WO2012105200A1 - 力率改善回路 - Google Patents

力率改善回路 Download PDF

Info

Publication number
WO2012105200A1
WO2012105200A1 PCT/JP2012/000519 JP2012000519W WO2012105200A1 WO 2012105200 A1 WO2012105200 A1 WO 2012105200A1 JP 2012000519 W JP2012000519 W JP 2012000519W WO 2012105200 A1 WO2012105200 A1 WO 2012105200A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
value
limit value
current
unit
Prior art date
Application number
PCT/JP2012/000519
Other languages
English (en)
French (fr)
Inventor
仁志 古岩井
茂 久田
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to EP12741641.0A priority Critical patent/EP2672620B1/en
Priority to JP2012555733A priority patent/JP5642205B2/ja
Priority to US13/982,284 priority patent/US9083241B2/en
Priority to CN201280007062.4A priority patent/CN103354972B/zh
Priority to KR1020137017126A priority patent/KR101513822B1/ko
Publication of WO2012105200A1 publication Critical patent/WO2012105200A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/70Regulating power factor; Regulating reactive current or power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a power factor correction circuit, and in particular, measures against overshoot of output voltage at the time of start-up, sudden change of input, sudden change of load, etc., measures against noise from boosting inductance elements, etc., downsizing and cost reduction of the device.
  • the present invention relates to a power factor correction circuit that satisfies the requirements.
  • a switching power supply for power factor improvement rectifies an AC input voltage with a bridge diode, and smoothes the rectified output voltage with a boost switching capacitor.
  • the rectified output of the bridge diode is boosted by a choke coil for step-up switching power supply, a switching semiconductor switch for step-up switching power supply, a rectifier diode for step-up switching power supply, and a power factor correction control circuit.
  • the voltage across the smoothing electrolytic capacitor to be output is controlled to be the output voltage set by the output voltage setting resistor. For this reason, normally, in a step-up switching power supply, feedback control is performed so that it does not respond to the commercial frequency. Therefore, an output response is likely to be delayed with respect to a sudden change in input or a sudden change in load, resulting in an overshoot of the output voltage. Easy to do.
  • rectifying means for rectifying and smoothing a commercial AC power supply
  • an inductance element for boosting L10 in FIG. 9
  • Switching means Q10 in FIG. 9) for intermittently passing the current flowing through the inductance
  • DC voltage generating means C20 in FIG. 9) for rectifying and smoothing the output of the switching means to obtain a DC output voltage, excitation voltage of the inductance element
  • Switching control means output voltage control section, oscillation control section, driver in FIG.
  • FIG. 10 (FIG. 11 is a timing chart in which the time axis of the timing chart of FIG. 9 is widened) at the start-up when commercial AC power is input to the input of the DC power supply circuit.
  • FIG. 3 there is a possibility that the output voltage will rise steeply, resulting in intermittent oscillation operation that repeats oscillation and stop, and if the oscillation and stop cycle at that time enters the audible range, There is a risk that noise will be generated by the inductance element for use. Such a phenomenon tends to be prominent particularly when the input voltage is higher than the output voltage.
  • a rectifier that rectifies an input AC voltage to obtain a pulsating voltage and a first current that flows the current for storing magnetic energy by applying the pulsating voltage to an inductor.
  • a step-up chopper type power factor correction power supply apparatus having a predetermined value for the magnitude of the output DC voltage and a power factor improvement power supply apparatus.
  • an overvoltage detection signal is generated when the magnitude of the pulsating voltage is greater than a predetermined threshold, and the magnitude of the output DC voltage is based on the overvoltage detection signal. Is changed to a value larger than the predetermined value.
  • the rectifier rectifies the input AC voltage to obtain a pulsating voltage
  • the first switch element applies the pulsating voltage to the inductor to generate magnetic energy.
  • the second switch element passes a current corresponding to the magnetic energy.
  • the smoothing capacitor smoothes the current from the second switch to obtain an output DC voltage, and the switch element controller controls disconnection and conduction of the first switch element. Then, the output DC voltage is set to a predetermined value and the power factor is improved.
  • an overvoltage detection signal is generated when the peak value of the pulsating voltage is larger than a predetermined threshold value, and the value of the output DC voltage is changed to a value larger than the predetermined value based on the overvoltage detection signal.
  • the above-described conventional technology provides a power factor correction circuit that satisfies all of the countermeasures for overshooting the output voltage, countermeasures for noise generation such as boosting inductance elements, miniaturization and cost reduction of the device. It was difficult.
  • the present invention has been made in view of the above-described problems, and particularly relates to a power factor correction circuit, and more particularly, a transformer that is generated when overshoot protection is activated at the time of start-up, input sudden change, load sudden change, and the like.
  • An object of the present invention is to provide a power factor correction circuit that can reduce the squealing noise.
  • the present invention proposes the following items in order to solve the above problems.
  • symbol corresponding to embodiment of this invention is attached
  • the present invention includes an input diode for rectifying a commercial input power supply (for example, equivalent to D1 in FIG. 1), a choke coil (for example, equivalent to L1 in FIG. 1) having one end connected to the input diode, An output diode having an anode connected to the other end of the choke coil (for example, corresponding to D2 in FIG. 1) and an output capacitor having a positive terminal connected to the cathode of the output diode (for example, to C4 in FIG. 1) Equivalent), a switching element (for example, equivalent to Q1 in FIG.
  • the control circuit controls the voltage across the output capacitor to a first voltage value by an output voltage control unit (for example, the output of FIG. 2).
  • an overvoltage detection unit for example, FIG. 2 that detects the second voltage value when the voltage across the output capacitor reaches a second voltage value that is greater than the first voltage value.
  • a current limiting unit that detects a value of the switching current flowing through the switching element, determines a limit value of the switching current, and limits the value of the switching current to the limit value ( For example, when the overvoltage detecting unit detects the second voltage value, the current limiting unit 500 reduces the value of the switching current when the overvoltage detecting unit detects the second voltage value.
  • Limit value changing unit for changing the limit value to the limit portion e.g., corresponding to the limit value modification unit 600 of FIG. 2 has proposed a power factor correction circuit, characterized in that it includes a, a.
  • the detection unit detects the second voltage value.
  • the current limiting unit detects the switching current value flowing through the switching element, and determines the switching current limit value. Then, when the switching current is limited to the limit value and the second voltage value is detected by the overvoltage detection unit, the limit value is changed with respect to the current limit unit so that the switching current value is decreased by the limit value change unit.
  • the limit value changing unit is configured such that, after the overvoltage detection unit detects the second voltage value, the overvoltage detection unit is connected to both ends of the output capacitor.
  • the current limit is set so that the overvoltage detection unit further reduces the switching current value when the second voltage value is detected.
  • a power factor improvement circuit is proposed in which the limit value is changed with respect to the unit.
  • the overvoltage detection unit detects the second voltage value
  • the overvoltage detection unit detects that the voltage across the output capacitor is greater than or equal to the second voltage value
  • the overvoltage detection unit detects that the voltage across the output capacitor is greater than or equal to the second voltage value
  • the present invention provides an oscillation in which the current limiter is connected to a negative terminal and a reference power source corresponding to the first voltage value, and an output controls oscillation of the switching element.
  • a comparator (for example, equivalent to COMP501 in FIG. 3) connected to the controller, and a current level signal corresponding to the value of the switching current and the current limiter output from the limit value changer at the positive terminal
  • a power factor improvement circuit is proposed in which a signal superimposed with a limit value change signal for changing the limit value is supplied.
  • the current limiting unit includes a comparator having a negative terminal connected to a reference power source corresponding to the first voltage value, and an output connected to an oscillation control unit that controls oscillation of the switching element.
  • a signal in which a current level signal corresponding to the value of the switching current and a limit value change signal for changing the limit value to the current limiter output from the limit value changing unit are superimposed is supplied.
  • the control circuit stops and holds the switching operation of the switching element (for example, the oscillation control unit 210 in FIG. 6).
  • the overvoltage detector detects the third voltage value when the voltage across the output capacitor reaches a third voltage value greater than the second voltage value, and holds the oscillation stopped.
  • a power factor correction circuit is proposed in which the switching of the switching element is controlled to be stopped and held in the unit.
  • the control circuit detects the third voltage value by the overvoltage detection unit when the voltage across the output capacitor reaches the third voltage value larger than the second voltage value, and the oscillation stop holding unit On the other hand, the switching of the switching element is stopped and held.
  • the present invention relates to the power factor correction circuits of (1) to (4), wherein the control circuit is changed from a state in which the limit value changing unit causes the current limiting unit to change the limit value.
  • the limit value change end transmission unit (for example, the limit value change end transmission unit 700 in FIG. 8) transmits a limit value change end signal indicating that the change of the limit value has been completed to the load side at the timing of returning to the state.
  • control circuit has a limit value indicating that the change of the limit value is completed at a timing when the limit value changing unit returns the current limit unit to the state before the change from the state in which the limit value is changed.
  • a change end signal is transmitted to the load side.
  • the voltage across the output capacitor is controlled to the first voltage value by the output voltage controller, and the voltage across the output capacitor reaches the second voltage value that is greater than the first voltage value.
  • the second voltage value is detected by the overvoltage detection unit.
  • the switching current value flowing through the switching element is detected by the current limiting unit, and at the same time, the limit value of the magnitude of the switching current is determined, and the switching current value is limited to the above limit value.
  • the limit value is changed by the current limit unit so as to reduce the magnitude of the switching current by the limit value change unit.
  • the self-excited power supply may be intermittently oscillated in the audible frequency band under light load conditions.
  • the overvoltage detection unit detects the second voltage value
  • the switching current value is further reduced. Therefore, also in this case, there is an effect that the noise of the transformer can be reduced.
  • the self-excited power supply may not be intermittently operated under light load conditions but may be continuously oscillated, but naturally this also has the effect of reducing transformer noise.
  • the current limiting unit includes a comparator having a negative terminal connected to a reference power source corresponding to the first voltage value, and an output connected to an oscillation control unit that controls oscillation of the switching element.
  • a signal in which a current level signal corresponding to the value of the switching current and a limit value change signal for changing the limit value with respect to the current limiter output from the limit value changing unit are superimposed on the positive terminal is supplied. Therefore, in a simple form in which the output signal of the limit value changing unit is connected to the positive terminal of an overcurrent detection circuit composed of a normal comparator, the limit value can be changed equivalently by changing the threshold value. effective.
  • the overvoltage detection unit detects the third voltage value when the voltage across the output capacitor reaches the third voltage value larger than the second voltage value, and detects the third voltage value. Since the switching of the switching element is controlled to be stopped and held, there is an effect that the power factor correction circuit can be stopped reliably and easily even when the output voltage overshoots and rises to the third voltage value.
  • the control circuit has finished changing the limit value at the timing when the limit value changing unit returns the current limit unit to the state before the change from the state in which the limit value has been changed. Is transmitted to the load side. Therefore, information that the current limit level of the switching current is limited to the above limit value is transmitted to the load side. For example, when another electric circuit is connected to the output of the power factor correction circuit according to the present invention. If the operation of the electric circuit is controlled based on the limit value change end information, even if the output voltage of the power factor correction circuit is not stably voltage-controlled to the first voltage value, There is an effect that the operation of the electric circuit can be prohibited.
  • FIG. 3 is a circuit block diagram of a control circuit used in the power factor correction circuit according to the first embodiment. It is a peripheral circuit block diagram of the overvoltage detection part in the control circuit which concerns on 1st Embodiment, a current limiting part, and a limiting value change part. It is the figure which expanded and showed the time axis
  • FIG. 6 is a peripheral circuit block diagram of an overvoltage detection unit, a current limiting unit, and a limit value changing unit in a control circuit according to a second embodiment. It is a peripheral circuit block diagram of the overvoltage detection part in the control circuit which concerns on 2nd Embodiment, a current limiting part, and a limiting value change part.
  • FIG. 10 is a peripheral circuit block diagram of an overvoltage detection unit, a current limiting unit, and a limiting value changing unit in a control circuit according to a third embodiment. It is a figure which shows the circuit structure of the power factor improvement circuit which concerns on a prior art example. It is an operation
  • the power factor correction circuit according to the present invention applies AC power of 100 V (effective value), for example, and applies DC power having an output DC voltage of 300 V, for example, between the output terminal VOUT and the terminal GND. It is taken out and supplied to the load.
  • the power factor correction circuit according to the present embodiment includes a commercial power supply VIN that supplies AC power, a bridge rectifier circuit D1 that bridges four diodes, and full-wave rectifies the AC voltage, and bridge rectification.
  • a rectifier circuit 20 comprising a rectifier capacitor C1 for smoothing the output of the circuit D1, a choke coil L1, a switching element Q1, resistors R1, R2, R3, R4, capacitors C2, C3, C4, and a control circuit 10; , A diode D2.
  • the commercial power source VIN that supplies AC power is connected to the input side of the bridge rectifier circuit D1.
  • the output side of the bridge rectifier circuit D1 is connected to one end of the smoothing capacitor C1 and one end of the choke coil L1. Note that the other end of the smoothing capacitor C1 is grounded.
  • the choke coil L1 has a function of storing and releasing magnetic energy.
  • the other end of the choke coil L1 is connected to the source of the switching element Q1 and the anode of the diode D2.
  • the gate of the switching element Q1 is connected to the VGP terminal of the control circuit 10 and is operated by a drive signal supplied from the VGP terminal.
  • the drain of the switching element Q1 is connected to one ends of the resistors R1 and R2, the other end of the resistor R2 is connected to one end of the capacitor C2 and the CSP terminal of the control circuit 10, and current is supplied to the control circuit 10 via the resistor R2. Supply level signal. Note that the other ends of the resistor R1 and the capacitor C2 are both grounded.
  • the cathode of the diode D2 is connected to the output terminal VOUT.
  • a voltage dividing circuit formed by resistors R3 and R4 and an output capacitor C4 are provided between the output terminal VOUT and the ground.
  • the connection point of the resistors R3 and R4 forming the voltage dividing circuit is connected to the FBP terminal of the control circuit 10, and an output voltage level signal is supplied from the voltage dividing circuit to the control circuit 10. Further, a capacitor C3 is provided between the FBP terminal of the control circuit 10 and the ground.
  • the control circuit 10 includes a driver unit 100, an oscillation control unit 200, an output voltage control unit 300, an overvoltage detection unit 400, a current limiting unit 500, and a limit value change. Part 600.
  • the output voltage control unit 300 receives an output voltage level signal corresponding to the voltage across the output capacitor C4 from the FBP terminal, and outputs an output voltage control signal to the oscillation control unit 200 based on the input output voltage level signal. By outputting, constant voltage control is performed so that the value of the output voltage becomes the first voltage value.
  • the oscillation control unit 200 In the steady state, the oscillation control unit 200 generates a trigger signal for controlling oscillation in accordance with the output voltage control signal input from the output voltage control unit 300, and supplies the trigger signal to the driver unit 100.
  • the driver unit 100 generates a drive signal in accordance with the trigger signal input from the oscillation control unit 200, and supplies the drive signal to the gate of the switching element Q1 via the VGP terminal.
  • the overvoltage detection unit 400 inputs an output voltage level signal corresponding to the voltage across the output capacitor C4 from the FBP terminal, and the input output voltage level signal reaches a second voltage value that is greater than the first voltage value.
  • the second voltage value is detected, an overvoltage detection signal is generated, and the overvoltage detection signal is supplied to the limit value changing unit 600.
  • the limit value change unit 600 When the overvoltage detection unit 400 detects the second voltage value, the limit value change unit 600 outputs a limit value change signal that causes the current limit unit 500 to change the limit value so as to decrease the current value.
  • the current limiting unit 500 determines a current limit value based on the voltage value obtained by superimposing the limit value change signal on the input current level signal and the reference voltage value, and limits the current value to the limit value.
  • the overvoltage detection unit 400 includes a comparator COMP 401 and a second voltage source Vovp corresponding to the second voltage value.
  • the negative input terminal of the comparator COMP 401 is connected to the FBP terminal of the control circuit 10 and receives an output voltage level signal.
  • the positive input terminal of the comparator COMP401 is connected to the second voltage source Vovp.
  • the output terminal of the comparator COMP 401 generates a low-level overvoltage detection signal and outputs it to the limit value changing unit 600 when the output voltage is in an overvoltage state.
  • the limit value changing unit 600 includes resistors R601, R602, R603 and a transistor Q601. One end of the resistor R602 is connected to the output terminal of the comparator COMP401 in the overvoltage detection unit 400. The other end of the resistor R602 is connected to the base of the transistor Q601 and one end of the resistor R601. The other end of the resistor R601 is connected to the power supply and the emitter of the transistor Q601. One end of the resistor R603 is connected to the collector of the transistor Q601, and the other end of the resistor R603 is connected to the current limiting unit 500.
  • the transistor Q601 When a low level signal is output from the output terminal of the comparator COMP 401 in the overvoltage detection unit 400, the transistor Q601 is turned on, and a high level signal is output to the current limiting unit 500. Further, the high level signal level output to the current limiting unit 500 is set by the resistor R603.
  • the current limiting unit 500 includes a comparator COMP501 and a reference voltage source Vocp.
  • the negative input terminal of the comparator COMP501 is connected to the reference voltage source Vocp.
  • the positive input terminal of the comparator COMP 501 is connected to the CSP terminal of the control circuit and the output terminal of the limit value changing unit 601.
  • the current limiting unit 500 compares the current level signal supplied from the CSP terminal with the value of the reference voltage source Vocp, and the value of the current level signal is greater than the value of the reference voltage source Vocp. If the current value is too large, a high-level current limit signal is output to the oscillation control unit 200 to stop the oscillation.
  • the current limiter 500 is a signal level obtained by superimposing the limit value change signal supplied from the limit value changer 600 on the output of the current level signal supplied from the CSP terminal.
  • the value of the reference voltage source Vocp are equivalently functioned to lower the threshold value, so that when the output voltage exceeds the second voltage value, the output signal of the COMP 500 is sent to the oscillation control unit.
  • the oscillation control unit 200 performs control so as to reduce the switching current.
  • the overvoltage detection unit 400 when the output voltage exceeds the second voltage value, the overvoltage detection unit 400 generates a low level overvoltage detection signal and outputs it to the limit value changing unit 600.
  • the limit value changing unit 600 When a low level signal is output from the output terminal of the comparator COMP 401 in the overvoltage detection unit 400, the limit value changing unit 600 is turned on by the transistor Q601, and is set in the current limiting unit 500 by the resistor R603. A high level signal is output.
  • the switching current waveform has the same slope and a low peak value as shown in FIG. 4 while the limit value change signal is at the high level. It becomes a waveform.
  • the configuration is such that the threshold value is lowered, the oscillation is stopped as soon as oscillation is started, so the frequency of the waveform of the switching current is shorter than usual.
  • FIG. 5 shows the switching current in the case where the limit value change signal is at the high level as an average current. As shown here, even when the limit value change signal is at the high level, oscillation does not occur at all. It can be seen that the current level is kept low without stopping.
  • the voltage across the output capacitor is controlled to the first voltage value by the output voltage control unit, and the voltage across the output capacitor reaches the second voltage value that is greater than the first voltage value.
  • the second voltage value is detected by the overvoltage detection unit.
  • the switching current value flowing through the switching element is detected by the current limiting unit, and at the same time, the limit value of the magnitude of the switching current is determined, and the switching current value is limited to the above limit value.
  • the limit value is changed by the current limit unit so as to reduce the magnitude of the switching current by the limit value change unit.
  • the magnitude of the switching current can be reduced relatively easily by setting the resistor R603 when the output voltage is overshooting. Can do.
  • the magnitude of the switching current is set so that the output voltage is equal to or lower than the third voltage value.
  • an increase in output voltage can be suppressed and the sound of the transformer can be prevented.
  • a complicated control circuit since a complicated control circuit is not required, it is possible to provide a step-up switching power supply that satisfies all of the downsizing and cost reduction of the device.
  • the magnitude of the switching current can be further reduced relatively easily by setting the resistor R603. be able to. As a result, an increase in the output voltage can be further suppressed, and the sound of the transformer can be further prevented.
  • the power factor correction circuit 1 is a self-excited power source, for example, an intermittent oscillation operation in an audible frequency band may occur under a light load condition, but when the overvoltage detection unit 400 detects the second voltage value. Since the value of the switching current is further reduced than the value of the switching current, the noise of the transformer can be reduced in this case as well.
  • the power factor correction circuit 1 is a self-excited power source, there is a case where a continuous oscillation operation is performed instead of an intermittent operation under a light load condition. Of course, the noise of the transformer can also be reduced in this case.
  • the control circuit 10 includes a driver unit 100, an oscillation control unit 210, an output voltage control unit 300, an overvoltage detection unit 410, a current limiting unit 500, and a limit value change. Part 600.
  • subjects the same code
  • the overvoltage detection unit 410 receives an output voltage level signal corresponding to the voltage across the output capacitor C4 from the FBP terminal, detects a second voltage value in which the input output voltage level signal is greater than the first voltage value, In addition to the function of generating the overvoltage detection signal and supplying the overvoltage detection signal to the limit value changing unit 600, the third voltage value larger than the second voltage value is detected to generate the second overvoltage detection signal. To the oscillation control unit 210.
  • the oscillation control unit 210 performs control so as to stop the oscillation.
  • the overvoltage detection unit 410 includes a first circuit block including a comparator COMP401 and a third voltage source Vovp1 corresponding to the second voltage value, a comparator COMP402, and a fourth voltage source Vovp2 corresponding to the third voltage value. And a second circuit block.
  • the negative input terminal of the comparator COMP402 in the second circuit block is connected to the FBP terminal of the control circuit 10, and an output voltage level signal is input thereto.
  • the positive input terminal of the comparator COMP402 is connected to the fourth voltage source Vovp2. Further, the output terminal of the comparator COMP 402 generates a low-level second overvoltage detection signal and outputs it to the oscillation control unit 210 when the output voltage is larger than the third voltage value.
  • the overvoltage detection unit detects the third voltage value and switches to the oscillation control unit. Since the switching of the element is controlled to be stopped and held, even when the output voltage overshoots and rises to the third voltage value, the power factor correction circuit can be stopped reliably and easily.
  • the limit value change end signal indicates that the limit value change is completed at the timing when the limit value changing unit returns the current limit unit to the state before the change from the state in which the limit value is changed. Is transmitted to the load side.
  • the control circuit 10 includes a driver unit 100, an oscillation control unit 210, an output voltage control unit 300, an overvoltage detection unit 410, a current limiting unit 500, and a limit value change.
  • Part 600 and limit value change end transmission part 700.
  • subjects the same code
  • Limit value change end transmission unit 700 is a limit indicating that the limit value change has ended at the timing when limit value change unit 600 returns the current limit unit 500 to the state before the change from the state in which the limit value is changed. A value change end signal is transmitted to the load side.
  • a falling edge of the limit value change signal is detected, and a limit value change end detection signal in which the logic is changed from the High level to the Low level is generated, and the load side To communicate.
  • An end signal is transmitted to the load side. Therefore, information that the current limit level of the switching current is limited to the above limit value is transmitted to the load side. For example, when another electric circuit is connected to the output of the power factor correction circuit according to the present invention. If the operation of the electric circuit is controlled based on the limit value change end information, even if the output voltage of the power factor correction circuit is not stably voltage-controlled to the first voltage value, The operation of the electric circuit can be prohibited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

【課題】起動時、入力急変時、負荷急変時等のオーバーシュートの保護が働いたときに発生するトランスの音鳴き軽減を可能とする力率改善回路を提供する。 【解決手段】出力電圧制御部により出力コンデンサの両端電圧が第1電圧値に定電圧制御され、出力コンデンサの両端電圧が第1電圧値よりも大きい第2電圧値に達した場合、過電圧検出部により第2電圧値が検出される。また、電流制限部によりスイッチング素子に流れるスイッチング電流値が検出されるとともに、スイッチング電流の制限値が決定される。そして、制限値にスイッチング電流が制限され、過電圧検出部により第2電圧値が検出された場合、制限値変更部によりスイッチング電流値低下させるよう、電流制限部に対して制限値が変更される。

Description

力率改善回路
 本発明は、力率改善回路に関し、特に、起動時、入力急変時、負荷急変時等の出力電圧のオーバーシュート対策、昇圧用のインダクタンス素子等の音鳴き対策、装置の小型化および低コスト化を満足する力率改善回路に関する。
 従来、力率改善のためのスイッチング電源は、交流入力電圧をブリッジダイオードにて整流し、その整流出力電圧を昇圧型スイッチング電源用コンデンサにて平滑する。上記ブリッジダイオードの整流出力は、昇圧型スイッチング電源用チョークコイル、昇圧型スイッチング電源用スイッチング半導体スイッチ、昇圧型スイッチング電源用整流ダイオードおよび力率改善制御回路により、入力電流が正弦波状で、かつ昇圧動作を行い、出力となる平滑用電解コンデンサの両端電圧が出力電圧設定用抵抗で設定された出力電圧となるように制御される。そのため、通常、昇圧型スイッチング電源においては、商用周波数に応答しないようにフィードバック制御を行うため、入力の急変や負荷の急変に対して出力の応答に遅れが生じ易く、出力電圧のオーバーシュートが発生してしまいやすい。
 そこで、特許文献1に記載の従来技術では、図9に示すように、商用交流電源について整流平滑化を行う整流手段(図9のD10)と、昇圧用のインダクタンス素子(図9のL10)と、インダクタンスに流れる電流を断続するスイッチング手段(図9のQ10)と、スイッチング手段の出力を整流平滑化して直流出力電圧を得る直流電圧生成手段(図9のC20)と、インダクタンス素子の励起電圧及び前記の出力に基づいてスイッチング手段のスイッチング周波数を可変制御し、少なくとも当該直流電源回路の出力を安定化するスイッチング制御手段(図9の出力電圧制御部、発振制御部、ドライバ)と、商用交流電源に対応する電圧レベルを検出しこの電圧レベルが所定の閾値よりも高いとされる場合には上記スイッチング手段のスイッチング動作を停止させるように構成されたスイッチング動作停止手段(図9の過電圧検出部、過電流検出部)と、を備えた直流電源回路を提案している。この直流電源回路によれば、商用交流電源の電圧レベルが所定以上となった場合には、アクティブフィルタにおけるスイッチング手段のスイッチング動作が停止される。これにより、例えば商用交流電源が高電圧で軽負荷であるような条件の下であっても、インダクタンス素子における過剰な電圧の上昇を避けることが可能となる。
 しかしながら、特許文献1に記載の従来技術では、直流電源回路の入力に商用交流電源が投入される起動時において、図10(図11は、図9のタイミングチャートの時間軸を広くしたタイミングチャート)に示すように、出力電圧が急峻に上昇してしまい発振・停止を繰り返す間欠的な発振動作になる可能性があり、そのときの発振・停止を繰り返す周期が可聴領域に入ってしまうと、昇圧用のインダクタンス素子等の音鳴きが発生するおそれがある。このような現象は、特に入力電圧が出力電圧よりも高い場合に顕著となりやすい。
 これに対して、特許文献2に記載の従来技術では、入力交流電圧を整流して脈流電圧を得る整流器と前記脈流電圧をインダクタに印加して磁気エネルギを蓄えるための電流を流す第1スイッチ素子と、前記磁気エネルギに応じた電流を流す第2スイッチ素子と、該第2スイッチからの電流を平滑して出力直流電圧を得る平滑コンデンサと、前記第1スイッチ素子の切断および導通を制御するスイッチ素子制御器と、を備えた昇圧チョッパ型力率改善電源装置において、前記出力直流電圧の大きさを所定値とするとともに、力率を改善する昇圧チョッパ型力率改善電源装置を提案している。この昇圧チョッパ型力率改善電源装置においては、前記脈流電圧の大きさが所定閾値よりも大きいときに、過電圧検出信号を発生し、前記過電圧検出信号に基づいて、前記出力直流電圧の大きさを前記所定値よりも大きなものに変更する。
 したがって、この昇圧チョッパ型力率改善電源装置によれば、整流器は、入力交流電圧を整流して脈流電圧を得て、第1スイッチ素子は、該脈流電圧をインダクタに印加して磁気エネルギを蓄えるための電流を流し、第2スイッチ素子は、磁気エネルギに応じた電流を流す。平滑コンデンサは、該第2スイッチからの電流を平滑して出力直流電圧を得て、スイッチ素子制御器は、第1スイッチ素子の切断および導通を制御する。そして、出力直流電圧を所定値とするとともに、力率を改善する。更に、脈流電圧のピーク値が所定閾値よりも大きいときに過電圧検出信号を発生し、この過電圧検出信号に基づいて、出力直流電圧の値を所定値の値よりも大きなものに変更する。これにより、インダクタに間欠的な電流が流れることを防止する。そのため、特許文献2に開示されている昇圧チョッパ型力率改善電源装置では、特許文献1の直流電源回路で発生する昇圧用のインダクタンス素子等の音鳴きは防止される。
特開平11-332220号公報 特開2007-28864号公報
 しかしながら、特許文献2に開示された昇圧チョッパ型力率改善電源装置では、脈流電圧のピーク値が所定閾値よりも大きいときに過電圧検出信号を発生し、過電圧検出信号に基づいて、出力直流電圧の値を所定値の値よりも大きなものに変更するため、一定期間、出力電圧が大きくなることを考慮して、周辺部品の耐圧を考慮して設計する必要がある。従って、特許文献2の昇圧チョッパ型力率改善電源装置では、装置の小型化、低コスト化が困難になってしまうという問題がある。
 以上のように、上記の従来技術においては、出力電圧のオーバーシュート対策、昇圧用のインダクタンス素子等の音鳴き対策、装置の小型化および低コスト化の全てを満足する力率改善回路を提供することが困難であった。
 そこで、本発明は、上述の課題に鑑みてなされたものであり、力率改善回路に関し、特に、起動時、入力急変時、負荷急変時等のオーバーシュートの保護が働いたときに発生するトランスの音鳴き軽減を可能とする力率改善回路を提供することを目的とする。
 本発明は、上記の課題を解決するために、以下の事項を提案している。なお、理解を容易にするために、本発明の実施形態に対応する符号を付して説明するが、これに限定されるものではない。
 (1)本発明は、商用入力電源を整流する入力ダイオード(例えば、図1のD1に相当)と、前記入力ダイオードに一端が接続されたチョークコイル(例えば、図1のL1に相当)と、前記チョークコイルの他端にアノード端が接続された出力ダイオード(例えば、図1のD2に相当)と、前記出力ダイオードのカソード端に正極端が接続された出力コンデンサ(例えば、図1のC4に相当)と、前記出力ダイオードのアノード端および前記チョークコイルの他端の接続点と前記出力コンデンサの負極端との間に接続されたスイッチング素子(例えば、図1のQ1に相当)と、前記スイッチング素子のオンオフを制御する制御回路(例えば、図1の制御回路10に相当)と、を備え、前記商用入力電源の電圧を昇圧し前記出力コンデンサより直流電圧を出力し、負荷側に電力供給する力率改善回路において、前記制御回路は、前記出力コンデンサの両端電圧を第1電圧値に定電圧制御する出力電圧制御部(例えば、図2の出力電圧制御部300に相当)と、前記出力コンデンサの両端電圧が前記第1電圧値よりも大きい第2電圧値に達した場合に、前記第2電圧値を検出する過電圧検出部(例えば、図2の過電圧検出部400に相当)と、前記スイッチング素子に流れるスイッチング電流の値を検出するとともに、前記スイッチング電流の制限値を決定し、前記制限値に前記スイッチング電流の値を制限する電流制限部(例えば、図2の電流制限部500に相当)と、前記過電圧検出部が前記第2電圧値を検出した場合に、前記スイッチング電流の値を低下させるよう、前記電流制限部に対して前記制限値を変更させる制限値変更部(例えば、図2の制限値変更部600に相当)と、を備えたことを特徴とする力率改善回路を提案している。
 この発明によれば、出力電圧制御部により出力コンデンサの両端電圧が第1電圧値に定電圧制御され、出力コンデンサの両端電圧が第1電圧値よりも大きい第2電圧値に達した場合、過電圧検出部により第2電圧値が検出される。また、電流制限部によりスイッチング素子に流れるスイッチング電流値が検出されるとともに、スイッチング電流の制限値が決定される。そして、制限値にスイッチング電流が制限され、過電圧検出部により第2電圧値が検出された場合、制限値変更部によりスイッチング電流値低下させるよう、電流制限部に対して制限値が変更される。
 (2)本発明は、(1)の力率改善回路について、前記制限値変更部は、前記過電圧検出部が前記第2電圧値を検出した後に、前記過電圧検出部が、前記出力コンデンサの両端電圧を前記第2電圧値以上であると検出した場合には、前記過電圧検出部が前記第2電圧値を検出した場合に前記スイッチング電流の値を低下させるよりも更に低下させるよう、前記電流制限部に対して前記制限値を変更させることを特徴とする力率改善回路を提案している。
 この発明によれば、過電圧検出部が前記第2電圧値を検出した後に、過電圧検出部が、前記出力コンデンサの両端電圧を前記第2電圧値以上であると検出した場合には、過電圧検出部によって、第2電圧値を検出した場合にスイッチング電流の大きさを低下させるよりも更に低下させるよう、電流制限部に対して制限値が変更される。
 (3)本発明は、(2)の力率改善回路について、前記電流制限部が、負端子に第1電圧値に相当する基準電源が接続され、出力が前記スイッチング素子の発振を制御する発振制御部に接続された比較器(例えば、図3のCOMP501に相当)からなり、正端子に、前記スイッチング電流の値に相当する電流レベル信号と前記制限値変更部から出力される前記電流制限部に対して前記制限値を変更させる制限値変更信号とを重畳させた信号を供給することを特徴とする力率改善回路を提案している。
 この発明によれば、電流制限部が、負端子に第1電圧値に相当する基準電源が接続され、出力がスイッチング素子の発振を制御する発振制御部に接続された比較器からなり、正端子に、スイッチング電流の値に相当する電流レベル信号と制限値変更部から出力される電流制限部に対して制限値を変更させる制限値変更信号とを重畳させた信号を供給する。
 (4)本発明は、(1)または(2)の力率改善回路について、前記制御回路は、前記スイッチング素子のスイッチング動作を停止保持させる発振停止保持部(例えば、図6の発振制御部210に相当)を備え、前記過電圧検出部は、前記出力コンデンサの両端電圧が前記第2電圧値よりも大きい第3電圧値に達した場合に、前記第3電圧値を検出し、前記発振停止保持部に対し前記スイッチング素子のスイッチングを停止保持させるように制御することを特徴とする力率改善回路を提案している。
 この発明によれば、制御回路は、出力コンデンサの両端電圧が第2電圧値よりも大きい第3電圧値に達した場合に、過電圧検出部によって第3電圧値を検出し、発振停止保持部に対しスイッチング素子のスイッチングを停止保持させる。
 (5)本発明は、(1)から(4)の力率改善回路について、前記制御回路は、前記制限値変更部が前記電流制限部に対して前記制限値を変更させた状態から変更前の状態に戻すタイミングで、前記制限値の変更が終了したことを表す制限値変更終了信号を前記負荷側に伝達する制限値変更終了伝達部(例えば、図8の制限値変更終了伝達部700に相当)を備えたことを特徴とする力率改善回路を提案している。
 この発明によれば、制御回路は、制限値変更部が電流制限部に対して制限値を変更させた状態から変更前の状態に戻すタイミングで、制限値の変更が終了したことを表す制限値変更終了信号を負荷側に伝達する。
 請求項1記載の発明によれば、出力電圧制御部により出力コンデンサの両端電圧が第1電圧値に定電圧制御され、出力コンデンサの両端電圧が第1電圧値よりも大きい第2電圧値に達した場合に、過電圧検出部により上記第2電圧値が検出される。また、電流制限部によりスイッチング素子に流れるスイッチング電流値が検出され、これとともに、スイッチング電流の大きさの制限値が決定され、スイッチング電流値は、上記制限値に制限される。そして、過電圧検出部により第2電圧値が検出された場合は、制限値変更部によりスイッチング電流の大きさを低下させるよう、電流制限部に対して制限値が変更させられる。そのため、昇圧型スイッチング電源の出力電圧がオーバーシュートし易い条件下であっても、出力電圧のオーバーシュート時は、比較的に簡単にスイッチング電流の大きさを低下させることができるという効果がある。その結果、出力電圧の上昇が抑えられ、且つ、トランスの音鳴きを防止することができるという効果がある。また、複雑な制御回路を必要としないため、装置の小型化および低コスト化の全てを満足する昇圧型スイッチング電源を提供することが可能となるという効果がある。
 請求項2記載の発明によれば、昇圧型スイッチング電源の出力電圧がオーバーシュートし易い条件下であっても、出力電圧がオーバーシュート時は、比較的に簡単にスイッチング電流の大きさを更に低下させることができる。その結果、出力電圧の上昇がより抑えられ、且つ、トランスの音鳴きをより防止することができるという効果がある。また、特に自励式電源では、軽負荷条件で可聴周波数帯域の間欠発振動作になる場合があるが、過電圧検出部が第2電圧値を検出した場合にスイッチング電流の値を低下させるよりも更に低下させるため、この場合もトランスの音鳴きを低減させることができるという効果がある。なお、自励式電源では、軽負荷条件で間欠動作にならず連続発振動作になる場合もあるが、当然ながら、この場合もトランスの音鳴きを低減できるという効果がある。
 請求項3記載の発明によれば、電流制限部が、負端子に第1電圧値に相当する基準電源が接続され、出力がスイッチング素子の発振を制御する発振制御部に接続された比較器からなり、正端子に、スイッチング電流の値に相当する電流レベル信号と制限値変更部から出力される電流制限部に対して制限値を変更させる制限値変更信号とを重畳させた信号を供給する。したがって、通常の比較器で構成される過電流検出回路の正端子に制限値変更部の出力信号を接続する簡易な形態で、等価的に、閾値を変更することにより、制限値を変更できるという効果がある。
 請求項4記載の発明によれば、過電圧検出部が、出力コンデンサの両端電圧が第2電圧値よりも大きい第3電圧値に達した場合、第3電圧値を検出し、発振制御部に対しスイッチング素子のスイッチングを停止保持させるように制御するため、出力電圧がオーバーシュートして第3電圧値まで上昇した場合でも、力率改善回路を確実かつ容易に停止させることができるという効果がある。
 請求項5記載の発明によれば、制御回路は、制限値変更部が電流制限部に対して制限値を変更させた状態から変更前の状態に戻すタイミングで、制限値の変更が終了したことを表す制限値変更終了信号を負荷側に伝達する。そのため、負荷側にスイッチング電流の電流制限レベルが上記制限値に制限されている情報が伝達されるため、例えば、本発明に係る力率改善回路の出力に、他の電気回路が接続される場合には、制限値変更終了情報に基づいて当該電気回路の動作を制御すれば、力率改善回路の出力電圧が上記第1電圧値に安定的に定電圧制御されていない条件であっても、当該電気回路の動作を禁止することができるという効果がある。
本発明の一実施形態に係る力率改善回路の回路構成を示す図である。 第1の実施形態に係る力率改善回路に用いられる制御回路の回路ブロック図である。 第1の実施形態に係る制御回路における過電圧検出部、電流制限部および制限値変更部の周辺回路構成図である。 第1の実施形態に係る力率改善回路の軽負荷起動時における実際のスイッチング電流波形を含むタイミングチャートの時間軸を広くして示した図である。 第1の実施形態に係る力率改善回路の軽負荷起動時における平均スイッチング電流を含む動作タイミングチャートである。 第2の実施形態に係る制御回路における過電圧検出部、電流制限部および制限値変更部の周辺回路ブロック図である。 第2の実施形態に係る制御回路における過電圧検出部、電流制限部および制限値変更部の周辺回路構成図である。 第3の実施形態に係る制御回路における過電圧検出部、電流制限部および制限値変更部の周辺回路ブロック図である。 従来例に係る力率改善回路の回路構成を示す図である。 従来例に係る力率改善回路の軽負荷起動時の動作タイミングチャートである。 図10のタイミングチャートの時間軸を広くしたタイミングチャートである。
 以下、本発明の実施形態について、図面を用いて、詳細に説明する。
 なお、本実施形態における構成要素は適宜、既存の構成要素等との置き換えが可能であり、また、他の既存の構成要素との組合せを含む様々なバリエーションが可能である。したがって、本実施形態の記載をもって、特許請求の範囲に記載された発明の内容を限定するものではない。
 以下、図1から図8を用いて、本発明に係る力率改善回路について詳細に説明する。なお、本実施形態に係る力率改善回路は、例えば、100V(実効値)の交流電力を印加し、出力端子VOUTと端子GNDとの間から、例えば、300Vの出力直流電圧を有する直流電力を取り出して、負荷に供給するものである。
<力率改善回路の回路構成>
 図1を用いて、本実施形態に係る力率改善回路の回路構成について説明する。
 本実施形態に係る力率改善回路は、図1に示すように、交流電力を供給する商用電源VINと、4つのダイオードがブリッジ接続され、交流電圧を全波整流するブリッジ整流回路D1とブリッジ整流回路D1の出力を平滑化する整流コンデンサC1とからなる整流回路20と、チョークコイルL1と、スイッチング素子Q1と抵抗R1、R2、R3、R4と、コンデンサC2、C3、C4と、制御回路10と、ダイオードD2と、から構成されている。
 交流電力を供給する商用電源VINは、ブリッジ整流回路D1の入力側に接続されている。ブリッジ整流回路D1の出力側は、平滑コンデンサC1の一端とチョークコイルL1の一端に接続されている。なお、平滑化コンデンサC1の他端は、接地されている。また、チョークコイルL1は、磁気エネルギを蓄え、放出する機能を有している。
 チョークコイルL1の他端は、スイッチング素子Q1のソースとダイオードD2のアノードに接続されている。スイッチング素子Q1のゲートは、制御回路10のVGP端子に接続され、このVGP端子から供給されるドライブ信号により動作する。スイッチング素子Q1のドレインは、抵抗R1およびR2の一端に接続され、抵抗R2の他端は、コンデンサC2の一端および制御回路10のCSP端子に接続され、抵抗R2を介して、制御回路10に電流レベル信号を供給する。なお、抵抗R1およびコンデンサC2の他端は、ともに接地されている。
 ダイオードD2のカソードは、出力端子VOUTに接続されている。また、出力端子VOUTとグランド間には、抵抗R3およびR4により形成される分圧回路および出力コンデンサC4が設けられている。また、分圧回路を形成する抵抗R3およびR4の接続点は、制御回路10のFBP端子に接続され、分圧回路から制御回路10に出力電圧レベル信号が供給される。さらに、制御回路10のFBP端子とグランド間には、コンデンサC3が設けられている。
<第1の実施形態>
 図2から図5を用いて、本発明の第1の実施形態について説明する。なお、本実施形態は、出力電圧が第2電圧値を越えた場合に、スイッチング電流をOCP(過電流検出)のときよりも低い電流値に抑えるものである。
<制御回路内部の構成ブロック>
 図2を用いて、本実施形態に係る制御回路内部の構成ブロックについて説明する。
 本実施形態に係る制御回路10は、図2に示すように、ドライバ部100と、発振制御部200と、出力電圧制御部300と、過電圧検出部400と、電流制限部500と、制限値変更部600とから構成されている。
 ここで、出力電圧制御部300は、出力コンデンサC4の両端電圧に対応する出力電圧レベル信号をFBP端子から入力し、入力した出力電圧レベル信号に基づいて、発振制御部200に出力電圧制御信号を出力することにより、出力電圧の値が第1電圧値になるように定電圧制御を行う。
 発振制御部200は、定常状態においては、出力電圧制御部300から入力する出力電圧制御信号に応じて、発振を制御するためのトリガ信号を生成して、ドライバ部100に供給する。ドライバ部100は、発振制御部200から入力したトリガ信号に応じて、ドライブ信号を生成し、VGP端子を介して、スイッチング素子Q1のゲートにドライブ信号を供給する。
 一方で、過電圧検出部400は、出力コンデンサC4の両端電圧に対応する出力電圧レベル信号をFBP端子から入力し、入力した出力電圧レベル信号が第1電圧値よりも大きい第2電圧値に達した場合に、第2電圧値を検出し、過電圧検出信号を生成して、制限値変更部600に過電圧検出信号を供給する。
 制限値変更部600は、過電圧検出部400が第2電圧値を検出した場合に、電流の値を低下させるよう、電流制限部500に対して制限値を変更させる制限値変更信号を出力する。電流制限部500は、入力した電流レベル信号に制限値変更信号を重畳させた電圧値と基準電圧値に基づいて、電流の制限値を決定し、制限値に電流値を制限する。
<制御回路内部の主要構成要素の回路構成>
 図3を用いて、本実施形態に係る制御回路内部の主要構成要素の回路構成について説明する。本実施形態に係る制御回路10内部の主要構成要素(過電圧検出部400と、電流制限部500と、制限値変更部600)の回路構成は、図3に示すようになっている。
 具体的には、過電圧検出部400は、比較器COMP401と第2電圧値に相当する第2電圧源Vovpとから構成されている。比較器COMP401の負入力端子は、制御回路10のFBP端子に接続され、出力電圧レベル信号が入力される。比較器COMP401の正入力端子は、第2電圧源Vovpに接続されている。また、比較器COMP401の出力端子は、出力電圧が過電圧状態である場合に、Lowレベルの過電圧検出信号を生成し、制限値変更部600に出力する。
 制限値変更部600は、抵抗R601、R602、R603とトランジスタQ601とから構成されている。抵抗R602の一端は、過電圧検出部400内の比較器COMP401の出力端子に接続されている。抵抗R602の他端は、トランジスタQ601のベースおよび抵抗R601の一端に接続されている。抵抗R601の他端は、電源およびトランジスタQ601のエミッタに接続されている。抵抗R603の一端は、トランジスタQ601のコレクタに接続され、抵抗R603の他端は、電流制限部500に接続されている。そして、過電圧検出部400内の比較器COMP401の出力端子からLowレベルの信号が出力されると、トランジスタQ601が、ON状態となって、電流制限部500にHighレベルの信号が出力される。また、電流制限部500に出力されるHighレベルの信号レベルは抵抗R603によって設定される。
 電流制限部500は、比較器COMP501と基準電圧源Vocpとから構成されている。比較器COMP501の負入力端子は、基準電圧源Vocpに接続されている。比較器COMP501の正入力端子は、制御回路のCSP端子および制限値変更部601の出力端子に接続されている。
 電流制限部500は、出力電圧が過電圧状態でない場合には、CSP端子から供給される電流レベル信号と基準電圧源Vocpの値とを比較し、電流レベル信号の値が基準電圧源Vocpの値よりも大きい場合に、Highレベルの電流制限信号を発振制御部200に出力し、発振を停止させる。
 一方、電流制限部500は、出力電圧が過電圧状態である場合には、CSP端子から供給される電流レベル信号に制限値変更部600から出力から供給される制限値変更信号を重畳した信号のレベルと基準電圧源Vocpの値とを比較することにより、等価的に、閾値を下げるように機能することで、出力電圧が第2電圧値を越えた場合には、COMP500の出力信号を発振制御部200に出力することにより、発振制御部200がスイッチング電流を低下させるように制御を行う。
 つまり、図3から図5に示すように、出力電圧が第2電圧値を越えると、過電圧検出部400が、Lowレベルの過電圧検出信号を生成し、制限値変更部600に出力する。制限値変更部600は、過電圧検出部400内の比較器COMP401の出力端子からLowレベルの信号が出力されると、トランジスタQ601が、ON状態となって、電流制限部500に抵抗R603によって設定されたHighレベルの信号が出力する。
 そうすると、電流制限部500内のCOMP501の正入力端子には、制限値変更部600内の抵抗R603によって設定された電流レベル信号と制限値変更信号とが重畳された信号が入力される。一方で、COMP501の負入力端子には、固定の基準電圧源Vocpが接続されている。そのため、等価的に、閾値が低くなる。閾値が低くなることにより、電流制限部500が電流制限信号を発振制御部200に出力すると、発振を停止するため、電流が減少し、電流レベル信号のレベルが低下する。
 そうすると、COMP501の正入力端子の信号レベルが低下し、基準電圧源Vocpの値を下回ると、発振制御部200への電流制限信号の供給を停止する。これにより、発振制御部200が発振を開始すると、電流が増加し、電流レベル信号のレベルが上昇する。これにより、COMP501の正入力端子の信号レベルが上昇し、基準電圧源Vocpの値を上回ると、発振制御部200へ電流制限信号を供給する。以上のような動作を出力電圧が第2電圧値より低くなるまで継続する。
 なお、等価的に、閾値を下げるような構成となっているため、制限値変更信号がHighレベルの間は、図4に示すように、スイッチング電流の波形は、傾きが同じで波高値の低い波形となる。また、閾値を下げるような構成となっていることから、発振を開始するとすぐに発振停止状態になるため、スイッチング電流の波形の周波数は、通常よりも短くなっている。図5は、制限値変更信号がHighレベルの場合のスイッチング電流を平均電流で表したものであるが、ここに、示されるように、制限値変更信号がHighレベルの場合にも、発振がまったく停止することはなく、しかも電流レベルが低く抑えられていることがわかる。
 したがって、本実施形態によれば、出力電圧制御部により出力コンデンサの両端電圧が第1電圧値に定電圧制御され、出力コンデンサの両端電圧が第1電圧値よりも大きい第2電圧値に達した場合に、過電圧検出部により上記第2電圧値が検出される。また、電流制限部によりスイッチング素子に流れるスイッチング電流値が検出され、これとともに、スイッチング電流の大きさの制限値が決定され、スイッチング電流値は、上記制限値に制限される。そして、過電圧検出部により第2電圧値が検出された場合は、制限値変更部によりスイッチング電流の大きさを低下させるよう、電流制限部に対して制限値が変更させられる。そのため、昇圧型スイッチング電源の出力電圧がオーバーシュートし易い条件下であっても、出力電圧がオーバーシュート時は、抵抗R603を設定することで比較的に簡単にスイッチング電流の大きさを低下させることができる。なお、出力電圧がオーバーシュート時は、出力電圧が第3電圧値以下になるようにスイッチング電流の大きさを設定する。その結果、出力電圧の上昇が抑えられ、且つ、トランスの音鳴きを防止することができる。また、複雑な制御回路を必要としないため、装置の小型化および低コスト化の全てを満足する昇圧型スイッチング電源を提供することが可能となる。
 また、昇圧型スイッチング電源の出力電圧がオーバーシュートし易い条件下であっても、出力電圧がオーバーシュート時は、抵抗R603を設定することで比較的に簡単にスイッチング電流の大きさを更に低下させることができる。その結果、出力電圧の上昇がより抑えられ、且つ、トランスの音鳴きをより防止することができる。また、力率改善回路1が例えば自励式電源である場合には、軽負荷条件で可聴周波数帯域の間欠発振動作になることがあるが、過電圧検出部400が第2電圧値を検出した場合にスイッチング電流の値を低下させるよりも更に低下させるため、この場合もトランスの音鳴きを低減させることができる。なお、力率改善回路1が自励式電源である場合に、軽負荷条件で間欠動作にならず連続発振動作になることもあるが、当然ながら、この場合もトランスの音鳴きを低減できる。
<第2の実施形態>
 図6および図7を用いて、本発明の第2の実施形態について説明する。なお、本実施形態は、過電圧検出部が、第2電圧値よりも大きい第3電圧値を検出した場合に、スイッチング素子のスイッチングを停止保持させるように制御するものである。
<制御回路内部の構成ブロック>
 図6を用いて、本実施形態に係る制御回路内部の構成ブロックについて説明する。
 本実施形態に係る制御回路10は、図6に示すように、ドライバ部100と、発振制御部210と、出力電圧制御部300と、過電圧検出部410と、電流制限部500と、制限値変更部600とから構成されている。なお、第1の実施形態と同一の符号を付す構成要素については、同一の機能を有するものであることからその詳細な説明は、省略する。
 過電圧検出部410は、出力コンデンサC4の両端電圧に対応する出力電圧レベル信号をFBP端子から入力し、入力した出力電圧レベル信号が第1電圧値よりも大きい第2電圧値を検出し、第1の過電圧検出信号を生成して、制限値変更部600に過電圧検出信号を供給する機能に加えて、第2電圧値よりも大きい第3電圧値を検出し、第2の過電圧検出信号を生成して、発振制御部210に供給する。
 発振制御部210は、第2の過電圧検出信号を入力すると、発振を停止するよう制御を行う。
<制御回路内部の主要構成要素の回路構成>
 図7を用いて、本実施形態に係る制御回路内部の主要構成要素の回路構成について説明する。本実施形態に係る制御回路10内部の主要構成要素(過電圧検出部410と、電流制限部500と、制限値変更部600)の回路構成は、図7に示すようになっている。なお、第1の実施形態と同一の符号を付す構成要素については、同一の機能を有するものであることからその詳細な説明は、省略する。
 過電圧検出部410は、比較器COMP401と第2電圧値に相当する第3電圧源Vovp1とからなる第1の回路ブロックと比較器COMP402と第3電圧値に相当する第4電圧源Vovp2とからなる第2の回路ブロックとから構成されている。
 ここで、第2の回路ブロック内の比較器COMP402の負入力端子は、制御回路10のFBP端子に接続され、出力電圧レベル信号が入力される。比較器COMP402の正入力端子は、第4電圧源Vovp2に接続されている。また、比較器COMP402の出力端子は、出力電圧が第3電圧値よりも大きい場合に、Lowレベルの第2の過電圧検出信号を生成し、発振制御部210に出力する。
 したがって、本実施形態によれば、過電圧検出部が、出力コンデンサの両端電圧が第2電圧値よりも大きい第3電圧値に達した場合、第3電圧値を検出し、発振制御部に対しスイッチング素子のスイッチングを停止保持させるように制御するため、出力電圧がオーバーシュートして第3電圧値まで上昇した場合でも、力率改善回路を確実かつ容易に停止させることができる。
<第3の実施形態>
 図5および図8を用いて、本発明の第3の実施形態について説明する。なお、本実施形態は、制限値変更部が電流制限部に対して制限値を変更させた状態から変更前の状態に戻すタイミングで、制限値の変更が終了したことを表す制限値変更終了信号を負荷側に伝達するものである。
<制御回路内部の構成ブロック>
 図8を用いて、本実施形態に係る制御回路内部の構成ブロックについて説明する。
 本実施形態に係る制御回路10は、図8に示すように、ドライバ部100と、発振制御部210と、出力電圧制御部300と、過電圧検出部410と、電流制限部500と、制限値変更部600と、制限値変更終了伝達部700とから構成されている。なお、第2の実施形態と同一の符号を付す構成要素については、同一の機能を有するものであることからその詳細な説明は、省略する。
 制限値変更終了伝達部700は、制限値変更部600が電流制限部500に対して制限値を変更させた状態から変更前の状態に戻すタイミングで、制限値の変更が終了したことを表す制限値変更終了信号を負荷側に伝達する。
 具体的には、図5に示すように、例えば、制限値変更信号の立下りエッジを検出して、論理をHighレベルからLowレベルに遷移させた制限値変更終了検出信号を生成し、負荷側に伝達する。
 したがって、本実施形態によれば、制限値変更部が電流制限部に対して制限値を変更させた状態から変更前の状態に戻すタイミングで、制限値の変更が終了したことを表す制限値変更終了信号を負荷側に伝達する。そのため、負荷側にスイッチング電流の電流制限レベルが上記制限値に制限されている情報が伝達されるため、例えば、本発明に係る力率改善回路の出力に、他の電気回路が接続される場合には、制限値変更終了情報に基づいて当該電気回路の動作を制御すれば、力率改善回路の出力電圧が上記第1電圧値に安定的に定電圧制御されていない条件であっても、当該電気回路の動作を禁止することができる。
 以上、この発明の実施形態につき、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 1;力率改善回路
 10;制御部
 20;整流回路
 30;出力電圧設定回路
 100;ドライバ部
 200;発振制御部
 210;発振制御部
 300;出力電圧制御部
 400;過電圧検出部
 410;過電圧検出部
 500;電流制限部
 600;制限値変更部
 700;制限値変更終了伝達部
 C1;コンデンサ
 C2;コンデンサ
 C3;コンデンサ
 C4;コンデンサ
 COMP401;比較器
 COMP402;比較器
 COMP501;比較器
 D1;ブリッジ整流回路
 D2;ダイオード
 L1;チョークコイル
 Q1;スイッチング素子
 Q601;トランジスタ
 R1;抵抗
 R2;抵抗
 R3;抵抗
 R4;抵抗
 R601;抵抗
 R602;抵抗
 R603;抵抗
 VIN;商用電源
 Vocp;基準電圧源
 Vovp;第2電圧源
 Vovp1;第3電圧源
 Vovp2;第4電圧源

Claims (5)

  1.  商用入力電源を整流する入力ダイオードと、前記入力ダイオードに一端が接続されたチョークコイルと、前記チョークコイルの他端にアノード端が接続された出力ダイオードと、前記出力ダイオードのカソード端に正極端が接続された出力コンデンサと、前記出力ダイオードのアノード端および前記チョークコイルの他端の接続点と前記出力コンデンサの負極端との間に接続されたスイッチング素子と、前記スイッチング素子のオンオフを制御する制御回路と、を備え、前記商用入力電源の電圧を昇圧し前記出力コンデンサより直流電圧を出力し、負荷側に電力供給する力率改善回路において、
     前記制御回路は、
     前記出力コンデンサの両端電圧を第1電圧値に定電圧制御する出力電圧制御部と、
     前記出力コンデンサの両端電圧が前記第1電圧値よりも大きい第2電圧値に達した場合に、前記第2電圧値を検出する過電圧検出部と、
     前記スイッチング素子に流れるスイッチング電流の値を検出するとともに、前記スイッチング電流の大きさの制限値を決定し、前記制限値に前記スイッチング電流の値を制限する電流制限部と、
     前記過電圧検出部が前記第2電圧値を検出した場合に、前記スイッチング電流の大きさを低下させるよう、前記電流制限部に対して前記制限値を変更させる制限値変更部と、
     を備えたことを特徴とする力率改善回路。
  2.  前記制限値変更部は、前記過電圧検出部が前記第2電圧値を検出した後に、前記過電圧検出部が、前記出力コンデンサの両端電圧を前記第2電圧値以上であると検出した場合には、前記過電圧検出部が前記第2電圧値を検出した場合に前記スイッチング電流の値を低下させるよりも更に低下させるよう、前記電流制限部に対して前記制限値を変更させることを特徴とする請求項1に記載の力率改善回路。
  3.  前記電流制限部が、負端子に第1電圧値に相当する基準電源が接続され、出力が前記スイッチング素子の発振を制御する発振制御部に接続された比較器からなり、正端子に、前記スイッチング電流の値に相当する電流レベル信号と前記制限値変更部から出力される前記電流制限部に対して前記制限値を変更させる制限値変更信号とを重畳させた信号を供給することを特徴とする請求項2に記載の力率改善回路。
  4.  前記制御回路は、前記スイッチング素子のスイッチング動作を停止保持させる発振停止保持部を備え、
     前記過電圧検出部は、前記出力コンデンサの両端電圧が前記第2電圧値よりも大きい第3電圧値に達した場合に、前記第3電圧値を検出し、前記発振停止保持部に対し前記スイッチング素子のスイッチングを停止保持させるように制御することを特徴とする請求項1または請求項2に記載の力率改善回路。
  5.  前記制御回路は、前記制限値変更部が前記電流制限部に対して前記制限値を変更させた状態から変更前の状態に戻すタイミングで、前記制限値の変更が終了したことを表す制限値変更終了信号を前記負荷側に伝達する制限値変更終了伝達部を備えたことを特徴とする請求項1から請求項4のいずれかに記載の力率改善回路。
PCT/JP2012/000519 2011-01-31 2012-01-27 力率改善回路 WO2012105200A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12741641.0A EP2672620B1 (en) 2011-01-31 2012-01-27 Power factor improvement circuit
JP2012555733A JP5642205B2 (ja) 2011-01-31 2012-01-27 力率改善回路
US13/982,284 US9083241B2 (en) 2011-01-31 2012-01-27 Power factor correction circuit for providing protection against overvoltage
CN201280007062.4A CN103354972B (zh) 2011-01-31 2012-01-27 功率因数改善电路
KR1020137017126A KR101513822B1 (ko) 2011-01-31 2012-01-27 역률 개선 회로

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011018870 2011-01-31
JP2011-018870 2011-01-31

Publications (1)

Publication Number Publication Date
WO2012105200A1 true WO2012105200A1 (ja) 2012-08-09

Family

ID=46602426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000519 WO2012105200A1 (ja) 2011-01-31 2012-01-27 力率改善回路

Country Status (6)

Country Link
US (1) US9083241B2 (ja)
EP (1) EP2672620B1 (ja)
JP (1) JP5642205B2 (ja)
KR (1) KR101513822B1 (ja)
CN (1) CN103354972B (ja)
WO (1) WO2012105200A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116047A (ja) * 2013-12-11 2015-06-22 オムロン株式会社 電源装置
JP2015186407A (ja) * 2014-03-26 2015-10-22 株式会社日本自動車部品総合研究所 電力変換装置
JP2017175892A (ja) * 2016-03-25 2017-09-28 東芝ライテック株式会社 電源装置及びこの電源装置を備えた照明装置
US11349394B2 (en) 2018-10-04 2022-05-31 Fuji Electric Co., Ltd. Power supply control device and power supply control method for controlling switching device of boost chopper

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2501105A (en) * 2012-04-12 2013-10-16 Eltek As AC-DC converter overvoltage protection circuit
SG11201705208UA (en) * 2015-03-11 2017-09-28 Mitsubishi Electric Corp Power supply device
JP6697745B2 (ja) * 2016-11-29 2020-05-27 パナソニックIpマネジメント株式会社 直流漏電検出装置、漏電検出装置
CN106655979B (zh) * 2016-12-01 2019-07-26 广州极飞科技有限公司 飞行器及其电子调速器的过压保护方法和装置
US20230275420A1 (en) * 2020-07-16 2023-08-31 B&R Industrial Automation GmbH Voltage converter having overvoltage protection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332220A (ja) 1998-05-18 1999-11-30 Sony Corp 直流電源回路
JP2000341957A (ja) * 1999-05-26 2000-12-08 Sony Corp 電源装置
JP2007028864A (ja) 2005-07-21 2007-02-01 Sony Corp 昇圧チョッパ型力率改善電源装置
JP2010154639A (ja) * 2008-12-25 2010-07-08 Fuji Electric Systems Co Ltd スイッチング電源回路
JP2010220330A (ja) * 2009-03-16 2010-09-30 Fuji Electric Systems Co Ltd スイッチング電源回路

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3627395A1 (de) * 1986-08-13 1988-02-18 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Steuerschaltung fuer ein schaltnetzteil mit sinusfoermiger stromaufnahme zum umwandeln einer sinusfoermigen wechselspannung in eine geregelte gleichspannung
JPH06351231A (ja) * 1993-06-10 1994-12-22 Canon Inc Dc/dcコンバータ
EP1471625A4 (en) * 2002-01-08 2006-06-21 Sanken Electric Co Ltd PERFORMANCE FACTOR IMPROVEMENT CONVERTER AND CONTROL PROCESS THEREFOR
US6721192B1 (en) * 2003-03-24 2004-04-13 System General Corp. PWM controller regulating output voltage and output current in primary side
JP3801184B2 (ja) * 2004-05-07 2006-07-26 サンケン電気株式会社 スイッチング電源装置
JP4429868B2 (ja) * 2004-10-14 2010-03-10 シャープ株式会社 スイッチング電源回路及びそれを用いた電子機器
JP4774987B2 (ja) 2005-12-28 2011-09-21 サンケン電気株式会社 スイッチング電源装置
US7239532B1 (en) * 2006-12-27 2007-07-03 Niko Semiconductor Ltd. Primary-side feedback switching power supply
JP2009027895A (ja) * 2007-07-24 2009-02-05 Hitachi Ltd スイッチング電源
KR101366683B1 (ko) * 2007-08-28 2014-02-25 삼성전자주식회사 전력 변환기, 이를 포함하는 전력관리 회로 및 전력 변환방법
JP4686579B2 (ja) * 2008-07-30 2011-05-25 株式会社日立製作所 電源装置
US8279631B2 (en) * 2008-08-05 2012-10-02 Active-Semi, Inc. Limiting primary peak charge to control output current of a flyback converter
US8102679B2 (en) * 2008-08-15 2012-01-24 Infineon Technologies Ag Utilization of a multifunctional pin to control a switched-mode power converter
US8159204B2 (en) * 2008-09-29 2012-04-17 Active-Semi, Inc. Regulating current output from a buck converter without external current sensing
JP5514460B2 (ja) 2009-03-23 2014-06-04 ローム株式会社 入力電流制限回路及びこれを用いた電源装置
CN102656787B (zh) * 2009-10-29 2014-10-29 富士电机株式会社 开关电源电路和功率因数控制器
JP5493738B2 (ja) * 2009-11-10 2014-05-14 富士電機株式会社 力率改善型スイッチング電源装置
US8248040B2 (en) * 2009-11-12 2012-08-21 Polar Semiconductor Inc. Time-limiting mode (TLM) for an interleaved power factor correction (PFC) converter
CN103313472B (zh) * 2010-05-19 2016-02-03 成都芯源***有限公司 一种具有调光功能的led驱动电路及灯具
US8780590B2 (en) * 2012-05-03 2014-07-15 Hong Kong Applied Science & Technology Research Institute Company, Ltd. Output current estimation for an isolated flyback converter with variable switching frequency control and duty cycle adjustment for both PWM and PFM modes
JP6092604B2 (ja) * 2012-12-10 2017-03-08 ローム株式会社 Dc/dcコンバータおよびその制御回路、それを用いた電源装置、電源アダプタおよび電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332220A (ja) 1998-05-18 1999-11-30 Sony Corp 直流電源回路
JP2000341957A (ja) * 1999-05-26 2000-12-08 Sony Corp 電源装置
JP2007028864A (ja) 2005-07-21 2007-02-01 Sony Corp 昇圧チョッパ型力率改善電源装置
JP2010154639A (ja) * 2008-12-25 2010-07-08 Fuji Electric Systems Co Ltd スイッチング電源回路
JP2010220330A (ja) * 2009-03-16 2010-09-30 Fuji Electric Systems Co Ltd スイッチング電源回路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116047A (ja) * 2013-12-11 2015-06-22 オムロン株式会社 電源装置
JP2015186407A (ja) * 2014-03-26 2015-10-22 株式会社日本自動車部品総合研究所 電力変換装置
JP2017175892A (ja) * 2016-03-25 2017-09-28 東芝ライテック株式会社 電源装置及びこの電源装置を備えた照明装置
US11349394B2 (en) 2018-10-04 2022-05-31 Fuji Electric Co., Ltd. Power supply control device and power supply control method for controlling switching device of boost chopper

Also Published As

Publication number Publication date
CN103354972B (zh) 2016-01-20
EP2672620A4 (en) 2018-01-24
JP5642205B2 (ja) 2014-12-17
US20130308360A1 (en) 2013-11-21
KR101513822B1 (ko) 2015-04-20
US9083241B2 (en) 2015-07-14
KR20130101570A (ko) 2013-09-13
EP2672620B1 (en) 2018-08-29
EP2672620A1 (en) 2013-12-11
JPWO2012105200A1 (ja) 2014-07-03
CN103354972A (zh) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5642205B2 (ja) 力率改善回路
US8207713B2 (en) Switching power supply circuit
JP5353119B2 (ja) スイッチング電源装置
JP6447095B2 (ja) スイッチング電源回路
US10666153B2 (en) Active clamp flyback converters and control methods thereof
JP4104609B2 (ja) スイッチモード電源ユニットの電流および電圧を制御する方法
US10742124B2 (en) Active clamp flyback converter capable of switching operation modes
JPWO2007018227A1 (ja) 絶縁型スイッチング電源装置
JP2010124573A (ja) スイッチング電源装置、及びそれに用いる半導体装置
JP5424031B2 (ja) 力率改善回路
JP2010124567A (ja) スイッチング電源装置
JP5213621B2 (ja) スイッチングレギュレータの制御回路、制御方法およびそれらを利用したスイッチングレギュレータ、充電装置
JP2008061489A (ja) 電源回路
JP4764980B2 (ja) 直流−直流変換装置
JP2010273431A (ja) 力率改善型スイッチング電源装置
JP2009055691A (ja) スイッチング電源装置
JPH11332220A (ja) 直流電源回路
JP2004266928A (ja) 電源装置及びそれを用いる放電灯点灯装置
JP2012175809A (ja) スイッチング電源装置
JP2008029089A (ja) スイッチング電源
JP2008099395A (ja) Dc/dcコンバータ
JP2005295649A (ja) スイッチング電源装置
WO2018043227A1 (ja) スイッチング電源装置および半導体装置
JP2010130881A (ja) スイッチング電源回路
JP5660575B2 (ja) 制御回路およびスイッチング電源装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280007062.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555733

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137017126

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13982284

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012741641

Country of ref document: EP