WO2012043461A1 - Vehicle braking control device, vehicle control device, and vehicle braking control method - Google Patents

Vehicle braking control device, vehicle control device, and vehicle braking control method Download PDF

Info

Publication number
WO2012043461A1
WO2012043461A1 PCT/JP2011/071858 JP2011071858W WO2012043461A1 WO 2012043461 A1 WO2012043461 A1 WO 2012043461A1 JP 2011071858 W JP2011071858 W JP 2011071858W WO 2012043461 A1 WO2012043461 A1 WO 2012043461A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
engine
braking
braking force
wheels
Prior art date
Application number
PCT/JP2011/071858
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 橋本
陽介 大森
雪生 森
政義 武田
Original Assignee
株式会社 アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アドヴィックス filed Critical 株式会社 アドヴィックス
Priority to CN201180046092.1A priority Critical patent/CN103201145B/en
Priority to DE112011103235.8T priority patent/DE112011103235B4/en
Publication of WO2012043461A1 publication Critical patent/WO2012043461A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/06Hill holder; Start aid systems on inclined road

Definitions

  • the present invention relates to a vehicle braking control device and a vehicle braking control method for adjusting a braking force on wheels when the vehicle is stopped.
  • the present invention also relates to a control device for a vehicle that includes the above-described braking control device and permits automatic stop and restart of the engine.
  • the driver of the vehicle sometimes performs a brake operation to reduce the braking force on the wheels, that is, an operation to reduce the operation amount of the brake pedal before the vehicle is stopped. Then, the vehicle deceleration of the vehicle becomes smaller compared to the case where such a brake operation is not performed. As a result, the amount of change in the vehicle deceleration when the vehicle stops is reduced, and as a result, the vibration of the vehicle due to the swing back is reduced.
  • Patent Document 1 discloses that braking control is performed to increase the braking force on the wheels when it is determined that the vehicle has stopped, thereby suppressing the backward movement of the driver's unintended vehicle after the vehicle has stopped. It is done.
  • the increase in the braking force on the wheels is started at the timing when it is determined that the vehicle has stopped.
  • the braking force on the wheels is not increased unless the driver performs a braking operation to increase the braking force. Therefore, even if the slope of the road surface on which the vehicle travels changes from a slow slope to a steep slope after the start of the braking operation to reduce the braking force to the wheels, the control to the wheels is performed at the timing determined to have stopped.
  • the increase of power is started. In this case, there is a possibility that an unintended backward movement of the driver may occur between the time the vehicle stops and the braking force on the wheels actually starts to increase.
  • the present invention has been made in view of such circumstances.
  • the object of the present invention is to provide a vehicle braking control device capable of suppressing unintended movement of the vehicle even if the driver performs a braking operation to reduce the braking force on the wheels when the vehicle is stopped.
  • the braking control device for a vehicle acquires braking force equivalent values (Pmc, Pwc) corresponding to the braking forces for the wheels (FR, FL, RR, RL) provided in the vehicle.
  • the braking force acquisition unit (55, S13) and the target value (Pmctha) of the braking force equivalent value corresponding to the braking force for the wheels (FR, FL, RR, RL) Control the braking force on the wheels (FR, FL, RR, RL) and set the target value setting unit (55, S20) to set the value to a larger value than the case where the road surface slope is a slow slope.
  • a braking control unit (55, S22, S33), and the braking control unit (55, S22, S33) is operated by the driver to reduce the braking force applied to the wheel (FR, FL, RR, RL).
  • the braking force corresponding values (Pmc, Pwc) acquired by the braking force acquiring unit (55, S13) are equal to or less than the target value (Pmctha) set by the gradient target value setting unit (55, S20).
  • the second braking control to increase the braking force on the wheels (FR, FL, RR, RL) is started.
  • the first braking control when the braking force on the wheels is reduced by the driver's braking operation when the vehicle is stopped, the first braking control is performed to restrict the braking force from becoming too small.
  • the first braking control is started, the braking force on the wheels is held in the vicinity of the braking force according to the gradient of the road surface.
  • the gradient of the road surface changes to a steep gradient after the start of the first braking control, the current braking force applied to the wheels may cause an unintended movement of the vehicle by the driver.
  • a second braking control is performed to increase the power. That is, as compared with the conventional case where it is determined that the vehicle has stopped and then the braking force for the wheel is increased, the timing for increasing the braking force for the wheel is earlier.
  • the vehicle can be stopped even if the amount of brake operation by the driver does not increase. Therefore, even if the driver performs a braking operation such that the braking force on the wheels is reduced when the vehicle is stopped, it is possible to suppress unintended movement of the vehicle.
  • the vehicle braking system of the present invention permits the automatic stop of the engine (12) when the stop condition of the engine (12) of the vehicle is satisfied, and the restart condition of the engine (12) is satisfied.
  • a permission unit (55, S16, S37) for permitting restart of the engine (12) and a braking control device (55) of the vehicle, wherein the permission unit (55, S16, S37)
  • the permission unit (55, S16, S37) When it is detected that the driver has an intention to start the vehicle while the engine (12) is stopped, the engine (12) is allowed to restart, and the braking control unit (55, S33) If restart of the engine (12) is permitted by the permission unit (55, S16, S37) after the start of the first braking control, the change of the road surface to the steep side is detected even if the restart of the engine (12) is permitted.
  • the above than the second braking control It is preferable to prioritize the control to restart the engine (12).
  • the vehicle is provided with a brake actuator that is driven to automatically adjust the braking force on the wheels.
  • the brake actuator is driven.
  • the amount of power consumption of the brake actuator increases. Therefore, when the control for restarting the engine and the second braking control overlap in time, the load of the battery mounted on the vehicle becomes very large. Therefore, in the present invention, even when the start condition of the second braking control is satisfied while the engine is stopped, if it is determined that the driver has the intention to start the vehicle, the second braking control will be performed.
  • Control to restart the engine is preferentially performed. That is, the power stored in the battery mounted on the vehicle is preferentially used in the control for restarting the engine. Therefore, it is possible to contribute to quick start of the vehicle in accordance with the driver's intention while suppressing an increase in battery load.
  • the vehicle is provided with a booster (26) for assisting an operating force at the time of a brake operation by a driver using an intake negative pressure of the engine (12).
  • a booster pressure acquiring unit (55, S29) for acquiring a negative pressure (Pb) generated in the inside of the engine (12), wherein the permitting unit (55, S16, S31) is configured to stop the engine (12).
  • the driver determines whether the negative pressure (Pb) in the booster (26) acquired by the booster pressure acquisition unit (55, S29) is generating a negative pressure in the booster (26) When it becomes less than the reference value (Pbth), it is preferable to permit restart of the engine (12).
  • the booster can hardly assist the operating force at the time of the driver's braking operation. Therefore, even if the driver performs a brake operation, an appropriate braking force is not applied to the wheels. That is, even if the driver increases the amount of brake operation to reliably stop the vehicle, the braking force on the wheels is not increased to the driver's desired magnitude. Therefore, in the present invention, even when the start condition of the second braking control is satisfied while the engine is stopped, if it is determined that the negative pressure is not generated in the booster, the second braking control will be performed. Control to restart the engine is preferentially performed. Then, when the engine restart is completed, an appropriate negative pressure is generated in the booster. Therefore, the braking force corresponding to the amount of brake operation by the driver can be applied to the wheels. That is, the behavior of the vehicle can be made in accordance with the driver's intention.
  • the braking control unit (55, S33) is provided with comfort equipment (60, 61) in the vehicle while the engine (12) is stopped and after the first braking control is started.
  • the second braking control is performed when a change to the steep side of the road surface is detected, and the permission unit (55, S16, S31), when there is a request to restart the engine (12) accompanying the operation of the comfort equipment (60, 61), detects a change to the steep side of the road surface, the second braking
  • the engine (12) is allowed to restart.
  • the braking control according to the driver's intention is preferentially performed over the comfort in the vehicle based on the operation of the comfort equipment. Therefore, the safety of the vehicle can be improved.
  • the braking force corresponding values (Pmc, Pwc) acquired by the braking force acquiring unit (55, S13) correspond to the gradient target value setting unit (55, S20) is a control to increase the braking force on the wheels (FR, FL, RR, RL) until the target value (Pmctha) set by S20) is reached, and the braking control unit (55, S35) is the second control After completion of the braking control, it is preferable to perform control for holding the braking force on the wheels (FR, FL, RR, RL).
  • the vehicle when the braking force on the wheels becomes equal to or greater than the set value corresponding to the gradient of the road surface (that is, the target value set by the gradient braking force setting unit), the vehicle can be stopped.
  • the second braking control ends. Thereafter, control is performed to hold the braking force on the wheels. Therefore, compared with the case where the second braking control is continued, it is possible to reduce the amount of power consumption in the brake actuator driven when automatically adjusting the braking force on the wheel.
  • the braking control method for a vehicle includes a braking force acquisition step (13) for acquiring a braking force equivalent value (Pmc, Pwc) corresponding to a braking force for a wheel (FR, FL, RR, RL) provided in the vehicle.
  • the target value (Pmctha) of the braking force for the wheels (FR, FL, RR, RL) is larger when the slope of the road surface where the vehicle is located is steep than when the slope of the road surface is slow.
  • a second braking step (S33) for increasing the braking force on (FR, FL, RR, RL when the driver performs the gradient target value setting step (S20) to be set to a value and the braking operation to reduce the braking force on the wheels (FR, FL, RR, RL)
  • the reduction of the braking force on the wheels (FR, FL, RR, RL) is restricted by the execution of the first braking step (S22), when the slope of the road surface changes to the steep side, the wheels
  • FIG. 1 is a block diagram showing an essential part of a vehicle equipped with a vehicle braking control device according to the present invention.
  • FIG. 2 is a block diagram showing an example of a braking device.
  • the map which shows the relationship between the absolute value of gradient acceleration, and gradient equivalent MC pressure.
  • the flowchart which demonstrates an idle stop process routine.
  • 7 is a timing chart showing changes in MC pressure, WC pressure, booster pressure, engine speed, road surface slope, vehicle speed, current value for a linear solenoid valve, and current value for a pump motor while the vehicle is traveling uphill.
  • the timing chart which shows change.
  • the timing chart explaining an example of another embodiment in the case of giving priority to control which restarts an engine rather than control which increases braking power to a wheel.
  • traveling direction (forward direction) of the vehicle will be described as the front (vehicle front).
  • the vehicle according to the present embodiment automatically stops the engine according to the establishment of a predetermined stop condition during traveling of the vehicle in order to improve the fuel efficiency performance and the emission performance, and then the engine according to the establishment of the predetermined start condition Has a so-called idle stop function that automatically restarts the Therefore, in this vehicle, the engine is automatically stopped during deceleration or stop by the driver's brake operation.
  • the front wheels FR, FL are drive wheels. It is a so-called front wheel drive car that functions as In such a vehicle, a driving force generator 13 having an engine 12 that generates a driving force corresponding to the amount of operation of the accelerator pedal 11 by the driver, and the driving force generated by the driving force generator 13 And a driving force transmission device 14 for transmitting.
  • the vehicle also includes an audio 60 (including a navigation device) as an example of a comfort facility, a temperature adjustment device 61 as an example of a comfort facility, and a braking force corresponding to the operation amount of the brake pedal 15 by the driver.
  • a braking device 16 is provided for applying to each of the wheels FR, FL, RR, RL.
  • the driving force generator 13 includes an intake pipe 70 extended from the engine 12 to the outside, and a throttle valve 71 disposed in the intake pipe 70 and varying an opening cross-sectional area thereof.
  • the throttle valve 71 operates by a driving force generated by an actuator (not shown).
  • an actuator not shown
  • a fuel injection device not shown having an injector for injecting fuel is provided.
  • the driving force generator 13 is provided with a starter motor 72 that operates when the engine 12 is started.
  • the driving force generator 13 is driven based on control of an engine ECU 17 (also referred to as an “engine electronic control device”) having a CPU, a ROM, a RAM, and the like (not shown).
  • the engine ECU 17 is electrically connected to an accelerator opening sensor SE1 disposed in the vicinity of the accelerator pedal 11 and detecting an operation amount of the accelerator pedal 11 by the driver, that is, an accelerator opening. Then, the engine ECU 17 calculates the accelerator opening based on the detection signal from the accelerator opening sensor SE1, and controls the driving force generator 13 based on the calculated accelerator opening and the like.
  • the driving force transmission device 14 controls the automatic transmission 18, the differential gear 19 for appropriately distributing the driving force transmitted from the output shaft of the automatic transmission 18 and transmitting it to the front wheels FR and FL, and the automatic transmission 18 And an AT ECU (not shown).
  • the automatic transmission 18 includes a hydraulic drive power transmission mechanism 20 having a torque converter (not shown) as an example of a fluid coupling, and a transmission mechanism 21.
  • the audio 60 is a device for providing the occupant with information such as music according to the operation by the occupant of the vehicle.
  • the audio 60 operates based on the power supplied from a battery (not shown) mounted on the vehicle.
  • the temperature adjustment device 61 is an air conditioner for adjusting the temperature in the vehicle.
  • the temperature control device 61 includes a compressor 62 that operates based on the driving force generated by the engine 12, and a connection / disconnection mechanism 63 disposed on a power transmission path between the engine 12 and the compressor 62.
  • the connection / disconnection mechanism 63 is a mechanism that operates to allow or disconnect the transmission of the driving force to the compressor 62. That is, the compressor 62 operates when the driving force generated by the engine 12 is transmitted through the connection / disconnection mechanism 63.
  • the audio 60 and the temperature adjustment device 61 are controlled by an idle stop ECU 65 (also referred to as an “idle stop electronic control device”) having a CPU, a ROM, a RAM, and the like (not shown). Specifically, the idle stop ECU 65 controls the amount of power supplied from the battery to the audio 60, and controls the connection / disconnection mechanism 63.
  • an idle stop ECU 65 also referred to as an “idle stop electronic control device” having a CPU, a ROM, a RAM, and the like (not shown).
  • the idle stop ECU 65 controls the amount of power supplied from the battery to the audio 60, and controls the connection / disconnection mechanism 63.
  • the braking device 16 includes a hydraulic pressure generating device 28 having a master cylinder 25, a booster 26 and a reservoir 27, and a brake actuator 31 having two hydraulic circuits 29, 30 (in FIG. 2). (Indicated by a two-dot chain line).
  • the respective hydraulic circuits 29, 30 are connected to the master cylinder 25 of the hydraulic pressure generating device 28, respectively.
  • a wheel cylinder 32a for the right front wheel FR and a wheel cylinder 32d for the left rear wheel RL are connected to the first hydraulic circuit 29, and a wheel for the left front wheel FL is connected to the second hydraulic circuit 30.
  • a cylinder 32b and a wheel cylinder 32c for the right rear wheel RR are connected.
  • the booster 26 is connected to an intake manifold 70a that generates a negative pressure when the engine 12 is driven. Then, the booster 26 assists the operating force of the brake pedal 15 by the driver using the pressure difference between the negative pressure generated in the intake manifold 70a and the atmospheric pressure. Further, the booster 26 is provided with a booster pressure sensor SE9 for detecting a negative pressure generated in the booster 26, that is, the booster pressure. A detection signal corresponding to the booster pressure in the booster 26 is output from the booster pressure sensor SE9 to the brake ECU 55.
  • Master cylinder 25 generates a master cylinder pressure (hereinafter also referred to as “MC pressure”) as a fluid pressure according to the operation of brake pedal 15 by the driver (hereinafter also referred to as “brake operation”).
  • MC pressure master cylinder pressure
  • brake operation the master cylinder 25 supplies brake fluid as an example of fluid into the wheel cylinders 32a to 32d via the hydraulic circuits 29, 30.
  • a braking force corresponding to the wheel cylinder pressure (also referred to as "WC pressure”) in the wheel cylinders 32a to 32d is applied to the wheels FR, FL, RR, and RL.
  • each hydraulic circuit 29, 30 is connected to the master cylinder 25 via connection paths 33, 34, and the connection paths 33, 34 are normally open linear solenoid valves (regulating valves). ) 35a, 35b are provided.
  • the linear solenoid valves 35a and 35b include a valve seat, a valve body, an electromagnetic coil, and a biasing member (eg, a coil spring) for biasing the valve body away from the valve seat, and the valve body will be described later It is displaced according to the magnitude of the current supplied from the brake ECU 55 to the electromagnetic coil, that is, the current value. That is, the differential pressure between the MC pressure in the master cylinder 25 and the WC pressure in the wheel cylinders 32a to 32d is adjusted to a magnitude corresponding to the current value to the linear solenoid valves 35a, 35b.
  • a pressure sensor SE8 is provided.
  • a detection signal corresponding to the MC pressure is output from the master pressure sensor SE8 to the brake ECU 55.
  • a right front wheel path 36a connected to the wheel cylinder 32a and a left rear wheel path 36d connected to the wheel cylinder 32d are formed.
  • a left front wheel path 36b connected to the wheel cylinder 32b and a right rear wheel path 36c connected to the wheel cylinder 32c are formed.
  • the WC pressures are set as pressure increase valves 37a, 37b, 37c, and 37d, which are normally open solenoid valves that operate when regulating the WC pressure increase in the wheel cylinders 32a to 32d.
  • Pressure reducing valves 38a, 38b, 38c, and 38d which are normally closed solenoid valves that operate when reducing the pressure, are provided.
  • the hydraulic circuits 29, 30 operate based on the rotation of the pump motor 41 and reservoirs 39, 40 for temporarily storing the brake fluid that has flowed out of the wheel cylinders 32a 32d through the pressure reducing valves 38a 38d.
  • Pumps 42 and 43 are connected.
  • the reservoirs 39 and 40 are connected to the pumps 42 and 43 through the suction flow channels 44 and 45, and connected to the connection paths 33 and 34 through the master flow channels 46 and 47 more than the linear solenoid valves 35a and 35b. It is connected to the master cylinder 25 side.
  • the pumps 42 and 43 are connected to connection portions 50 and 51 between the pressure increasing valves 37a to 37d and the linear solenoid valves 35a and 35b in the hydraulic circuits 29 and 30 through the supply flow paths 48 and 49, respectively. There is.
  • the pumps 42 and 43 suck the brake fluid from the reservoirs 39 and 40 and the master cylinder 25 through the suction flow paths 44 and 45 and the master side flow paths 46 and 47. And discharge the brake fluid into the supply channels 48, 49.
  • brake ECU 55 also referred to as “brake electronic control device” that controls the drive of the brake actuator 31 will be described.
  • wheel speed sensors SE3, SE4, SE5, SE6 for detecting the wheel speeds of the respective wheels FR, FL, RR, RL are provided at the input side interface of the brake ECU 55 as a braking control device.
  • An acceleration sensor (also referred to as "G sensor”) SE7 for detecting an acceleration in the front-rear direction of the vehicle is electrically connected.
  • a brake switch SW1, a master pressure sensor SE8, and a booster pressure sensor SE9, which are disposed in the vicinity of the brake pedal 15 and detect whether the brake pedal 15 is operated, are provided at the input side interface of the ECU 55 for brakes. Are electrically connected.
  • the valves 35a, 35b, 37a to 37d, 38a to 38d and the pump motor 41 are electrically connected to the output side interface of the brake ECU 55.
  • the acceleration sensor SE7 outputs a signal that gives a positive value when the center of gravity of the vehicle moves rearward, while a signal that gives a negative value when the center of gravity of the vehicle moves forward Is output.
  • the brake ECU 55 is a digital computer including a CPU, a ROM, a RAM and the like (not shown), a valve driver circuit (not shown) for operating the respective valves 35a, 35b, 37a to 37d and 38a to 38d A motor driver circuit (not shown) for operating the motor 41 is provided.
  • ROM read only memory
  • various control processes Idle stop process described later, etc.
  • various maps maps (map shown in FIG. 3 etc.), various threshold values, etc. are stored in advance.
  • the RAM stores various types of information that can be appropriately rewritten.
  • the map shown in FIG. 3 shows the relationship between the absolute value of the gradient acceleration Ag and the gradient equivalent MC pressure Pmctha.
  • the gradient equivalent MC pressure Pmctha is set to a larger value when the absolute value of the gradient acceleration Ag is large than when it is small.
  • the gradient equivalent MC pressure Pmctha is set to a larger value as the absolute value of the gradient acceleration Ag is larger.
  • the “gradient acceleration Ag” is an acceleration that corresponds to the gradient of the road surface, and is an acceleration in the front-rear direction of the vehicle calculated based on a detection signal from the acceleration sensor SE7 while the vehicle is stopped , Or simply referred to as “vehicle acceleration” or a value corresponding to the vehicle acceleration. That is, the gradient acceleration Ag has a larger value in the case where the road surface has a steep slope than in the case where the road slope is a gentle slope.
  • a gradient equivalent MC pressure Pmctha means the minimum braking force necessary to maintain the vehicle stop when the driving force from the engine 12 is not transmitted to the front wheels FR, FL. , RR, and RL by adding an offset value ⁇ to an MC pressure Pmcmin (shown by a broken line in FIG. 3).
  • the gradient equivalent MC pressure Pmctha when the gradient acceleration Ag is the first acceleration Ag1 is the first MC pressure Pmc1.
  • the brake operation is performed so that the MC pressure in the master cylinder 25 becomes the first MC pressure Pmc1 or more, the WC pressure in each wheel cylinder 32a to 32d
  • the hydraulic pressure is approximately the same as the first MC pressure Pmc1, and as a result, the vehicle is maintained on the road surface. That is, unintended movement of the driver does not occur.
  • the target value of the braking force equivalent value corresponding to the braking force for the wheels FR, FL, RR, and RL is the gradient equivalent MC pressure Pmctha set based on the gradient acceleration Ag (that is, the gradient of the road surface). It corresponds to
  • the ECUs including the engine ECU 17, the brake ECU 55, and the idle stop ECU 65 are connected via the bus 56 so that they can transmit and receive various information and various control commands. It is done. For example, from the engine ECU 17, information on the accelerator opening degree of the accelerator pedal 11, information on success / failure of restart of the engine 12, and the like are appropriately transmitted to the brake ECU 55. On the other hand, from the brake ECU 55, a stop permission command for permitting automatic stop of the engine 12 and a restart permission command for permitting automatic restart of the engine 12 are transmitted to the engine ECU 17 . Further, the idle stop ECU 65 transmits information on the audio 60 and the temperature adjustment device 61 to the engine ECU 17 and the brake ECU 55.
  • the idle stop processing routine is a processing routine for setting the timing for permitting the automatic stop of the engine 12, the timing for permitting the automatic restart of the engine 12, and the like.
  • the brake ECU 55 executes the idle stop processing routine every predetermined cycle (for example, 0.01 second cycle) set in advance.
  • the brake ECU 55 acquires the vehicle body acceleration G of the vehicle based on the detection signal from the acceleration sensor SE7 (step S10).
  • the brake ECU 55 acquires the vehicle body speed VS of the vehicle (step S11). Specifically, the brake ECU 55 calculates the wheel speeds of the wheels FL, FR, RL, and RR based on the detection signals from the wheel speed sensors SE3 to SE6, and calculates the wheel speeds of the wheels FL, FR, RL, and RR.
  • the wheel acceleration is obtained by temporally differentiating at least one of the wheel speeds.
  • the brake ECU 55 integrates the wheel acceleration with respect to the vehicle speed acquired at the previous timing, and sets the integration result as the vehicle speed VS.
  • the brake ECU 55 performs time differentiation on the vehicle speed VS acquired in step S11 to acquire a vehicle speed differential value DVS (step S12).
  • the brake ECU 55 may use the wheel acceleration acquired at the time of the processing in step S11 as the vehicle speed differential value DVS.
  • the ECU55 for brakes acquires MC pressure Pmc in the master cylinder 25 based on the detection signal from master pressure sensor SE8 (step S13).
  • the MC pressure Pmc is a value corresponding to the brake operation by the driver. Therefore, when the brake actuator 31 is not driven, the MC pressure Pmc has a correspondence relationship with the braking force on the wheels FL, FR, RR, and RL. That is, the MC pressure Pmc is a braking force equivalent value corresponding to the braking force on the wheels FL, FR, RR, and RL. Therefore, in the present embodiment, the brake ECU 55 that acquires the MC pressure Pmc also functions as a braking force acquisition unit. Step S13 corresponds to a braking force acquisition step.
  • the brake ECU 55 subtracts the vehicle speed differential value DVS acquired in step S12 from the vehicle acceleration G acquired in step S10, and sets the result of the subtraction as the gradient acceleration Ag.
  • a difference corresponding to the gradient of the road surface is generated between the vehicle body acceleration G and the vehicle body speed differential value DVS.
  • the vehicle body speed differential value DVS is “0 (zero)”
  • the vehicle body acceleration G is a positive value when the road surface is uphill and the road surface When it is a slope, it becomes a negative value. That is, the difference between the vehicle body acceleration G and the vehicle body speed differential value DVS is an acceleration corresponding to the gradient of the road surface, that is, the gradient acceleration Ag.
  • the brake ECU 55 determines whether the engine 12 is in operation based on the information received from the engine ECU 17 (step S15). If the determination result is affirmative, the brake ECU 55 executes engine stop processing because the engine 12 is being driven (step S16). That is, the ECU 55 for brakes determines that the vehicle speed VS of the vehicle is equal to or less than a preset stop reference speed (for example, 20 km / h) and the MC pressure Pmc acquired in step S13 automatically stops the engine 12. If it is equal to or higher than the stop reference speed for determining whether or not to permit, it is determined that the driver has the intention to stop the vehicle.
  • a preset stop reference speed for example, 20 km / h
  • the brake ECU 55 transmits the stop permission command to the engine ECU 17 and the idle stop ECU 65. Therefore, in the present embodiment, the brake ECU 55 also functions as a permission unit that permits the automatic stop of the engine 12 when the stop condition of the engine 12 is satisfied. Thereafter, the brake ECU 55 temporarily terminates the idle stop processing routine.
  • the engine ECU 17 when the engine ECU 17 receives the stop permission command from the brake ECU 55, the engine 12 is stopped (first timing t11). Then, the engine speed Ne rapidly decreases and eventually becomes “0 (zero)”.
  • the engine ECU 17 does not necessarily stop the engine 12 when receiving the stop permission command from the brake ECU 55. For example, the engine ECU 17 does not stop the engine 12 when it is determined that the storage amount of the battery is small and there is a possibility that the restart of the engine 12 may be disturbed.
  • step S17 the engine ECU 55 performs engine restart processing because the engine 12 is stopped.
  • the braking force on the wheels FR, FL, RR, and RL is adjusted, and a restart permission command is transmitted to the engine ECU 17 and the idle stop ECU 65. Thereafter, the brake ECU 55 temporarily terminates the idle stop processing routine.
  • the timing charts shown in FIG. 7 and FIG. 8 are an example of timing charts when the vehicle travels on the uphill. More specifically, the timing charts shown in FIG. 7 and FIG. 8 are an example of a timing chart in the case where the gradient of the road surface on which the vehicle travels changes to the steep gradient side on the way.
  • the brake ECU 55 sets the gradient equivalent MC pressure Pmctha to a value corresponding to the gradient of the road surface (step S20). Specifically, the brake ECU 55 acquires the gradient equivalent MC pressure Pmctha corresponding to the gradient acceleration Ag acquired in step S14, using the map shown in FIG. In this respect, in the present embodiment, the brake ECU 55 also functions as a slope target value setting unit. Step S20 corresponds to a gradient target value setting step.
  • the brake ECU 55 determines whether the MC pressure Pmc acquired in step S13 is equal to or less than the gradient equivalent MC pressure Pmctha set in step S20 (step S21). If the determination result is negative (Pmc> Pmctha), the brake ECU 55 may not cause an unintended movement of the vehicle if the braking force at the present time continues to be applied to the wheels FR, FL, RR, and RL. to decide. And ECU55 for brakes transfers to step S40 (refer FIG. 6) which mentions the process later.
  • step S21 determines that the vehicle is not intended by the driver when the braking force on the wheels FR, FL, RR, and RL is smaller than the current braking force. It is determined that there is a possibility that movement of That is, the ECU 55 for brakes determines that there is a possibility that the vehicle temporarily stops and then moves backward while traveling uphill, and stops the vehicle when traveling downhill. Judge that there is a possibility that And ECU55 for brakes performs the 1st damping
  • the brake ECU 55 causes the linear solenoid valve 35a to have a current sufficient to hold the WC pressure Pwc in each of the wheel cylinders 32a to 32d with the current fluid pressure. , 35b (second timing t12).
  • the current value Ib for the linear solenoid valves 35a, 35b is set to a larger value as the set gradient equivalent MC pressure Pmctha is higher. Therefore, in the present embodiment, the brake ECU 55 functions as a braking control unit.
  • Step S22 corresponds to a first braking control step.
  • the brake ECU 55 determines whether the road surface on which the vehicle is traveling has changed to the steep side (step S23). For example, the brake ECU 55 determines whether or not the road surface has become steep based on the change in the gradient equivalent MC pressure Pmctha or the current value Ib with respect to the linear solenoid valves 35a, 35b. Specifically, the gradient equivalent MC pressure Pmctha and the current value Ib for the linear solenoid valves 35a and 35b are set at substantially constant cycles when the first braking control process is started. Moreover, the gradient equivalent MC pressure Pmctha and the current value Ib are set to values corresponding to the gradient of the road surface.
  • the gradient equivalent MC pressure Pmctha and the current value Ib which are set periodically, change as much as the change. That is, if the gradient equivalent MC pressure Pmctha set at the execution timing of the engine restart processing routine this time is higher than the gradient equivalent MC pressure Pmctha set at the execution timing of the previous engine restart processing routine , It is determined that the road surface has steeply changed.
  • step S23 determines that the gradient of the road surface has not changed sharply to the steep side, and shifts the process to step S40 described later. For example, when the slope of the road surface has not changed and when the slope of the road surface has changed to a gentle slope side, the determination result of step S23 is negative. On the other hand, when the determination result of step S23 is affirmative, the brake ECU 55 determines that the gradient of the road surface has changed to the steep gradient side, and shifts the process to the next step S24.
  • step S24 the brake ECU 55 determines whether there is a request for restart of the engine 12 from another ECU (for example, the idle stop ECU 65). If the determination result is affirmative, the brake ECU 55 determines whether the degree of urgency of the request for restarting the engine 12 is low (step S25). If the determination result is affirmative, since the degree of urgency is low, the brake ECU 55 sets the restart waiting flag FLG1 on (step S26), and shifts the process to step S33 (see FIG. 6) described later. . On the other hand, if the determination result in step S25 is negative, the brake ECU 55 shifts the process to step S31 described later because the degree of urgency is high.
  • An example of the request for restarting the engine 12 with a low degree of urgency is the operation of a vehicle-mounted comfort facility (the audio 60 and the temperature control device 61).
  • the audio 60 in the off state is turned on, the battery supplies power to the audio 60.
  • the ECU 65 for idle stop judges that there is a possibility that the electric power necessary for restarting the engine 12 can not be secured in the state where electric power is supplied to the audio 60 at the current storage amount of the battery.
  • a request for restarting the engine 12 is output from the idle stop ECU 65 to the brake ECU 55 and the engine ECU 17.
  • the idle stop ECU 65 When it is necessary to operate the compressor 62 of the temperature control device 61, it is necessary to drive the engine 12. Therefore, when it becomes necessary to operate the compressor 62, the idle stop ECU 65 outputs a request for restarting the engine 12 to the brake ECU 55 and the engine ECU 17.
  • the priority of the braking control is between the restart of the engine 12 for operating such a comfort facility and the braking control for increasing the braking force to the wheels FR, FL, RR, RL Is higher.
  • a request for restarting the engine 12 with a high degree of urgency for example, the storage amount of the battery is insufficient. That is, if the brake actuator 31 consumes more power than this, there is a possibility that the power required to restart the engine 12 can not be secured. From the ECU 65, a request for restarting the engine 12 is output to the brake ECU 55 and the engine ECU 17.
  • the vehicle is also provided with various pumps (for example, hydraulic pumps in the automatic transmission 18) that operate based on the driving force from the engine 12. If the idle-stop ECU 65 determines that such a pump may not adversely affect the on-vehicle apparatus (for example, the automatic transmission 18), the idle-stop ECU 65 requests the engine 12 to restart. Is output to the brake ECU 55 and the engine ECU 17.
  • various pumps for example, hydraulic pumps in the automatic transmission 18
  • step S27 determines whether there is any (step S28).
  • the MC pressure reference value Pmcth is a reference value for judging from the operation amount of the brake pedal 15 whether or not the driver has an intention to start the vehicle, and to judge whether or not the engine 12 is to be stopped. It is set to a value smaller than the above-mentioned stop reference speed of.
  • the MC pressure reference value Pmcth may be a predetermined value set in advance, or may be a value changed according to the gradient of the road surface.
  • step S28 determines that the driver has the intention to start the vehicle, and shifts the process to step S31 described later.
  • the brake ECU 55 acquires the booster pressure Pb in the booster 26 based on the detection signal from the booster pressure sensor SE9 (step S29).
  • the booster pressure Pb has a larger pressure value as the negative pressure in the booster 26 is larger. Therefore, in the present embodiment, the brake ECU 55 also functions as a booster pressure acquisition unit.
  • step S30 determines whether the booster pressure Pb acquired by step S29 is less than the booster pressure reference value Pbth set beforehand (step S30).
  • the booster pressure Pb in the booster 26 becomes substantially “0 (zero)".
  • the booster pressure reference value Pbth is set as a reference value for determining whether or not the negative pressure is generated in the booster 26.
  • step S30 If the determination result in step S30 is negative (Pb Pb Pbth), the brake ECU 55 determines that negative pressure remains in the booster 26, and shifts the process to step S33 (see FIG. 6) described later. . On the other hand, if the determination result in step S30 is affirmative (Pb ⁇ Pbth), the brake ECU 55 determines that no negative pressure remains in the booster 26, and shifts the process to the next step S31.
  • step S31 the brake ECU 55 outputs a restart permission command to the engine ECU 17 and the idle stop ECU 65.
  • the brake ECU 55 also functions as a permission unit that permits restart of the engine 12 when the restart condition of the engine 12 is satisfied.
  • the brake ECU 55 determines whether the restart of the engine 12 has been completed based on the information received from the engine ECU 17 (step S32). If the determination result is negative, the brake ECU 55 repeatedly executes the determination process of step S32 until the restart of the engine 12 is completed. On the other hand, when the determination result in step S32 is affirmative, the ECU 55 for brakes shifts the process to the next step S33 (see FIG. 6) because the restart of the engine 12 is completed.
  • step S33 the brake ECU 55 performs a second braking control process to increase the braking force on the wheels FR, FL, RR, and RL. Specifically, the brake ECU 55 causes the WC pressure Pwc (see FIG. 7) in each of the wheel cylinders 32a to 32d to be equal to or higher than the gradient equivalent MC pressure Pmctha acquired at the execution timing of the engine restart process routine this time. Then, the current value Ib for the linear solenoid valves 35a, 35b is set. Further, the brake ECU 55 sets a current value Ip to the pump motor 41 so as to drive the pumps 42 and 43. Therefore, in the present embodiment, step S33 corresponds to a second braking control step.
  • the current value Ip for the pump motor 41 is a reference current value set in advance.
  • the WC pressure Pwc corresponds to the MC pressure Pmc in the master cylinder 25 immediately before the start of the second braking control, the current value Ib to the linear solenoid valves 35a and 35b (see FIG. 7), and the operation time of the pumps 42 and 43 It is estimated based on
  • step S34 determines whether or not the increase in the braking force on the wheels FR, FL, RR, and RL based on the second braking control process is completed. If the determination result is negative, the brake ECU 55 needs to keep the pumps 42 and 43 (i.e., the pump motor 41) operated, so the process proceeds to step S33 described above. On the other hand, when the determination result in step S34 is affirmative, the brake ECU 55 has the braking force on the wheels FR, FL, RR, and RL greater than or equal to the size that can maintain the stop of the vehicle. Is stopped to hold the braking force on the wheels FR, FL, RR, and RL (step S35).
  • step S38 determines whether or not the restart of the engine 12 is completed, as in step S32 (step S38).
  • the ECU 55 for brakes sets the restart waiting flag FLG1 to OFF because the restart of the engine 12 is completed (step S39). Thereafter, the brake ECU 55 ends the engine restart process routine.
  • the pumps 42 and 43 are stopped (fifth timing t15). Thereafter, the WC pressure Pwc in each of the wheel cylinders 32a to 32d is held, that is, the braking force on the wheels FR, FL, RR, and RL is held.
  • the vehicle may stop at a fourth timing t14 before the fifth timing t15.
  • the control for increasing the braking force is started before it is determined that the vehicle has stopped. Therefore, the braking force on wheels FR, FL, RR, and RL is swiftly reduced to a braking force that can maintain the vehicle, as compared to the case where the increase in the braking force is started after it is determined that the vehicle has stopped. It can be increased. Therefore, the backward movement (so-called slip) of the vehicle after the stop of the vehicle is suppressed.
  • the linear solenoid valves 35a and 35b are not in the closed state even if the second braking control process is performed. In this state, if the driver increases the amount of brake operation after the end of the second braking control process, the WC pressure Pwc in each of the wheel cylinders 32a to 32d follows the MC pressure Pmc in the master cylinder 25 to a high pressure. It fluctuates (sixth timing t16).
  • the WC pressure Pwc in each of the wheel cylinders 32a to 32d is held at the WC pressure Pwc at the first timing t21. Then, when the MC pressure Pmc becomes less than the MC pressure reference value Pmcth at a second timing t22 when the gradient of the road surface changes to the steep gradient side, the control for restarting the engine 12 is started. That is, the current value Is for the starter motor 72 that operates to start the engine 12 is set from “0 (zero)” to a predetermined value (> 0 (zero)).
  • the current value Is for the starter motor 72 becomes "0 (zero)". That is, the load on the battery accompanying the restart of the engine 12 is reduced.
  • the second braking control process is started. That is, the current value Ib to the linear solenoid valves 35a, 35b increases, and the current value Ip to the pump motor 41 increases. As a result, the WC pressure Pwc in each wheel cylinder 32a to 32d is increased, and as a result, the braking force on each wheel FR, FL, RR, RL is increased. Then, when the WC pressure Pwc in each of the wheel cylinders 32a to 32d becomes equal to or higher than the gradient equivalent MC pressure Pmc, the pumps 42 and 43 are stopped (fourth timing t24). Thereafter, the WC pressure Pwc in each wheel cylinder 32a to 32d is held, that is, the braking force on the wheels FR, FL, RR, and RL is held.
  • the WC pressure Pwc in each of the wheel cylinders 32a to 32d is held at the hydraulic pressure at the end of the second braking control process, as long as the driver does not cancel the brake operation (that is, while the brake switch SW1 is on). Be done. Thereafter, when the brake switch SW1 is turned off, the current value Ib for the linear solenoid valves 35a, 35b is gradually decreased (fifth timing t25). That is, the braking force on the wheels FR, FL, RR, and RL gradually decreases.
  • step S40 the brake ECU 55 determines whether there is a restart condition of the engine or a request for restart of the engine 12.
  • the case where the restart condition of the engine 12 is satisfied indicates that one of the determination processes equivalent to the determination processes of steps S27, S28, and S30 is positive.
  • the brake ECU 55 ends the engine restart processing routine because it is not necessary to restart the engine 12.
  • step S41 determines whether the degree of urgency for restarting the engine 12 is high.
  • the determination criterion in the case where there is a request for restarting the engine 12 from another ECU is the same as the determination criterion in the above-mentioned step S25.
  • step S42 determines whether the vehicle has stopped. If the determination result is negative, the brake ECU 55 ends the engine restart processing routine because the vehicle is not stopped. On the other hand, when the determination result in step S42 is affirmative, the brake ECU 55 shifts the process to the next step S43 because the vehicle has stopped.
  • step S43 the brake ECU 55 outputs a restart permission command to the engine ECU 17 and the idle stop ECU 65, as in the process of step S31. Then, ECU55 for brakes determines whether restart of the engine 12 was completed similarly to the process of said step S32. And ECU55 for brakes complete
  • the restart of the engine 12 is given priority if the degree of urgency of the restart of the engine 12 is high. To be done.
  • the braking force on the wheels FR, FL, RR, and RL is increased The braking control process is started.
  • the second braking control process for increasing the braking force on the wheels FR, FL, RR, and RL has priority over the control for restarting the engine 12.
  • the first braking control for holding the braking force is started at the timing when it is determined that the driver's unintended movement of the vehicle occurs when the braking force on the wheels FR, FL, RR, and RL is lower than the braking force at the present time. Be done. Then, the braking force on the wheels FR, FL, RR, and RL is held in the vicinity of the braking force according to the gradient of the road surface. Thereafter, when the road surface does not change steeply, the vehicle can be stopped without increasing the braking force on the wheels FR, FL, RR, and RL.
  • the driver does not intend to use the braking force applied to the wheels FR, FL, RR, and RL by the first braking control. It is determined that there is a possibility that movement of the vehicle can not be prevented, and second braking control is performed to increase the braking force on the wheels FR, FL, RR, and RL. That is, the timing at which the braking force on wheels FR, FL, RR, and RL is increased is earlier than in the conventional case where the braking force on wheels FR, FL, RR, and RL is increased after it is determined that the vehicle has stopped. Become.
  • the brake actuator 31 is driven.
  • the pump motor 41 is operated, so the amount of power consumption in the brake actuator 31 increases. Therefore, control for operating the starter motor 72 to restart the engine 12, and control for operating the pump motor 41 to increase the braking force on the wheels FR, FL, RR, and RL (second braking control) are given. Over time, the load of the battery mounted on the vehicle becomes very large.
  • the booster 26 can hardly assist the operating force at the time of the brake operation by the driver. Therefore, there is a high possibility that an appropriate braking force can not be applied to the wheels FR, FL, RR, and RL even if the driver performs a brake operation. That is, even if the driver increases the amount of brake operation so as to reliably stop the vehicle, the braking force on the wheels FR, FL, RR, and RL is not increased to the driver's desired magnitude.
  • the booster pressure Pb is less than the booster pressure reference value Pbth, control to restart the engine 12 is performed. It will be done first. Then, when the restart of the engine 12 is completed, an appropriate booster pressure Pb is generated in the booster 26. Thereafter, the second braking control is started. Therefore, by preferentially restarting the engine 12, the booster pressure Pb in the booster 26 can be promptly set to a predetermined pressure. Therefore, the braking force corresponding to the amount of brake operation by the driver can be applied to the wheels FR, FL, RR, and RL. That is, the behavior of the vehicle can be made in accordance with the driver's intention.
  • control to restart the engine 12 according to the degree of urgency of restart, and second braking control And priorities are set. That is, if it is determined that the degree of urgency is high, it is necessary to restart the engine 12 promptly, so the restart of the engine 12 is permitted by the brake ECU 55. Then, after the restart of the engine 12 is completed, the second braking control is started.
  • the second braking control is preferentially performed, and the engine 12 is restarted after the increase in the braking force on the wheels FR, FL, RR, and RL is completed. Is permitted. Therefore, the control to restart the engine 12 and the second braking control can be performed while suppressing an increase in the load of the battery.
  • the timing at which the restart of the engine 12 is permitted is set by the degree of urgency . That is, when it is determined that the degree of urgency is high, restart of the engine 12 is permitted promptly. Therefore, the engine 12 can be restarted promptly.
  • the stop of the vehicle indicates that the vehicle speed VS obtained using the wheel speed sensors SE3 to SE6 is "0 (zero)". Therefore, even if it is determined that the vehicle has stopped based on the vehicle body speed VS, the vehicle may actually be moving.
  • the second braking control ends when the braking forces on the wheels FR, FL, RR, and RL are increased to such a degree that the vehicle can be stopped. Thereafter, the braking force on the wheels FR, FL, RR, and RL is maintained. Therefore, compared to the case where the second braking control is continued, the amount of power consumed by the brake actuator 31 can be reduced.
  • the gradient equivalent MC pressure Pmctha is changed to a value according to the gradient that has become gentle Ru. That is, the gradient equivalent MC pressure Pmctha is set to a small value due to the decrease in the gradient. Then, the current value Ib for the linear solenoid valves 35a and 35b is also changed to a small value. Therefore, when the vehicle stops in this state, the vibration based on the swing back at the time of stopping can be reduced compared to the case where the gradient equivalent MC pressure Pmctha is not changed.
  • step S24 when another ECU requests restart of the engine 12 to the brake ECU 55, restart of the engine 12 may be permitted promptly regardless of the degree of urgency of the request. .
  • step S24 if the determination result of step S24 is affirmative, the process of step S31 is performed.
  • steps S29 and S30 may be omitted. That is, the timing for permitting the restart of the engine 12 may be determined regardless of the magnitude of the booster pressure Pb. In this case, even if the booster pressure Pb is substantially “0 (zero)”, the vehicle can be stopped by executing the second braking control process after the restart of the engine 12 is completed.
  • the second braking control may be given priority, and then the restart of the engine 12 may be permitted. In this case, the engine 12 is restarted in a safe state in which the vehicle has stopped.
  • whether the driver has the intention to start the vehicle may include whether the accelerator pedal 11 is operated.
  • the second braking control is started after the restart of the engine 12 is completed. That is, the above controls do not overlap in time. However, the above controls may be overlapped in time.
  • the current value Ip for the pump motor 41 is smaller than the normal reference current value Ip_base. It may be set to the current value. Even with this configuration, an increase in battery load can be suppressed. Moreover, even while the engine 12 is being restarted, it is possible to gradually increase the braking force on the wheels FR, FL, RR, and RL.
  • the determination in step S21 may be positive.
  • the current value Ib for the linear solenoid valves 35a and 35b is not reduced according to the change of the slope of the road surface May be
  • the engine 12 may not be stopped. Even in such a case, the first braking control process and the second braking control process may be performed as necessary.
  • the first braking control process may be ended. In this case, it is preferable to gradually reduce the current value Ib for the linear solenoid valves 35a and 35b.
  • the first braking control process and the second braking control process may be performed as needed when the speed is less than or equal to a preset reference speed.
  • the reference speed is preferably lower (e.g., 10 km / h) than the stop reference speed when the engine 12 is stopped.
  • the car navigation device when the car navigation device is mounted on the vehicle, information on the vehicle speed VS and the slope of the road surface may be acquired from the navigation device.
  • the WC pressure Pwc is acquired based on the detection signal from the sensor, and the WC pressure is acquired.
  • the start timing of the first braking control and the second braking control may be set based on Pwc.
  • the WC pressure Pwc corresponds to a braking force equivalent value.
  • the vehicle body acceleration G obtained based on the detection signal from the acceleration sensor SE7 fluctuates according to the gradient of the road surface until the vehicle stops. Therefore, the MC pressure Pmc may be estimated based on the vehicle body acceleration G. In this case, the estimated value of the MC pressure Pmc corresponds to the braking force equivalent value.
  • the electric parking brake device may be used instead of the brake actuator 31 to increase the braking force on the wheels in the second braking control process.
  • both the brake actuator 31 and the electric parking brake device may be used.
  • the vehicle described in the above embodiment is a vehicle having an eyed stop function, but the braking control device of the present invention may be mounted on a vehicle not having an idle stop function.
  • the vehicle is provided with a brake actuator (31) which is driven to adjust the braking force on the wheels (FR, FL, RR, RL), If priority is given to control to restart the engine (12) over the second braking control, During the restart of the engine (12), the amount of power supplied to the brake actuator (31) is set to a power amount smaller than the reference power amount, The amount of power supplied to the brake actuator (31) after the restart of the engine (12) is set to the reference amount of power.
  • the brake actuator (31) A master cylinder (25) that generates fluid pressure (Pmc) accompanying the driver's brake operation and a braking force according to the fluid pressure (Pwc) generated inside is applied to the wheels (FR, FL, RR, RL) Fluid pressure (Pmc) in the master cylinder (25) and the wheel cylinder (35a, 35b,...) Disposed in the flow path (33, 34) connecting the wheel cylinders (35a, 35b, 35c, 35d) Adjusting valves (35a, 35b) for adjusting a differential pressure between the fluid pressure (Pwc) in 35c, 35d), and And a pump (42, 43) operable to increase fluid pressure in the wheel cylinder (35a, 35b, 35c, 35d).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulating Braking Force (AREA)
  • Hydraulic Control Valves For Brake Systems (AREA)

Abstract

Provided are a vehicle braking control device, a vehicle control device, and a vehicle braking control method that are capable of suppressing motion of the vehicle that is not intended by the driver, even if the driver performed a brake operation that reduces braking force on the vehicle wheels when stopping the vehicle. When a brake operation that reduces braking force on the vehicle wheels is performed by the driver, a brake ECU starts a first braking control that maintains braking force on the vehicle wheels at a second timing (t12) at which the MC pressure (Pmc) in a master cylinder becomes less than or equal to a slope-corresponding MC pressure (Pmctha) set at a value corresponding to the slope of the road surface, and thereafter, if the slope of the road surface changes to a steeper slope, starts (at a third timing (t13)) a second braking control that increases the braking force on the vehicle wheels.

Description

車両の制動制御装置、車両の制御装置及び車両の制動制御方法Vehicle braking control device, vehicle control device, and vehicle braking control method
 本発明は、車両の停車時における車輪に対する制動力を調整する車両の制動制御装置及び車両の制動制御方法に関する。また、本発明は、上記制動制御装置を備えると共に、エンジンの自動的な停止及び再始動を許可する車両の制御装置に関する。 The present invention relates to a vehicle braking control device and a vehicle braking control method for adjusting a braking force on wheels when the vehicle is stopped. The present invention also relates to a control device for a vehicle that includes the above-described braking control device and permits automatic stop and restart of the engine.
 一般に、車輪に制動力が付与されて車両が停車する場合には、車両の車体速度が徐々に低速になって最終的には「0」となる。こうした車両の停車前後では、車両の車体減速度が急に「0」となる。すると、車体減速度の急激な変化に伴い、車両の重心が前後方向に揺れ動く所謂揺り返しという現象が発生する。 In general, when a braking force is applied to the wheels and the vehicle stops, the vehicle speed of the vehicle gradually decreases and eventually becomes "0". Before and after such a stop of the vehicle, the vehicle deceleration of the vehicle suddenly becomes "0". Then, with the rapid change of the vehicle deceleration, a phenomenon of so-called swing back occurs in which the center of gravity of the vehicle swings in the front-rear direction.
 そこで、車両の運転手は、車両の停車前に、車輪に対する制動力を小さくするブレーキ操作、即ちブレーキペダルの操作量を少なくする操作を行うことがある。すると、このようなブレーキ操作を行わない場合と比較して、車両の車体減速度が小さくなる。そのため、車両の停車時における車体減速度の変化量が小さくなり、結果として、上記揺り返しによる車両の振動が小さくなる。 Therefore, the driver of the vehicle sometimes performs a brake operation to reduce the braking force on the wheels, that is, an operation to reduce the operation amount of the brake pedal before the vehicle is stopped. Then, the vehicle deceleration of the vehicle becomes smaller compared to the case where such a brake operation is not performed. As a result, the amount of change in the vehicle deceleration when the vehicle stops is reduced, and as a result, the vibration of the vehicle due to the swing back is reduced.
 ところで、車両が登坂路を走行する場合において、車輪に対する制動力を小さくするブレーキ操作が行われると、車両は、一時的に停車した後に、路面勾配力によって後退するおそれがある。「路面勾配力」とは、車両に加わる重力のうち路面に沿った方向に作用する成分のことを示す。こうした運転手の意図しない車両の後退は、車輪に対する制動力よりも路面勾配力のほうが大きい場合に発生する。そこで、特許文献1には、車両が停車したと判定した場合に車輪に対する制動力を増大させる制動制御を行うことにより、車両の停車後における運転手の意図しない車両の後退を抑制する旨が開示されている。 By the way, when the vehicle travels on the uphill road, if the brake operation to reduce the braking force to the wheels is performed, the vehicle may temporarily stop and then move backward due to the road surface gradient force. The “road surface gradient force” indicates a component of gravity applied to the vehicle that acts in a direction along the road surface. Such unintended backward movement of the driver occurs when the road gradient force is greater than the braking force on the wheels. Therefore, Patent Document 1 discloses that braking control is performed to increase the braking force on the wheels when it is determined that the vehicle has stopped, thereby suppressing the backward movement of the driver's unintended vehicle after the vehicle has stopped. It is done.
特開2008-94246号公報JP, 2008-94246, A
 ところで、上記方法では、車輪に対する制動力を小さくするブレーキ操作が行われた場合には、車両が停車したと判定されたタイミングで車輪に対する制動力の増大が開始される。言い換えると、車両が停車したと判定される前では、制動力を大きくするブレーキ操作を運転手が行わない限り、車輪に対する制動力は増大されない。そのため、車輪に対する制動力が小さくなるようなブレーキ操作が開始された後に車両の走行する路面の勾配が緩勾配から急勾配に変わったとしても、車両が停車したと判定されたタイミングで車輪に対する制動力の増大が開始される。この場合、車両が停車してから車輪に対する制動力が実際に増大し始めるまでの間に、運転手の意図しない車両の後退が発生するおそれがあった。 By the way, in the above method, when the brake operation is performed to reduce the braking force on the wheels, the increase in the braking force on the wheels is started at the timing when it is determined that the vehicle has stopped. In other words, before it is determined that the vehicle has stopped, the braking force on the wheels is not increased unless the driver performs a braking operation to increase the braking force. Therefore, even if the slope of the road surface on which the vehicle travels changes from a slow slope to a steep slope after the start of the braking operation to reduce the braking force to the wheels, the control to the wheels is performed at the timing determined to have stopped. The increase of power is started. In this case, there is a possibility that an unintended backward movement of the driver may occur between the time the vehicle stops and the braking force on the wheels actually starts to increase.
 本発明は、このような事情に鑑みてなされたものである。その目的は、車両を停車させる場合に車輪に対する制動力を小さくするブレーキ操作を運転手が行ったとしても、運転手の意図しない車両の移動を抑制することができる車両の制動制御装置、車両の制御装置及び車両の制動制御方法を提供することにある。 The present invention has been made in view of such circumstances. The object of the present invention is to provide a vehicle braking control device capable of suppressing unintended movement of the vehicle even if the driver performs a braking operation to reduce the braking force on the wheels when the vehicle is stopped. To provide a control device and a vehicle braking control method.
 上記目的を達成するために、本発明の車両の制動制御装置は、車両に設けられる車輪(FR,FL,RR,RL)に対する制動力に相当する制動力相当値(Pmc、Pwc)を取得する制動力取得部(55、S13)と、前記車輪(FR,FL,RR,RL)に対する制動力に相当する制動力相当値の目標値(Pmctha)を、車両の位置する路面の勾配が急勾配である場合には路面の勾配が緩勾配である場合よりも大きな値に設定する勾配目標値設定部(55、S20)と、前記車輪(FR,FL,RR,RL)に対する制動力を制御する制動制御部(55、S22,S33)と、を備え、前記制動制御部(55、S22,S33)は、前記車輪(FR,FL,RR,RL)に対する制動力を小さくするブレーキ操作が運転手によって行われた場合において、前記制動力取得部(55、S13)によって取得される制動力相当値(Pmc、Pwc)が前記勾配目標値設定部(55、S20)によって設定された目標値(Pmctha)以下になったタイミングで前記車輪(FR,FL,RR,RL)に対する制動力を保持する第1制動制御を開始し、前記第1制動制御が開始されてから路面の勾配が急勾配側に変化した場合に、前記車輪(FR,FL,RR,RL)に対する制動力を増大させる第2制動制御を開始することを要旨とする。 In order to achieve the above object, the braking control device for a vehicle according to the present invention acquires braking force equivalent values (Pmc, Pwc) corresponding to the braking forces for the wheels (FR, FL, RR, RL) provided in the vehicle. The braking force acquisition unit (55, S13) and the target value (Pmctha) of the braking force equivalent value corresponding to the braking force for the wheels (FR, FL, RR, RL) Control the braking force on the wheels (FR, FL, RR, RL) and set the target value setting unit (55, S20) to set the value to a larger value than the case where the road surface slope is a slow slope. A braking control unit (55, S22, S33), and the braking control unit (55, S22, S33) is operated by the driver to reduce the braking force applied to the wheel (FR, FL, RR, RL). By In the above case, the braking force corresponding values (Pmc, Pwc) acquired by the braking force acquiring unit (55, S13) are equal to or less than the target value (Pmctha) set by the gradient target value setting unit (55, S20). At the timing when the first braking control to hold the braking force to the wheels (FR, FL, RR, RL) was started, the gradient of the road surface changed to the steep side after the first braking control was started In this case, the second braking control to increase the braking force on the wheels (FR, FL, RR, RL) is started.
 上記構成によれば、車両を停車させる場合における運転手によるブレーキ操作によって、車輪に対する制動力が小さくなると、該制動力が小さくなり過ぎることを規制するための第1制動制御が行われる。この第1制動制御が開始されると、車輪に対する制動力が、路面の勾配に応じた制動力近傍で保持される。また、第1制動制御の開始後に路面の勾配が急勾配側に変化すると、車輪に付与される現時点の制動力では運転手の意図しない車両の移動が発生する可能性があるため、車輪に対する制動力を増大させる第2制動制御が行われる。すなわち、車両が停車したと判定されてから車輪に対する制動力を増大させる従来の場合と比較して、車輪に対する制動力を増大させるタイミングが早くなる。その結果、車両の走行する路面が登坂路であっても、運転手の意図しない車両の後退を抑制できる。また、車両の走行する路面が降坂路では、運転手によるブレーキ操作量の増大がない場合であっても、車両を停車させることができる。したがって、車両を停車させる場合に車輪に対する制動力が小さくなるようなブレーキ操作を運転手が行ったとしても、運転手の意図しない車両の移動を抑制することができる。 According to the above configuration, when the braking force on the wheels is reduced by the driver's braking operation when the vehicle is stopped, the first braking control is performed to restrict the braking force from becoming too small. When the first braking control is started, the braking force on the wheels is held in the vicinity of the braking force according to the gradient of the road surface. In addition, if the gradient of the road surface changes to a steep gradient after the start of the first braking control, the current braking force applied to the wheels may cause an unintended movement of the vehicle by the driver. A second braking control is performed to increase the power. That is, as compared with the conventional case where it is determined that the vehicle has stopped and then the braking force for the wheel is increased, the timing for increasing the braking force for the wheel is earlier. As a result, even if the road surface on which the vehicle travels is an uphill road, it is possible to suppress the backward movement of the vehicle not intended by the driver. In addition, when the road surface on which the vehicle travels is a downhill road, the vehicle can be stopped even if the amount of brake operation by the driver does not increase. Therefore, even if the driver performs a braking operation such that the braking force on the wheels is reduced when the vehicle is stopped, it is possible to suppress unintended movement of the vehicle.
 本発明の車両の制動装置は、車両のエンジン(12)の停止条件が成立した場合に該エンジン(12)の自動的な停止を許可すると共に、前記エンジン(12)の再始動条件が成立した場合に該エンジン(12)の再始動を許可する許可部(55、S16、S37)と、上記車両の制動制御装置(55)と、を備え、前記許可部(55、S16、S37)は、前記エンジン(12)の停止中に運転手に車両を発進させる意志が有ることを検知した場合に、前記エンジン(12)の再始動を許可し、前記制動制御部(55、S33)は、前記第1制動制御の開始後に前記許可部(55、S16、S37)によって前記エンジン(12)の再始動が許可された場合には、路面の勾配の急勾配側への変化を検知しても前記第2制動制御よりも前記エンジン(12)を再始動させる制御を優先することが好ましい。 The vehicle braking system of the present invention permits the automatic stop of the engine (12) when the stop condition of the engine (12) of the vehicle is satisfied, and the restart condition of the engine (12) is satisfied. And a permission unit (55, S16, S37) for permitting restart of the engine (12), and a braking control device (55) of the vehicle, wherein the permission unit (55, S16, S37) When it is detected that the driver has an intention to start the vehicle while the engine (12) is stopped, the engine (12) is allowed to restart, and the braking control unit (55, S33) If restart of the engine (12) is permitted by the permission unit (55, S16, S37) after the start of the first braking control, the change of the road surface to the steep side is detected even if the restart of the engine (12) is permitted. The above than the second braking control It is preferable to prioritize the control to restart the engine (12).
 車両には、車輪に対する制動力を自動的に調整する際に駆動するブレーキアクチュエータが設けられている。第1制動制御や第2制動制御が行われると、ブレーキアクチュエータが駆動する。特に、車輪に対する制動力を増大させる第2制動制御の実行時では、ブレーキアクチュエータの消費電力量が多くなる。そのため、エンジンを再始動させるための制御と、第2制動制御とが時間的に重複すると、車両に搭載されるバッテリの負荷が非常に大きくなる。そこで、本発明では、エンジンの停止中において第2制動制御の開始条件が成立する場合であっても、運転手に車両を発進させる意志が有ると判断した場合には、第2制動制御よりもエンジンを再始動させる制御が優先的に行われる。つまり、車両に搭載されるバッテリに蓄電される電力は、エンジンを再始動させる制御で優先的に使用される。そのため、バッテリの負荷の増大を抑制しつつ、運転手の意図に沿った車両の速やかな発進に貢献できる。 The vehicle is provided with a brake actuator that is driven to automatically adjust the braking force on the wheels. When the first braking control and the second braking control are performed, the brake actuator is driven. In particular, at the time of execution of the second braking control that increases the braking force on the wheels, the amount of power consumption of the brake actuator increases. Therefore, when the control for restarting the engine and the second braking control overlap in time, the load of the battery mounted on the vehicle becomes very large. Therefore, in the present invention, even when the start condition of the second braking control is satisfied while the engine is stopped, if it is determined that the driver has the intention to start the vehicle, the second braking control will be performed. Control to restart the engine is preferentially performed. That is, the power stored in the battery mounted on the vehicle is preferentially used in the control for restarting the engine. Therefore, it is possible to contribute to quick start of the vehicle in accordance with the driver's intention while suppressing an increase in battery load.
 本発明の車両の制動装置において、車両には、前記エンジン(12)の吸気負圧を利用して運転手によるブレーキ操作時における操作力を助勢するブースタ(26)が設けられており、前記ブースタ(26)内に発生する負圧(Pb)を取得するブースタ圧取得部(55、S29)をさらに備え、前記許可部(55、S16,S31)は、前記エンジン(12)の停止中に、運転手に前記ブースタ圧取得部(55、S29)によって取得された前記ブースタ(26)内の負圧(Pb)が、該ブースタ(26)内に負圧が発生しているか否かを判断するための基準値(Pbth)未満になった場合には、前記エンジン(12)の再始動を許可することが好ましい。 In the vehicle braking system according to the present invention, the vehicle is provided with a booster (26) for assisting an operating force at the time of a brake operation by a driver using an intake negative pressure of the engine (12). (26) A booster pressure acquiring unit (55, S29) for acquiring a negative pressure (Pb) generated in the inside of the engine (12), wherein the permitting unit (55, S16, S31) is configured to stop the engine (12). The driver determines whether the negative pressure (Pb) in the booster (26) acquired by the booster pressure acquisition unit (55, S29) is generating a negative pressure in the booster (26) When it becomes less than the reference value (Pbth), it is preferable to permit restart of the engine (12).
 ブースタ内の負圧が基準値未満である状態とは、運転手によるブレーキ操作時における操作力をブースタがほとんど助勢できない状態である。そのため、運転手がブレーキ操作を行っても車輪には適切な制動力が付与されない。すなわち、車両を確実に停車させるべく運転手がブレーキ操作量を増大させても、車輪に対する制動力は、運転手の希望する大きさまで増大されない。そこで、本発明では、エンジンの停止中において第2制動制御の開始条件が成立する場合であっても、ブースタ内に負圧が発生していないと判断した場合には、第2制動制御よりもエンジンを再始動させる制御が優先的に行われる。そして、エンジンの再始動が完了すると、ブースタ内には適切な負圧が発生する。そのため、運転手のブレーキ操作量に応じた制動力を車輪に付与することができるようになる。つまり、車両の挙動を運転手の意図に沿ったものとすることができる。 When the negative pressure in the booster is less than the reference value, the booster can hardly assist the operating force at the time of the driver's braking operation. Therefore, even if the driver performs a brake operation, an appropriate braking force is not applied to the wheels. That is, even if the driver increases the amount of brake operation to reliably stop the vehicle, the braking force on the wheels is not increased to the driver's desired magnitude. Therefore, in the present invention, even when the start condition of the second braking control is satisfied while the engine is stopped, if it is determined that the negative pressure is not generated in the booster, the second braking control will be performed. Control to restart the engine is preferentially performed. Then, when the engine restart is completed, an appropriate negative pressure is generated in the booster. Therefore, the braking force corresponding to the amount of brake operation by the driver can be applied to the wheels. That is, the behavior of the vehicle can be made in accordance with the driver's intention.
 本発明の車両の制動装置において、前記制動制御部(55、S33)は、前記エンジン(12)の停止中であって且つ前記第1制動制御の開始後に、車両における快適装備(60,61)の作動に伴う前記エンジン(12)の再始動の要求がある場合において、路面の勾配の急勾配側への変化を検知したときには、前記第2制動制御を行い、前記許可部(55、S16,S31)は、前記快適装備(60,61)の作動に伴う前記エンジン(12)の再始動の要求がある場合において、路面の勾配の急勾配側への変化を検知したときには、前記第2制動制御の終了後に、前記エンジン(12)の再始動を許可することが好ましい。 In the braking system of a vehicle according to the present invention, the braking control unit (55, S33) is provided with comfort equipment (60, 61) in the vehicle while the engine (12) is stopped and after the first braking control is started. When the engine (12) is requested to be restarted due to the operation of the vehicle, the second braking control is performed when a change to the steep side of the road surface is detected, and the permission unit (55, S16, S31), when there is a request to restart the engine (12) accompanying the operation of the comfort equipment (60, 61), detects a change to the steep side of the road surface, the second braking Preferably, after the end of control, the engine (12) is allowed to restart.
 上記構成によれば、快適装備の作動に基づく車両内における快適さよりも、運転手の意図に沿った制動制御のほうが優先的に行われる。したがって、車両の安全性を向上させることができる。 According to the above configuration, the braking control according to the driver's intention is preferentially performed over the comfort in the vehicle based on the operation of the comfort equipment. Therefore, the safety of the vehicle can be improved.
 本発明の車両の制動装置において、前記第2制動制御は、前記制動力取得部(55、S13)によって取得される制動力相当値(Pmc、Pwc)が、前記勾配目標値設定部(55、S20)によって設定された目標値(Pmctha)以上となるまで前記車輪(FR,FL,RR,RL)に対する制動力を増大させる制御であり、前記制動制御部(55、S35)は、前記第2制動制御の終了後、前記車輪(FR,FL,RR,RL)に対する制動力を保持する制御を行うことが好ましい。 In the braking system of a vehicle according to the present invention, in the second braking control, the braking force corresponding values (Pmc, Pwc) acquired by the braking force acquiring unit (55, S13) correspond to the gradient target value setting unit (55, S20) is a control to increase the braking force on the wheels (FR, FL, RR, RL) until the target value (Pmctha) set by S20) is reached, and the braking control unit (55, S35) is the second control After completion of the braking control, it is preferable to perform control for holding the braking force on the wheels (FR, FL, RR, RL).
 上記構成によれば、車輪に対する制動力が路面の勾配に応じた設定値(即ち、勾配制動力設定部によって設定された目標値)以上となった場合には、車両の停車を維持できるため、第2制動制御が終了する。その後、車輪に対する制動力を保持する制御が行われる。そのため、第2制動制御が継続される場合と比較して、車輪に対する制動力を自動的に調整する際に駆動するブレーキアクチュエータでの消費電力量を少なくすることができる。 According to the above configuration, when the braking force on the wheels becomes equal to or greater than the set value corresponding to the gradient of the road surface (that is, the target value set by the gradient braking force setting unit), the vehicle can be stopped. The second braking control ends. Thereafter, control is performed to hold the braking force on the wheels. Therefore, compared with the case where the second braking control is continued, it is possible to reduce the amount of power consumption in the brake actuator driven when automatically adjusting the braking force on the wheel.
 本発明の車両の制動制御方法は、車両に設けられる車輪(FR,FL,RR,RL)に対する制動力に相当する制動力相当値(Pmc、Pwc)を取得させる制動力取得ステップ(13)と、前記車輪(FR,FL,RR,RL)に対する制動力の目標値(Pmctha)を、車両の位置する路面の勾配が急勾配である場合には路面の勾配が緩勾配である場合よりも大きな値に設定させる勾配目標値設定ステップ(S20)と、前記車輪(FR,FL,RR,RL)に対する制動力を小さくするブレーキ操作を運転手が行う場合に、前記制動力取得ステップ(13)で取得した制動力相当値(Pmc、Pwc)が前記勾配目標値設定ステップ(S20)で設定した目標値(Pmctha)未満になることを規制する第1制動ステップ(S22)と、前記第1制動ステップ(S22)の実行によって車輪(FR,FL,RR,RL)に対する制動力の低下が規制される場合において路面の勾配が急勾配側に変化したときに、前記車輪(FR,FL,RR,RL)に対する制動力を増大させる第2制動ステップ(S33)と、を有することを要旨とする。 The braking control method for a vehicle according to the present invention includes a braking force acquisition step (13) for acquiring a braking force equivalent value (Pmc, Pwc) corresponding to a braking force for a wheel (FR, FL, RR, RL) provided in the vehicle. The target value (Pmctha) of the braking force for the wheels (FR, FL, RR, RL) is larger when the slope of the road surface where the vehicle is located is steep than when the slope of the road surface is slow. In the braking force acquisition step (13), when the driver performs the gradient target value setting step (S20) to be set to a value and the braking operation to reduce the braking force on the wheels (FR, FL, RR, RL) A first braking step (S2) for restricting the acquired braking force equivalent value (Pmc, Pwc) to be less than the target value (Pmctha) set in the gradient target value setting step (S20) And, when the reduction of the braking force on the wheels (FR, FL, RR, RL) is restricted by the execution of the first braking step (S22), when the slope of the road surface changes to the steep side, the wheels And a second braking step (S33) for increasing the braking force on (FR, FL, RR, RL).
 上記構成によれば、上記車両の制動制御装置と同等の効果を得ることができる。 According to the above configuration, it is possible to obtain the same effect as the braking control device for the vehicle.
本発明にかかる車両の制動制御装置を搭載する車両の要部を示すブロック図。FIG. 1 is a block diagram showing an essential part of a vehicle equipped with a vehicle braking control device according to the present invention. 制動装置の一例を示すブロック図。FIG. 2 is a block diagram showing an example of a braking device. 勾配加速度の絶対値と勾配相当MC圧との関係を示すマップ。The map which shows the relationship between the absolute value of gradient acceleration, and gradient equivalent MC pressure. アイドルストップ処理ルーチンを説明するフローチャート。The flowchart which demonstrates an idle stop process routine. エンジン再始動処理ルーチンを説明するフローチャート(前半部分)。The flowchart (the first half part) explaining engine restart processing routine. エンジン再始動処理ルーチンを説明するフローチャート(後半部分)。The flowchart (second half part) explaining engine restart processing routine. 車両の登坂路走行中におけるMC圧、WC圧、ブースタ圧、エンジン回転数、路面の勾配、車体速度、リニア電磁弁に対する電流値及びポンプ用モータに対する電流値の変化を示すタイミングチャート。7 is a timing chart showing changes in MC pressure, WC pressure, booster pressure, engine speed, road surface slope, vehicle speed, current value for a linear solenoid valve, and current value for a pump motor while the vehicle is traveling uphill. 車両の登坂路走行中におけるMC圧、WC圧、車体加速度、ブースタ圧、エンジン回転数、路面の勾配、車体速度、リニア電磁弁に対する電流値、ポンプ用モータに対する電流値及びスタータモータに対する電流値の変化を示すタイミングチャート。MC pressure, WC pressure, vehicle acceleration, booster pressure, engine speed, road surface slope, vehicle speed, current value for linear solenoid valve, current value for pump motor, current value for starter motor while traveling on uphill road of vehicle The timing chart which shows change. エンジンを再始動させる制御を、車輪に対する制動力を増大させる制御より優先的に行う場合の別の実施形態の一例を説明するタイミングチャート。The timing chart explaining an example of another embodiment in the case of giving priority to control which restarts an engine rather than control which increases braking power to a wheel.
 以下、本発明を具体化した一実施形態を図1~図8に従って説明する。なお、以下における本明細書中の説明においては、車両の進行方向(前進方向)を前方(車両前方)として説明する。 An embodiment of the present invention will now be described with reference to FIGS. 1 to 8. In the following description of the present specification, the traveling direction (forward direction) of the vehicle will be described as the front (vehicle front).
 本実施形態の車両は、燃費性能やエミッション性能を向上させるべく、車両走行中に所定の停止条件の成立に応じてエンジンを自動的に停止させ、その後、所定の始動条件の成立に応じてエンジンを自動的に再始動させる所謂アイドルストップ機能を有している。そのため、この車両では、運転手によるブレーキ操作による減速中又は停車中に、エンジンが自動的に停止される。 The vehicle according to the present embodiment automatically stops the engine according to the establishment of a predetermined stop condition during traveling of the vehicle in order to improve the fuel efficiency performance and the emission performance, and then the engine according to the establishment of the predetermined start condition Has a so-called idle stop function that automatically restarts the Therefore, in this vehicle, the engine is automatically stopped during deceleration or stop by the driver's brake operation.
 次に、アイドルストップ機能を有する車両の一例について説明する。 Next, an example of a vehicle having an idle stop function will be described.
 図1に示すように、車両は、複数(本実施形態では4つ)ある車輪(右前輪FR、左前輪FL、右後輪RR及び左後輪RL)のうち、前輪FR,FLが駆動輪として機能する所謂前輪駆動車である。こうした車両には、運転手によるアクセルペダル11の操作量に応じた駆動力を発生するエンジン12を有する駆動力発生装置13と、該駆動力発生装置13で発生した駆動力を前輪FR,FLに伝達する駆動力伝達装置14とを備えている。また、車両には、快適設備の一例としてのオーディオ60(ナビゲーション装置も含む。)と、快適設備の一例としての温度調整装置61と、運転手によるブレーキペダル15の操作量に応じた制動力を各車輪FR,FL,RR,RLに付与するための制動装置16とが設けられている。 As shown in FIG. 1, among the plurality of (four in this embodiment) wheels (right front wheel FR, left front wheel FL, right rear wheel RR and left rear wheel RL), the front wheels FR, FL are drive wheels. It is a so-called front wheel drive car that functions as In such a vehicle, a driving force generator 13 having an engine 12 that generates a driving force corresponding to the amount of operation of the accelerator pedal 11 by the driver, and the driving force generated by the driving force generator 13 And a driving force transmission device 14 for transmitting. The vehicle also includes an audio 60 (including a navigation device) as an example of a comfort facility, a temperature adjustment device 61 as an example of a comfort facility, and a braking force corresponding to the operation amount of the brake pedal 15 by the driver. A braking device 16 is provided for applying to each of the wheels FR, FL, RR, RL.
 駆動力発生装置13は、エンジン12から外部に向けて延設された吸気管70と、該吸気管70内に配置され、且つその開口断面積を可変させるスロットル弁71とを備えている。このスロットル弁71は、図示しないアクチュエータで発生する駆動力によって作動する。また、エンジン12の吸気ポート(図示略)近傍には、燃料を噴射するインジェクタを有する図示しない燃料噴射装置が設けられている。また、駆動力発生装置13には、エンジン12を始動させる際に作動するスタータモータ72が設けられている。 The driving force generator 13 includes an intake pipe 70 extended from the engine 12 to the outside, and a throttle valve 71 disposed in the intake pipe 70 and varying an opening cross-sectional area thereof. The throttle valve 71 operates by a driving force generated by an actuator (not shown). Further, in the vicinity of an intake port (not shown) of the engine 12, a fuel injection device (not shown) having an injector for injecting fuel is provided. In addition, the driving force generator 13 is provided with a starter motor 72 that operates when the engine 12 is started.
 こうした駆動力発生装置13は、図示しないCPU、ROM及びRAMなどを有するエンジン用ECU17(「エンジン用電子制御装置」ともいう。)の制御に基づき駆動する。このエンジン用ECU17には、アクセルペダル11の近傍に配置され、且つ運転手によるアクセルペダル11の操作量、即ちアクセル開度を検出するためのアクセル開度センサSE1が電気的に接続されている。そして、エンジン用ECU17は、アクセル開度センサSE1からの検出信号に基づきアクセル開度を演算し、該演算したアクセル開度などに基づき駆動力発生装置13を制御する。 The driving force generator 13 is driven based on control of an engine ECU 17 (also referred to as an “engine electronic control device”) having a CPU, a ROM, a RAM, and the like (not shown). The engine ECU 17 is electrically connected to an accelerator opening sensor SE1 disposed in the vicinity of the accelerator pedal 11 and detecting an operation amount of the accelerator pedal 11 by the driver, that is, an accelerator opening. Then, the engine ECU 17 calculates the accelerator opening based on the detection signal from the accelerator opening sensor SE1, and controls the driving force generator 13 based on the calculated accelerator opening and the like.
 駆動力伝達装置14は、自動変速機18と、該自動変速機18の出力軸から伝達された駆動力を適宜配分して前輪FR,FLに伝達するディファレンシャルギヤ19と、自動変速機18を制御する図示しないAT用ECUとを備えている。自動変速機18は、流体継手の一例としてトルクコンバータ(図示略)を有する流体式駆動力伝達機構20と、変速機構21とを備えている。 The driving force transmission device 14 controls the automatic transmission 18, the differential gear 19 for appropriately distributing the driving force transmitted from the output shaft of the automatic transmission 18 and transmitting it to the front wheels FR and FL, and the automatic transmission 18 And an AT ECU (not shown). The automatic transmission 18 includes a hydraulic drive power transmission mechanism 20 having a torque converter (not shown) as an example of a fluid coupling, and a transmission mechanism 21.
 オーディオ60は、車両の乗員による操作に応じた音楽などの情報を、乗員に提供するための機器である。こうしたオーディオ60は、車両に搭載される図示しないバッテリから供給される電力に基づき作動する。 The audio 60 is a device for providing the occupant with information such as music according to the operation by the occupant of the vehicle. The audio 60 operates based on the power supplied from a battery (not shown) mounted on the vehicle.
 温度調整装置61は、車内の温度を調整するための空調装置である。こうした温度調整装置61は、エンジン12で発生した駆動力に基づき作動するコンプレッサ62と、エンジン12とコンプレッサ62との動力伝達経路上に配置される接・断機構63とを備えている。接・断機構63は、コンプレッサ62への駆動力の伝達を許可したり切断したりすべく作動する機構である。すなわち、コンプレッサ62は、接・断機構63を介してエンジン12で発生した駆動力が伝達される場合に作動する。 The temperature adjustment device 61 is an air conditioner for adjusting the temperature in the vehicle. The temperature control device 61 includes a compressor 62 that operates based on the driving force generated by the engine 12, and a connection / disconnection mechanism 63 disposed on a power transmission path between the engine 12 and the compressor 62. The connection / disconnection mechanism 63 is a mechanism that operates to allow or disconnect the transmission of the driving force to the compressor 62. That is, the compressor 62 operates when the driving force generated by the engine 12 is transmitted through the connection / disconnection mechanism 63.
 こうしたオーディオ60及び温度調整装置61は、図示しないCPU、ROM及びRAMなどを有するアイドルストップ用ECU65(「アイドルストップ用電子制御装置」ともいう。)によって制御される。具体的には、アイドルストップ用ECU65は、上記バッテリからオーディオ60に供給する電力量を制御したり、接・断機構63を制御したりする。 The audio 60 and the temperature adjustment device 61 are controlled by an idle stop ECU 65 (also referred to as an “idle stop electronic control device”) having a CPU, a ROM, a RAM, and the like (not shown). Specifically, the idle stop ECU 65 controls the amount of power supplied from the battery to the audio 60, and controls the connection / disconnection mechanism 63.
 制動装置16は、図1及び図2に示すように、マスタシリンダ25、ブースタ26及びリザーバ27を有する液圧発生装置28と、2つの液圧回路29,30を有するブレーキアクチュエータ31(図2では二点鎖線で示す。)とを備えている。各液圧回路29,30は、液圧発生装置28のマスタシリンダ25にそれぞれ接続されている。そして、第1液圧回路29には、右前輪FR用のホイールシリンダ32a及び左後輪RL用のホイールシリンダ32dが接続されると共に、第2液圧回路30には、左前輪FL用のホイールシリンダ32b及び右後輪RR用のホイールシリンダ32cが接続されている。 As shown in FIGS. 1 and 2, the braking device 16 includes a hydraulic pressure generating device 28 having a master cylinder 25, a booster 26 and a reservoir 27, and a brake actuator 31 having two hydraulic circuits 29, 30 (in FIG. 2). (Indicated by a two-dot chain line). The respective hydraulic circuits 29, 30 are connected to the master cylinder 25 of the hydraulic pressure generating device 28, respectively. A wheel cylinder 32a for the right front wheel FR and a wheel cylinder 32d for the left rear wheel RL are connected to the first hydraulic circuit 29, and a wheel for the left front wheel FL is connected to the second hydraulic circuit 30. A cylinder 32b and a wheel cylinder 32c for the right rear wheel RR are connected.
 液圧発生装置28においてブースタ26は、エンジン12の駆動時に負圧が発生するインテークマニホールド70aに接続されている。そして、ブースタ26は、インテークマニホールド70a内に発生する負圧と大気圧との圧力差を利用し、運転手によるブレーキペダル15の操作力を助勢する。また、ブースタ26には、該ブースタ26内で発生する負圧、即ちブースタ圧を検出するためのブースタ圧センサSE9が設けられている。このブースタ圧センサSE9からは、ブースタ26内のブースタ圧に応じた検出信号がブレーキ用ECU55に出力される。 In the hydraulic pressure generating device 28, the booster 26 is connected to an intake manifold 70a that generates a negative pressure when the engine 12 is driven. Then, the booster 26 assists the operating force of the brake pedal 15 by the driver using the pressure difference between the negative pressure generated in the intake manifold 70a and the atmospheric pressure. Further, the booster 26 is provided with a booster pressure sensor SE9 for detecting a negative pressure generated in the booster 26, that is, the booster pressure. A detection signal corresponding to the booster pressure in the booster 26 is output from the booster pressure sensor SE9 to the brake ECU 55.
 マスタシリンダ25は、運転手によるブレーキペダル15の操作(以下、「ブレーキ操作」ともいう。)に応じた流体圧としてのマスタシリンダ圧(以下、「MC圧」ともいう。)を発生する。その結果、マスタシリンダ25からは、液圧回路29,30を介してホイールシリンダ32a~32d内に流体の一例としてのブレーキ液が供給される。すると、車輪FR,FL,RR,RLには、ホイールシリンダ32a~32d内のホイールシリンダ圧(「WC圧」ともいう。)に応じた制動力が付与される。 Master cylinder 25 generates a master cylinder pressure (hereinafter also referred to as “MC pressure”) as a fluid pressure according to the operation of brake pedal 15 by the driver (hereinafter also referred to as “brake operation”). As a result, the master cylinder 25 supplies brake fluid as an example of fluid into the wheel cylinders 32a to 32d via the hydraulic circuits 29, 30. Then, a braking force corresponding to the wheel cylinder pressure (also referred to as "WC pressure") in the wheel cylinders 32a to 32d is applied to the wheels FR, FL, RR, and RL.
 ブレーキアクチュエータ31において各液圧回路29,30は、連結経路33,34を介してマスタシリンダ25に接続されており、該各連結経路33,34には、常開型のリニア電磁弁(調整弁)35a,35bが設けられている。リニア電磁弁35a,35bは、弁座、弁体、電磁コイル及び弁体を弁座から離間する方向に付勢する付勢部材(例えば、コイルスプリング)を備えており、弁体は、後述するブレーキ用ECU55から電磁コイルに供給される電流の大きさ、即ち電流値に応じて変位する。すなわち、マスタシリンダ25内のMC圧とホイールシリンダ32a~32d内のWC圧との差圧は、リニア電磁弁35a,35bに対する電流値に応じた大きさに調整される。 In the brake actuator 31, each hydraulic circuit 29, 30 is connected to the master cylinder 25 via connection paths 33, 34, and the connection paths 33, 34 are normally open linear solenoid valves (regulating valves). ) 35a, 35b are provided. The linear solenoid valves 35a and 35b include a valve seat, a valve body, an electromagnetic coil, and a biasing member (eg, a coil spring) for biasing the valve body away from the valve seat, and the valve body will be described later It is displaced according to the magnitude of the current supplied from the brake ECU 55 to the electromagnetic coil, that is, the current value. That is, the differential pressure between the MC pressure in the master cylinder 25 and the WC pressure in the wheel cylinders 32a to 32d is adjusted to a magnitude corresponding to the current value to the linear solenoid valves 35a, 35b.
 また、各連結経路33,34の何れか一方(本実施形態では、連結経路33)において、リニア電磁弁35aよりもマスタシリンダ25側には、マスタシリンダ25内のMC圧を検出するためのマスタ圧センサSE8が設けられている。このマスタ圧センサSE8からは、MC圧に応じた検出信号がブレーキ用ECU55に出力される。 A master for detecting the MC pressure in the master cylinder 25 on the master cylinder 25 side of the linear solenoid valve 35a in one of the connection paths 33 and 34 (the connection path 33 in this embodiment) A pressure sensor SE8 is provided. A detection signal corresponding to the MC pressure is output from the master pressure sensor SE8 to the brake ECU 55.
 第1液圧回路29には、ホイールシリンダ32aに接続される右前輪用経路36aと、ホイールシリンダ32dに接続される左後輪用経路36dとが形成されている。また、第2液圧回路30には、ホイールシリンダ32bに接続される左前輪用経路36bと、ホイールシリンダ32cに接続される右後輪用経路36cとが形成されている。また、経路36a~36dには、ホイールシリンダ32a~32d内のWC圧の増圧を規制する際に作動する常開型の電磁弁である増圧弁37a,37b,37c,37dと、WC圧を減圧させる際に作動する常閉型の電磁弁である減圧弁38a,38b,38c,38dとが設けられている。 In the first hydraulic circuit 29, a right front wheel path 36a connected to the wheel cylinder 32a and a left rear wheel path 36d connected to the wheel cylinder 32d are formed. Further, in the second hydraulic circuit 30, a left front wheel path 36b connected to the wheel cylinder 32b and a right rear wheel path 36c connected to the wheel cylinder 32c are formed. Further, in the paths 36a to 36d, the WC pressures are set as pressure increase valves 37a, 37b, 37c, and 37d, which are normally open solenoid valves that operate when regulating the WC pressure increase in the wheel cylinders 32a to 32d. Pressure reducing valves 38a, 38b, 38c, and 38d, which are normally closed solenoid valves that operate when reducing the pressure, are provided.
 また、液圧回路29,30には、ホイールシリンダ32a~32dから減圧弁38a~38dを介して流出したブレーキ液を一時貯留するためのリザーバ39,40と、ポンプ用モータ41の回転に基づき作動するポンプ42,43とが接続されている。リザーバ39,40は、吸入用流路44,45を介してポンプ42,43に接続されると共に、マスタ側流路46,47を介して連結経路33,34においてリニア電磁弁35a,35bよりもマスタシリンダ25側に接続されている。また、ポンプ42,43は、供給用流路48,49を介して液圧回路29,30における増圧弁37a~37dとリニア電磁弁35a,35bとの間の接続部位50,51に接続されている。そして、ポンプ42,43は、ポンプ用モータ41が回転した場合に、リザーバ39,40及びマスタシリンダ25側から吸入用流路44,45及びマスタ側流路46,47を介してブレーキ液を吸引し、該ブレーキ液を供給用流路48,49内に吐出する。 The hydraulic circuits 29, 30 operate based on the rotation of the pump motor 41 and reservoirs 39, 40 for temporarily storing the brake fluid that has flowed out of the wheel cylinders 32a 32d through the pressure reducing valves 38a 38d. Pumps 42 and 43 are connected. The reservoirs 39 and 40 are connected to the pumps 42 and 43 through the suction flow channels 44 and 45, and connected to the connection paths 33 and 34 through the master flow channels 46 and 47 more than the linear solenoid valves 35a and 35b. It is connected to the master cylinder 25 side. The pumps 42 and 43 are connected to connection portions 50 and 51 between the pressure increasing valves 37a to 37d and the linear solenoid valves 35a and 35b in the hydraulic circuits 29 and 30 through the supply flow paths 48 and 49, respectively. There is. Then, when the pump motor 41 is rotated, the pumps 42 and 43 suck the brake fluid from the reservoirs 39 and 40 and the master cylinder 25 through the suction flow paths 44 and 45 and the master side flow paths 46 and 47. And discharge the brake fluid into the supply channels 48, 49.
 次に、ブレーキアクチュエータ31の駆動を制御するブレーキ用ECU55(「ブレーキ用電子制御装置」ともいう。)について説明する。 Next, the brake ECU 55 (also referred to as “brake electronic control device”) that controls the drive of the brake actuator 31 will be described.
 図2に示すように、制動制御装置としてのブレーキ用ECU55の入力側インターフェースには、各車輪FR,FL,RR,RLの車輪速度を検出するための車輪速度センサSE3,SE4,SE5,SE6、及び車両の前後方向における加速度を検出するための加速度センサ(「Gセンサ」ともいう。)SE7が電気的に接続されている。また、ブレーキ用ECU55の入力側インターフェースには、ブレーキペダル15の近傍に配置され、且つブレーキペダル15が操作されているか否かを検出するためのブレーキスイッチSW1、マスタ圧センサSE8及びブースタ圧センサSE9が電気的に接続されている。ブレーキ用ECU55の出力側インターフェースには、各弁35a,35b,37a~37d,38a~38d及びポンプ用モータ41などが電気的に接続されている。なお、加速度センサSE7からは、車両の重心が後方に移動する際に正の値となるような信号が出力される一方、車両の重心が前方に移動する際に負の値となるような信号が出力される。 As shown in FIG. 2, wheel speed sensors SE3, SE4, SE5, SE6 for detecting the wheel speeds of the respective wheels FR, FL, RR, RL are provided at the input side interface of the brake ECU 55 as a braking control device. An acceleration sensor (also referred to as "G sensor") SE7 for detecting an acceleration in the front-rear direction of the vehicle is electrically connected. In addition, a brake switch SW1, a master pressure sensor SE8, and a booster pressure sensor SE9, which are disposed in the vicinity of the brake pedal 15 and detect whether the brake pedal 15 is operated, are provided at the input side interface of the ECU 55 for brakes. Are electrically connected. The valves 35a, 35b, 37a to 37d, 38a to 38d and the pump motor 41 are electrically connected to the output side interface of the brake ECU 55. The acceleration sensor SE7 outputs a signal that gives a positive value when the center of gravity of the vehicle moves rearward, while a signal that gives a negative value when the center of gravity of the vehicle moves forward Is output.
 また、ブレーキ用ECU55は、図示しないCPU、ROM及びRAMなどから構成されるデジタルコンピュータ、各弁35a,35b,37a~37d,38a~38dを作動させるための図示しない弁用ドライバ回路、及びポンプ用モータ41を作動させるための図示しないモータ用ドライバ回路を有している。デジタルコンピュータのROMには、各種制御処理(後述するアイドルストップ処理等)、各種マップ(図3に示すマップ等)及び各種閾値などが予め記憶されている。また、RAMには、車両の図示しないイグニッションスイッチがオンである間、適宜書き換えられる各種の情報などがそれぞれ記憶される。 Further, the brake ECU 55 is a digital computer including a CPU, a ROM, a RAM and the like (not shown), a valve driver circuit (not shown) for operating the respective valves 35a, 35b, 37a to 37d and 38a to 38d A motor driver circuit (not shown) for operating the motor 41 is provided. In the ROM of the digital computer, various control processes (idle stop process described later, etc.), various maps (map shown in FIG. 3 etc.), various threshold values, etc. are stored in advance. In addition, while the ignition switch (not shown) of the vehicle is on, the RAM stores various types of information that can be appropriately rewritten.
 次に、ブレーキ用ECU55のROMに記憶される各種マップについて図3に基づき説明する。 Next, various maps stored in the ROM of the brake ECU 55 will be described based on FIG.
 図3に示すマップは、勾配加速度Agの絶対値と、勾配相当MC圧Pmcthaとの関係を示している。図3に示すように、勾配相当MC圧Pmcthaは、勾配加速度Agの絶対値が大きい場合には小さい場合よりも大きな値に設定される。具体的には、勾配相当MC圧Pmcthaは、勾配加速度Agの絶対値が大きいほど大きな値に設定される。 The map shown in FIG. 3 shows the relationship between the absolute value of the gradient acceleration Ag and the gradient equivalent MC pressure Pmctha. As shown in FIG. 3, the gradient equivalent MC pressure Pmctha is set to a larger value when the absolute value of the gradient acceleration Ag is large than when it is small. Specifically, the gradient equivalent MC pressure Pmctha is set to a larger value as the absolute value of the gradient acceleration Ag is larger.
 なお、「勾配加速度Ag」とは、路面の勾配と対応関係にある加速度のことであって、車両の停車中に加速度センサSE7からの検出信号に基づき算出される車両の前後方向における加速度(以下、単に「車体加速度」という。)又は該車体加速度に相当する値である。つまり、勾配加速度Agは、路面の勾配が急勾配である場合のほうが緩勾配である場合よりも大きな値となる。また、「勾配相当MC圧Pmctha」とは、エンジン12からの駆動力が前輪FR,FLに伝達されない場合に、車両の停車を維持するために必要な最低限度の制動力を各車輪FR,FL,RR,RLに付与するために必要なMC圧Pmcmin(図3では破線で示す。)にオフセット値αを加算したものである。 The "gradient acceleration Ag" is an acceleration that corresponds to the gradient of the road surface, and is an acceleration in the front-rear direction of the vehicle calculated based on a detection signal from the acceleration sensor SE7 while the vehicle is stopped , Or simply referred to as "vehicle acceleration" or a value corresponding to the vehicle acceleration. That is, the gradient acceleration Ag has a larger value in the case where the road surface has a steep slope than in the case where the road slope is a gentle slope. Also, “a gradient equivalent MC pressure Pmctha” means the minimum braking force necessary to maintain the vehicle stop when the driving force from the engine 12 is not transmitted to the front wheels FR, FL. , RR, and RL by adding an offset value α to an MC pressure Pmcmin (shown by a broken line in FIG. 3).
 例えば、勾配加速度Agが第1の加速度Ag1である場合の勾配相当MC圧Pmcthaは、第1MC圧Pmc1である。そして、勾配加速度Agが第1の加速度Ag1である場合において、マスタシリンダ25内のMC圧が第1MC圧Pmc1以上となるようにブレーキ操作されている場合、各ホイールシリンダ32a~32d内のWC圧は、第1MC圧Pmc1と同程度の液圧となり、結果として、車両の路面上で停車が維持される。すなわち、運転手の意図しない車両の移動が発生しない。したがって、本実施形態では、勾配加速度Ag(即ち、路面の勾配)に基づき設定される勾配相当MC圧Pmcthaが、車輪FR,FL,RR,RLに対する制動力に相当する制動力相当値の目標値に相当する。 For example, the gradient equivalent MC pressure Pmctha when the gradient acceleration Ag is the first acceleration Ag1 is the first MC pressure Pmc1. When the gradient acceleration Ag is the first acceleration Ag1, and the brake operation is performed so that the MC pressure in the master cylinder 25 becomes the first MC pressure Pmc1 or more, the WC pressure in each wheel cylinder 32a to 32d The hydraulic pressure is approximately the same as the first MC pressure Pmc1, and as a result, the vehicle is maintained on the road surface. That is, unintended movement of the driver does not occur. Therefore, in the present embodiment, the target value of the braking force equivalent value corresponding to the braking force for the wheels FR, FL, RR, and RL is the gradient equivalent MC pressure Pmctha set based on the gradient acceleration Ag (that is, the gradient of the road surface). It corresponds to
 図1に示すように、本実施形態の車両において、エンジン用ECU17、ブレーキ用ECU55及びアイドルストップ用ECU65を含むECU同士は、各種情報及び各種制御指令を送受信できるようにバス56を介してそれぞれ接続されている。例えば、エンジン用ECU17からは、アクセルペダル11のアクセル開度に関する情報、エンジン12の再始動の成功・失敗に関する情報などがブレーキ用ECU55に適宜送信される。一方、ブレーキ用ECU55からは、エンジン12の自動的な停止を許可する旨の停止許可指令、エンジン12の自動的な再始動を許可する旨の再始動許可指令などがエンジン用ECU17に送信される。また、アイドルストップ用ECU65は、オーディオ60及び温度調整装置61に関する情報をエンジン用ECU17及びブレーキ用ECU55に送信する。 As shown in FIG. 1, in the vehicle of this embodiment, the ECUs including the engine ECU 17, the brake ECU 55, and the idle stop ECU 65 are connected via the bus 56 so that they can transmit and receive various information and various control commands. It is done. For example, from the engine ECU 17, information on the accelerator opening degree of the accelerator pedal 11, information on success / failure of restart of the engine 12, and the like are appropriately transmitted to the brake ECU 55. On the other hand, from the brake ECU 55, a stop permission command for permitting automatic stop of the engine 12 and a restart permission command for permitting automatic restart of the engine 12 are transmitted to the engine ECU 17 . Further, the idle stop ECU 65 transmits information on the audio 60 and the temperature adjustment device 61 to the engine ECU 17 and the brake ECU 55.
 次に、本実施形態のブレーキ用ECU55が実行するアイドルストップ処理ルーチンについて、図4に示すフローチャート及び図7に示すタイミングチャートに基づき説明する。このアイドルストップ処理ルーチンは、エンジン12の自動的な停止を許可するタイミングやエンジン12の自動的な再始動を許可するタイミングなどを設定する処理ルーチンである。 Next, the idle stop processing routine executed by the brake ECU 55 of the present embodiment will be described based on the flowchart shown in FIG. 4 and the timing chart shown in FIG. The idle stop processing routine is a processing routine for setting the timing for permitting the automatic stop of the engine 12, the timing for permitting the automatic restart of the engine 12, and the like.
 さて、ブレーキ用ECU55は、予め設定された所定周期(例えば、0.01秒周期)毎にアイドルストップ処理ルーチンを実行する。このアイドルストップ処理ルーチンにおいて、ブレーキ用ECU55は、加速度センサSE7からの検出信号に基づき、車両の車体加速度Gを取得する(ステップS10)。 The brake ECU 55 executes the idle stop processing routine every predetermined cycle (for example, 0.01 second cycle) set in advance. In the idle stop processing routine, the brake ECU 55 acquires the vehicle body acceleration G of the vehicle based on the detection signal from the acceleration sensor SE7 (step S10).
 続いて、ブレーキ用ECU55は、車両の車体速度VSを取得する(ステップS11)。具体的には、ブレーキ用ECU55は、各車輪速度センサSE3~SE6からの検出信号に基づき各車輪FL,FR,RL,RRの車輪速度を演算し、該各車輪FL,FR,RL,RRの車輪速度のうち少なくとも一つの車輪速度を時間微分して車輪加速度を取得する。そして、ブレーキ用ECU55は、前回のタイミングで取得した車体速度に対して車輪加速度を積算し、該積算結果を車体速度VSとする。続いて、ブレーキ用ECU55は、ステップS11で取得した車体速度VSを時間微分して車体速度微分値DVSを取得する(ステップS12)。なお、ブレーキ用ECU55は、ステップS11での処理時に取得した車輪加速度を車体速度微分値DVSとしてもよい。 Subsequently, the brake ECU 55 acquires the vehicle body speed VS of the vehicle (step S11). Specifically, the brake ECU 55 calculates the wheel speeds of the wheels FL, FR, RL, and RR based on the detection signals from the wheel speed sensors SE3 to SE6, and calculates the wheel speeds of the wheels FL, FR, RL, and RR. The wheel acceleration is obtained by temporally differentiating at least one of the wheel speeds. Then, the brake ECU 55 integrates the wheel acceleration with respect to the vehicle speed acquired at the previous timing, and sets the integration result as the vehicle speed VS. Subsequently, the brake ECU 55 performs time differentiation on the vehicle speed VS acquired in step S11 to acquire a vehicle speed differential value DVS (step S12). The brake ECU 55 may use the wheel acceleration acquired at the time of the processing in step S11 as the vehicle speed differential value DVS.
 そして、ブレーキ用ECU55は、マスタ圧センサSE8からの検出信号に基づき、マスタシリンダ25内のMC圧Pmcを取得する(ステップS13)。MC圧Pmcは、運転手によるブレーキ操作に応じた値である。そのため、ブレーキアクチュエータ31が駆動していない場合、MC圧Pmcは、車輪FL,FR,RR,RLに対する制動力と対応関係を有している。つまり、MC圧Pmcは、車輪FL,FR,RR,RLに対する制動力に相当する制動力相当値である。したがって、本実施形態では、MC圧Pmcを取得するブレーキ用ECU55が、制動力取得部としても機能する。また、ステップS13が、制動力取得ステップに相当する。 And ECU55 for brakes acquires MC pressure Pmc in the master cylinder 25 based on the detection signal from master pressure sensor SE8 (step S13). The MC pressure Pmc is a value corresponding to the brake operation by the driver. Therefore, when the brake actuator 31 is not driven, the MC pressure Pmc has a correspondence relationship with the braking force on the wheels FL, FR, RR, and RL. That is, the MC pressure Pmc is a braking force equivalent value corresponding to the braking force on the wheels FL, FR, RR, and RL. Therefore, in the present embodiment, the brake ECU 55 that acquires the MC pressure Pmc also functions as a braking force acquisition unit. Step S13 corresponds to a braking force acquisition step.
 そして、ブレーキ用ECU55は、ステップS10で取得した車体加速度GからステップS12で取得した車体速度微分値DVSを減算し、該減算結果を勾配加速度Agとする。 Then, the brake ECU 55 subtracts the vehicle speed differential value DVS acquired in step S12 from the vehicle acceleration G acquired in step S10, and sets the result of the subtraction as the gradient acceleration Ag.
 車両が坂路を走行する場合、車体加速度Gと車体速度微分値DVSとの間には、路面の勾配に相当する差分が生じる。例えば、車両が坂路で停車する場合、車体速度微分値DVSは「0(零)」であるのに対し、車体加速度Gは、路面が登坂路であるときには正の値となると共に、路面が降坂路であるときには負の値となる。すなわち、車体加速度Gと車体速度微分値DVSとの差分が、路面の勾配に相当する加速度、即ち勾配加速度Agとなる。 When the vehicle travels on a slope, a difference corresponding to the gradient of the road surface is generated between the vehicle body acceleration G and the vehicle body speed differential value DVS. For example, when the vehicle stops on a slope, the vehicle body speed differential value DVS is “0 (zero)”, whereas the vehicle body acceleration G is a positive value when the road surface is uphill and the road surface When it is a slope, it becomes a negative value. That is, the difference between the vehicle body acceleration G and the vehicle body speed differential value DVS is an acceleration corresponding to the gradient of the road surface, that is, the gradient acceleration Ag.
 続いて、ブレーキ用ECU55は、エンジン用ECU17から受信した情報に基づき、エンジン12が駆動中であるか否かを判定する(ステップS15)。この判定結果が肯定である場合、ブレーキ用ECU55は、エンジン12が駆動中であるため、エンジン停止処理を実行する(ステップS16)。すなわち、ブレーキ用ECU55は、車両の車体速度VSが予め設定された停止基準速度(例えば20km/h)以下であって、且つステップS13で取得したMC圧Pmcが、エンジン12の自動的な停止を許可するか否かを判断するための停止基準速度以上である場合に、運転手が車両を停車させる意志があると判断する。そして、ブレーキ用ECU55は、停止許可指令をエンジン用ECU17及びアイドルストップ用ECU65に送信する。したがって、本実施形態では、ブレーキ用ECU55が、エンジン12の停止条件が成立した場合に該エンジン12の自動的な停止を許可する許可部としても機能する。その後、ブレーキ用ECU55は、アイドルストップ処理ルーチンを一旦終了する。 Subsequently, the brake ECU 55 determines whether the engine 12 is in operation based on the information received from the engine ECU 17 (step S15). If the determination result is affirmative, the brake ECU 55 executes engine stop processing because the engine 12 is being driven (step S16). That is, the ECU 55 for brakes determines that the vehicle speed VS of the vehicle is equal to or less than a preset stop reference speed (for example, 20 km / h) and the MC pressure Pmc acquired in step S13 automatically stops the engine 12. If it is equal to or higher than the stop reference speed for determining whether or not to permit, it is determined that the driver has the intention to stop the vehicle. Then, the brake ECU 55 transmits the stop permission command to the engine ECU 17 and the idle stop ECU 65. Therefore, in the present embodiment, the brake ECU 55 also functions as a permission unit that permits the automatic stop of the engine 12 when the stop condition of the engine 12 is satisfied. Thereafter, the brake ECU 55 temporarily terminates the idle stop processing routine.
 エンジン12を停止させる場合について、図7のタイミングチャートに基づき説明する。 The case where the engine 12 is stopped will be described based on the timing chart of FIG.
 図7のタイミングチャートに示すように、エンジン用ECU17がブレーキ用ECU55から停止許可指令を受信すると、エンジン12が停止される(第1のタイミングt11)。すると、エンジン回転数Neは、急激に少なくなり、最終的には「0(零)」になる。なお、エンジン用ECU17は、ブレーキ用ECU55から停止許可指令を受信すると必ずエンジン12を停止させるわけではない。例えば、エンジン用ECU17は、上記バッテリの蓄電量が少なくエンジン12の再始動に支障をきたす可能性があると判断した場合には、エンジン12を停止させない。 As shown in the timing chart of FIG. 7, when the engine ECU 17 receives the stop permission command from the brake ECU 55, the engine 12 is stopped (first timing t11). Then, the engine speed Ne rapidly decreases and eventually becomes “0 (zero)”. The engine ECU 17 does not necessarily stop the engine 12 when receiving the stop permission command from the brake ECU 55. For example, the engine ECU 17 does not stop the engine 12 when it is determined that the storage amount of the battery is small and there is a possibility that the restart of the engine 12 may be disturbed.
 図4のフローチャートに戻り、ステップS15の判定結果が否定である場合、ブレーキ用ECU55は、エンジン12が停止しているため、エンジン再始動処理を行う(ステップS17)。このエンジン再始動処理では、詳しくは後述するが、車輪FR,FL,RR,RLに対する制動力が調整されたり、再始動許可指令がエンジン用ECU17及びアイドルストップ用ECU65に送信されたりする。その後、ブレーキ用ECU55は、アイドルストップ処理ルーチンを一旦終了する。 Returning to the flowchart of FIG. 4, when the determination result of step S15 is negative, the engine ECU 55 performs engine restart processing because the engine 12 is stopped (step S17). In this engine restart process, although the details will be described later, the braking force on the wheels FR, FL, RR, and RL is adjusted, and a restart permission command is transmitted to the engine ECU 17 and the idle stop ECU 65. Thereafter, the brake ECU 55 temporarily terminates the idle stop processing routine.
 次に、上記ステップS17のエンジン再始動処理(エンジン再始動処理ルーチン)について、図5及び図6に示すフローチャートと図7及び図8に示すタイミングチャートとに基づき説明する。なお、図7及び図8に示すタイミングチャートは、車両が登坂路を走行する際のタイミングチャートの一例である。より詳しくは、図7及び図8に示すタイミングチャートは、車両の走行する路面の勾配が途中で急勾配側に変化する場合のタイミングチャートの一例である。 Next, the engine restart process (engine restart process routine) of step S17 will be described based on the flowcharts shown in FIGS. 5 and 6 and the timing charts shown in FIGS. 7 and 8. The timing charts shown in FIG. 7 and FIG. 8 are an example of timing charts when the vehicle travels on the uphill. More specifically, the timing charts shown in FIG. 7 and FIG. 8 are an example of a timing chart in the case where the gradient of the road surface on which the vehicle travels changes to the steep gradient side on the way.
 さて、エンジン再始動処理ルーチンにおいて、ブレーキ用ECU55は、勾配相当MC圧Pmcthaを路面の勾配に応じた値に設定する(ステップS20)。具体的には、ブレーキ用ECU55は、ステップS14で取得した勾配加速度Agに相当する勾配相当MC圧Pmcthaを、図3に示すマップを用いて取得する。この点で、本実施形態では、ブレーキ用ECU55が、勾配目標値設定部としても機能する。また、ステップS20が、勾配目標値設定ステップに相当する。 In the engine restart process routine, the brake ECU 55 sets the gradient equivalent MC pressure Pmctha to a value corresponding to the gradient of the road surface (step S20). Specifically, the brake ECU 55 acquires the gradient equivalent MC pressure Pmctha corresponding to the gradient acceleration Ag acquired in step S14, using the map shown in FIG. In this respect, in the present embodiment, the brake ECU 55 also functions as a slope target value setting unit. Step S20 corresponds to a gradient target value setting step.
 続いて、ブレーキ用ECU55は、ステップS13で取得したMC圧PmcがステップS20で設定した勾配相当MC圧Pmctha以下であるか否かを判定する(ステップS21)。この判定結果が否定(Pmc>Pmctha)である場合、ブレーキ用ECU55は、現時点の制動力が車輪FR,FL,RR,RLに付与され続ければ、運転手の意図しない車両の移動が発生しないと判断する。そして、ブレーキ用ECU55は、その処理を後述するステップS40(図6参照)に移行する。 Subsequently, the brake ECU 55 determines whether the MC pressure Pmc acquired in step S13 is equal to or less than the gradient equivalent MC pressure Pmctha set in step S20 (step S21). If the determination result is negative (Pmc> Pmctha), the brake ECU 55 may not cause an unintended movement of the vehicle if the braking force at the present time continues to be applied to the wheels FR, FL, RR, and RL. to decide. And ECU55 for brakes transfers to step S40 (refer FIG. 6) which mentions the process later.
 一方、ステップS21の判定結果が肯定(Pmc≦Pmctha)である場合、ブレーキ用ECU55は、車輪FR,FL,RR,RLに対する制動力が現時点の制動力よりも小さくなると、運転手の意図しない車両の移動が発生する可能性があると判断する。すなわち、ブレーキ用ECU55は、登坂路の走行中である場合には車両が一時的に停車した後に後退する可能性があると判断し、降坂路の走行中である場合には車両を停車させることができない可能性があると判断する。そして、ブレーキ用ECU55は、これ以上の制動力の低下を規制する第1制動制御処理を行う(ステップS22)。具体的には、ブレーキ用ECU55は、図7のタイミングチャートに示すように、各ホイールシリンダ32a~32d内のWC圧Pwcを現時点の液圧で保持できる程度の大きさの電流をリニア電磁弁35a,35bに供給する(第2のタイミングt12)。この場合、リニア電磁弁35a,35bに対する電流値Ibは、設定された勾配相当MC圧Pmcthaが高圧であるほど大きな値に設定される。したがって、本実施形態では、ブレーキ用ECU55が、制動制御部として機能する。また、ステップS22が、第1制動制御ステップに相当する。 On the other hand, if the determination result in step S21 is affirmative (Pmc ≦ Pmctha), the braking ECU 55 determines that the vehicle is not intended by the driver when the braking force on the wheels FR, FL, RR, and RL is smaller than the current braking force. It is determined that there is a possibility that movement of That is, the ECU 55 for brakes determines that there is a possibility that the vehicle temporarily stops and then moves backward while traveling uphill, and stops the vehicle when traveling downhill. Judge that there is a possibility that And ECU55 for brakes performs the 1st damping | braking control processing which controls the fall of the damping | braking force beyond this (step S22). Specifically, as shown in the timing chart of FIG. 7, the brake ECU 55 causes the linear solenoid valve 35a to have a current sufficient to hold the WC pressure Pwc in each of the wheel cylinders 32a to 32d with the current fluid pressure. , 35b (second timing t12). In this case, the current value Ib for the linear solenoid valves 35a, 35b is set to a larger value as the set gradient equivalent MC pressure Pmctha is higher. Therefore, in the present embodiment, the brake ECU 55 functions as a braking control unit. Step S22 corresponds to a first braking control step.
 図5のフローチャートに戻り、ブレーキ用ECU55は、車両の走行する路面が急勾配側に変化したか否かを判定する(ステップS23)。例えば、ブレーキ用ECU55は、勾配相当MC圧Pmctha又はリニア電磁弁35a,35bに対する電流値Ibの変化に基づき、路面が急勾配になったか否かを判定する。具体的には、勾配相当MC圧Pmctha及びリニア電磁弁35a,35bに対する電流値Ibは、第1制動制御処理が開始されると、ほぼ一定周期で設定される。しかも、勾配相当MC圧Pmctha及び電流値Ibは、路面の勾配に応じた値に設定される。そのため、定期的に設定される勾配相当MC圧Pmctha及び電流値Ibは、路面の勾配が変化すれば、その変化分だけ変化する。つまり、前回のエンジン再始動処理ルーチンの実行タイミングで設定された勾配相当MC圧Pmcthaよりも、今回のエンジン再始動処理ルーチンの実行タイミングで設定された勾配相当MC圧Pmcthaのほうが高圧である場合は、路面が急勾配側に変化したと判定される。 Referring back to the flowchart of FIG. 5, the brake ECU 55 determines whether the road surface on which the vehicle is traveling has changed to the steep side (step S23). For example, the brake ECU 55 determines whether or not the road surface has become steep based on the change in the gradient equivalent MC pressure Pmctha or the current value Ib with respect to the linear solenoid valves 35a, 35b. Specifically, the gradient equivalent MC pressure Pmctha and the current value Ib for the linear solenoid valves 35a and 35b are set at substantially constant cycles when the first braking control process is started. Moreover, the gradient equivalent MC pressure Pmctha and the current value Ib are set to values corresponding to the gradient of the road surface. Therefore, if the gradient of the road surface changes, the gradient equivalent MC pressure Pmctha and the current value Ib, which are set periodically, change as much as the change. That is, if the gradient equivalent MC pressure Pmctha set at the execution timing of the engine restart processing routine this time is higher than the gradient equivalent MC pressure Pmctha set at the execution timing of the previous engine restart processing routine , It is determined that the road surface has steeply changed.
 そして、ステップS23の判定結果が否定である場合、ブレーキ用ECU55は、路面の勾配が急勾配側に変化していないと判断し、その処理を後述するステップS40に移行する。例えば、路面の勾配が変化していない場合、及び路面の勾配が緩勾配側に変化した場合には、ステップS23の判定結果が否定となる。一方、ステップS23の判定結果が肯定である場合、ブレーキ用ECU55は、路面の勾配が急勾配側に変化したと判断し、その処理を次のステップS24に移行する。 Then, if the determination result of step S23 is negative, the brake ECU 55 determines that the gradient of the road surface has not changed sharply to the steep side, and shifts the process to step S40 described later. For example, when the slope of the road surface has not changed and when the slope of the road surface has changed to a gentle slope side, the determination result of step S23 is negative. On the other hand, when the determination result of step S23 is affirmative, the brake ECU 55 determines that the gradient of the road surface has changed to the steep gradient side, and shifts the process to the next step S24.
 ステップS24において、ブレーキ用ECU55は、他のECU(例えば、アイドルストップ用ECU65)からエンジン12の再始動の要求が有ったか否かを判定する。この判定結果が肯定である場合、ブレーキ用ECU55は、エンジン12の再始動の要求の緊急度が低いか否かを判定する(ステップS25)。この判定結果が肯定である場合、ブレーキ用ECU55は、緊急度が低いため、再始動待ちフラグFLG1をオンにセットし(ステップS26)、その処理を後述するステップS33(図6参照)に移行する。一方、ステップS25の判定結果が否定である場合、ブレーキ用ECU55は、緊急度が高いため、その処理を後述するステップS31に移行する。 In step S24, the brake ECU 55 determines whether there is a request for restart of the engine 12 from another ECU (for example, the idle stop ECU 65). If the determination result is affirmative, the brake ECU 55 determines whether the degree of urgency of the request for restarting the engine 12 is low (step S25). If the determination result is affirmative, since the degree of urgency is low, the brake ECU 55 sets the restart waiting flag FLG1 on (step S26), and shifts the process to step S33 (see FIG. 6) described later. . On the other hand, if the determination result in step S25 is negative, the brake ECU 55 shifts the process to step S31 described later because the degree of urgency is high.
 ここで、緊急度の低いエンジン12の再始動の要求と、緊急度の高いエンジン12の再始動の要求とについて説明する。 Here, a request for restarting the engine 12 with a low degree of urgency and a request for restarting the engine 12 with a high degree of urgency will be described.
 緊急度の低いエンジン12の再始動の要求としては、一例として、車載の快適設備(オーディオ60や温度調整装置61)の作動が挙げられる。オフ状態にあったオーディオ60をオン状態にする場合、バッテリからは、オーディオ60に対して電力が供給される。しかし、現時点のバッテリの蓄電量では、オーディオ60に対して電力を供給した状態で、エンジン12を再始動させるために必要な電力を確保できない可能性があるとアイドルストップ用ECU65が判断した場合、該アイドルストップ用ECU65からは、エンジン12の再始動の要求がブレーキ用ECU55及びエンジン用ECU17に出力される。 An example of the request for restarting the engine 12 with a low degree of urgency is the operation of a vehicle-mounted comfort facility (the audio 60 and the temperature control device 61). When the audio 60 in the off state is turned on, the battery supplies power to the audio 60. However, when the ECU 65 for idle stop judges that there is a possibility that the electric power necessary for restarting the engine 12 can not be secured in the state where electric power is supplied to the audio 60 at the current storage amount of the battery. A request for restarting the engine 12 is output from the idle stop ECU 65 to the brake ECU 55 and the engine ECU 17.
 また、温度調整装置61のコンプレッサ62を作動させる必要が生じた場合には、エンジン12を駆動させる必要がある。そのため、アイドルストップ用ECU65からは、コンプレッサ62を作動させる必要が生じた場合に、エンジン12の再始動の要求がブレーキ用ECU55及びエンジン用ECU17に出力される。 When it is necessary to operate the compressor 62 of the temperature control device 61, it is necessary to drive the engine 12. Therefore, when it becomes necessary to operate the compressor 62, the idle stop ECU 65 outputs a request for restarting the engine 12 to the brake ECU 55 and the engine ECU 17.
 このような快適設備を作動させるためのエンジン12の再始動と、車輪FR,FL,RR,RLに対する制動力の増大させる制動制御とでは、車両の安全性を鑑みた場合、制動制御の優先順位のほうが高い。 In view of the safety of the vehicle, the priority of the braking control is between the restart of the engine 12 for operating such a comfort facility and the braking control for increasing the braking force to the wheels FR, FL, RR, RL Is higher.
 一方、緊急度の高いエンジン12の再始動の要求としては、一例として、バッテリの蓄電量不足が挙げられる。すなわち、ブレーキアクチュエータ31側でこれ以上に電力が消費されると、エンジン12を再始動させるために必要な電力が確保できなくなる可能性があるとアイドルストップ用ECU65が判断した場合、該アイドルストップ用ECU65からは、エンジン12の再始動の要求がブレーキ用ECU55及びエンジン用ECU17に出力される。 On the other hand, as a request for restarting the engine 12 with a high degree of urgency, for example, the storage amount of the battery is insufficient. That is, if the brake actuator 31 consumes more power than this, there is a possibility that the power required to restart the engine 12 can not be secured. From the ECU 65, a request for restarting the engine 12 is output to the brake ECU 55 and the engine ECU 17.
 また、車両には、エンジン12からの駆動力に基づき作動する各種ポンプ(例えば、自動変速機18内の油圧ポンプ)が設けられている。こうしたポンプを作動させないと、車載装置(例えば、自動変速機18)に悪影響を及ぼす可能性があるとアイドルストップ用ECU65が判断した場合、該アイドルストップ用ECU65からは、エンジン12の再始動の要求がブレーキ用ECU55及びエンジン用ECU17に出力される。 The vehicle is also provided with various pumps (for example, hydraulic pumps in the automatic transmission 18) that operate based on the driving force from the engine 12. If the idle-stop ECU 65 determines that such a pump may not adversely affect the on-vehicle apparatus (for example, the automatic transmission 18), the idle-stop ECU 65 requests the engine 12 to restart. Is output to the brake ECU 55 and the engine ECU 17.
 図5のフローチャート戻り、ステップS24の判定結果が否定である場合、ブレーキ用ECU55は、他のECUからエンジン12の再始動の要求がないため、ブレーキスイッチSW1がオフであるか否かを判定する(ステップS27)。この判定結果が肯定(SW1=オフ)である場合、ブレーキ用ECU55は、運転手がブレーキ操作を行っていないため、車両を発進させる意志を運転手が有していると判断する。そのため、ブレーキ用ECU55は、その処理を後述するステップS31に移行する。 Referring back to the flowchart of FIG. 5, when the determination result in step S24 is negative, the ECU 55 for brakes determines whether the brake switch SW1 is off or not, since there is no request for restart of the engine 12 from another ECU. (Step S27). If the determination result is affirmative (SW1 = OFF), the brake ECU 55 determines that the driver has the intention to start the vehicle because the driver does not perform the brake operation. Therefore, the brake ECU 55 shifts the process to step S31 described later.
 一方、ステップS27の判定結果が否定(SW1=オン)である場合、ブレーキ用ECU55は、運転手がブレーキ操作を行っているため、ステップS13で取得したMC圧PmcがMC圧基準値Pmcth未満であるか否かを判定する(ステップS28)。MC圧基準値Pmcthは、運転手に車両を発進させる意志があるか否かをブレーキペダル15の操作量から判断するための基準値であって、エンジン12を停止させるか否かを判断するための上記停止基準速度よりも小さな値に設定される。なお、MC圧基準値Pmcthは、予め設定された所定値であってもよいし、路面の勾配に応じて変更される値であってもよい。 On the other hand, if the determination result in step S27 is negative (SW1 = on), the driver for the brake ECU 55 performs the brake operation, and therefore the MC pressure Pmc acquired in step S13 is less than the MC pressure reference value Pmcth. It is determined whether there is any (step S28). The MC pressure reference value Pmcth is a reference value for judging from the operation amount of the brake pedal 15 whether or not the driver has an intention to start the vehicle, and to judge whether or not the engine 12 is to be stopped. It is set to a value smaller than the above-mentioned stop reference speed of. The MC pressure reference value Pmcth may be a predetermined value set in advance, or may be a value changed according to the gradient of the road surface.
 ステップS28の判定結果が肯定(Pmc<Pmcth)である場合、ブレーキ用ECU55は、車両を発進させる意志を運転手が有していると判断し、その処理を後述するステップS31に移行する。一方、ステップS28の判定結果が否定(Pmc≧Pmcth)である場合、ブレーキ用ECU55は、ブースタ圧センサSE9からの検出信号に基づき、ブースタ26内のブースタ圧Pbを取得する(ステップS29)。ブースタ圧Pbは、ブースタ26内の負圧が大きいほど大きな圧力値となる。したがって、本実施形態では、ブレーキ用ECU55が、ブースタ圧取得部としても機能する。 If the determination result in step S28 is affirmative (Pmc <Pmcth), the brake ECU 55 determines that the driver has the intention to start the vehicle, and shifts the process to step S31 described later. On the other hand, if the determination result in step S28 is negative (Pmc P Pmcth), the brake ECU 55 acquires the booster pressure Pb in the booster 26 based on the detection signal from the booster pressure sensor SE9 (step S29). The booster pressure Pb has a larger pressure value as the negative pressure in the booster 26 is larger. Therefore, in the present embodiment, the brake ECU 55 also functions as a booster pressure acquisition unit.
 そして、ブレーキ用ECU55は、ステップS29で取得したブースタ圧Pbが予め設定されたブースタ圧基準値Pbth未満であるか否かを判定する(ステップS30)。エンジン12が停止した状態でブレーキ操作のオン・オフが繰り返されると、ブースタ26内のブースタ圧Pbはほぼ「0(零)」となる。このような状態で運転手がブレーキ操作を行っても、車輪FR,FL,RR,RLにはブレーキ操作量に見合った制動力が付与されない。すなわち、車両が停車していない状態でブースタ圧Pbがほぼ「0(零)」になっていると、運転手のブレーキ操作によって、車両を停車させることができない可能性がある。そこで、本実施形態では、ブースタ26内に負圧が発生しているか否かを判断するための基準値として、ブースタ圧基準値Pbthが設定される。 And ECU55 for brakes determines whether the booster pressure Pb acquired by step S29 is less than the booster pressure reference value Pbth set beforehand (step S30). When the on / off operation of the brake operation is repeated with the engine 12 stopped, the booster pressure Pb in the booster 26 becomes substantially "0 (zero)". Even if the driver performs a brake operation in such a state, a braking force commensurate with the amount of brake operation is not applied to the wheels FR, FL, RR, and RL. That is, when the booster pressure Pb is substantially “0 (zero)” in the state where the vehicle is not stopped, there is a possibility that the vehicle can not be stopped by the driver's brake operation. Therefore, in the present embodiment, the booster pressure reference value Pbth is set as a reference value for determining whether or not the negative pressure is generated in the booster 26.
 ステップS30の判定結果が否定(Pb≧Pbth)である場合、ブレーキ用ECU55は、ブースタ26内に負圧が残っていると判断し、その処理を後述するステップS33(図6参照)に移行する。一方、ステップS30の判定結果が肯定(Pb<Pbth)である場合、ブレーキ用ECU55は、ブースタ26内に負圧が残っていないと判断し、その処理を次のステップS31に移行する。 If the determination result in step S30 is negative (Pb Pb Pbth), the brake ECU 55 determines that negative pressure remains in the booster 26, and shifts the process to step S33 (see FIG. 6) described later. . On the other hand, if the determination result in step S30 is affirmative (Pb <Pbth), the brake ECU 55 determines that no negative pressure remains in the booster 26, and shifts the process to the next step S31.
 ステップS31において、ブレーキ用ECU55は、エンジン用ECU17及びアイドルストップ用ECU65に再始動許可指令を出力する。この点で、本実施形態では、ブレーキ用ECU55が、エンジン12の再始動条件が成立した場合に該エンジン12の再始動を許可する許可部としても機能する。続いて、ブレーキ用ECU55は、エンジン用ECU17から受信した情報に基づき、エンジン12の再始動が完了したか否かを判定する(ステップS32)。この判定結果が否定である場合、ブレーキ用ECU55は、エンジン12の再始動が完了するまでステップS32の判定処理を繰り返し実行する。一方、ステップS32の判定結果が肯定になった場合、ブレーキ用ECU55は、エンジン12の再始動が完了したため、その処理を次のステップS33(図6参照)に移行する。 In step S31, the brake ECU 55 outputs a restart permission command to the engine ECU 17 and the idle stop ECU 65. In this respect, in the present embodiment, the brake ECU 55 also functions as a permission unit that permits restart of the engine 12 when the restart condition of the engine 12 is satisfied. Subsequently, the brake ECU 55 determines whether the restart of the engine 12 has been completed based on the information received from the engine ECU 17 (step S32). If the determination result is negative, the brake ECU 55 repeatedly executes the determination process of step S32 until the restart of the engine 12 is completed. On the other hand, when the determination result in step S32 is affirmative, the ECU 55 for brakes shifts the process to the next step S33 (see FIG. 6) because the restart of the engine 12 is completed.
 ステップS33において、ブレーキ用ECU55は、車輪FR,FL,RR,RLに対する制動力を増大させる第2制動制御処理を行う。具体的には、ブレーキ用ECU55は、各ホイールシリンダ32a~32d内のWC圧Pwc(図7参照)が今回のエンジン再始動処理ルーチンの実行タイミングで取得された勾配相当MC圧Pmctha以上となるように、リニア電磁弁35a,35bに対する電流値Ibを設定する。また、ブレーキ用ECU55は、ポンプ42,43を駆動させるべくポンプ用モータ41に対する電流値Ipを設定する。したがって、本実施形態では、ステップS33が、第2制動制御ステップに相当する。なお、ポンプ用モータ41に対する電流値Ipは、予め設定された基準電流値である。また、WC圧Pwcは、第2制動制御制御の開始直前におけるマスタシリンダ25内のMC圧Pmc、リニア電磁弁35a,35bに対する電流値Ib(図7参照)及びポンプ42,43の作動時間などに基づき推定される。 In step S33, the brake ECU 55 performs a second braking control process to increase the braking force on the wheels FR, FL, RR, and RL. Specifically, the brake ECU 55 causes the WC pressure Pwc (see FIG. 7) in each of the wheel cylinders 32a to 32d to be equal to or higher than the gradient equivalent MC pressure Pmctha acquired at the execution timing of the engine restart process routine this time. Then, the current value Ib for the linear solenoid valves 35a, 35b is set. Further, the brake ECU 55 sets a current value Ip to the pump motor 41 so as to drive the pumps 42 and 43. Therefore, in the present embodiment, step S33 corresponds to a second braking control step. The current value Ip for the pump motor 41 is a reference current value set in advance. The WC pressure Pwc corresponds to the MC pressure Pmc in the master cylinder 25 immediately before the start of the second braking control, the current value Ib to the linear solenoid valves 35a and 35b (see FIG. 7), and the operation time of the pumps 42 and 43 It is estimated based on
 続いて、ブレーキ用ECU55は、第2制動制御処理に基づく車輪FR,FL,RR,RLに対する制動力の増大が完了したか否かを判定する(ステップS34)。この判定結果が否定である場合、ブレーキ用ECU55は、ポンプ42,43(即ち、ポンプ用モータ41)を作動させ続ける必要があるため、その処理を前述したステップS33に移行する。一方、ステップS34の判定結果が肯定になった場合、ブレーキ用ECU55は、車輪FR,FL,RR,RLに対する制動力が車両の停車を維持できる程度の大きさ以上になったため、ポンプ42,43を停止させて車輪FR,FL,RR,RLに対する制動力を保持する(ステップS35)。 Subsequently, the brake ECU 55 determines whether or not the increase in the braking force on the wheels FR, FL, RR, and RL based on the second braking control process is completed (step S34). If the determination result is negative, the brake ECU 55 needs to keep the pumps 42 and 43 (i.e., the pump motor 41) operated, so the process proceeds to step S33 described above. On the other hand, when the determination result in step S34 is affirmative, the brake ECU 55 has the braking force on the wheels FR, FL, RR, and RL greater than or equal to the size that can maintain the stop of the vehicle. Is stopped to hold the braking force on the wheels FR, FL, RR, and RL (step S35).
 続いて、ブレーキ用ECU55は、再始動待ちフラグFLG1がオンであるか否かを判定する(ステップS36)。この判定結果が否定(FLG1=オフ)である場合、ブレーキ用ECU55は、エンジン12を再始動させる必要がないため、エンジン再始動処理ルーチンを終了する。一方、ステップS36の判定結果が肯定(FLG1=オン)である場合、ブレーキ用ECU55は、エンジン用ECU17及びアイドルストップ用ECU65に再始動許可指令を出力する(ステップS37)。 Subsequently, the brake ECU 55 determines whether the restart waiting flag FLG1 is on (step S36). If the determination result is negative (FLG1 = OFF), the brake ECU 55 does not need to restart the engine 12, and thus ends the engine restart processing routine. On the other hand, if the determination result in step S36 is affirmative (FLG1 = on), the brake ECU 55 outputs a restart permission command to the engine ECU 17 and the idle stop ECU 65 (step S37).
 続いて、ブレーキ用ECU55は、上記ステップS32と同様に、エンジン12の再始動が完了したか否かを判定する(ステップS38)。そして、ステップS38の判定結果が肯定になった場合、ブレーキ用ECU55は、エンジン12の再始動が完了したため、再始動待ちフラグFLG1をオフにセットする(ステップS39)。その後、ブレーキ用ECU55は、エンジン再始動処理ルーチンを終了する。 Subsequently, the ECU 55 for brakes determines whether or not the restart of the engine 12 is completed, as in step S32 (step S38). When the determination result in step S38 is affirmative, the ECU 55 for brakes sets the restart waiting flag FLG1 to OFF because the restart of the engine 12 is completed (step S39). Thereafter, the brake ECU 55 ends the engine restart process routine.
 ここで、第1制動制御処理が開始されてから第2制動制御処理が開始されるまでの間に、エンジン12の再始動を行わない場合について、図7に示すタイミングチャートに基づき説明する。なお、こうした場合とは、第1制動制御処理が開始される第2のタイミングt12から、第2制動制御処理が開始される第3のタイミングt13の間に、エンジン12を再始動させるための条件が成立しなかった場合、及び緊急度の低いエンジン12の再始動の要求があった場合を含む。 Here, a case where restart of the engine 12 is not performed between the start of the first braking control process and the start of the second braking control process will be described based on a timing chart shown in FIG. 7. In such a case, the condition for restarting the engine 12 between the second timing t12 when the first braking control processing is started and the third timing t13 when the second braking control processing is started. And the case where there is a request for restarting the engine 12 with a less urgent degree.
 第1制動制御処理が開始される第2のタイミングt12以降の第3のタイミングt13で、路面の勾配が急勾配になると、車体減速度は大きくなる。これは、勾配の変動によって勾配加速度Agが大きくなるためである。すると、第2制動制御処理によって、リニア電磁弁35a,35bに対する電流値Ibが大きくなると共に、ポンプ用モータ41に対する電流値Ipが大きくなる。すると、各ホイールシリンダ32a~32d内のWC圧Pwcが増圧され、結果として、各車輪FR,FL,RR,RLに対する制動力が増大される。そして、各ホイールシリンダ32a~32d内のWC圧Pwcが勾配相当MC圧Pmc以上になると、ポンプ42,43が停止される(第5のタイミングt15)。その後、各ホイールシリンダ32a~32d内のWC圧Pwcが保持される、即ち車輪FR,FL,RR,RLに対する制動力が保持される。 At a third timing t13 after the second timing t12 at which the first braking control process is started, when the road slope becomes steep, the vehicle deceleration becomes large. This is because the gradient acceleration Ag becomes large due to the fluctuation of the gradient. Then, the current value Ib to the linear solenoid valves 35a, 35b increases and the current value Ip to the pump motor 41 increases by the second braking control process. Then, the WC pressure Pwc in each wheel cylinder 32a to 32d is increased, and as a result, the braking force on each wheel FR, FL, RR, RL is increased. Then, when the WC pressure Pwc in each of the wheel cylinders 32a to 32d becomes equal to or higher than the gradient equivalent MC pressure Pmc, the pumps 42 and 43 are stopped (fifth timing t15). Thereafter, the WC pressure Pwc in each of the wheel cylinders 32a to 32d is held, that is, the braking force on the wheels FR, FL, RR, and RL is held.
 ところで、第5のタイミングt15よりも前の第4のタイミングt14で、車両が停車することがある。しかし、本実施形態では、車両が停車したと判定される前から制動力を増大させる制御が開始されている。そのため、車両の停車がしたと判定されてから制動力の増大が開始される場合と比較して、車輪FR,FL,RR,RLに対する制動力を、停車を維持できる程度の制動力まで速やかに増大させることができる。したがって、車両の停車後における該車両の後退(所謂ずり下がり)が抑制される。 By the way, the vehicle may stop at a fourth timing t14 before the fifth timing t15. However, in the present embodiment, the control for increasing the braking force is started before it is determined that the vehicle has stopped. Therefore, the braking force on wheels FR, FL, RR, and RL is swiftly reduced to a braking force that can maintain the vehicle, as compared to the case where the increase in the braking force is started after it is determined that the vehicle has stopped. It can be increased. Therefore, the backward movement (so-called slip) of the vehicle after the stop of the vehicle is suppressed.
 なお、第2制動制御処理が行われても、リニア電磁弁35a,35bは閉じ状態にはなっていない。この状態で、第2制動制御処理の終了後に運転手がブレーキ操作量を多くした場合、各ホイールシリンダ32a~32d内のWC圧Pwcは、マスタシリンダ25内のMC圧Pmcに追随して高圧に変動する(第6のタイミングt16)。 The linear solenoid valves 35a and 35b are not in the closed state even if the second braking control process is performed. In this state, if the driver increases the amount of brake operation after the end of the second braking control process, the WC pressure Pwc in each of the wheel cylinders 32a to 32d follows the MC pressure Pmc in the master cylinder 25 to a high pressure. It fluctuates (sixth timing t16).
 次に、第1制動制御処理が開始されてから第2制動制御処理が開始されるまでの間に、エンジン12の再始動を行う場合について、図8に示すタイミングチャートに基づき説明する。なお、こうした場合とは、第1制動制御処理が開始される第1のタイミングt21から、第2制動制御処理が開始される第3のタイミングt23の間に、エンジン12を再始動させるための条件が成立した場合、及び緊急度の高いエンジン12の再始動の要求があった場合を含む。 Next, a case where the engine 12 is restarted between the start of the first braking control process and the start of the second braking control process will be described based on a timing chart shown in FIG. In such a case, a condition for restarting the engine 12 between a first timing t21 at which the first braking control processing is started and a third timing t23 at which the second braking control processing is started. And when there is a request for restart of the engine 12 with a high degree of urgency.
 第1のタイミングt21で第1制動制御処理が開始されると、各ホイールシリンダ32a~32d内のWC圧Pwcは、第1のタイミングt21時点のWC圧Pwcで保持される。そして、路面の勾配が急勾配側に変化した第2のタイミングt22で、MC圧PmcがMC圧基準値Pmcth未満になると、エンジン12を再始動させるための制御が開始される。すなわち、エンジン12を始動させるために作動するスタータモータ72に対する電流値Isが、「0(零)」から所定値(>0(零))に設定される。そして、スタータモータ72の作動開始後の第3のタイミングt23で、エンジン12の再始動が完了すると、スタータモータ72に対する電流値Isが「0(零)」となる。すなわち、エンジン12の再始動に伴うバッテリの負荷が小さくなる。 When the first braking control process is started at the first timing t21, the WC pressure Pwc in each of the wheel cylinders 32a to 32d is held at the WC pressure Pwc at the first timing t21. Then, when the MC pressure Pmc becomes less than the MC pressure reference value Pmcth at a second timing t22 when the gradient of the road surface changes to the steep gradient side, the control for restarting the engine 12 is started. That is, the current value Is for the starter motor 72 that operates to start the engine 12 is set from “0 (zero)” to a predetermined value (> 0 (zero)). Then, at the third timing t23 after the start of the operation of the starter motor 72, when the restart of the engine 12 is completed, the current value Is for the starter motor 72 becomes "0 (zero)". That is, the load on the battery accompanying the restart of the engine 12 is reduced.
 すると、エンジン12の再始動が完了する第3のタイミングt23で、第2制動制御処理が開始される。すなわち、リニア電磁弁35a,35bに対する電流値Ibが大きくなると共に、ポンプ用モータ41に対する電流値Ipが大きくなる。その結果、各ホイールシリンダ32a~32d内のWC圧Pwcが増圧され、結果として、各車輪FR,FL,RR,RLに対する制動力が増大される。そして、各ホイールシリンダ32a~32d内のWC圧Pwcが勾配相当MC圧Pmc以上になると、ポンプ42,43が停止される(第4のタイミングt24)。その後、各ホイールシリンダ32a~32d内のWC圧Pwcが保持される、即ち、車輪FR,FL,RR,RLに対する制動力が保持される。 Then, at a third timing t23 when the restart of the engine 12 is completed, the second braking control process is started. That is, the current value Ib to the linear solenoid valves 35a, 35b increases, and the current value Ip to the pump motor 41 increases. As a result, the WC pressure Pwc in each wheel cylinder 32a to 32d is increased, and as a result, the braking force on each wheel FR, FL, RR, RL is increased. Then, when the WC pressure Pwc in each of the wheel cylinders 32a to 32d becomes equal to or higher than the gradient equivalent MC pressure Pmc, the pumps 42 and 43 are stopped (fourth timing t24). Thereafter, the WC pressure Pwc in each wheel cylinder 32a to 32d is held, that is, the braking force on the wheels FR, FL, RR, and RL is held.
 なお、各ホイールシリンダ32a~32d内のWC圧Pwcは、運転手によるブレーキ操作が解消されない限り(即ち、ブレーキスイッチSW1がオンである間)、第2制動制御処理の終了時点の液圧で保持される。その後、ブレーキスイッチSW1がオフになると、リニア電磁弁35a,35bに対する電流値Ibが徐々に低下される(第5のタイミングt25)。すなわち、車輪FR,FL,RR,RLに対する制動力が徐々に小さくなる。そして、リニア電磁弁35a,35bに対する電流値Ibが「0(零)」になる(第6のタイミングt26)と、車輪FR,FL,RR,RLに対する制動力は、第6のタイミングt26に少し遅れて「0(零)」になる。 The WC pressure Pwc in each of the wheel cylinders 32a to 32d is held at the hydraulic pressure at the end of the second braking control process, as long as the driver does not cancel the brake operation (that is, while the brake switch SW1 is on). Be done. Thereafter, when the brake switch SW1 is turned off, the current value Ib for the linear solenoid valves 35a, 35b is gradually decreased (fifth timing t25). That is, the braking force on the wheels FR, FL, RR, and RL gradually decreases. Then, when the current value Ib to the linear solenoid valves 35a and 35b becomes "0 (zero)" (sixth timing t26), the braking forces on the wheels FR, FL, RR, and RL are slightly changed at the sixth timing t26. It becomes "0 (zero)" late.
 図6のフローチャートに戻り、ステップS40において、ブレーキ用ECU55は、エンジンの再始動条件、又はエンジン12の再始動の要求が有ったか否かを判定する。エンジン12の再始動条件が成立する場合とは、上記ステップS27,S28,S30の各判定処理と同等の各判定処理のうち何れか一つの判定結果が肯定になった場合のことを示す。そして、ステップS40の判定結果が否定である場合、ブレーキ用ECU55は、エンジン12を再始動させる必要がないため、エンジン再始動処理ルーチンを終了する。 Returning to the flowchart of FIG. 6, in step S40, the brake ECU 55 determines whether there is a restart condition of the engine or a request for restart of the engine 12. The case where the restart condition of the engine 12 is satisfied indicates that one of the determination processes equivalent to the determination processes of steps S27, S28, and S30 is positive. When the determination result in step S40 is negative, the brake ECU 55 ends the engine restart processing routine because it is not necessary to restart the engine 12.
 一方、ステップS40の判定結果が肯定である場合、ブレーキ用ECU55は、エンジン12を再始動させる緊急度が高いか否かを判定する(ステップS41)。ここでは、エンジン12の再始動条件が成立する場合は、緊急度が高いと判定される。また、他のECUからエンジン12の再始動の要求があった場合の判定基準は、上記ステップS25の判定基準と同一である。そして、ステップS41の判定結果が肯定である場合、即ち緊急度が高い場合、ブレーキ用ECU55は、その処理を後述するステップS43に移行する。一方、ステップS41の判定結果が否定である場合、即ち緊急度が低い場合、ブレーキ用ECU55は、車両が停車したか否かを判定する(ステップS42)。この判定結果が否定である場合、ブレーキ用ECU55は、車両が停車していないため、エンジン再始動処理ルーチンを終了する。一方、ステップS42の判定結果が肯定である場合、ブレーキ用ECU55は、車両が停車したため、その処理を次のステップS43に移行する。 On the other hand, if the determination result in step S40 is affirmative, the brake ECU 55 determines whether the degree of urgency for restarting the engine 12 is high (step S41). Here, when the restart condition of the engine 12 is satisfied, it is determined that the degree of urgency is high. Further, the determination criterion in the case where there is a request for restarting the engine 12 from another ECU is the same as the determination criterion in the above-mentioned step S25. When the determination result of step S41 is affirmative, that is, when the degree of urgency is high, the brake ECU 55 shifts the process to step S43 described later. On the other hand, if the determination result in step S41 is negative, that is, if the degree of urgency is low, the brake ECU 55 determines whether the vehicle has stopped (step S42). If the determination result is negative, the brake ECU 55 ends the engine restart processing routine because the vehicle is not stopped. On the other hand, when the determination result in step S42 is affirmative, the brake ECU 55 shifts the process to the next step S43 because the vehicle has stopped.
 ステップS43において、ブレーキ用ECU55は、上記ステップS31の処理と同様に、再始動許可指令をエンジン用ECU17及びアイドルストップ用ECU65に出力する。続いて、ブレーキ用ECU55は、上記ステップS32の処理と同等に、エンジン12の再始動が完了したか否かを判定する。そして、ブレーキ用ECU55は、ステップS44の判定結果が肯定になった場合に、エンジン再始動処理ルーチンを終了する。 In step S43, the brake ECU 55 outputs a restart permission command to the engine ECU 17 and the idle stop ECU 65, as in the process of step S31. Then, ECU55 for brakes determines whether restart of the engine 12 was completed similarly to the process of said step S32. And ECU55 for brakes complete | finishes engine restart process routine, when the determination result of step S44 becomes affirmation.
 すなわち、第1制動制御処理が開始されてから路面の勾配が急勾配側に変化しない場合であっても、エンジン12の再始動の緊急度が高い場合にはエンジン12の再始動が優先的に行われる。もちろん、エンジン12の再始動中に、路面の勾配が急勾配側に変化したとしても、エンジン12の再始動が完了してから、車輪FR,FL,RR,RLに対する制動力を増大させる第2制動制御処理が開始される。 That is, even if the slope of the road surface does not change to the steep side after the first braking control process is started, the restart of the engine 12 is given priority if the degree of urgency of the restart of the engine 12 is high. To be done. Of course, even if the gradient of the road surface changes sharply during the restart of the engine 12, after the restart of the engine 12 is completed, the braking force on the wheels FR, FL, RR, and RL is increased The braking control process is started.
 また、エンジン12の再始動の緊急度が低い場合には、車両が停車してからエンジン12が再始動される。車両が停車していない間では、路面の勾配の急勾配側への変化によって、第2制動制御処理の開始条件が成立する可能性がある。エンジン12の再始動の緊急度が低い場合には、第2制動制御処理を優先的に行う方が好ましい。そこで、本実施形態では、エンジン12を再始動させる制御よりも、車輪FR,FL,RR,RLに対する制動力を増大させる第2制動制御処理が優先される。 Further, if the degree of urgency of restarting the engine 12 is low, the engine 12 is restarted after the vehicle has stopped. While the vehicle is not stopped, there is a possibility that the start condition of the second braking control process is satisfied due to the change of the road surface to the steep side. If the degree of urgency of restart of the engine 12 is low, it is preferable to perform the second braking control process with priority. Therefore, in the present embodiment, the second braking control process for increasing the braking force on the wheels FR, FL, RR, and RL has priority over the control for restarting the engine 12.
 したがって、本実施形態では、以下に示す効果を得ることができる。 Therefore, in the present embodiment, the following effects can be obtained.
 (1)車両を停車させる場合における運転手によるブレーキ操作によって、車輪FR,FL,RR,RLに対する制動力が小さくなり過ぎると、車両の停車を維持できない又は車両を停車させることができない可能性が出てくる。そのため、車輪FR,FL,RR,RLに対する制動力が現時点の制動力よりも低下すると運転手の意図しない車両の移動が発生すると判断されたタイミングで、制動力を保持する第1制動制御が開始される。すると、車輪FR,FL,RR,RLに対する制動力が、路面の勾配に応じた制動力近傍で保持される。その後、路面の勾配が急勾配側に変化しない場合には、車輪FR,FL,RR,RLに対する制動力を増大させなくても、車両を停車させることができる。 (1) If the braking force on the wheels FR, FL, RR, and RL becomes too small by the driver's brake operation when stopping the vehicle, there is a possibility that the vehicle can not be maintained or the vehicle can not be stopped. Come out. Therefore, the first braking control for holding the braking force is started at the timing when it is determined that the driver's unintended movement of the vehicle occurs when the braking force on the wheels FR, FL, RR, and RL is lower than the braking force at the present time. Be done. Then, the braking force on the wheels FR, FL, RR, and RL is held in the vicinity of the braking force according to the gradient of the road surface. Thereafter, when the road surface does not change steeply, the vehicle can be stopped without increasing the braking force on the wheels FR, FL, RR, and RL.
 その一方で、第1制動制御が開始されてから路面の勾配が急勾配側に変化すると、第1制動制御によって車輪FR,FL,RR,RLに付与される制動力では、運転手の意図しない車両の移動を防止できない可能性があると判断され、車輪FR,FL,RR,RLに対する制動力を増大させる第2制動制御が行われる。すなわち、車両が停車したと判定されてから車輪FR,FL,RR,RLに対する制動力を増大させる従来の場合と比較して、車輪FR,FL,RR,RLに対する制動力を増大させるタイミングが早くなる。その結果、車両の走行する路面が登坂路である場合には、車両の停車後に、運転手の意図に反して車両が後退することを抑制できる。また、車両の走行する路面が降坂路である場合には、制動力不足に起因して、車両を停車できなくなる事態を回避できる。したがって、車両を停車させる場合に車輪FR,FL,RR,RLに対する制動力を小さくするブレーキ操作を運転手が行ったとしても、運転手の意図しない車両の移動を抑制することができる。 On the other hand, when the slope of the road surface changes to the steep side after the first braking control is started, the driver does not intend to use the braking force applied to the wheels FR, FL, RR, and RL by the first braking control. It is determined that there is a possibility that movement of the vehicle can not be prevented, and second braking control is performed to increase the braking force on the wheels FR, FL, RR, and RL. That is, the timing at which the braking force on wheels FR, FL, RR, and RL is increased is earlier than in the conventional case where the braking force on wheels FR, FL, RR, and RL is increased after it is determined that the vehicle has stopped. Become. As a result, when the road surface on which the vehicle travels is an uphill road, it is possible to prevent the vehicle from moving backward against the driver's intention after the vehicle stops. In addition, when the road surface on which the vehicle travels is a downhill road, it is possible to avoid the situation where the vehicle can not be stopped due to the insufficient braking force. Therefore, even when the driver performs a brake operation to reduce the braking force on the wheels FR, FL, RR, and RL when the vehicle is stopped, it is possible to suppress unintended movement of the vehicle.
 (2)ブレーキ用ECU55が第1制動制御や第2制動制御を行うと、ブレーキアクチュエータ31が駆動する。特に、車輪FR,FL,RR,RLに対する制動力を増大させる第2制動制御では、ポンプ用モータ41を作動させることになるため、ブレーキアクチュエータ31での消費電力量が多くなる。そのため、エンジン12を再始動させるためにスタータモータ72を作動させる制御と、ポンプ用モータ41を作動させて車輪FR,FL,RR,RLに対する制動力を増大させる制御(第2制動制御)とが時間的に重複すると、車両に搭載されるバッテリの負荷が非常に大きくなる。 (2) When the brake ECU 55 performs the first braking control and the second braking control, the brake actuator 31 is driven. In particular, in the second braking control that increases the braking force on the wheels FR, FL, RR, and RL, the pump motor 41 is operated, so the amount of power consumption in the brake actuator 31 increases. Therefore, control for operating the starter motor 72 to restart the engine 12, and control for operating the pump motor 41 to increase the braking force on the wheels FR, FL, RR, and RL (second braking control) are given. Over time, the load of the battery mounted on the vehicle becomes very large.
 そこで、本実施形態では、エンジン12を再始動させる制御と、第2制動制御との時間的な重複が回避される。 Therefore, in the present embodiment, temporal overlap between the control for restarting the engine 12 and the second braking control is avoided.
 (3)例えば、第1制動制御の開始後において路面の勾配が急勾配側に変化した場合であっても、運転手に車両を発進させる意志が有る場合には、エンジン12を再始動させる制御が先に行われ、エンジン12の再始動が完了した後に第2制動制御が開始される。これは、運転手に車両を発進させる意志が有る場合には、車両を発進させることができる準備を速やかに実行することが好ましいためである。したがって、バッテリの負荷の増大を抑制できると共に、運転手の意図に沿って車両の速やかな発進に貢献できる。 (3) For example, even if the slope of the road surface changes to a steep slope after the start of the first braking control, the control to restart the engine 12 if the driver has the intention to start the vehicle The second braking control is started after the restart of the engine 12 is completed. This is because it is preferable to promptly execute preparation for starting the vehicle when the driver has the intention to start the vehicle. Therefore, it is possible to suppress an increase in battery load and to contribute to quick start of the vehicle in accordance with the driver's intention.
 (4)また、ブースタ26内のブースタ圧Pbがほぼ「0(零)」である場合、ブースタ26は、運転手によるブレーキ操作時における操作力をほとんど助勢できない。そのため、運転手がブレーキ操作を行っても車輪FR,FL,RR,RLに適切な制動力を付与することができない可能性が高い。すなわち、車両を確実に停車させるべく運転手がブレーキ操作量を増大させても、車輪FR,FL,RR,RLに対する制動力は、運転手の希望する大きさまで増大されない。 (4) Further, when the booster pressure Pb in the booster 26 is substantially "0 (zero)", the booster 26 can hardly assist the operating force at the time of the brake operation by the driver. Therefore, there is a high possibility that an appropriate braking force can not be applied to the wheels FR, FL, RR, and RL even if the driver performs a brake operation. That is, even if the driver increases the amount of brake operation so as to reliably stop the vehicle, the braking force on the wheels FR, FL, RR, and RL is not increased to the driver's desired magnitude.
 そのため、第1制動制御の開始後において路面の勾配が急勾配側に変化した場合であっても、ブースタ圧Pbがブースタ圧基準値Pbth未満である場合には、エンジン12を再始動させる制御が先に行われる。そして、エンジン12の再始動が完了すると、ブースタ26内には適切なブースタ圧Pbが発生する。その後、第2制動制御が開始される。そのため、エンジン12の再始動を優先的に行うことにより、ブースタ26内のブースタ圧Pbを速やかに所定圧にすることができる。したがって、運転手のブレーキ操作量に応じた制動力を、車輪FR,FL,RR,RLに付与することができる。つまり、車両の挙動を運転手の意図に沿ったものとすることができる。 Therefore, even if the slope of the road surface changes to the steep side after the start of the first braking control, if the booster pressure Pb is less than the booster pressure reference value Pbth, control to restart the engine 12 is performed. It will be done first. Then, when the restart of the engine 12 is completed, an appropriate booster pressure Pb is generated in the booster 26. Thereafter, the second braking control is started. Therefore, by preferentially restarting the engine 12, the booster pressure Pb in the booster 26 can be promptly set to a predetermined pressure. Therefore, the braking force corresponding to the amount of brake operation by the driver can be applied to the wheels FR, FL, RR, and RL. That is, the behavior of the vehicle can be made in accordance with the driver's intention.
 (5)本実施形態では、ブレーキ用ECU55が他のECUからエンジン12の再始動の要求を受信した場合、再始動の緊急度に応じて、エンジン12を再始動させる制御と、第2制動制御との優先順位が設定される。すなわち、緊急度が高いと判定された場合には、速やかにエンジン12を再始動させる必要があるため、エンジン12の再始動がブレーキ用ECU55によって許可される。そして、エンジン12の再始動が完了した後に、第2制動制御が開始される。 (5) In the present embodiment, when the brake ECU 55 receives a request to restart the engine 12 from another ECU, control to restart the engine 12 according to the degree of urgency of restart, and second braking control And priorities are set. That is, if it is determined that the degree of urgency is high, it is necessary to restart the engine 12 promptly, so the restart of the engine 12 is permitted by the brake ECU 55. Then, after the restart of the engine 12 is completed, the second braking control is started.
 その一方で、緊急度が低いと判定された場合には、第2制動制御が優先的に行われ、車輪FR,FL,RR,RLに対する制動力の増大が完了した後に、エンジン12の再始動が許可される。そのため、バッテリの負荷の増大を抑制しつつ、エンジン12を再始動させる制御と、第2制動制御とを行わせることができる。 On the other hand, if it is determined that the degree of urgency is low, the second braking control is preferentially performed, and the engine 12 is restarted after the increase in the braking force on the wheels FR, FL, RR, and RL is completed. Is permitted. Therefore, the control to restart the engine 12 and the second braking control can be performed while suppressing an increase in the load of the battery.
 (6)エンジン12の停止中に、オーディオ60及び温度調整装置61などの快適設備を作動させるために、エンジン12を再始動させる必要が生じることがある。こうした場合のエンジン12の再始動の要求の緊急度は低い。そのため、こうしたエンジン12の再始動の要求が有ったタイミングで、第2制動制御を行う必要がある場合には、第2制動制御が優先的に行われる。すなわち、車両の安全性を確保した状態でエンジン12を再始動させることにより、車室内を運転手にとって快適な空間とすることができる。 (6) It may be necessary to restart the engine 12 to operate the comfort equipment such as the audio 60 and the temperature control device 61 while the engine 12 is stopped. In such a case, the urgency of the request for restarting the engine 12 is low. Therefore, when it is necessary to perform the second braking control at a timing when there is a request for restarting the engine 12, the second braking control is preferentially performed. That is, by restarting the engine 12 while securing the safety of the vehicle, the passenger compartment can be made a comfortable space for the driver.
 (7)本実施形態では、第2制動制御を行う必要がない場合において、エンジン12を再始動させる必要が生じたときにも、エンジン12の再始動を許可するタイミングが緊急度によって設定される。すなわち、緊急度が高いと判定された場合には、速やかにエンジン12の再始動が許可される。そのため、エンジン12を速やかに再始動させることができる。 (7) In the present embodiment, even when it is necessary to restart the engine 12 when it is not necessary to perform the second braking control, the timing at which the restart of the engine 12 is permitted is set by the degree of urgency . That is, when it is determined that the degree of urgency is high, restart of the engine 12 is permitted promptly. Therefore, the engine 12 can be restarted promptly.
 一方、緊急度が低いと判定された場合には、車両が停車したと判定されてから、エンジン12の再始動が許可される。もし仮に、緊急度の低い要求でエンジン12の再始動を速やかに許可したとすると、エンジン12を再始動させる制御中に、第2制動制御処理の開始条件が成立する可能性がある。この場合、エンジン12を再始動させる制御を中止し、第2制動制御を行い、その後、エンジン12を再始動させる制御を再び行うことになる。この場合、最初にスタータモータ72を作動させた場合に、エンジン12の再始動が完了しなかったことに対して、運転手に不快感を与える可能性がある。この点、本実施形態では、エンジン12の再始動が中断されることを抑制でき、ひいては運転手に不快感を与えることを回避できる。 On the other hand, if it is determined that the degree of urgency is low, it is determined that the vehicle has stopped, and then restart of the engine 12 is permitted. Assuming that the restart of the engine 12 is promptly permitted with a request with a low degree of urgency, there is a possibility that the start condition of the second braking control process is established during the control for restarting the engine 12. In this case, the control for restarting the engine 12 is stopped, the second braking control is performed, and then the control for restarting the engine 12 is performed again. In this case, when the starter motor 72 is operated for the first time, the driver may feel uncomfortable that the restart of the engine 12 is not completed. In this respect, in the present embodiment, interruption of restart of the engine 12 can be suppressed, and in turn, discomfort to the driver can be avoided.
 なお、ここでいう車両の停車とは、車輪速度センサSE3~SE6を用いて取得される車体速度VSが「0(零)」になる状態のことを示す。そのため、車体速度VSに基づき車両が停車したと判定しても、車両は実際には未だ移動していることもあり得る。 Here, the stop of the vehicle indicates that the vehicle speed VS obtained using the wheel speed sensors SE3 to SE6 is "0 (zero)". Therefore, even if it is determined that the vehicle has stopped based on the vehicle body speed VS, the vehicle may actually be moving.
 (8)本実施形態では、第2制動制御は、車輪FR,FL,RR,RLに対する制動力が、車両の停車を保持できる程度の制動力まで増大されると終了する。その後、車輪FR,FL,RR,RLに対する制動力が保持される。そのため、第2制動制御が継続される場合と比較して、ブレーキアクチュエータ31での消費電力量を少なくすることができる。 (8) In the present embodiment, the second braking control ends when the braking forces on the wheels FR, FL, RR, and RL are increased to such a degree that the vehicle can be stopped. Thereafter, the braking force on the wheels FR, FL, RR, and RL is maintained. Therefore, compared to the case where the second braking control is continued, the amount of power consumed by the brake actuator 31 can be reduced.
 (9)また、本実施形態では、第1制動制御が開始されてから路面の勾配が緩勾配側に変化した場合、勾配相当MC圧Pmcthaは、緩やかになった勾配に応じた値に変更される。すなわち、勾配相当MC圧Pmcthaは、勾配が小さくなったことに起因して小さな値に設定される。すると、リニア電磁弁35a,35bに対する電流値Ibも小さな値に変更される。そのため、この状態で車両が停車した場合には、勾配相当MC圧Pmcthaが変更されない場合と比較して、停車時における揺り返しに基づく振動を小さくできる。 (9) Further, in the present embodiment, when the gradient of the road surface changes to the gentle gradient side after the first braking control is started, the gradient equivalent MC pressure Pmctha is changed to a value according to the gradient that has become gentle Ru. That is, the gradient equivalent MC pressure Pmctha is set to a small value due to the decrease in the gradient. Then, the current value Ib for the linear solenoid valves 35a and 35b is also changed to a small value. Therefore, when the vehicle stops in this state, the vibration based on the swing back at the time of stopping can be reduced compared to the case where the gradient equivalent MC pressure Pmctha is not changed.
 なお、実施形態は以下のような別の実施形態に変更してもよい。 Note that the embodiment may be changed to another embodiment as described below.
 ・実施形態において、ブレーキ用ECU55に対して他のECUからエンジン12の再始動が要求された場合には、該要求の緊急度に関係なく、エンジン12の再始動を速やかに許可してもよい。この場合、ステップS24の判定結果が肯定である場合、ステップS31の処理が行われることになる。 In the embodiment, when another ECU requests restart of the engine 12 to the brake ECU 55, restart of the engine 12 may be permitted promptly regardless of the degree of urgency of the request. . In this case, if the determination result of step S24 is affirmative, the process of step S31 is performed.
 ・実施形態において、ステップS29,S30の各処理を省略してもよい。すなわち、エンジン12の再始動を許可するタイミングを、ブースタ圧Pbの大きさに関係なく決定してもよい。この場合、ブースタ圧Pbがほぼ「0(零)」であっても、エンジン12の再始動が完了した後に、第2制動制御処理が実行されることにより、車両を停車させることができる。 In the embodiment, the processes of steps S29 and S30 may be omitted. That is, the timing for permitting the restart of the engine 12 may be determined regardless of the magnitude of the booster pressure Pb. In this case, even if the booster pressure Pb is substantially “0 (zero)”, the vehicle can be stopped by executing the second braking control process after the restart of the engine 12 is completed.
 ・実施形態において、車両を発進させる意志を運転手が有する場合であっても、第2制動制御を優先的に行い、その後、エンジン12の再始動を許可するようにしてもよい。この場合、車両が停車した安全な状態で、エンジン12が再始動させることになる。 In the embodiment, even if the driver has the intention to start the vehicle, the second braking control may be given priority, and then the restart of the engine 12 may be permitted. In this case, the engine 12 is restarted in a safe state in which the vehicle has stopped.
 ・実施形態において、車両を発進させる意志を運転手が有するか否かの判定条件として、アクセルペダル11が操作されているか否かを含んでもよい。 In the embodiment, whether the driver has the intention to start the vehicle may include whether the accelerator pedal 11 is operated.
 ・実施形態では、エンジン12を再始動させる制御を第2制動制御よりも優先する場合、エンジン12の再始動の完了後に、第2制動制御が開始される。すなわち、上記各制御が時間的に重複しない。しかし、上記各制御を時間的に重複させてもよい。 In the embodiment, when the control for restarting the engine 12 is prioritized over the second braking control, the second braking control is started after the restart of the engine 12 is completed. That is, the above controls do not overlap in time. However, the above controls may be overlapped in time.
 例えば、図9のタイミングチャートに示すように、エンジン12を再始動させるべくスタータモータ72にバッテリから電力を供給する間、ポンプ用モータ41に対する電流値Ipを、通常の基準電流値Ip_baseよりも小さい電流値に設定してもよい。このように構成しても、バッテリの負荷の増大を抑制できる。しかも、エンジン12の再始動中であっても、車輪FR,FL,RR,RLに対する制動力を少しずつ増大させることも可能となる。 For example, as shown in the timing chart of FIG. 9, while supplying power from the battery to the starter motor 72 to restart the engine 12, the current value Ip for the pump motor 41 is smaller than the normal reference current value Ip_base. It may be set to the current value. Even with this configuration, an increase in battery load can be suppressed. Moreover, even while the engine 12 is being restarted, it is possible to gradually increase the braking force on the wheels FR, FL, RR, and RL.
 ・実施形態において、第1制動制御処理によってリニア電磁弁35a,35bに対する電流値Ibが「0(零)」ではない場合、即ちリニア電磁弁35a,35bが作動中である場合、ステップS21の判定結果を肯定としてもよい。 In the embodiment, if the current value Ib to the linear solenoid valves 35a and 35b is not "0 (zero)" in the first braking control process, that is, if the linear solenoid valves 35a and 35b are in operation, the determination in step S21 The result may be positive.
 ・実施形態において、第1制動制御の開始後に、路面の勾配が緩勾配側に変化した場合には、リニア電磁弁35a,35bに対する電流値Ibを、路面の勾配の変化に合わせて小さくしなくてもよい。 In the embodiment, when the slope of the road surface changes to the gentle slope side after the start of the first braking control, the current value Ib for the linear solenoid valves 35a and 35b is not reduced according to the change of the slope of the road surface May be
 ・運転手のブレーキ操作によって車両が停車される場合に、エンジン12が停止していない場合もある。こうした場合であっても、必要に応じて第1制動制御処理及び第2制動制御処理を行ってもよい。 When the vehicle is stopped by the driver's brake operation, the engine 12 may not be stopped. Even in such a case, the first braking control process and the second braking control process may be performed as necessary.
 ・実施形態において、第1制動制御処理の開始後に、ブレーキスイッチSW1がオフになった場合には、第1制動制御処理を終了させてもよい。この場合、リニア電磁弁35a,35bに対する電流値Ibを徐々に小さくすることが好ましい。 In the embodiment, when the brake switch SW1 is turned off after the start of the first braking control process, the first braking control process may be ended. In this case, it is preferable to gradually reduce the current value Ib for the linear solenoid valves 35a and 35b.
 ・実施形態において、第1制動制御処理及び第2制動制御処理を、予め設定された基準速度以下である場合に、必要に応じて実行するようにしてもよい。この場合、基準速度は、エンジン12を停止させる場合の停止基準速度よりも低速度(例えば、10km/h)であることが好ましい。 In the embodiment, the first braking control process and the second braking control process may be performed as needed when the speed is less than or equal to a preset reference speed. In this case, the reference speed is preferably lower (e.g., 10 km / h) than the stop reference speed when the engine 12 is stopped.
 ・実施形態において、車両にカーナビゲーション装置が搭載される場合、車体速度VSや路面の勾配に関する情報を、ナビゲーション装置から取得してもよい。 In the embodiment, when the car navigation device is mounted on the vehicle, information on the vehicle speed VS and the slope of the road surface may be acquired from the navigation device.
 ・実施形態において、各ホイールシリンダ32a~32d内のWC圧Pwcを検出するためのセンサが車両に搭載される場合には、該センサからの検出信号に基づきWC圧Pwcを取得し、該WC圧Pwcに基づき第1制動制御及び第2制動制御の開始タイミングを設定してもよい。この場合、WC圧Pwcが、制動力相当値に相当する。 In the embodiment, when a sensor for detecting the WC pressure Pwc in each of the wheel cylinders 32a to 32d is mounted on the vehicle, the WC pressure Pwc is acquired based on the detection signal from the sensor, and the WC pressure is acquired. The start timing of the first braking control and the second braking control may be set based on Pwc. In this case, the WC pressure Pwc corresponds to a braking force equivalent value.
 ・車両が停車するまでは、加速度センサSE7からの検出信号に基づき取得される車体加速度Gは、路面の勾配に応じて変動する。そのため、車体加速度Gに基づきMC圧Pmcを推定してもよい。この場合、MC圧Pmcの推定値が、制動力相当値に相当する。 The vehicle body acceleration G obtained based on the detection signal from the acceleration sensor SE7 fluctuates according to the gradient of the road surface until the vehicle stops. Therefore, the MC pressure Pmc may be estimated based on the vehicle body acceleration G. In this case, the estimated value of the MC pressure Pmc corresponds to the braking force equivalent value.
 ・車両が電動パーキングブレーキ装置を備えている場合、第2制動制御処理では、ブレーキアクチュエータ31の代わりに、電動パーキングブレーキ装置を用いて車輪に対する制動力を増大させてもよい。また、第2制動制御処理では、ブレーキアクチュエータ31と電動パーキングブレーキ装置とを共に用いてもよい。 When the vehicle includes the electric parking brake device, the electric parking brake device may be used instead of the brake actuator 31 to increase the braking force on the wheels in the second braking control process. In the second braking control process, both the brake actuator 31 and the electric parking brake device may be used.
 ・上記実施形態で説明した車両は、アイドスストップ機能を有する車両であったが、アイドルストップ機能を有さない車両に、本発明の制動制御装置を搭載してもよい。 The vehicle described in the above embodiment is a vehicle having an eyed stop function, but the braking control device of the present invention may be mounted on a vehicle not having an idle stop function.
 次に、上記実施形態及び別の実施形態から把握できる技術的思想を以下に追記する。 Next, technical ideas that can be grasped from the above-described embodiment and other embodiments will be additionally described below.
 (イ)前記第2制動制御よりも前記エンジン(12)を再始動させる制御を優先するとは、該エンジン(12)の再始動が完了してから前記第2制動制御を行うことである。 (A) Prioritizing the control for restarting the engine (12) over the second braking control means performing the second braking control after the restart of the engine (12) is completed.
 (ロ)車両には、前記車輪(FR,FL,RR,RL)に対する制動力を調整すべく駆動するブレーキアクチュエータ(31)が設けられており、
 前記第2制動制御よりも前記エンジン(12)を再始動させる制御を優先するとは、
 前記エンジン(12)の再始動中では、前記ブレーキアクチュエータ(31)に供給される電力量が基準電力量よりも少ない電力量に設定され、
 前記エンジン(12)の再始動完了後に前記ブレーキアクチュエータ(31)に供給される電力量が前記基準電力量に設定されることである。
(B) The vehicle is provided with a brake actuator (31) which is driven to adjust the braking force on the wheels (FR, FL, RR, RL),
If priority is given to control to restart the engine (12) over the second braking control,
During the restart of the engine (12), the amount of power supplied to the brake actuator (31) is set to a power amount smaller than the reference power amount,
The amount of power supplied to the brake actuator (31) after the restart of the engine (12) is set to the reference amount of power.
 (ハ)前記ブレーキアクチュエータ(31)は、
 運転手のブレーキ操作に伴う流体圧(Pmc)を発生するマスタシリンダ(25)と、内部に発生した流体圧(Pwc)に応じた制動力を前記車輪(FR,FL,RR,RL)に付与するホイールシリンダ(35a,35b,35c,35d)とを連結する流路(33,34)に配置され、且つ前記マスタシリンダ(25)内の流体圧(Pmc)と前記ホイールシリンダ(35a,35b,35c,35d)内の流体圧(Pwc)との間の差圧を調整する調整弁(35a,35b)と、
 前記ホイールシリンダ(35a,35b,35c,35d)内の流体圧を増圧させるべく作動するポンプ(42,43)と、を有する。
(C) The brake actuator (31)
A master cylinder (25) that generates fluid pressure (Pmc) accompanying the driver's brake operation and a braking force according to the fluid pressure (Pwc) generated inside is applied to the wheels (FR, FL, RR, RL) Fluid pressure (Pmc) in the master cylinder (25) and the wheel cylinder (35a, 35b,...) Disposed in the flow path (33, 34) connecting the wheel cylinders (35a, 35b, 35c, 35d) Adjusting valves (35a, 35b) for adjusting a differential pressure between the fluid pressure (Pwc) in 35c, 35d), and
And a pump (42, 43) operable to increase fluid pressure in the wheel cylinder (35a, 35b, 35c, 35d).
 12…エンジン、25…マスタシリンダ、26…ブースタ、31…ブレーキアクチュエータ、35a,35b…調整弁の一例としてのリニア電磁弁、55…制動力取得部、勾配目標値設定部、制動制御部、制動制御装置、許可部、ブースタ圧取得部としてのブレーキ用ECU、60…快適装置の一例としてのオーディオ、61…快適装置の一例としての温度調整装置、FR,FL,RR,RL…車輪、Pb…負圧としてのブースタ圧、Pbth…ブースタ圧基準値、Pmc…制動力相当値の一例としてのMC圧(流体圧)、Pmctha…目標値の一例としての勾配相当MC圧、Pwc…制動力相当値の一例としてのWC圧(流体圧)。 12: Engine, 25: Master cylinder, 26: Booster, 31: Brake actuator, 35a, 35b: Linear solenoid valve as an example of an adjusting valve, 55: Braking force acquisition unit, gradient target value setting unit, braking control unit, braking Control device, permission unit, ECU for brake as booster pressure acquisition unit, 60: audio as an example of comfort device, 61: temperature control device as an example of comfort device, FR, FL, RR, RL: wheel, Pb, ... Booster pressure as negative pressure, Pbth ... booster pressure reference value, Pmc ... MC pressure (fluid pressure) as an example of braking force equivalent value, Pmctha ... gradient equivalent MC pressure as an example of target value, Pwc ... braking force equivalent value WC pressure (fluid pressure) as an example.

Claims (6)

  1.  車両に設けられる車輪(FR,FL,RR,RL)に対する制動力に相当する制動力相当値(Pmc、Pwc)を取得する制動力取得部(55、S13)と、
     前記車輪(FR,FL,RR,RL)に対する制動力に相当する制動力相当値の目標値(Pmctha)を、車両の位置する路面の勾配が急勾配である場合には路面の勾配が緩勾配である場合よりも大きな値に設定する勾配目標値設定部(55、S20)と、
     前記車輪(FR,FL,RR,RL)に対する制動力を制御する制動制御部(55、S22,S33)と、を備え、
     前記制動制御部(55、S22,S33)は、
     前記車輪(FR,FL,RR,RL)に対する制動力を小さくするブレーキ操作が運転手によって行われた場合において、前記制動力取得部(55、S13)によって取得される制動力相当値(Pmc、Pwc)が前記勾配目標値設定部(55、S20)によって設定された目標値(Pmctha)以下になったタイミングで前記車輪(FR,FL,RR,RL)に対する制動力を保持する第1制動制御を開始し、
     前記第1制動制御が開始されてから路面の勾配が急勾配側に変化した場合に、前記車輪(FR,FL,RR,RL)に対する制動力を増大させる第2制動制御を開始する、車両の制動制御装置。
    A braking force acquisition unit (55, S13) for acquiring a braking force equivalent value (Pmc, Pwc) corresponding to a braking force for a wheel (FR, FL, RR, RL) provided in the vehicle;
    The target value (Pmctha) of the braking force equivalent value corresponding to the braking force for the wheel (FR, FL, RR, RL), or the slope of the road surface is gentle when the slope of the road surface where the vehicle is located is steep And a gradient target value setting unit (55, S20) that sets a larger value than in the case of
    A braking control unit (55, S22, S33) for controlling a braking force on the wheels (FR, FL, RR, RL);
    The braking control unit (55, S22, S33)
    When the driver performs a brake operation to reduce the braking force to the wheels (FR, FL, RR, RL), the braking force equivalent value (Pmc, acquired by the braking force acquisition unit (55, S13) The first braking control that holds the braking force for the wheel (FR, FL, RR, RL) at the timing when Pwc) becomes equal to or less than the target value (Pmctha) set by the gradient target value setting unit (55, S20) To start
    The second braking control to start the second braking control to increase the braking force on the wheels (FR, FL, RR, RL) when the slope of the road surface changes to the steep side after the first braking control is started Brake control device.
  2.  車両のエンジン(12)の停止条件が成立した場合に該エンジン(12)の自動的な停止を許可すると共に、前記エンジン(12)の再始動条件が成立した場合に該エンジン(12)の再始動を許可する許可部(55、S16、S37)と、
     請求項1に記載の車両の制動制御装置(55)と、を備え、
     前記許可部(55、S16、S37)は、
     前記エンジン(12)の停止中に運転手に車両を発進させる意志が有ることを検知した場合に、前記エンジン(12)の再始動を許可し、
     前記制動制御部(55、S33)は、
     前記第1制動制御の開始後に前記許可部(55、S16、S37)によって前記エンジン(12)の再始動が許可された場合には、路面の勾配の急勾配側への変化を検知しても前記第2制動制御よりも前記エンジン(12)を再始動させる制御を優先する、車両の制御装置。
    The automatic stop of the engine (12) is permitted when the stop condition of the engine (12) of the vehicle is satisfied, and the restart condition of the engine (12) is satisfied when the restart condition of the engine (12) is satisfied. A permission unit (55, S16, S37) for permitting start-up,
    A braking control device (55) for a vehicle according to claim 1;
    The permission unit (55, S16, S37)
    When it is detected that the driver has an intention to start the vehicle while the engine (12) is stopped, the engine (12) is allowed to restart.
    The braking control unit (55, S33)
    If restart of the engine (12) is permitted by the permission unit (55, S16, S37) after the start of the first braking control, even if the change of the road surface to the steep side is detected. A control device for a vehicle, which gives priority to control for restarting the engine (12) over the second braking control.
  3.  車両には、前記エンジン(12)の吸気負圧を利用して運転手によるブレーキ操作時における操作力を助勢するブースタ(26)が設けられており、
     前記ブースタ(26)内に発生する負圧(Pb)を取得するブースタ圧取得部(55、S29)をさらに備え、
     前記許可部(55、S16,S31)は、
     前記エンジン(12)の停止中に、運転手に前記ブースタ圧取得部(55、S29)によって取得された前記ブースタ(26)内の負圧(Pb)が、該ブースタ(26)内に負圧が発生しているか否かを判断するための基準値(Pbth)未満になった場合には、前記エンジン(12)の再始動を許可する、請求項2に記載の車両の制御装置。
    The vehicle is provided with a booster (26) for assisting the operating force at the time of the brake operation by the driver using the intake negative pressure of the engine (12),
    It further comprises a booster pressure acquisition unit (55, S29) for acquiring the negative pressure (Pb) generated in the booster (26),
    The permission unit (55, S16, S31)
    The negative pressure (Pb) in the booster (26) acquired by the booster pressure acquisition unit (55, S29) by the driver while the engine (12) is stopped is the negative pressure in the booster (26). The control device for a vehicle according to claim 2, wherein restart of the engine (12) is permitted when it becomes less than a reference value (Pbth) for determining whether or not there is an occurrence of.
  4.  前記制動制御部(55、S33)は、
     前記エンジン(12)の停止中であって且つ前記第1制動制御の開始後に、車両における快適装備(60,61)の作動に伴う前記エンジン(12)の再始動の要求がある場合において、路面の勾配の急勾配側への変化を検知したときには、前記第2制動制御を行い、
     前記許可部(55、S16,S31)は、
     前記快適装備(60,61)の作動に伴う前記エンジン(12)の再始動の要求がある場合において、路面の勾配の急勾配側への変化を検知したときには、
     前記第2制動制御の終了後に、前記エンジン(12)の再始動を許可する、請求項2又は請求項3に記載の車両の制御装置。
    The braking control unit (55, S33)
    When the engine (12) is stopped and there is a request for restarting the engine (12) accompanying the operation of the comfort equipment (60, 61) in the vehicle after the start of the first braking control, the road surface When the change of the slope to the steep side is detected, the second braking control is performed,
    The permission unit (55, S16, S31)
    When there is a demand to restart the engine (12) due to the operation of the comfort equipment (60, 61), when it is detected that the slope of the road surface changes to the steep side,
    The control device for a vehicle according to claim 2 or 3, wherein restart of the engine (12) is permitted after the end of the second braking control.
  5.  前記第2制動制御は、
     前記制動力取得部(55、S13)によって取得される制動力相当値(Pmc、Pwc)が、前記勾配目標値設定部(55、S20)によって設定された目標値(Pmctha)以上となるまで前記車輪(FR,FL,RR,RL)に対する制動力を増大させる制御であり、
     前記制動制御部(55、S35)は、前記第2制動制御の終了後、前記車輪(FR,FL,RR,RL)に対する制動力を保持する制御を行う、請求項2~請求項4のうち何れか一項に記載の車両の制御装置。
    The second braking control is
    The braking force equivalent value (Pmc, Pwc) acquired by the braking force acquiring unit (55, S13) is equal to or more than the target value (Pmctha) set by the gradient target value setting unit (55, S20). Control to increase the braking force on the wheels (FR, FL, RR, RL),
    The braking control unit (55, S35) performs control to hold the braking force on the wheels (FR, FL, RR, RL) after the end of the second braking control. The control device for a vehicle according to any one of the preceding claims.
  6.  車両に設けられる車輪(FR,FL,RR,RL)に対する制動力に相当する制動力相当値(Pmc、Pwc)を取得させる制動力取得ステップ(13)と、
     前記車輪(FR,FL,RR,RL)に対する制動力の目標値(Pmctha)を、車両の位置する路面の勾配が急勾配である場合には路面の勾配が緩勾配である場合よりも大きな値に設定させる勾配目標値設定ステップ(S20)と、
     前記車輪(FR,FL,RR,RL)に対する制動力を小さくするブレーキ操作を運転手が行う場合に、前記制動力取得ステップ(13)で取得した制動力相当値(Pmc、Pwc)が前記勾配目標値設定ステップ(S20)で設定した目標値(Pmctha)未満になることを規制する第1制動ステップ(S22)と、
     前記第1制動ステップ(S22)の実行によって車輪(FR,FL,RR,RL)に対する制動力の低下が規制される場合において路面の勾配が急勾配側に変化したときに、前記車輪(FR,FL,RR,RL)に対する制動力を増大させる第2制動ステップ(S33)と、を有する、車両の制動制御方法。
    A braking force acquisition step (13) for acquiring a braking force equivalent value (Pmc, Pwc) corresponding to a braking force for wheels (FR, FL, RR, RL) provided in the vehicle;
    The target value (Pmctha) of the braking force for the wheels (FR, FL, RR, RL) is a larger value than in the case where the slope of the road surface where the vehicle is located is steep. Gradient target value setting step (S20) to be set to
    When the driver performs a brake operation to reduce the braking force to the wheels (FR, FL, RR, RL), the braking force equivalent value (Pmc, Pwc) acquired in the braking force acquisition step (13) is the gradient A first braking step (S22) for restricting being less than the target value (Pmctha) set in the target value setting step (S20);
    When the reduction of the braking force on the wheels (FR, FL, RR, RL) is restricted by the execution of the first braking step (S22), when the gradient of the road surface changes to the steep side, the wheels (FR, FR, A second braking step (S33) for increasing the braking force on FL, RR, and RL).
PCT/JP2011/071858 2010-09-27 2011-09-26 Vehicle braking control device, vehicle control device, and vehicle braking control method WO2012043461A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180046092.1A CN103201145B (en) 2010-09-27 2011-09-26 Vehicle braking control device, vehicle control device, and vehicle braking control method
DE112011103235.8T DE112011103235B4 (en) 2010-09-27 2011-09-26 Vehicle control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010215179A JP5736705B2 (en) 2010-09-27 2010-09-27 Vehicle control apparatus and vehicle control method
JP2010-215179 2010-09-27

Publications (1)

Publication Number Publication Date
WO2012043461A1 true WO2012043461A1 (en) 2012-04-05

Family

ID=45892906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071858 WO2012043461A1 (en) 2010-09-27 2011-09-26 Vehicle braking control device, vehicle control device, and vehicle braking control method

Country Status (4)

Country Link
JP (1) JP5736705B2 (en)
CN (1) CN103201145B (en)
DE (1) DE112011103235B4 (en)
WO (1) WO2012043461A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103707864A (en) * 2012-10-09 2014-04-09 日信工业株式会社 Vehicle break hydraulic pressure control apparatus
JP2015221584A (en) * 2014-05-22 2015-12-10 ダイハツ工業株式会社 Vehicle control device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032402B2 (en) * 2012-08-31 2016-11-30 スズキ株式会社 Idling stop control system
JP2014058265A (en) * 2012-09-19 2014-04-03 Suzuki Motor Corp Idling stop control system
JP6136870B2 (en) * 2013-11-13 2017-05-31 株式会社デンソー Vehicle control device
CN104986156A (en) * 2015-06-03 2015-10-21 安徽江淮汽车股份有限公司 Brake switch fault diagnosis method and system
JP6701656B2 (en) * 2015-09-30 2020-05-27 株式会社アドヴィックス Vehicle braking control device
KR102286352B1 (en) * 2017-08-11 2021-08-05 현대모비스 주식회사 Apparatus and method for controlling fca system
WO2019116554A1 (en) * 2017-12-15 2019-06-20 日産自動車株式会社 Vehicle control method and vehicle control device
JP7331415B2 (en) * 2019-03-29 2023-08-23 株式会社アドヴィックス vehicle controller
JP7459606B2 (en) * 2019-03-29 2024-04-02 株式会社アドヴィックス Vehicle control device
JP7318541B2 (en) * 2020-01-17 2023-08-01 株式会社アドヴィックス Braking control device
JP7481197B2 (en) * 2020-08-06 2024-05-10 株式会社Subaru Vehicle Control Systems
JP7225187B2 (en) * 2020-12-03 2023-02-20 本田技研工業株式会社 vehicle braking system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05193474A (en) * 1992-01-17 1993-08-03 Toyota Motor Corp Vehicle brake device with stopping shock decreasing function
JPH05270376A (en) * 1992-03-24 1993-10-19 Nippon Soken Inc Brake device for vehicle
JP2007038794A (en) * 2005-08-02 2007-02-15 Advics:Kk Brake control device for vehicle
JP2008110619A (en) * 2006-10-27 2008-05-15 Toyota Motor Corp Braking controller for vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1178818A (en) * 1997-09-16 1999-03-23 Komatsu Ltd Brake controller for vehicle
JP2005271822A (en) * 2004-03-25 2005-10-06 Mitsubishi Fuso Truck & Bus Corp Vehicular automatic deceleration control device
JP2007077871A (en) * 2005-09-14 2007-03-29 Toyota Motor Corp Control device for vehicle
SE529523C2 (en) * 2006-01-04 2007-09-04 Volvo Lastvagnar Ab System for controlling a wheel brake of a vehicle
JP4826421B2 (en) 2006-10-11 2011-11-30 トヨタ自動車株式会社 Brake control device for vehicle
DE102007023928A1 (en) * 2007-05-23 2008-11-27 Lucas Automotive Gmbh Technology for starting a motor vehicle on a sloping route

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05193474A (en) * 1992-01-17 1993-08-03 Toyota Motor Corp Vehicle brake device with stopping shock decreasing function
JPH05270376A (en) * 1992-03-24 1993-10-19 Nippon Soken Inc Brake device for vehicle
JP2007038794A (en) * 2005-08-02 2007-02-15 Advics:Kk Brake control device for vehicle
JP2008110619A (en) * 2006-10-27 2008-05-15 Toyota Motor Corp Braking controller for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103707864A (en) * 2012-10-09 2014-04-09 日信工业株式会社 Vehicle break hydraulic pressure control apparatus
EP2719598A1 (en) * 2012-10-09 2014-04-16 Nissin Kogyo Co., Ltd. Vehicle break hydraulic pressure control apparatus
US9221448B2 (en) 2012-10-09 2015-12-29 Nissin Kogyo Co., Ltd Vehicle brake hydraulic pressure control apparatus
CN103707864B (en) * 2012-10-09 2017-04-12 日本奥托立夫日信制动器***株式会社 Vehicle break hydraulic pressure control apparatus
JP2015221584A (en) * 2014-05-22 2015-12-10 ダイハツ工業株式会社 Vehicle control device

Also Published As

Publication number Publication date
DE112011103235B4 (en) 2019-07-04
DE112011103235T5 (en) 2013-08-08
JP5736705B2 (en) 2015-06-17
JP2012066772A (en) 2012-04-05
CN103201145B (en) 2015-04-01
CN103201145A (en) 2013-07-10

Similar Documents

Publication Publication Date Title
WO2012043461A1 (en) Vehicle braking control device, vehicle control device, and vehicle braking control method
JP5621479B2 (en) Vehicle control apparatus and control method
JP5593876B2 (en) Vehicle control apparatus and vehicle control method
US8382642B2 (en) Vehicle control apparatus
JP5776153B2 (en) Vehicle control apparatus and vehicle control method
CN107200007B (en) Method and apparatus for controlling restart of vehicle having ISG automatic maintenance system
JP5895916B2 (en) Brake control device for vehicle
JP5471429B2 (en) VEHICLE STOP CONTROL DEVICE AND VEHICLE STOP CONTROL METHOD
JP5672917B2 (en) Vehicle control device
JP5787050B2 (en) Vehicle control device
JP5659580B2 (en) Vehicle control apparatus and vehicle control method
JP5382260B1 (en) ENGINE RESTART CONTROL DEVICE, VEHICLE, AND VEHICLE CONTROL METHOD
JP5428898B2 (en) Vehicle control method and vehicle control apparatus
EP2754590B1 (en) Vehicle control apparatus
JP2012091714A (en) Brake control device
JP5895599B2 (en) Vehicle control apparatus and vehicle control method
JP5929407B2 (en) Brake control device for vehicle
JP2017100632A (en) Vehicular control apparatus
JP2006112400A (en) Idle stop controller for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829015

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120111032358

Country of ref document: DE

Ref document number: 112011103235

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829015

Country of ref document: EP

Kind code of ref document: A1