WO2012057217A1 - ガラスハードディスク基板の製造方法 - Google Patents

ガラスハードディスク基板の製造方法 Download PDF

Info

Publication number
WO2012057217A1
WO2012057217A1 PCT/JP2011/074694 JP2011074694W WO2012057217A1 WO 2012057217 A1 WO2012057217 A1 WO 2012057217A1 JP 2011074694 W JP2011074694 W JP 2011074694W WO 2012057217 A1 WO2012057217 A1 WO 2012057217A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
substrate
weight
cleaning
composition
Prior art date
Application number
PCT/JP2011/074694
Other languages
English (en)
French (fr)
Inventor
土居陽彦
青野信幸
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to US13/881,992 priority Critical patent/US20130220973A1/en
Priority to CN201180051246.6A priority patent/CN103180902B/zh
Publication of WO2012057217A1 publication Critical patent/WO2012057217A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • C03C15/02Surface treatment of glass, not in the form of fibres or filaments, by etching for making a smooth surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0075Cleaning of glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers

Definitions

  • the present invention relates to a method for manufacturing a glass hard disk substrate.
  • the hard disk mounted on the hard disk drive consumes high power because it rotates at high speed. In recent years, low power consumption has been demanded in consideration of the environment. In order to reduce power consumption, there is a method of increasing the recording capacity per hard disk, reducing the number of hard disks installed in the drive, and reducing the weight. In order to reduce the weight of one substrate, it is necessary to reduce the thickness of the substrate. From this point of view, the demand for a glass substrate having a higher mechanical strength than that of an aluminum substrate has increased, and the recent growth has been remarkable. . In order to improve the recording capacity per substrate, it is necessary to reduce the unit recording area. However, when the unit recording area is reduced, the magnetic signal becomes weak.
  • the method of polishing a glass substrate with an acidic polishing liquid composition has the advantage that the leaching action of elution of alkali ions contained in the glass substrate occurs during polishing, the hardness of the substrate surface is lowered, and the polishing rate is improved. is there.
  • the leaching action works greatly when the pH is low, a brittle leaching layer is generated deeply, and the surface is roughened by alkali etching in the alkali cleaning step after the polishing step. There was a problem that the quality deteriorated significantly.
  • the glass substrate is treated with a weakly acidic (pH 4 to 6) polishing solution containing an additive for increasing the electrolyte concentration of the polishing solution.
  • a polishing method has been proposed (see, for example, Patent Document 2).
  • Patent Document 3 proposes a glass substrate for a magnetic disk having a very small number of defects with an arithmetic average roughness (Ra) in the vicinity of 0.1 nm.
  • Carboxylic acids, polyvalent amines, amino acids, aminopolycarboxylic acids, phosphonic acids and the like are disclosed as additives for polishing liquids used in the production thereof. It is disclosed that these additives can maintain the interaction of the abrasive with the surface of the glass substrate while maintaining the form of secondary aggregation, thereby removing foreign substances from the glass substrate.
  • the present invention provides a method for producing a glass hard disk substrate having a step of alkali washing after polishing a glass substrate with an acidic polishing liquid, while maintaining the polishing rate in the polishing step, and the surface roughness of the glass substrate in the alkali washing step.
  • a method of manufacturing a glass hard disk substrate capable of suppressing deterioration of the thickness and further improving cleanliness is provided.
  • the present invention relates to a method for producing a glass hard disk substrate including the following steps (1) and (2).
  • the present invention while maintaining the polishing rate in the polishing step, it is possible to effectively suppress the deterioration of the surface roughness of the glass substrate in the alkali cleaning step and further improve the cleanliness.
  • the present invention is a case where alkali cleaning is performed after polishing a glass substrate with an acidic polishing liquid, if the polishing liquid contains a polyvalent amine compound, while maintaining the polishing rate with the acidic polishing liquid, This is based on the knowledge that the deterioration of the surface roughness of the glass substrate due to alkali cleaning can be suppressed and the cleanliness can be further improved.
  • the present invention relates to a glass hard disk substrate manufacturing method (hereinafter also referred to as “substrate manufacturing method of the present invention”) including the following steps (1) and (2).
  • substrate manufacturing method of the present invention including the following steps (1) and (2).
  • (1) A step of polishing a glass substrate to be polished using a polishing liquid composition having a pH of 1.0 to 4.2 containing a polyvalent amine compound having 2 to 10 nitrogen atoms in the molecule.
  • (2) A step of cleaning the substrate obtained in the step (1) using a cleaning composition having a pH of 8.0 to 13.0.
  • polishing rate is maintained in the polishing step by the substrate manufacturing method of the present invention, but when the number of nitrogen atoms of the polyvalent amine compound is within a predetermined range, the adsorptive power to the substrate is appropriately adjusted to It is presumed that the polyvalent amine compound is adsorbed on the surface of the glass substrate, suppresses the leaching action, and maintains the polishing rate.
  • the reason why the deterioration of the surface roughness in the alkali cleaning process is effectively suppressed is not clear, but in the polishing process, the polyvalent amine compound is adsorbed on the surface of the glass substrate and the alkali ions are eluted in the glass substrate. By suppressing the formation of a brittle leaching layer, it is estimated that the deterioration of the surface roughness in the alkali cleaning step is suppressed.
  • a glass hard disk substrate is obtained from a process of obtaining a glass substrate by a mold press of molten glass or a method of cutting out from sheet glass, a shape processing process, an end surface polishing process, a rough grinding process, a fine grinding process, a rough polishing process, and a finish polishing. It is manufactured through a process and a chemical strengthening process. The chemical strengthening step may be performed before the finish polishing step. In addition, a cleaning process may be included between the processes.
  • the glass hard disk substrate becomes a magnetic hard disk through a recording part forming step.
  • the substrate to be polished and the substrate after polishing to be cleaned are glass substrates.
  • the glass substrate include aluminosilicate glass, borosilicate glass, aluminoborosilicate glass, and glass containing metal atoms other than Si, such as aluminosilicate glass in which sodium is replaced with potassium in a chemical strengthening step, From the viewpoint of improvement, an aluminosilicate glass substrate and an aluminosilicate glass in which sodium is substituted with potassium in the chemical strengthening step are preferable, and an aluminosilicate glass substrate is more preferable.
  • the aluminosilicate glass substrate contains the largest amount of Si except for O (oxygen) as its constituent elements, and then contains a large amount of Al (aluminum) and Na (sodium).
  • the Si content is 20 to 40% by weight
  • the Al content is 3 to 25% by weight
  • the Na content is 3 to 25% by weight
  • the aluminosilicate glass substrate has an Al content of preferably 5 to 20% by weight, more preferably 7 to 15% by weight from the viewpoint of improving the polishing rate and maintaining the transparency of the substrate.
  • the Na content is preferably 3 to 20% by weight, more preferably 5 to 15% by weight.
  • content of Al and Na contained in an aluminosilicate glass substrate can be calculated
  • the substrate manufacturing method of the present invention includes a step of polishing a glass substrate using a polishing liquid composition, and the polishing liquid composition contains at least a polyvalent amine compound (hereinafter referred to as 2-10 nitrogen atoms in the molecule). , Also referred to as “polyvalent amine compound”).
  • the polishing liquid composition preferably further contains polishing abrasive grains, an acid, and water.
  • the number of nitrogen atoms contained in the polyvalent amine compound used in the polishing liquid composition of the present invention is 10 or less, preferably 8 or less, and more preferably 6 or less.
  • the number is preferably 5 or less, more preferably 4 or less, and 2 or more from the viewpoint of suppressing the deterioration of the surface roughness in the cleaning step. Therefore, from the viewpoint of maintaining the polishing rate and suppressing the deterioration of the surface roughness in the cleaning process, the number of nitrogen atoms contained in the polyvalent amine compound is 2 to 10, preferably 2 to 8, in the molecule. More preferably, it is 2 to 6, more preferably 2 to 5, and still more preferably 2 to 4.
  • the substrate manufacturing method of the present invention can improve the cleanliness of the glass substrate.
  • the reason for this is not clear, but the polyvalent amine compound is adsorbed on the glass substrate surface and the substrate surface is positively charged.
  • there are many substances remaining on the substrate after polishing silicon particles, polishing debris, etc.). Divalent amine compounds are adsorbed and have a positive charge. As a result, it is presumed that a repulsive force is generated between the glass substrate and the residue, and the effect of suppressing the adsorption of the residue is exhibited.
  • the number of nitrogen atoms contained in the polyvalent amine compound used in the polishing liquid composition of the present invention is 2 or more, and preferably 3 or more. Therefore, from the viewpoint of achieving both cleanliness and polishing rate, the number of nitrogen atoms contained in the polyvalent amine compound is preferably 2 to 8, more preferably 2 to 6, further preferably 2 to 5, More preferably, it is 3-5, and still more preferably 3-4.
  • the molecular weight of the polyvalent amine compound is preferably 500 or less, more preferably 400 or less, still more preferably 300 or less, and even more preferably 200 or less, in view of maintaining the polishing rate.
  • 40 or more is preferable, 50 or more is more preferable, 60 or more is more preferable, 100 or more is even more preferable, and 150 or more is even more preferable. Therefore, from the viewpoint of maintaining the polishing rate, suppressing the deterioration of the surface roughness in the cleaning step, and further improving the cleanliness, 500 or less is preferable, more preferably 40 to 500, still more preferably 50 to 500, and even more.
  • the polyvalent amine compound contained in the polishing composition may be one type or two or more types.
  • the polyvalent amine compound may be in the form of a salt, and examples thereof include salts with inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids, and salts with anionic surfactants.
  • polyvalent amine compound examples include ethylenediamine, diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, pentaethylenehexamine, 2-[(2-aminoethyl) amino] ethanol, 2- [methyl [2- (Dimethylamino) ethyl] amino] ethanol, 2,2 '-(ethylenebisimino) bisethanol, N- (2-hydroxyethyl) -N'-(2-aminoethyl) ethylenediamine, 2,2 '-(2 -Aminoethylimino) diethanol, N1, N4-bis (hydroxyethyl) diethylenetriamine, N1, N7-bis (hydroxyethyl) diethylenetriamine, 1,3-diamino-2-propanol, piperazine, 1-methylpiperazine, 3- (1 -Piperazinyl) -1-propa Amine, 1- (2-aminoethyl) piperazine, 4-methylpiperazine
  • ethanol 1- (2-aminoethyl) piperazine, 1- (2-hydroxyethyl) piperazine, diethylenetriamine and triethylenetetraamine are preferred, and 2-[(2-aminoethyl) amino] ethanol, 1- (2 -Aminoethyl) piperazine, 1- (2-hydroxyethyl) piperazine and diethylenetriamine are more preferred.
  • 1- (2-hydroxyethyl) piperazine is preferable from the viewpoint of maintaining the polishing rate.
  • the polyvalent amine compound preferably has a vapor pressure at 25 ° C. of 0.3 mmHg or less, and 0.25 mmHg or less from the viewpoint of preventing off-flavor generation due to amine volatilization and the like and improving worker safety. It is more preferable.
  • examples of such polyvalent amine compounds include 2-[(2-aminoethyl) amino] ethanol, 1- (2-hydroxyethyl) piperazine, 1- (2-aminoethyl) piperazine, diethylenetriamine, triethylenetetraamine, Examples include tetraethylenepentamine and pentaethylenehexamine.
  • the vapor pressure at 25 ° C. refers to the pressure of the vapor phase that is in equilibrium with the liquid phase or the solid phase at a constant temperature.
  • Handbookbof Chemical Compound Data for Process Safety (Author: Carl L) Yaws, published by: Gulf Publishing Company, or CRC Handbook of Chemistry and h Physics 88th Edition (Author: Lide, DR, (ed)).
  • the content of the polyvalent amine compound is preferably 5% by weight or less, more preferably 4% by weight or less, and further preferably 3% by weight or less from the viewpoint of maintaining the polishing rate and improving the cleanliness of the substrate.
  • 1% by weight or less is even more preferable, 0.5% by weight or less is further more preferable, and 0.1% by weight or less is further more preferable, from the viewpoint of suppressing deterioration of surface roughness in the cleaning process, the cleanliness of the substrate
  • the content of the polyvalent amine compound in the polishing liquid composition is preferably 0.001% by weight or more, more preferably 0.005% by weight or more.
  • 0.01% by weight or more is more preferable. Therefore, from the viewpoint of maintaining the polishing rate and suppressing the deterioration of the surface roughness in the cleaning process, from the viewpoint of improving the cleanliness of the substrate, and from the viewpoint of improving the durability of the polishing liquid in the cyclic polishing, 0.001 to 5% by weight Preferably, 0.005 to 4 wt% is more preferable, 0.01 to 3 wt% is more preferable, 0.01 to 1 wt% is still more preferable, 0.01 to 0.5 wt% is still more preferable, Even more preferred is 0.01 to 0.1% by weight.
  • the said content shows the total content of all the polyvalent amine compounds, when there are multiple types of polyvalent amine compounds in the polishing composition.
  • the polishing composition preferably contains abrasive grains from the viewpoint of improving the polishing rate.
  • abrasive grains used in the present invention include colloidal silica, fumed silica, silica such as surface-modified silica, alumina, cerium oxide, etc., but the substrate surface roughness is reduced and the substrate is clean. From the viewpoint of improvement, colloidal silica is preferable.
  • colloidal silica is preferable.
  • a usage form of an abrasive grain it is preferable that it is a slurry form.
  • the colloidal silica can be obtained by a water glass method in which particles are grown by a condensation reaction in an aqueous solution using an alkali metal silicate such as sodium silicate as a raw material.
  • the colloidal silica can be obtained by an alkoxysilane method in which an alkoxysilane such as tetraethoxysilane is used as a raw material and grown by condensation reaction in water containing a water-soluble organic solvent such as alcohol.
  • the fumed silica can be obtained by a vapor phase method in which a volatile silicon compound such as silicon tetrachloride is used as a raw material and is hydrolyzed and grown at a high temperature of 1000 ° C. or higher with an oxygen hydrogen burner.
  • the average particle diameter of primary particles of the abrasive grains is preferably 5 to 200 nm, more preferably 7 to 100 nm, still more preferably 9 to 80 nm, from the viewpoint of polishing rate, improvement of cleanliness, and reduction of surface roughness. More preferably, it is 10 to 50 nm.
  • the average particle diameter of the primary particles of the abrasive grains is measured by the method described in the examples.
  • the content of the abrasive grains in the polishing composition is preferably 1 to 20% by weight, more preferably 2 to 19% by weight, and still more preferably 3 to 18% from the viewpoints of improving the polishing rate and reducing the surface roughness. % By weight, still more preferably 5 to 16% by weight.
  • the polishing composition preferably contains an acid from the viewpoint of improving the polishing rate.
  • Acids used include inorganic acids such as nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, tripolyphosphoric acid, amidosulfuric acid, methanedisulfonic acid, ethanedisulfone Acids, sulfur-containing organic acids such as phenol disulfonic acid, naphthalenedisulfonic acid, 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), Diethylenetriaminepenta (methylenephosphonic acid), ethane-1,1, -diphosphonic acid, ethane-1,1,2-triphosphonic acid, ethane-1-hydroxy
  • the use of inorganic acids is preferred, and phosphoric acid and sulfuric acid are more preferred.
  • one or more selected from polyvalent carboxylic acids, organic carboxylic acids having a hydroxyl group in the molecule, phosphorus-containing inorganic acids and phosphorus-containing organic acids are preferable.
  • One or more selected from organic carboxylic acids having a hydroxyl group in the molecule and phosphorus-containing organic acids are more preferred, polyvalent carboxylic acids being more preferred, and organic carboxylic acids having a hydroxyl group in the molecule.
  • one or more selected from 1-hydroxyethylidene-1,1-diphosphonic acid, glycolic acid, succinic acid, malic acid, tartaric acid, and citric acid are preferable, and 1-hydroxyethylidene-1,1-diphosphonic acid is preferable.
  • One or more selected from glycolic acid, malic acid, and citric acid is more preferable, and in view of availability, one or more selected from glycolic acid, malic acid, and citric acid is more preferable. These compounds may be used alone or in combination.
  • the acid may be in the form of a salt.
  • these acid salts there is no particular limitation, and specific examples include salts with alkali metals, alkaline earth metals, ammonium, alkylammonium, and the like.
  • a salt with an alkali metal or ammonium is preferable from the viewpoint of improving the polishing rate and reducing the roughness.
  • the acid content in the polishing composition is preferably 0.05% by weight or more, more preferably 0.1% by weight or more, and still more preferably 0, from the viewpoints of improving the polishing rate and improving the durability in circulating polishing. .15% by weight or more.
  • the acid content is preferably 10% by weight or less, more preferably 7.5% by weight or less, still more preferably 5.5% by weight or less, and still more preferably, because the corrosion of the polishing apparatus can be further suppressed. 2% by weight or less.
  • the acid content is preferably 0.05 to 10% by weight, more preferably 0.1 to 7.5% by weight, still more preferably 0.15 to 5.5% by weight, and still more preferably 0. 15 to 2% by weight.
  • content of the above-mentioned acid shows the total content of all the acids, when there are two or more types of acids in polishing liquid composition.
  • the weight ratio of the polyvalent amine compound to the acid in the polishing composition maintains the polishing rate and suppresses the deterioration of the surface roughness in the cleaning process. From the viewpoint of improvement, and from the viewpoint of improvement of durability in cyclic polishing, 0.001 to 1.0 is preferable, more preferably 0.005 to 0.5, and still more preferably 0.01 to 0.3.
  • the polishing composition preferably contains water as a medium, and distilled water, ion exchange water, pure water, ultrapure water, or the like can be used.
  • the water content in the polishing composition is preferably 55% by weight or more, more preferably 70% by weight or more, and still more preferably, since the handling of the polishing composition becomes easier. It is 80% by weight or more, particularly preferably 85% by weight or more.
  • the water content is preferably 99% by weight or less, more preferably 98% by weight or less, and still more preferably 97% by weight or less, from the viewpoint of improving the polishing rate.
  • the content of the medium is preferably 55 to 99% by weight, more preferably 70 to 98% by weight, still more preferably 80 to 97% by weight, and even more preferably 85 to 97% by weight.
  • the pH of the polishing composition is as follows. 1.0 to 4.2, preferably 1 or more and less than 4.2, more preferably 1.5 to 4.0, still more preferably 1.5 to 3.5, and even more preferably 2.0 to 3 .5, even more preferably 2.5 to 3.5.
  • the above pH is the pH of the polishing composition at 25 ° C., which can be measured using a pH meter (Toa Denpa Kogyo Co., Ltd., HM-30G), and 3 minutes after the electrode is immersed in the polishing composition. It is the latter number.
  • the polishing composition may further contain a bactericidal agent, an antibacterial agent, a thickener, a dispersant, a rust inhibitor, and the like.
  • the content of these components in the polishing liquid composition is preferably 5% by weight or less, more preferably 3% by weight or less, and still more preferably 1% by weight or less from the viewpoint of polishing characteristics.
  • the polishing liquid composition can be prepared by mixing each component by a known method.
  • the polishing composition is usually produced as a concentrated solution from the viewpoint of economy, and it is often diluted at the time of use.
  • the polishing composition may be used as it is, or diluted if it is a concentrated solution.
  • the dilution ratio is not particularly limited, and can be appropriately determined according to the concentration of each component in the concentrate (abrasive content, etc.), polishing conditions, and the like.
  • the pH of the polishing composition may be adjusted to a predetermined pH after mixing the components, or may be adjusted before mixing.
  • the pH can be adjusted with the polyvalent amine compound, the acid, and other pH adjusting agents.
  • the substrate manufacturing method of the present invention includes a step of cleaning a glass substrate that has been polished with the polishing composition using a cleaning composition having a pH of 8.0 to 13.0.
  • a cleaning composition having a pH of 8.0 to 13.0.
  • the cleaning composition one containing an alkaline agent, water, and various additives as required can be used.
  • an alkaline cleaning composition that is usually used in the glass substrate manufacturing process can be used.
  • the alkaline agent used in the cleaning composition may be either an inorganic alkaline agent or an organic alkaline agent.
  • examples of the inorganic alkaline agent include ammonia, potassium hydroxide, and sodium hydroxide.
  • examples of the organic alkali agent include one or more selected from the group consisting of hydroxyalkylamine, tetramethylammonium hydroxide, and choline. These alkaline agents may be used alone or in combination of two or more.
  • hydroxyalkylamine examples include monoethanolamine, diethanolamine, triethanolamine, methylethanolamine, methyldiethanolamine, monopropanolamine, dipropanolamine, tripropanolamine, methylpropanolamine, methyldipropanolamine, aminoethylethanolamine. Etc. Of these, monoethanolamine and methyldiethanolamine are preferable and monoethanolamine is more preferable from the viewpoint of improving product stability and environmental conservation. These hydroxyalkylamines may be used alone or in combination of two or more.
  • potassium hydroxide, sodium hydroxide, mono-oxide are used from the viewpoint of improving the dispersibility of the residue on the substrate of the cleaning composition, improving the storage stability, and particularly facilitating the etching control for glass.
  • At least one selected from the group consisting of ethanolamine, methyldiethanolamine, and aminoethylethanolamine is preferable, and at least one selected from the group consisting of potassium hydroxide and sodium hydroxide is more preferable.
  • the content of the alkaline agent in the cleaning composition is 0.1 to 10% by weight from the viewpoint of expressing the cleaning property for the residue on the substrate of the cleaning composition and enhancing the safety during handling. Preferably, it is 0.3 to 3% by weight.
  • the pH of the cleaning composition is 8.0 to 13.0, preferably 9.0 to 13.0, more preferably 10.0 to 13 from the viewpoint of improving the dispersibility of the residue on the substrate. 0.0, more preferably 11.0 to 13.0.
  • the above pH is the pH of the cleaning composition at 25 ° C., which can be measured using a pH meter (Toa Denpa Kogyo Co., Ltd., HM-30G) and 40 minutes after immersion of the electrode in the cleaning composition. It is the latter number.
  • the detergent composition includes nonionic surfactants, chelating agents, ether carboxylates, fatty acids, anionic surfactants, water-soluble polymers, antifoaming agents (surfactants corresponding to the components) May be included), alcohols, preservatives, antioxidants, and the like.
  • the content of the components other than water contained in the cleaning composition is water from the viewpoint of coexistence of cost reduction and a concentration that exhibits a sufficient effect of various additives and an improvement in storage stability.
  • the total of the content and the content of components other than water is 100% by weight, it is preferably 10 to 60% by weight, more preferably 15 to 50% by weight, and further preferably 15 to 40% by weight. .
  • the cleaning composition is used after being diluted.
  • the dilution rate is preferably 10 to 500 times, more preferably 20 to 200 times, and still more preferably 50 to 100 times in consideration of cleaning efficiency.
  • the water for dilution may be the same as described below.
  • the water contained in the cleaning composition is not particularly limited as long as it can serve as a solvent, and examples thereof include ultrapure water, pure water, ion exchange water, or distilled water. However, ultrapure water, pure water, or ion exchange water is preferable, and ultrapure water is more preferable. Pure water and ultrapure water can be obtained, for example, by passing tap water through activated carbon, subjecting it to ion exchange treatment, and further distilling it, irradiating it with a predetermined ultraviolet germicidal lamp or passing it through a filter as necessary. Can do.
  • the cleaning composition may further contain an aqueous solvent (for example, an alcohol such as ethanol) in addition to the above water as a solvent. However, it is preferable that the solvent contained in the cleaning composition consists only of water.
  • the substrate manufacturing method of the present invention includes a step of polishing a glass substrate to be polished using the polishing liquid composition described above (hereinafter sometimes referred to as “step (1)”).
  • the substrate to be polished in the step (1) is a glass substrate after the fine grinding step, and is preferably a glass substrate after the rough polishing step.
  • the glass substrate is as described above.
  • the polishing liquid composition is supplied to the surface to be polished of the glass substrate, the polishing pad is brought into contact with the surface to be polished, and the polishing pad and the substrate to be polished are moved while applying a predetermined pressure (load). Etc.
  • This step (1) is preferably a finish polishing step from the viewpoint of improving the quality of the final substrate. In the final polishing step, it is preferable to perform cyclic polishing using the polishing composition.
  • the cyclic polishing refers to a technique in which, in the polishing process of the glass substrate, the used polishing liquid is again put into the polishing machine, and the polishing liquid is circulated in the polishing machine and reused.
  • the entire amount of the waste liquid after polishing may be recovered once and then re-entered into the polishing machine, or may be continuously re-introduced into the polishing machine while returning the waste liquid to the recovery tank.
  • alkali metal ions contained in the glass substrate may be eluted.
  • the present inventors have found that the polishing rate decreases when the polishing is performed for a long time because the pH of the polishing liquid increases when alkali ions are eluted. At that time, it is considered that when the acid and the polyvalent amine compound are used in combination, the buffer capacity is increased, the decrease in the polishing rate is suppressed, and the cyclic polishing can be performed for a longer time.
  • the number of times of reuse is not particularly limited.
  • the glass hard disk substrate is preferably used 10 to 30 times, more preferably 15 times, using the polishing composition. Suitable for use when polishing up to 30 times.
  • a new polishing liquid composition is used stepwise or continuously in the polishing liquid composition in the polishing machine. May be included.
  • the new polishing liquid composition is preferably added so as to adjust the pH of the polishing liquid composition in the polishing machine to a range of 1.0 to 4.2, preferably the above-mentioned pH range.
  • the amount of the polishing composition to be newly added may be an amount that adjusts the pH to the range of 1.0 to 4.2, but it is circulated in consideration of productivity and continuity. Is preferably 0.005 to 1, more preferably 0.01 to 0.8 as (a newly added polishing liquid composition / a circulatingly added polishing liquid composition). More preferred.
  • polishing equipment There is no restriction
  • the material of the polishing pad includes an organic polymer, and the organic polymer includes polyurethane.
  • the shape of the polishing pad is preferably a nonwoven fabric.
  • a suede-like urethane hard pad is suitably used in the rough polishing step, and a suede-like urethane soft pad is suitably used in the final polishing step.
  • the substrate to be polished is held by a carrier and sandwiched between a pair of polishing surface plates attached with a polishing pad, and the polishing composition is placed between the polishing pad and the substrate to be polished.
  • the substrate to be polished is polished while the polishing liquid composition is brought into contact with the substrate to be polished by supplying and moving the polishing platen and / or the substrate to be polished under a predetermined pressure.
  • the polishing load in the step (1) is preferably 3 kPa or more, more preferably 4 kPa or more, further preferably 5 kPa or more, and even more preferably 6 kPa or more. From the viewpoint that stable polishing can be performed so that vibration does not occur in the polishing machine during polishing, it is preferably 40 kPa or less, more preferably 30 kPa or less, still more preferably 20 kPa or less, and even more preferably 15 kPa or less.
  • the “polishing load” refers to a pressure applied to a surface to be polished of a substrate to be polished from a surface plate that sandwiches the substrate to be polished during polishing.
  • the method of supplying the polishing liquid composition in the step (1) is a method of supplying the polishing liquid composition with a pump or the like between the polishing pad and the glass substrate in a state where the constituents of the polishing liquid composition are sufficiently mixed in advance.
  • a method of mixing and supplying the constituent components in the line or the like, a method of separately supplying the polishing abrasive slurry and the aqueous solution containing the polyvalent amine compound to the polishing apparatus, and the like can be used.
  • the supply rate of the polishing composition in the step (1) is preferably 1.0 mL / min or less per 1 cm 2 of the substrate to be polished, more preferably 0.6 mL / min or less, and still more preferably 0. 0 from the viewpoint of cost reduction. 4 mL / min or less. Moreover, since the supply rate can further improve the polishing rate, it is preferably 0.01 mL / min or more per 1 cm 2 of the substrate to be polished, more preferably 0.025 mL / min or more, further preferably 0.05 mL / min or more, Even more preferably, it is 0.1 mL / min or more.
  • the supply rate is preferably 0.01 to 1.0 mL / min per 1 cm 2 of the substrate to be polished, more preferably 0.025 to 0.6 mL / min, still more preferably 0.05 to 0.4 mL / min. Even more preferably, it is 0.1 to 0.4 mL / min.
  • the supply flow rate may be higher than the flow rate described above.
  • the supply rate of the polishing composition in the cyclic polishing is preferably 0.1 mL / min or more per 1 cm 2 of the substrate to be polished, more preferably 0.2 mL / min or more, and still more preferably 0.00 because the polishing rate can be further improved.
  • the supply rate in the cyclic polishing is preferably 0.1 to 3.0 mL / min per 1 cm 2 of the substrate to be polished, more preferably 0.2 to 2.5 mL / min, and further preferably 0.3 to 2.2 mL. / Min.
  • the substrate manufacturing method of the present invention is a step of cleaning a glass substrate (substrate to be cleaned) that has been polished using the above-described polishing composition using the above-described cleaning composition (hereinafter referred to as step (2)). May be included.)
  • the substrate to be cleaned in the step (2) includes a glass substrate immediately after being polished in the step (1), a step of immersing in water to prevent drying after the step (1), a water cleaning step and an acid as preliminary cleaning.
  • a glass substrate that has undergone a cleaning process or the like is included.
  • this step (2) for example, (a) the substrate to be cleaned is immersed in the cleaning composition, and / or (b) the cleaning composition is injected to clean the cleaning agent on the surface of the substrate to be cleaned.
  • a composition is provided.
  • the conditions for immersing the substrate to be cleaned in the cleaning composition are not particularly limited.
  • the temperature of the cleaning composition is 20 to 100 ° C. from the viewpoint of safety and operability.
  • the immersion time is preferably from 10 seconds to 30 minutes from the viewpoints of cleanability by the cleaning composition and production efficiency.
  • ultrasonic vibration is given to the cleaning composition from the viewpoint of improving the removability of the residue and the dispersibility of the residue.
  • the frequency of the ultrasonic wave is preferably 20 to 2000 kHz, more preferably 40 to 2000 kHz, and further preferably 40 to 1500 kHz.
  • the cleaning agent composition to which ultrasonic vibration is applied is injected to the cleaning substrate surface.
  • the cleaning composition to which ultrasonic vibration is applied is supplied to the surface to be cleaned by injection, and the surface to which the cleaning composition is supplied is cleaned by rubbing with a cleaning brush. Is preferred.
  • a spray nozzle As means for supplying the cleaning composition onto the surface of the substrate to be cleaned, known means such as a spray nozzle can be used. Moreover, there is no restriction
  • the ultrasonic frequency may be the same as the value preferably adopted in the method (a).
  • step (2) in addition to the method (a) and / or the method (b), one or more steps using known cleaning such as rocking cleaning, cleaning using rotation of a spinner, paddle cleaning, etc. May be included.
  • Examples 1 to 18 and Comparative Examples 1 to 16 Preparation of glass substrate to be polished An aluminosilicate glass substrate coarsely polished in advance with a polishing composition containing ceria abrasive grains was prepared as a glass substrate to be polished. Constituent elements contained in the substrate had an Si content of 27% by weight, an Al content of 9% by weight, and an Na content of 6% by weight. The constituent elements were measured using the ESCA method under the following measurement conditions.
  • Measurement equipment PHI Quantera SXM manufactured by ULVAC-PHI X-ray source: Monochromatic AlK ⁇ ray, 1486.6 eV, 25 W, 15 kV Beam diameter: 100 ⁇ m X-ray incident angle: 45 ° Measurement range: 500 ⁇ 500 ( ⁇ m 2 ) Pass energy: 280.0 (survey), 140.0 eV (narrow) Step size: 1.00 (survey), 0.250 eV (narrow) Measurement elements: C, N, O, Na, Mg, Al, Si, S, K, Ti, Zr, Nb Charging correction: Neutralizer and Ar + irradiation
  • polishing Liquid Composition After adding a predetermined acid to ion-exchanged water, the following additives (polyvalent amine compounds) were added in Examples 1 to 9, 11 to 13, 17, 18, and Comparative Examples 2 to 8, 13 16 to 0.1% by weight in the polishing liquid composition, Example 10 to 0.5% by weight in the polishing liquid composition, and Example 14 in the polishing liquid composition. 0.005% by weight was added to Example 15 so as to be 0.01% by weight in the polishing composition, and Example 16 was added so as to be 1% by weight in the polishing composition.
  • colloidal silica (average particle size: 25 nm) was added so as to be 8% by weight in the polishing composition, and the pH was adjusted to a predetermined value, whereby the polishing compositions of Examples 1 to 18 and Comparative Examples 1 to 16 were used.
  • the acid used and the set pH are as follows.
  • the acid was used to adjust the pH after blending to the target pH.
  • the acid used was 1.1 to 1.8% by weight of citric acid in the polishing composition.
  • Example 9 0.41% by weight of citric acid, in the case of Example 10, 0.6% by weight of sulfuric acid, 1.0% by weight of citric acid, in the case of Example 11, 1.24% by weight of malic acid,
  • Example 12 Glycolic acid in the case of Example 13, 0.38% by weight of HEDP in Example 13, 0.70% by weight of citric acid in Example 14, 0.74% by weight of citric acid in Example 15, Example 16
  • Comparative Example 1 and 9 0.65% by weight of citric acid, in the case of Comparative Example 7 0.88% by weight of citric acid, and in the case of Comparative Example 8 0.40% by weight of citric acid.
  • citric acid 0.65% by weight in the case of Comparative Example 11, citric acid 0.65% by weight
  • Comparative Example 8 citric acid 0.65% by weight
  • citric acid 0.65% by weight in the case of Comparative Example 11,
  • Polishing Method Polishing using the polishing liquid compositions of Examples 1 to 16, Comparative Examples 1 to 8, and 10 to 16 was performed under the conditions of the following standard polishing test.
  • Polishing tester "Fast double-sided 9B polishing machine” manufactured by Speedfam Polishing pad: Suede type (thickness 0.9mm, average hole diameter 30 ⁇ m)
  • Polishing liquid composition supply amount 100 mL / min (supply rate per 1 cm 2 of substrate to be polished: about 0.3 mL / min)
  • Polished substrate aluminosilicate glass substrate (outer diameter 65 mm, inner diameter 20 mm, thickness 0.635 mm)
  • polishing tester "Fast double-sided 9B polishing machine” manufactured by Speedfam Polishing pad: Suede type (thickness 0.9mm, average hole diameter 30 ⁇ m)
  • Polishing liquid composition supply amount 100 mL / min (supply rate per 1 cm 2 of substrate to be polished: about 0.3 mL / min)
  • Lower platen rotation speed 32.5 rpm
  • Polishing load 8.4 kPa
  • Carrier Aramid, thickness 0.45mm Polishing time: 20 minutes
  • Polished substrate aluminosilicate glass substrate (outer diameter 65 mm, inner diameter 20 mm, thickness 0.635 mm)
  • Cleaning Method The polished aluminosilicate glass substrate was cleaned with a cleaning apparatus under the following conditions.
  • Cleaning-1 The substrate to be cleaned is immersed in a resin tank (40 ° C.) containing any of the following cleaning solutions 1 to 5 and cleaned for 120 seconds while being irradiated with ultrasonic waves.
  • Cleaning agent 1 (Examples 1 to 18, Comparative Examples 1 to 9) An alkaline cleaning agent composition having a pH of 12.0 made of a KOH aqueous solution
  • Cleaning agent 2 (Comparative Example 10) 2-[(2-amino Ethyl) amino] ethanol (made by Nippon Emulsifier Co., Ltd.) 0.1% was added, and alkaline detergent composition detergent 3 adjusted to pH 12.0 using KOH aqueous solution 3: (Comparative Example 11) 1 in detergent 1 -Alkaline detergent composition detergent 4 containing 0.1% of (2-hydroxyethyl) piperazine (manufactured by Nippon Emulsifier Co., Ltd.) and adjusted to pH 12.0 using an aqueous KOH solution: (Comparative Example 12) detergent 1 was added 0.1% of tetraethylenepentamine (manufactured by Tosoh Corporation) and adjusted to pH 12.0 using an aqueous KOH solution.
  • Cleaning agent 5 (Comparative Examples 13 to 16) 1-hydroxy Ethylidene , 1-Diphosphonic acid (HEDP) pH 2.5 acidic cleaning composition (2)
  • Rinse-1 The substrate to be cleaned is transferred to a resin tank (40 ° C.) containing ultrapure water. Rinse for 120 seconds while irradiating with sound waves. (3) Repeat (1) and (2) again.
  • Cleaning-2 The substrate to be cleaned is transferred from the resin tank to a scrub cleaning unit in which a cleaning brush is set, a cleaning composition at room temperature is injected onto the cleaning brush, and in the presence of the cleaning composition. Cleaning is performed for 5 seconds by pressing the cleaning brush against both sides of the substrate while rotating the substrate at 400 rpm.
  • Rinsing-2 Transfer the substrate to be cleaned to the next scrub cleaning unit, inject ultra-pure water at room temperature, and press the cleaning brush against both surfaces of the substrate while rotating at 400 rpm, thereby rinsing for 5 seconds. Do. (6) Repeat (4) and (5) again. (7) Rinse-3: Move to a resin tank containing ultrapure water and rinse for 10 minutes. (8) Drying: Transfer to a resin tank containing warm pure water (60 ° C.) and immerse for 60 seconds, then lift the substrate to be cleaned at a rate of 250 mm / min and leave for 420 seconds to completely dry the substrate surface.
  • Example 18 summarizes the results of Examples 1 to 18 and Comparative Examples 1 to 9.
  • Examples 17 and 18 and Comparative Example 9 are the results of cyclic polishing.
  • 100 ml of a new polishing liquid was added to the polishing liquid container every 5 minutes during cyclic polishing.
  • Examples 1 to 16 showed superior polishing rate, surface roughness and cleanliness compared to Comparative Examples 1 to 8. Further, Examples 17 and 18 of the cyclic polishing also showed an excellent polishing rate, surface roughness and cleanliness as compared with Comparative Example 9, and it was shown that the effect was maintained even in the cyclic polishing.
  • Table 2 summarizes the results of Comparative Examples 10 to 12 together with the results of Example 2, Example 6, Example 8, and Comparative Example 1 of Table 1.
  • Table 3 is a table summarizing the results of Comparative Examples 13 to 16 together with the results of Examples 1, 2, 6 and 8 in Table 1.
  • Example 2 As shown in Table 2, in Example 2, Example 6, and Example 8, the additive of the abrasive in Comparative Example 1 and Examples 2, 6, and 8 was added to the cleaning agent instead of the abrasive, respectively. Compared with Comparative Examples 10 to 12, excellent surface roughness and cleanliness were exhibited. In addition, as shown in Table 3 above, Example 1 shows superior cleanliness compared to Comparative Example 13, Example 2 shows superior cleanliness compared to Comparative Example 14, and Example 6 compares with Comparative Example 15. Excellent cleanliness was shown, and Example 8 showed cleanliness superior to that of Comparative Example 16.
  • the excellent effect of the present invention (excellent polishing rate, surface obtained by polishing with an acidic polishing composition containing a polyvalent amine compound and washing with an alkaline cleaning composition) Roughness and cleanliness) are the same effect as when the cleaning agent is an acidic cleaning agent instead of an alkaline cleaning agent, or when a polyvalent amine compound is contained in the alkaline cleaning agent rather than in the polishing composition.
  • excellent polishing rate surface obtained by polishing with an acidic polishing composition containing a polyvalent amine compound and washing with an alkaline cleaning composition
  • Roughness and cleanliness are the same effect as when the cleaning agent is an acidic cleaning agent instead of an alkaline cleaning agent, or when a polyvalent amine compound is contained in the alkaline cleaning agent rather than in the polishing composition.
  • the substrate manufacturing method of the present invention a method for manufacturing a glass hard disk substrate capable of obtaining a polishing rate in the polishing step and effectively suppressing deterioration of the surface roughness of the glass substrate in the alkali cleaning step. Can provide. Therefore, the substrate manufacturing method of the present invention is useful in manufacturing a glass hard disk substrate.
  • the present invention may relate to any of the following: ⁇ 1> A method for producing a glass hard disk substrate, comprising the following steps (1) and (2): (1) A step of polishing a glass substrate to be polished using a polishing liquid composition having a pH of 1.0 to 4.2 containing a polyvalent amine compound having 2 to 10 nitrogen atoms in the molecule. (2) A step of cleaning the substrate obtained in the step (1) using a cleaning composition having a pH of 8.0 to 13.0.
  • ⁇ 2> The method for producing a glass hard disk substrate according to ⁇ 1>, wherein the molecular weight of the polyvalent amine compound is 500 or less; ⁇ 3> The number of nitrogen atoms contained in the polyvalent amine compound is 8 or less, preferably 6 or less, more preferably 5 or less, even more preferably 4 or less, or 2 to 8 Preferably 2 to 6, more preferably 2 to 5 and even more preferably 2 to 4, the method for producing a glass hard disk substrate according to ⁇ 1> or ⁇ 2>; ⁇ 4>
  • the molecular weight of the polyvalent amine compound is 500 or less, preferably 400 or less, more preferably 300 or less, still more preferably 200 or less, or 40 or more, preferably 50 or more, more preferably 60 or more, More preferably 100 or more, even more preferably 150 or more, or 40 to 500, preferably 50 to 500, more preferably 50 to 400, still more preferably 60 to 300, still more preferably 100 to 300, Even more preferably, the method for producing a glass
  • the method for producing a glass hard disk substrate according to any one of ⁇ 1> to ⁇ 4>, which is 0.01 to 0.1% by weight; ⁇ 6> The method for producing a glass hard disk substrate according to any one of ⁇ 1> to ⁇ 5>, wherein the glass substrate to be polished is a glass glass substrate containing a metal atom other than Si; ⁇ 7>
  • the glass substrate to be polished is a glass substrate of aluminosilicate glass, borosilicate glass, aluminoborosilicate glass, or aluminosilicate glass in which sodium is replaced with potassium in a chemical strengthening step, ⁇ 1> to ⁇ 6
  • a method for producing a glass hard disk substrate according to any one of the above; ⁇ 8> The method for producing a glass hard disk substrate according to any one of ⁇ 1> to ⁇ 7>, wherein the glass substrate to be polished is an aluminosilicate glass substrate; ⁇ 9>
  • the acid content of the polishing composition is 0.05% by weight or more, preferably 0.1% by weight or more, more preferably 0.15% by weight or more, or 10% by weight or less, Preferably it is 7.5% by weight or less, more preferably 5.5% by weight or less, further preferably 2% by weight or less, or 0.05 to 10% by weight, preferably 0.1 to 7.5% by weight.
  • the weight ratio of the polyvalent amine compound and the acid in the polishing composition is 0.001 to 1.0, preferably 0.005 to 0.5.
  • the method for producing a glass hard disk substrate according to ⁇ 9> or ⁇ 10>, more preferably 0.01 to 0.3; ⁇ 12> The method for producing a glass hard disk substrate according to any one of ⁇ 1> to ⁇ 11>, wherein the polishing liquid composition contains silica as polishing abrasive grains; ⁇ 13>
  • the content of abrasive grains in the polishing composition is 1 to 20% by weight, preferably 2 to 19% by weight, more preferably 3 to 18% by weight, and still more preferably 5 to 16% by weight.
  • the pH of the polishing composition is 1 or more and less than 4.2, preferably 1.5 to 4.0, more preferably 1.5 to 3.5, and still more preferably 2.0 to 3.5. Further preferably, the method for producing a glass hard disk substrate according to any one of ⁇ 1> to ⁇ 13>, which is 2.5 to 3.5; ⁇ 15>
  • the pH of the cleaning composition is 9.0 to 13.0, preferably 10.0 to 13.0, more preferably 11.0 to 13.0.
  • ⁇ 1> to ⁇ 14> A method for producing a glass hard disk substrate according to any one of the above; ⁇ 16> The method for producing a glass hard disk substrate according to any one of ⁇ 1> to ⁇ 15>, wherein the step (1) includes a cyclic polishing step; ⁇ 17>
  • the cyclic polishing step includes adjusting the pH of the polishing liquid composition used for the cyclic polishing to a pH of 1.0 to 4.2 by supplementing with a new polishing liquid composition.
  • the polishing load in the step (1) is 3 kPa or more, preferably 4 kPa or more, more preferably 5 kPa or more, further preferably 6 kPa or more, or 40 kPa or less, preferably 30 kPa or less, more preferably 20 kPa or less.
  • the supply rate of the polishing composition in the step (1) is 1.0 mL / min or less, preferably 0.6 mL / min or less, more preferably 0.4 mL / min or less per 1 cm 2 of the substrate to be polished.
  • the step (1) includes a cyclic polishing step, and the supply rate of the polishing composition in the step (1) is 0.1 mL / min or more, preferably 0.2 mL / min per 1 cm 2 of the substrate to be polished.
  • Min. Or more, more preferably 0.3 mL / min or more, or 3.0 mL / min or less per 1 cm 2 of the substrate to be polished, preferably 2.5 mL / min or less, more preferably 2.2 mL / min or less. Or 0.1 to 3.0 mL / min, preferably 0.2 to 2.5 mL / min, more preferably 0.3 to 2.2 mL / min per 1 cm 2 of the substrate to be polished, from ⁇ 1> ⁇ 19>

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Surface Treatment Of Glass (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Detergent Compositions (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 ガラス基板を酸性研磨液で研磨した後にアルカリ洗浄する工程を有するガラスハードディスク基板の製造方法であって、研磨工程において研磨速度を維持したまま、アルカリ洗浄工程におけるガラス基板の表面粗さの悪化を抑制し、さらに清浄性を向上できるガラスハードディスク基板の製造方法の提供。 以下の工程(1)及び(2)を含むガラスハードディスク基板の製造方法; (1)分子内に窒素原子を2~10個有する多価アミン化合物を含有するpH1.0~4.2の研磨液組成物を用いて被研磨ガラス基板を研磨する工程; (2)工程(1)で得られた基板を、pH8.0~13.0の洗浄剤組成物を用いて洗浄する工程。

Description

ガラスハードディスク基板の製造方法
 本発明は、ガラスハードディスク基板の製造方法に関する。
 ハードディスクドライブに搭載されるハードディスクは高速で回転するため消費電力が高く、近年では環境への配慮から、低消費電力化が求められている。消費電力を低減するためには、ハードディスク1枚あたりの記録容量を増大させ、ドライブに搭載されるハードディスクの枚数を減らし、軽量化する方法がある。基板1枚の重量を軽量化するためには、基板の厚さを薄くする必要があり、この観点から、アルミ基板に比べて機械的強度が高いガラス基板の需要が高まり、近年の伸張は著しい。また、基板1枚あたりの記録容量を向上させるためには、単位記録面積を縮小する必要がある。しかし、単位記録面積を縮小すると磁気信号が弱くなる問題が発生する。そこで磁気信号の検出感度を向上するため、磁気ヘッドの浮上高さをより低くするための技術開発が進められている。ガラスハードディスク基板の研磨においては、この磁気ヘッドの低浮上化に対応するため、表面粗さや残留物の低減に対する要求が厳しくなっている。このような要求に対し、酸性の研磨液組成物でガラス基板を研磨する技術が提案されている(例えば、特許文献1参照)。
 酸性の研磨液組成物でガラス基板を研磨する方法は、研磨中にガラス基板に含有されるアルカリイオンが溶出するリーチング作用が起こり、基板表面の硬度が低下して研磨速度が向上するという利点がある。しかしながら、酸性の研磨液組成物でガラス基板を研磨する方法は、pHが低いとリーチング作用が大きく働くため、脆いリーチング層が深くまで生成し、研磨工程後のアルカリ洗浄工程におけるアルカリエッチングにより表面粗さが著しく悪化するという問題があった。このような問題に対し、リーチング層の生成を抑制しながら、研磨速度を向上させるために、研磨液の電解質濃度を上げる添加剤を含有する弱酸性(pH4~6)の研磨液でガラス基板を研磨する方法が提案されている(例えば、特許文献2参照)。
 特許文献3には、算術平均粗さ(Ra)が0.1nm近傍の欠陥数が非常に小さい磁気ディスク用ガラス基板が提案されている。その製造に用いる研磨液の添加剤としてカルボン酸、多価アミン、アミノ酸、アミノポリカルボン酸、ホスホン酸類等が開示されている。これらの添加剤は、研磨材が二次凝集の形態を保ったままガラス基板表面と相互作用することを維持でき、それによりガラス基板から異物を除去できることが開示されている。
特開2005-138197号公報 特開2009-087439号公報 WO2010/038741
 しかし、前記特許文献2記載の方法では、弱酸性の研磨液組成物でガラス基板を研磨するため、研磨速度が遅く、生産性が低く、特許文献3記載の方法においても、満足する研磨速度を得ることはできないという問題がある。
 そこで、本発明は、ガラス基板を酸性研磨液で研磨した後に、アルカリ洗浄する工程を有するガラスハードディスク基板の製造方法において、研磨工程において研磨速度を維持したまま、アルカリ洗浄工程におけるガラス基板の表面粗さの悪化を抑制し、さらに清浄性を向上できるガラスハードディスク基板の製造方法を提供する。
 本発明は、以下の工程(1)及び(2)を含むガラスハードディスク基板の製造方法に関する。
(1)分子内に窒素原子を2~10個有する多価アミン化合物を含有するpH1.0~4.2の研磨液組成物を用いて被研磨ガラス基板を研磨する工程。
(2)工程(1)で得られた基板を、pH8.0~13.0の洗浄剤組成物を用いて洗浄する工程。
 本発明によれば、研磨工程において研磨速度を維持しつつ、アルカリ洗浄工程においてガラス基板の表面粗さの悪化を効果的に抑制し、さらに清浄性を向上することができる。
 本発明は、ガラス基板を酸性研磨液で研磨した後にアルカリ洗浄をした場合であっても、前記研磨液に多価アミン化合物が含まれていると、酸性研磨液による研磨速度を維持しつつ、アルカリ洗浄によるガラス基板の表面粗さの悪化を抑制し、さらに清浄性を向上できるという知見に基づく。
 すなわち、本発明は一態様において、以下の工程(1)及び(2)を含むガラスハードディスク基板の製造方法(以下、「本発明の基板製造方法」ともいう。)に関する。
(1)分子内に窒素原子を2~10個有する多価アミン化合物を含有するpH1.0~4.2の研磨液組成物を用いて被研磨ガラス基板を研磨する工程。
(2)工程(1)で得られた基板を、pH8.0~13.0の洗浄剤組成物を用いて洗浄する工程。
 本発明の基板製造方法により、研磨工程で研磨速度が維持される理由は明らかではないが、多価アミン化合物の窒素原子数が所定範囲のとき基板への吸着力が適度に調整されて、多価アミン化合物がガラス基板表面に吸着して、リーチング作用を抑制し、研磨速度が維持されると推定される。
 また、アルカリ洗浄工程における表面粗さの悪化が効果的に抑制される理由は明らかではないが、研磨工程において、多価アミン化合物がガラス基板表面に吸着して、ガラス基板中のアルカリイオンの溶出を抑制することによって、脆いリーチング層の生成が抑制されるため、アルカリ洗浄工程での表面粗さの悪化が抑制されると推定される。
 一般に、ガラスハードディスク基板は、溶融ガラスの型枠プレス又はシートガラスから切り出す方法によってガラス基材を得る工程から、形状加工工程、端面研磨工程、粗研削工程、精研削工程、粗研磨工程、仕上げ研磨工程、化学強化工程を経て製造される。化学強化工程は仕上げ研磨工程の前に施しても良い。また各工程の間には洗浄工程が含まれることがある。ガラスハードディスク基板は、記録部形成工程を経ることで磁気ハードディスクとなる。
 [ガラス基板]
 本発明の基板製造方法における研磨対象である被研磨基板、及び洗浄対象となる研磨後の基板は、ガラス基板である。前記ガラス基板としては、アルミノ珪酸ガラス、ホウ珪酸ガラス、アルミノホウ珪酸ガラス、化学強化工程でナトリウムがカリウムに置換されたアルミノ珪酸ガラス等のSi以外の金属原子を含有するガラスが挙げられるが、研磨速度向上の観点から、アルミノ珪酸ガラス基板、及び化学強化工程でナトリウムがカリウムに置換されたアルミノ珪酸ガラスが好ましく、アルミノ珪酸ガラス基板がより好ましい。アルミノ珪酸ガラス基板は、その構成元素としてO(酸素)以外ではSiを最も多く含み、次いでAl(アルミニウム)及びNa(ナトリウム)を多く含む。通常、Siの含有量は20~40重量%であり、Alの含有量は3~25重量%、Naの含有量は3~25重量%で、他にもK、Ti、Zn、S、Ca、P、B、Zr、Fe、Sr、Nb、Ba、Niなどを含むことがある。ハードディスク用として用いられる場合には、アルミノ珪酸ガラス基板は、研磨速度の向上及び基板の透明性維持の観点から、Alの含有量は、5~20重量%が好ましく、7~15重量%がより好ましく、Naの含有量は3~20重量%が好ましく、5~15重量%がより好ましい。なお、アルミノ珪酸ガラス基板中に含まれるAl及びNaの含有量は実施例に示す方法により求めることができる。
 [研磨液組成物]
 本発明の基板製造方法は、研磨液組成物を用いてガラス基板を研磨する工程を含み、前記研磨液組成物は、少なくとも、分子内に窒素原子を2~10個有する多価アミン化合物(以下、「多価アミン化合物」ともいう。)を含有する。前記研磨液組成物は、好ましくは研磨砥粒、酸、及び水をさらに含有する。
 [多価アミン化合物]
 前記研磨液組成物に配合される多価アミン化合物中に含まれる窒素原子の数が増えるほど吸着する点が増えるため、ガラス基板に強固に吸着して、酸性研磨時のリーチング作用を抑制できると考えられる。一方、多価アミン化合物の窒素原子の個数が多すぎると、多価アミン化合物がガラス基板に強固に吸着するために研磨速度が低下すると考えられる。つまり酸性研磨時のリーチング作用の抑制と研磨速度の向上を両立するためには、多価アミン化合物は、最適な個数の窒素原子を含有する必要がある。ただし、これらの推測は本発明を限定するものではない。
 本発明の研磨液組成物に使用される多価アミン化合物中に含まれる窒素原子の数は、研磨速度を維持する観点から、10個以下であり、8個以下が好ましく、6個以下がより好ましく、5個以下がさらに好ましく、4個以下がさらにより好ましく、洗浄工程における表面粗さの悪化を抑制する観点から、2個以上である。したがって、研磨速度を維持し、洗浄工程における表面粗さの悪化を抑制する観点から、多価アミン化合物中に含まれる窒素原子の数は、分子内に2~10個、好ましくは2~8個、より好ましくは2~6個、さらに好ましくは2~5個、さらにより好ましくは2~4個である。
 また、本発明の基板製造方法は、ガラス基板の清浄性を向上しうる。その理由は明らかではないが、多価アミン化合物がガラス基板表面に吸着して、基板表面が正電荷を帯び、一方、研磨後に基板上に残留する物質(シリカ粒子、研磨クズ等)にも多価アミン化合物が吸着し、正電荷を帯びる。その結果、ガラス基板と残留物との間に反発力が発生し、残留物の吸着が抑制される効果が発現すると推定される。
 本発明の研磨液組成物に使用される多価アミン化合物中に含まれる窒素原子の数は、清浄性を向上する観点から、2個以上であり、3個以上が好ましい。したがって、清浄性と研磨速度の両立の観点から、多価アミン化合物に含まれる窒素原子の数は、好ましくは2~8個、より好ましくは2~6個、さらに好ましくは2~5個、さらにより好ましくは3~5個、さらにより好ましくは3~4個である。
 また、前記多価アミン化合物の分子量は、研磨速度を維持する観点から、500以下が好ましく、400以下がより好ましく、300以下がさらに好ましく、200以下がさらにより好ましく、洗浄工程における表面粗さの悪化を抑制し、さらに清浄性を向上させる観点から、40以上が好ましく、50以上がより好ましく、60以上がさらに好ましく、100以上がさらにより好ましく、150以上がさらにより好ましい。したがって、研磨速度を維持し、洗浄工程における表面粗さの悪化を抑制し、さらに清浄性を向上させる観点から、500以下が好ましく、より好ましくは40~500、さらに好ましくは50~500、さらにより好ましくは50~400、さらにより好ましくは60~300、さらにより好ましくは100~300、さらにより好ましくは150~200である。研磨液組成物に含有される多価アミン化合物は、一種類でもよく、二種類以上でもよい。また、前記多価アミン化合物は、塩の形態であってもよく、例えば、塩酸、硫酸、リン酸等の無機酸、有機酸等との塩、アニオン性界面活性剤との塩が挙げられる。
 前記多価アミン化合物の具体例としては、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、テトラエチレンペンタアミン、ペンタエチレンヘキサアミン、2-[(2-アミノエチル)アミノ]エタノール、2-[メチル[2-(ジメチルアミノ)エチル]アミノ]エタノール、2,2′-(エチレンビスイミノ)ビスエタノール、N-(2-ヒドロキシエチル)-N′-(2-アミノエチル)エチレンジアミン、2,2′-(2-アミノエチルイミノ)ジエタノール、N1,N4-ビス(ヒドロキシエチル)ジエチレントリアミン、N1,N7-ビス(ヒドロキシエチル)ジエチレントリアミン、1,3-ジアミノ-2-プロパノール、ピペラジン、1-メチルピペラジン、3-(1-ピペラジニル)-1-プロパンアミン、1-(2-アミノエチル)ピペラジン、4-メチルピペラジン-1-アミン、1-ピペラジンメタンアミン、4-エチル-1-ピペラジンアミン、1-メチル-4-(2-アミノエチル)ピペラジン、1-(2-ヒドロキシエチル)ピペラジンが挙げられるが、研磨速度を維持し、洗浄工程での表面粗さの悪化を抑制し、清浄性を向上させる観点から、2-[(2-アミノエチル)アミノ]エタノール、1-(2-アミノエチル)ピペラジン、1-(2-ヒドロキシエチル)ピペラジン、ジエチレントリアミン、トリエチレンテトラアミンが好ましく、2-[(2-アミノエチル)アミノ]エタノール、1-(2-アミノエチル)ピペラジン、1-(2-ヒドロキシエチル)ピペラジン、ジエチレントリアミンがより好ましく、2-[(2-アミノエチル)アミノ]エタノール、1-(2-アミノエチル)ピペラジン、ジエチレントリアミンがさらに好ましく、ジエチレントリアミンがさらにより好ましい。又、特に、研磨速度を維持する観点からは、1-(2-ヒドロキシエチル)ピペラジンが好ましい。
 また、前記多価アミン化合物は、アミンの揮発等による異臭発生防止及び作業者の安全性向上の観点から、25℃における蒸気圧が0.3mmHg以下であることが好ましく、0.25mmHg以下であることがより好ましい。このような多価アミン化合物としては、2-[(2-アミノエチル)アミノ]エタノール、1-(2-ヒドロキシエチル)ピペラジン、1-(2-アミノエチル)ピペラジン、ジエチレントリアミン、トリエチレンテトラアミン、テトラエチレンペンタアミン、ペンタエチレンヘキサアミンが挙げられるが、同様の観点から、2-[(2-アミノエチル)アミノ]エタノール、1-(2-ヒドロキシエチル)ピペラジン、ジエチレントリアミン、トリエチレンテトラアミン、テトラエチレンペンタアミン、ペンタエチレンヘキサアミンが好ましく、トリエチレンテトラアミン、テトラエチレンペンタアミン、ペンタエチレンヘキサアミンがより好ましい。ここで、25℃における蒸気圧とは一定の温度において液相又は固相と平衡にある蒸気相の圧力のことを指し、具体的には、Handbook of Chemical Compound Data for Process Safety(著:Carl L.Yaws、出版:Gulf Publishing Company)、もしくは CRC Handbook of Chemistry and Physics 88th Edition (著:Lide, D.R,(ed))に記載されている。
 研磨液組成物における、多価アミン化合物の含有量は、研磨速度の維持及び基板の清浄性向上の観点から、5重量%以下が好ましく、4重量%以下がより好ましく、3重量%以下がさらに好ましく、1重量%以下がさらにより好ましく、0.5重量%以下がさらにより好ましく、0.1重量%以下がさらにより好ましく、洗浄工程における表面粗さの悪化を抑制する観点、基板の清浄性向上の観点及び循環研磨における研磨液の耐久性向上の観点から、研磨液組成物における、多価アミン化合物の含有量は、0.001重量%以上が好ましく、0.005重量%以上がより好ましく、0.01重量%以上がさらに好ましい。したがって、研磨速度を維持し、洗浄工程における表面粗さの悪化を抑制する観点、基板の清浄性向上の観点及び循環研磨における研磨液の耐久性向上の観点から、0.001~5重量%が好ましく、0.005~4重量%がより好ましく、0.01~3重量%がさらに好ましく、0.01~1重量%がさらにより好ましく、0.01~0.5重量%がさらにより好ましく、0.01~0.1重量%がさらにより好ましい。なお、前記含有量は、研磨液組成物中の多価アミン化合物が複数種類の場合、全多価アミン化合物の合計含有量を示す。
 [研磨砥粒]
 前記研磨液組成物は、研磨速度向上の観点から、研磨砥粒を含有することが好ましい。本発明に使用される研磨砥粒としては、コロイダルシリカ、ヒュームドシリカ、表面修飾したシリカ等のシリカ、又は、アルミナ、酸化セリウム等が挙げられるが、基板の表面粗さ低減と基板の清浄性向上の観点から、コロイダルシリカが好ましい。また、研磨砥粒の使用形態としては、スラリー状であることが好ましい。
 前記コロイダルシリカは、珪酸ナトリウム等の珪酸アルカリ金属塩を原料とし、水溶液中で縮合反応させて粒子を成長させる水ガラス法で得られうる。あるいは、前記コロイダルシリカは、テトラエトキシシラン等のアルコキシシランを原料とし、アルコール等の水溶性有機溶媒を含有する水中で縮合反応させて成長させるアルコキシシラン法で得られうる。また、前記ヒュームドシリカは、四塩化珪素等の揮発性珪素化合物を原料とし、酸素水素バーナーによる1000℃以上の高温下で加水分解させて成長させる気相法で得られうる。
 前記研磨砥粒の一次粒子の平均粒子径は、研磨速度、清浄性向上、及び表面粗さ低減の観点から、5~200nmが好ましく、より好ましくは7~100nm、さらに好ましくは9~80nm、さらにより好ましくは10~50nmである。ここで、研磨砥粒の一次粒子の平均粒子径は、実施例に記載の方法により測定される。
 研磨液組成物中における前記研磨砥粒の含有量は、研磨速度向上及び表面粗さ低減の観点から、好ましくは1~20重量%、より好ましくは2~19重量%、さらに好ましくは3~18重量%、さらにより好ましくは5~16重量%である。
 [酸]
 前記研磨液組成物は、研磨速度向上の観点から、酸を含有することが好ましい。使用される酸としては、硝酸、硫酸、亜硫酸、過硫酸、塩酸、過塩素酸、リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、トリポリリン酸、アミド硫酸等の無機酸、メタンジスルホン酸、エタンジスルホン酸、フェノールジスルホン酸、ナフタレンジスルホン酸等の含硫黄有機酸、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1,-ジホスホン酸、エタン-1,1,2-トリホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、エタン-1-ヒドロキシ-1,1,2-トリホスホン酸、エタン-1,2-ジカルボキシ-1,2-ジホスホン酸、メタンヒドロキシホスホン酸、2-ホスホノブタン-1,2-ジカルボン酸、1-ホスホノブタン-2,3,4-トリカルボン酸、α-メチルホスホノコハク酸等の含リン有機酸、シュウ酸、コハク酸、グルタル酸、アジピン酸、マレイン酸、フマル酸、イタコン酸、フタル酸、ニトロトリ酢酸、ニトロ酢酸、エチレンジアミンテトラ酢酸、オキサロ酢酸等のカルボン酸、リンゴ酸、酒石酸、クエン酸、イソクエン酸、グリコール酸等の分子内に水酸基を有する有機カルボン酸、グルタミン酸、ピコリン酸、アスパラギン酸等のアミノカルボン酸等が挙げられる。一方、基板製造における排水による水質汚染の基準であるCOD値低減の観点から、無機酸の使用が好ましく、リン酸、硫酸がより好ましい。また循環研磨における研磨液の耐久性向上の観点から、多価カルボン酸、分子内に水酸基を有する有機カルボン酸、含リン無機酸及び含リン有機酸から選ばれる一種以上が好ましく、多価カルボン酸、分子内に水酸基を有する有機カルボン酸、及び含リン有機酸から選ばれる一種以上がより好ましく、さらに好ましくは多価カルボン酸、分子内に水酸基を有する有機カルボン酸である。具体的には、1-ヒドロキシエチリデン-1,1-ジホスホン酸、グリコール酸、コハク酸、リンゴ酸、酒石酸、及びクエン酸から選ばれる一種以上が好ましく、1-ヒドロキシエチリデン-1,1-ジホスホン酸、グリコール酸、リンゴ酸、及びクエン酸から選ばれる一種以上がより好ましく、入手容易性も考慮すると、グリコール酸、リンゴ酸、及びクエン酸から選ばれる一種以上がさらに好ましい。これらの化合物は単独で用いてもよいし、混合して用いてもよい。
 前記酸は塩の形態であってもよい。これらの酸の塩を用いる場合、特に限定はなく、具体的には、アルカリ金属、アルカリ土類金属、アンモニウム、アルキルアンモニウム等との塩が挙げられる。これらの中でも、研磨速度向上、粗さ低減の観点からアルカリ金属又はアンモニウムとの塩が好ましい。
 研磨液組成物における酸の含有量は、研磨速度向上の観点及び循環研磨における耐久性向上の観点から、0.05重量%以上が好ましく、より好ましくは0.1重量%以上、さらに好ましくは0.15重量%以上である。また、前記酸の含有量は、研磨装置の腐食をさらに抑制できるため、10重量%以下が好ましく、より好ましくは7.5重量%以下、さらに好ましくは5.5重量%以下、さらにより好ましくは2重量%以下である。したがって、前記酸の含有量は、0.05~10重量%が好ましく、より好ましくは0.1~7.5重量%、さらに好ましくは0.15~5.5重量%、さらにより好ましくは0.15~2重量%である。なお、上述の酸の含有量は、研磨液組成物中の酸が複数種類の場合、全ての酸の合計含有量を示す。
 研磨液組成物における多価アミン化合物と酸の重量比(多価アミン化合物の重量/酸の重量)は、研磨速度を維持し、洗浄工程における表面粗さの悪化を抑制する観点、清浄性の向上の観点、並びに循環研磨における耐久性向上の観点から、0.001~1.0が好ましく、より好ましくは0.005~0.5、さらに好ましくは0.01~0.3である。
 [水]
 前記研磨液組成物は、媒体として水を含有することが好ましく、蒸留水、イオン交換水、純水及び超純水等が使用され得る。本発明の基板製造方法における研磨液組成物中の水の含有量は、研磨液組成物の取扱いがさらに容易になるため、55重量%以上が好ましく、より好ましくは70重量%以上、さらに好ましくは80重量%以上、特に好ましくは85重量%以上である。また、前記水の含有量は、研磨速度向上の観点から、99重量%以下が好ましく、より好ましくは98重量%以下、さらに好ましくは97重量%以下である。したがって、前記媒体の含有量は、55~99重量%が好ましく、より好ましくは70~98重量%、さらに好ましくは80~97重量%、さらにより好ましくは85~97重量%である。
 [研磨液組成物のpH]
 前記研磨液組成物のpHは、研磨速度向上及びアルカリ洗浄工程での表面粗さ低減の観点、循環研磨における耐久性向上の観点、研磨機の腐食防止及び作業者の安全性向上の観点から、1.0~4.2であり、好ましくは1以上4.2未満、より好ましくは1.5~4.0、さらに好ましくは1.5~3.5、さらにより好ましくは2.0~3.5、さらにより好ましくは2.5~3.5である。なお、上記のpHは、25℃における研磨液組成物のpHであり、pHメータ(東亜電波工業株式会社、HM-30G)を用いて測定でき、電極の研磨液組成物への浸漬後3分後の数値である。
 [その他の成分]
 前記研磨液組成物は、さらに、殺菌剤、抗菌剤、増粘剤、分散剤、防錆剤等を含んでもよい。これらの成分の研磨液組成物中の含有量は、研磨特性の観点から、5重量%以下が好ましく、より好ましくは3重量%以下、さらに好ましくは1重量%以下である。
 [研磨液組成物の調製方法]
 研磨液組成物は、各成分を公知の方法で混合することにより、調製することができる。研磨液組成物は、経済性の観点から、通常、濃縮液として製造され、これを使用時に希釈する場合が多い。研磨液組成物は、そのまま使用してもよいし、濃縮液であれば希釈して使用すればよい。濃縮液を希釈する場合、その希釈倍率は、特に制限されず、前記濃縮液における各成分の濃度(研磨材の含有量等)や研磨条件等に応じて適宜決定できる。
 研磨液組成物のpHは、前記成分の混合後、所定のpHに調整してもよいし、混合前にそれぞれ調整していてもよい。pHの調整は、前記多価アミン化合物、前記酸、及びそれら以外のpH調整剤により行うことができる。
 [洗浄剤組成物]
 本発明の基板製造方法は、前記研磨液組成物を用いた研磨が施されたガラス基板を、pH8.0~13.0の洗浄剤組成物を用いて洗浄する工程を含む。洗浄剤組成物は、アルカリ剤、水、及び必要に応じて各種添加剤を含有するものが使用できる。また、洗浄剤組成物は、前記pH範囲を満たすものであれば、ガラス基板の製造工程において通常使用されるアルカリ洗浄用組成物を使用できる。
 [アルカリ剤]
 前記洗浄剤組成物で使用されるアルカリ剤は、無機アルカリ剤及び有機アルカリ剤のうちのいずれであってもよい。無機アルカリ剤としては、例えば、アンモニア、水酸化カリウム、及び水酸化ナトリウム等が挙げられる。有機アルカリ剤としては、例えば、ヒドロキシアルキルアミン、テトラメチルアンモニウムハイドロオキサイド、及びコリンからなる群より選ばれる一種以上が挙げられる。これらのアルカリ剤は、単独で用いてもよく、二種以上を混合して用いてもよい。
 ヒドロキシアルキルアミンとしては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、メチルエタノールアミン、メチルジエタノールアミン、モノプロパノールアミン、ジプロパノールアミン、トリプロパノールアミン、メチルプロパノールアミン、メチルジプロパノールアミン、アミノエチルエタノールアミン等が挙げられる。なかでも、製品安定性及び環境保全性を向上させる観点から、モノエタノールアミン及びメチルジエタノールアミンが好ましく、モノエタノールアミンがより好ましい。これらのヒドロキシアルキルアミンは単独で用いても良く、二種以上を混合して用いても良い。
 前記アルカリ剤のうち、洗浄剤組成物の基板上の残留物の分散性の向上、保存安定性の向上、及び特にガラスに対するエッチング制御の容易化の観点から、水酸化カリウム、水酸化ナトリウム、モノエタノールアミン、メチルジエタノールアミン、及びアミノエチルエタノールアミンからなる群から選ばれる少なくとも1種が好ましく、水酸化カリウム及び水酸化ナトリウムからなる群から選ばれる少なくとも1種がより好ましい。
 洗浄剤組成物中におけるアルカリ剤の含有量は、洗浄剤組成物の基板上の残留物に対する洗浄性を発現させ、かつ、取扱時の安全性を高める観点から、0.1~10重量%であると好ましく、0.3~3重量%であるとより好ましい。
 洗浄剤組成物のpHは、基板上の残留物の分散性を向上させる観点から、8.0~13.0であり、好ましくは9.0~13.0、より好ましくは10.0~13.0、さらに好ましくは11.0~13.0である。なお、上記のpHは、25℃における洗浄剤組成物のpHであり、pHメータ(東亜電波工業株式会社、HM-30G)を用いて測定でき、電極の洗浄剤組成物への浸漬後40分後の数値である。
 [各種添加剤]
 前記洗浄剤組成物には、アルカリ剤以外に、非イオン界面活性剤、キレート剤、エーテルカルボキシレート、脂肪酸、アニオン性界面活性剤、水溶性高分子、消泡剤(成分に該当する界面活性剤は除く。)、アルコール類、防腐剤、酸化防止剤等が含まれていても良い。
 前記洗浄剤組成物に含まれる水以外の成分の含有量は、コスト低減や各種添加剤の充分な効果が発現される濃縮度である事と保存安定性向上との両立の観点から、水の含有量と水以外の成分の含有量の合計を100重量%とすると、好ましくは10~60重量%であり、より好ましくは15~50重量%であり、さらに好ましくは15~40重量%である。
 前記洗浄剤組成物は、希釈して用いられる。希釈倍率は、洗浄効率を考慮すると、好ましくは10~500倍、より好ましくは20~200倍、更に好ましくは50~100倍である。希釈用の水は、下記と同様のものでよい。
 [水]
 前記洗浄剤組成物に含まれる水は、溶媒としての役割を果たすことができるものであれば特に制限はなく、例えば、超純水、純水、イオン交換水、又は蒸留水等を挙げることができるが、超純水、純水、又はイオン交換水が好ましく、超純水がより好ましい。尚、純水及び超純水は、例えば、水道水を活性炭に通し、イオン交換処理し、さらに蒸留したものを、必要に応じて所定の紫外線殺菌灯を照射、又はフィルターに通すことにより得ることができる。尚、洗浄剤組成物は、溶媒として上記水に加えて水系溶媒(例えば、エタノール等のアルコール)をさらに含んでいてもよいが、洗浄剤組成物に含まれる溶媒は水のみからなると好ましい。
 [ガラス基板の研磨工程]
 本発明の基板製造方法は、上述した研磨液組成物を用いて被研磨ガラス基板を研磨する工程(以下「工程(1)」ということがある)を含む。工程(1)における被研磨基板は、一般に前記精研削工程を経た後のガラス基板であり、粗研磨工程後のガラス基板であることが好ましい。ガラス基板については、上述のとおりである。工程(1)は、ガラス基板の研磨対象面に研磨液組成物を供給し、前記研磨対象面に研磨パッドを接触させ、所定の圧力(荷重)をかけながら、研磨パッドや被研磨基板を動かすこと等によって行うことができる。この工程(1)は、最終の基板の品質を向上させる観点から、仕上げ研磨工程であることが好ましい。また、仕上げ研磨工程においては、研磨液組成物を用いて循環研磨することが好ましい。
 [循環研磨]
 本明細書において、循環研磨とは、ガラス基板の研磨工程において、使用した研磨液を再度研磨機に投入し、研磨液を研磨機内で循環させて再利用する手法をいう。研磨後の廃液を一度全量回収してから研磨機に再投入しても良いし、廃液を回収タンクに戻しながら連続的に研磨機に再投入しても良い。ガラス基板を酸性の研磨液組成物を用いて研磨する際には、ガラス基板に含有されているアルカリ金属イオンが溶出することがある。アルカリイオンが溶出すると研磨液のpHが上昇してしまうため、長時間研磨をしていると研磨速度が低下することを本発明者らは見出した。その際、前述の酸と多価アミン化合物を併用すると、緩衝能が増大して、研磨速度の低下を抑制し、より長時間の循環研磨が可能になると考えられる。
 研磨液組成物を研磨機内で循環させて再利用する際、その再利用回数は特に制限されないが、前記研磨液組成物を用いて、ガラスハードディスク基板を好ましくは10~30回、より好ましくは15~30回研磨する場合の使用に適している。また、本明細書において、循環研磨は、一実施形態として、研磨液組成物を研磨機内で循環させて再利用する際、研磨機内の研磨液組成物に新しい研磨液組成物を段階的若しくは連続的に追加することを含んでもよい。本実施形態において、新しい研磨液組成物は、研磨機内の研磨液組成物のpHを1.0~4.2の範囲、好ましくは上述のpHの範囲に調整するように添加することが好ましい。具体的には、新しく添加する研磨液組成物の添加量は、pHを1.0~4.2の範囲に調整する量であればよいが、生産性、継続性を考慮して、循環して添加される研磨液組成物に対して、(新しく添加する研磨液組成物/循環して添加される研磨液組成物)として、0.005~1が好ましく、0.01~0.8がより好ましい。
 [研磨装置]
 ガラス基板の研磨に用いられる研磨装置としては、特に制限はなく、被研磨基板を保持する冶具(キャリア:アラミド製等)と研磨布(研磨パッド)とを備える研磨装置を用いることができる。中でも、両面研磨装置が好適に用いられる。
 研磨パッドの材質としては、有機高分子等が挙げられ、前記有機高分子としては、ポリウレタン等が挙げられる。前記研磨パッドの形状は、不織布状が好ましい。例えば、粗研磨工程ではスウェード調のウレタン製硬質パッド、仕上げ研磨工程ではスウェード調のウレタン製軟質パッドが好適に用いられる。
 該研磨装置を用いる研磨の具体例としては、被研磨基板をキャリアで保持し研磨パッドを貼り付けた1対の研磨定盤で挟み込み、研磨液組成物を研磨パッドと被研磨基板との間に供給し、所定の圧力の下で研磨定盤及び/又は被研磨基板を動かすことにより、研磨液組成物を被研磨基板に接触させながら被研磨基板を研磨する方法が挙げられる。
 工程(1)における研磨荷重は、研磨速度を向上させる観点から、好ましくは3kPa以上、4kPa以上がより好ましく、5kPa以上がさらに好ましく、6kPa以上がさらにより好ましい。研磨中に研磨機に振動が発生しないように安定に研磨できるという観点から、好ましくは40kPa以下、30kPa以下がより好ましく、20kPa以下がさらに好ましく、15kPa以下がさらにより好ましい。従って、研磨速度を維持し、安定に研磨できるという観点から、好ましくは3~40kPa、より好ましくは4~30kPa、さらに好ましくは5~20kPa、さらにより好ましくは6~15kPaである。ここで、「研磨荷重」とは、研磨時に被研磨基板を挟み込む定盤から被研磨基板の研磨対象面に加えられる圧力をいう。
 工程(1)における研磨液組成物の供給方法は、予め研磨液組成物の構成成分が十分に混合された状態で研磨パッドとガラス基板の間にポンプ等で供給する方法、研磨の直前の供給ライン内等で構成成分を混合して供給する方法、研磨砥粒スラリーと多価アミン化合物を含有する水溶液とを別々に研磨装置に供給する方法等を用いることができる。
 工程(1)における研磨液組成物の供給速度は、コスト低減の観点から、被研磨基板1cmあたり1.0mL/分以下が好ましく、より好ましくは0.6mL/分以下、さらに好ましくは0.4mL/分以下である。また、前記供給速度は、研磨速度をさらに向上できることから、被研磨基板1cmあたり0.01mL/分以上が好ましく、より好ましくは0.025mL/分以上、さらに好ましくは0.05mL/分以上、さらにより好ましくは0.1mL/分以上である。したがって、前記供給速度は、被研磨基板1cmあたり0.01~1.0mL/分が好ましく、より好ましくは0.025~0.6mL/分、さらに好ましくは0.05~0.4mL/分、さらにより好ましくは0.1~0.4mL/分である。また循環研磨をする場合であれば研磨液組成物を再利用できるので供給流量は上記記載の流量よりも多くなってもよい。循環研磨における研磨液組成物の供給速度は、研磨速度をさらに向上できることから、被研磨基板1cmあたり0.1mL/分以上が好ましく、より好ましくは0.2mL/分以上、さらに好ましくは0.3mL/分以上である。また、前記供給速度の上限は、コスト低減の観点から、被研磨基板1cmあたり3.0mL/分以下が好ましく、より好ましくは2.5mL/分以下、さらに好ましくは2.2mL/分以下である。したがって、循環研磨における供給速度は、被研磨基板1cmあたり0.1~3.0mL/分が好ましく、より好ましくは0.2~2.5mL/分、さらに好ましくは0.3~2.2mL/分である。
 [ガラス基板の洗浄工程]
 本発明の基板製造方法は、上述の研磨液組成物を用いた研磨が施されたガラス基板(被洗浄基板)を、上述の洗浄剤組成物を用いて洗浄する工程(以下、工程(2)ということがある。)を含む。工程(2)における洗浄対象基板には、工程(1)で研磨した直後のガラス基板や、工程(1)の後に乾燥を防ぐための水等への浸漬工程、予備洗浄として水洗浄工程や酸洗浄工程等を経たガラス基板が含まれる。この工程(2)では、例えば、(a)被洗浄基板を洗浄剤組成物に浸漬するか、及び/又は、(b)洗浄剤組成物を射出して、被洗浄基板の表面上に洗浄剤組成物が供給される。
 前記方法(a)において、被洗浄基板の洗浄剤組成物への浸漬条件としては、特に制限はないが、例えば、洗浄剤組成物の温度は、安全性及び操業性の観点から20~100℃であると好ましく、浸漬時間は、洗浄剤組成物による洗浄性と生産効率の観点から10秒~30分間であると好ましい。また、残留物の除去性及び残留物の分散性を高める観点から、洗浄剤組成物には超音波振動が付与されていると好ましい。超音波の周波数としては、好ましくは20~2000kHzであり、より好ましくは40~2000kHzであり、さらに好ましくは40~1500kHzである。
 前記方法(b)では、残留物の洗浄性や油分の溶解性を促進させる観点から、超音波振動が与えられている洗浄剤組成物を射出して、被洗浄基板の表面に洗浄剤組成物を接触させて当該表面を洗浄するか、又は、洗浄剤組成物を被洗浄基板の表面上に射出により供給し、洗浄剤組成物が供給された当該表面を洗浄用ブラシでこすることにより洗浄することが好ましい。さらには、超音波振動が与えられている洗浄剤組成物を射出により洗浄対象の表面に供給し、かつ、洗浄剤組成物が供給された当該表面を洗浄用ブラシでこすることにより洗浄することが好ましい。
 洗浄剤組成物を被洗浄基板の表面上に供給する手段としては、スプレーノズル等の公知の手段を用いることができる。また、洗浄用ブラシとしては、特に制限はなく、例えばナイロンブラシやPVA(ポリビニルアルコール)スポンジブラシ等の公知のものを使用することができる。超音波の周波数としては、前記方法(a)で好ましく採用される値と同様であればよい。
 工程(2)では、前記方法(a)及び/又は前記方法(b)に加えて、揺動洗浄、スピンナー等の回転を利用した洗浄、パドル洗浄等の公知の洗浄を用いる工程を1つ以上含んでもよい。
 [実施例1~18及び比較例1~16]
 1.被研磨ガラス基板の調製
 セリア砥粒を含有する研磨液組成物であらかじめ粗研磨したアルミノ珪酸ガラス基板を被研磨ガラス基板として用意した。基板中に含まれる構成元素は、Siの含有量は27重量%、Alの含有量は9重量%、Naの含有量は6重量%であった。構成元素は、ESCA法を用い以下の測定条件で測定した。
 〔ESCA測定条件〕
・試料作製
 アルミノ珪酸ガラス基板を1cm×1cmに切断し、カーボン製両面テープ上に乗せ固定した。表面のゴミ等を除くためにArスパッタを加速電圧2kVで6分間かけ、ESCA測定を実施した。
・測定
機器:アルバックファイ製 PHI Quantera SXM
X線源:単色化AlKα線、1486.6eV、25W、15kV
ビーム径:100μm
X線入射角:45°
測定範囲:500×500(μm
Pass energy:280.0(survey)、140.0eV(narrow)
Step size:1.00(survey)、0.250eV(narrow)
測定元素:C,N,O,Na,Mg,Al,Si,S,K,Ti,Zr,Nb
帯電補正:Neutralizer及びAr照射
 2.研磨液組成物の調製
 イオン交換水に所定の酸を添加した後、下記の添加剤(多価アミン化合物)を実施例1~9、11~13、17,18、比較例2~8、13~16については研磨液組成物中0.1重量%になるように、実施例10については研磨液組成物中0.5重量%になるように、実施例14については研磨液組成物中0.005重量%になるように、実施例15については研磨液組成物中0.01重量%になるように、実施例16については研磨液組成物中1重量%になるようにそれぞれ添加した。さらにコロイダルシリカ(平均粒子径:25nm)を研磨液組成物中8重量%になるよう添加し、pHを所定の値に調整して実施例1~18及び比較例1~16の研磨液組成物を得た。使用した酸、及び、設定したpHは下記のとおりである。
 〔酸〕
実施例1~9、14~18:クエン酸
実施例10:クエン酸+硫酸
実施例11:リンゴ酸
実施例12:グリコール酸
実施例13:1-ヒドロキシエチリデン-1,1-ジホスホン酸(HEDP)
比較例1~16:クエン酸
 〔pH〕
実施例1~8、11~18:pH3.0
実施例9:pH4.2
実施例10:pH1.5
比較例1~7、9~16:pH3.0
比較例8:pH4.5
 〔添加剤〕
実施例1、比較例13:エチレンジアミン(和光純薬工業社製)
実施例2、比較例8、14:2-[(2-アミノエチル)アミノ]エタノール(日本乳化剤社製)
実施例3:ジエチレントリアミン(東ソー社製)
実施例4:トリエチレンテトラアミン(東ソー社製)
実施例5:ピペラジン(和光純薬工業社製)
実施例6、9~18、比較例15:1-(2-ヒドロキシエチル)ピペラジン(日本乳化剤社製)
実施例7:1-(2-アミノエチル)ピペラジン(東ソー社製)
実施例8、比較例16:テトラエチレンペンタアミン(東ソー社製)
比較例1、9~12:なし
比較例2:エチルアミン(和光純薬工業社製)
比較例3:モノエタノールアミン(シグマアルドリッチ社製)
比較例4:トリエタノールアミン(シグマアルドリッチ社製)
比較例5:ポリエチレンイミン(SP-006(分子量600)、日本触媒社製)
比較例6:ポリジアリルジメチルアンモニウムクロライド(マーコート100)(ナルコ社製)
比較例7:アクリル酸/アクリルアミド-2-メチルプロパンスルホン酸共重合体ナトリウム塩(共重合モル比89/11、重量平均分子量2,000、東亞合成社製)
 前記酸は、配合後のpHを目的のpHに調整することに使用した。使用した酸(酸の添加量)は、実施例1~8、17、18及び比較例2~6、13~16の場合、研磨液組成物中にクエン酸1.1~1.8重量%、実施例9の場合クエン酸0.41重量%、実施例10の場合硫酸0.6重量%、クエン酸1.0重量%、実施例11の場合リンゴ酸1.24重量%、実施例12の場合グリコール酸1.25重量%、実施例13の場合HEDP0.38重量%、実施例14の場合クエン酸0.70重量%、実施例15の場合クエン酸0.74重量%、実施例16の場合クエン酸5.1重量%、比較例1,9の場合クエン酸0.65重量%、比較例7の場合クエン酸0.88重量%、比較例8の場合クエン酸0.40重量%、比較例10の場合クエン酸0.65重量%、比較例11の場合クエン酸0.65重量%、比較例12の場合クエン酸0.65重量%、であった。
 〔シリカ粒子の一次粒子平均粒子径の測定方法〕
 コロイダルシリカを含む試料を、透過型電子顕微鏡「JEM-2000FX」(80kV、1~5万倍、日本電子社製)により当該製造業者が添付した説明書に従って試料を観察し、TEM(Transmission Electron Microscope)像を写真撮影した。この写真をスキャナで画像データとしてパソコンに取り込み、解析ソフト「WinROOF  ver.3.6」(販売元:三谷商事)を用いて、個々のシリカ粒子の円相当径を計測し、粒子径を求めた。このようにして、1000個のシリカ粒子の粒子径を求めた後、これらの平均値を算出し、この平均値を一次粒子の平均粒子径とした。
 3.研磨方法
 実施例1~16、比較例1~8、10~16の研磨液組成物を用いた研磨は、下記の標準研磨試験の条件で行った。
〔研磨条件〕
研磨試験機:スピードファム社製「両面9B研磨機」
研磨パッド:スウェードタイプ(厚さ0.9mm、平均開孔径30μm)
研磨液組成物供給量:100mL/分(被研磨基板1cmあたりの供給速度:約0.3mL/分)
下定盤回転数:32.5rpm
研磨荷重:8.4kPa
キャリア:アラミド製、厚さ0.45mm
研磨時間:20分
被研磨基板:アルミノ珪酸ガラス基板(外径65mm、内径20mm、厚さ0.635mm)
投入基板枚数:10枚
リンス条件:荷重=2.0kPa、時間=2分、イオン交換水供給量=約2L/分
研磨後の基板を下記洗浄条件で洗浄し評価を実施した。
 実施例17、18及び比較例9の研磨液組成物を用いた循環研磨は下記の研磨試験条件で行った。
〔研磨条件〕
研磨試験機:スピードファム社製「両面9B研磨機」
研磨パッド:スウェードタイプ(厚さ0.9mm、平均開孔径30μm)
研磨液組成物供給量:100mL/分(被研磨基板1cmあたりの供給速度:約0.3mL/分)
下定盤回転数:32.5rpm
研磨荷重:8.4kPa
キャリア:アラミド製、厚さ0.45mm
研磨時間:20分
被研磨基板:アルミノ珪酸ガラス基板(外径65mm、内径20mm、厚さ0.635mm)
投入基板枚数:10枚
リンス条件:荷重=2.0kPa、時間=2分、イオン交換水供給量=約2L/分
循環バッチ数:15バッチ
研磨液量:2L
循環研磨方法:研磨液の容器から100mL/分の流量で研磨液を供給し、ドレーンから排出される研磨済みの研磨液を、再度研磨液の容器へ戻しながら研磨を実施した。
循環研磨15バッチ目の基板を下記洗浄条件で洗浄し評価を実施した。
実施例18は研磨中に5分毎に100mlの新しい研磨液を研磨液の容器に追加した。尚、pHは研磨中3.0~3.5の間であった。
 4.洗浄方法
 研磨したアルミノ珪酸ガラス基板を、洗浄装置にて以下の条件で洗浄した。
(1)洗浄-1:下記の洗浄液1~5のいずれかを入れた樹脂槽(40℃)に被洗浄基板を浸漬し、超音波を照射しながら120秒間洗浄する。
洗浄剤1:(実施例1~18、比較例1~9)KOH水溶液からなるpH12.0のアルカリ性洗浄剤組成物
洗浄剤2:(比較例10)洗浄剤1に2-[(2-アミノエチル)アミノ]エタノール(日本乳化剤社製)を0.1%添加して、KOH水溶液を用いてpH12.0に調整したアルカリ性洗浄剤組成物
洗浄剤3:(比較例11)洗浄剤1に1-(2-ヒドロキシエチル)ピペラジン(日本乳化剤社製)を0.1%添加して、KOH水溶液を用いてpH12.0に調整したアルカリ性洗浄剤組成物
洗浄剤4:(比較例12)洗浄剤1にテトラエチレンペンタアミン(東ソー社製)を0.1%添加して、KOH水溶液を用いてpH12.0に調整したアルカリ性洗浄剤組成物
洗浄剤5:(比較例13~16)1-ヒドロキシエチリデン-1,1-ジホスホン酸(HEDP)を用いて調製したpH2.5の酸性洗浄剤組成物
(2)すすぎ-1:被洗浄基板を、超純水を入れた樹脂槽(40℃)に移し、超音波を照射しながら120秒間すすぎを行う。
(3)再度(1)と(2)を繰り返す。
(4)洗浄-2:樹脂槽内から被洗浄基板を、洗浄ブラシがセットされたスクラブ洗浄ユニットに移し、洗浄ブラシに常温の洗浄剤組成物を射出し、該洗浄剤組成物の存在下で洗浄ブラシを該基板の両面に400rpmで回転させながら押し当てることにより、洗浄を5秒間行う。洗浄剤組成物には、「(1)洗浄-1」で用いた洗浄剤組成物と同組成のものを用いる。
(5)すすぎ-2:次のスクラブ洗浄ユニットに被洗浄基板を移し、常温の超純水を射出し、洗浄ブラシを該基板の両面に400rpmで回転させながら押し当てることにより、すすぎを5秒間行う。
(6)再度(4)と(5)を繰り返す。
(7)すすぎ-3:超純水を入れた樹脂槽に移し、10分間すすぎを行う。
(8)乾燥:温純水(60℃)を入れた樹脂槽に移し、60秒間浸漬した後、250mm/分の速度で被洗浄基板を引き上げ、420秒間放置し、完全に基板表面を乾燥させる。
 5.評価方法
 研磨速度、表面粗さ、基板清浄性、及びアミン臭の評価は、以下のように行った。
 〔研磨速度の測定方法〕
 研磨前後の基板の重量差(g)を該基板の密度(2.46g/cm)、基板の表面積(30.04cm)、及び研磨時間(分)で除した単位時間当たりの研磨量を計算し、研磨速度(μm/分)を算出した。その結果を、下記表1及び2に、比較例1を100とした相対値として示す。
 〔表面粗さの測定方法〕
 前述の研磨方法により得られた同じ研磨処理を施した基板10枚のうち、無作為に4枚ずつ2組を選択し、それぞれ洗浄剤組成物を用いない水洗浄、及び洗浄剤組成物を用いたアルカリ洗浄を行い、それぞれの表面粗さを測定した。表面粗さは、各々の基板の両面を、以下に示す条件にて、AFM(Digital Instrument NanoScope IIIa Multi Mode AFM)を用いて測定し、平均値を算出した。またアルカリ洗浄後の基板の表面粗さを水洗浄後の基板の表面粗さで除して、アルカリ洗浄による表面粗さの悪化率を算出した。これらの結果を下記表1~3に示す。
(AFMの測定条件)
Mode: Tapping mode
Area: 1×1μm
Scan rate: 1.0Hz
Cantilever: NCH-10V
Line: 512×512
 〔基板清浄性の評価:残留パーティクルの測定方法〕
 ガラスハードディスク基板を研磨・洗浄・乾燥した後、下記に示す方法で基板上に残留したパーティクル数を測定した。
測定機器:KLA Tencor社製、OSA7100
評価:前述の研磨方法により研磨した基板10枚のうち、無作為に4枚を選択し、各々の基板を10000rpmにてレーザーを照射して突起欠陥を測定した。その4枚の基板の各々両面にある突起欠陥数(個)の合計を8で除して、基板面当たりのパーティクル数として算出した。その結果を、下記表1~3に、比較例1を100とした相対値として示す。
 〔アミン臭の評価〕
 表1に示す各研磨液組成物について、室温条件において、3名のパネラーによる官能評価により以下の評価基準に従ってアミン臭を評価した。
〔評価基準〕
N:アミン臭ほとんど無し
D:アミン臭有り
 下記表1は、実施例1~18と比較例1~9の結果をまとめた表である。なお、実施例17及び18並びに比較例9は、循環研磨の結果である。なお、実施例18は、上述のとおり、循環研磨中に5分毎に100mlの新しい研磨液を研磨液の容器に追加した例である。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示すとおり、実施例1~16は、比較例1~8に比べて優れた研磨速度、表面粗さ及び清浄性を示した。また、循環研磨の実施例17及び18も、比較例9に比べて優れた研磨速度、表面粗さ及び清浄性を示し、循環研磨においてもその効果が持続することが示された。
 下記表2は、比較例10~12の結果を、表1の実施例2、実施例6、実施例8及び比較例1の結果と併せてまとめた表である。また、下記表3は、比較例13~16の結果を、表1の実施例1,2,6及び8の結果と併せてまとめた表である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上記表2に示すとおり、実施例2、実施例6、実施例8は、比較例1及び実施例2,6,8における研磨剤の添加剤が、それぞれ、研磨剤ではなく洗浄剤に添加された比較例10~12に比べて優れた表面粗さ及び清浄性を示した。また、上記表3に示す通り、実施例1は比較例13に比べ優れた清浄性を示し、実施例2は比較例14に比べ優れた清浄性を示し、実施例6は比較例15に比べ優れた清浄性を示し、実施例8は比較例16に比べ優れた清浄性を示した。
 上記表2及び3から、多価アミン化合物を含有した酸性の研磨液組成物で研磨し、アルカリ性の洗浄剤組成物で洗浄することで得られる本発明の優れた効果(優れた研磨速度、表面粗さ及び清浄性)と同等の効果は、洗浄剤がアルカリ洗浄剤ではなく酸性洗浄剤であったり、研磨液組成物にではなくアルカリ洗浄剤に多価アミン化合物が含有されていたりする場合には得られないことが示された。
 本発明の基板製造方法によれば、研磨工程において研磨速度を得ることができ、アルカリ洗浄工程でのガラス基板の表面粗さの悪化を効果的に抑制することが可能なガラスハードディスク基板の製造方法を提供できる。したがって、本発明の基板製造方法は、ガラスハードディスク基板の製造において有用である。
 本発明は、下記のいずれかに関し得る;
<1> 以下の工程(1)及び(2)を含む、ガラスハードディスク基板の製造方法;
 (1)分子内に窒素原子を2~10個有する多価アミン化合物を含有するpH1.0~4.2の研磨液組成物を用いて被研磨ガラス基板を研磨する工程。
 (2)工程(1)で得られた基板を、pH8.0~13.0の洗浄剤組成物を用いて洗浄する工程。
<2> 前記多価アミン化合物の分子量が500以下である、<1>記載のガラスハードディスク基板の製造方法;
<3> 前記多価アミン化合物中に含まれる窒素原子の数が、8個以下、好ましくは6個以下、より好ましくは5個以下、さらに好ましくは4個以下であり、或いは、2~8個、好ましくは2~6個、より好ましくは2~5個、さらに好ましくは2~4個である、<1>又は<2>に記載のガラスハードディスク基板の製造方法;
<4> 前記多価アミン化合物の分子量が、500以下、好ましくは400以下、より好ましくは300以下、さらに好ましくは200以下であり、或いは、40以上、好ましくは50以上、より好ましくは60以上、さらに好ましくは100以上、さらにより好ましくは150以上であり、或いは、40~500、好ましくは50~500、さらに好ましくは50~400、さらにより好ましくは60~300、さらにより好ましくは100~300、さらにより好ましくは150~200である、<1>から<3>のいずれかに記載のガラスハードディスク基板の製造方法;
<5> 前記多価アミン化合物の含有量が、5重量%以下、好ましくは4重量%以下、より好ましくは3重量%以下、さらに好ましくは1重量%以下、さらにより好ましくは0.5重量%以下、さらにより好ましくは0.1重量%以下であり、或いは、0.001重量%以上、好ましくは0.005重量%以上、より好ましくは0.01重量%以上であり、或いは、0.001~5重量%、好ましくは0.005~4重量%、より好ましくは0.01~3重量%、さらに好ましくは0.01~1重量%、さらにより好ましくは0.01~0.5重量%、さらにより好ましくは0.01~0.1重量%である、<1>から<4>のいずれかに記載のガラスハードディスク基板の製造方法;
<6> 前記被研磨ガラス基板が、Si以外の金属原子を含有するガラスのガラス基板である、<1>から<5>のいずれかに記載のガラスハードディスク基板の製造方法;
<7> 前記被研磨ガラス基板が、アルミノ珪酸ガラス、ホウ珪酸ガラス、アルミノホウ珪酸ガラス、又は、化学強化工程でナトリウムがカリウムに置換されたアルミノ珪酸ガラスのガラス基板である、<1>から<6>のいずれかに記載のガラスハードディスク基板の製造方法;
<8> 前記被研磨ガラス基板がアルミノ珪酸ガラス基板である、<1>から<7>のいずれかに記載のガラスハードディスク基板の製造方法;
<9> 前記研磨液組成物が、さらに、多価カルボン酸、含リン無機酸、及び含リン有機酸から選ばれる一種以上の酸を含有する、<1>から<8>のいずれかに記載のガラスハードディスク基板の製造方法;
<10> 前記研磨液組成物の酸の含有量が、0.05重量%以上、好ましくは0.1重量%以上、より好ましくは0.15重量%以上であり、或いは、10重量%以下、好ましくは7.5重量%以下、より好ましくは5.5重量%以下、さらに好ましくは2重量%以下であり、或いは、0.05~10重量%、好ましくは0.1~7.5重量%、より好ましくは0.15~5.5重量%、さらに好ましくは0.15~2重量%である、<9>記載のガラスハードディスク基板の製造方法;
<11> 前記研磨液組成物における多価アミン化合物と酸の重量比(多価アミン化合物の重量/酸の重量)が、0.001~1.0、好ましくは0.005~0.5、より好ましくは0.01~0.3である、<9>又は<10>に記載のガラスハードディスク基板の製造方法;
<12> 前記研磨液組成物が、研磨砥粒としてシリカを含有する、<1>から<11>のいずれかに記載のガラスハードディスク基板の製造方法;
<13> 前記研磨液組成物における研磨砥粒の含有量が、1~20重量%、好ましくは2~19重量%、より好ましくは3~18重量%、さらに好ましくは5~16重量%である、<1>から<12>のいずれかに記載のガラスハードディスク基板の製造方法;
<14> 前記研磨液組成物のpHが、1以上4.2未満、好ましくは1.5~4.0、より好ましくは1.5~3.5、さらに好ましくは2.0~3.5、さらにより好ましくは2.5~3.5である、<1>から<13>のいずれかに記載のガラスハードディスク基板の製造方法;
<15> 前記洗浄剤組成物のpHが、9.0~13.0、好ましくは10.0~13.0、より好ましくは11.0~13.0である、<1>から<14>のいずれかに記載のガラスハードディスク基板の製造方法;
<16> 前記工程(1)が循環研磨工程を含む、<1>から<15>のいずれかに記載のガラスハードディスク基板の製造方法;
<17> 前記循環研磨工程が、循環研磨に使用する研磨液組成物のpHを、新しい研磨液組成物を補充することにより、pH1.0~4.2に調整することを含む、<16>記載のガラスハードディスク基板の製造方法;
<18> 前記工程(1)における研磨荷重が、3kPa以上、好ましくは4kPa以上、より好ましくは5kPa以上、さらに好ましくは6kPa以上であり、或いは、40kPa以下、好ましくは30kPa以下、より好ましくは20kPa以下、さらに好ましくは15kPa以下であり、或いは、3~40kPa、好ましくは4~30kPa、より好ましくは5~20kPa、さらに好ましくは6~15kPaである、<1>から<17>のいずれかに記載のガラスハードディスク基板の製造方法;
<19> 前記工程(1)における前記研磨液組成物の供給速度が、被研磨基板1cmあたり1.0mL/分以下、好ましくは0.6mL/分以下、さらに好ましくは0.4mL/分以下であり、或いは、被研磨基板1cmあたり0.01mL/分以上、好ましくは0.025mL/分以上、より好ましくは0.05mL/分以上、さらに好ましくは0.1mL/分以上であり、或いは、被研磨基板1cmあたり0.01~1.0mL/分、好ましくは0.025~0.6mL/分、より好ましくは0.05~0.4mL/分、さらに好ましくは0.1~0.4mL/分である、<1>から<18>のいずれかに記載のガラスハードディスク基板の製造方法;
<20> 前記工程(1)が循環研磨工程を含み、前記工程(1)における前記研磨液組成物の供給速度が、被研磨基板1cmあたり0.1mL/分以上、好ましくは0.2mL/分以上、より好ましくは0.3mL/分以上であり、或いは、被研磨基板1cmあたり3.0mL/分以下、好ましくは2.5mL/分以下、より好ましくは2.2mL/分以下であり、或いは、被研磨基板1cmあたり0.1~3.0mL/分、好ましくは0.2~2.5mL/分、より好ましくは0.3~2.2mL/分である、<1>から<19>のいずれかに記載のガラスハードディスク基板の製造方法。

Claims (7)

  1. 以下の工程(1)及び(2)を含む、ガラスハードディスク基板の製造方法。
    (1)分子内に窒素原子を2~10個有する多価アミン化合物を含有するpH1.0~4.2の研磨液組成物を用いて被研磨ガラス基板を研磨する工程。
    (2)工程(1)で得られた基板を、pH8.0~13.0の洗浄剤組成物を用いて洗浄する工程。
  2. 前記多価アミン化合物の分子量が500以下である、請求項1に記載のガラスハードディスク基板の製造方法。
  3. 前記被研磨ガラス基板がアルミノ珪酸ガラス基板である、請求項1又は2に記載のガラスハードディスク基板の製造方法。
  4. 前記研磨液組成物が、さらに、多価カルボン酸、含リン無機酸、及び含リン有機酸から選ばれる一種以上の酸を含有する、請求項1から3のいずれかに記載のガラスハードディスク基板の製造方法。
  5. 前記研磨液組成物がシリカを含有する、請求項1から4のいずれかに記載のガラスハードディスク基板の製造方法。
  6. 工程(1)が循環研磨工程を含む、請求項1から5のいずれかに記載のガラスハードディスク基板の製造方法。
  7. 前記循環研磨工程が、循環研磨に使用する研磨液組成物のpHを、新しい研磨液組成物を補充することにより、pH1.0~4.2に調整することを含む、請求項6に記載のガラスハードディスク基板の製造方法。
PCT/JP2011/074694 2010-10-27 2011-10-26 ガラスハードディスク基板の製造方法 WO2012057217A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/881,992 US20130220973A1 (en) 2010-10-27 2011-10-26 Process for manufacturing glass hard disc substrates
CN201180051246.6A CN103180902B (zh) 2010-10-27 2011-10-26 玻璃硬盘基板的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010241063 2010-10-27
JP2010-241063 2010-10-27
JP2011-234183 2011-10-25
JP2011234183A JP5940278B2 (ja) 2010-10-27 2011-10-25 ガラスハードディスク基板の製造方法

Publications (1)

Publication Number Publication Date
WO2012057217A1 true WO2012057217A1 (ja) 2012-05-03

Family

ID=45993923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074694 WO2012057217A1 (ja) 2010-10-27 2011-10-26 ガラスハードディスク基板の製造方法

Country Status (5)

Country Link
US (1) US20130220973A1 (ja)
JP (1) JP5940278B2 (ja)
CN (1) CN103180902B (ja)
MY (1) MY161109A (ja)
WO (1) WO2012057217A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104508742A (zh) * 2012-09-29 2015-04-08 Hoya株式会社 磁盘用玻璃基板的制造方法和磁盘的制造方法、以及磁盘用玻璃基板的清洗液

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9481855B2 (en) 2012-09-17 2016-11-01 Ekc Technology Inc Cleaning composition and method for cleaning a semiconductor device substrate after chemical mechanical polishing
JP6234673B2 (ja) * 2012-12-05 2017-11-22 花王株式会社 ガラス基板の洗浄方法
WO2015115653A1 (ja) * 2014-01-31 2015-08-06 Hoya株式会社 磁気ディスク用基板の製造方法及び磁気ディスクの製造方法
JP6314019B2 (ja) * 2014-03-31 2018-04-18 ニッタ・ハース株式会社 半導体基板の研磨方法
CN107721187B (zh) * 2017-10-31 2021-03-23 江西沃格光电股份有限公司 Tft玻璃表面处理液及tft玻璃表面处理方法
CN114392999A (zh) * 2021-12-06 2022-04-26 芜湖东旭光电科技有限公司 玻璃基板清洗方法及清洗设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009000791A (ja) * 2007-06-22 2009-01-08 Kao Corp ガラス基板の製造方法
JP2009087441A (ja) * 2007-09-28 2009-04-23 Hoya Corp 磁気ディスク用ガラス基板の製造方法および磁気ディスクの製造方法
JP2010108591A (ja) * 2008-09-30 2010-05-13 Hoya Corp 磁気ディスク用ガラス基板及び磁気ディスク
JP2010132748A (ja) * 2008-12-03 2010-06-17 Lion Corp 洗浄剤組成物およびハードディスク基板の洗浄方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2393447B (en) * 2002-08-07 2006-04-19 Kao Corp Polishing composition
WO2004042812A1 (ja) * 2002-11-08 2004-05-21 Fujimi Incorporated 研磨用組成物及びリンス用組成物
US7553345B2 (en) * 2002-12-26 2009-06-30 Kao Corporation Polishing composition
JP2005138197A (ja) * 2003-11-04 2005-06-02 Fujimi Inc 研磨用組成物及び研磨方法
JP4836441B2 (ja) * 2004-11-30 2011-12-14 花王株式会社 研磨液組成物
JP2009056076A (ja) * 2007-08-31 2009-03-19 Ykk Corp スライドファスナー用スライダー

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009000791A (ja) * 2007-06-22 2009-01-08 Kao Corp ガラス基板の製造方法
JP2009087441A (ja) * 2007-09-28 2009-04-23 Hoya Corp 磁気ディスク用ガラス基板の製造方法および磁気ディスクの製造方法
JP2010108591A (ja) * 2008-09-30 2010-05-13 Hoya Corp 磁気ディスク用ガラス基板及び磁気ディスク
JP2010132748A (ja) * 2008-12-03 2010-06-17 Lion Corp 洗浄剤組成物およびハードディスク基板の洗浄方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104508742A (zh) * 2012-09-29 2015-04-08 Hoya株式会社 磁盘用玻璃基板的制造方法和磁盘的制造方法、以及磁盘用玻璃基板的清洗液
CN104508742B (zh) * 2012-09-29 2017-07-28 Hoya株式会社 磁盘用玻璃基板的制造方法和磁盘的制造方法、以及磁盘用玻璃基板的清洗液

Also Published As

Publication number Publication date
MY161109A (en) 2017-04-14
CN103180902B (zh) 2016-02-03
US20130220973A1 (en) 2013-08-29
JP2012107226A (ja) 2012-06-07
CN103180902A (zh) 2013-06-26
JP5940278B2 (ja) 2016-06-29

Similar Documents

Publication Publication Date Title
JP5940278B2 (ja) ガラスハードディスク基板の製造方法
JP5853117B1 (ja) 磁気ディスク基板用研磨液組成物
JP6125814B2 (ja) 磁気ディスク基板の製造方法
JP6234673B2 (ja) ガラス基板の洗浄方法
JP6125815B2 (ja) 磁気ディスク基板の製造方法
JP2015125792A (ja) 磁気ディスク基板用研磨液組成物
JP5979744B2 (ja) ハードディスク製造方法
JP6437303B2 (ja) ガラスハードディスク基板用研磨液組成物
JP6148932B2 (ja) 磁気ディスク基板用研磨液組成物
JP6321360B2 (ja) ガラスハードディスク基板用研磨液組成物
JP6495095B2 (ja) 磁気ディスク基板用研磨液組成物
JP2013140647A (ja) 磁気ディスク基板の製造方法
JP5748331B2 (ja) ガラスハードディスク基板用研磨液組成物
JP7458732B2 (ja) 研磨用組成物および磁気ディスク基板製造方法
US10570355B2 (en) Cleaning agent composition for glass hard disk substrate
JP6316680B2 (ja) 磁気ディスク基板用研磨液組成物
JP2014093099A (ja) ガラスハードディスク基板用研磨液組成物
JP2013140645A (ja) 磁気ディスク基板の製造方法
JP6081317B2 (ja) 磁気ディスク基板の製造方法
JP6457259B2 (ja) ガラスハードディスク基板用酸性洗浄剤組成物
JP6239973B2 (ja) ガラスハードディスク基板の製造方法
JP2014029752A (ja) 磁気ディスク基板の製造方法
JP2012128916A (ja) ガラスハードディスク基板の製造方法
JP2015120828A (ja) 結晶化ガラス基板用研磨液組成物
JP7368998B2 (ja) 研磨用組成物および磁気ディスク基板製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836350

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13881992

Country of ref document: US

Ref document number: 12013500835

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836350

Country of ref document: EP

Kind code of ref document: A1