WO2012081621A1 - 非水電解液二次電池用正極及び非水電解液二次電池並びに電池モジュール - Google Patents

非水電解液二次電池用正極及び非水電解液二次電池並びに電池モジュール Download PDF

Info

Publication number
WO2012081621A1
WO2012081621A1 PCT/JP2011/078915 JP2011078915W WO2012081621A1 WO 2012081621 A1 WO2012081621 A1 WO 2012081621A1 JP 2011078915 W JP2011078915 W JP 2011078915W WO 2012081621 A1 WO2012081621 A1 WO 2012081621A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
secondary battery
electrode active
electrolyte secondary
Prior art date
Application number
PCT/JP2011/078915
Other languages
English (en)
French (fr)
Inventor
富太郎 原
福永 孝夫
隆康 井口
高郎 北川
良貴 山本
Original Assignee
エリーパワー株式会社
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010282433A external-priority patent/JP5740708B2/ja
Priority claimed from JP2010282434A external-priority patent/JP2012133895A/ja
Application filed by エリーパワー株式会社, 住友大阪セメント株式会社 filed Critical エリーパワー株式会社
Priority to KR1020137015146A priority Critical patent/KR101929792B1/ko
Priority to CN2011800594381A priority patent/CN103250280A/zh
Priority to US13/993,901 priority patent/US9960416B2/en
Priority to EP11848054.0A priority patent/EP2654108B1/en
Publication of WO2012081621A1 publication Critical patent/WO2012081621A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a battery module.
  • This application claims priority based on Japanese Patent Application No. 2010-282433 filed in Japan on December 17, 2010, and Japanese Patent Application No. 2010-282434 filed on December 17, 2010 in Japan. , The contents of which are incorporated herein.
  • non-aqueous electrolyte secondary batteries containing olivine-type lithium composite compound particles as positive electrode active materials have been proposed and put into practical use as batteries expected to be reduced in size, weight, and capacity (for example, (See Patent Documents 1 and 2).
  • This non-aqueous electrolyte secondary battery uses a positive electrode using a lithium-containing phosphate compound having an olivine structure, and a lithium-containing metal oxide having a property capable of reversibly removing and inserting lithium ions such as carbon-based materials. And a non-aqueous electrolyte.
  • a metal foil referred to as a current collector is an electrode material mixture containing olivine type lithium composite compound particles such as lithium iron phosphate (LiFePO 4 ) particles whose surfaces are coated with a carbonaceous film, and a binder. It is formed by applying to the surface.
  • olivine type lithium composite compound particles such as lithium iron phosphate (LiFePO 4 ) particles whose surfaces are coated with a carbonaceous film, and a binder. It is formed by applying to the surface.
  • non-aqueous electrolyte secondary batteries are lighter and smaller than conventional secondary batteries such as lead batteries, nickel cadmium batteries, and nickel metal hydride batteries, and have high energy. It is used as a power source for portable electronic devices such as telephones and notebook personal computers.
  • non-aqueous electrolyte secondary batteries have also been studied as high-output power sources for electric vehicles, hybrid vehicles, electric tools, etc., and batteries used as these high-output power sources have high-speed charge / discharge characteristics. Is required.
  • the surface of the olivine-type lithium composite compound particles is not sufficiently covered with the carbonaceous film, so that lithium ions are taken in and released from the olivine-type lithium composite compound. Since the speed is low, that is, the charge transfer resistance is high, there is a problem that the overvoltage of the positive electrode becomes high. When the overvoltage of the positive electrode becomes high, the electrode resistance at the time of charging / discharging also becomes high. As a result, the charge / discharge speed of the secondary battery becomes slow, resulting in a problem that the charge / discharge characteristics deteriorate. It will be.
  • the present invention has been made in order to solve the above-described problems, and by increasing the lithium ion intake / release rate in the olivine-type lithium composite compound particles, the charge / discharge rate of the positive electrode is increased, and thus the secondary Positive electrode for non-aqueous electrolyte secondary battery with increased charge / discharge rate of battery, non-aqueous electrolyte secondary battery provided with positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery It aims at providing the battery module provided with the battery.
  • a secondary battery using a conventional olivine-type lithium composite compound as a positive electrode active material has a high positive electrode resistance, and therefore 100% SOC was not obtained even when charged near the theoretical value of 3.35 V. . Therefore, a high voltage of 4.0 V or more had to be applied.
  • a reaction that does not contribute to the battery reaction such as decomposition of the electrolytic solution occurs on the electrode, which may affect the durability and stability of the battery.
  • the present invention has also been made in view of the above-mentioned problems of the prior art, and reduces the resistance of the positive electrode using the olivine-type lithium composite compound and enables the charging at a low voltage. It aims to provide a battery.
  • a non-aqueous electrolyte secondary solution containing olivine-type lithium composite compound particles having a carbonaceous film formed on the surface as a positive electrode active material In the positive electrode for a battery, if the coverage of the carbonaceous film with respect to the surface area of the olivine-type lithium composite compound particles is 95% or more, the lithium ion intake / release rate in the olivine-type lithium composite compound can be increased. It has been found that the charge / discharge rate of the positive electrode can be increased, and as a result, the charge / discharge rate of the secondary battery can be increased, and the present invention has been completed.
  • the positive electrode for a non-aqueous electrolyte secondary battery according to the present invention is a positive electrode for a non-aqueous electrolyte secondary battery comprising olivine-type lithium composite compound particles having a carbonaceous film formed on the surface as a positive electrode active material.
  • the coverage of the carbonaceous film with respect to the surface area of the olivine-type lithium composite compound particles is 95% or more.
  • the packing density of the olivine-type lithium composite compound particles in the positive electrode for a non-aqueous electrolyte secondary battery is preferably 0.90 g / cm 3 or more and 1.09 g / cm 3 or less.
  • the nonaqueous electrolyte secondary battery of the present invention includes the positive electrode for a nonaqueous electrolyte secondary battery of the present invention.
  • the battery module of the present invention includes the nonaqueous electrolyte secondary battery of the present invention.
  • the present invention employs the following configuration.
  • the positive electrode is 4 parts by mass or more and 6 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention since the coverage of the carbonaceous film with respect to the surface area of the olivine-type lithium composite compound particles having a carbonaceous film formed on the surface is 95% or more, The lithium ion intake / release rate in the olivine-type lithium composite compound can be increased, and the charge / discharge rate of the positive electrode can be increased. As a result, the charge / discharge rate of a secondary battery using the positive electrode for a non-aqueous electrolyte secondary battery can be increased.
  • the charge / discharge rate of the positive electrode can be improved. Therefore, the charge / discharge characteristics of the secondary battery can be improved.
  • the non-aqueous electrolyte secondary battery of the present invention since the non-aqueous electrolyte secondary battery of the present invention is provided, the charge / discharge characteristics of the battery module can be improved.
  • non-aqueous electrolyte secondary battery that has a low positive electrode resistance and can be charged at a low voltage.
  • FIG. 1 is a schematic view in a vertical direction showing a configuration of a nonaqueous electrolyte secondary battery (hereinafter also simply referred to as “secondary battery”) including a positive electrode for a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • Sectional drawing and FIG. 2 are schematic sectional drawings of the horizontal direction which shows the structure of the secondary battery.
  • the secondary battery 1 of the present embodiment is called a lithium ion secondary battery, and a lid member 3 is joined to an upper opening of a bottomed cylindrical case 2 made of stainless steel or the like to form a sealed structure.
  • a power generation element 4 having a stack structure, a positive electrode connection terminal 5, a negative electrode connection terminal 6, and a nonaqueous electrolyte solution 7 are accommodated in the case 2, and the positive electrode connection terminal 5 and the negative electrode connection terminal 6 are provided with an insulator (not shown) on the lid member 3.
  • the positive connection terminal 5 is connected to the positive external connection terminal 8, and the negative connection terminal 6 is connected to the negative external connection terminal 9.
  • the positive electrode 11 includes a positive electrode current collector 21 and a positive electrode active material layer 22 formed on the positive electrode current collector 21.
  • the positive electrode active material layer 22 may be formed only on one surface of the positive electrode current collector 21 or may be formed on both surfaces of the positive electrode current collector 21.
  • These positive electrode current collectors 21 are connected to the positive electrode connection terminal 5 by bundling ends where the positive electrode active material layer 22 is not formed.
  • the positive electrode current collector 21 is not particularly limited as long as it has electrical conductivity and can form the positive electrode active material layer 22 on the surface.
  • a metal foil is preferable.
  • Aluminum foil is preferred.
  • the positive electrode active material layer 22 is obtained by adding a conductive agent such as acetylene black, a binder such as polyvinylidene fluoride (PVdF), an organic solvent such as N-methyl-2-pyrrolidinone (NMP) to the positive electrode active material, The positive electrode active material layer slurry obtained by applying the agitated and kneaded slurry for the positive electrode current collector 21 on the positive electrode current collector 21 and heating and drying is used.
  • As the positive electrode active material an olivine type lithium composite having a carbonaceous film formed on the surface is used. Compound particles are preferably used.
  • the surface of the olivine type lithium composite compound particles has a carbonaceous film formed at a surface coverage of almost 100%;
  • the surface of the primary particles of the olivine type lithium composite compound is formed with a carbonaceous film having a surface coverage of almost 100%, and the primary particles are bonded to each other through the carbonaceous film to form secondary particles. Any one or both of the aggregates of the olivine-type lithium composite compound particles can be used.
  • the olivine-type lithium composite compound particles lithium cobaltate, lithium nickelate, lithium manganate, lithium titanate and Li x A y D z PO 4 (where, A is Co, Mn, Ni, Fe, Cu, and Cr One or more selected from the group, D is selected from the group of Mg, Ca, S, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, Y, rare earth elements One or two or more selected from the group of 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1.5, and 0 ⁇ z ⁇ 1.5) are preferred.
  • Co, Mn, Ni, and Fe are for D, and for D, Mg, Ca, Sr, Ba, Ti, Zn, and Al are in terms of high discharge potential, abundant resources, safety, etc. preferable.
  • the rare earth elements are 15 elements of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, which are lanthanum series.
  • LiFePO 4 is preferable.
  • the carbonaceous film formed on the surface of the olivine-type lithium composite compound particles is obtained by firing a carbon precursor such as pitch at 1000 ° C. or less in an inert atmosphere. Amorphous carbon).
  • the coverage of the carbonaceous film with respect to the surface area of the olivine-type lithium composite compound particles is preferably 95% or more.
  • the coverage of the carbonaceous film is less than 95%, the internal resistance of the olivine-type lithium composite compound particles is increased, and as a result, the lithium ion intake / release rate in the olivine-type lithium composite compound particles is reduced, This is not preferable because the charge / discharge rate of the positive electrode decreases.
  • the packing density of the olivine-type lithium composite compound particles having a carbonaceous film formed on the surface in the positive electrode active material layer 22 is preferably 0.90 g / cm 3 or more and 1.09 g / cm 3 or less.
  • the upper limit value of 1.09 g / cm 3 for the packing density is a limit at which the olivine-type lithium composite compound particles are packed in the positive electrode, and it is difficult to increase the packing density beyond this value.
  • the packing density is 1.09 g / cm 3
  • the conductive resistance of the positive electrode active material layer 25 approximates the resistance of amorphous carbon.
  • the reason why the coverage of the carbonaceous film is 95% or more will be described in more detail.
  • the lithium ion incorporation / release rate in the lithium composite compound cannot be said to be fast enough to satisfy the requirements.
  • the conductive resistance of the positive electrode tends to increase, and the charge / discharge rate decreases.
  • the reason for this is that since there are many portions on the surface of the olivine-type lithium composite compound particles where no carbonaceous film exists, the electrons in the olivine skeleton adjacent to the Li ion reaction site of the olivine-type lithium composite compound particles It is considered that a part that is not covered with the carbonaceous film is formed at the receiving and receiving site, and it is difficult to take in and release Li ions in that part.
  • the reason why there are many parts where no carbonaceous film exists on the particle surface is considered to be that the coverage of the carbonaceous film on the surface of the olivine type lithium composite compound particle is low in the first place. It is conceivable that excessive stress is applied to the particles due to stirring and kneading when the slurry for the positive electrode active material layer is produced using the olivine type lithium composite compound particles, and the carbonaceous film is peeled off.
  • the coverage of the carbonaceous film is 95% or more, and therefore adjacent to the Li ion reaction site of the olivine type lithium composite compound particles. This is probably because the portion of the olivine skeleton that is not covered with the carbonaceous film at the electron transfer site is reduced, and the region where the incorporation and release of Li ions is inhibited is reduced.
  • the coverage of the carbonaceous film is 100%, most of the electron transfer sites in the olivine skeleton adjacent to the Li ion reaction site of the olivine-type lithium composite compound particles are covered with the carbonaceous film. This is considered to be because there is no possibility that the intake and release of Li ions will be hindered.
  • the negative electrode 12 includes a negative electrode current collector 31 and a negative electrode active material layer 32 formed on the negative electrode current collector 31.
  • the negative electrode current collector 31 is not particularly limited as long as it has electrical conductivity and can form the negative electrode active material layer 32 on the surface.
  • a metal foil is preferable. Copper foil is preferred.
  • the negative electrode active material layer 32 is obtained by adding a conductive agent such as acetylene black, a binder such as polyvinylidene fluoride (PVdF), an organic solvent such as N-methyl-2-pyrrolidinone (NMP) to the negative electrode active material,
  • PVdF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidinone
  • the negative electrode active material layer slurry obtained by applying the agitated and kneaded slurry for the negative electrode current collector 31 to heat drying is used.
  • the negative electrode active material include graphite (graphite), lithium metal, tin, and titanium. Lithium acid or the like
  • the separator 13 is not particularly limited as long as the separator 13 is disposed between the positive electrode 11 and the negative electrode 12 and can prevent a leakage current between the positive electrode 11 and the negative electrode 12.
  • a polyolefin microporous film is used.
  • the nonaqueous electrolytic solution 7 may be a solution containing an electrolyte involved in the battery reaction of the secondary battery 1 and is not particularly limited.
  • a lithium salt is dissolved in an organic solvent.
  • An electrolyte solution is preferably used.
  • olivine type lithium composite compound particles having a carbonaceous film formed on the surface, a conductive agent such as acetylene black, a binder such as polyvinylidene fluoride (PVdF), and N-methyl-2-pyrrolidinone (NMP)
  • PVdF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidinone
  • the coverage of the carbonaceous film on the surface of the olivine-type lithium composite compound particles can be maintained at 95% or more.
  • the following effects can be achieved. (1) In the case where the surface of the olivine type lithium composite compound particles has a carbonaceous film formed with a surface coverage of almost 100%, the carbonaceous film in the primary particle state is controlled by controlling the stirring and kneading time. Can prevent damage. (2) The surface of the primary particles of the olivine type lithium composite compound is formed with a carbonaceous film having a predetermined thickness at a surface coverage of almost 100%, and the primary particles are bonded to each other through the carbonaceous film.
  • the carbonaceous film of the primary particles on the surface of the secondary particles is damaged by controlling the stirring and kneading time, and the secondary after pressing It is possible to suppress a decrease in the coating rate of the carbonaceous film of the primary particles outside the aggregate when the particles are collapsed to be in the form of discrete primary particles.
  • this positive electrode active material layer slurry is applied to a uniform thickness on a positive electrode current collector using a roll coater or the like, and dried by heating. Thereby, a positive electrode active material layer is formed on the positive electrode current collector.
  • This positive electrode active material layer may be formed only on one side of the positive electrode current collector or on both sides.
  • the positive electrode current collector on which the positive electrode active material layer is formed is pressurized using a roll press or the like, and the thickness of the positive electrode active material layer is set to an appropriate thickness, whereby the positive electrode is completed.
  • the positive electrode active material layer after drying can be pressed to obtain good packing density and porosity as an electrode for a non-aqueous secondary battery.
  • the secondary particles are collapsed into discrete primary particles, and a positive electrode active material layer having a high packing density is formed.
  • the positive electrode 11 and the negative electrode 12 are alternately arranged via the separator 13 to assemble the power generation element 4, and the power generation element 4 and the nonaqueous electrolyte solution 7 are stored in the case 2.
  • the positive electrode connection terminal 5 and the positive electrode external connection terminal 8 are connected to the positive electrode 11, the negative electrode connection terminal 6 and the negative electrode external connection terminal 9 are connected to the negative electrode 12, and the positive electrode external connection terminal 8 and the negative electrode external connection terminal 9 are connected to the lid member 3.
  • the battery module of the present embodiment is completed by connecting a plurality of the secondary batteries 1 of the present embodiment in series or in parallel.
  • the positive electrode for a secondary battery of this embodiment since the coverage of the carbonaceous film with respect to the surface area of the olivine-type lithium composite compound particles having a carbonaceous film formed on the surface is 95% or more, the olivine-type lithium The lithium ion intake / release rate in the composite compound can be increased, and the charge / discharge rate of the positive electrode can be increased. As a result, the charge / discharge rate of a secondary battery using the positive electrode for a secondary battery can be increased.
  • the positive electrode of the present embodiment since the positive electrode of the present embodiment is provided, the charge / discharge rate of the positive electrode can be improved. Therefore, the charge / discharge characteristics of the secondary battery can be improved.
  • the charge / discharge characteristics of the battery module can be improved.
  • FIG. 5A and 5B are diagrams showing a secondary battery according to an embodiment of the present invention.
  • FIG. 5A is a schematic sectional view
  • FIG. 5B is a schematic top view
  • FIG. 5C is a case.
  • FIG. 5 (d) is a cross-sectional view of the case.
  • FIG. 6 is a diagram illustrating a power generation element included in the secondary battery of the present embodiment, in which FIG. 6A is a schematic plan view of the positive electrode sheet, FIG. 6B is a schematic plan view of the negative electrode sheet, and FIG. (C) is the schematic which shows the internal structure of an electric power generation element.
  • the secondary battery 120 of this embodiment has a configuration in which the power generation element 101 having a stack structure is housed in a case 103 having an opening 118 and the opening 118 is sealed by a lid member 104.
  • a positive electrode connection terminal 106, a negative electrode connection terminal 107, a positive electrode support member 110, a negative electrode support member 111, and an electrolytic solution are enclosed.
  • the positive electrode connection terminal 106 is connected to one end in the length direction of the power generation element 101, and the negative electrode connection terminal 107 is connected to the other end.
  • the positive electrode connection terminal 106 and the negative electrode connection terminal 107 are each fixed to the lid member 104.
  • the positive electrode support member 110 is fixed to the end portion of the positive electrode connection terminal 106 on the bottom wall side of the case 103, and the negative electrode support member 111 is fixed to the end portion of the negative electrode connection terminal 107 on the bottom wall side of the case 103.
  • the positive electrode support member 110 and the negative electrode support member 111 are in contact with the inner surface of the bottom wall of the case 103 directly or via another member.
  • the lid member 104 has substantially the same size as the opening 118 of the case 103.
  • the depth D of the case 103 and the length L when the power generation element 101 is attached to the lid member 104 are substantially the same.
  • a positive electrode connection terminal 106 and a negative electrode connection terminal 107 are fixed inside the case 103 of the lid member 104.
  • a positive external connection terminal 114 and a negative external connection terminal 115 are fixed to the outer surface side of the lid member 104.
  • the positive external connection terminal 114 is electrically connected to the positive connection terminal 106.
  • the negative external connection terminal 115 is electrically connected to the negative connection terminal 107.
  • the edge of the lid member 104 and the edge of the opening 118 of the case 103 are airtightly joined portions 117. Thereby, the electrolyte solution of the secondary battery 120 is enclosed in the case 103.
  • the formation method of the junction part 117 is not specifically limited, For example, laser welding, resistance welding, ultrasonic welding, adhesion
  • the power generation element 101 includes positive electrode sheets 130 and negative electrode sheets 131 that are alternately stacked with separators 133 interposed therebetween.
  • the positive electrode sheet 130 includes a positive electrode current collector 122 connected to the positive electrode connection terminal 106 and a positive electrode active material layer 125 formed on the positive electrode current collector 122.
  • the negative electrode sheet 131 includes a negative electrode current collector 123 connected to the negative electrode connection terminal 107 and a negative electrode active material layer 126 formed on the negative electrode current collector 123.
  • the separator 133 is connected to the positive electrode current collector 122 and the negative electrode current collector in order to prevent leakage current between the positive electrode current collector 122 and the negative electrode current collector 123. You may extend to the vicinity of the part which bundles 123 each.
  • a plurality of power generation elements 101 may be disposed in the case 103.
  • a plurality of power generation elements 101 can be connected to one positive electrode connection terminal 106 and one negative electrode connection terminal 107.
  • the positive electrode sheet 130 includes a positive electrode current collector 122 and a positive electrode active material layer 125.
  • the material, shape, and size of the positive electrode current collector 122 are not particularly limited as long as the positive electrode current collector 122 has electrical conductivity and can hold the positive electrode active material layer 125 on one surface or both surfaces.
  • the positive electrode current collector 122 can be made of, for example, a metal foil, and is preferably an aluminum foil.
  • the positive electrode active material layer 125 includes positive electrode active material particles, a conductive material, and a binder.
  • particles of olivine type lithium iron phosphate whose surface is coated with carbon or an aggregate thereof is used as the positive electrode active material.
  • Olivine type lithium iron phosphate has the general formula Li x FePO 4 (however, 0 ⁇ x ⁇ 2) is represented by.
  • As the carbon coat for coating the olivine-type lithium iron phosphate particles amorphous carbon obtained by firing a carbon precursor such as pitch under a condition of 1000 ° C. or less under an inert atmosphere can be used.
  • the olivine-type lithium iron phosphate particles constituting the positive electrode active material layer 125 preferably have a carbon coat coverage area of 95% or more on the surface, and the closer to 100%, the more desirable.
  • the positive electrode active material is not limited to olivine-type lithium iron phosphate, but is represented by the general formula Li x MPO 4 (M is at least one element selected from Co, Ni, Mn, and Fe, 0 ⁇ x ⁇ 2
  • the olivine type lithium composite compound represented by this can be used. That is, particles of an olivine-type lithium composite compound whose surface is coated with carbon or an aggregate thereof can be used.
  • the binder is used to bind the positive electrode current collector 122, the positive electrode active material particles, and the conductive material.
  • the binder include organic solvent binders such as polyvinylidene fluoride (PVdF) and polytetrafluoroethylene (PTFE) used by dissolving in an organic solvent, styrene / butadiene rubber (SBR) dispersible in water, methyl (meta) ) Acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (meth) acrylate and other ethylenically unsaturated carboxylic acid esters, acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic Examples thereof include ethylenically unsaturated carboxylic acids such as acids, and water-based polymers such as carboxymethylcellulose (CMC), and these can also be used as a mixture of two or more
  • the solvent which dissolves a binder suitably according to the kind of binder.
  • one or more selected from dimethylformamide, N-methylpyrrolidone, isopropanol, toluene, water and the like may be used.
  • the conductive material used for the positive electrode active material layer 125 one or more carbons selected from acetylene black, furnace black, and carbon black can be used.
  • the material ratio of the positive electrode active material, the conductive material, and the binder in the positive electrode active material layer 125 of this embodiment is 4 to 6 parts by mass of the conductive material and 4 to 8 parts by mass of the binder with respect to 100 parts by mass of the positive electrode active material. Scope.
  • the amount of the conductive material is less than 4 parts by mass, the conductive network due to carbon in the positive electrode is not formed cleanly, and the resistance increases.
  • the amount of the conductive material exceeds 6 parts by mass, the conductivity does not change even if the addition amount is further increased. Since the conductive material does not contribute to the battery reaction, too much conductive material causes a decrease in the capacity per weight of the positive electrode.
  • the amount of the binder exceeds 8 parts by mass, the binding property of the positive electrode active material layer 125 is increased while the conductivity is decreased. Further, when the amount of the binder is less than 4 parts by mass, it is difficult to form the positive electrode active material layer 125 on the positive electrode current collector 122 because the binding force of the positive electrode active material layer 125 is too weak. .
  • the positive electrode active material layer 125 preferably has a filling density of 0.90 g / cm 3 or more. As shown in the relationship between the packing density and the electrode resistance in Table 1 below, when the packing density is 0.90 g / cm 3 or more, the resistance of the positive electrode sheet 130 becomes a sufficiently small value, but the packing density is 0.00. When it becomes less than 90 g / cm 3 , the resistance of the positive electrode sheet 130 increases rapidly.
  • the “electrode resistance” is an AC resistance value.
  • the negative electrode sheet 131 includes a negative electrode current collector 123 and a negative electrode active material layer 126.
  • the material, shape, and size of the negative electrode current collector 123 are not particularly limited as long as they have electrical conductivity and can hold the negative electrode active material layer 126 on one surface or both surfaces.
  • the negative electrode current collector 123 can be composed of, for example, a metal foil, and is preferably a copper foil.
  • the negative electrode active material layer 126 includes at least a negative electrode active material.
  • the negative electrode active material for example, graphite, lithium metal, tin, lithium titanate, or the like can be used. Among these, it is preferable to use graphite.
  • a binder may be added to the negative electrode active material layer 126 as necessary.
  • the binder PVdF, SBR, acrylic polymer, or the like can be used.
  • the separator 133 is disposed between the positive electrode sheet 130 and the negative electrode sheet 131, and prevents leakage current from flowing between the positive electrode sheet 130 and the negative electrode sheet 131.
  • the separator 133 may be configured to hold the electrolytic solution.
  • the separator 133 can be configured by a microporous film made of polyolefin such as polyethylene, polypropylene, polytetrafluoroethylene, and the like.
  • the electrolytic solution is not particularly limited, and a commonly used one can be used.
  • a nonaqueous electrolytic solution obtained by dissolving an electrolyte in a nonaqueous solvent or a gel polymer electrolyte obtained by impregnating the nonaqueous electrolytic solution with a polymer such as polyethylene oxide or polyacrylonitrile can be used.
  • non-aqueous solvent for the non-aqueous electrolyte examples include ethers, ketones, lactones, sulfolane compounds, esters, and carbonates. Typical examples of these include tetrahydrofuran, 2-methyl-tetrahydrofuran, ⁇ -butyllactone, acetonitrile, dimethoxyethane, diethyl carbonate, propylene carbonate, ethylene carbonate, dimethyl sulfoxide, sulfolane, 3-methyl-sulfolane, ethyl acetate, propionic acid. Examples thereof include methyl and the like, and mixed solvents thereof.
  • the electrolyte constituting the non-aqueous electrolyte is not particularly limited, but LiBF 4 , LiAsF 6 , LiPF 6 , LiClO 4 , CF 3 SO 3 Li, LiBOB (lithium-bis (oxalato) borate), etc. should be used.
  • LiBF 4 , LiClO 4 , LiPF 6 , LiBOB and the like are preferable from the viewpoints of battery characteristics and safety in handling.
  • additives can be added to the non-aqueous electrolyte as necessary.
  • the additive is preferably used in combination of one or more selected from cyclic carbonates having an unsaturated bond or a halogen atom and S ⁇ O bond-containing compounds.
  • Examples of the cyclic carbonate having an unsaturated bond or a halogen atom include vinylene carbonate, fluoroethylene carbonate, and vinylethylene carbonate.
  • Examples of the S ⁇ O bond compound include 1,3-propane sultone (PS), 1,3-propene sultone (PRS), 1,4-butanediol dimethane sulfonate, divinyl sulfone, 2-propynyl methane sulfonate, Pentafluoromethanesulfonate, ethylene sulfite, vinyl ethylene sulfite, vinylene sulfite, methyl 2-propynyl sulfite, ethyl 2-propynyl sulfite, dipropynyl sulfite, cyclohexyl sulfite, ethylene sulfate, and the like.
  • 1,3-propane sultone, divinyl sulfone, 1,4-butanediol methane sulfonate, and ethylene sulfite are preferred. These compounds may be used alone or in combination of two or more.
  • the positive electrode active material layer 125 constituting the positive electrode sheet 130 includes a conductive material of 4 parts by mass or more and 6 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. 4 parts by mass or more and 8 parts by mass or less of a binder.
  • the secondary battery 120 of this embodiment can also comprise a battery module by connecting two or more in series or in parallel using a connection terminal etc.
  • a battery module by connecting two or more in series or in parallel using a connection terminal etc.
  • it can be set as the form which can be used conveniently in the industrial field
  • the positive electrode sheet includes a positive electrode active material (carbon-coated olivine-type lithium iron phosphate particles or aggregates thereof), a conductive material (for example, acetylene black), a binder (for example, PVdF), and a solvent (for example, N-methylpyrrolidone). ) Is stirred and kneaded to prepare a positive electrode active material layer forming slurry, and the positive electrode active material layer forming slurry is applied onto a positive electrode current collector 122 (for example, an aluminum foil) and then dried and solidified.
  • a positive electrode active material carbon-coated olivine-type lithium iron phosphate particles or aggregates thereof
  • a conductive material for example, acetylene black
  • a binder for example, PVdF
  • a solvent for example, N-methylpyrrolidone
  • the step of forming the positive electrode active material layer 125 on one or both surfaces of the positive electrode current collector 122, and the positive electrode current collector 122 on which the positive electrode active material layer 125 is formed are pressed by a roll press or the like, thereby forming the positive electrode active material layer And a step of adjusting the thickness of 125.
  • the step of preparing the positive electrode active material layer forming slurry energy such as excessive mechanical impact is not applied to the positive electrode active material during the kneading period after the positive electrode active material is charged. It is preferable. Specifically, it is preferable to shorten the length of the kneading time as long as a uniform kneaded product is obtained. Thereby, the load to the positive electrode active material can be reduced, and the carbon coat on the surface of the lithium iron phosphate particles can be prevented from partially falling off. As a result, a positive electrode active material layer including a positive electrode active material made of olivine-type lithium iron phosphate particles on which a carbon coat is formed with a high coating area ratio can be formed.
  • the load of the carbon coat of the positive electrode active material can be reduced, and therefore the positive electrode active material layer while maintaining a high coverage area of the carbon coat on the surface of the olivine-type lithium iron phosphate particles 125 can be formed, and the low-resistance positive electrode sheet 130 can be manufactured. Since the olivine-type lithium iron phosphate itself does not have conductivity, a carbon coat is formed on the surface of the particles in order to impart conductivity.
  • a positive electrode active material when a large number of drop-off portions (portions where the olivine type lithium iron phosphate is exposed) exist in the carbon coat on the particle surface, it is adjacent to a reaction site of Li ions of the olivine type lithium iron phosphate. It is considered that a portion where the electron transfer site in the olivine skeleton is not covered with carbon is formed, and it is difficult for Li ions to be taken in and released from the portion. Therefore, when the carbon coating area ratio of the olivine type lithium iron phosphate particles is lowered, it is considered that the rate of taking up and releasing Li ions is lowered and the overvoltage at the positive electrode is increased.
  • the load of the carbon coat of the olivine-type lithium iron phosphate particles can be reduced, and the coverage area of the carbon coat in the positive electrode active material in the positive electrode active material layer 125
  • the rate can be 95% or more.
  • the positive electrode active material when a positive electrode active material having a carbon coat covering area ratio of approximately 100% is used as the positive electrode active material (raw material) used for preparing the slurry for forming the positive electrode active material layer, the positive electrode active material
  • the carbon covered area ratio of the olivine type lithium iron phosphate particles in the state where the layer 125 was formed could be increased to almost 100%, and particularly good results were obtained. This is because most of the electron transfer sites in the olivine skeleton adjacent to the Li ion reaction site of olivine-type lithium iron phosphate are coated with carbon. This is thought to be because it is no longer obstructed.
  • the coverage area ratio of the carbon coat of the positive electrode active material can be measured by observing the particles of the positive electrode active material using SEM (scanning electron microscope) and EDX (energy dispersive X-ray spectroscopy). .
  • Preparation of the observation sample from the positive electrode sheet 130 is performed by immersing a part of the positive electrode active material layer 125 in a solvent to dissolve the binder, or by removing particles of the positive electrode active material, or a part of the positive electrode active material layer 125.
  • the method can be carried out by collapsing and taking out the particles of the positive electrode active material.
  • the coating state of carbon (carbon film thickness and film thickness distribution) can be confirmed. Further, by mapping the surface of the positive electrode active material particles by EDX, the carbon distribution state on the surface of the olivine type lithium iron phosphate particles can be obtained, and the covering area ratio can be calculated.
  • Example 1 Aggregation of LiFePO 4 particles (manufactured by Sumitomo Osaka Cement Co., Ltd.) with a primary particle diameter of 100% as the positive electrode active material and a primary particle size of 0.1-2 ⁇ m, and acetylene black as the conductive agent are bound.
  • Polyvinylidene fluoride (PVdF) as an agent was weighed so as to be 100: 5: 7 (parts by mass), and acetylene black and polyvinylidene fluoride (PVdF) were mixed with N-methyl-2-pyrrolidinone (NMP) in a kneader. The mixture was stirred and kneaded. Then, the resulting mixture above LiFePO 4 particles were charged into, for 90 minutes kneading the rotational speed of the kneading machine as 100 rpm, to prepare a slurry.
  • NMP N-methyl-2-pyrrolidinone
  • this slurry was applied on an aluminum foil using a coater, dried, and then pressed using a press to form a positive electrode active material layer having a thickness of 100 ⁇ m on the aluminum foil. It was.
  • a negative electrode is produced using graphite as a negative electrode active material, and a plurality of negative electrodes and the above positive electrodes are alternately arranged via separators to assemble a power generation element.
  • the power generation element and the non-aqueous electrolyte are placed in the case.
  • the secondary battery of Example 1 was fabricated by storing and performing electrical wiring.
  • Example 2 A positive electrode and a secondary battery of Example 2 were produced in the same manner as in Example 1 except that the kneading machine was rotated at 100 rpm for 150 minutes.
  • Comparative Example 1 A positive electrode and a secondary battery of Comparative Example 1 were produced in the same manner as in Example 1 except that the kneading machine was kneaded for 200 minutes at a rotation speed of 100 rpm.
  • the coverage of the carbonaceous film was 98 to 100% in Example 1, 95 to 98% in Example 2, and 80 to 90% in Comparative Example 1.
  • the shorter kneading time was in the positive electrode. It was found that the coverage of the carbonaceous film of the particles of the particles increased.
  • the capacity of the positive electrode is increased because of the high coverage of the carbonaceous film, i.e., the rate of lithium ion intake / release of the positive electrode is increased, and the overvoltage during the charge / discharge reaction of the positive electrode is increased. This is considered to be due to the decrease in electrode resistance.
  • the network formed by the carbonaceous film between the adjacent positive electrode active material particles is connected to a network without being cut off, so that a conductive path in the positive electrode is reliably formed, and resistance due to the connection between the positive electrode active material particles is further increased. It is thought that it decreased.
  • the charging speed of the positive electrode is improved, and further, side reactions unrelated to the original battery reaction such as the decomposition reaction of the electrolytic solution can be prevented. Therefore, the safety in the overcharge test etc. of the positive electrode can be prevented. And the life characteristics could be improved.
  • Example 3 A positive electrode sheet was prepared using the following raw materials.
  • Cathode active material LCP420 TU-4 (trade name: manufactured by Sumitomo Osaka Cement) Material ratio of positive electrode active material layer (parts by mass)
  • the surface of primary particles of olivine-type lithium iron phosphate is carbon-coated with a covering area ratio of almost 100%, and primary particles are bonded to each other through the carbon coat to form secondary particles. It is an aggregate of olivine-type lithium iron phosphate particles.
  • Acetylene black and PVdF were placed in N-methylpyrrolidone, and after stirring and kneading, the positive electrode active material was put into the mixture, and kneading was performed for 90 minutes at a rotational speed of a kneader of 100 rpm to prepare a slurry.
  • the slurry is applied and dried on an aluminum foil as a positive electrode current collector using a coater, and the positive electrode active material layer thus formed is pressed to form a positive electrode active material layer having a thickness of 100 ⁇ m on one side and a packing density of 0.95 g / cm 3.
  • a positive electrode sheet on which was formed was produced.
  • Example 4 A positive electrode sheet was prepared under the same conditions as in Example 3, except that only the kneading time for preparing the slurry was changed. Acetylene black and PVdF were put into N-methylpyrrolidone, stirred and kneaded, then the positive electrode active material was put into the mixture, and kneaded at a rotation speed of 100 rpm for 150 minutes to prepare a slurry. The above slurry is applied and dried on an aluminum foil using a coater, and the resulting positive electrode active material layer is pressed to form a positive electrode active material layer having a thickness of 100 ⁇ m on one side and a packing density of 0.95 g / cm 3. Was made.
  • Example 5 A positive electrode sheet was prepared under the same conditions as in Example 3, except that only the type of binder used when preparing the slurry was changed.
  • Acetylene black, modified PMMA, and CMC are put into N-methylpyrrolidone, and after stirring and kneading, the positive electrode active material is put into the mixture, and kneading is carried out for 90 minutes at a rotational speed of 100 rpm of the kneader.
  • a slurry was prepared.
  • the above slurry is applied and dried on an aluminum foil using a coater, and the resulting positive electrode active material layer is pressed to form a positive electrode active material layer having a thickness of 100 ⁇ m on one side and a packing density of 0.95 g / cm 3. Was made.
  • Example 2 A positive electrode sheet was prepared under the same conditions as in Example 3, except that only the kneading time for preparing the slurry was changed. Acetylene black and PVdF were put into N-methylpyrrolidone, stirred and kneaded, and then the positive electrode active material was put into the mixture, and kneaded at a rotation speed of 100 rpm for 200 minutes to prepare a slurry. The above slurry is applied and dried on an aluminum foil using a coater, and the resulting positive electrode active material layer is pressed to form a positive electrode active material layer having a thickness of 100 ⁇ m on one side and a packing density of 0.95 g / cm 3. Was made.
  • Example 3 A positive electrode sheet was produced under the same conditions as in Example 3, except that only the content of the conductive material in preparing the slurry was changed.
  • Acetylene black and PVdF were placed in N-methylpyrrolidone, and after stirring and kneading, the positive electrode active material was put into the mixture, and kneading was performed for 90 minutes at a rotational speed of a kneader of 100 rpm to prepare a slurry.
  • the above slurry is applied and dried on an aluminum foil using a coater, and the resulting positive electrode active material layer is pressed to form a positive electrode active material layer having a thickness of 100 ⁇ m on one side and a packing density of 0.95 g / cm 3. Was made.
  • Example 4 A positive electrode sheet was produced under the same conditions as in Example 3, except that only the binder content in preparing the slurry was changed.
  • Acetylene black and PVdF were placed in N-methylpyrrolidone, and after stirring and kneading, the positive electrode active material was put into the mixture, and kneading was performed for 90 minutes at a rotational speed of a kneader of 100 rpm to prepare a slurry.
  • the above slurry is applied and dried on an aluminum foil using a coater, and the resulting positive electrode active material layer is pressed to form a positive electrode active material layer having a thickness of 100 ⁇ m on one side and a packing density of 0.95 g / cm 3. Was made.
  • Example 5 A positive electrode sheet was produced under the same conditions as in Example 3, except that only the binder content in preparing the slurry was changed.
  • Acetylene black and PVdF were placed in N-methylpyrrolidone, and after stirring and kneading, the positive electrode active material was put into the mixture, and kneading was performed for 90 minutes at a rotational speed of a kneader of 100 rpm to prepare a slurry.
  • the above slurry is applied and dried on an aluminum foil using a coater, and the resulting positive electrode active material layer is pressed to form a positive electrode active material layer having a thickness of 100 ⁇ m on one side and a packing density of 0.95 g / cm 3. Was made.
  • the positive electrode active material particles were taken out from the positive electrode sheets of Examples 3 and 4 and Comparative Example 2 and subjected to cross-sectional SEM measurement and EDX measurement to calculate the coverage area of the carbon coat on the surface of the positive electrode active material particles.
  • the carbon coat coverage area ratio of each sample is as follows.
  • Example 3 (kneading time 90 minutes): 98 to 100%
  • Example 4 (kneading time 150 minutes): 95-98%
  • Comparative Example 2 (kneading time 200 minutes): 80 to 90%
  • FIG. 7 is a graph showing the relationship between the charging time and capacity of batteries produced using the positive electrode sheets of Examples 3 and 4 and Comparative Example 3.
  • the battery used in the measurement whose results are shown in FIG. 7 is prepared by separately preparing a negative electrode sheet using graphite as a negative electrode active material, and laminating a plurality of positive electrode sheets and negative electrode sheets with a separator interposed therebetween, so that a 50 Ah nonaqueous electrolyte solution is obtained. A secondary battery is produced.
  • the batteries using the positive electrode sheets of Examples 3 and 4 were faster to be fully charged (50 Ah) than the battery using the positive electrode sheet of Comparative Example 3. This is considered to be a result in which the excellent electrode characteristics of Examples 3 and 4 described above are reflected in the battery.
  • the reason why the capacity of the positive electrode is increased is that the coverage of the carbon coat is high, that is, the Li intake / release speed in the positive electrode is increased, so that the overvoltage during the charge / discharge reaction of the positive electrode is reduced and the electrode resistance is low. This is thought to be due to that. Moreover, since the network by carbon between adjacent positive electrode active material particles is connected without being cut, it is also considered that the conductive path in the positive electrode is firmly formed and the resistance accompanying the connection between the positive electrode active material particles is further reduced. .
  • Binder ratio Samples of a plurality of positive electrode sheets were prepared by changing the binder in the range of 3 to 9 parts by mass with respect to 100 parts by mass of the positive electrode active material, and each AC resistance was measured. Seven types of samples were prepared in the same manner as the sample of Example 3 except for the ratio of the binder. Table 4 shows the results of measuring the AC resistance for each sample. As shown in Table 4, when the binder ratio was less than 3 parts by mass, sufficient binding force was not obtained in the positive electrode active material layer, and the positive electrode active material layer could not be held on the positive electrode current collector. On the other hand, when the proportion of the binder exceeds 8 parts by mass, the AC resistance of the positive electrode sheet is rapidly increased.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention since the coverage of the carbonaceous film with respect to the surface area of the olivine-type lithium composite compound particles having a carbonaceous film formed on the surface is 95% or more, The lithium ion intake / release rate in the olivine-type lithium composite compound can be increased, and the charge / discharge rate of the positive electrode can be increased. As a result, the charge / discharge rate of a secondary battery using the positive electrode for a non-aqueous electrolyte secondary battery can be increased.
  • the non-aqueous electrolyte secondary battery of the present invention since the positive electrode for the non-aqueous electrolyte secondary battery of the present invention is provided, the charge / discharge rate of the positive electrode can be improved. Therefore, the charge / discharge characteristics of the secondary battery can be improved. According to the battery module of the present invention, since the non-aqueous electrolyte secondary battery of the present invention is provided, the charge / discharge characteristics of the battery module can be improved. Further, according to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery that has a low positive electrode resistance and can be charged at a low voltage. From the above, the present invention is extremely useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明により、オリビン型リチウム複合化合物粒子におけるリチウムイオンの取り入れ・放出速度を高めることにより、正極の充放電速度を高め、よって、二次電池の充放電速度を高めた非水電解液二次電池用正極、及び、この非水電解液二次電池用正極を備えた非水電解液二次電池、並びに、この非水電解液二次電池を備えた電池モジュールが提供される。本発明の非水電解液二次電池用正極は、表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子を正極活物質として含有してなる非水電解液二次電池用正極において、オリビン型リチウム複合化合物粒子の表面積に対する炭素質被膜の被覆率は95%以上であり、この非水電解液二次電池用正極におけるオリビン型リチウム複合化合物粒子の充填密度は0.90g/cm以上かつ1.09g/cm以下であることが好ましい。

Description

非水電解液二次電池用正極及び非水電解液二次電池並びに電池モジュール
 本発明は、非水電解液二次電池用正極及び非水電解液二次電池並びに電池モジュールに関するものである。
 本願は、2010年12月17日に、日本に出願された特願2010-282433号、及び2010年12月17日に、日本に出願された特願2010-282434号に基づき優先権を主張し、その内容をここに援用する。
 近年、小型化、軽量化、高容量化が期待される電池として、オリビン型リチウム複合化合物粒子を正極活物質として含む非水電解液二次電池が提案され、実用に供されている(例えば、特許文献1、2参照)。
 この非水電解液二次電池は、オリビン構造を有するリチウム含有リン酸化合物を用いた正極と、炭素系材料等のリチウムイオンを可逆的に脱挿入可能な性質を有するリチウム含有金属酸化物を用いた負極と、非水系の電解質とにより構成されている。
 この正極は、表面が炭素質被膜により被覆された鉄リン酸リチウム(LiFePO)粒子等のオリビン型リチウム複合化合物粒子及びバインダー等を含む電極材料合剤を、集電体と称される金属箔の表面に塗布することにより形成されている。
 このような非水電解液二次電池は、従来の鉛電池、ニッケルカドミウム電池、ニッケル水素電池等の二次電池と比べて、軽量かつ小型であるとともに、高エネルギーを有しているので、携帯用電話機、ノート型パーソナルコンピューター等の携帯用電子機器の電源として用いられている。また、近年、非水電解液二次電池は、電気自動車、ハイブリッド自動車、電動工具等の高出力電源としても検討されており、これらの高出力電源として用いられる電池には、高速の充放電特性が求められている。
 また従来から、高出力、高エネルギー密度の二次電池として、非水電解液を用い、リチウムイオンの移動により充放電を行う二次電池が知られている。近年では、高温での安定性を向上させるために、リン酸鉄リチウム等のオリビン型リチウム含有リン酸塩を用いることが検討されている(例えば特許文献3参照)。
特開2009-48958号公報 特開2009-206085号公報 特開2007-265923号公報
 ところで、従来の非水電解液二次電池の正極材料においては、オリビン型リチウム複合化合物粒子の表面が炭素質被膜により十分に被覆されていないので、オリビン型リチウム複合化合物におけるリチウムイオンの取り入れ・放出速度が遅い、すなわち、電荷移動抵抗が高いために、正極の過電圧が高くなってしまうという問題点があった。
 正極の過電圧が高くなってしまった場合、充放電時における電極抵抗も高くなってしまい、その結果、二次電池の充放電速度が遅くなってしまい、充放電特性が低下するという問題点が生じることとなる。
 本発明は、上記の課題を解決するためになされたものであって、オリビン型リチウム複合化合物粒子におけるリチウムイオンの取り入れ・放出速度を高めることにより、正極の充放電速度を高め、よって、二次電池の充放電速度を高めた非水電解液二次電池用正極、及び、この非水電解液二次電池用正極を備えた非水電解液二次電池、並びに、この非水電解液二次電池を備えた電池モジュールを提供することを目的とする。
 一方、従来のオリビン型リチウム複合化合物を正極活物質として用いた二次電池は、正極の抵抗が高いために、理論値である3.35V付近で充電しても100%SOCは得られなかった。そのため、4.0V以上の高い電圧を加えなければならなかった。しかし、4.0V以上で充電を行うと、電極上で電解液の分解等の電池反応には寄与しない反応が起こることとなり、電池の耐久性や安定性に影響を及ぼす可能性があった。
 本発明はまた、上記従来技術の問題点に鑑み成されたものであって、オリビン型リチウム複合化合物を用いた正極の抵抗を下げ、低電圧での充電を可能とした非水電解液二次電池を提供することを目的としている。
 本発明者等は、上記課題を解決するために鋭意研究を行なった結果、表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子を正極活物質として含有してなる非水電解液二次電池用正極において、このオリビン型リチウム複合化合物粒子の表面積に対する炭素質被膜の被覆率を95%以上とすれば、オリビン型リチウム複合化合物におけるリチウムイオンの取り入れ・放出速度を高めることができ、よって、正極の充放電速度を高めることができ、その結果、二次電池の充放電速度を高めることができることを見出し、本発明を完成するに至った。
 すなわち、本発明の非水電解液二次電池用正極は、表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子を正極活物質として含有してなる非水電解液二次電池用正極において、前記オリビン型リチウム複合化合物粒子の表面積に対する前記炭素質被膜の被覆率は95%以上であることを特徴とする。
 前記非水電解液二次電池用正極における前記オリビン型リチウム複合化合物粒子の充填密度は、0.90g/cm以上かつ1.09g/cm以下であることが好ましい。
 本発明の非水電解液二次電池は、本発明の非水電解液二次電池用正極を備えたことを特徴とする。
 本発明の電池モジュールは、本発明の非水電解液二次電池を備えたことを特徴とする。
 また本発明は、上記課題を解決するために、以下の構成を採用した。
 カーボンコートされたオリビン型リチウム複合化合物を正極活物質として含む正極を用いた非水電解液二次電池において、前記正極が、前記正極活物質100質量部に対して4質量部以上6質量部以下の導電材と、4質量部以上8質量部以下のバインダーとを含む正極活物質層を有し、カーボンコートされたオリビン型リチウム複合化合物粒子のカーボン被覆面積率が95%以上である、非水電解液二次電池。
 本発明の非水電解液二次電池用正極によれば、表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子の、その表面積に対する炭素質被膜の被覆率を95%以上としたので、オリビン型リチウム複合化合物におけるリチウムイオンの取り入れ・放出速度を高めることができ、正極の充放電速度を高めることができる。その結果、この非水電解液二次電池用正極を用いた二次電池の充放電速度を高めることができる。
 本発明の非水電解液二次電池によれば、本発明の非水電解液二次電池用正極を備えたので、正極の充放電速度を向上させることができる。したがって、二次電池の充放電特性を向上させることができる。
 本発明の電池モジュールによれば、本発明の非水電解液二次電池を備えたので、電池モジュールの充放電特性を向上させることができる。
 また本発明によれば、正極の抵抗が低く、低電圧の充電が可能な非水電解液二次電池を提供することができる。
本発明の一実施形態の非水電解液二次電池の構成を示す縦方向の概略断面図である。 本発明の一実施形態の非水電解液二次電池の構成を示す横方向の概略断面図である。 本発明の一実施形態の非水電解液二次電池の発電要素を示す斜視図であり、(a)は正極を、(b)は負極を、(c)は正極、負極及びセパレータを配置した状態を、それぞれ示す。 本発明の実施例1、2及び比較例1の充放電特性を示す図である。 本発明の一実施の形態である二次電池を示す図である。 実施形態の二次電池に含まれる発電要素を示す図である。 各サンプルの充電時間と容量との関係を示すグラフである。
 本発明の第一の態様である、非水電解液二次電池用正極及び非水電解液二次電池並びに電池モジュールを実施するための形態について説明する。
 なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
 図1は、本発明の一実施形態の非水電解液二次電池用正極を備えた非水電解液二次電池(以下、単に「二次電池」とも称する)の構成を示す縦方向の概略断面図、図2は、同二次電池の構成を示す横方向の概略断面図である。
 本実施形態の二次電池1は、リチウムイオン二次電池と称されるもので、ステンレス鋼等の有底筒状のケース2の上部開口に蓋部材3が接合されて密閉構造とされ、このケース2内にスタック構造の発電要素4、正極接続端子5、負極接続端子6及び非水電解液7が収納され、これら正極接続端子5及び負極接続端子6は、蓋部材3に絶縁体(図示略)を介して固定され、正極接続端子5は正極外部接続端子8に、負極接続端子6は負極外部接続端子9に、それぞれ接続されている。
 発電要素4は、図3に示すように、シート状の正極11及びシート状の負極12がセパレータ13を介して交互に配置されている。
 正極11は、正極集電体21と、正極集電体21上に形成された正極活物質層22とを備えている。正極活物質層22は、正極集電体21の一方の面のみに形成されていてもよく、正極集電体21の両面に形成されていてもよい。これら正極集電体21は、正極活物質層22が形成されていない端部が束ねられて正極接続端子5に接続されている。
 正極集電体21は、電気伝導性を有し、表面に正極活物質層22を形成することができるものであればよく、特に限定されないが、例えば、金属箔が好ましく、この金属箔としては、アルミニウム箔が好ましい。
 正極活物質層22は、正極活物質に、アセチレンブラック等の導電剤、ポリフッ化ビニリデン(PVdF)等の結着剤、N-メチル-2-ピロリジノン(NMP)等の有機溶媒等を添加し、撹拌・混練した正極活物質層用スラリーを正極集電体21上に塗布し、加熱乾燥して得られたもので、正極活物質としては、表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子が好適に用いられる。
 この表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子としては、(1)オリビン型リチウム複合化合物粒子の表面がほぼ100%の表面被覆率にて炭素質被膜が形成されているもの、(2)オリビン型リチウム複合化合物の一次粒子の表面がほぼ100%の表面被覆率にて炭素質被膜が形成され、炭素質被膜を介して一次粒子同士が結合して2次粒子を形成しているオリビン型リチウム複合化合物粒子の凝集体、のいずれか一方、あるいは双方を用いることができる。
 オリビン型リチウム複合化合物粒子としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、チタン酸リチウム及びLiPO(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択される1種または2種以上、DはMg、Ca、S、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素の群から選択される1種または2種以上、0<x<2、0<y<1.5、0≦z<1.5)の群から選択される1種を主成分とする粒子が好ましい。
 ここで、Aについては、Co、Mn、Ni、Feが、Dについては、Mg、Ca、Sr、Ba、Ti、Zn、Alが、高い放電電位、豊富な資源量、安全性などの点から好ましい。
 ここで、希土類元素とは、ランタン系列であるLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの15元素のことである。
 このリチウム複合化合物の中でも、LiFePOが好ましい。
 このオリビン型リチウム複合化合物粒子の表面に形成された炭素質被膜は、ピッチ等の炭素前駆体が1000℃以下、不活性雰囲気下にて焼成することにより得られたもので、非晶質炭素(アモルファスカーボン)により構成されている。
 このオリビン型リチウム複合化合物粒子の表面積に対する炭素質被膜の被覆率は、95%以上であることが好ましい。
 ここで、炭素質被膜の被覆率が95%を下回ると、オリビン型リチウム複合化合物粒子の内部抵抗が高くなり、その結果、オリビン型リチウム複合化合物粒子におけるリチウムイオンの取り入れ・放出速度が低下し、正極の充放電速度が低下するので、好ましくない。
 この正極活物質層22中の表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子の充填密度は、0.90g/cm以上かつ1.09g/cm以下であることが好ましい。
 ここで、充填密度が0.90g/cmを下回ると、導電抵抗が高くなるので好ましくない。なお、充填密度の上限値である1.09g/cmは、オリビン型リチウム複合化合物粒子が正極に詰められる限界であり、充填密度をこの値以上に上げることは難しい。
充填密度が1.09g/cmの場合、正極活物質層25の導電抵抗は非晶質炭素(アモルファスカーボン)の抵抗に近似したものとなる。
 ここで、炭素質被膜の被覆率を95%以上とした理由についてさらに詳細に説明する。
 従来の表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子では、リチウム複合化合物におけるリチウムイオンの取り入れ・放出速度は、要求を充分に満足することができる程速いとはいえなかった。特に、充放電の末期においては、正極の導電抵抗が上昇する傾向があり、充放電速度が低下するという欠点があった。
 その理由としては、オリビン型リチウム複合化合物粒子の表面に炭素質被膜が存在しない部分が多く存在しているために、オリビン型リチウム複合化合物粒子のLiイオンの反応サイトに隣接するオリビン骨格における電子の授受サイトに炭素質被膜で被覆されていない部分ができてしまい、その部分のLiイオンの取り入れ・放出ができにくくなっていると考えられる。
 粒子表面に炭素質被膜が存在しない部分が多く存在している理由としては、そもそもオリビン型リチウム複合化合物粒子の表面の炭素質被膜の被覆率が低いものがあると考えられ、さらに、この表面被覆オリビン型リチウム複合化合物粒子を用いて正極活物質層用スラリーを作製する際の撹拌・混練により、粒子に過度の応力がかかり、炭素質被膜が剥離してしまう等が考えられる。
 一方、本願発明の表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子では、炭素質被膜の被覆率を95%以上としたので、オリビン型リチウム複合化合物粒子のLiイオンの反応サイトに隣接するオリビン骨格における電子の授受サイトに炭素質被膜で被覆されていない部分が少なくなり、Liイオンの取り入れ・放出が阻害される領域が減少するからと考えられる。
 特に、炭素質被膜の被覆率が100%の場合には、オリビン型リチウム複合化合物粒子のLiイオンの反応サイトに隣接するオリビン骨格における電子の授受サイトの殆どが炭素質被膜で被覆されることとなり、Liイオンの取り入れ・放出が阻害される虞が無くなるからと考えられる。
 負極12は、負極集電体31と、負極集電体31上に形成された負極活物質層32とを備えている。
 負極集電体31は、電気伝導性を有し、表面に負極活物質層32を形成することができるものであればよく、特に限定されないが、例えば、金属箔が好ましく、この金属箔としては、銅箔が好ましい。
 負極活物質層32は、負極活物質に、アセチレンブラック等の導電剤、ポリフッ化ビニリデン(PVdF)等の結着剤、N-メチル-2-ピロリジノン(NMP)等の有機溶媒等を添加し、撹拌・混練した負極活物質層用スラリーを負極集電体31上に塗布し、加熱乾燥して得られたもので、負極活物質としては、例えば、黒鉛(グラファイト)、リチウム金属、スズ、チタン酸リチウム等が好適に用いられる。
 セパレータ13は、正極11と負極12との間に配置されて、正極11と負極12との間の漏れ電流を防止することができればよく、特に限定されないが、例えば、ポリオレフィンの微多孔性フィルムが好適に用いられる。
 非水電解液7は、二次電池1の電池反応に関与する電解質を含んだ溶液であればよく、特に限定されないが、例えば、リチウムイオン二次電池の場合、リチウム塩を有機溶媒に溶解した電解質溶液が好適に用いられる。
 次に、本実施形態の正極の製造方法について説明する。
 まず、表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子と、アセチレンブラック等の導電剤と、ポリフッ化ビニリデン(PVdF)等の結着剤と、N-メチル-2-ピロリジノン(NMP)等の有機溶媒等を撹拌・混練し、正極活物質層用スラリーを作製する。
 この撹拌・混練の時間を制御することにより、オリビン型リチウム複合化合物粒子の表面における炭素質被膜の被覆率を95%以上に保持することができる。
 また、次のような効果を奏することもできる。
 (1)オリビン型リチウム複合化合物粒子の表面がほぼ100%の表面被覆率にて炭素質被膜が形成されているものの場合、撹拌・混練の時間を制御することにより、一次粒子状態の炭素質被膜の損傷を抑制できる。
 (2)オリビン型リチウム複合化合物の一次粒子の表面がほぼ100%の表面被覆率にて所定の厚みの炭素質被膜が形成され、炭素質被膜を介して一次粒子同士が結合して2次粒子を形成しているオリビン型リチウム複合化合物粒子の凝集体の場合、撹拌・混練の時間を制御することにより、2次粒子表面にある1次粒子の炭素質被膜が損傷し、プレス後の2次粒子が崩れてバラバラの1次粒子状になった際に、凝集体の外側の1次粒子の炭素質被膜のコート率が減ることを抑制できる。
 次いで、この正極活物質層用スラリーを、正極集電体上にロールコーター等を用いて均一な厚みに塗布し、加熱乾燥する。これにより、正極集電体上に正極活物質層が形成される。この正極活物質層は、正極集電体の片方の面のみに形成しても良く、両面に形成してもよい。
 次いで、正極活物質層が形成された正極集電体を、ロールプレス機等を用いて加圧し、正極活物質層の厚みを適切な厚みとすることで、正極が完成する。
 このロールプレス機による加圧の際に、乾燥後の正極活物質層はプレスされることで非水二次電池用の電極として良好な充填密度、空隙率を得ることができる。特に、上記(2)の凝集体は、2次粒子が崩れてバラバラの1次粒子状になり、充填密度が高い正極活物質層が形成されることとなる。
 本実施形態の二次電池1は、正極11及び負極12をセパレータ13を介して交互に配置して発電要素4を組み立て、この発電要素4及び非水電解液7をケース2内に収納し、正極11に正極接続端子5及び正極外部接続端子8を、負極12に負極接続端子6及び負極外部接続端子9を、それぞれ接続し、正極外部接続端子8及び負極外部接続端子9を蓋部材3に固定することにより、完成する。
 本実施形態の電池モジュールは、本実施形態の二次電池1を複数個、直列接続あるいは並列接続することにより、完成する。
 本実施形態の二次電池用正極によれば、表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子の、その表面積に対する炭素質被膜の被覆率を95%以上としたので、オリビン型リチウム複合化合物におけるリチウムイオンの取り入れ・放出速度を高めることができ、正極の充放電速度を高めることができる。その結果、この二次電池用正極を用いた二次電池の充放電速度を高めることができる。
 本実施形態の二次電池によれば、本実施形態の正極を備えたので、正極の充放電速度を向上させることができる。したがって、二次電池の充放電特性を向上させることができる。
 本実施形態の電池モジュールによれば、本実施形態の二次電池を備えたので、電池モジュールの充放電特性を向上させることができる。
 以下、本発明の第二の態様である、実施の形態について図面を参照しつつ説明する。図面や以下の記述中で示す構成は例示であり、本発明の範囲は図面や以下の記述に限定されるものではない。
 図5は、本発明の一実施の形態である二次電池を示す図であり、図5(a)は概略断面図、図5(b)は概略上面図、図5(c)はケースを除いた構成要素の概略断面図、図5(d)はケースの断面図である。
 図6は、本実施形態の二次電池に含まれる発電要素を示す図であり、図6(a)は正極シートの概略平面図、図6(b)は負極シートの概略平面図、図6(c)は発電要素の内部構造を示す概略図である。
 本実施形態の二次電池120は、開口118を有するケース103内にスタック構造の発電要素101を収容し、蓋部材104により開口118を封止した構成を備えている。ケース103内には、発電要素101とともに、正極接続端子106、負極接続端子107、正極支持部材110、負極支持部材111、及び電解液が封入されている。
 ケース103内において、発電要素101の長さ方向の一方の端部に正極接続端子106が接続され、他方の端部に負極接続端子107が接続されている。正極接続端子106と負極接続端子107はそれぞれ蓋部材104に固定されている。正極支持部材110は正極接続端子106のケース103底壁側の端部に固定され、負極支持部材111は負極接続端子107のケース103底壁側の端部に固定されている。正極支持部材110及び負極支持部材111は、ケース103底壁の内側面に直接又は他の部材を介して接触している。
 蓋部材104は、ケース103の開口118の大きさと実質的に同じ大きさを有する。本実施形態の場合、ケース103の深さDと、発電要素101を蓋部材104に取り付けたときの長さLがほぼ同一である。これにより、発電要素101等をケース103内に収容したときに正極支持部材110及び負極支持部材111がケース103の底面119に突き当てられた状態で、蓋部材104の縁と開口118の端縁とが側面視でほぼ一致するように配置される。
 蓋部材104のケース103の内側には正極接続端子106と負極接続端子107とが固定されている。蓋部材104の外面側には、正極外部接続端子114と負極外部接続端子115とが固定されている。正極外部接続端子114は正極接続端子106と電気的に接続されている。負極外部接続端子115は負極接続端子107と電気的に接続されている。
 蓋部材104の縁とケース103の開口118の端縁は、気密に接合された接合部117とされている。これにより、二次電池120の電解液をケース103内に封入している。接合部117の形成方法は、特に限定されないが、例えばレーザー溶接、抵抗溶接、超音波溶接、接着剤を用いた接着などを用いることができる。
 発電要素101は、図6に示すように、セパレータ133を介して交互に積層された正極シート130及び負極シート131を有する。正極シート130は、正極接続端子106に接続される正極集電体122と、正極集電体122上に形成された正極活物質層125とを有する。負極シート131は、負極接続端子107に接続される負極集電体123と、負極集電体123上に形成された負極活物質層126とを有する。
 発電要素101を構成する正極シート130及び負極シート131はそれぞれ複数であってもよい。すなわち、複数の正極シート130と複数の負極シート131がセパレータ133を介して交互に積層されていてもよい。この場合に、複数の正極シート130は、正極集電体122の正極活物質層125が形成されていない端部において束ねられ、正極接続端子106に接続される。同様に、複数の負極シート131は、負極集電体123の負極活物質層126が形成されていない端部において束ねられ、負極接続端子107に接続される。このように集電体の端部を束ねる場合に、正極集電体122と負極集電体123との間のリーク電流を防止するために、セパレータ133を正極集電体122と負極集電体123のそれぞれを束ねる部分の近傍にまで延設してもよい。
 また、ケース103内に複数の発電要素101を配設してもよい。この場合に、1つの正極接続端子106、負極接続端子107に複数の発電要素101を接続することができる。
 正極シート130は、正極集電体122と正極活物質層125とを有する。
 正極集電体122は、電気伝導性を有し、一面又は両面に正極活物質層125を保持することができれば、その材質や形状、大きさは特に限定されない。正極集電体は122は、例えば金属箔により構成することができ、好ましくはアルミニウム箔である。
 正極活物質層125は、正極活物質粒子と、導電材と、バインダーとを含む。
 本実施形態では、正極活物質として、表面にカーボンが被覆されたオリビン型リン酸鉄リチウムの粒子、又はその凝集体が用いられている。オリビン型リン酸鉄リチウムは、一般式LiFePO(ただし、0<x≦2)で表される。オリビン型リン酸鉄リチウム粒子を被覆するカーボンコートとしては、ピッチ等のカーボン前駆体を、1000℃以下、不活性雰囲気下の条件で焼成した非晶質カーボンを使用することができる。本実施形態において、正極活物質層125を構成するオリビン型リン酸鉄リチウム粒子は、その表面のカーボンコートの被覆面積率が95%以上であることが好ましく、100%に近いほど望ましい。
 なお、正極活物質としては、オリビン型リン酸鉄リチウムに限られず、一般式LiMPO(MはCo、Ni、Mn、Feから選択される少なくとも1種以上の元素、0<x≦2)で表されるオリビン型リチウム複合化合物を用いることができる。すなわち、表面にカーボンが被覆されたオリビン型リチウム複合化合物の粒子又はその凝集体を用いることができる。
 バインダーは、正極集電体122と正極活物質粒子と導電材とを結着させるために用いられる。バインダーとしては、有機溶剤に溶かして用いるポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)等の有機溶剤系バインダーのほか、水に分散可能であるスチレン・ブタジェンゴム(SBR)や、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステルや、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸や、カルボキシメチルセルロース(CMC)等の水系ポリマーを例示することができ、これらを二種以上混合して用いることもできる。バインダーを溶かす溶剤はバインダーの種類に応じて適宜選択すればよい。例えば、ジメチルホルムアミド、N-メチルピロリドン、イソプロパノール、トルエン、水などから選ばれる1種又は2種以上を用いればよい。
 正極活物質層125に用いる導電材としては、アセチレンブラック、ファーネスブラック、カーボンブラックから選ばれる1種又は2種以上のカーボンを用いることができる。
 本実施形態の正極活物質層125における正極活物質、導電材、バインダーの材料比は、正極活物質100質量部に対して、導電材は4~6質量部、バインダーは4~8質量部の範囲とされる。
 導電材の量が4質量部未満であると、正極内のカーボンによる導電ネットワークがきれいに形成されなくなって抵抗が上昇する。一方、導電材の量が6質量部を超えると、それ以上添加量を増やしても導電率が変わらなくなる。導電材は電池反応には寄与しないので、多すぎる導電材は、正極の重量当たりの容量を低下させる原因となる。
 また、バインダーの量が8質量部を超えると、正極活物質層125の結着性が上がる一方で、導電性が下がってしまう。また、バインダーの量が4質量部未満である場合には、正極活物質層125の結着力が弱すぎるために、正極集電体122上に正極活物質層125を形成することが困難になる。
 また本実施形態において、正極活物質層125は、充填密度が0.90g/cm以上であることが好ましい。下記表1の充填密度と電極抵抗の関係に示すように、充填密度が0.90g/cm以上の場合には、正極シート130の抵抗は十分に小さい値になるが、充填密度が0.90g/cm未満になると正極シート130の抵抗が急激に上昇する。なお、「電極抵抗」はAC抵抗値である。
Figure JPOXMLDOC01-appb-T000001
 負極シート131は、負極集電体123と負極活物質層126とを有する。
 負極集電体123は、電気伝導性を有し、一面又は両面に負極活物質層126を保持することができれば、その材質や形状、大きさは特に限定されない。負極集電体123は、例えば金属箔により構成することができ、好ましくは銅箔である。
 負極活物質層126は、少なくとも負極活物質を含む。負極活物質としては、例えば、黒鉛、リチウム金属、錫、チタン酸リチウムなどを用いることができる。これらのうちでも黒鉛を用いることが好ましい。
 負極活物質層126に、必要に応じてバインダーを添加してもよい。バインダーとしてはPVdF、SBR、アクリル系ポリマー等を用いることができる。
 セパレータ133は、正極シート130と負極シート131との間に配置され、正極シート130と負極シート131との間にリーク電流が流れるのを防止する。セパレータ133は電解液を保持可能に構成してもよい。セパレータ133は、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン等のポリオレフィン製の微多孔性フィルムにより構成することができる。
 電解液としては、特に限定されず、通常使用されるものを用いることができる。例えば、非水系溶媒に電解質を溶解させた非水電解液や、この非水電解液をポリエチレンオキシド、ポリアクリロニトリル等のポリマーに含浸させたゲル状ポリマー電解質を用いることができる。
 非水電解液の非水系溶媒としては、例えば、エーテル類、ケトン類、ラクトン類、スルホラン系化合物、エステル類、カーボネート類などが挙げられる。これらの代表例としては、テトラヒドロフラン、2-メチル-テトラヒドロフラン、γ-ブチルラクトン、アセトニトリル、ジメトキシエタン、ジエチルカーボネイト、プロピレンカーボネイト、エチレンカーボネイト、ジメチルスルホキシド、スルホラン、3-メチル-スルホラン、酢酸エチル、プロピオン酸メチルなど、あるいはこれらの混合溶媒を挙げることができる。
 非水電解液を構成する電解質は特に限定されるものではないが、LiBF、LiAsF、LiPF、LiClO、CFSOLi、LiBOB(リチウム-ビス(オキサラト)ボレート)等を用いることができ、これらの中でも電池特性、取り扱い上の安全性などの観点からLiBF、LiClO、LiPF、LiBOB等が好ましい。
 また、非水電解液には必要に応じて添加剤も加えることができる。添加剤は充放電特性向上の観点から、不飽和結合またはハロゲン原子を有する環状カーボネート及びS=O結合含有化合物から選ばれる一種以上を併用することが好ましい。
 不飽和結合またはハロゲン原子を有する環状カーボネートとしては、ビニレンカーボネート、フルオロエチレンカーボネート、及びビニルエチレンカ-ボネートが挙げられる。
 また、前記S=O結合化合物としては、1,3-プロパンスルトン(PS)、1,3-プロペンスルトン(PRS)、1,4-ブタンジオールジメタンスルホネート、ジビニルスルホン、2-プロピニルメタンスルホネート、ペンタフルオロメタンスルホネート、エチレンサルファイト、ビニルエチレンサルファイト、ビニレンサルファイト、メチル2-プロピニルサルファイト、エチル2-プロピニルサルファイト、ジプロピニルサルファイト、シクロヘキシルサルファイト、エチレンサルフェート等が挙げられ、特に、1,3-プロパンスルトン、ジビニルスルホン、1,4-ブタンジオールメタンスルホネート、およびエチレンサルファイトが好ましい。
 これらの化合物は、1種類で使用してもよく、また2種類以上を組み合わせて使用してもよい。
 以上の構成を備えた本実施形態の二次電池120では、正極シート130を構成する正極活物質層125が、正極活物質100質量部に対して4質量部以上6質量部以下の導電材と、4質量部以上8質量部以下のバインダーとを含むものとされている。これにより、正極活物質層125における正極活物質、導電材、及びバインダーの状態が最適化され、導電材料のネットワークが良好に形成された低抵抗の正極活物質層125を得ることができる。また、このような低抵抗の正極シート130を備えた非水電解液二次電池では、低電圧で高い充電率を得ることができる。
 なお、本実施形態の二次電池120は、連結端子等を用いて複数個を直列又は並列に接続することで電池モジュールを構成することもできる。これにより、電力貯蔵、ハイブリッド電気自動車、電車等、比較的大型大出力が要求される産業分野で好適に使用できる形態とすることができる。
 (正極シートの製造方法)
 正極シートは、正極活物質(カーボンコートされたオリビン型リン酸鉄リチウムの粒子又はその凝集体)と、導電材(例えばアセチレンブラック)と、バインダー(例えばPVdF)と、溶媒(例えばN-メチルピロリドン)とを攪拌、混練し、正極活物質層形成用スラリーを調製する工程と、正極活物質層形成用スラリーを正極集電体122(例えばアルミニウム箔)上に塗布した後、乾燥固化させることにより正極集電体122の一面又は両面に正極活物質層125を形成する工程と、正極活物質層125が形成された正極集電体122をロールプレス機等によりプレス加工することで正極活物質層125の厚さを調整する工程と、を有する製造方法により製造することができる。
 本実施形態の製造方法では、正極活物質層形成用スラリーを調製する工程において、正極活物質投入後の混練期間に、正極活物質に対して過度な機械衝撃などのエネルギーが作用しないようにすることが好ましい。具体的には、均一な混練物が得られる範囲で、混練時間の長さを短くすることが好ましい。これにより、正極活物質への負荷を低減し、リン酸鉄リチウム粒子表面のカーボンコートが部分的に脱落してしまうのを防止することができる。その結果、高い被覆面積率でカーボンコートが形成されたオリビン型リン酸鉄リチウム粒子からなる正極活物質を含む正極活物質層を形成することができる。
 上記製造方法により得られる正極シートでは、正極活物質のカーボンコートの負荷を低減することができるため、オリビン型リン酸鉄リチウム粒子表面のカーボンコートの被覆面積率を高く保持しつつ正極活物質層125を形成することができ、低抵抗の正極シート130を製造することができる。
 オリビン型リン酸鉄リチウムはそれ自体は導電性を有していないため、導電性を付与するために粒子の表面にカーボンコートを形成している。このような正極活物質において、粒子表面のカーボンコートに多くの脱落部分(オリビン型リン酸鉄リチウムが露出した部分)が多く存在すると、オリビン型リン酸鉄リチウムのLiイオンの反応サイトに隣接するオリビン骨格における電子授受サイトがカーボンで被覆されていない部分ができてしまい、その部分におけるLiイオンの取り入れ・放出が起こりにくくなると考えられる。したがって、オリビン型リン酸鉄リチウム粒子のカーボン被覆面積率が低くなると、Liイオンの取り入れ・放出速度が低下し、正極での過電圧が上昇してしまうと考えられる。
 これに対して、本実施形態の製造方法によれば、オリビン型リン酸鉄リチウム粒子のカーボンコートの負荷を低減することができ、正極活物質層125中の正極活物質におけるカーボンコートの被覆面積率を95%以上とすることができる。そうすると、上記したようなLiイオンの取り入れ・放出が阻害される部分が減り、取り入れ・放出速度が向上することから、正極での過電圧を低く抑えることができる。
 さらに本実施形態の製造方法において、正極活物質層形成用スラリーの調製に用いる正極活物質(原料)として、カーボンコートの被覆面積率がほぼ100%である正極活物質を用いると、正極活物質層125を形成した状態におけるオリビン型リン酸鉄リチウム粒子のカーボン被覆面積率をほぼ100%にまで高めることができ、特に良好な結果が得られた。これは、オリビン型リン酸鉄リチウムのLiイオンの反応サイトに隣接するオリビン骨格における電子の授受サイトのほとんどがカーボンでコーティングされていることから、Liイオンの反応サイトにおけるLiイオンの取り入れ・放出が阻害されることがなくなるためであると考えられる。
 なお、正極活物質のカーボンコートの被覆面積率は、SEM(走査型電子顕微鏡)とEDX(エネルギー分散型X線分光法)を用いて正極活物質の粒子を観察することで測定することができる。正極シート130からの観察試料の作製は、正極活物質層125の一部を溶剤に浸漬してバインダーを溶かすことにより正極活物質の粒子を脱離させる方法、あるいは正極活物質層125の一部を崩落させて正極活物質の粒子を取り出す方法により実施することができる。
 SEMにより正極活物質粒子の断面を観察することで、カーボンの被覆状態(カーボン膜厚及び膜厚分布)を確認することができる。また、EDXにより正極活物質粒子の表面をマッピングすることで、オリビン型リン酸鉄リチウム粒子の表面におけるカーボンの分布状態を得ることができ、被覆面積率を算出することができる。
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
「実施例1」
 正極活物質として炭素質被膜の被覆率が100%である一次粒子の粒子径が0.1~2μmのLiFePO粒子の凝集体(住友大阪セメント製)を、導電剤としてアセチレンブラックを、結着剤としてポリフッ化ビニリデン(PVdF)を、100:5:7(質量部)となるように秤量し、アセチレンブラック及びポリフッ化ビニリデン(PVdF)を混練機中のN-メチル-2-ピロリジノン(NMP)に投入し、撹拌・混練を行った。次いで、得られた混合物に上記のLiFePO粒子を投入し、混練機の回転速度を100rpmとして90分間混練を行い、スラリーを作製した。
 次いで、このスラリーを、コーターを用いてアルミニウム箔上に塗布し、乾燥し、その後、プレスを用いて加圧し、厚みが100μmの正極活物質層をアルミニウム箔上に形成し、実施例1の正極とした。
 次いで、黒鉛を負極活物質として負極を作製し、この負極と上記の正極とを複数枚、セパレータを介して交互に配置して発電要素を組み立て、この発電要素及び非水電解液をケース内に収納し、電気配線を行い、実施例1の二次電池を作製した。
「実施例2」
 混練機の回転速度を100rpmとして150分間混練を行った他は、実施例1に準じて、実施例2の正極及び二次電池を作製した。
「比較例1」
 混練機の回転速度を100rpmとして200分間混練を行った他は、実施例1に準じて、比較例1の正極及び二次電池を作製した。
「評価」
 (1)炭素質被膜の被覆率
 実施例1、2及び比較例1の正極中の粒子の炭素質被膜の被覆率を求め、評価した。
 ここでは、正極の一部を有機溶媒に浸漬して結着剤を溶解させるか、正極の一部を崩落させることにより、表面に炭素質被膜が形成されたLiFePO粒子を取り出し、この粒子を走査型電子顕微鏡(SEM)を用いて観察し、表面における炭素質被膜の状態を確認した。
 また、この粒子の表面を、エネルギー分散型X線分光装置(EDX)を用いて面分析し、表面における炭素質被膜の状態を確認した。
 その結果、炭素質被膜の被覆率は、実施例1では98~100%、実施例2では95~98%、比較例1では80~90%となっており、混練時間が短い方が正極中の粒子の炭素質被膜の被覆率が高くなることが分かった。
(2)充放電特性
 実施例1、2及び比較例1の二次電池の充放電試験を、室温(25℃)にて、カットオフ電圧2~4.5V、充放電レート1Cの定電流(1時間充電の後、1時間放電)下にて実施した。実施例1、2及び比較例1の充放電特性を図4に示す。
 その結果、正極中の粒子の炭素質被膜の被覆率が高い程、容量(%)が大きいことが分かった。
 このように、正極の容量が大きくなった理由は、炭素質被膜の被覆率が高い、すなわち、正極のリチウムイオンの取り入れ・放出速度が速くなったことにより、正極の充放電反応時の過電圧が低下し、その結果、電極抵抗が低下したことによるものと考えられる。
 また、隣接する正極活物質粒子間の炭素質被膜によるネットワークが切れることなく、網目状に繋がることにより、正極内の導電パスが確実に形成され、正極活物質粒子間の接続に伴う抵抗がより低下したものと考えられる。
 以上により、正極の充電速度が向上し、さらに、電解液の分解反応等のような本来の電池反応とは無関係の副反応を防止することができ、したがって、正極の過充電試験等における安全性及び寿命特性を向上させることができた。
 次に、複数の正極シートのサンプルを作製し、それぞれを用いた電池の特性を検証した。
 (実施例3)
 以下の原料を用いて正極シートを作製した。
 正極活物質:LCP420 TU-4(商品名:住友大阪セメント社製)
 正極活物質層の材料比(質量部)
 正極活物質:アセチレンブラック:PVdF=100:5:7
 上記の正極活物質は、オリビン型リン酸鉄リチウムの一次粒子の表面がほぼ100%の被覆面積率でカーボンコートされ、このカーボンコートを介して一次粒子同士が結合して二次粒子を形成しているオリビン型リン酸鉄リチウム粒子の凝集体である。スラリーを塗布乾燥してできた正極活物質層をプレスして厚さを調節する際に、プレスにより二次粒子が潰れてバラバラになり、正極活物質層内においてほぼ一次粒子状のオリビン型リン酸鉄リチウムとなるものである。
 アセチレンブラックとPVdFをN-メチルピロリドン中に入れ、撹拌・混練を行った後で、正極活物質を該混合物中に投入し、混練機の回転速度100rpmで90分間混練を行いスラリーを調製した。正極集電体としてのアルミニウム箔上にコーターを用いて上記スラリーを塗布乾燥し、できた正極活物質層をプレスして、片面の厚み100μm、充填密度0.95g/cmの正極活物質層が形成された正極シートを作製した。
 (実施例4)
 実施例3に対して、スラリーを調製する際の混練の時間のみを変更し、その他は同一条件として正極シートを作製した。
 アセチレンブラックとPVdFをN-メチルピロリドン中に入れ、撹拌・混練を行った後で、正極活物質を該混合物中に投入し、混練機の回転速度100rpmで150分間混練を行いスラリーを調製した。アルミニウム箔上にコーターを用いて上記スラリーを塗布乾燥し、できた正極活物質層をプレスして、片面の厚み100μm、充填密度0.95g/cmの正極活物質層が形成された正極シートを作製した。
 (実施例5)
 実施例3に対して、スラリーを調製する際のバインダーの種類のみを変更し、その他は同一条件として正極シートを作製した。正極活物質層の材料比(質量部)は、正極活物質:アセチレンブラック:変性ポリメチル(メタ)アクリレート(変性PMMA):カルボキシメチルセルロース(CMC)=100:5:4:2である。
 アセチレンブラックと、変性PMMAと、CMCをN-メチルピロリドン中に入れ、撹拌・混練を行った後で、正極活物質を該混合物中に投入し、混練機の回転速度100rpmで90分間混練を行いスラリーを調製した。アルミニウム箔上にコーターを用いて上記スラリーを塗布乾燥し、できた正極活物質層をプレスして、片面の厚み100μm、充填密度0.95g/cmの正極活物質層が形成された正極シートを作製した。
 (比較例2)
 実施例3に対して、スラリーを調製する際の混練の時間のみを変更し、その他は同一条件として正極シートを作製した。
 アセチレンブラックとPVdFをN-メチルピロリドン中に入れ、撹拌・混練を行った後で、正極活物質を該混合物中に投入し、混練機の回転速度100rpmで200分間混練を行いスラリーを調製した。アルミニウム箔上にコーターを用いて上記スラリーを塗布乾燥し、できた正極活物質層をプレスして、片面の厚み100μm、充填密度0.95g/cmの正極活物質層が形成された正極シートを作製した。
 (比較例3)
 実施例3に対して、スラリーを調製する際の導電材の含有量のみを変更し、その他は同一条件として正極シートを作製した。正極活物質層の材料比(質量部)は、正極活物質:アセチレンブラック:PVdF=100:3:7である。
 アセチレンブラックとPVdFをN-メチルピロリドン中に入れ、撹拌・混練を行った後で、正極活物質を該混合物中に投入し、混練機の回転速度100rpmで90分間混練を行いスラリーを調製した。アルミニウム箔上にコーターを用いて上記スラリーを塗布乾燥し、できた正極活物質層をプレスして、片面の厚み100μm、充填密度0.95g/cmの正極活物質層が形成された正極シートを作製した。
 (比較例4)
 実施例3に対して、スラリーを調製する際のバインダーの含有量のみを変更し、その他は同一条件として正極シートを作製した。正極活物質層の材料比(質量部)は、正極活物質:アセチレンブラック:PVdF=100:5:9である。
 アセチレンブラックとPVdFをN-メチルピロリドン中に入れ、撹拌・混練を行った後で、正極活物質を該混合物中に投入し、混練機の回転速度100rpmで90分間混練を行いスラリーを調製した。アルミニウム箔上にコーターを用いて上記スラリーを塗布乾燥し、できた正極活物質層をプレスして、片面の厚み100μm、充填密度0.95g/cmの正極活物質層が形成された正極シートを作製した。
 (比較例5)
 実施例3に対して、スラリーを調製する際のバインダーの含有量のみを変更し、その他は同一条件として正極シートを作製した。正極活物質層の材料比(質量部)は、正極活物質:アセチレンブラック:PVdF=100:5:3である。
 アセチレンブラックとPVdFをN-メチルピロリドン中に入れ、撹拌・混練を行った後で、正極活物質を該混合物中に投入し、混練機の回転速度100rpmで90分間混練を行いスラリーを調製した。アルミニウム箔上にコーターを用いて上記スラリーを塗布乾燥し、できた正極活物質層をプレスして、片面の厚み100μm、充填密度0.95g/cmの正極活物質層が形成された正極シートを作製した。
 以上の実施例3~5及び比較例2~5の材料比率と混練時間とを下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例3、4及び比較例2の正極シートから正極活物質粒子を取り出して断面SEM測定及びEDX測定を行い、正極活物質粒子表面のカーボンコートの被覆面積率を算出した。各サンプルのカーボンコート被覆面積率は以下の通りである。
 実施例3(混練時間90分) :98~100%
 実施例4(混練時間150分):95~98%
 比較例2(混練時間200分):80~90%
 スラリー調製工程における混練時間を短くした方が正極シート中の正極活物質粒子におけるカーボンコート被覆面積率が高くなることが分かる。
 次に、図7は、実施例3,4及び比較例3の正極シートを用いて作製した電池の充電時間と容量との関係を示すグラフである。
 図7に結果を示す測定で用いた電池は、黒鉛を負極活物質として負極シートを別途作製し、複数枚の正極シートと負極シートをセパレータを介して積層することで、50Ahの非水電解液二次電池を作製したものである。
 図7に示すように、実施例3、4の正極シートを使用した電池では、満充電(50Ah)になるのが比較例3の正極シートを使用した電池に比べて速かった。これは、先に示した実施例3、4の優れた電極特性が電池にも反映されている結果であると考えられる。
 正極シート中のオリビン型リン酸鉄リチウム粒子の表面積に対するカーボンの被覆面積率の高いオリビン粒子を使用している正極を用いた方が容量が大きくなるという結果となることが分かる。
 正極の容量が大きくなった理由は、カーボンコートの被覆率が高い、すなわち、正極におけるLiの取り入れ・放出速度が速くなったことにより、正極の充放電反応時の過電圧が下がり、電極抵抗が低くなったことによるものと考えられる。
 また、隣接する正極活物質粒子間のカーボンによるネットワークが切れることなく繋がるため、正極内の導電パスがしっかりと形成され正極活物質粒子間の接続に伴う抵抗がより低下することによるものも考えられる。
 次に、正極活物質層の材料比率と正極シートの抵抗値との関係について検証した。
 (導電材の割合)
 正極活物質100質量部に対して導電材を3質量部~7質量部の範囲で変えて複数の正極シートのサンプルを作製し、それぞれのAC抵抗を測定した。導電材の割合以外の条件は、実施例3のサンプルと同様にして5種類のサンプルを作製した。それぞれのサンプルについてAC抵抗を測定した結果を表3に示す。表3に示すように、導電材の割合が4質量部未満になると正極シートのAC抵抗が急激に上昇する。その一方で、導電材の割合が6質量部以上のサンプルではAC抵抗は一定であり、導電材の割合を6質量部を超える割合とする必要はないことがわかる。
Figure JPOXMLDOC01-appb-T000003
 (バインダーの割合)
 正極活物質100質量部に対してバインダーを3質量部~9質量部の範囲で変えて複数の正極シートのサンプルを作製し、それぞれのAC抵抗を測定した。バインダーの割合以外の条件は、実施例3のサンプルと同様にして7種類のサンプルを作製した。それぞれのサンプルについてAC抵抗を測定した結果を表4に示す。表4に示すように、バインダーの割合が3質量部未満になると正極活物質層において十分な結着力が得られず、正極集電体上に正極活物質層を保持することができなかった。その一方で、バインダーの割合が8質量部を超えると、正極シートのAC抵抗が急激に上昇することがわかる。
Figure JPOXMLDOC01-appb-T000004
 本発明の非水電解液二次電池用正極によれば、表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子の、その表面積に対する炭素質被膜の被覆率を95%以上としたので、オリビン型リチウム複合化合物におけるリチウムイオンの取り入れ・放出速度を高めることができ、正極の充放電速度を高めることができる。その結果、この非水電解液二次電池用正極を用いた二次電池の充放電速度を高めることができる。
 本発明の非水電解液二次電池によれば、本発明の非水電解液二次電池用正極を備えたので、正極の充放電速度を向上させることができる。したがって、二次電池の充放電特性を向上させることができる。
 本発明の電池モジュールによれば、本発明の非水電解液二次電池を備えたので、電池モジュールの充放電特性を向上させることができる。
 また本発明によれば、正極の抵抗が低く、低電圧の充電が可能な非水電解液二次電池を提供することができる。
 以上のことから、本発明は産業上極めて有用である。
 1 二次電池
 2 ケース
 3 蓋部材
 4 発電要素
 5 正極接続端子
 6 負極接続端子
 7 非水電解液
 8 正極外部接続端子
 9 負極外部接続端子
 11 正極
 12 負極
 13 セパレータ
21 正極集電体
 22 正極活物質層
31 負極集電体
 32 負極活物質層
 120…二次電池
 125…正極活物質層

Claims (7)

  1.  表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子を正極活物質として含有してなる非水電解液二次電池用正極において、
     前記オリビン型リチウム複合化合物粒子の表面積に対する前記炭素質被膜の被覆率は95%以上であることを特徴とする非水電解液二次電池用正極。
  2.  前記非水電解液二次電池用正極における前記オリビン型リチウム複合化合物粒子の充填密度は、0.90g/cm以上かつ1.09g/cm以下であることを特徴とする請求項1記載の非水電解液二次電池用正極。
  3.  請求項1または2記載の非水電解液二次電池用正極を備えたことを特徴とする非水電解液二次電池。
  4.  請求項3記載の非水電解液二次電池を備えたことを特徴とする電池モジュール。
  5.  カーボンコートされたオリビン型リチウム複合化合物を正極活物質として含む正極を用いた非水電解液二次電池において、前記正極が、前記正極活物質100質量部に対して4質量部以上6質量部以下の導電材と、4質量部以上8質量部以下のバインダーとを含む正極活物質層を有し、カーボンコートされたオリビン型リチウム複合化合物粒子のカーボン被覆面積率が95%以上である非水電解液二次電池。
  6.  前記正極活物質層の充填密度が、0.90g/cm以上1.09g/cm以下である、請求項5に記載の非水電解液二次電池。
  7.  請求項5又は6に記載の非水電解液二次電池を複数個接続してなる、電池モジュール。
PCT/JP2011/078915 2010-12-17 2011-12-14 非水電解液二次電池用正極及び非水電解液二次電池並びに電池モジュール WO2012081621A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137015146A KR101929792B1 (ko) 2010-12-17 2011-12-14 비수 전해액 2차 전지용 정극 및 비수 전해액 2차 전지 및 전지 모듈
CN2011800594381A CN103250280A (zh) 2010-12-17 2011-12-14 非水电解液二次电池用正极及非水电解液二次电池以及电池模块
US13/993,901 US9960416B2 (en) 2010-12-17 2011-12-14 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module
EP11848054.0A EP2654108B1 (en) 2010-12-17 2011-12-14 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010282433A JP5740708B2 (ja) 2010-12-17 2010-12-17 非水電解液二次電池用正極及び非水電解液二次電池並びに電池モジュール
JP2010-282434 2010-12-17
JP2010282434A JP2012133895A (ja) 2010-12-17 2010-12-17 非水電解液二次電池及び電池モジュール
JP2010-282433 2010-12-17

Publications (1)

Publication Number Publication Date
WO2012081621A1 true WO2012081621A1 (ja) 2012-06-21

Family

ID=46244718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078915 WO2012081621A1 (ja) 2010-12-17 2011-12-14 非水電解液二次電池用正極及び非水電解液二次電池並びに電池モジュール

Country Status (5)

Country Link
US (1) US9960416B2 (ja)
EP (1) EP2654108B1 (ja)
KR (1) KR101929792B1 (ja)
CN (1) CN103250280A (ja)
WO (1) WO2012081621A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060143A (ja) * 2012-08-22 2014-04-03 Sony Corp 正極活物質、正極および電池、並びに電池パック、電子機器、電動車両、蓄電装置および電力システム
JPWO2016178280A1 (ja) * 2015-05-01 2018-02-22 エリーパワー株式会社 非水電解質二次電池用正極活物質、正極及び二次電池
JPWO2017195330A1 (ja) * 2016-05-12 2019-03-07 エリーパワー株式会社 非水電解質二次電池用正極及び非水電解質二次電池

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012255590B2 (en) 2011-05-17 2017-05-25 University Health Network OSA/CSA diagnosis using recorded breath sound amplitude profile and pitch contour
WO2016002586A1 (ja) * 2014-07-04 2016-01-07 Jsr株式会社 蓄電デバイス用バインダー組成物
ES2962432T3 (es) * 2014-09-23 2024-03-19 Jiangsu Hengtron Nanotech Co Ltd Baterías que contienen óxido metálico de litio con capacidad de velocidad mejorada
JP6428244B2 (ja) * 2014-12-19 2018-11-28 トヨタ自動車株式会社 非水電解質二次電池の製造方法および非水電解質二次電池
JP5880757B1 (ja) * 2015-03-31 2016-03-09 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池、リチウムイオン二次電池用正極材料の製造方法
US20200220171A1 (en) * 2015-09-30 2020-07-09 Nec Energy Devices, Ltd. Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6979186B2 (ja) * 2017-02-24 2021-12-08 エリーパワー株式会社 非水電解質二次電池及び充電方法
CN109461881B (zh) * 2018-10-17 2020-07-03 宁德时代新能源科技股份有限公司 负极极片及二次电池
CN109638342A (zh) * 2018-12-19 2019-04-16 珠海光宇电池有限公司 一种高低温性能可同时兼顾的锂离子电池
KR102341407B1 (ko) * 2019-10-29 2021-12-20 삼성에스디아이 주식회사 리튬이차전지용 양극 활물질 및 그 제조방법, 그리고 상기 양극 활물질을 채용한 양극과 리튬이차전지
CN116387496B (zh) * 2023-06-02 2023-10-31 瑞浦兰钧能源股份有限公司 一种二次电池正极材料、二次电池正极极片及二次电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292309A (ja) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2007265923A (ja) 2006-03-30 2007-10-11 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009048958A (ja) 2007-08-23 2009-03-05 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009187963A (ja) * 2009-05-26 2009-08-20 Tdk Corp 電極用複合粒子及び電気化学デバイス
JP2009206085A (ja) 2008-01-28 2009-09-10 Sumitomo Chemical Co Ltd 正極活物質およびナトリウム二次電池、ならびにオリビン型リン酸塩の製造方法
JP2009295566A (ja) * 2007-11-12 2009-12-17 Gs Yuasa Corporation 電極材料製造装置、電極材料の製造方法及びリチウム二次電池の製造方法
JP2010218884A (ja) * 2009-03-17 2010-09-30 Nippon Chem Ind Co Ltd リチウムリン系複合酸化物炭素複合体、その製造方法、リチウム二次電池用正極活物質及びリチウム二次電池

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4187523B2 (ja) 2002-01-31 2008-11-26 日本化学工業株式会社 リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2003272632A (ja) 2002-03-15 2003-09-26 Mikuni Color Ltd 炭素被覆リチウム遷移金属酸化物、2次電池正極材料及び2次電池
JP2003308845A (ja) * 2002-04-17 2003-10-31 Mikuni Color Ltd リチウム二次電池用電極及びこれを用いたリチウム二次電池
JP4286288B2 (ja) 2004-03-03 2009-06-24 三洋電機株式会社 非水電解質電池
JP2007173134A (ja) 2005-12-26 2007-07-05 Sumitomo Osaka Cement Co Ltd リチウムイオン電池の電極用材料、リチウムイオン電池の電極形成用スラリーおよびリチウムイオン電池
JP5317390B2 (ja) 2006-02-09 2013-10-16 三洋電機株式会社 非水電解質二次電池
KR100975875B1 (ko) 2006-12-26 2010-08-13 삼성에스디아이 주식회사 양극 활물질, 그 제조 방법 및 이를 채용한 양극과 리튬전지
JP4317239B2 (ja) * 2007-04-27 2009-08-19 Tdk株式会社 電極用複合粒子の製造方法
JP2009064564A (ja) * 2007-09-04 2009-03-26 Sanyo Electric Co Ltd 非水電解質電池用正極の製造方法、それに用いられるスラリー及び非水電解質電池
JP5223281B2 (ja) * 2007-09-28 2013-06-26 Tdk株式会社 リチウムイオン二次電池又はリチウム二次電池の正極用複合粒子、及びリチウムイオン二次電池又はリチウム二次電池
EP2065887A1 (en) * 2007-11-30 2009-06-03 Hitachi Global Storage Technologies Netherlands B.V. Method for manufacturing magnetic disk unit
CN101540398A (zh) * 2008-03-17 2009-09-23 中国科学院物理研究所 一种用于锂二次电池的介孔结构磷酸盐材料及其制备方法
KR100946387B1 (ko) 2008-03-25 2010-03-08 주식회사 에너세라믹 리튬 전지용 올리빈형 양극 활물질 전구체, 리튬 전지용올리빈형 양극 활물질, 이의 제조 방법, 및 이를 포함하는리튬 전지
JP5228576B2 (ja) * 2008-03-31 2013-07-03 株式会社豊田中央研究所 リチウムイオン二次電池及び電気自動車用電源
US8673508B2 (en) * 2008-04-02 2014-03-18 Ube Industries, Ltd. Nonaqueous electrolyte for lithium battery and lithium battery using same
KR20100029501A (ko) 2008-09-08 2010-03-17 현대자동차주식회사 리튬이차전지용 올리빈형 양극 활물질, 이의 제조 방법, 및이를 포함하는 리튬이차전지
CN101777636A (zh) * 2009-01-14 2010-07-14 辽宁工程技术大学 一种热解碳包覆磷酸铁锂复合材料的制备方法
JP2010231958A (ja) 2009-03-26 2010-10-14 Sanyo Electric Co Ltd 非水電解質二次電池
WO2010129417A1 (en) 2009-05-04 2010-11-11 Meecotech, Inc. Electrode active composite materials and methods of making thereof
KR101113074B1 (ko) 2009-06-08 2012-02-16 주식회사 엘지화학 양극 활물질, 및 이를 포함하는 양극, 리튬 이차 전지
CN101651236B (zh) * 2009-08-31 2011-07-06 杭州万马高能量电池有限公司 可快充的超高倍率磷酸铁锂聚合物锂离子电池及制备方法
JP2012059532A (ja) 2010-09-08 2012-03-22 Toyota Motor Corp 二次電池の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292309A (ja) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2007265923A (ja) 2006-03-30 2007-10-11 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009048958A (ja) 2007-08-23 2009-03-05 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009295566A (ja) * 2007-11-12 2009-12-17 Gs Yuasa Corporation 電極材料製造装置、電極材料の製造方法及びリチウム二次電池の製造方法
JP2009206085A (ja) 2008-01-28 2009-09-10 Sumitomo Chemical Co Ltd 正極活物質およびナトリウム二次電池、ならびにオリビン型リン酸塩の製造方法
JP2010218884A (ja) * 2009-03-17 2010-09-30 Nippon Chem Ind Co Ltd リチウムリン系複合酸化物炭素複合体、その製造方法、リチウム二次電池用正極活物質及びリチウム二次電池
JP2009187963A (ja) * 2009-05-26 2009-08-20 Tdk Corp 電極用複合粒子及び電気化学デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2654108A1

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060143A (ja) * 2012-08-22 2014-04-03 Sony Corp 正極活物質、正極および電池、並びに電池パック、電子機器、電動車両、蓄電装置および電力システム
CN103840144A (zh) * 2012-08-22 2014-06-04 索尼公司 正极活性物质、正极、电池、电池组和电子设备
CN107895790A (zh) * 2012-08-22 2018-04-10 株式会社村田制作所 正极活性物质、正极、电池、电池组和电子设备
US10431821B2 (en) 2012-08-22 2019-10-01 Murata Manufacturing Co., Ltd. Cathode active material, cathode, battery, battery pack, electronic apparatus, electric vehicle, electric storage apparatus, and electric power system
CN107895790B (zh) * 2012-08-22 2021-01-08 株式会社村田制作所 正极活性物质、正极、电池、电池组和电子设备
JPWO2016178280A1 (ja) * 2015-05-01 2018-02-22 エリーパワー株式会社 非水電解質二次電池用正極活物質、正極及び二次電池
JPWO2017195330A1 (ja) * 2016-05-12 2019-03-07 エリーパワー株式会社 非水電解質二次電池用正極及び非水電解質二次電池
JP6991583B2 (ja) 2016-05-12 2022-01-12 エリーパワー株式会社 非水電解質二次電池用正極及び非水電解質二次電池

Also Published As

Publication number Publication date
KR20140001944A (ko) 2014-01-07
KR101929792B1 (ko) 2018-12-17
US20130266843A1 (en) 2013-10-10
US9960416B2 (en) 2018-05-01
CN103250280A (zh) 2013-08-14
EP2654108A1 (en) 2013-10-23
EP2654108B1 (en) 2019-08-14
EP2654108A4 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
WO2012081621A1 (ja) 非水電解液二次電池用正極及び非水電解液二次電池並びに電池モジュール
US11456447B2 (en) Predoping method for negative electrode active material, manufacturing method for negative electrode, and manufacturing method for power storage device
US11296315B2 (en) Battery
US9012081B2 (en) Anode active material and secondary battery comprising the same
US11075372B2 (en) Active material and battery
EP2469629A2 (en) Amorphous anode active material, preparation method of electrode using same, secondary battery containing same, and hybrid capacitor
WO2014010526A1 (ja) 非水電解質二次電池
JP5872055B2 (ja) リチウム二次電池パック、並びにそれを用いた電子機器、充電システム及び充電方法
JP6908113B2 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
CN107112581A (zh) 锂离子电池
JP6466161B2 (ja) リチウムイオン電池用負極材料
WO2014010476A1 (ja) リチウム二次電池用電極およびその製造方法並びにリチウム二次電池およびその製造方法
US8974961B2 (en) Anode active material and secondary battery comprising the same
JP2020502757A (ja) 二次電池用正極の製造方法、それにより製造された二次電池用正極、およびそれを含むリチウム二次電池
JP2007257862A (ja) 二次電池用電極および二次電池
CN105280880A (zh) 非水电解质二次电池用正极、非水电解质二次电池以及其***
US20200274147A1 (en) Negative electrode active material for lithium secondary battery and method for preparing the same
TW202308210A (zh) 實現長循環壽命、快速充電及高熱穩定性的具有高性能電解質及氧化矽活性材料的鋰離子電池
US20130164617A1 (en) Anode material, lithium secondary battery, and method for producing anode material
JP5679187B2 (ja) 非水電解液二次電池及び電池モジュール
KR20140041312A (ko) 리튬 이온 이차 전지용 정극, 리튬 이온 이차 전지 및 전지 시스템
CN113557615A (zh) 非水电解质二次电池用负极
JP7074203B2 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2023017367A (ja) 非水電解質二次電池
JP2021157936A (ja) 負極活物質、負極及び二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137015146

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13993901

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE