode active material layer 34, and the true density ⁇ (including voids) of the positive electrode active material layer 34. (Value obtained by dividing the mass W by the actual volume not present), and can be obtained by (1 ⁇ W / ⁇ V) ⁇ 100. Also, the porosity can be grasped using a mercury porosimeter.
  • a method of manufacturing an assembled battery including a secondary battery having a wound electrode body adjusted to have a spring constant of 10,000 kgf / mm or less can be provided.
  • the manufacturing method constructs a secondary battery having a wound electrode body adjusted to have a spring constant of 10,000 kgf / mm or less; and Constructing an assembled battery by arranging the secondary batteries in a plurality of arrangement directions and restraining in the arrangement direction; Is included.
  • the wound electrode body adjusted to have a spring constant of 10000 kgf / mm or less is a constituent member of the wound electrode body (the porosity of the positive electrode active material layer and the negative electrode active material layer, the conductive material) Content ratio, etc.) and / or forming conditions when forming the wound electrode body (for example, forming conditions such as tension when winding the positive electrode sheet, the negative electrode sheet, and the two separator sheets) within the above appropriate range.
  • forming conditions such as tension when winding the positive electrode sheet, the negative electrode sheet, and the two separator sheets
  • the matter disclosed herein is a method of manufacturing a secondary battery having a wound electrode body adjusted to have a spring constant of 10,000 kgf / mm or less, and the wound electrode body is configured.
  • Constituent members porosity of positive electrode active material layer and negative electrode active material layer, content ratio of conductive material, etc.
  • / or formation conditions for forming the wound electrode body eg positive electrode sheet, negative electrode sheet, and two separators
  • Forming conditions such as tension when winding the sheet
  • a secondary battery manufacturing method including: constructing a lithium secondary battery using the rotating electrode body.
  • the secondary battery manufactured by such a method can be suitably used as a component (unit cell) of an assembled battery.
  • the assembled battery has performance suitable as an assembled battery mounted on a vehicle (for example, low performance deterioration even when used for a long period of time), and can be particularly excellent in durability against temperature changes.
  • the secondary battery manufacturing method can also be grasped as a method of adjusting the spring constant of the wound electrode body included in the secondary battery to a predetermined range (for example, a range of 2000 kgf / mm to 10,000 kgf / mm).
  • a secondary battery manufacturing method including the feature of measuring (calculating) the spring constant of the wound electrode body.
  • the secondary battery manufacturing method forms a wound electrode body by winding a positive electrode sheet and a negative electrode sheet through a separator sheet; Measuring (calculating) the spring constant of the wound electrode body; and Based on the measured spring constant, it is determined whether or not the wound electrode body is a non-defective product (for example, whether or not it falls within the range of 2000 kgf / mm to 10000 kgf / mm). Constructing a secondary battery using the body; Is included.
  • the secondary battery manufactured by such a method can be suitably used as a component (unit cell) of an assembled battery.
  • the secondary battery manufacturing method can also be grasped as a method for evaluating the spring constant of the wound electrode body included in the secondary battery.
  • Li 1.15 Ni 0.33 Co 0.33 Mn 0.33 O 2 powder as the positive electrode active material, acetylene black (AB) as the conductive material, and polyvinylidene fluoride (PVdF) as the binder have a mass ratio of 87 Was mixed in N-methyl-2-pyrrolidone (NMP) so that the ratio was 10: 3 to prepare a composition for forming a positive electrode active material layer.
  • NMP N-methyl-2-pyrrolidone
  • the basis weight (coating amount) of the composition for forming a positive electrode active material layer was adjusted so as to be about 10 mg / cm 2 (solid content basis) for both surfaces. After drying, the positive electrode active material layer was pressed (rolled) so as to have a predetermined porosity. Table 1 shows the porosity of the positive electrode active material layer thus obtained. In Examples 1 and 2, since the hollow part was formed in the active material particles, the voids in the positive electrode active material layer increased due to the hollow part, and the porosity of the positive electrode active material layer exceeded 30%.
  • Negative electrode sheet Graphite powder as the negative electrode active material, styrene butadiene rubber (SBR) as the binder, and carboxymethyl cellulose (CMC) as the thickener are added to water so that the mass ratio of these materials is 98: 1: 1.
  • a composition for forming a negative electrode active material layer was prepared by dispersing. This composition for forming a negative electrode active material layer was applied to both sides of a long sheet-like 10 ⁇ m thick copper foil (negative electrode current collector 52), and a negative electrode active material layer 54 was provided on both sides of the negative electrode current collector 52.
  • a negative electrode sheet 50 was produced.
  • the basis weight (coating amount) of the composition for forming a negative electrode active material layer was adjusted to be about 6 mg / cm 2 (solid content basis) for both surfaces. After drying, the negative electrode active material layer was pressed (rolled) so as to have a predetermined porosity. Table 1 shows the porosity of the negative electrode active material layer thus obtained. In Examples 1 and 2, by reducing the rolling rate of the negative electrode active material layer, the number of pores in the negative electrode active material layer increased, and the porosity of the negative electrode active material layer exceeded 30%.
  • Test Example 3 wound electrode body
  • the positive electrode sheet 30 and the negative electrode sheet 50 obtained in Test Examples 1 and 2 are wound through the separator sheet 40, and the wound electrode body is flattened by crushing the wound wound electrode body from the side surface direction.
  • a body 80 was produced.
  • the separator sheet 40 was made of porous polypropylene having a thickness of 25 ⁇ m.
  • Test Example 5 Lithium secondary battery
  • the wound electrode body 80 of each example obtained in the test example 3 was combined with the nonaqueous electrolyte solution in the box-type battery container 14 (that is, the size was 110 mm (long side) ⁇ 15 mm (short side) ⁇ 90 mm ( Height) and the case was accommodated in an aluminum square case having a thickness of 0.5 mm over the entire circumference.
  • the lithium secondary battery 12 was assembled by sealing the opening part of the battery container 14 airtightly.
  • a mixed solvent containing ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) in a volume ratio of 3: 4: 3 contains about 1 mol / liter of LiPF 6 as a supporting salt.
  • the non-aqueous electrolyte solution contained at a concentration of was used. Thereafter, an initial charge / discharge treatment (conditioning) was performed by a conventional method.
  • the rated capacity of the lithium secondary battery 12 is 5 Ah.
  • Test Example 6 Battery pack
  • Fifty lithium secondary batteries 12 of each example obtained in Test Example 5 above were prepared, arranged so that the flat surfaces of the electrode bodies face each other, and constrained in the arrangement direction.
  • An assembled battery 10 was constructed (see FIGS. 1 and 2).
  • end plates 18 and 19 are arranged at both ends of the arrayed battery group (unit cell stack) 20, and the end plates 18 and 19 are fastened and fixed, so that about 10 kgf / A restraint pressure of cm 2 was applied.
  • the interval between the end plates 18 and 19 at this time (the length of the cell stack 20) is defined as a specified length L.
  • Test Example 7 25 ° C output measurement
  • the 25 ° C. output of each assembled battery obtained in Test Example 6 was measured.
  • the 25 ° C. output was determined by the following procedure in a temperature atmosphere of 25 ° C.
  • Procedure 1 Discharged to 3 V by constant current discharge of 1C.
  • Procedure 2 After charging to 4.1 V by constant current charging at 1 C, charging was performed by constant voltage charging until the total charging time was 2 hours. As a result, the state of charge (SOC 50%) was about 50% of the rated capacity.
  • Procedure 3 Rested for 5 minutes at SOC 50%.
  • Procedure 4 Discharge was performed at a constant wattage from a state of SOC 50%, and the discharge time until reaching 2V was measured.
  • Procedure 5 The constant watt condition in the above procedure 4 was changed in the range of 5 to 60 W and repeated. Then, the discharge time up to 2V measured under each W condition is taken on the horizontal axis, W at that time is taken on the vertical axis, and W at 10 seconds is calculated from the approximate curve. This was 25 ° C. output.
  • Test Example 8 -30 ° C output measurement
  • the ⁇ 30 ° C. output of the assembled battery of each example obtained in Test Example 6 was measured. Then, the value of the ratio of -30 ° C. output / 25 ° C. output was relatively evaluated as a value indicating the decrease in output due to storage at ⁇ 30 ° C.
  • the -30 ° C output was determined by the following procedure.
  • Procedure 1 Discharge to 3 V by constant current discharge of 1 C in a temperature atmosphere of 25 ° C.
  • Procedure 2 After charging to 4.1 V by constant current charging at 1 C in a temperature atmosphere of 25 ° C., charging was performed by constant voltage charging until the total charging time was 2 hours.
  • the state of charge (SOC 50%) was about 50% of the rated capacity.
  • Procedure 3 Incubated for 5 hours in a temperature atmosphere of ⁇ 30 ° C.
  • Procedure 4 Discharge was performed at a constant wattage from an SOC of 50% in an atmosphere of ⁇ 30 ° C., and the discharge time until reaching 1.5V was measured.
  • Procedure 5 The constant watt condition in the above procedure 4 was changed in the range of 5 to 60 W and repeated. Then, the discharge time up to 1.5 V measured under each W condition is taken on the horizontal axis, W at that time is taken on the vertical axis, and W at 10 seconds is calculated from the approximate curve. This was set to ⁇ 30 ° C. output. The ratio of the -30 ° C.
  • FIG. 7 is a graph showing the relationship between the electrode body spring constant and the ⁇ 30 ° C. output / 25 ° C. output.
  • the horizontal axis represents the electrode body spring constant (kgf / mm), and the vertical axis represents ⁇ 30 ° C. output / 25 ° C. output. It is. It can be said that the larger the output at ⁇ 30 ° C./25° C., the smaller the decrease in output due to storage at ⁇ 30 ° C.
  • FIG. 8 is a graph showing the relationship between the length displacement and the output change rate, in which the horizontal axis indicates the length displacement and the vertical axis indicates the output change rate.
  • the length displacement was determined from [(L ⁇ d) / L] ⁇ 100 from the specified length L and an arbitrary length d.
  • the spring constant of the electrode body is 10,000 kgf / mm or less (Examples 1 and 2), preferably 8000 kgf / mm or less, particularly preferably 6000 kgf / mm or less (Examples). 1).
  • Example 1 the restraint pressure applied to each unit cell is 10 kgf / cm 2 , 20 kgf / cm 2 , in the order of length displacement of 0%, 1%, 2%, 3%, 5%, and 7%. 30kgf / cm 2, 40kgf / cm 2, 60kgf / cm 2, was varied and 80kgf / cm 2. Further, in Example 2, the restraint pressure applied to each unit cell is 10 kgf / cm 2 , 30 kgf / cm 2 , 50 kgf / cm in the order of length displacement 0%, 1%, 2%, 3%, 4%. 2, 70kgf / cm 2, was varied and 90kgf / cm 2.
  • Comparative Example 1 0% in length displacement, 1% to 2% of the order confining pressure applied to the respective unit cells, it varies with 10kgf / cm 2, 40kgf / cm 2, 70kgf / cm 2.
  • Comparative Example 2 0% length displacement, 1%, 2% of the order confining pressure applied to the respective unit cells, varies with 10kgf / cm 2, 50kgf / cm 2, 90kgf / cm 2. From this result, it was confirmed that the smaller the spring constant of the electrode body, the smaller the variation of the restraint pressure due to the length displacement.
  • the spring constant of the electrode body is 10000 kgf / mm or less
  • the restraining pressure applied to each unit cell is 10 kgf / cm 2 to 100 kgf / cm 2 (preferably 10 kgf / cm 2 to 80 kgf / cm 2 , particularly preferably 10 kgf / cm 2 to 50 kgf / cm 2 ).
  • the positive electrode active material made of solid particles has a limit in increasing the porosity of the positive electrode active material layer 34. For this reason, in order to increase the porosity of the positive electrode active material layer 34, it is important to select a positive electrode active material suitable for it.
  • the present inventor has considered selecting a positive electrode active material that has pores in the positive electrode active material itself and increases the porosity of the positive electrode active material layer 34.
  • the positive electrode active material may have a particle structure in which particles of the positive electrode active material are granulated by a spray-drying method and have minute pores therein.
  • the porosity of the positive electrode active material layer 34 can also be increased by using such a positive electrode active material.
  • the positive electrode active material may be formed of secondary particles 64 in which a plurality of primary particles 66 of a lithium transition metal oxide are aggregated.
  • a positive electrode active material 60a in which the hollow portion 62 is formed in the secondary particle 64 may be used.
  • the positive electrode active material 60a since the hollow part 62 is formed in the secondary particle 64, the voids in the positive electrode active material layer 34 are increased by the hollow part 62, so the porosity of the positive electrode active material layer 34 is increased. Can be increased. Further, in the form shown in FIG.
  • the structure of the positive electrode active material 60 a having the hollow portion 62 is appropriately referred to as “hollow structure”.
  • the positive electrode active material 60 b further includes a through hole 68 that penetrates the secondary particle 64 so as to connect the hollow portion 62 and the outside. Also good.
  • the structure of the positive electrode active material 60b having such a through hole 68 is appropriately referred to as “perforated hollow structure”.
  • the electrolytic solution easily flows between the hollow portion 62 and the outside through the through hole 68, and the electrolytic solution in the hollow portion 62 is appropriately replaced. For this reason, the withering of the electrolyte in the hollow portion 62 is unlikely to occur. For this reason, the primary particles 66 of the positive electrode active material 60b can be utilized more actively in the hollow portion 62. For this reason, the output characteristics of the battery can be further improved.
  • the opening width k of the through holes 68 is 0.01 ⁇ m or more on average. As a result, the electrolyte enters the hollow portion 62 more reliably, and the above-described effect is easily obtained. Moreover, the opening width k of the through-hole 68 is good in average being 2.0 micrometers or less.
  • the opening width k of the through-hole 68 is a passing length (penetration) in a portion where the through-hole 68 is narrowest in a path from the outside of the active material particle through the secondary particle to the hollow portion 62. The inner diameter of the hole 68).
  • the opening width k of the through hole 68 may be an average of 2.0 ⁇ m or less, more preferably an average of 1.0 ⁇ m or less, and even more preferably an average of 0.5 ⁇ m or less.
  • the number of through holes 68 may be about 1 to 20 on average per one particle of the positive electrode active material 60b, and more preferably about 1 to 5 on average. According to the positive electrode active material 60b having such a structure, good battery performance can be more stably exhibited.
  • the number of through-holes 68 in the positive electrode active material 60b having a perforated hollow structure is, for example, the number of through-holes per particle for at least 10 or more active material particles arbitrarily selected, and the arithmetic average value thereof. It is good to ask for.
  • the method for producing the positive electrode active material 60b having a perforated hollow structure may include, for example, a raw material hydroxide generation step, a mixing step, and a firing step.
  • the raw material hydroxide generation step is a step in which ammonium ions are supplied to the aqueous solution of the transition metal compound to precipitate the transition metal hydroxide particles from the aqueous solution.
  • the aqueous solution may contain at least one transition metal element constituting the lithium transition metal oxide.
  • the raw material hydroxide generation step includes a nucleation stage in which a transition metal hydroxide is precipitated from an aqueous solution at a pH of 12 or more and an ammonium ion concentration of 25 g / L or less, and the precipitated transition metal hydroxide is less than pH 12 and ammonium. And a particle growth stage for growing at an ion concentration of 3 g / L or more.
  • the mixing step is a step of preparing an unfired mixture by mixing the transition metal hydroxide particles obtained in the raw material hydroxide generating step and the lithium compound.
  • the firing step is a step of obtaining active material particles by firing the mixture obtained in the mixing step. According to this manufacturing method, the positive electrode active material 60b having a perforated hollow structure can be appropriately manufactured.
  • the firing step is preferably performed so that the maximum firing temperature is 800 ° C. to 1100 ° C.
  • the active material particle which has desired average hardness can be manufactured suitably.
  • This firing step is preferably performed so that, for example, secondary particles that do not substantially have a gap at the grain boundaries of the primary particles are formed in portions other than the hollow portion 62 and the through holes 68.
  • the firing step includes a first firing stage in which the mixture is fired at a temperature T1 of 700 ° C. or more and 900 ° C. or less, and a result obtained through the first firing step is 800 ° C. or more and 1100 ° C. or less and the first firing stage. And a second firing stage in which firing is performed at a temperature T2 higher than the firing temperature T1.
  • the firing step includes a first firing stage in which the mixture is fired at a temperature T1 of 700 ° C. or more and 900 ° C. or less, and a result obtained through the first firing stage.
  • a second firing stage in which firing is performed at a temperature T2 that is 800 ° C. or more and 1100 ° C. or less and higher than a firing temperature T1 in the first firing stage.
  • the BET specific surface area of the positive electrode active material 60 is preferably 0.5 to 1.9 m 2 / g.
  • the positive electrode active material 60 satisfying such a BET specific surface area may be used for a positive electrode of a lithium secondary battery to give a battery that stably exhibits higher performance.
  • a lithium secondary battery having a low internal resistance (in other words, good output characteristics) and having a small increase in resistance even by a charge / discharge cycle (particularly, a charge / discharge cycle including discharge at a high rate) can be constructed.
  • the above-described “hollow structure” positive electrode active material 60a and “perforated hollow structure” positive electrode active material 60b are a preferred embodiment of the positive electrode active material 60 having a BET specific surface area of 0.5 to 1.9 m 2 / g. Can be.
  • the positive electrode active material 60a having a hollow structure or the positive electrode active material 60b having a perforated hollow structure may be a lithium transition metal oxide having a layered structure containing nickel as a constituent element.
  • the positive electrode active material 60a having a hollow structure and the positive electrode active material 60b having a perforated hollow structure may be a lithium transition metal oxide having a layered structure including nickel, cobalt, and manganese as constituent elements.
  • the positive electrode active material 60a having a hollow structure and the positive electrode active material 60b having a perforated hollow structure preferably have an average particle diameter in the range of about 3 ⁇ m to 10 ⁇ m, for example.
  • the average opening size of the through holes 68 of the positive electrode active material 60b having a perforated hollow structure is preferably 1 ⁇ 2 or less of the average particle diameter of the positive electrode active material 60b. Since the positive electrode active material 60b has the above average opening size in an appropriate range, the battery performance improvement effect (for example, the effect of reducing the internal resistance) due to having a perforated hollow structure can be appropriately exhibited, and desired Average hardness can be easily secured. Therefore, good battery performance can be exhibited more stably.
  • the hollow part 62 since the hollow part 62 is formed in the secondary particle 64, the hollow part 62 causes an empty space in the positive electrode active material layer 34 to exist. Since the number of pores increases, the porosity of the positive electrode active material layer 34 can be increased. Therefore, the positive electrode sheet easily expands and contracts, and a wound electrode body that satisfies a spring constant of 10,000 kgf / mm or less can be easily formed.
  • positive electrode active material As mentioned above, although an example of a suitable positive electrode active material was mentioned as a positive electrode active material contained in the positive electrode active material layer 34 of the lithium secondary battery 12, as said positive electrode active material of the lithium secondary battery 12 which concerns on this invention, the above-mentioned It is not specifically limited to. Further, the positive electrode active material is not limited to the above, and primary secondary particles may be granulated by a spray drying method and porous secondary particles having minute pores inside may be employed.
  • any of the assembled batteries 10 disclosed herein can stably maintain the surface pressure applied to each unit cell even when used in a state where the temperature change is severe and vibrations occur. With performance suitable as a battery. Therefore, according to the present invention, as shown in FIG. 11, a vehicle 1 including any of the assembled batteries 10 disclosed herein is provided.
  • a vehicle 1 for example, an automobile
  • the assembled battery 10 as a power source typically a power source of a hybrid vehicle or an electric vehicle
  • the technology can be used in a charge / discharge cycle including a high rate charge / discharge of 50 A or more (for example, 50 A to 250 A), and further 100 A or more (for example, 100 A to 200 A).
  • An assembled battery equipped with a secondary battery assumed to be used in a charge / discharge cycle including
  • an assembled battery that can stably maintain a surface pressure applied to each unit cell (typically, an electrode body mainly constituting the unit cell) and a battery that can be mounted on the assembled battery are provided. can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 本発明に係る組電池(10)は、複数の充放電可能な単電池(12)が直列に接続して構成された組電池(10)であって、正極および負極を備える扁平形状の電極体(80)と、該電極体(80)および電解質を収容する容器(14)とを備える単電池(12)を複数備えており、複数の単電池(12)は、電極体(80)の扁平面が対向するように配列され且つ該配列方向に荷重が加えられた状態で拘束されており、拘束された各単電池(12)において、電極体(80)の配列方向に対するバネ定数が10000kgf/mm以下である。

Description

二次電池及び組電池
 本発明は、二次電池及び該二次電池が複数直列に接続して構成された組電池に関する。
 近年、リチウム二次電池、ニッケル水素電池その他の二次電池は、車両搭載用電源、或いはパソコンおよび携帯端末の電源として重要性が高まっている。なかでも、軽量で高エネルギー密度が得られるリチウム二次電池(典型的にはリチウムイオン電池)は、車両搭載用高出力電源として好ましく用いられるものとして期待されている。
 この種のリチウム二次電池においては、充放電(すなわち充電状態(SOC)の変動)や温度変化等によって電極体内の極板(正極及び負極)に膨張・収縮が生じる。極板間の距離が増大すると、正極活物質層及び負極活物質層内の電子伝導性が低下するため、内部抵抗が上昇し、電池性能の低下が生じる。そのため、極板間の距離が増大しないように、該リチウム二次電池を複数積層した組電池においては、該組電池を構成する個々の単電池に圧力をかけておくことが望ましい。
 特許文献1に記載された電池モジュール(組電池)では、単電池の積層方向に配列された単電池群の最外側(両端)に一対のエンドプレートを設置し、この一対のエンドプレートが接近する方向に締め付け且つ固定することで、各単電池に面圧(荷重)を付与している。すなわち、従来の組電池では、配列された単電池群(以下、「単電池積層体」ともいう。)の長さが規定長さとなるように、各単電池を圧接させることで、各単電池に対して適正な面圧を付与するようになっている。
日本国特許出願公開第2007-048750号公報
 しかしながら、上記エンドプレートの締め付けによる拘束では、製造時には配列された単電池群(単電池積層体)の長さが規定長さとなるように各単電池を圧接させることで、各単電池(典型的には、主として該単電池を構成する電極体)に対して適正な面圧を付与することができたとしても、長期間の使用等においては、拘束部材の劣化等が原因となって単電池積層体の長さが変化し、各単電池に付与される面圧が変動するという問題があった。特に自動車等の車両に搭載される組電池(典型的には車両駆動源用組電池)は、温度変化が激しく且つ振動が発生する状態での使用が多いことから、拘束部材の劣化等が生じやすく、上記面圧の変動が起こりがちである。
 本発明はかかる点に鑑みてなされたものであり、その主な目的は、各単電池(典型的には、主として該単電池を構成する電極体)にかかる面圧を安定に保持し得る組電池ならびに該組電池に搭載され得る電池を提供することである。
 本発明に係る組電池は、複数の充放電可能な単電池が直列に接続して構成された組電池である。この組電池は、正極および負極を備える扁平形状の電極体と、該電極体および電解質を収容する容器とを備える単電池を複数備えている。上記複数の単電池は、上記電極体の扁平面が対向するように配列され且つ該配列方向に荷重が加えられた状態で拘束されている。そして、上記拘束された各単電池において、上記電極体の上記配列方向に対するバネ定数が10000kgf/mm以下である。
 なお、本明細書において「電極体のバネ定数」とは、電極体に荷重を加えたときの、荷重を変位で割った比例定数であり、具体的には、電極体の扁平面に荷重P(kgf:1kgf=約9.8N)を加えて圧縮(典型的には弾性変形)させたときの変位Xを読み取り、下記の式(1)より求めることができる。
 バネ定数k(kgf/mm)=P(kgf)/X(mm)   (1)
 また、本明細書において「単電池」とは、組電池を構成するために相互に直列接続され得る個々の蓄電素子を指す用語であり、特に限定しない限り種々の組成の電池、キャパシタを包含する。また、「二次電池」とは、繰り返し充電可能な電池一般をいい、リチウムイオン二次電池、ニッケル水素電池等のいわゆる蓄電池を包含する。リチウムイオン二次電池を構成する蓄電素子は、ここでいう「単電池」に包含される典型例であり、そのような単電池を複数備えて成るリチウムイオン二次電池モジュールは、ここで開示される「組電池」の典型例である。
 本発明の構成では、複数の単電池が電極体の扁平面が対向するように配列され且つ該配列方向に荷重が加えられた状態で拘束された組電池において、電極体の配列方向(荷重方向)に対するバネ定数が10000kgf/mm以下(例えば2000kgf/mm~10000kgf/mm)、特に好ましくは6000kgf/mm以下(例えば2000kgf/mm~6000kgf/mm)である。
 上記条件を満足する電極体を備えた組電池は、拘束部材の劣化等が原因となって単電池積層体の長さが変動するようなことがあっても、各単電池(典型的には、主として該単電池を構成する捲回電極体)にかかる面圧を安定に保持することができる。したがって、長期間の使用時においても各単電池(典型的には、主として該単電池を構成する捲回電極体)にかかる面圧を適正に保つことができ、電池性能(特に出力特性)を良好に維持することができる。
 上記電極体の単電池配列方向(荷重方向)に対するバネ定数としては、概ね2000kgf/mm~10000kgf/mmが適当であり、好ましくは2000kgf/mm~8000kgf/mmであり、特に好ましくは2000kgf/mm~6000kgf/mmである。上記電極体のバネ定数が10000kgf/mmを超えるような組電池は、拘束部材の劣化等が原因となって単電池積層体の長さが変化した際に、各単電池(典型的には、主として該単電池を構成する電極体)にかかる面圧を安定に保持することができないことがある。その一方で、電極体のバネ定数が2000kgf/mmを下回るような組電池は、製造が難しくなり、極板(正極、負極)および電極体の寸法安定性が低下することで耐久性が低下するため好ましくない。実際には、電極体の配列方向(荷重方向)に対するバネ定数が5000kgf/mm~10000kgf/mmであれば、十分に良好な性能が得られる。
 ここに開示される組電池の好ましい一態様では、上記電極体は、正極集電体に正極活物質を含む正極活物質層が付与されてなる正極を備えており、上記正極活物質層の多孔度が30%~60%である。このような多孔度の範囲内であると、正極が柔らかく伸縮性に優れたものとなる。そのため、バネ定数が上記好適範囲を満足する捲回電極体をより適切に得ることができる。
 好ましくは、上記正極活物質は、リチウム遷移金属酸化物の一次粒子が複数集合した二次粒子と、該二次粒子に形成された中空部とを有する。この構成によると、正極活物質層として最適な多孔度(例えば30%~60%、より好ましくは40%~60%、特に好ましくは50%~60%)を有する正極活物質層をより容易に形成することができる。上記正極活物質は、ニッケル、コバルトおよびマンガンを構成元素として含む層状構造のリチウム遷移金属酸化物でもよい。また、上記正極活物質層は導電剤を有してもよい。この場合、上記正極活物質層中の導電剤の含有割合が8質量%以上であることが好ましい。このような導電剤の含有割合の範囲内であると、正極が柔らかく伸縮性に優れたものとなる。そのため、バネ定数が上記好適範囲を満足する捲回電極体をより適切に得ることができる。
 ここに開示される組電池の好ましい一態様では、上記電極体は、負極集電体に負極活物質を含む負極活物質層が付与されてなる負極を備えており、上記負極活物質層の多孔度が30%~60%である。このような多孔度の範囲内であると、負極が柔らかく伸縮性に優れたものとなる。そのため、バネ定数が上記好適範囲を満足する捲回電極体をより適切に得ることができる。
 ここに開示される組電池の好ましい一態様では、上記電極体は、長尺シート状の正極集電体に正極活物質層が付与されてなる正極と、長尺シート状の負極集電体に負極活物質層が付与されてなる負極とがセパレータを介して捲回されてなる扁平形状の捲回電極体である。該捲回電極体を備えた単電池を複数配列し該配列方向に拘束してなる組電池は、面圧(拘束圧)の変動による性能劣化が生じやすいことから、本発明を適用することが特に有用である。
 また、本発明によると、上記目的を実現する他の側面として、上記組電池に好適に搭載され得る二次電池が提供される。即ちここで開示される二次電池は、電池容器の外側から拘束荷重が加えられた扁平形状の電極体を備えた二次電池であって、上記電極体の上記荷重方向に対するバネ定数が10000kgf/mm以下である。この構成によると、上記二次電池を複数配列し該配列方向に拘束してなる組電池において、各電池にかかる面圧を安定に保つことができる。
 好ましくは、上記電極体は、正極集電体に正極活物質を含む正極活物質層が付与されてなる正極を備えており、上記正極活物質層の多孔度が30%~60%である。上記正極活物質は、リチウム遷移金属酸化物の一次粒子が複数集合した二次粒子と、該二次粒子に形成された中空部とを有してもよい。また、上記正極活物質は、ニッケル、コバルトおよびマンガンを構成元素として含む層状構造のリチウム遷移金属酸化物でもよい。さらに、上記正極活物質層は導電剤を有しており、上記正極活物質層中の導電剤の含有割合が8質量%以上でもよい。また好ましくは、上記電極体は、負極集電体に負極活物質を含む負極活物質層が付与されてなる負極を備えており、上記負極活物質層の多孔度が30%~60%である。
 ここで開示されるいずれかの組電池は、温度変化が激しく且つ振動が発生する状態で使用しても各単電池にかかる面圧を安定に保持できることから、車両に搭載される組電池として適した性能を備える。したがって本発明によると、ここに開示される組電池を備える車両が提供される。特に、該組電池を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)が提供される。
図1は、本発明の一実施形態に係る組電池の構成を模式的に示す斜視図である。 図2は、本発明の一実施形態に係る組電池の構成を模式的に示す側面図である。 図3は、電極体のバネ定数の測定方法を説明するための図である。 図4は、変位Xと荷重Pとの関係を示すグラフである。 図5は、本発明の一実施形態に係る二次電池の構成を模式的に示す図である。 図6は、本発明の一実施形態に係る捲回電極体の構成を模式的に示す図である。 図7は、電極体バネ定数と-30℃出力/25℃出力との関係を示すグラフである。 図8は、拘束変位と出力変化率との関係を示すグラフである。 図9は、本発明の一実施形態に係る正極活物質の構成を模式的に示す図である。 図10は、本発明の一実施形態に係る正極活物質の構成を模式的に示す図である。 図11は、本発明の一実施形態に係る組電池を備えた車両(自動車)を模式的に示す側面図である。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項(例えば、組電池の構成要素たる単電池の構造)以外の事柄であって本発明の実施に必要な事柄(例えば、正極、負極およびセパレータの構成および製法、単電池の拘束方法、車両への組電池搭載方法)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 本発明に係る組電池は、特に自動車等の車両に搭載される車両駆動用電源(モーター(電動機)用電源)として好適に使用し得る。従って、本発明は、図11に模式的に示すように、かかる組電池10を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)1を提供する。
 ここに開示される組電池は、単電池(典型的には、扁平形状の外形を有する単電池)を配列し該配列方向(積層方向)に拘束してなる組電池であればよく、単電池の種類は特に制限されない。ニッケル水素電池、電気二重層キャパシタ等が本発明の実施に好適な単電池として挙げられる。特に本発明の実施に好適な単電池はリチウムイオン二次電池である。リチウムイオン二次電池は高エネルギー密度で高出力を実現できる二次電池であるため、高性能な組電池、特に車両搭載用組電池(電池モジュール)を構築することができる。
 特に限定することを意図したものではないが、以下、扁平形状のリチウムイオン二次電池を単電池とし、該単電池の複数個を直列に接続してなる組電池を例にして本発明を詳細に説明する。
 以下に示す実施形態に係る組電池の構成要素として用いられる単電池は、後述する捲回電極体80の構成を除いては、典型的な組電池に装備される単電池と同様であればよく、典型的には所定の電池構成材料(正負極それぞれの活物質、正負極それぞれの集電体、セパレータ等)を具備する捲回電極体と、該捲回電極体および適当な電解質を収容する容器とを備える。
 一例として図1及び図2に示すように、本実施形態に係る組電池10は、所定数(典型的には10個以上、好ましくは10~100個程度、より好ましくは30~100個程度、例えば50個)の同形状の単電池12を備える。単電池12は、後述する扁平形状の捲回電極体を収容し得る形状(本実施形態では扁平な箱形)の容器14を備える。
 容器14の上面には、捲回電極体80の正極と電気的に接続する正極端子15および負極と電気的に接続する負極端子16が設けられている。図示するように、隣接する単電池12間において一方の正極端子15と他方の負極端子16とが接続具17によって電気的に接続される。このように各単電池12を直列に接続することにより、所望する電圧の組電池10が構築される。なお、これら容器14には、容器内部で発生したガス抜きのための安全弁等が従来の単電池容器と同様に設けられ得る。かかる容器14の構成自体は本発明を特徴付けるものではないため、詳細な説明は省略する。容器14の材質は、従来の単電池で使用されるものと同じであればよく特に制限はない。組電池自体の軽量化の観点から、例えば薄い金属製或いは合成樹脂製の電池ケースが使用され得る。例えば、好ましくは表面に絶縁用樹脂コーティングが施されているような金属製容器、ポリプロピレン等のポリオレフィン系樹脂その他の合成樹脂製容器が好適である。本実施形態に係る容器14は例えばアルミニウム製である。
 図1および図2に示すように、同形状の複数の単電池12は、それぞれの正極端子15および負極端子16が交互に一定の間隔で配置されるように一つずつ反転させつつ容器14の幅広な面(即ち容器14内に収容される後述する捲回電極体80の扁平面に対応する面)14Cが対向する方向に配列される。さらに、単電池配列方向(単電池積層方向)の両アウトサイドには、一対のエンドプレート18、19が配置されている。また、両エンドプレート18、19を架橋するように締め付け用の拘束バンド21が取り付けられる。
 そして、このように配列された単電池群およびエンドプレート18、19の全体が、両エンドプレート18、19を架橋するように取り付けられた締め付け用の拘束バンド21によって、単電池の配列方向に規定の拘束圧92で拘束されている。より詳しくは、図2に示すように、拘束バンド21の端部をビス22によりエンドプレート18に締め付け且つ固定することによって、単電池12をその配列方向に所定の拘束圧(例えば容器側壁が受ける面圧が5kgf/cm~10kgf/cm程度)が加わるように拘束することができる。かかる規定拘束圧で拘束された単電池積層体20の長さは規定長さLとなる。すなわち、この組電池10では、配列された単電池群(単電池積層体)20の長さが規定長さLとなるように、各単電池12を圧接させることで、各単電池12(典型的には、主として該単電池12を構成する電極体80)に対して適正な面圧を付与している。
 ここで、上記エンドプレート18、19の締め付けによる拘束では、製造時には配列された単電池群(単電池積層体)20の長さが規定長さLとなるように各単電池12を圧接させることで、各単電池12(典型的には、主として該単電池12を構成する電極体80)に対して適正な面圧を付与することができたとしても、長期間の使用等においては、拘束部材(エンドプレート18、19、拘束バンド21及びビス22等)の劣化等が原因となって単電池積層体20の長さが変化し、各単電池12(典型的には、主として該単電池12を構成する電極体80)に付与される面圧が変動することがあり得る。特に自動車等の車両に搭載される組電池(典型的には車両駆動電源用組電池)は、温度変化が激しく且つ振動が発生する状態での使用が多いことから、上記拘束部材の劣化等が生じやすく、上記面圧の変動が起こりがちである。
 これに対し、本実施形態では、拘束部材により拘束された各単電池12において、捲回電極体80として、配列方向(荷重方向)に対するバネ定数が10000kgf/mm以下であるものが用いられる。
 上記条件(バネ定数が10000kgf/mm以下)を満足する捲回電極体80を備えた組電池10は、後述する試験例で示すように、拘束部材の劣化等が原因となって単電池積層体20の長さが変動するようなことがあっても、各単電池12(典型的には、主として該単電池を構成する捲回電極体80)にかかる面圧を安定に保持することができる。したがって、長期間の使用時においても各単電池12にかかる面圧を適正に保つことができ、電池性能(特に出力特性)を良好に維持することができる。
 ここで、捲回電極体80のバネ定数とは、捲回電極体80に荷重を加えたときの、荷重を変位で割った比例定数である。バネ定数の測定は、例えば図3に示す圧縮試験機を用いて行うことができる。まず、捲回電極体80を容器14に収容し、該容器14の幅広な面14Cの両側に一対の平板90を当接する。そして、一対の平板90で容器14を両面方向から挟み込み、捲回電極体80の扁平面80Aに荷重を加えて圧縮する。このときの荷重の大きさPと変位Xとの関係は図4のように示される。
 図4中の曲線A、Bは、それぞれ異なる捲回電極体80についての上記荷重Pと変位Xとの関係を示したものであり、横軸が変位X(mm)、縦軸が荷重P(kgf)である。図4に示すように、捲回電極体80に加える荷重Pを大きくしていくと、捲回電極体80が厚み方向に圧縮変形する。このときの捲回電極体80に加えた荷重Pと変位Xとは凡そ比例しており、その傾きは概ねP/Xで表わされる。この曲線の傾きP/Xがバネ定数kに相当する。すなわち、バネ定数kは、下記の式(1)で表わされ、捲回電極体80に加えた荷重Pと、そのときの変位Xとから算出される。
 バネ定数k=P/X   (1)
 ここで、図4中の曲線Aに係る捲回電極体は、曲線Bに係る捲回電極体よりも傾きが緩やかで、バネ定数が小さい。このようにバネ定数が小さい捲回電極体は、変位Xの増減(例えばX1→X2)に伴う荷重Pの変動が小さくなる(ΔP1<ΔP2)。そのため、該捲回電極体80を備えた組電池10において、拘束部材の劣化等が原因となって単電池積層体20(図2)の長さが変化するようなことがあっても、該捲回電極体のバネ定数を小さくすることで、単電池積層体20(図2)の長さの変化に伴う拘束荷重の変動を抑制し、電池性能を良好に保つことができる。
 上記捲回電極体の配列方向(荷重方向)に対するバネ定数としては、概ね2000kgf/mm~10000kgf/mmが適当であり、好ましくは2000kgf/mm~8000kgf/mmであり、特に好ましくは2000kgf/mm~6000kgf/mmである。上記電極体のバネ定数が10000kgf/mmを超えるような組電池は、拘束部材の劣化等が原因となって単電池積層体20の長さが変化した際に、各単電池12(典型的には、主として該単電池12を構成する捲回電極体80)にかかる面圧を安定に保持することができないことがある。その一方で、捲回電極体のバネ定数が2000kgf/mmを下回るような組電池は、製造が難しくなり、極板(正極、負極)および電極体の寸法安定性が低下することで耐久性が低下するため好ましくない。実際には、捲回電極体80の配列方向(荷重方向)92に対するバネ定数が5000kgf/mm~10000kgf/mmであれば、十分に良好な性能が得られる。
 次に、本発明を特徴付ける各単電池12の容器14内に収容される電極体80の構成と当該電極体80及び単電池12の構築について、図5及び図6に示す模式図を参照しつつ説明する。図5は本実施形態に係る単電池(組電池10の構成要素として用いられる単電池)12を模式的に示す図であり、図6は本発明の一実施形態に係る捲回電極体80を模式的に示す図である。
 図5に示すように、本実施形態に係るリチウム二次電池(組電池10の構成要素として用いられる単電池)12は、金属製(樹脂製又はラミネートフィルム製も好適である。)の容器14を備える。この容器14は、上端が開放された扁平な直方体状の容器本体14Bと、その開口部を塞ぐ蓋体14Aとを備える。容器14の上面(すなわち蓋体14A)には、捲回電極体80の正極30と電気的に接続する正極端子15および該電極体の負極50と電気的に接続する負極端子16が設けられている。容器14の内部には、例えば長尺シート状の正極(正極シート)30および長尺シート状の負極(負極シート)50を計二枚の長尺シート状セパレータ(セパレータシート)40とともに積層して捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって作製される扁平形状の捲回電極体80が収容される。
 捲回電極体80は、図6に示すように、シート状電極体85を捲回することによって形成されている。シート状電極体85は、捲回電極体80を組み立てる前段階における長尺状(帯状)のシート構造を有している。シート状電極体85は、典型的な捲回電極体と同様に正極シート30と負極シート50を計2枚のセパレータシート40と共に積層して形成されている。
 正極シート30は、長尺シート状の箔状の正極集電体32の両面に正極活物質層34が付着されて形成されている。ただし、正極活物質層34はシート状電極体の幅方向の端辺に沿う一方の側縁には付着されず、正極集電体32を一定の幅にて露出させている。正極集電体32には、アルミニウム箔(本実施形態)その他の正極に適する金属箔が好適に使用される。正極活物質層34は、正極活物質と、必要に応じて使用される他の正極活物質層形成成分(例えば導電材やバインダ等)とから構成されている。また、正極活物質層34は、正極集電体32上に、正極活物質層形成成分と溶媒とを含む塗料(正極活物質層形成用組成物)を塗布し、乾燥させ、必要に応じて圧延することによって形成されている。
 正極活物質としては、従来からリチウム二次電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。ここに開示される技術の好ましい適用対象として、リチウムマンガン酸化物(LiMn)、リチウムコバルト酸化物(LiCoO)、リチウムニッケル酸化物(LiNiO)等の、リチウムと遷移金属元素とを構成金属元素として含む酸化物(リチウム遷移金属酸化物)を主成分とする正極活物質が挙げられる。中でも、リチウムニッケルコバルトマンガン複合酸化物(例えばLiNi1/3Co1/3Mn1/3)を主成分とする正極活物質(典型的には、実質的にリチウムニッケルコバルトマンガン複合酸化物からなる正極活物質)への適用が好ましい。
 ここで、リチウムニッケルコバルトマンガン複合酸化物とは、Li,Ni,Co及びMnを構成金属元素とする酸化物のほか、Li,Ni,Co及びMn以外に他の少なくとも一種の金属元素(すなわち、Li,Ni,Co及びMn以外の遷移金属元素および/または典型金属元素)を含む酸化物をも包含する意味である。かかる金属元素は、例えば、F,B,W,Mo,Cr,Ta,Nb,V,Zr,TiおよびYからなる群から選択される一種または二種以上の元素であり得る。リチウムニッケル酸化物、リチウムコバルト酸化物、及びリチウムマンガン酸化物についても同様である。好ましくは、以下の式(2)で示す酸化物:
  Li1+x(NiCoMn1-y-zγ)O    (2)
(ここでMは、F,B,W,Mo,Cr,Ta,Nb,V,Zr,TiおよびYからなる群から選択される一種または二種以上の元素である。0≦x≦0.2、0.3≦y≦1、0≦z≦0.6、0≦γ≦0.3である。)
であり得る。
 このようなリチウム遷移金属酸化物(典型的には粒子状)としては、例えば、従来公知の方法で調製されるリチウム遷移金属酸化物粉末をそのまま使用することができる。例えば、平均粒径が凡そ1μm~25μmの範囲にある二次粒子によって実質的に構成されたリチウム遷移金属酸化物粉末を正極活物質として好ましく用いることができる。
 導電材としては、例えば、カーボン粉末やカーボンファイバーなどのカーボン材料が例示される。このような導電材から選択される一種を単独で用いてもよく二種以上を併用してもよい。カーボン粉末としては、種々のカーボンブラック(例えば、アセチレンブラック、オイルファーネスブラック、黒鉛化カーボンブラック、カーボンブラック、黒鉛、ケッチェンブラック)、グラファイト粉末、などのカーボン粉末を用いることができる。
 また、バインダとしては、正極活物質層を形成するための塗料(正極活物質層形成用組成物)で使用する溶媒に溶解又は分散可溶なポリマーを用いることができる。例えば、水性溶媒を用いた塗料(正極活物質層形成用組成物)においては、カルボキシメチルセルロース(CMC)、ヒドロキシプロピルメチルセルロース(HPMC)などのセルロース系ポリマー(例えば、ポリビニルアルコール(PVA)やポリテトラフルオロエチレン(PTFE)など)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系樹脂(例えば、酢酸ビニル共重合体やスチレンブタジエンゴム(SBR)など)、アクリル酸変性SBR樹脂(SBR系ラテックス)などのゴム類;などの水溶性又は水分散性ポリマーを好ましく採用することができる。また、非水溶媒を用いた塗料(正極活物質層形成用組成物)においては、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)などのポリマーを好ましく採用することができる。なお、上記で例示したポリマー材料は、バインダとしての機能の他に、上記組成物の増粘剤その他の添加剤としての機能を発揮する目的で使用されることもあり得る。溶媒としては、水性溶媒および非水溶媒の何れも使用可能である。非水溶媒の好適例として、N-メチル-2-ピロリドン(NMP)が挙げられる。
 正極活物質層全体に占める正極活物質の質量割合は、凡そ50質量%以上(典型的には50~95質量%)であることが好ましく、通常は凡そ70~95質量%(例えば75~90質量%)であることがより好ましい。また、正極活物質層全体に占める導電材の割合は、例えば凡そ2~20質量%とすることができ、通常は凡そ5~15質量%とすることが好ましい。バインダを使用する組成では、正極活物質層全体に占めるバインダの割合を例えば凡そ1~10質量%とすることができ、通常は凡そ2~5質量%とすることが好ましい。
 負極シート50も正極シート30と同様に、長尺シート状の箔状の負極集電体52の両面に負極活物質層54が付着されて形成されている。ただし、負極活物質層54はシート状電極体の幅方向の端辺に沿う一方の側縁には付着されず、負極集電体52を一定の幅にて露出させている。負極集電体52には、銅箔(本実施形態)その他の負極に適する金属箔が好適に使用される。負極活物質層54は、負極活物質と、必要に応じて使用される他の負極活物質層形成成分(例えばバインダ等)とから構成されている。また、負極活物質層54は、負極集電体52上に、負極活物質層形成成分と溶媒とを含む塗料(負極活物質層形成用組成物)を塗布し、乾燥させ、必要に応じて圧延することによって形成されている。
 負極活物質としては、従来からリチウム二次電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。例えば、少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が挙げられる。より具体的には、いわゆる黒鉛質(グラファイト)、難黒鉛化炭素質(ハードカーボン)、易黒鉛化炭素質(ソフトカーボン)、これらを組み合わせた炭素材料を用いることができる。例えば、天然黒鉛のような黒鉛粒子を使用することができる。その他、リチウム含有遷移金属酸化物や遷移金属窒化物等が挙げられる。負極活物質層には、正極活物質層に使われるのと同様のバインダや導電材を使用することができる。また、負極活物質層には、上記塗料(負極活物質層形成用組成物)の増粘剤として機能する各種のポリマーが混ぜられてもよい。
 特に限定するものではないが、負極活物質層全体に占める負極活物質の割合は凡そ80質量%以上(例えば80~99質量%)とすることができる。また、負極活物質層全体に占める負極活物質の割合は、凡そ90質量%以上(例えば90~99質量%、より好ましくは95~99質量%)であることが好ましい。バインダを使用する組成では、負極活物質層全体に占めるバインダの割合を、例えば、凡そ0.5~10質量%とすることができ、通常は凡そ1~5質量%とすることが好ましい。
 正極シート30と負極シート50とを隔てる部材であるセパレータシート40は、微小な孔を複数有する所定幅の帯状のシート材で構成されている。セパレータ40には、例えば、多孔質ポリオレフィン系樹脂で構成された単層構造のセパレータや積層構造のセパレータを使用することができる。なお、電解質として固体電解質若しくはゲル状電解質を使用する場合には、セパレータが不要な場合(即ちこの場合には電解質自体がセパレータとして機能し得る。)があり得る。
 捲回電極体80を作製するに際しては、正極シート30と負極シート50とがセパレータシート40を介して積層される。このとき、正極シート30の正極活物質層非形成部分84と負極シート50の負極活物質層非形成部分86とがセパレータシート40の幅方向の両側からそれぞれはみ出すように、正極シート30と負極シート50とを幅方向にややずらして重ね合わせる。このように重ね合わせた積層体を捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって扁平状の捲回電極体80が作製され得る。
 捲回電極体80の捲回軸方向における中央部分には、捲回コア部分82(即ち正極シート30の正極活物質層34と負極シート50の負極活物質層54とセパレータシート40とが密に積層された部分)が形成される。また、捲回電極体80の捲回軸方向の両端部には、正極シート30および負極シート50の電極活物質層非形成部分がそれぞれ捲回コア部分82から外方にはみ出ている。かかる正極側はみ出し部分(すなわち正極活物質層34の非形成部分)84および負極側はみ出し部分(すなわち負極活物質層54の非形成部分)86には、正極リード端子38および負極リード端子58がそれぞれ付設されており、上述の正極端子15および負極端子16とそれぞれ電気的に接続される。
 かかる構成の捲回電極体80をその扁平面が容器本体14Bの幅広面と対向するように容器本体14Bに収容し、その容器本体14B内に適当な非水電解液を配置(注液)する。電解質は例えばLiPF等のリチウム塩である。例えば、適当量(例えば濃度1M)のLiPF等のリチウム塩をジエチルカーボネートとエチレンカーボネートとの混合溶媒(例えば質量比1:1)のような非水電解質(非水電解液)に溶解して電解液として使用することができる。その後、容器本体14Bの開口部を蓋体14Aとの溶接等により封止することにより、本実施形態に係るリチウムイオン二次電池(組電池10の構成要素として用いられる単電池)12の構築が完成する。なお、容器本体14Bの封止プロセスや電解液の配置(注液)プロセスは、従来の電池の製造で行われている手法と同様にして行うことができる。そして、該電池のコンディショニング(初期充放電)を行う。必要に応じてガス抜きや品質検査等の工程を行ってもよい。
 ここで、上述の通りにして、捲回電極体80を備えたリチウム二次電池12が構築され得るが、本実施形態では、前述のとおり、捲回電極体80として、バネ定数が10000kgf/mm以下であるものが用いられる。
 上記条件(バネ定数が10000kgf/mm以下)を満足する捲回電極体80は、例えば、正極活物質層34の多孔度を適切に選択することにより実現され得る。すなわち、正極活物質層の多孔度を適切に選択することにより捲回電極体80のバネ定数を制御することができる。正極活物質層34の多孔度としては、概ね30%以上が適当であり、好ましくは40%以上であり、特に好ましくは50%以上である。このような多孔度の範囲内であると、正極シート30が柔らかく伸縮性に優れたものとなる。そのため、バネ定数が10000kgf/mm以下を満たす捲回電極体80をより適切に形成することができる。
 その一方で、単純に、正極活物質層34の多孔度を大きくするだけでは、正極活物質と導電材の粒子間の接触が少なくなり出力特性が低下することがあり、また正極活物質層の強度が不足することがある。伸縮性と機械的強度との兼ね合いからは、正極活物質層の多孔度は概ね30%~70%であり、好ましくは30%~65%であり、特に好ましくは30%~60%である。
 ここに開示される好ましいバネ定数の条件を満たす捲回電極体80を実現する他の方法として、正極活物質層中の導電材の含有割合を適切に選択する方法が挙げられる。すなわち、正極活物質層中の導電材の含有割合を適切に選択することにより捲回電極体80のバネ定数を制御することができる。正極活物質層中の導電材の含有割合としては、概ね5質量%以上が適当であり、好ましくは6質量%以上であり、特に好ましくは8質量%以上である。このような所定の含有割合の範囲内であると、正極シート30が柔らかく伸縮性に優れたものとなる。そのため、バネ定数が10000kgf/mm以下を満たす捲回電極体80をより適切に形成することができる。その一方で、導電材の含有割合が大きすぎると、正極活物質層中の単位面積当たりの活物質量が減少するため、所要のエネルギー密度が得られないことがある。伸縮性とエネルギー密度との兼ね合いからは、導電材の含有割合は概ね5質量%~20質量%が適当であり、好ましくは8質量%~15質量%である。
 また、ここに開示される好ましいバネ定数の条件を満たす捲回電極体80を実現する他の方法として、負極活物質層54の多孔度を適切に選択する方法が挙げられる。すなわち、負極活物質層54の多孔度を適切に選択することにより捲回電極体80のバネ定数を制御することができる。負極活物質層54の多孔度としては、概ね30%以上が適当であり、好ましくは40%以上であり、特に好ましくは50%以上である。このような多孔度の範囲内であると、負極シート50が柔らかく伸縮性に優れたものとなる。そのため、バネ定数が10000kgf/mm以下を満たす捲回電極体80をより適切に形成することができる。
 その一方で、単純に、負極活物質層54の多孔度を大きくするだけでは、負極活物質層54の強度が不足することがある。伸縮性と機械的強度との兼ね合いからは、多孔度は概ね70%以下(例えば30%~70%)であり、好ましくは65%以下(例えば30%~65%)であり、特に好ましくは60%以下(例えば30%~60%)である。
 その他、捲回電極体80のバネ定数を適切な範囲に調整する方法として、捲回電極体80を形成するときの捲回条件を適切に選択する方法が挙げられる。例えば、捲回電極体80は、正極シート30と負極シート50と2枚のセパレータシート40とを引っ張りながら捲回することにより形成され得る。この場合、正極シート30と負極シート50と2枚のセパレータシート40とを捲回するときのテンションを選択することにより、捲回電極体のバネ定数を制御することができる。すなわち、正極シート30と負極シート50と2枚のセパレータシート40とを捲回するときのテンションを適切に選択することにより、バネ定数が10000kgf/mm以下を満たす捲回電極体80をより適切に形成することができる。上述したバネ定数を制御する方法は、それぞれ単独であるいは組み合わせて使用することができる。
 なお、本明細書において多孔度とは、正極活物質層34や負極活物質層54における空孔の割合である。例えば、「正極活物質層34の多孔度」は、正極活物質層34の質量Wと、正極活物質層34の見かけの体積Vと、正極活物質層34の真密度ρ(空孔を含まない実体積によって質量Wを割った値)とから、(1-W/ρV)×100により把握することができる。また、水銀ポロシメーターを用いても多孔度を把握し得る。
 ここに開示される技術によると、バネ定数が10000kgf/mm以下となるように調整された捲回電極体を有する二次電池を備えた組電池を製造する方法が提供され得る。
 その製造方法は、バネ定数が10000kgf/mm以下となるように調整された捲回電極体を有する二次電池を構築すること;および、
 上記二次電池を複数配列方向に配列し且つ該配列方向に拘束することによって組電池を構築すること;
 を包含する。
 ここで、バネ定数が10000kgf/mm以下となるように調整された捲回電極体は、該捲回電極体を構成する構成部材(正極活物質層及び負極活物質層の多孔度、導電材の含有割合等)及び/又は該捲回電極体を形成するときの形成条件(例えば正極シートと負極シートと2枚のセパレータシートとを捲回するときのテンション等の形成条件)を上記適切な範囲が実現されるように設定し、その設定された条件に沿って捲回電極体80を形成することにより得られる。
 したがって、ここに開示される事項には、バネ定数が10000kgf/mm以下となるように調整された捲回電極体を有する二次電池を製造する方法であって、該捲回電極体を構成する構成部材(正極活物質層及び負極活物質層の多孔度、導電材の含有割合等)及び/又は該捲回電極体を形成するときの形成条件(例えば正極シートと負極シートと2枚のセパレータシートとを捲回するときのテンション等の形成条件)を上記適切な範囲が実現されるように設定することと、その設定された条件に沿って捲回電極体を形成することと、その捲回電極体を用いてリチウム二次電池を構築することと、を包含する二次電池製造方法が含まれる。かかる方法により製造された二次電池は、組電池の構成要素(単電池)として好適に使用され得る。該組電池は、車両に搭載される組電池として適した性能(例えば長期間の使用時においても性能劣化が少ないこと)を備え、特に温度変化に対する耐久性に優れたものであり得る。上記二次電池製造方法は、また、該二次電池が備える捲回電極体のバネ定数を所定の範囲(例えば、2000kgf/mm~10000kgf/mmの範囲)に調節する方法としても把握され得る。
 また、ここに開示される技術によると、捲回電極体のバネ定数を測定(算出)するという特徴を包含する二次電池製造方法が提供される。
 この二次電池製造方法は、正極シートと負極シートとをセパレータシートを介して捲回することにより捲回電極体を形成すること;
 その捲回電極体のバネ定数を測定(算出)すること;および、
 その測定したバネ定数に基づいて捲回電極体が良品であるか否か(例えば2000kgf/mm~10000kgf/mmの範囲に入るか否か)を判定し、その判定において良品とされた捲回電極体を用いて二次電池を構築すること;
を包含する。
 かかる方法により製造された二次電池は、組電池の構成要素(単電池)として好適に使用され得る。上記二次電池製造方法は、また、該二次電池が備える捲回電極体のバネ定数を評価する方法としても把握され得る。
 以下、本発明を評価試験に基づいてさらに詳細に説明する。かかる評価試験では、正極活物質層及び負極活物質層の多孔度を変えることにより、バネ定数がそれぞれ異なる捲回電極体80を4種類作製した。
[試験例1:正極シート]
 この評価試験では、正極活物質として、Li1.15Ni0.33Co0.33Mn0.332で表わされる組成の活物質粒子を用いた。ただし、活物質粒子の生成処理を工夫し、活物質粒子の二次粒子において、中空形状にしたり、中実にしたりして、互いに構造が異なる正極活物質を用意した。実施例1,2では中空形状を、比較例1,2では中実粒子を使用した。ここでは、活物質粒子の二次粒子の平均粒径(d50)は、3μm~12μmとした。
 上記正極活物質としてのLi1.15Ni0.33Co0.33Mn0.332粉末と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVdF)とを、これらの材料の質量比が87:10:3となるようにN-メチル-2-ピロリドン(NMP)中で混合して、正極活物質層形成用組成物を調製した。この組成物を長尺シート状の厚み15μmのアルミニウム箔の両面に帯状に塗布して乾燥することにより、正極集電体32の両面に正極活物質層34が設けられた正極シート30を作製した。正極活物質層形成用組成物の目付け量(塗布量)は、両面合わせて約10mg/cm(固形分基準)となるように調節した。乾燥後、正極活物質層が所定の多孔度となるようにプレス(圧延)した。このようにして得られた正極活物質層の多孔度を表1に示す。実施例1,2では、活物質粒子に中空部が形成されているため、該中空部によって正極活物質層内の空孔が増え、正極活物質層の多孔度が30%を超えた。
[試験例2:負極シート]
 負極活物質としてのグラファイト粉末と、バインダとしてのスチレンブタジエンゴム(SBR)と増粘剤としてのカルボキシメチルセルロース(CMC)とを、これらの材料の質量比が98:1:1となるように水に分散させて負極活物質層形成用組成物を調製した。この負極活物質層形成用組成物を長尺シート状の厚み10μmの銅箔(負極集電体52)の両面に塗布し、負極集電体52の両面に負極活物質層54が設けられた負極シート50を作製した。負極活物質層形成用組成物の目付け量(塗布量)は、両面合わせて約6mg/cm(固形分基準)となるように調節した。乾燥後、負極活物質層が所定の多孔度となるようにプレス(圧延)した。このようにして得られた負極活物質層の多孔度を表1に示す。実施例1,2では、負極活物質層の圧延率を下げることで、負極活物質層内の空孔が増え、負極活物質層の多孔度が30%を超えた。
[試験例3:捲回電極体]
 上記試験例1,2で得られた正極シート30と負極シート50とをセパレータシート40を介して捲回し、該捲回した捲回電極体を側面方向から押し潰すことによって扁平形状の捲回電極体80を作製した。セパレータシート40としては厚み25μmの多孔質ポリプロピレン製のものを使用した。
[試験例4::バネ定数の測定]
 上記試験例3で得られた各例の捲回電極体80について、先に図3で示した方法で、バネ定数を測定した。圧縮試験機としては島津製作所社製の装置を使用し、最大荷重3000kgf、負荷速度0.1mm/secとした。このようにして求めた捲回電極体80のバネ定数を表1に示す。
[試験例5:リチウム二次電池]
 上記試験例3で得られた各例の捲回電極体80を、非水電解液とともに箱型の電池容器14(即ち、サイズが110mm(長辺部)×15mm(短辺部)×90mm(高さ)であり、厚みが全周にわたって0.5mmであるアルミニウム製の角形ケース)に収容した。そして、電池容器14の開口部を気密に封口することによりリチウム二次電池12を組み立てた。非水電解液としてはエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを3:4:3の体積比で含む混合溶媒に支持塩としてのLiPFを約1mol/リットルの濃度で含有させた非水電解液を使用した。その後、常法により初期充放電処理(コンディショニング)を行った。なお、このリチウム二次電池12の定格容量は5Ahである。
[試験例6:組電池]
 上記試験例5で得られた各例のリチウム二次電池12をそれぞれ50個ずつ用意し、それらを電極体の扁平面が対向するように配列し且つ配列方向に拘束することによって評価試験用の組電池10を構築した(図1及び図2参照)。その際、配列した電池群(単電池積層体)20の両端にエンドプレート18、19を配置し、このエンドプレート18、19を締め付け且つ固定することで、各単電池の容器側壁に約10kgf/cmの拘束圧を付与した。このときのエンドプレート18、19間の間隔(単電池積層体20の長さ)を規定長さLとする。
[試験例7:25℃出力測定]
 上記試験例6で得られた各例の組電池の25℃出力を測定した。25℃出力は、25℃の温度雰囲気で、以下の手順によって求めた。
 手順1:1Cの定電流放電によって3Vまで放電した。
 手順2:1Cの定電流充電によって4.1Vまで充電した後、定電圧充電によって合計充電時間が2時間になるまで充電を行った。これにより定格容量の凡そ50%の充電状態(SOC50%)とした。
 手順3:SOC50%の状態にて5分間休止した。
 手順4:SOC50%の状態から定ワットにて放電し、2Vに達するまでの放電時間を測定した。
 手順5:上記手順4における定ワットの条件を5~60Wの範囲で変えて繰り返した。そして、各W条件にて測定された2Vまでの放電時間を横軸にとり、そのときのWを縦軸にとり、近似曲線から10秒時のWを算出した。これを25℃出力とした。
[試験例8:-30℃出力測定]
 上記試験例6で得られた各例の組電池の-30℃出力を測定した。そして、組電池の-30℃保存による出力低下を示す値として、-30℃出力/25℃出力の比の値を相対評価した。-30℃出力は、以下の手順によって求めた。
 手順1:25℃の温度雰囲気で1Cの定電流放電によって3Vまで放電した。
 手順2:25℃の温度雰囲気で1Cの定電流充電によって4.1Vまで充電した後、定電圧充電によって合計充電時間が2時間になるまで充電を行った。これにより定格容量の凡そ50%の充電状態(SOC50%)とした。
 手順3:-30℃の温度雰囲気で5時間保温した。
 手順4:-30℃の温度雰囲気でSOC50%の状態から定ワットにて放電し、1.5Vに達するまでの放電時間を測定した。
 手順5:上記手順4における定ワットの条件を5~60Wの範囲で変えて繰り返した。そして、各W条件にて測定された1.5Vまでの放電時間を横軸にとり、そのときのWを縦軸にとり、近似曲線から10秒時のWを算出した。これを-30℃出力とした。
 そして、各例の組電池の-30℃保存による出力低下を示す値として、-30℃出力/25℃出力の比率を相対評価した。ここで25℃出力は、上記試験例6により得られたものである。結果を表1及び図7に示す。図7は、電極体バネ定数と-30℃出力/25℃出力との関係を示すグラフであり、横軸が電極体バネ定数(kgf/mm)、縦軸が-30℃出力/25℃出力である。-30℃出力/25℃出力が大きいほど、-30℃保存による出力低下が少ないと云える。
 表1及び図7から明らかなように、電極体のバネ定数を14530kgf/mm及び20450kgf/mmとした比較例1,2の組電池は、-30℃出力/25℃出力が著しく低かった。これは、温度変化による拘束部材の膨張収縮が原因となって単電池積層体の長さが変化し、各単電池に付与される面圧が変動したことによるものと推測される。これに対し、電極体のバネ定数を9850kgf/mm及び5020kgf/mmとした実施例1,2の組電池は、上記温度変化に起因する面圧の変動が適切に抑制されたため、比較例1,2に比べて、-30℃出力/25℃出力が大幅に向上した。この結果から、電極体のバネ定数を10000kgf/mm以下にすることによって、温度変化が繰り返されたときの電池性能の変化を抑制し得ることが確認できた。
Figure JPOXMLDOC01-appb-T000001
[試験例9:出力変化率]
 上記試験例6で得られた各例の組電池10において、車両振動や温度変化等が原因となって起こり得るエンドプレート18、19間の間隔(単電池積層体20の長さ)の変動を想定して、該プレートの間隔を規定長さLよりも短くした。このときのプレートの間隔(長さ)をdとする。そして、試験例6と同様の手順で25℃出力を測定し、規定長さLのときの25℃出力「W1」と、任意の長さdのときの25℃出力「W2」とから、出力変化率=[(W2-W1)/W1]×100を算出した。ここで規定長さLのときの25℃出力は、上記試験例6により得られたものである。結果を表2及び図8に示す。図8は、長さ変位と出力変化率との関係を示すグラフであり、横軸が長さ変位、縦軸が出力変化率を示している。ここで上記長さ変位は、規定長さLと任意の長さdとから、[(L-d)/L]×100より求めた。
Figure JPOXMLDOC01-appb-T000002
 表2及び図8から明らかなように、電極体のバネ定数が小さいほど、エンドプレート間の間隔を規定長さLから変化させたときの出力変化(低下)が抑制されていた。特にバネ定数を5020kgf/mmとした実施例1の組電池は、長さ変位を7%まで大きくしても出力変化がほとんどなく、出力低下が効果的に抑制されていた。この結果から、電極体のバネ定数は10000kgf/mm以下にすることが適当であり(実施例1,2)、好ましくは8000kgf/mm以下であり、特に好ましくは6000kgf/mm以下である(実施例1)。なお、実施例1では、長さ変位が0%、1%、2%、3%、5%、7%の順に、各単電池に加わる拘束圧が、10kgf/cm、20kgf/cm、30kgf/cm、40kgf/cm、60kgf/cm、80kgf/cmと変動した。また、実施例2では、長さ変位が0%、1%、2%、3%、4%の順に、各単電池に加わる拘束圧が、10kgf/cm、30kgf/cm、50kgf/cm、70kgf/cm、90kgf/cmと変動した。また、比較例1では、長さ変位が0%、1%、2%の順に、各単電池に加わる拘束圧が、10kgf/cm、40kgf/cm、70kgf/cmと変動した。また、比較例2では、長さ変位が0%、1%、2%の順に、各単電池に加わる拘束圧が、10kgf/cm、50kgf/cm、90kgf/cmと変動した。この結果から、電極体のバネ定数が小さいほど、長さ変位に伴う拘束圧の変動が少ないことが確認できた。ここで供試した組電池の場合、電極体のバネ定数を10000kgf/mm以下とし、かつ各単電池に加わる拘束圧を10kgf/cm~100kgf/cm(好ましくは10kgf/cm~80kgf/cm、特に好ましくは10kgf/cm~50kgf/cm)の範囲内に設定することが望ましい。
 なお、上述したように、電極体のバネ定数を10000kgf/mm以下にするには、正極活物質層34の多孔度を大きくすることが有効である。しかし、中実の粒子からなる正極活物質では、正極活物質層34の多孔度を大きくするのに限界がある。このため、正極活物質層34の多孔度を大きくするには、それに適した正極活物質の選定が重要になる。
 そこで、本発明者は、正極活物質自体に空孔があり、正極活物質層34の多孔度を増大させる正極活物質を選択することを検討した。かかる正極活物質としては、図示は省略するが、例えば、正極活物質の粒子をスプレードライ法によって造粒し、内部に微小な空孔を有する粒子構造としてもよい。このような正極活物質を用いることによっても、正極活物質層34の多孔度を増大させることができる。
 例えば、正極活物質は、図9に示すように、リチウム遷移金属酸化物の一次粒子66が複数集合した二次粒子64で形成されていてもよい。この場合、例えば、二次粒子64に中空部62が形成された正極活物質60aを用いてもよい。かかる正極活物質60aによれば、二次粒子64に中空部62が形成されているため、当該中空部62によって正極活物質層34内の空孔が増えるので、正極活物質層34の多孔度を増大させることができる。また、図9に示す形態においては、望ましくは二次粒子64において一次粒子66間に図示されない程度の微細の細孔が多数形成されており、中空部62に電解液が浸み込みうるように構成するとよい。これにより、中空部62内部でも一次粒子66が活用されるので、電池の出力性能を向上させることができる。以下、かかる中空部62を有する正極活物質60aの構造を適宜に「中空構造」という。
 また、他の形態として、例えば、図10に示すように、正極活物質60bは、さらに、中空部62と外部とを繋げるように、二次粒子64を貫通した貫通孔68を有していてもよい。以下、かかる貫通孔68を有する正極活物質60bの構造を、適宜に「孔開き中空構造」という。
 かかる正極活物質60bによれば、貫通孔68を通して中空部62と外部とで電解液が行き来し易くなり、中空部62の電解液が適当に入れ替わる。このため、中空部62内で電解液が不足する液枯れが生じ難い。このため、中空部62内部で、正極活物質60bの一次粒子66がより活発に活用され得る。このため、電池の出力特性をさらに向上させることができる。
 この場合、貫通孔68の開口幅kが平均0.01μm以上であるとよい。これにより、中空部62の内部に、より確実に電解液が入り込み、上記の効果が得られ易くなる。また、貫通孔68の開口幅kが平均2.0μm以下であるとよい。ここで、貫通孔68の開口幅kとは、活物質粒子の外部から二次粒子を貫通して中空部62に至る経路の中で、最も貫通孔68が狭い部分における差渡し長さ(貫通孔68の内径)をいう。なお、中空部62に複数の貫通孔68がある場合には、複数の貫通孔68のうち、最も大きい開口幅kを有する貫通孔68で評価するとよい。また、貫通孔68の開口幅kは平均2.0μm以下、より好ましくは平均1.0μm以下、さらに好ましくは平均0.5μm以下であってもよい。
 また、貫通孔68の数は、正極活物質60bの一粒子当たり平均1~20個程度でもよく、より好ましくは、平均1~5個程度でもよい。かかる構造の正極活物質60bによると、良好な電池性能をより安定して発揮することができる。なお、孔開き中空構造の正極活物質60bの貫通孔68の数は、例えば、任意に選択した少なくとも10個以上の活物質粒子について一粒子当たりの貫通孔数を把握し、それらの算術平均値を求めるとよい。かかる孔開き中空構造の正極活物質60bを製造する方法は、例えば、原料水酸化物生成工程、混合工程、焼成工程を含んでいるとよい。
 ここで、原料水酸化物生成工程は、遷移金属化合物の水性溶液にアンモニウムイオンを供給して、遷移金属水酸化物の粒子を水性溶液から析出させる工程である。水性溶液は、リチウム遷移金属酸化物を構成する遷移金属元素の少なくとも一つを含んでいるとよい。さらに、原料水酸化物生成工程は、pH12以上かつアンモニウムイオン濃度25g/L以下で水性溶液から遷移金属水酸化物を析出させる核生成段階と、その析出した遷移金属水酸化物をpH12未満かつアンモニウムイオン濃度3g/L以上で成長させる粒子成長段階とを含んでいるとよい。
 また、混合工程は、原料水酸化物生成工程で得られた遷移金属水酸化物の粒子とリチウム化合物とを混合して未焼成の混合物を調製する工程である。また、焼成工程は、混合工程で得られた混合物を焼成して活物質粒子を得る工程である。かかる製造方法によると、孔空き中空構造の正極活物質60bを適切に製造することができる。
 また、この場合、焼成工程は、最高焼成温度が800℃~1100℃となるように行うとよい。このことによって、上記一次粒子を十分に焼結させることができるので、所望の平均硬度を有する活物質粒子が好適に製造され得る。この焼成工程は、例えば、中空部62および貫通孔68以外の部分では一次粒子の粒界に実質的に隙間が存在しない二次粒子が形成されるように行うことが好ましい。
 また、焼成工程は、混合物を700℃以上900℃以下の温度T1で焼成する第一焼成段階と、その第一焼成段階を経た結果物を800℃以上1100℃以下であって且つ第一焼成段階における焼成温度T1よりも高い温度T2で焼成する第二焼成段階とを含んでもよい。
 ここに開示される活物質粒子製造方法の好ましい一態様では、焼成工程が、混合物を700℃以上900℃以下の温度T1で焼成する第一焼成段階と、その第一焼成段階を経た結果物を800℃以上1100℃以下であって且つ第一焼成段階における焼成温度T1よりも高い温度T2で焼成する第二焼成段階とを含む。これら第一および第二の焼成段階を含む態様で上記混合物を焼成することにより、ここに開示される好ましい孔開き中空構造を有する活物質粒子が適切に製造され得る。また、例えば、焼成工程を適当に工夫することによって、同様の方法により、図9に示すような「中空構造」の正極活物質60aを得ることもできる。
 また、正極活物質60のBET比表面積は、0.5~1.9m/gであることが好ましい。このようなBET比表面積を満たす正極活物質60は、リチウム二次電池の正極に用いられて、より高い性能を安定して発揮する電池を与えるものであり得る。例えば、内部抵抗が低く(換言すれば、出力特性が良く)、且つ充放電サイクル(特に、ハイレートでの放電を含む充放電サイクル)によっても抵抗の上昇の少ないリチウム二次電池が構築され得る。
 上述した「中空構造」の正極活物質60aや「孔開き中空構造」の正極活物質60bは、BET比表面積が0.5~1.9m/gである正極活物質60の好適な一形態となり得る。
 また、かかる中空構造の正極活物質60aや孔開き中空構造の正極活物質60bは、ニッケルを構成元素として含む層状構造のリチウム遷移金属酸化物であってもよい。また、中空構造の正極活物質60aや孔開き中空構造の正極活物質60bは、ニッケル、コバルトおよびマンガンを構成元素として含む層状構造のリチウム遷移金属酸化物であってもよい。
 また、かかる中空構造の正極活物質60aや孔開き中空構造の正極活物質60bは、例えば、平均粒径が凡そ3μm~10μm程度の範囲が好ましい。また、孔開き中空構造の正極活物質60bの貫通孔68の平均開口サイズは、正極活物質60bの平均粒径の1/2以下であることが好ましい。かかる正極活物質60bは、上記平均開口サイズが適切な範囲にあるので、孔開き中空構造を有することによる電池性能向上効果(例えば、内部抵抗を低減する効果)を適切に発揮しつつ、所望の平均硬度を容易に確保することができる。したがって、良好な電池性能をより安定して発揮することができる。
 また、かかる中空構造の正極活物質60aや孔開き中空構造の正極活物質60bは、二次粒子64に中空部62が形成されているため、当該中空部62によって正極活物質層34内の空孔が増えるので、正極活物質層34の多孔度を増大させることができる。そのため、正極シートが伸縮しやすくなり、バネ定数が10000kgf/mm以下を満たす捲回電極体を容易に形成することができる。
 以上、リチウム二次電池12の正極活物質層34に含まれる正極活物質として、適当な正極活物質の一例を挙げたが、本発明に係るリチウム二次電池12の正極活物質としては、上記に特に限定されない。また、正極活物質は、上記に限らず、一次粒子をスプレードライ法によって造粒し、内部に微小な空孔を有する多孔質の二次粒子を採用してもよい。
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。
 なお、ここに開示されるいずれかの組電池10は、温度変化が激しく且つ振動が発生する状態で使用しても各単電池にかかる面圧を安定に保持できることから、車両に搭載される組電池として適した性能を備える。したがって本発明によると、図11に示すように、ここに開示されるいずれかの組電池10を備えた車両1が提供される。特に、該組電池10を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両1(例えば自動車)が提供される。
 また、ここに開示される技術の好ましい適用対象として、50A以上(例えば50A~250A)、さらには100A以上(例えば100A~200A)のハイレート充放電を含む充放電サイクルで使用され得ることが想定される二次電池を搭載した組電池;理論容量が1Ah以上(さらには3Ah以上)の大容量タイプであって10C以上(例えば10C~50C)さらには20C以上(例えば20C~40C)のハイレート充放電を含む充放電サイクルで使用されることが想定される二次電池を搭載した組電池;等が例示される。
 本発明の構成によれば、各単電池(典型的には、主として該単電池を構成する電極体)にかかる面圧を安定に保持し得る組電池ならびに該組電池に搭載され得る電池を提供することができる。

Claims (15)

  1.  複数の充放電可能な単電池が直列に接続して構成された組電池であって、
     正極および負極を備える扁平形状の電極体と、該電極体および電解質を収容する容器とを備える単電池を複数備えており、
     前記複数の単電池は、前記電極体の扁平面が対向するように配列され且つ該配列方向に荷重が加えられた状態で拘束されており、
     前記拘束された各単電池において、前記電極体の前記配列方向に対するバネ定数が10000kgf/mm以下である、組電池。
  2.  前記電極体は、正極集電体に正極活物質を含む正極活物質層が付与されてなる正極を備えており、
     前記正極活物質層の多孔度が30%~60%である、請求項1に記載の組電池。
  3.  前記正極活物質は、リチウム遷移金属酸化物の一次粒子が複数集合した二次粒子と、該二次粒子に形成された中空部とを有する、請求項2に記載の組電池。
  4.  前記正極活物質は、ニッケル、コバルトおよびマンガンを構成元素として含む層状構造のリチウム遷移金属酸化物である、請求項2または3に記載の組電池。
  5.  前記正極活物質層は導電剤を有しており、
     前記正極活物質層中の導電剤の含有割合が8質量%以上である、請求項2~4の何れか一つに記載の組電池。
  6.  前記電極体は、負極集電体に負極活物質を含む負極活物質層が付与されてなる負極を備えており、
     前記負極活物質層の多孔度が30%~60%である、請求項1~5の何れか一つに記載の組電池。
  7.  前記電極体は、長尺シート状の正極集電体に正極活物質層が付与されてなる正極と、長尺シート状の負極集電体に負極活物質層が付与されてなる負極とがセパレータを介して捲回されてなる扁平形状の捲回電極体である、請求項1~6の何れか一つに記載の組電池。
  8.  電池容器の外側から拘束荷重が加えられた扁平形状の電極体を備えた二次電池であって、前記電極体の前記荷重方向に対するバネ定数が10000kgf/mm以下である、二次電池。
  9.  前記電極体は、正極集電体に正極活物質を含む正極活物質層が付与されてなる正極を備えており、
     前記正極活物質層の多孔度が30%~60%である、請求項8に記載の二次電池。
  10.  前記正極活物質は、リチウム遷移金属酸化物の一次粒子が複数集合した二次粒子と、該二次粒子に形成された中空部とを有する、請求項9に記載の二次電池。
  11.  前記正極活物質は、ニッケル、コバルトおよびマンガンを構成元素として含む層状構造のリチウム遷移金属酸化物である、請求項9または10に記載の二次電池。
  12.  前記正極活物質層は導電剤を有しており、
     前記正極活物質層中の導電剤の含有割合が8質量%以上である、請求項9~11の何れか一つに記載の二次電池。
  13.  前記電極体は、負極集電体に負極活物質を含む負極活物質層が付与されてなる負極を備えており、
     前記負極活物質層の多孔度が30%~60%である、請求項8~12の何れか一つに記載の二次電池。
  14.  請求項8~13の何れか一つに記載の二次電池が複数直列に接続して構成された、組電池。
  15.  請求項1~7、14の何れか一つに記載の組電池であって車両駆動用電源として用いられる、車両駆動用組電池。
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
PCT/JP2011/053058 2011-02-14 2011-02-14 二次電池及び組電池 WO2012111077A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012557686A JP5664937B2 (ja) 2011-02-14 2011-02-14 二次電池及び組電池
US13/984,868 US10680215B2 (en) 2011-02-14 2011-02-14 Secondary battery and assembled battery
PCT/JP2011/053058 WO2012111077A1 (ja) 2011-02-14 2011-02-14 二次電池及び組電池
CN201180067499.2A CN103370810B (zh) 2011-02-14 2011-02-14 二次电池和电池组
KR1020137023634A KR101572339B1 (ko) 2011-02-14 2011-02-14 2차 전지 및 조전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053058 WO2012111077A1 (ja) 2011-02-14 2011-02-14 二次電池及び組電池

Publications (1)

Publication Number Publication Date
WO2012111077A1 true WO2012111077A1 (ja) 2012-08-23

Family

ID=46672042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053058 WO2012111077A1 (ja) 2011-02-14 2011-02-14 二次電池及び組電池

Country Status (5)

Country Link
US (1) US10680215B2 (ja)
JP (1) JP5664937B2 (ja)
KR (1) KR101572339B1 (ja)
CN (1) CN103370810B (ja)
WO (1) WO2012111077A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127374A (ja) * 2012-12-26 2014-07-07 Nippon Soken Inc 二次電池及び組電池
JP2016081763A (ja) * 2014-10-17 2016-05-16 トヨタ自動車株式会社 電池用セパレータ、積層セパレータ、リチウムイオン二次電池および組電池
JP2017084550A (ja) * 2015-10-27 2017-05-18 トヨタ自動車株式会社 組電池
JP2019021425A (ja) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、及び非水系電解質二次電池用正極活物質の製造方法
JP2019075222A (ja) * 2017-10-13 2019-05-16 トヨタ自動車株式会社 正極板および非水電解質二次電池
JP2019185929A (ja) * 2018-04-04 2019-10-24 三菱電機株式会社 バッテリーモジュールの製造方法及び機械特性測定装置
JP2020161391A (ja) * 2019-03-27 2020-10-01 トヨタ自動車株式会社 組電池
WO2021157139A1 (ja) * 2020-02-03 2021-08-12 三洋電機株式会社 電源装置及びこれを用いた電動車両並びに蓄電装置
JP7398413B2 (ja) 2021-09-13 2023-12-14 プライムアースEvエナジー株式会社 非水電解液二次電池の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633621B1 (ja) * 2013-11-08 2014-12-03 株式会社豊田自動織機 蓄電モジュール
JP6409841B2 (ja) * 2016-09-26 2018-10-24 トヨタ自動車株式会社 非水電解液二次電池
US11165051B2 (en) * 2016-11-08 2021-11-02 Honda Motor Co., Ltd. Electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery provided with same
KR102146075B1 (ko) 2017-04-13 2020-08-19 주식회사 엘지화학 엔드 플레이트 테스트 장치 및 방법
JP7107912B2 (ja) * 2019-12-18 2022-07-27 本田技研工業株式会社 セパレータ及び固体電池モジュール
EP3944401A1 (en) * 2020-07-13 2022-01-26 ABB Schweiz AG Cooled battery module
CN116666733B (zh) * 2023-07-28 2024-02-06 宁德时代新能源科技股份有限公司 电池单体、电池和用电装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203630A (ja) * 2002-01-08 2003-07-18 Japan Storage Battery Co Ltd 非水系二次電池
JP2006278184A (ja) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd 角型電池及びその製造方法
JP2007200795A (ja) * 2006-01-30 2007-08-09 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
JP2010015751A (ja) * 2008-07-02 2010-01-21 Toyota Motor Corp 電池
JP2010031214A (ja) * 2008-07-02 2010-02-12 Denki Kagaku Kogyo Kk カーボンブラック複合体及びその用途
JP2010092610A (ja) * 2008-10-03 2010-04-22 Toyota Motor Corp 組電池構造体、車両、電池搭載機器及び組電池構造体の製造方法
JP2010212086A (ja) * 2009-03-10 2010-09-24 Sanyo Electric Co Ltd 非水電解質二次電池
JP2010267463A (ja) * 2009-05-14 2010-11-25 Sumitomo Electric Ind Ltd 固体電解質電池用の正極および固体電解質電池
JP2010287530A (ja) * 2009-06-15 2010-12-24 Toyota Motor Corp 組電池

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4117865B2 (ja) * 1999-08-31 2008-07-16 松下電器産業株式会社 組電池
JP4700783B2 (ja) * 2000-04-28 2011-06-15 パナソニック株式会社 組電池の製造方法および組電池における拘束力の設計方法
DE60206719T2 (de) * 2001-09-17 2006-05-11 Nissan Motor Co., Ltd., Yokohama Zusammengesetzte Batterie
JP3565207B2 (ja) * 2002-02-27 2004-09-15 日産自動車株式会社 電池パック
JP4135473B2 (ja) * 2002-11-07 2008-08-20 日産自動車株式会社 バイポーラ電池
US10629947B2 (en) * 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
JP2007048750A (ja) 2005-08-10 2007-02-22 Samsung Sdi Co Ltd 電池モジュール
JP2007188864A (ja) * 2005-12-13 2007-07-26 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極とそれを用いた非水電解質二次電池
JP5040043B2 (ja) * 2006-06-20 2012-10-03 トヨタ自動車株式会社 燃料電池
JP4501080B2 (ja) * 2006-10-23 2010-07-14 トヨタ自動車株式会社 組電池およびその製造方法
JP2008192551A (ja) * 2007-02-07 2008-08-21 Toyota Motor Corp バッテリパック構造
JP5082568B2 (ja) * 2007-04-26 2012-11-28 トヨタ自動車株式会社 蓄電装置
JP4252623B2 (ja) * 2007-06-06 2009-04-08 パナソニック株式会社 高分子電解質型燃料電池
JP2009026703A (ja) * 2007-07-23 2009-02-05 Toyota Motor Corp 組電池の製造方法
JP4803201B2 (ja) * 2008-04-04 2011-10-26 トヨタ自動車株式会社 捲回型電池および捲回型電池の製造方法
US9634295B2 (en) * 2010-01-15 2017-04-25 Pellion Technologies, Inc. Expandable battery pack containment device for pouch battery cells
JP5812357B2 (ja) 2010-11-12 2015-11-11 トヨタ自動車株式会社 二次電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203630A (ja) * 2002-01-08 2003-07-18 Japan Storage Battery Co Ltd 非水系二次電池
JP2006278184A (ja) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd 角型電池及びその製造方法
JP2007200795A (ja) * 2006-01-30 2007-08-09 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
JP2010015751A (ja) * 2008-07-02 2010-01-21 Toyota Motor Corp 電池
JP2010031214A (ja) * 2008-07-02 2010-02-12 Denki Kagaku Kogyo Kk カーボンブラック複合体及びその用途
JP2010092610A (ja) * 2008-10-03 2010-04-22 Toyota Motor Corp 組電池構造体、車両、電池搭載機器及び組電池構造体の製造方法
JP2010212086A (ja) * 2009-03-10 2010-09-24 Sanyo Electric Co Ltd 非水電解質二次電池
JP2010267463A (ja) * 2009-05-14 2010-11-25 Sumitomo Electric Ind Ltd 固体電解質電池用の正極および固体電解質電池
JP2010287530A (ja) * 2009-06-15 2010-12-24 Toyota Motor Corp 組電池

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127374A (ja) * 2012-12-26 2014-07-07 Nippon Soken Inc 二次電池及び組電池
JP2016081763A (ja) * 2014-10-17 2016-05-16 トヨタ自動車株式会社 電池用セパレータ、積層セパレータ、リチウムイオン二次電池および組電池
US10944086B2 (en) 2014-10-17 2021-03-09 Toyota Jidosha Kabushiki Kaisha Separator for battery, laminated separator, lithium ion secondary battery, and battery pack
JP2017084550A (ja) * 2015-10-27 2017-05-18 トヨタ自動車株式会社 組電池
JP2019021425A (ja) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、及び非水系電解質二次電池用正極活物質の製造方法
JP2019075222A (ja) * 2017-10-13 2019-05-16 トヨタ自動車株式会社 正極板および非水電解質二次電池
JP2019185929A (ja) * 2018-04-04 2019-10-24 三菱電機株式会社 バッテリーモジュールの製造方法及び機械特性測定装置
JP7133964B2 (ja) 2018-04-04 2022-09-09 三菱電機株式会社 バッテリーモジュールの製造方法及び機械特性測定装置
JP2020161391A (ja) * 2019-03-27 2020-10-01 トヨタ自動車株式会社 組電池
JP7089678B2 (ja) 2019-03-27 2022-06-23 トヨタ自動車株式会社 組電池
WO2021157139A1 (ja) * 2020-02-03 2021-08-12 三洋電機株式会社 電源装置及びこれを用いた電動車両並びに蓄電装置
JP7398413B2 (ja) 2021-09-13 2023-12-14 プライムアースEvエナジー株式会社 非水電解液二次電池の製造方法

Also Published As

Publication number Publication date
CN103370810A (zh) 2013-10-23
CN103370810B (zh) 2016-03-02
JPWO2012111077A1 (ja) 2014-07-03
JP5664937B2 (ja) 2015-02-04
US10680215B2 (en) 2020-06-09
KR101572339B1 (ko) 2015-11-26
US20130316210A1 (en) 2013-11-28
KR20130118386A (ko) 2013-10-29

Similar Documents

Publication Publication Date Title
JP5664937B2 (ja) 二次電池及び組電池
US9184442B2 (en) Secondary battery
JP5510761B2 (ja) 二次電池
WO2012169030A1 (ja) リチウムイオン二次電池
JP5696904B2 (ja) リチウムイオン二次電池およびその製造方法
JP5773225B2 (ja) 二次電池
WO2010134156A1 (ja) リチウムイオン二次電池用正極活物質粉末材料
JP5472760B2 (ja) リチウムイオン二次電池の製造方法
JP6493757B2 (ja) リチウムイオン二次電池
JP2011070932A (ja) リチウム二次電池
US9312568B2 (en) Lithium secondary battery
JP2013073670A (ja) リチウム二次電池とその製造方法
CN110021782B (zh) 非水电解液二次电池和非水电解液二次电池的制造方法
US20130004845A1 (en) Lithium secondary battery
JP5812336B2 (ja) 二次電池
CN112242509B (zh) 非水电解质二次电池
EP3086390B1 (en) Nonaqueous electrolyte secondary battery
US20240136519A1 (en) Positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery
CN113258034A (zh) 非水电解质二次电池和二次电池组件
JP2023091566A (ja) 正極およびこれを用いた非水電解質二次電池
CN113258033A (zh) 非水电解质二次电池和二次电池组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012557686

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13984868

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137023634

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11858821

Country of ref document: EP

Kind code of ref document: A1