WO2012040980A1 - 一种海洋来源BacillusubarbaricusSCSIO02429以及用它制备鱿鱼小肽的方法 - Google Patents

一种海洋来源BacillusubarbaricusSCSIO02429以及用它制备鱿鱼小肽的方法 Download PDF

Info

Publication number
WO2012040980A1
WO2012040980A1 PCT/CN2010/079627 CN2010079627W WO2012040980A1 WO 2012040980 A1 WO2012040980 A1 WO 2012040980A1 CN 2010079627 W CN2010079627 W CN 2010079627W WO 2012040980 A1 WO2012040980 A1 WO 2012040980A1
Authority
WO
WIPO (PCT)
Prior art keywords
squid
crude
strain
scsio
peptides
Prior art date
Application number
PCT/CN2010/079627
Other languages
English (en)
French (fr)
Inventor
张偲
尹浩
罗雄明
齐振雄
田新朋
Original Assignee
中国科学院南海海洋研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院南海海洋研究所 filed Critical 中国科学院南海海洋研究所
Priority to JP2012535620A priority Critical patent/JP5128020B2/ja
Publication of WO2012040980A1 publication Critical patent/WO2012040980A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • A23J3/32Working-up of proteins for foodstuffs by hydrolysis using chemical agents
    • A23J3/34Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
    • A23J3/341Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of animal proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/14Pretreatment of feeding-stuffs with enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • A23K20/147Polymeric derivatives, e.g. peptides or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L17/00Food-from-the-sea products; Fish products; Fish meal; Fish-egg substitutes; Preparation or treatment thereof
    • A23L17/10Fish meal or powder; Granules, agglomerates or flakes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus

Definitions

  • the present invention relates to a bacillus, and in particular to a marine-derived Bacillus barricicus SCSIO 02429 strain, and to a method for preparing a squid small peptide using the strain.
  • the enzymatic hydrolysis method of squid viscera has also attracted extensive attention. It is an effective way to hydrolyze the crude protein of carp into a small peptide protein source that is easily absorbed by aquatic animals and has certain physiological functions.
  • Some studies, such as Xue Changhu and Liu Chunqi, have studied the effects of enzyme types, dosage, reaction temperature, reaction time and other factors on the conversion rate of crude protein in squid (Liu Chunzhen, Lin Hong, Cao Limin, Shan Junwei. Research on Enzymatic Hydrolysis Technology. Science and Technology of Food Industry, 2004, 25 (9): 83-85.) Yuan Yahui et al. used enzymatic hydrolysis of squid viscera to produce haiweisu, Zhang Jing and others to remove heavy metals from squid enzymatic hydrolysate. Research, etc.
  • the types of enzymes used are trypsin, pepsin, neutral protease, alkaline protease, papain, bromelain, and mixtures of these enzymes.
  • the squid viscera hydrolysis method still has a low crude protein hydrolysis rate, and the residual crude protein in the enzymatic product is difficult to be absorbed and utilized by marine animals.
  • the degree of hydrolysis of the crude protein is increased, and excessive hydrolysis occurs. The yield of the target small peptide is greatly reduced.
  • the purpose of the present invention is to develop a new type of Bacillus from the sea, and another object is to use the Bacillus to hydrolyze the viscera of the squid, and to provide a small peptide capable of high crude protein hydrolysis rate and high peptide yield. of Preparation.
  • the Bacillus barbaricus SCSIO 02429 was isolated from the deep sea sedimentary environment of China's South China Sea (longitude: 119°57.260', latitude: 20°59.877', water depth 229 m) collected in 2009. Purification was carried out by dilution plate method and scribing using a bacterial culture medium. Based on the similarity analysis of 16S rRNA gene sequence, it was found to have 99% (722/728 bp) similarity with Bacillus barbaricus, and it was identified as a strain of Bacillus barbaricus SCSIO 02429. This strain grew well in ISP2 medium (4.0 g of yeast extract per liter of distilled water, 10.0 g of wort, 4.0 g of glucose, 20.0 g of agar, pH 7.0) at 28 to 37 °C.
  • ISP2 medium 4.0 g of yeast extract per liter of distilled water, 10.0 g of wort, 4.0 g of glucose, 20.0 g of
  • the strains to be tested were tested for bacterial morphology, physiological and biochemical tests.
  • the strain also grew well on PYES medium (0.3% casein, 0.3% yeast extract, 0.23% succinate, pH 7.2), a brown, opaque, flat round colony with a maximum colony diameter of 5 mm.
  • the colony has a complete boundary at the beginning of growth, but the boundary gradually disappears during the process of continuing growth.
  • the cells are rod-shaped, the spores are elliptical, and the cells are Gram-positive.
  • SCSIO 02429 strain and the most similar strain Bacillus barbaricus ⁇ 2- ⁇ - ⁇ 2 (Reference: Taubel M., Stammer ⁇ , Buczolits S, Lubitz W, Busse HJ R. Bacillus barbaricus sp. nov. , isolated from an experimental wall painting. International Journal of Systematic and Evolutionary Microbiology, 2003, 53: 725-730.
  • GenBank I EMBL I DDBJ GenBank I EMBL I DDBJ (AJ422145). Most of the physiological characteristics are the same, but in D-ribose, The use of citrate, sucrose, and the highest salt tolerance concentration of 5% are characteristically different. Therefore, SCSIO 02429 was identified as a strain of Bacillus barbaricus, and Bacillus barbaricus does not currently have a Chinese translation.
  • the method for preparing a small peptide of the present invention comprises the following steps:
  • the induced enzyme fermentation medium is prepared by mixing squid squid pulp, peptone, yeast extract, compound salt and water at a mass ratio of 20 to 30 : 5 : 5 : 10:1000, and the composite is prepared.
  • Salt from chlorine Sodium hydride, potassium sulphate, magnesium chloride and ammonium chloride are mixed at a mass ratio of 5 to 8:2:2:3;
  • the volume ratio of the crude enzyme solution described in the step (1) is 1 : 1 ⁇
  • step (3) Add the ratio of bromelain 1000 to 1500 viable units per gram of squid raw material, and add bromelain to the crude protease solution obtained in step (2), and adjust the pH to 6.5-7.0 at 35 ⁇ 40 °C. After reacting for 4 to 6 hours, the obtained hydrolyzed product is allowed to stand, and the crude fat layer and the aqueous layer are separated, and the fat layer is removed and dried to obtain a small peptide of salmon.
  • the drying described in the step (3) may be spray drying or the like.
  • Peptone and yeast extracts for use in the present invention are commercially available.
  • the invention enzymatically decomposes the aminoglycan side chain linked to the peptide chain in the visceral protein by the crude enzyme produced by Bfld// ⁇ barbaricus SCSIO 02429, and eliminates the protective effect of the glycosyl group on the hydrolysis site of the protein peptide chain, and avoids the reaction under mild conditions.
  • the yield of small peptides of carp is 40 ⁇ 46%, and the yield of amino acids is 16 ⁇ 22%.
  • This small peptide of carp has the effect of reducing the mortality rate of mariculture animals and increasing the weight gain rate.
  • Traditional protein sources such as fishmeal have certain physiological activities, which can significantly increase the weight gain rate and survival rate of aquatic animals. Therefore, they can be used as functional protein sources and additives for marine aquaculture.
  • the Bacillus barbaricus SCSIO 02429 in the example is preserved in the China Center for Type Culture Collection under the accession number CCTCC NO: M 2010213; the squid used is purchased from the Huangsha Seafood Market in Guangzhou. Bfl/ ram ), collected viscera stored at -18 °C for later use. Thawed at 4 °C 24 hours before use; the bromelain used was produced by Nanning Pangbo Biological Engineering Co., Ltd., 800,000 viable units/g. The protein is produced by Oxide, and the yeast extract is purchased from the Biyuntian Biotechnology Research Institute.
  • the composite salt consists of sodium chloride 20.9g, potassium sulfate 8.3g, magnesium chloride 8.3g and ammonium chloride. Composition of 12.5g.
  • the strain of B ici us barbaricus SCSIO 02429 was transferred to the strain activation medium and cultured at 30 ° C for 24 h. After activation, the strain was added to a fermenter containing 5 L of enzyme-producing fermentation medium, and the fermentation was carried out for 24 hours at a pH of 7.0, 30 ° C, a stirring speed of 100 r/min, and aeration ratio of 0.2, when the protease activity reached 2000 units/ The fermentation was completed when the activity of the aminoglycanase reached 0.95 unit/mL, and 4.7 L of the crude enzyme solution for hydrolysis was obtained.
  • the unit of aminoglycanase activity is defined as: at 60. C, pH 5.2, reaction 30 min, the amount of enzyme required to form ⁇ ⁇ glucosamine per minute.
  • Determination of aminoglycanase activity Weigh a certain amount of aminopolysaccharide dissolved in 0.2mol/L acetic acid solution, adjust the pH to 5.2 with 0.2mol/L sodium acetate, formulate 0.5% aminopolysaccharide solution, and draw 1.5mL The polysaccharide solution was incubated at 60 °C for 2 min, then 0.5 mL of enzyme solution was added, shaken, and after reacting for 30 min, 3 mL of potassium ferricyanide reagent was added to stop the reaction, and the reducing sugar content was measured by Imoto method to calculate the decomposition rate of aminopolysaccharide. .
  • N 1 ⁇ was determined by Kjeldahl method ; the enzymatic hydrolyzate was degreased, centrifuged to remove insoluble matter, weighed, dissolved in 0.2 mol/L sodium phosphate buffer, and loaded on a Sephadex LH 20 gel column using 0.2 mol/L sodium phosphate.
  • Buffer elution sequentially collect different retention volume fractions, and then use gel permeation high performance liquid chromatography to determine the molecular mass distribution of each fraction, and combine the fractions of 300 ⁇ 1000Da molecular mass to be small peptide fragments, using Kai
  • the nitrogen content of the nitrogen is determined by the method of nitrogen determination, which is N 2 ; the fraction of the molecular mass range of 100 ⁇ 250Da is the free amino acid fragment, and the amino acid nitrogen content is determined by Kjeldahl method.
  • the amount is N 3 .
  • squid pulp 25g of peptone, 25g of yeast extract, 50g of compound salt, add 5000mL of deionized water, dissolve by heating, adjust pH to 8.0, transfer to fermenter, steam sterilization, and obtain enzyme fermentation medium.
  • the salt consisted of 26.6 g of sodium chloride, 6.7 g of potassium sulfate, 6.7 g of magnesium chloride and 10 g of ammonium chloride.
  • Example 3 The tilapia fry are provided by the Guangdong Pasley tilapia seed farm, which is the same batch of O. tilapia larvae that have been filmed for 1 day. The larvae were domesticated for 2 days in a 50-liter plastic bucket before the experiment, and no bait was fed during domestication.
  • the tilapia fry were divided into one control group and four experimental groups.
  • the control formula used in the control group was 46% fish meal, 15% malt root, 19% powder, 3% yeast, and 1% soybean lecithin. , choline 0.5%, calcium hydrogen phosphate 0.5%, multivitamin 0.4%, mineral salt 0.6%, cellulose 8%, soybean oil 1%, sodium alginate 1%, gelatin 4%, the experimental formula used in the experimental group 1 It is 41% of fishmeal, 5% of small fish peptide obtained in Example 1, 15% of malt root, 19% of rice powder, 3% of yeast, 1% of soybean lecithin, 0.5% of choline, 0.5% of calcium hydrogen phosphate, and 0.4% of vitamin IV.
  • the experimental solution used in the experimental group 2 was 41% fish meal, and the carp small peptide obtained in Example 2 was 5%.
  • the servo formulation used in the experimental group 3 was 36% of fish meal, and the mash obtained in Example 1 Fish small peptide 10%, malt root 15%, rice powder 19%, yeast 3%, soy lecithin 1%, choline 0.5%, calcium hydrogen phosphate 0.5%, multivitamin 0.4%, complex mineral salt 0.6%, cellulose 8%, soybean oil 1%, sodium alginate 1%, gelatin 4%
  • the experimental formula used in the experimental group 4 was 36% fishme
  • Yeast 3% soy lecithin 1%, choline 0.5%, calcium hydrogen phosphate 0.5%, multivitamin 0.4%, compound mineral salt 0.6%, cellulose 8%, soybean oil 1%, sodium alginate 1%, gelatin 4 %.
  • the corresponding servo formulation is mixed and slurried under high moisture conditions, dried at 50 ° C under negative pressure (0.097 mPa), crushed, sieved, and the particle size is 60 ⁇ 80 ⁇ , and the obtained servo is placed in a refrigerator at 20 ° C. spare.
  • the body weight of the tilapia (accurate to 0.001 g) and the number of fry were measured at the beginning and end of the experiment, respectively.
  • Mortality (number of fry at the start of the experiment - number of fry at the end of the experiment) / number of seedlings at the start of the experiment ⁇ 100 %
  • Absolute weight gain rate (fresh weight at the end of the experiment (g) - fry weight at the start of the experiment (g)) / number of days of experiment
  • the mortality rate of the fry in the control group was 53% ⁇ 8%, and the absolute increase rate was 0.0053 ⁇ 0.0012 g / day.
  • the mortality of the fry in the experimental group 1 was 42% ⁇ 10%, and the absolute increase rate was 0.0062 ⁇ 0.0005. g/day, the mortality of fry in experimental group 2 was 45% ⁇ 10%, the absolute increase rate was 0.0068 ⁇ 0.0011g/day, the mortality of fry in experimental group 3 was 38% ⁇ 2%, and the absolute increase rate was 0.0075. ⁇ 0.0015 g/day, the mortality of the fry in the experimental group 4 was 39% ⁇ 6%, and the absolute increase rate was 0.0069 ⁇ 0.0012 g / day.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Husbandry (AREA)
  • Nutrition Science (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Marine Sciences & Fisheries (AREA)
  • General Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Mycology (AREA)
  • Toxicology (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Insects & Arthropods (AREA)
  • Birds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fodder In General (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

一种海洋来源 Bacillus barbaricus SCSIO 02429以及用它制备鱿鱼小肽的方法 技术领域
本发明涉及一种芽孢杆菌, 具体来说涉及一种海洋来源芽孢杆菌 Bacillus barbaricus SCSIO 02429菌株, 还涉及利用该菌株来制备鱿鱼小肽的方法。
背景技术
随着我国海洋捕捞业的迅速发展, 鱿鱼年产量已达 30万吨左右, 成为我国 重要的水产加工原料之一。在鱿鱼的加工处理过程中,有 15%左右的内脏废弃物 产生, 这些废弃物富含蛋白质, 但极易腐烂变质, 难以储存。 通常的处理方式是 将提取完鱿鱼油后的废弃物进行掩埋,近期也有对鱿鱼内脏进行初级加工制成鱿 鱼溶浆直接用作鱼类伺料的报道, 但是这种未经精深加工的伺料生物利用率不 高, 还会污染水体环境, 增加养殖动物病害爆发的机会。 因此对鱿鱼内脏的深入 开发利用具有经济和环保的重要意义。鱿鱼内脏的酶解方法研究也已经引起了广 泛重视,使用生物酶技术将鱿鱼粗蛋白水解为水产动物易吸收、具有一定生理功 能的小肽类蛋白源是一种有效的方式, 并且也进行了一些研究, 例如薛长湖、刘 春娥等人对酶的种类、用量、 反应温度、 反应时间等因素对鱿鱼内脏粗蛋白转化 率的影响的研究 (刘春娥, 林洪, 曹立民, 单俊伟. 鱿鱼内脏蛋白质酶解工艺的 研究. 食品工业科技, 2004, 25 (9): 83-85. ) 袁亚辉等人利用酶解鱿鱼内脏生 产海味素, 张井等人对鱿鱼内脏酶解液中重金属脱除方法的研究等。
在已报道的鱿鱼内脏酶解方法中, 采用的酶的种类有胰蛋白酶、 胃蛋白酶、 中性蛋白酶、 碱性蛋白酶、 木瓜蛋白酶、 菠萝蛋白酶以及这些酶的混合物。 但现 阶段的鱿鱼内脏水解方法仍存在粗蛋白水解率低,酶解产物中的残余粗蛋白很难 被海水养殖动物吸收利用的问题。 而通过提高反应温度、 延长反应时间、提高催 化剂用量等手段提高粗蛋白水解度后, 又会出现过度水解现象, 目标小肽的得率 大幅降低, 例如有文献报道, 鱿鱼内脏水解的氨基酸得率超过 70%, 但小肽得率 却非常低。如果能在提高粗蛋白水解效率的同时保证目标小肽得率, 就可以大幅 提高鱿鱼内脏的利用水平。
发明内容
本发明的目的在于从海洋中开发出一种新的芽孢杆菌,另一目的是利用这种 芽孢杆菌酶解鱿鱼内脏,提供一种能高粗蛋白水解率和高小肽得率的鱿鱼小肽的 制备方法。
我们从中国南海深海沉积物中分离出 barbaricus SCSIO 02429, 用 Bacillus barbaricus SCSIO 02429发酵得到的粗酶溶液破坏内脏蛋白中与肽链连 接的氨基多糖侧链, 再加入菠萝蛋白酶催化蛋白质肽链水解, 得到的鱿鱼小肽得 率达 40%〜46%, 氨基酸得率为 16%〜22%, 从而实现了本发明的目的。
£fld〃 bflrbfln'o« SCSIO 02429已于 2010年 8 月 31 日保藏在中国典型培 养物保藏中心, 地址是武汉市武昌珞珈山, 简称为 CCTCC, 保藏编号为 CCTCC NO: M 2010213 ο
所述的 Bacillus barbaricus SCSIO 02429从 2009年采集到的中国南海深海沉 积环境 (经度: 119°57.260', 纬度: 20°59.877', 水深 229米) 中分离得到。 采 用细菌培养基通过稀释平板法分离及划线法进行纯化。 经 16S rRNA基因序列相 似性分析, 发现其与 Bacillus barbaricus具有 99%(722/728bp)的相似性,鉴定其为 Bacillus barbaricus种的一个菌株 SCSIO 02429。 该菌株在 ISP2培养基 (每升蒸 馏水中加入酵母膏 4.0g, 麦芽汁 10.0g, 葡萄糖 4.0g, 琼脂 20.0g, pH 7.0 ) 上 28〜37°C生长良好。
按照 《常见细菌***鉴定手册》和 《伯杰细菌鉴定手册》 的标准、 方法和种 的分类特征, 对待测菌株进行细菌形态观察、 生理生化测试等试验。 该菌株在 PYES medium ( 0.3 %酪蛋白胨, 0.3 %的酵母提取物, 0.23 %琥珀酸二钠, pH值 7.2 )上同样生长良好, 为棕色、 不透明、 平坦的圆形菌落, 最大菌落直径 5mm。 菌落在生长初期有完整边界,但在继续生长的过程中边界逐渐消失。细胞呈杆状, 芽孢为椭圆型, 细胞为革兰氏阳性。 在 PYES medium上, 28〜37°C均可良好生 长; 经 3周培养后, 在 4〜47°C下均可观察到明显的生长。 该菌可以在含 2%和 5%氯化钠的 PYES medium上生长;培养 3周后,在含 12%NaCl的 PYES medium 培养基上可以观察到生长。菌株在 pH6.0时可以观察到生长, 在 pH7.0、 8.0、 9.5 可以快速生长,说明该菌具有耐碱性。 SCSIO 02429 株菌的生理生化试验结果见 表 1, 表中" + "表示阳性或能够利用; " - "表示阴性或不能利用。 表 1 SCSIO 02429 株菌的生理生化试验结果
指标 SCSIO 02429 指标 SCSIO 02429
N-乙酰基-氨基葡 + L-天门冬氨酸 - 萄糖
D-纤维二糖 - 组氨酸 +
D-果糖 + 苯丙氨酸 +
D-葡萄糖 + 脯氨酸 +
D-甘露糖 + 丝氨酸 +
D-麦芽糖 + 分解:
D-核糖 - 马尿酸盐 +
水杨苷 - 尿素 - 蔗糖 + 吐温 20 -
D-海藻糖 + 吐温 80 - i-肌糖 - 生长盐度:
麦芽糖醇 - 2%NaCl +
D-甘露醇 - 5%NaCl +
柠檬酸盐 + 10%NaCl - 戊二酸 - 硝酸盐还原 -
L-丙氨酸 + 47°C下生长 -
SCSIO 02429 株菌与最相似菌株 Bacillus barbaricus ν2-ΒΙΠ-Α2(参考文献: Taubel M. , Kampfer Ρ, Buczolits S, Lubitz W, Busse H-J R. Bacillus barbaricus sp. nov. , isolated from an experimental wall painting. International Journal of Systematic and Evolutionary Microbiology, 2003 , 53: 725-730. 该菌的 16S rDNA 序列在 GenBank I EMBL I DDBJ中的登录号为 AJ422145)在生理学特性上绝大部 分相同, 但在 D-核糖, 柠檬酸盐, 蔗糖的利用, 最高盐耐受浓度为 5%特征上不 同。 因此, SCSIO 02429 被鉴定为 Bacillus barbaricus 的一个菌株, Bacillus barbaricus目前还没有中文译名。
本发明的鱿鱼小肽的制备方法, 其特征包括以下的步骤:
(1) 将 Bacillus barbaricus SCSIO 02429 菌种转接到菌种活化培养基中, 30〜37°C下培养 18〜24 h, 活化后加入有诱导产酶发酵培养基的容器中, pH=7.0〜8.0, 30〜37°C的条件下发酵 12〜24 小时, 当发酵液蛋白酶活力达到 2000〜3000单位 /mL, 氨基多糖酶活力达到 0.95〜1.12单位 /mL时, 即为糖基水 解用粗酶溶液, 所述的诱导产酶发酵培养基由鱿鱼内脏浆, 蛋白胨, 酵母膏, 复 合盐和水按质量比 20〜30:5 :5 : 10: 1000混合加热溶解后制得, 所述的复合盐由氯 化钠, 硫酸钾, 氯化镁和氯化铵按质量比 5〜8:2:2:3混合得到;
(2) 将鱿鱼内脏原料碎成浆状后与步骤 (1)所述的粗酶溶液按体积比 1 : 1〜
2: 1混合进行酶解, 反应的起始 pH值为 6.5〜7.0, 温度为 40〜50°C, 时间 5〜8 小时, 得糖基侧链被破坏的粗蛋白酶解物;
(3) 按鱿鱼内脏原料每克加入菠萝蛋白酶 1000〜1500活力单位的比例, 将 菠萝蛋白酶加入步骤 (2)得到的粗蛋白酶解物中, pH调至 6.5〜7.0, 在 35〜40°C 下反应 4〜6小时, 得到的酶解产物经静置, 粗脂肪层和水层分离, 除去脂肪层 后干燥, 得鱿鱼小肽。
步骤 (3)所述的干燥可以是喷雾干燥等。 本发明所用的蛋白胨和酵母膏可从 市场购买。
本发明通过 Bfld//^ barbaricus SCSIO 02429生产的粗酶酶解破坏内脏蛋白 中与肽链连接的氨基多糖侧链, 消除糖基对蛋白肽链水解位点的保护作用, 在温 和条件下反应避免过度水解, 使鱿鱼小肽得率达 40〜46%, 氨基酸得率达 16〜 22%, 这种鱿鱼小肽有降低海水养殖动物幼苗死亡率, 提高增重率的作用, 可以 替代伺料中鱼粉等传统蛋白源, 同时具有一定的生理活性, 可以使水产动物的增 重率和成活率显著提高, 因此可以用于海水养殖配合伺料的功能性蛋白源、添加 剂等。
具体实施方式:
以下实施例是对本发明的进一步说明, 不是对本发明的限制。
实施例中的 Bacillus barbaricus SCSIO 02429保藏于中国典型培养物保藏中 心,保藏编号为 CCTCC NO: M 2010213;所用的鱿鱼购自广州市黄沙海产市场,
Figure imgf000006_0001
bfl/ ram ), 采集内脏储存于 -18 °C备用。 使 用前 24小时在 4°C下解冻; 所用的菠萝蛋白酶由南宁庞博生物工程有限公司生 产, 80万活力单位 /g。 蛋白胨 Oxide公司生产, 酵母膏(Yeast extract)购自碧云 天生物技术研究所。
实施例 1 :
在 1L水中加入蛋白胨 10g, 酵母浸膏 5g, 氯化钠 10g, 琼脂 15 g, 调节 pH 至 7.0, 得到菌种活化培养基。
称取鱿鱼内脏浆 100g, 蛋白胨 25g, 酵母提取物 25g , 复合盐 50g, 加入去 离子水 5000mL, 加热溶解, 调节 pH至 7.0, 移入发酵罐, 蒸汽灭菌, 得到产酶 发酵培养基, 其中的复合盐由氯化钠 20.9g, 硫酸钾 8.3g, 氯化镁 8.3g和氯化铵 12.5g组成。
将 B ici us barbaricus SCSIO 02429的菌种转接到菌种活化培养基中, 30°C 下培养 24 h。活化后菌种加入有 5L产酶发酵培养基的发酵罐中,在 pH=7.0, 30°C, 搅拌速度 100 r/min, 通气比 0.2的条件下发酵 24小时, 当蛋白酶活力达 2000单 位 /mL,氨基多糖酶活力达 0.95单位 /mL时完成发酵,得到水解用粗酶溶液 4.7L。
蛋白酶活力测定方法: 按中华人民共和国专业标准《蛋 白 酶 活 力 测 定 法 SB/T 10317-1999)) 方法测定。
氨基多糖酶活力单位定义为:在 60 。C, pH 5.2, 反应 30 min, 每 min形成 Ι μηιοΐ氨基葡萄糖所需要的酶量。氨基多糖酶活力测定方法:称取一定量的氨基 多糖溶于 0.2mol/L 的醋酸溶液中, 用 0.2mol/L 的醋酸钠调节 pH 至 5.2, 配成 0.5%的氨基多糖溶液, 吸取 1.5mL多糖溶液, 60 °C保温 2 min后, 加入 0.5mL 酶液, 摇匀, 反应 30min后, 加入 3mL铁***试剂, 中止反应, 用 Imoto 法 测其中还原糖含量, 计算氨基多糖的分解速度。
称取 5kg切块鱿鱼内脏, 使用匀浆机以 2000r/min粉碎 10min, 得约 4.7L 糊状物, 移入装有产酶发酵产物的发酵罐中, 用 2.0mol/L 的醋酸调节溶液 pH 值到 6.5, 将温度调至 40°C, 搅拌速度 100r/min, 反应 8小时,得到糖基侧链被破 坏的粗蛋白酶解物。
向糖基侧链被破坏的粗蛋白酶酶解产物中加入菠萝蛋白酶 6.25g, 使酶用量 达到 lg鱿鱼内脏原料约 1000活力单位。 搅拌均匀后, 设定反应温度为 40°C, 搅拌速度 50转 /分, 调节 pH值到 7.0, 反应时间 6小时。反应完成后,停止搅拌, 产物静置使油水分层, 除去上层粗油后, 取样测定鱿鱼小肽得率和氨基酸得率, 结果分别为 40%和 16%。 酶解物立即喷雾干燥, 得鱿鱼小肽粉末 853g。
采用凝胶色谱法测定小肽得率和氨基酸得率, 小肽得率 C^^Nz/N^lOO, 氨
Figure imgf000007_0001
是酶解液中氨基酸态氮总含量, N2是分子质量 300〜 1000Da肽类流分中氨基酸态氮含量 (g), N3是分子质量 100〜250Da流分中氨 基酸态氮的含量 (g)。 通过凯氏定氮法测定 N1 <; 将酶解物脱脂、 离心除去不溶 物称重, 溶解于 0.2mol/L 磷酸钠缓冲液, 载入 SephadexLH 20 凝胶柱, 使用 0.2mol/L磷酸钠缓冲液洗脱, 依次收集不同保留体积流分, 然后使用凝胶渗透高 效液相色谱法测定各流分的分子质量分布, 合并 300〜1000Da分子质量范围内 流分即为小肽片段,使用凯氏定氮法测定其氨基酸态氮含量,即为 N2 ;合并 100〜 250Da分子质量范围内流分即为游离氨基酸片段,使用凯氏定氮法氨基酸态氮含 量, 即为 N3。 各流分的分子质量分布用凝胶渗透高效液相色谱方法测定, 计算 公式为 Ve=-b'lgMw+c', 式中 Ve为保留体积, Mw为分子质量, b'和 c'为常数, 用 0.2mol/L磷酸钠缓冲液以 lmL/min平衡色谱柱( PL aquagel-OH 30 8um, SEC 公司,英国),至 214nm的吸光度恒定,用蓝色葡聚糖溶液进样测定 V。(死体积), 甘氨酸溶液进样测定 Vt (凝胶柱床的总体积), 用标准蛋白质混合液进样, 流 速 1.OmL/min,记录各种标准蛋白的洗脱体积 Ve,绘制分子量对数 -Ve的工作曲线, 求得中常数 b'和 c'。 直接以 Sephadex LH-20柱色谱分离所得各流分作为样品, 进样测定保留体积 Ve, 根据公式计算分子质量分布范围。
实施例 2:
在 1L水中加入蛋白胨 10g, 酵母浸膏 5g, 氯化钠 10g, 琼脂 15 g, 调节 pH 至 7.0,得到菌种活化培养基。
称取鱿鱼浆 150g, 蛋白胨 25g, 酵母提取物 25g, 复合盐 50g, 加入去离子 水 5000mL, 加热溶解, 调节 pH至 8.0, 移入发酵罐, 蒸汽灭菌, 得到产酶发酵 培养基,其中的复合盐由氯化钠 26.6g,硫酸钾 6.7g, 氯化镁 6.7g和氯化铵 lO.Og 组成。
将 B ici us barbaricus SCSIO 02429的菌种转接到菌种活化培养基中, 37°C 下培养 18h。活化后菌种加入有 5L产酶发酵培养基的发酵罐中,在 pH=8.0,37°C, 搅拌速度 100r/min, 通气比 0.2的条件下发酵 12小时, 当蛋白酶活力达 3000单 位 /mL,氨基多糖酶活力达 1.12单位 /mL时完成发酵,得到水解用粗酶溶液 4.7L。 蛋白酶活力和氨基多糖酶活力用实施例 1的方法测定。
称取 10kg切块鱿鱼内脏, 使用匀浆机以 2000r/min粉碎 10min, 得约 9.4L 糊状物, 移入装有产酶发酵产物的发酵罐中, 用 2.0mol/L 的 醋酸调节溶液 pH 值到 7.0, 将温度调至 50°C, 搅拌速度 100r/min, 反应 5小时,得到糖基侧链被破 坏的粗蛋白酶解物。
向糖基侧链被破坏的粗蛋白酶解物中加入菠萝蛋白酶 18.15g,使酶用量达到 lg鱿鱼内脏原料约 1500活力单位。 搅拌均匀后,设定反应温度为 35 °C, 搅拌速 度 50 r/min, 调节 pH值到 6.5, 反应时间 4小时。 反应完成后, 停止搅拌, 产物 静置使油水分层, 除去上层粗油后, 取样测定鱿鱼小肽得率和氨基酸得率, 结果 分别为 46%和 22%。 酶解物立即喷雾干燥, 得鱿鱼小肽粉末 1630g。 小肽得率和 氨基酸得率按实施例 1的方法计算。
实施例 3 : 奥尼罗非鱼鱼苗由广东柏士联罗非鱼苗良种场提供, 为出膜 1 天的同一批 奥尼罗非鱼仔鱼。 实验前先将仔鱼放在 50 升的塑料桶内驯养 2天, 驯养期间不 投喂饵料。
将奥尼罗非鱼鱼苗分成 1个对照组和 4个实验组,其中对照组所用的伺料配 方是鱼粉 46%, 麦芽根 15%, 茨粉 19%, 酵母 3%, 大豆卵磷脂 1%, 胆碱 0.5%, 磷酸氢钙 0.5%, 复合维生素 0.4%, 合矿物盐 0.6%, 纤维素 8%, 豆油 1%, 褐 藻酸钠 1%, 明胶 4%, 实验组 1所用的伺料配方是鱼粉 41%, 实施例 1得到的 鱿鱼小肽 5%, 麦芽根 15%, 茨粉 19%, 酵母 3%, 大豆卵磷脂 1%, 胆碱 0.5%, 磷酸氢钙 0.5%, 复合维生素 0.4%, 复合矿物盐 0.6%, 纤维素 8%, 豆油 1%, 褐藻酸钠 1%, 明胶 4%, 实验组 2所用的伺料配方是鱼粉 41%, 实施例 2得到 的鱿鱼小肽 5%, 麦芽根 15%, 茨粉 19%, 酵母 3%, 大豆卵磷脂 1%, 胆碱 0.5%, 磷酸氢钙 0.5%, 复合维生素 0.4%, 复合矿物盐 0.6%, 纤维素 8%, 豆油 1%, 褐藻酸钠 1%, 明胶 4%, 实验组 3所用的伺料配方是鱼粉 36%, 实施例 1得到 的鱿鱼小肽 10%,麦芽根 15%,茨粉 19%,酵母 3%,大豆卵磷脂 1%,胆碱 0.5%, 磷酸氢钙 0.5%, 复合维生素 0.4%, 复合矿物盐 0.6%, 纤维素 8%, 豆油 1%, 褐藻酸钠 1%, 明胶 4%, 实验组 4所用的伺料配方是鱼粉 36%, 实施例 2得到 的鱿鱼小肽 10%,麦芽根 15%,茨粉 19%,酵母 3%,大豆卵磷脂 1%,胆碱 0.5%, 磷酸氢钙 0.5%, 复合维生素 0.4%, 复合矿物盐 0.6%, 纤维素 8%, 豆油 1%, 褐藻酸钠 1%, 明胶 4%。 将相应的伺料配方在高水分条件下混匀呈浆状, 50°C 负压 (0.097 mPa)干燥, 破碎,过筛, 颗粒大小为 60〜80μηι, 得到的伺料置于 20°C 冰箱备用。
伺养鱼苗桶里放置气石, 24 h充气, 每天换水 50 %, 吸出桶底废物, 并用 恒温棒控制温度为 27°C。 每天投喂仔鱼体重 10 %的配合饵料 3次; 实验周期 21 天, 重复 3次。
死亡率和增重率按下面方法计算:
在实验开始和结束时分别测量奥尼罗非鱼的体重 (精确到 0.001 g), 以及鱼苗 数量。
死亡率 = (实验开始时鱼苗数量-实验结束时鱼苗数量) /实验开始时育苗数 量 χ 100 %
绝对增重率 = (实验结束时鱼苗重量 (g) -实验开始时鱼苗重量 (g) ) /实验 天数 结果是, 对照组中鱼苗的死亡率是 53%±8%, 绝对增中率 0.0053±0.0012g/ 天, 实验组 1中鱼苗的死亡率是 42%±10%, 绝对增中率 0.0062±0.0005g/天, 实 验组 2中鱼苗的死亡率是 45%±10%, 绝对增中率 0.0068±0.0011g/天, 实验组 3 中鱼苗的死亡率是 38%±2%, 绝对增中率 0.0075±0.0015g/天, 实验组 4中鱼苗的 死亡率是 39%±6%, 绝对增中率 0.0069±0.0012g/天。

Claims

权 利 要 求
1. Bacillus barbaricus SCSIO 02429 CCTCC NO: M 2010213。
2.—种鱿鱼小肽的制备方法, 其特征包括以下的步骤:
(1) 将权利要求 1所述的 Bacillus barbaricus SCSIO 02429菌种转接到菌种 活化培养基中, 30〜37°C下培养 18〜24 h, 活化后加入有诱导产酶发酵培养基的 容器中, pH=7.0〜8.0, 30〜37°C的条件下发酵 12〜24小时, 当发酵液蛋白酶活 力达到 2000〜3000单位 /mL,氨基多糖酶活力达到 0.95〜1.12单位 /mL时, 即为 糖基水解用粗酶溶液, 所述的诱导产酶发酵培养基由鱿鱼内脏浆, 蛋白胨, 酵母 提取物, 复合盐和水按质量比 20〜30:5:5:10:1000混合加热溶解后制得, 所述的 复合盐由氯化钠, 硫酸钾, 氯化镁和氯化铵按质量比 5〜8:2:2:3混合得到;
(2) 将鱿鱼内脏原料碎成浆状后与步骤 (1)所述的粗酶溶液按体积比 1:1〜 2:1混合进行酶解, 反应的起始 pH值为 6.5〜7.0, 温度为 40〜50°C, 时间 5〜8 小时, 得糖基侧链被破坏的粗蛋白酶解物;
(3) 按鱿鱼内脏原料每克加入菠萝蛋白酶 1000〜1500活力单位的比例, 将 菠萝蛋白酶加入步骤 (2)得到的粗蛋白酶解物中, pH调至 6.5〜7.0, 在 35〜40°C 下反应 4〜6小时, 得到的酶解物经静置, 粗脂肪层和水层分离, 除去脂肪层后 干燥, 得鱿鱼小肽。
3. 根据权利要求 2所述的一种鱿鱼小肽的制备方法, 其特征是步骤 (3)所述 的干燥是喷雾干燥。
PCT/CN2010/079627 2010-09-28 2010-12-09 一种海洋来源BacillusubarbaricusSCSIO02429以及用它制备鱿鱼小肽的方法 WO2012040980A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012535620A JP5128020B2 (ja) 2010-09-28 2010-12-09 海洋由来のBacillusbarbaricusSCSIO02429及びこれを用いたイカオリゴペプチドの調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010506223.7 2010-09-28
CN2010105062237A CN101974460B (zh) 2010-09-28 2010-09-28 一种海洋来源Bacillus barbaricus SCSIO 02429以及用它制备鱿鱼小肽的方法

Publications (1)

Publication Number Publication Date
WO2012040980A1 true WO2012040980A1 (zh) 2012-04-05

Family

ID=43574369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079627 WO2012040980A1 (zh) 2010-09-28 2010-12-09 一种海洋来源BacillusubarbaricusSCSIO02429以及用它制备鱿鱼小肽的方法

Country Status (4)

Country Link
JP (1) JP5128020B2 (zh)
CN (1) CN101974460B (zh)
HK (1) HK1153771A1 (zh)
WO (1) WO2012040980A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894034B (zh) * 2015-06-26 2018-01-19 中国科学院南海海洋研究所 一种海洋来源小单孢菌scsio 01819、酶制剂溶液及其制备方法和应用
CN105767588A (zh) * 2016-03-03 2016-07-20 珠海海龙生物科技有限公司 低氮磷排放的环保生鱼膨化饲料及其制备方法
CN108850686A (zh) * 2018-06-09 2018-11-23 浙江亿丰海洋生物制品有限公司 一种用于鱼虾开口料的酶解发酵鱿鱼膏的制备方法
CN109207396A (zh) * 2018-09-12 2019-01-15 浙江海洋大学 一种利用鱿鱼内脏筛选菌种的方法及该菌种的应用
CN114271406B (zh) * 2021-12-08 2023-11-14 华中农业大学 一种大口黑鲈苗种驯食微颗粒饲料配方及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222641A (ja) * 1989-02-22 1990-09-05 Maiku:Kk 魚介エキスの製造方法
JPH10229831A (ja) * 1997-02-18 1998-09-02 Nippon Nousan Kogyo Kk 甲殻類の免疫賦活方法及び飼料添加剤
CN100467061C (zh) * 2006-06-26 2009-03-11 宁波超星海洋生物制品有限公司 一种鱿鱼墨汁多糖的制备方法
CN101433270B (zh) * 2008-12-25 2012-04-25 南京财经大学 一种菜籽蛋白饲料的制备方法
CN101869169B (zh) * 2010-05-04 2013-02-13 武汉凯丽金生物科技有限公司 以鱼下脚料发酵耦合膜技术制备鱼低聚肽的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FENGQIN SUN ET AL.: "Diversity of bacteria isolated from the South China Sea sediments", ACTA MICROBIOLOGICA SINICA, vol. 48, no. 12, 4 December 2008 (2008-12-04), pages 1578 - 1587 *
LIU CHUN-E ET AL.: "Studies on the enzymic degradation of sleeve-fish gut protein", SCIENCE AND TECHNOLOGY OF FOOD INDUSTRY, vol. 25, no. 9, 31 December 2004 (2004-12-31), pages 83 - 85 *
MARTIN TA" UBEL ET AL.: "Bacillus barbaricus sp. nov., isolated from an experimental wall painting", INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol. 53, 31 May 2003 (2003-05-31), pages 725 - 730 *
XIA SONG-YANG ET AL.: "Enzymatic digestion of squid protein", JOURNAL OF ZHEJIANG OCEAN UNIVERSITY(NATURAL SCIENCE), vol. 24, no. 3, 1 October 2005 (2005-10-01), pages 271 - 274 *
YUN YAHUI ET AL.: "Producing Sea Flavouring Utilizing Squid Guts", FISHERY MODERNIZATION, 31 December 2002 (2002-12-31), pages 27 - 28 *

Also Published As

Publication number Publication date
JP5128020B2 (ja) 2013-01-23
CN101974460B (zh) 2012-05-23
JP2012532629A (ja) 2012-12-20
HK1153771A1 (en) 2012-04-05
CN101974460A (zh) 2011-02-16

Similar Documents

Publication Publication Date Title
KR102312454B1 (ko) 고 품질의 단백질 농축물을 위한 미생물 기반의 공정
Dharmaraj et al. Evaluation of Streptomyces as a probiotic feed for the growth of ornamental fish Xiphophorus helleri
CN105614023B (zh) 一种用于豆粕发酵的发酵酶解剂及其应用
TW201915165A (zh) 製備醱酵羽毛粉的枯草桿菌菌株及其用途
JPH05507202A (ja) ヘミセルロース含有食品及び動物用飼料のエネルギー効率を改善するためのヘミセルラーゼ補充物
CN109198167B (zh) 饲用酵母水解物及其制备方法和应用
WO2012040980A1 (zh) 一种海洋来源BacillusubarbaricusSCSIO02429以及用它制备鱿鱼小肽的方法
CN112322533B (zh) 一株产生高效胶原蛋白酶的菌株及其应用
CN110734867B (zh) 一株深海来源的酵母菌q7-7及其应用
CN111139190B (zh) 一株红曲霉菌株及其发酵豆粕和水产功能性生物饲料
CN111642656A (zh) 一种增强凡纳滨对虾氨氮耐受性的高效饲料
CN105861390B (zh) 一株荚膜红细菌菌株及其筛选方法与应用
TWI686473B (zh) 一種促進魚類生長與免疫調節之魯梅利桿菌及其應用
CN103865865B (zh) 一种海参肠道产碱性蛋白酶菌株及其应用
CN111635919A (zh) 利用枯草芽孢杆菌水解动物皮制备胶原寡肽的方法
CN105639115B (zh) 一种氨基酸强化型发酵酶解豆粕及其应用
Zulkeple et al. Fermentation of prawn waste by using effective microorganism (EM) for protein production
WO2024147326A1 (ja) エビ目の生物におけるウイルス感染症に対する予防または治療用経口投与組成物
CN115948300B (zh) 一株副干酪乳杆菌及其在发酵甲壳动物及昆虫外壳提取甲壳素中的应用
Mohanty et al. Effect of feeding solid state fermented mahua oil cake (Bassia latifolia) on growth performance, enzymatic and immunological parameters in rohu (Labeo rohita)
CN114085780A (zh) 一种米曲霉hks017及其在制备预消化后的饲料中的应用
KR102050019B1 (ko) 면역증강용 사료첨가제, 이를 포함하는 배합사료
Sembiring et al. Isolating and characterizing bacteria in the intestine of wild sandfish, Holothuria scabra as probiotics candidate
WO2024047009A1 (en) Methods and uses for modifying gut flora in aquatic species
JP3723611B2 (ja) 酵母およびこれを含有する養魚飼料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012535620

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857741

Country of ref document: EP

Kind code of ref document: A1