WO2012105527A1 - 自動変速機の制御装置 - Google Patents

自動変速機の制御装置 Download PDF

Info

Publication number
WO2012105527A1
WO2012105527A1 PCT/JP2012/052060 JP2012052060W WO2012105527A1 WO 2012105527 A1 WO2012105527 A1 WO 2012105527A1 JP 2012052060 W JP2012052060 W JP 2012052060W WO 2012105527 A1 WO2012105527 A1 WO 2012105527A1
Authority
WO
WIPO (PCT)
Prior art keywords
road surface
vehicle
lockup clutch
engagement
clutch
Prior art date
Application number
PCT/JP2012/052060
Other languages
English (en)
French (fr)
Inventor
中村 幸司
卯京 小形
祐一郎 竹森
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2012105527A1 publication Critical patent/WO2012105527A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/60Inputs being a function of ambient conditions
    • F16H59/66Road conditions, e.g. slope, slippery
    • F16H2059/663Road slope

Definitions

  • the present invention relates to a control device for an automatic transmission that controls switching of engagement / disengagement of a lock-up clutch of a torque converter provided in the automatic transmission according to a traveling state of the vehicle.
  • Some torque converters included in automatic transmissions mounted on vehicles are accompanied by a lock-up clutch (hereinafter also referred to as “LC”).
  • LC lock-up clutch
  • a vehicle including such a torque converter with a lock-up clutch is provided with a lock-up control means for controlling switching of engagement / disengagement of the lock-up clutch, as shown in Patent Document 1, for example. ing.
  • This lock-up control means performs control for engaging the lock-up clutch in the torque converter in a predetermined operation region during traveling of the vehicle. Thereby, it is possible to improve the fuel economy (fuel consumption) of the vehicle while keeping the engine speed low.
  • the lockup control means controls the engagement / disengagement of the lockup clutch and the engagement amount (engagement amount) at the time of engagement based on the vehicle speed and the accelerator pedal opening (or throttle opening).
  • a control map (LC map) for controlling the lockup clutch based on the control map.
  • the lock-up clutch engagement amount control (slip control) is performed as the vehicle speed decreases, so that a slip region is generated in the lock-up clutch.
  • the amount of heat generated by the friction material of the lockup clutch increases, which may lead to deterioration of the durability of the lockup clutch.
  • the present invention has been made in view of the above points, and its purpose is to effectively prevent the vehicle speed from stagnating or decreasing when traveling on an uphill road, particularly in a vehicle having a small driving force such as a small car,
  • An object of the present invention is to provide an automatic transmission control device capable of improving the durability of a lockup clutch.
  • the present invention provides an engagement / disengagement between an input element (21) connected to the drive source (1) and an output element (22) connected to the automatic transmission (2).
  • a control device (5) for an automatic transmission having a torque converter (3) provided with a lock-up clutch (35) for switching between the engagement and disengagement of the lock-up clutch (35).
  • the lockup control means (55) is provided with a lockup clutch (35). If the road surface gradient (S) calculated by the road surface gradient calculating means (52) becomes equal to or higher than the first predetermined value (S1) during traveling in the disengaged state, the lockup clutch (35 ) Control to prohibit engagement And wherein the Ukoto.
  • the lockup control means (55) prohibits the engagement of the lockup clutch (35), and the road surface gradient (S) calculated by the road surface gradient calculation means (52) is the first.
  • the second predetermined value (S2) smaller than the predetermined value (S1)
  • control for releasing the prohibition of the engagement of the lockup clutch (35) may be performed.
  • the prohibition of the lock-up clutch is released, thereby improving the traveling performance of the uphill road and the fuel efficiency. Can contribute to both.
  • the difference between the gradient condition (first predetermined value) for prohibiting the engagement of the lockup clutch and the gradient condition (second predetermined value) for releasing the prohibition allows the engagement of the lockup clutch. It is possible to prevent a hunting phenomenon in which prohibition and release are frequently repeated.
  • the present invention also provides a lock-up clutch that switches engagement / disengagement between an input element (21) connected to the drive source (1) and an output element (22) connected to the automatic transmission (2).
  • a control device (5) for an automatic transmission having a torque converter (3) with a lockup control means (55) for controlling switching of engagement / disengagement of the lockup clutch (35).
  • road surface gradient calculating means (52) for calculating the gradient of the road surface on which the vehicle is traveling, and the lockup control means (55) travels with the vehicle engaged with the lockup clutch (35).
  • the control for releasing the engagement of the lockup clutch (35) is performed. It is characterized by performing.
  • the lockup clutch can be disengaged before the vehicle speed decreases.
  • release of a lockup clutch can be suppressed small, and it can prevent that shocks, such as a vibration and a noise, are transmitted to a vehicle body or a passenger
  • the road surface gradient (S) calculated by the road surface gradient calculation means (52) is the first.
  • S2 a second predetermined value smaller than the predetermined value (S1)
  • control for engaging the lockup clutch (35) may be performed.
  • the lock-up clutch by engaging the lock-up clutch after the slope of the road surface on which the vehicle travels is equal to or less than the second predetermined value, it contributes to both improvement of traveling performance and fuel efficiency on the uphill road. be able to.
  • the lockup clutch is engaged and released. It is possible to prevent a hunting phenomenon that is frequently repeated.
  • symbol described in the parenthesis above has illustrated the code
  • FIG. 1 is a schematic view showing a drive system of a vehicle provided with a control device for an automatic transmission according to an embodiment of the present invention.
  • the vehicle of this embodiment includes an engine 1, an automatic transmission 2, a FI-ECU 4 that is a control means for controlling the engine 1, and a control for controlling the automatic transmission 2.
  • CVT-ECU 5 as means and a hydraulic control device 6 for controlling the hydraulic pressure supplied to the automatic transmission 2 are provided.
  • the automatic transmission 2 includes a fluid-type torque converter 3 having a lock-up clutch 35 and a belt-type continuously variable transmission mechanism (CVT) 10 connected to the engine 1 via the torque converter 3.
  • the hydraulic control device 6 is a device for supplying hydraulic pressure for performing drive control of the torque converter 3, engagement pressure control of the lockup clutch 35, and engagement pressure control of the CVT 10.
  • Rotation of the engine 1 is output to the crankshaft (output shaft) 21.
  • the rotation of the crankshaft 21 is transmitted to the main shaft 22 of the automatic transmission 2 via the torque converter 3.
  • the torque converter 3 transmits torque via a fluid (hydraulic oil), and includes a front cover 31, a pump impeller (pump impeller) 32 formed integrally with the front cover 31, and the front cover 31.
  • a turbine impeller (turbine runner) 33 disposed between the pump impeller 32 and the pump impeller 32, and a one-way clutch 36 interposed between the pump impeller 32 and the turbine impeller 33.
  • a stator impeller 34 rotatably supported on a stator shaft (fixed shaft) 38.
  • the crankshaft 21 is connected to the pump impeller 32 of the torque converter 3 via the front cover 31, and the turbine impeller 33 is connected to the main shaft (input shaft of the automatic transmission 2) 22.
  • a lockup clutch 35 is provided between the turbine impeller 33 and the front cover 31. Engagement of the lockup clutch 35 is controlled by hydraulic control (lockup control) of the hydraulic control device 6 based on a command of the CVT-ECU 5. In this lock-up control, the lock-up clutch 35 is engaged (fastened) with the front cover 31 by being pressed toward the inner surface of the front cover 31, and is engaged with the front cover 31 by being released. Canceled. In a container formed by the front cover 31 and the pump impeller 32, hydraulic oil (CVTF: Continuously Variable Variable Transmission Fluid) is sealed.
  • CVTF Continuously Variable Variable Transmission Fluid
  • the lock-up clutch 35 is engaged, and the front cover 31 is not mechanically rotated from the front cover 31 to the turbine impeller 33 via hydraulic oil.
  • the turbine impeller 33 rotates as a unit, and the rotational torque of the crankshaft 21 is directly transmitted to the main shaft 22.
  • the automatic transmission 2 includes a belt-type continuously variable transmission (CVT) 10 as a transmission mechanism for changing the rotation transmitted from the main shaft 22 to the counter shaft 23.
  • a belt type continuously variable transmission mechanism (hereinafter referred to as “CVT”) 10 includes a drive pulley 11 that rotates integrally with the main shaft 22, a driven pulley 12 that rotates integrally with the counter shaft 23, and these drive pulleys 11.
  • An endless metal V-belt 13 is provided between the driven pulley 12 and the endless metal.
  • the hydraulic pressure control device 6 controls the hydraulic pressure supplied to the cylinder chamber 11 a on the drive pulley 11 side and the cylinder chamber 12 a on the driven pulley 12 side (drive side pressure and driven side pressure) to drive the belt type continuously variable transmission mechanism 10.
  • a lateral pressure is applied to the pulley 11 and the driven pulley 12 so that the V-belt 13 does not slip.
  • the drive side pressure and the driven side pressure are controlled to be different from each other, the groove widths of the drive pulley 11 and the driven pulley 12 are appropriately changed, and the winding diameter of the V belt 13 is changed to thereby change the drive pulley. Control is performed to change the speed ratio between the pulley 11 and the driven pulley 12 steplessly.
  • the hydraulic control device 6 controls the transmission gear ratio supplied to the countershaft 23 from the main shaft 22 by controlling the hydraulic pressure supplied to the cylinder chambers 11 a and 12 a of the CVT 10. Further, by supplying hydraulic oil of hydraulic pressure to the pump impeller 32 of the torque converter 3, the torque converter slip ratio ETR indicating how much the rotational drive of the crankshaft 21 is transmitted to the main shaft 22 is controlled, and the vehicle The engagement / disengagement of the lock-up clutch 35 is performed by switching the supply / stop of the hydraulic pressure supplied to the oil chamber (not shown) of the lock-up clutch 35 based on the travel state.
  • the vehicle of this embodiment is provided with various sensors. That is, in the vicinity of the crankshaft 21, a crankshaft rotation speed sensor 201 that detects the rotation speed Ne of the crankshaft 21 (engine 1) is provided. In the vicinity of the main shaft 22, a main shaft rotation number sensor 202 that detects the rotation number (input shaft rotation number of the automatic transmission 2) Ni of the main shaft 22 is provided. In the vicinity of the countershaft 23, a countershaft rotational speed sensor 203 for detecting the rotational speed of the countershaft 23 (the output shaft rotational speed of the automatic transmission 2) No is provided. The rotation speed data detected by each of the rotation speed sensors 201 to 203 is output to the CVT-ECU 5. The rotation speed data detected by the crankshaft rotation speed sensor 201 is also output to the FI-ECU 4.
  • a vehicle speed sensor 204 for detecting the vehicle speed Nv of the vehicle is provided at a predetermined position of the vehicle. Vehicle speed data detected by the vehicle speed sensor 204 is output to the CVT-ECU 5.
  • the vehicle speed Nv may be calculated from the rotational speed Ni of the main shaft 22 or the rotational speed No of the countershaft 23 without providing the vehicle speed sensor 204 that exclusively detects the vehicle speed Nv.
  • an acceleration sensor 209 for detecting the acceleration Na of the vehicle and an inclination sensor 210 for detecting the road surface inclination Nd are provided.
  • the acceleration data detected by the acceleration sensor 209 and the road surface inclination data detected by the inclination sensor 210 are output to the CVT-ECU 5.
  • a throttle opening sensor 206 for detecting the throttle opening TH is provided in the vicinity of the engine 1.
  • the throttle opening data detected by the throttle opening sensor 206 is output to the FI-ECU 4.
  • a cooling water temperature sensor for detecting the cooling water temperature of the engine 1 an intake air temperature sensor for detecting the temperature of the air supplied to the engine 1 (intake air temperature), and a flow rate for detecting the air flow rate. Sensors and the like are also provided.
  • an accelerator pedal opening sensor 207 for detecting the accelerator pedal opening APAT is provided in the vicinity of the accelerator pedal 8.
  • the accelerator pedal opening degree data detected by the accelerator pedal opening degree sensor 207 is output to the FI-ECU 4.
  • the FI-ECU 4 controls the output of the engine 1, that is, the rotational speed Ne of the engine 1, based on the detection data input from the sensors 201, 206, and 207 and various data input from the CVT-ECU 5. Further, the CVT-ECU 5 controls the hydraulic pressure supplied from the hydraulic control device 6 to the CVT 10 based on the detection data input from the sensors 201 to 204 and various data input from the FI-ECU 4, thereby changing the gear ratio. Control. Further, the CVT-ECU 5 increases the lockup control amount via the hydraulic control device 6 in a predetermined operation region, and engages the lockup clutch 35.
  • FIG. 2 is a functional block diagram of the CVT-ECU 5.
  • the CVT-ECU 5 includes a memory 51 that stores a shift characteristic map 51a and the like, which will be described later, road surface gradient calculating means 52 for calculating the gradient of the road surface on which the vehicle is traveling, and a marginal driving force of the vehicle.
  • a margin driving force calculating means 54 for calculating, a shift control means 53 for controlling the gear ratio of the CVT 10, and a lockup control means 55 for controlling engagement / disengagement of the lockup clutch 35.
  • the memory 51 shows the transmission characteristics (transmission ratio distribution) of the CVT 10 on a two-dimensional map of the vehicle speed Nv detected by the vehicle speed sensor 204 and the accelerator pedal opening APAT detected by the accelerator pedal opening sensor 207.
  • the shift characteristic map 51a and the LC map 51b showing the distribution of the engagement region and the non-engagement region of the lockup clutch 35 on the two-dimensional map are stored.
  • the road surface gradient calculating means 52 calculates the gradient of the road surface on which the vehicle is traveling. Specifically, in the memory 51, the accelerator pedal opening APAT detected by the accelerator pedal opening sensor 207 (or the throttle opening TH detected by the throttle opening sensor 206) and the vehicle speed sensor 204 are detected. The expected acceleration expected for the vehicle when traveling on a flat road according to the vehicle speed Nv is stored (set), and the road surface gradient calculating means 52 is the actual acceleration actually generated in the vehicle from the vehicle speed Nv. And the slope of the road surface is calculated by comparing the predicted acceleration with the actual acceleration. The road surface gradient thus calculated is output to the lockup control means 55 and the shift control means 53.
  • the slope of the road surface may be calculated by performing calculations based on the road surface inclination Nd detected by the inclination sensor 210 and the vehicle acceleration Na detected by the acceleration sensor 209. Or you may make it calculate the gradient of a road surface by calculating based only on the inclination Nd of the road surface detected with the inclination sensor 210.
  • the margin driving force calculating means 54 calculates the margin driving force of the vehicle.
  • the speed change control means 53 controls the speed ratio by the CVT 10 according to the speed change characteristic map 51a stored in the memory 51 based on the detection data input from the sensors 201 to 204 and the various data input from the FI-ECU 4. .
  • the lockup control means 55 is stored in the memory 51 based on the road surface gradient S input from the road surface gradient calculation means 52 and the vehicle margin driving force M calculated by the margin driving force calculation means 54. Switching of engagement / disengagement of the lockup clutch 35 is controlled according to the LC map 51b.
  • engagement control the engagement / disengagement switching control (hereinafter simply referred to as “engagement control”) of the lockup clutch 35 by the lockup control means 55 will be described in detail.
  • FIG. 3 is a diagram showing a control flow (main flow) in the engagement control of the lockup clutch 35.
  • the lockup clutch 35 is abbreviated as “LC”, and the engagement / disengagement of the lockup clutch 35 is described as ON / OFF.
  • the engagement control of the lockup clutch 35 here is performed when the vehicle is traveling. First, it is determined whether or not the vehicle is traveling with the lockup clutch 35 engaged (ON). (Step ST1-1). As a result, if the vehicle is traveling with the lock-up clutch 35 engaged (YES), the uphill LC-OFF flag is determined (step ST1-2). On the other hand, when the vehicle is traveling with the lockup clutch 35 being disengaged in step ST1-1 (NO), the climbing LC-OFF flag is also determined (step ST1-3).
  • FIG. 4 is a diagram showing a control flow (subroutine) of the determination procedure for the climbing LC-OFF flag.
  • the road surface gradient S calculated by the road surface gradient calculating means 52 continues to be the first gradient S. It is determined whether or not the value is equal to or greater than a predetermined value S1 (10 ° as an example) (step ST2-3). As a result, if the gradient S is equal to or higher than the first predetermined value S1 (high gradient) (YES), it is subsequently determined whether or not the vehicle speed V is equal to or higher than a predetermined value V0 (20 km / h as an example) ( Step ST2-4). As a result, if the vehicle speed V is less than the predetermined value V0 (low vehicle speed) (NO), the uphill LC-OFF flag ⁇ 1 is set (step ST2-5).
  • the road surface gradient S calculated by the road surface gradient calculation means 52 continues to be the first slope S described above. It is determined whether or not it is equal to or greater than a second predetermined value S2 (8 ° as an example) that is smaller than the predetermined value S1 (step ST2-6). As a result, when the road surface slope S is less than the second predetermined value S2 (low slope) (NO), the climbing LC-OFF flag ⁇ 0 is set (step ST2-7), and the slope S is the second predetermined value. If it is S2 or more (high gradient) (YES), the uphill LC-OFF flag is not updated and the previous value is maintained (step ST2-8).
  • the climbing LC-OFF flag ⁇ 0 is set (step ST2-7). Also, in the previous step ST2-3, also when the slope S of the road surface on which the vehicle is traveling is less than the first predetermined value S1 (low slope) (NO), the climbing LC-OFF flag ⁇ 0 is set ( Step ST2-7). Further, when the vehicle speed V is equal to or higher than the predetermined value V0 (high vehicle speed) in the previous step ST2-4 (YES), the climbing LC-OFF flag ⁇ 0 is set (step ST2-7).
  • step ST2-2 the vehicle has no marginal driving force (NO in step ST2-2), and the slope of the road surface on which the vehicle is traveling is equal to or greater than a predetermined value (first predetermined value). If the slope is high (YES in step ST2-3) and the vehicle speed is less than a predetermined value (low vehicle speed) (NO in step ST2-4), the climbing LC-OFF flag ⁇ 1 is set (step ST2- 5).
  • the vehicle has a marginal driving force (YES in step ST2-2), or the gradient of the road surface on which the vehicle is traveling is a low gradient less than a predetermined value (first predetermined value) (step ST2- If the vehicle speed is higher than the predetermined value (YES in step ST2-4), the climbing LC-OFF flag ⁇ 0 is set (step ST2-7).
  • the climbing LC-OFF flag 1 (YES)
  • the engagement of the lockup clutch 35 is prohibited (step ST1-8).
  • the climbing LC-OFF flag 0 in step ST1-7 (NO)
  • the engagement of the lockup clutch 35 is permitted (step ST1-6).
  • the lockup control means 55 provided in the control device for the automatic transmission according to the present embodiment, the road surface slope calculated by the road surface slope calculation means 52 while the vehicle is running without engaging the lockup clutch 35.
  • the gradient S becomes equal to or higher than the first predetermined value S1
  • control for prohibiting the engagement of the lockup clutch 35 is performed.
  • the engagement amount control (slip control) of the lockup clutch 35 is not performed while the engagement of the lockup clutch 35 is prohibited, the heat generation amount of the lockup clutch 35 can be kept low. Therefore, since the friction material of the lockup clutch 35 can be protected, the durability of the lockup clutch 35 can be improved.
  • the lockup control means 55 provided in the automatic transmission control device of the present embodiment has the road surface gradient calculated by the road surface gradient calculation means 52 in a state where the engagement of the lockup clutch 35 is prohibited.
  • the value is equal to or smaller than the second predetermined value S2, which is smaller than the predetermined value S1, the control for canceling the prohibition of the lockup clutch 35 is performed.
  • the traveling performance of the uphill road is improved and the fuel consumption is improved. It can contribute to both improvement. Further, by providing a difference between the gradient condition (first predetermined value S1) for prohibiting the engagement of the lockup clutch 35 and the gradient condition (second predetermined value S2) for canceling the prohibition, the lockup clutch 35 is provided. It is possible to prevent a hunting phenomenon in which prohibition and release of engagement are frequently repeated.
  • the lockup control means 55 provided in the control device for the automatic transmission according to the present embodiment includes the road surface gradient S calculated by the road surface gradient calculation means 52 while the vehicle is running with the lockup clutch 35 engaged.
  • the value becomes equal to or greater than the first predetermined value S1 control for releasing the engagement of the lockup clutch 35 (disengagement) is performed.
  • the first predetermined value S1 is set to an appropriate value by performing the control for releasing the engagement of the lockup clutch 35.
  • the lockup clutch 35 can be disengaged before the vehicle speed decreases. Therefore, the fluctuation of the vehicle body due to the disengagement of the lockup clutch 35 can be suppressed, and shocks such as vibration and noise can be prevented from being transmitted to the vehicle body and the occupant.
  • the lockup control means 55 is in a state where the lockup clutch 35 is disengaged (non-engaged), and the road surface gradient calculated by the road surface gradient calculation means 52 is the first.
  • a second predetermined value S2 smaller than the predetermined value S1
  • both the improvement of the driving performance on the uphill road and the improvement of the fuel consumption can be achieved by engaging the lock-up clutch 35 after the slope of the road surface on which the vehicle travels becomes smaller than the second predetermined value S2. Can contribute. Further, by providing a difference between the gradient condition for disengaging the lockup clutch 35 (first predetermined value S1) and the gradient condition for engaging (second predetermined value S2), the lockup clutch 35 It is possible to prevent a hunting phenomenon in which engagement and release are frequently repeated.
  • the automatic transmission 2 includes the CVT 10 as a transmission mechanism for shifting the rotation transmitted from the main shaft 22 to the counter shaft 23.
  • the automatic transmission has a stepped transmission having a plurality of gear trains (gear trains) and a plurality of clutches (friction engagement elements) provided corresponding to the respective shift stages as the above-described transmission mechanism.
  • a mechanism may be provided.
  • the present invention has been described based on a vehicle including the engine 1 as a drive source.
  • the drive source of the vehicle equipped with the automatic transmission control device according to the present invention is a drive source other than the engine.
  • the present invention can be applied to a so-called hybrid vehicle that includes not only the engine 1 but also a motor-generator as a drive source, as long as it has a torque converter including a lock-up clutch. .
  • the electronic control unit (ECU) that controls the engine 1 and the automatic transmission 2 is configured by two of the FI-ECU 4 and the CVT-ECU 5 has been described.
  • the present invention is not limited to such a configuration, and the two FI-ECUs 4 and the CVT-ECU 5 may be integrated into one ECU.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

小型車など駆動力が小さい車両において、登坂路の走行時に車速が停滞又は低下することを防止する。 駆動源1に連結された入力要素21と自動変速機2に連結された出力要素22との係合/非係合を切り替えるロックアップクラッチ35を備えたトルクコンバータ3を有する自動変速機の制御装置5であって、ロックアップクラッチ35の係合/非係合の切り替えを制御するロックアップ制御手段55と、車両が走行している路面の勾配を算出する路面勾配算出手段52と、を備え、ロックアップ制御手段55は、車両がロックアップクラッチ35を係合していない状態で走行中に、路面勾配算出手段52で算出された路面の勾配Sが第1の所定値S1以上になった場合には、ロックアップクラッチ35の係合を禁止する制御を行う。

Description

自動変速機の制御装置
 本発明は、自動変速機が備えるトルクコンバータのロックアップクラッチの係合/非係合の切り替えを車両の走行状態に応じて制御する自動変速機の制御装置に関する。
 車両に搭載した自動変速機が備えるトルクコンバータには、ロックアップクラッチ(以下、「LC」ともいう)を付随したものがある。このようなロックアップクラッチ付きのトルクコンバータを備えた車両には、例えば特許文献1に示すように、ロックアップクラッチの係合/非係合の切り替えを制御するためのロックアップ制御手段が設けられている。このロックアップ制御手段は、車両の走行時において、所定の運転領域でトルクコンバータ内のロックアップクラッチを係合させる制御を行う。これにより、エンジンの回転数を低く抑えて、車両の燃料経済性(燃費)の改善を図ることができる。
 上記のようなロックアップ制御手段では、車速およびアクセルペダル開度(又はスロットル開度)に基づいてロックアップクラッチの係合/非係合や係合時の係合量(締結量)を制御するための制御マップ(LCマップ)を備えており、当該制御マップに基づいて、ロックアップクラッチの制御を行うようになっている。
 しかしながら、上記のようなロックアップ制御手段を備えた車両では、路面の勾配が大きな登坂路でロックアップクラッチを係合すると、ロックアップクラッチによるトルク増幅が行われなくなる。そのため、たとえ高車速のときにロックアップクラッチを係合した場合でも、その後、直ちに車速が停滞又は低下することで、登坂路の走行性(登坂路走行の商品性)が悪化するという問題がある。この点は、エンジンなどの駆動源の駆動力(出力)が大きな車両であればさほど問題無いが、小型車など駆動力が小さい車両では顕著になる。また、ロックアップクラッチを係合した状態で登坂路に進入した場合にも、同様の問題が生じる。また、ロックアップクラッチを係合した状態で登坂路に進入すると、車速の低下に伴いロックアップクラッチの係合量制御(スリップ制御)が行われることで、ロックアップクラッチにすべり領域が発生する。これにより、ロックアップクラッチの摩擦材の発熱量が増大することで、ロックアップクラッチの耐久性の悪化につながるおそれがあった。
特許第4260445号公報
 本発明は上述の点に鑑みてなされたものであり、その目的は、特に小型車などの駆動力が小さい車両において、登坂路の走行時に車速が停滞又は低下することを効果的に防止できると共に、ロックアップクラッチの耐久性を向上させることができる自動変速機の制御装置を提供することにある。
 上記の課題を解決するための本発明は、駆動源(1)に連結された入力要素(21)と自動変速機(2)に連結された出力要素(22)との係合/非係合を切り替えるロックアップクラッチ(35)を備えたトルクコンバータ(3)を有する自動変速機の制御装置(5)であって、ロックアップクラッチ(35)の係合/非係合の切り替えを制御するロックアップ制御手段(55)と、車両が走行している路面の勾配を算出する路面勾配算出手段(52)と、を備え、ロックアップ制御手段(55)は、車両がロックアップクラッチ(35)を係合していない状態で走行中に、路面勾配算出手段(52)で算出された路面の勾配(S)が第1の所定値(S1)以上になった場合には、ロックアップクラッチ(35)の係合を禁止する制御を行うことを特徴とする。
 既述のように、車両が勾配の大きい路面(登坂路)を走行しているときにロックアップクラッチを係合すると、車速が停滞又は低下することで、登坂路の走行性が悪化するという問題がある。この問題は、小型の車両など駆動力が小さい車両で特に顕著となる。そこで、本発明にかかる自動変速機の制御装置では、車両がロックアップクラッチを係合していない状態で走行中に、路面の勾配が第1の所定値以上になった場合、ロックアップクラッチの係合を禁止する制御を行うようにした。これにより、車両が第1の所定値以上の勾配を走行しているときに、ロックアップクラッチの非係合状態を継続することができるので、車速が停滞又は低下することを効果的に防止できる。したがって、登坂路の走行性を向上させることができる。また、ロックアップクラッチの係合を禁止している間は、ロックアップクラッチの係合量制御(いわゆるスリップ制御)が行われないので、ロックアップクラッチの摩擦材の発熱を抑制できる。したがって、ロックアップクラッチを保護できるので、ロックアップクラッチの耐久性の向上を図ることができる。
 またこの場合、ロックアップ制御手段(55)は、ロックアップクラッチ(35)の係合を禁止している状態で、路面勾配算出手段(52)で算出された路面の勾配(S)が第1の所定値(S1)よりも小さい第2の所定値(S2)以下になった場合には、ロックアップクラッチ(35)の係合の禁止を解除する制御を行うとよい。
 この構成によれば、車両が走行する路面の勾配が第2の所定値以下になってからロックアップクラッチの係合の禁止を解除することで、登坂路の走行性の向上と燃費向上との両方に寄与することができる。また、ロックアップクラッチの係合を禁止する勾配条件(第1の所定値)と、禁止を解除する勾配条件(第2の所定値)とに差を付けることで、ロックアップクラッチの係合の禁止と解除とが頻繁に繰り返されるハンチング現象が起こることを防止できる。
 また、本発明は、駆動源(1)に連結された入力要素(21)と自動変速機(2)に連結された出力要素(22)との係合/非係合を切り替えるロックアップクラッチ(35)を備えたトルクコンバータ(3)を有する自動変速機の制御装置(5)であって、ロックアップクラッチ(35)の係合/非係合の切り替えを制御するロックアップ制御手段(55)と、車両が走行している路面の勾配を算出する路面勾配算出手段(52)と、を備え、ロックアップ制御手段(55)は、車両がロックアップクラッチ(35)を係合した状態で走行中に、路面勾配算出手段(52)で算出された路面の勾配(S)が第1の所定値(S1)以上になった場合には、ロックアップクラッチ(35)の係合を解除する制御を行うことを特徴とする。
 ロックアップクラッチを係合した状態で走行している車両が登坂路に進入した場合、ロックアップクラッチの係合状態をそのまま継続すると、車速が停滞又は低下することで、登坂路の走行性(登坂路走行の商品性)が悪化する。このことは、特に駆動力の小さい小型の車両で顕著である。そこで、本発明に係る自動変速機の制御装置では、車両がロックアップクラッチを係合した状態で走行中に、路面の勾配が第1の所定値以上になった場合には、ロックアップクラッチの係合を解除する制御を行うようにした。これにより、車両が第1の所定値以上の勾配を有する登坂路に進入した場合、ロックアップクラッチの係合を解除することで、車速が停滞又は低下することを効果的に防止できる。したがって、登坂路の走行性を向上させることができる。また、路面の勾配が第1の所定値以上である場合にロックアップクラッチの係合を解除するようにしたことで、車速が低下する前にロックアップクラッチの係合を解除できる。これにより、ロックアップクラッチの係合解除に伴う車体変動を小さく抑えることができ、振動や騒音などのショックが車体や乗員に伝わることを防止できる。
 また、この場合、ロックアップ制御手段(55)は、ロックアップクラッチ(35)の係合を解除した後で、路面勾配算出手段(52)で算出された路面の勾配(S)が第1の所定値(S1)よりも小さい第2の所定値(S2)以下になった場合には、ロックアップクラッチ(35)を係合する制御を行うとよい。
 この構成によれば、車両が走行する路面の勾配が第2の所定値以下になってからロックアップクラッチを係合することで、登坂路の走行性の向上と燃費向上との両方に寄与することができる。また、ロックアップクラッチの係合を解除する勾配条件(第1の所定値)と、係合する勾配条件(第2の所定値)とに差を設けることで、ロックアップクラッチの係合と解除とが頻繁に繰り返されるハンチング現象が起こることを防止できる。
 なお、上記で括弧内に記した参照符号は、後述する実施形態における対応する構成要素に付した符号を参考のために例示したものである。
 本発明によれば、車両が登坂路を走行しているときの車速の停滞又は低下を効果的に防止できると共に、ロックアップクラッチの耐久性を向上させることができる。
本発明の一実施形態における自動変速機の制御装置を備えた車両の駆動系を示す概略図である。 CVT-ECUの機能ブロック図である。 ロックアップクラッチの係合制御における制御フロー(メインフロー)を示す図である。 登坂LC-OFFフラグの判定手順の制御フロー(サブルーチン)を示す図である。
 以下、添付図面を参照して本発明の実施形態を詳細に説明する。図1は、本発明の一実施形態にかかる自動変速機の制御装置を備えた車両の駆動系を示す概略図である。図1に示すように、本実施形態の車両は、エンジン1と、自動変速機2と、エンジン1を制御するための制御手段であるFI-ECU4と、自動変速機2を制御するための制御手段であるCVT-ECU5と、自動変速機2に供給する油圧の制御を行うための油圧制御装置6とを備えている。自動変速機2は、ロックアップクラッチ35を有する流体式のトルクコンバータ3と、トルクコンバータ3を介してエンジン1に連結されたベルト式無段変速機構(CVT)10とを含んで構成されている。油圧制御装置6は、トルクコンバータ3の駆動制御、ロックアップクラッチ35の係合圧制御、CVT10の係合圧制御を行うための油圧を供給するための装置である。
 エンジン1の回転は、クランクシャフト(出力軸)21に出力される。クランクシャフト21の回転は、トルクコンバータ3を介して自動変速機2のメインシャフト22に伝達される。トルクコンバータ3は、流体(作動油)を介してトルクの伝達を行うものであり、フロントカバー31と、このフロントカバー31と一体に形成されたポンプ翼車(ポンプインペラ)32と、フロントカバー31とポンプ翼車32との間でポンプ翼車32に対向配置されたタービン翼車(タービンランナ)33と、ポンプ翼車32とタービン翼車33との間に介設され、かつ一方向クラッチ36を介してステータ軸(固定軸)38上に回転自在に支持されたステータ翼車34とを有する。クランクシャフト21は、フロントカバー31を介して、トルクコンバータ3のポンプ翼車32に接続され、タービン翼車33はメインシャフト(自動変速機2の入力軸)22に接続される。
 また、タービン翼車33とフロントカバー31との間には、ロックアップクラッチ35が設けられている。ロックアップクラッチ35は、CVT-ECU5の指令に基づく油圧制御装置6の油圧制御(ロックアップ制御)でその係合が制御される。このロックアップ制御では、ロックアップクラッチ35がフロントカバー31の内面に向かって押圧されることによりフロントカバー31に係合(締結)し、押圧が解除されることによりフロントカバー31との係合が解除される。フロントカバー31およびポンプ翼車32により形成される容器内には作動油(CVTF:Continuously Variable Transmission Fluid)が封入されている。
 ロックアップ制御が行われていない状態では、ポンプ翼車32とタービン翼車33の相対回転が許容される。この状態において、クランクシャフト21の回転トルクがフロントカバー31を介してポンプ翼車32に伝達されると、トルクコンバータ3の容器を満たしている作動油は、ポンプ翼車32の回転により、ポンプ翼車32からタービン翼車33に、次いでステータ翼車34へと循環する。これにより、ポンプ翼車32の回転トルクが、流体力学的にタービン翼車33に伝達され、この間にトルクの増幅作用が行われ、メインシャフト22を駆動する。このとき、ステータ翼車34はそのトルクの反力(以下、「ステータ反力」という)を負担する。
 一方、ロックアップ制御中には、ロックアップクラッチ35が係合状態となり、フロントカバー31からタービン翼車33へと作動油を介して回転させるのではなく、機械的に連結されたフロントカバー31とタービン翼車33とが一体的に回転し、クランクシャフト21の回転トルクがメインシャフト22に直接伝達される。
 本実施形態の自動変速機2は、メインシャフト22からカウンタシャフト23に伝達される回転を変速するための変速機構として、ベルト式無段変速機構(CVT:Continuously Variable Transmission)10を備えている。ベルト式無段変速機構(以下、「CVT」と記す。)10は、メインシャフト22と一体に回転する駆動プーリ11と、カウンタシャフト23と一体に回転する従動プーリ12と、これら駆動プーリ11と従動プーリ12との間に掛け渡された無端状の金属製のVベルト13とを備えている。このベルト式無段変速機構10では、油圧制御装置6による駆動プーリ11側のシリンダ室11a及び従動プーリ12側のシリンダ室12aへの供給油圧(駆動側圧および従動側圧)を制御することで、駆動プーリ11及び従動プーリ12に対して、Vベルト13が滑りの発生することのない側圧を付与する。さらに、駆動側圧および従動側圧を互いに異ならせながら調節する制御を行い、駆動プーリ11及び従動プーリ12の溝幅を適宜に変化させて、Vベルト13の巻き掛け径を変化させることで、駆動プーリ11と従動プーリ12の間の変速比を無段階に変化させる制御が行われる。
 これにより、メインシャフト22の回転トルクは、CVT10を介してカウンタシャフト23に伝達される。また、カウンタシャフト23の回転トルクは、図示しない歯車列およびディファレンシャル機構を介して駆動輪に伝達される。
 油圧制御装置6は、CVT10のシリンダ室11a,12aに供給する油圧を制御することで、メインシャフト22からカウンタシャフト23に伝達される回転の変速比を制御する。また、トルクコンバータ3のポンプ翼車32に作動油圧の作動油を供給することにより、クランクシャフト21の回転駆動をメインシャフト22にどの程度伝達させるかを示すトルコンスリップ率ETRを制御すると共に、車両の走行状態に基づいてロックアップクラッチ35の油室(図示せず)に供給する作動油圧の供給・停止を切り替えることで、ロックアップクラッチ35の係合/非係合の切り替えを行う。
 また、本実施形態の車両には、各種センサが設けられている。すなわち、クランクシャフト21の近傍には、クランクシャフト21(エンジン1)の回転数Neを検出するクランクシャフト回転数センサ201が設けられる。メインシャフト22の近傍には、メインシャフト22の回転数(自動変速機2の入力軸回転数)Niを検出するメインシャフト回転数センサ202が設けられる。カウンタシャフト23の近傍には、カウンタシャフト23の回転数(自動変速機2の出力軸回転数)Noを検出するカウンタシャフト回転数センサ203が設けられる。各回転数センサ201~203により検出された回転数データは、CVT-ECU5に出力される。また、クランクシャフト回転数センサ201により検出された回転数データは、FI-ECU4にも出力される。
 また、車両の所定の位置には、車両の車速Nvを検出する車速センサ204が設けられる。車速センサ204により検出された車速データはCVT-ECU5に出力される。なお、車速Nvを専用に検出する車速センサ204を設けることなく、メインシャフト22の回転数Niまたはカウンタシャフト23の回転数Noから車速Nvを算出するようにしてもよい。例えば、「Nv=Ni×変速レシオ×タイヤ周長」あるいは「Nv=No×タイヤ周長」のような関係式に基づいて車速Nvを検出(算出)することができる。また、車両の加速度Naを検出する加速度センサ209と、路面の傾斜度Ndを検出する傾斜センサ210とが設けられる。加速度センサ209で検出された加速度データ、及び傾斜センサ210で検出された路面の傾斜度のデータは、CVT-ECU5に出力される。
 エンジン1の近傍には、スロットル開度THを検出するスロットル開度センサ206が設けられる。スロットル開度センサ206により検出されたスロットル開度データは、FI-ECU4に出力される。なお、図示を省略したが、エンジン1の冷却水温を検出するための冷却水温センサや、エンジン1に供給される空気の温度(吸気温度)を検出する吸気温度センサや、空気流量を検出する流量センサ等も設けられている。
 アクセルペダル8の近傍には、アクセルペダル開度APATを検出するアクセルペダル開度センサ207が設けられる。アクセルペダル開度センサ207により検出されたアクセルペダル開度データはFI-ECU4に出力される。
 FI-ECU4は、各センサ201、206、207から入力された検出データやCVT-ECU5から入力される各種データに基づいて、エンジン1の出力、すなわちエンジン1の回転数Neを制御する。また、CVT-ECU5は、各センサ201~204から入力された検出データやFI-ECU4から入力された各種データに基づいて、油圧制御装置6からCVT10に供給される油圧を制御することで変速比の制御を行う。さらに、CVT-ECU5は、所定の運転領域で油圧制御装置6を介してロックアップ制御量を増大させ、ロックアップクラッチ35の係合を行う。
 次に、CVT-ECU5の構成(機能)について説明する。図2は、CVT-ECU5の機能ブロック図である。本実施形態のCVT-ECU5は、後述する変速特性マップ51aなどを記憶したメモリ51と、車両が走行している路面の勾配を算出するための路面勾配算出手段52と、車両の余裕駆動力を算出するための余裕駆動力算出手段54と、CVT10の変速比を制御するための変速制御手段53と、ロックアップクラッチ35の係合/非係合を制御するためのロックアップ制御手段55とを備える。
 メモリ51には、車速センサ204により検出される車速Nvと、アクセルペダル開度センサ207により検出されるアクセルペダル開度APATとの二次元マップ上におけるCVT10の変速特性(変速比の分布)を示した変速特性マップ51aと、同二次元マップ上におけるロックアップクラッチ35の係合領域と非係合領域の分布を示したLCマップ51bとが記憶されている。
 路面勾配算出手段52は、車両が走行している路面の勾配を算出するものである。具体的には、メモリ51には、アクセルペダル開度センサ207により検出されるアクセルペダル開度APAT(もしくは、スロットル開度センサ206により検出されるスロットル開度TH)と、車速センサ204により検出される車速Nvとに応じて平坦路を走行するときに車両に期待される予想加速度が格納(設定)されており、路面勾配算出手段52は、車速Nvから実際に車両に発生している実加速度を求め、予想加速度と実加速度とを比較することで路面の勾配を算出する。こうして算出された路面の勾配は、ロックアップ制御手段55及び変速制御手段53に出力される。なお、上記以外にも、傾斜センサ210で検出した路面の傾斜度Ndと加速度センサ209で検出した車両の加速度Naに基づいて演算を行うことで、路面の勾配を算出するようにしてもよい。あるいは、傾斜センサ210で検出した路面の傾斜度Ndのみに基づいて演算を行うことで、路面の勾配を算出するようにしてもよい。
 余裕駆動力算出手段54は、車両の余裕駆動力を算出するものである。車両の余裕駆動力は、
(余裕駆動力)=(出力駆動力)-(必要駆動力) もしくは、
(余裕駆動力)=(出力駆動力)/(必要駆動力)
で表される。そして、
(出力駆動力)=(自動変速機2の入力トルク)×(ギヤレシオ(ファイナルギヤ比など))×(CVT10のプーリーレシオ)×(自動変速機2のT/M効率)/(タイヤ動半径)
であり、
(必要駆動力)=(転がり抵抗)+(空気抵抗)+(加速抵抗)+(勾配抵抗)
である。
 変速制御手段53は、各センサ201~204から入力される検出データやFI-ECU4から入力された各種データに基づいて、メモリ51に格納されている変速特性マップ51aに従ってCVT10による変速比を制御する。
 また、ロックアップ制御手段55は、路面勾配算出手段52から入力される路面の勾配Sと、余裕駆動力算出手段54で算出した車両の余裕駆動力Mとに基づいて、メモリ51に格納されているLCマップ51bに従ってロックアップクラッチ35の係合/非係合の切り替えを制御する。ここでは、ロックアップ制御手段55によるロックアップクラッチ35の係合/非係合の切り替え制御(以下、単に「係合制御」という。)について詳細に説明する。
 図3は、ロックアップクラッチ35の係合制御における制御フロー(メインフロー)を示す図である。なお、図3の制御フローでは、ロックアップクラッチ35を「LC」と略記し、ロックアップクラッチ35の係合/非係合をON/OFFと記載している。ここでのロックアップクラッチ35の係合制御は、車両の走行時に行われるものであって、まず、ロックアップクラッチ35が係合(ON)した状態で車両が走行しているか否かを判断する(ステップST1-1)。その結果、ロックアップクラッチ35が係合した状態で車両が走行していれば(YES)、登坂LC-OFFフラグの判定を行う(ステップST1-2)。一方、ステップST1-1でロックアップクラッチ35が非係合の状態で車両が走行している場合(NO)にも、登坂LC-OFFフラグの判定を行う(ステップST1-3)。
 図4は、登坂LC-OFFフラグの判定手順の制御フロー(サブルーチン)を示す図である。登坂LC-OFFフラグの判定では、まず、前回までの処理における登坂LC-OFFフラグの判定履歴において、登坂LC-OFFフラグ=1であるか否かを判断する(ステップST2-1)。その結果、登坂LC-OFFフラグ=0であれば(NO)、続けて、余裕駆動力算出手段54で算出した余裕駆動力Mが所定値M0以上であるか否かを判断する(ステップST2-2)。その結果、余裕駆動力Mが所定値M0未満(余裕駆動力無し)の場合(NO)は、続けて、路面勾配算出手段52で算出した車両が走行している路面の勾配Sが第1の所定値S1(一例として10°)以上であるか否かを判断する(ステップST2-3)。その結果、勾配Sが第1の所定値S1以上(高勾配)であれば(YES)、続けて、車速Vが所定値V0(一例として20km/h)以上であるか否かを判断する(ステップST2-4)。その結果、車速Vが所定値V0未満(低車速)であれば(NO)、登坂LC-OFFフラグ←1とする(ステップST2-5)。
 一方、先のステップST2-1で、登坂LC-OFFフラグ=1であれば(YES)、続けて、路面勾配算出手段52で算出した車両が走行している路面の勾配Sが上記第1の所定値S1よりも小さい第2の所定値S2(一例として8°)以上であるか否かを判断する(ステップST2-6)。その結果、路面の勾配Sが第2の所定値S2未満(低勾配)である場合(NO)は、登坂LC-OFFフラグ←0とし(ステップST2-7)、勾配Sが第2の所定値S2以上(高勾配)である場合(YES)は、登坂LC-OFFフラグを更新せず、前回値のままとする(ステップST2-8)。
 また、先のステップST2-2で、余裕駆動力Mが所定値M0以上(余裕駆動力有り)の場合(YES)は、登坂LC-OFFフラグ←0とする(ステップST2-7)。また、先のステップST2-3で、車両が走行している路面の勾配Sが第1の所定値S1未満(低勾配)の場合(NO)にも、登坂LC-OFFフラグ←0とする(ステップST2-7)。また、先のステップST2-4で、車速Vが所定値V0以上(高車速)である場合(YES)にも、登坂LC-OFFフラグ←0とする(ステップST2-7)。
 すなわち、登坂LC-OFFフラグの判定では、車両に余裕駆動力が無く(ステップST2-2でNO)、かつ、車両が走行している路面の勾配が所定値(第1の所定値)以上の高勾配であり(ステップST2-3でYES)、かつ、車速が所定値未満(低車速)である(ステップST2-4でNO)場合に、登坂LC-OFFフラグ←1とする(ステップST2-5)。一方、車両に余裕駆動力が有る(ステップST2-2でYES)か、又は、車両が走行している路面の勾配が所定値(第1の所定値)未満の低勾配である(ステップST2-3でNO)か、又は、車速が所定値以上の高車速である(ステップST2-4でYES)場合には、登坂LC-OFFフラグ←0とする(ステップST2-7)。
 図3のメインフローに戻り、ステップST1-1でロックアップクラッチ35が係合状態で走行している場合(YES)は、ステップST1-2で登坂LC-OFFフラグの判定を行い、その後、登坂LC-OFFフラグ=1か否かの判断を行う(ステップST1-4)。その結果、登坂LC-OFFフラグ=1であれば(YES)、ロックアップクラッチ35の係合を解除する(非係合とする)(ステップST1-5)。一方、ステップST1-4で登坂LC-OFFフラグ=0であれば(NO)、ロックアップクラッチ35の係合を許可する(ステップST1-6)。
 一方、ステップST1-1で、ロックアップクラッチ35が非係合状態で走行している場合(NO)は、ステップST1-3で登坂LC-OFFフラグの判定を行い、その後、登坂LC-OFFフラグ=1か否かの判断を行う(ステップST1-7)。その結果、登坂LC-OFFフラグ=1であれば(YES)、ロックアップクラッチ35の係合を禁止する(ステップST1-8)。一方、ステップST1-7で登坂LC-OFFフラグ=0であれば(NO)、ロックアップクラッチ35の係合を許可する(ステップST1-6)。
 すなわち、ロックアップクラッチ35を係合状態で走行中(ステップST1-1でYES)に登坂LC-OFFフラグ=1の場合(ステップST1-4でYES)には、ロックアップクラッチ35を非係合とし(ステップST1-5)、登坂LC-OFFフラグ=0の場合(ステップST1-4でNO)には、ロックアップクラッチ35の係合を許可する(ステップST1-6)。また、ロックアップクラッチ35を非係合状態で走行中(ステップST1-1でNO)に登坂LC-OFFフラグ=1の場合(ステップST1-7でYES)には、ロックアップクラッチ35の係合を禁止し(ステップST1-8)、登坂LC-OFFフラグ=0の場合(ステップST1-7でNO)には、ロックアップクラッチ35の係合を許可する(ステップST1-6)。
 車両が勾配の大きい路面(登坂路)を走行しているときにロックアップクラッチを係合すると、車速が停滞又は低下することで、登坂路の走行性能が悪化するという問題がある。このような問題は、駆動力が小さい小型の車両で特に顕著となる。そこで、本実施形態の自動変速機の制御装置が備えるロックアップ制御手段55では、車両がロックアップクラッチ35を係合していない状態で走行中に、路面勾配算出手段52で算出された路面の勾配Sが第1の所定値S1以上になった場合には、ロックアップクラッチ35の係合を禁止する制御を行うようにした。これにより、車両が第1の所定値S1以上の勾配を有する登坂路を走行しているときに、車速が停滞又は低下することを効果的に防止できるので、登坂路の走行性(登坂路走行の商品性)を向上させることができる。また、ロックアップクラッチ35の係合を禁止している間は、ロックアップクラッチ35の係合量制御(スリップ制御)が行われないので、ロックアップクラッチ35の発熱量を低く抑えることができる。したがって、ロックアップクラッチ35の摩擦材を保護できるので、ロックアップクラッチ35の耐久性の向上を図ることができる。
 また、本実施形態の自動変速機の制御装置が備えるロックアップ制御手段55は、ロックアップクラッチ35の係合を禁止している状態で、路面勾配算出手段52で算出された路面の勾配が第1の所定値S1よりも小さい第2の所定値S2以下になった場合には、ロックアップクラッチ35の係合の禁止を解除する制御を行う。
 この構成によれば、車両が走行する路面の勾配が第2の所定値S2よりも小さくなってから、ロックアップクラッチ35の係合の禁止を解除するので、登坂路の走行性能の向上と燃費向上との両方に寄与することができる。また、ロックアップクラッチ35の係合を禁止する勾配条件(第1の所定値S1)と、禁止を解除する勾配条件(第2の所定値S2)とに差を設けることで、ロックアップクラッチ35の係合の禁止と解除とが頻繁に繰り返されるハンチング現象が起こることを防止できる。
 また、ロックアップクラッチを係合した状態で車両が登坂路に進入した場合、ロックアップクラッチを係合した状態をそのまま継続すると、車速が停滞又は低下することで登坂路の走行性が悪化する。この点は、駆動力の小さい小型の車両で特に顕著である。そこで、本実施形態の自動変速機の制御装置が備えるロックアップ制御手段55は、車両がロックアップクラッチ35を係合した状態で走行中に、路面勾配算出手段52で算出された路面の勾配Sが第1の所定値S1以上になった場合には、ロックアップクラッチ35の係合を解除する(非係合とする)制御を行うようにした。これにより、車両が第1の所定値S1以上の勾配を有する登坂路に進入した場合、車速が停滞又は低下することを効果的に防止できるので、登坂路の走行性を向上させることができる。また、路面の勾配Sが第1の所定値S1以上である場合にロックアップクラッチ35の係合を解除する制御を行うようにしたことで、第1の所定値S1を適切な値に設定すれば、車速が低下する前にロックアップクラッチ35の係合を解除できる。したがって、ロックアップクラッチ35の係合の解除に伴う車体の変動を小さく抑えることができ、振動や騒音などのショックが車体や乗員に伝わることを防止できる。
 またこの場合、ロックアップ制御手段55は、ロックアップクラッチ35の係合を解除している状態(非係合としている状態)で、路面勾配算出手段52で算出された路面の勾配が第1の所定値S1よりも小さい第2の所定値S2以下になった場合には、ロックアップクラッチ35を係合する制御を行う。
 この構成によれば、車両が走行する路面の勾配が第2の所定値S2よりも小さくなってからロックアップクラッチ35を係合することで、登坂路の走行性能の向上と燃費向上との両方に寄与することができる。また、ロックアップクラッチ35を非係合とする勾配条件(第1の所定値S1)と、係合する勾配条件(第2の所定値S2)とに差を設けることで、ロックアップクラッチ35の係合と解除とが頻繁に繰り返されるハンチング現象が起こることを防止できる。
 以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。例えば、上記実施形態では、自動変速機2は、メインシャフト22からカウンタシャフト23に伝達される回転を変速するための変速機構として、CVT10を備える場合を示したが、これ以外にも、図示は省略するが、自動変速機は、上記の変速機構として、各変速段に対応して設けられた複数の歯車列(ギヤトレーン)と複数のクラッチ(摩擦係合要素)とを有する有段式の変速機構を備えていてもよい。
 また、上記実施形態では、駆動源としてエンジン1を備える車両に基づいて本発明を説明したが、本発明にかかる自動変速機の制御装置を搭載した車両の駆動源は、エンジン以外の駆動源であってもよい。例えば、駆動源として、エンジン1だけでなく、モータ-ジェネレータも併せて備えたいわゆるハイブリッド車両であっても、ロックアップクラッチを備えるトルクコンバータを有していれば、本発明を適用することができる。
 また、上述の実施形態では、エンジン1や自動変速機2の制御を行う電子制御ユニット(ECU)がFI-ECU4およびCVT-ECU5の2つから構成される場合について説明したが、本発明はこのような構成に限らず、これら2つのFI-ECU4およびCVT-ECU5が一体的に構成された1つのECUであってもよい。

Claims (4)

  1.  駆動源に連結された入力要素と自動変速機に連結された出力要素との係合/非係合を切り替えるロックアップクラッチを備えたトルクコンバータを有する自動変速機の制御装置であって、
     前記ロックアップクラッチの係合/非係合の切り替えを制御するロックアップ制御手段と、
     車両が走行している路面の勾配を算出する路面勾配算出手段と、を備え、
     前記ロックアップ制御手段は、
     前記車両が前記ロックアップクラッチを係合していない状態で走行中に、前記路面勾配算出手段で算出された路面の勾配が第1の所定値以上になった場合には、前記ロックアップクラッチの係合を禁止する制御を行う
    ことを特徴とする自動変速機の制御装置。
  2.  前記ロックアップ制御手段は、
     前記ロックアップクラッチの係合を禁止している状態で、前記路面勾配算出手段で算出された路面の勾配が前記第1の所定値よりも小さい第2の所定値以下になった場合には、前記ロックアップクラッチの係合の禁止を解除する制御を行う
    ことを特徴とする請求項1に記載の自動変速機の制御装置。
  3.  駆動源に連結された入力要素と自動変速機に連結された出力要素との係合/非係合を切り替えるロックアップクラッチを備えたトルクコンバータを有する自動変速機の制御装置であって、
     前記ロックアップクラッチの係合/非係合の切り替えを制御するロックアップ制御手段と、
     車両が走行している路面の勾配を算出する路面勾配算出手段と、を備え、
     前記ロックアップ制御手段は、
     前記車両が前記ロックアップクラッチを係合した状態で走行中に、前記路面勾配算出手段で算出された路面の勾配が第1の所定値以上になった場合には、前記ロックアップクラッチの係合を解除する制御を行う
    ことを特徴とする自動変速機の制御装置。
  4.  前記ロックアップ制御手段は、
     前記ロックアップクラッチの係合を解除した後に、前記路面勾配算出手段で算出された路面の勾配が前記第1の所定値よりも小さい第2の所定値以下になった場合には、前記ロックアップクラッチを係合する制御を行う
    ことを特徴とする請求項3に記載の自動変速機の制御装置。
PCT/JP2012/052060 2011-02-01 2012-01-31 自動変速機の制御装置 WO2012105527A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011020260 2011-02-01
JP2011-020260 2011-02-01

Publications (1)

Publication Number Publication Date
WO2012105527A1 true WO2012105527A1 (ja) 2012-08-09

Family

ID=46602740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052060 WO2012105527A1 (ja) 2011-02-01 2012-01-31 自動変速機の制御装置

Country Status (1)

Country Link
WO (1) WO2012105527A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013762A (ja) * 2014-07-02 2016-01-28 富士重工業株式会社 自動変速機の制御装置
US11427204B2 (en) 2020-01-29 2022-08-30 Caterpillar Inc. Control to mitigate operator abuse of drivetrain on grade

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828697A (ja) * 1994-07-18 1996-02-02 Toyota Motor Corp 登降坂路における車両用自動変速機の制御装置
JPH10288255A (ja) * 1997-04-14 1998-10-27 Mazda Motor Corp 自動変速機付き車両の流体継ぎ手の締結力制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828697A (ja) * 1994-07-18 1996-02-02 Toyota Motor Corp 登降坂路における車両用自動変速機の制御装置
JPH10288255A (ja) * 1997-04-14 1998-10-27 Mazda Motor Corp 自動変速機付き車両の流体継ぎ手の締結力制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013762A (ja) * 2014-07-02 2016-01-28 富士重工業株式会社 自動変速機の制御装置
US11427204B2 (en) 2020-01-29 2022-08-30 Caterpillar Inc. Control to mitigate operator abuse of drivetrain on grade

Similar Documents

Publication Publication Date Title
JP5237981B2 (ja) 自動変速機およびその制御方法
US10196061B2 (en) Control system of vehicle
US6641498B2 (en) Apparatus for controlling temperature of fluid in power-transmission system and method of controlling temperature of fluid in power-transmission system
JP4211862B1 (ja) 無段変速機の制御装置
US8527166B2 (en) Shift control device for vehicular continuously variable transmission
JP5790670B2 (ja) 車両の制御装置
JP5620949B2 (ja) 自動変速機の制御装置
JP6151972B2 (ja) 車両用駆動制御装置
JP2003120804A (ja) 無段変速機を含む駆動機構の制御装置
US9211883B2 (en) Control apparatus of vehicle
JP2010216571A (ja) ベルト式無段変速機の制御装置
JP2011247285A (ja) 車両用ロックアップクラッチの制御装置
WO2012105527A1 (ja) 自動変速機の制御装置
JP6551302B2 (ja) 車両用動力伝達装置の制御装置
JP2011001973A (ja) 発進クラッチの制御装置
JP5169920B2 (ja) 動力伝達装置およびその制御方法
JP4281300B2 (ja) 車両用駆動機構の制御装置
JP2011149524A (ja) 自動変速機の制御装置
JP2017211036A (ja) パワートレインの制御装置
JP2009275777A (ja) 無段変速機の制御装置および無段変速機の制御方法
JP2015190602A (ja) 前後進切替装置の制御装置および制御方法
JP6065578B2 (ja) 無段変速機の制御装置および制御方法
JP7238833B2 (ja) 車両用動力伝達装置のロックアップ制御装置
JP2001329880A (ja) 車両駆動装置
JP6003599B2 (ja) 車両の変速制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12741718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP