WO2012036213A1 - 反射率測定装置、反射率測定方法、膜厚測定装置及び膜厚測定方法 - Google Patents

反射率測定装置、反射率測定方法、膜厚測定装置及び膜厚測定方法 Download PDF

Info

Publication number
WO2012036213A1
WO2012036213A1 PCT/JP2011/071020 JP2011071020W WO2012036213A1 WO 2012036213 A1 WO2012036213 A1 WO 2012036213A1 JP 2011071020 W JP2011071020 W JP 2011071020W WO 2012036213 A1 WO2012036213 A1 WO 2012036213A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
light
irradiation light
wavelength
optical waveguide
Prior art date
Application number
PCT/JP2011/071020
Other languages
English (en)
French (fr)
Inventor
賢一 大塚
中野 哲寿
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to US13/822,741 priority Critical patent/US8699023B2/en
Priority to KR1020137003557A priority patent/KR20130106810A/ko
Priority to DE112011103113.0T priority patent/DE112011103113B4/de
Priority to CN201180044880.7A priority patent/CN103140750B/zh
Publication of WO2012036213A1 publication Critical patent/WO2012036213A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0658Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of emissivity or reradiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Definitions

  • the present invention relates to a reflectance measuring device, a reflectance measuring method, a film thickness measuring device, and a film thickness measuring method.
  • Patent Document 1 describes an apparatus for detecting the end point of surface treatment of a liquid crystal display substrate. This device irradiates the liquid crystal display substrate with light from a light source such as a xenon lamp or a halogen lamp, detects the reflected light from the liquid crystal display substrate, and determines the end point of the surface treatment from the reflectance for each wavelength of the reflected light. Is detected.
  • a light source such as a xenon lamp or a halogen lamp
  • Patent Document 2 describes an apparatus for obtaining the etching depth of a substrate to be etched. This apparatus obtains the etching depth of the substrate to be etched by irradiating the substrate to be etched with light from a white light source such as a xenon lamp and detecting the reflected light from the substrate to be etched.
  • a white light source such as a xenon lamp
  • a method for obtaining the film thickness of the measurement object by detecting reflected interference light from the measurement object and calculating the reflectance for each wavelength is known. This utilizes interference by reflected light on the front and back surfaces of the thin film. The light path of the reflected light from the back surface becomes longer by the thickness of twice the film thickness than the reflected light from the front surface, and the phase changes. Interference light is obtained by interference between the reflected light from the front surface and the reflected light from the back surface. When this interference light is decomposed for each wavelength, the intensity changes for each wavelength, and the film thickness can be calculated from the state of the change.
  • the reflectance for each wavelength it is common to obtain the reflectance for each wavelength in order to eliminate the influence of the intensity of the light emitted from the light source for each wavelength. .
  • the intensity for each wavelength of the reflected light from the reference measurement object is acquired and recorded in a recording unit or the like of the measuring apparatus when the measuring apparatus is shipped from the factory.
  • standard measuring object is read and used.
  • the reference measurement object is obtained from the measurement light source when acquiring the intensity for each wavelength of the reflected light from the reference measurement object.
  • the intensity of the irradiation light supplied to the object differs from the intensity of the irradiation light supplied from the measurement light source to the measurement object when calculating the film thickness of the measurement object. Cannot be measured accurately.
  • the present invention relates to a reflectance measuring device and a reflectance measuring method that can accurately measure the reflectance of each wavelength of a measuring object, and a film thickness measuring device that can accurately measure the film thickness of the measuring object. And it aims at providing the film thickness measuring method.
  • a reflectance measurement apparatus includes a measurement light source that supplies irradiation light to a measurement object, and a spectral detection unit that detects the intensity of irradiation light and the intensity of reflection light from the measurement object for each wavelength. And a coefficient recording unit for recording a conversion coefficient for converting the detected value of the intensity for each wavelength of the irradiation light into a value corresponding to the intensity for each wavelength of the reflected light from the reference measurement object, and the wavelength of the irradiation light A reflectance calculation unit that calculates the reflectance for each wavelength of the measurement object based on the value corresponding to the intensity for each wavelength of the reflected light from the reference measurement object obtained from the detected value of each intensity and the conversion coefficient. It is characterized by providing.
  • the reflectance measurement method includes a correction irradiation light detection step for detecting the intensity of the correction irradiation light supplied to the reference measurement object for each wavelength, and the correction irradiation light.
  • a correction irradiation light supply step for supplying from the measurement light source to the reference measurement object, a first reflected light detection step for detecting the intensity of the reflected light of the correction irradiation light from the reference measurement object for each wavelength, and correction Based on the detection value of the intensity for each wavelength of the correction irradiation light obtained by the irradiation light detection step for the correction and the detection value of the intensity for each wavelength of the reflected light of the correction irradiation light obtained by the first reflected light detection step In order to convert the intensity detection value for each wavelength of the measurement irradiation light supplied to the measurement object into a value corresponding to the intensity for each wavelength of the reflected light of the measurement irradiation light from the reference measurement object A coefficient calculating step for calculating a conversion
  • a value corresponding to the intensity for each wavelength of the reflected light from the reference measurement object can be obtained without using the reference measurement object when measuring the measurement object. It can be calculated for each measurement from the detected value of the intensity for each wavelength of the irradiation light irradiated to the measurement object and the conversion coefficient recorded in the coefficient recording unit. Thereby, even if it is a case where the intensity
  • the measurement light source may be a phosphor-type white light emitting diode that supplies excitation light and irradiation light including fluorescence generated by the excitation light. Since the lifetime of the light emitting diode is longer than that of a halogen lamp or the like, the number of times of replacement of the measurement light source can be reduced.
  • the reflectance measuring apparatus described above has a reference optical waveguide having a reference light receiving surface irradiated with irradiation light from a measurement light source at one end and the other end optically coupled to the spectroscopic detection unit, and a measurement
  • a second measurement optical waveguide having a reflected light receiving surface for receiving light at one end and the other end optically coupled to the spectroscopic detection unit may be further provided.
  • strength for every wavelength of irradiation light can be adjusted with arrangement
  • the spectroscopic detection unit includes a first detection unit that detects the intensity of the irradiation light for each wavelength, and a second detection unit that detects the intensity of the reflected light from the measurement object for each wavelength.
  • the other end of the second optical waveguide may be optically coupled to the first detection unit, and the other end of the second measurement optical waveguide may be optically coupled to the second detection unit.
  • the detection unit that detects the intensity of irradiation light for each wavelength and the detection unit that detects the intensity of reflected light from the measurement object for each wavelength are independent of each other.
  • the optical detector further includes an optical waveguide selection unit for selectively irradiating the irradiation light emitted from the measurement light source to one of the reference light receiving surface and the irradiation light receiving surface, and the spectroscopic detection unit determines the intensity of the irradiation light for each wavelength. And detecting the intensity of the reflected light for each wavelength, and the other end of the reference optical waveguide and the other end of the second measurement optical waveguide are optically connected to the third detection unit. It may be combined. According to such a configuration, the spectroscopic detection unit can be configured with a single detection unit, and the reflectance measuring apparatus can be manufactured with a simple configuration.
  • the amount of irradiation light irradiated on the irradiation light receiving surface may be larger than the amount of irradiation light irradiated on the reference light receiving surface. Therefore, even when the irradiation light and the reflected light are attenuated by passing through the optical waveguide or the like, it is possible to secure a light amount necessary for accurately measuring the reflectance for each wavelength.
  • the first measurement optical waveguide may be arranged so that the irradiation light receiving surface and the measurement light source face each other. According to such an arrangement, it is possible to increase the amount of irradiation light applied to the first measurement optical waveguide.
  • the first measurement optical waveguide and the reference optical waveguide are arranged so that the central axis of the first measurement optical waveguide and the central axis of the reference optical waveguide are line-symmetric with respect to an axis passing through the measurement light source. It may be arranged. For example, when directional light such as light emitted from a light emitting diode is used as irradiation light, depending on the positional relationship between the measurement light source and the optical waveguide, for each wavelength of irradiation light incident on the optical waveguide The detected intensity value may be different.
  • the detection value of the intensity for each wavelength of the irradiation light irradiated to the reference optical waveguide and the detection value of the intensity for each wavelength of the irradiation light irradiated to the first measurement optical waveguide can be suppressed and the reflectance for each wavelength can be accurately measured.
  • the film thickness measuring device is provided with the above-described reflectance measuring device.
  • the film thickness measurement method includes the above-described reflectance measurement method, and calculates the film thickness of the measurement object based on the reflectance for each wavelength obtained by the reflectance measurement method. Thereby, it becomes possible to calculate accurately the reflectance for every wavelength of a measurement object required for the measurement of a film thickness, and to measure the film thickness of a measurement object with high precision.
  • the reflectance for each wavelength of the measurement object can be accurately measured.
  • the film thickness measuring apparatus and the film thickness measuring method of the present invention the film thickness of the measurement object can be measured with high accuracy.
  • FIG. 1 is a diagram schematically showing a method for measuring a film thickness of a measurement object.
  • FIG. 2 is a block diagram showing the configuration of the film thickness measuring apparatus.
  • FIG. 3 is a block diagram showing the configuration of the first embodiment of the reflectance measuring apparatus.
  • FIG. 4 is a configuration diagram illustrating an example of a configuration of a measurement light source, a reference optical waveguide, and a first measurement optical waveguide.
  • FIG. 5 is a diagram illustrating an example of the configuration of the spectroscopic optical system.
  • FIG. 6A is a graph showing the intensity for each wavelength of the dark signal
  • FIG. 6B is a graph showing the intensity for each wavelength of the dark current component included in the dark signal
  • FIG. 7 is a flowchart showing a procedure for calculating a conversion coefficient according to the first embodiment.
  • FIG. 8 is a flowchart showing a procedure for calculating a film thickness and the like according to the first embodiment.
  • FIG. 9 is a graph showing the relationship between the wavelength and the relative intensity for each wavelength when a phosphor-type white light emitting diode emits light under different temperature environments.
  • FIG. 10A shows an example of the arrangement of phosphor-type white light-emitting diodes and optical waveguides
  • FIG. 10B shows another example of the arrangement of phosphor-type white light-emitting diodes and optical waveguides
  • (C) is a figure which shows the further another example of arrangement
  • FIG. 11 is a graph showing the relationship between the wavelength of irradiation light incident on the optical waveguide shown in FIG. 10 and the relative intensity for each wavelength.
  • FIG. 12 is a conceptual diagram schematically showing a cross section of an irradiation range of irradiation light.
  • FIG. 13 is a graph showing the relationship between the wavelength of irradiation light incident on the reference optical waveguide and the first measurement optical waveguide and the relative intensity for each wavelength.
  • FIG. 14 is a block diagram showing the configuration of the second embodiment of the reflectance measuring apparatus.
  • FIG. 15 is a block diagram showing a configuration of the third embodiment of the reflectance measuring apparatus.
  • FIG. 16 is a flowchart illustrating a procedure for calculating a conversion coefficient according to the third embodiment.
  • FIG. 17 is a flowchart illustrating a procedure for calculating a film thickness and the like according to the third embodiment.
  • FIG. 18 is a flowchart illustrating a procedure for calculating a conversion coefficient according to the fourth embodiment.
  • FIG. 19 is a configuration diagram illustrating a modification of the configuration of the measurement light source, the reference optical waveguide, and the first measurement optical waveguide.
  • FIG. 20 is a configuration diagram illustrating another modification of the configuration of the measurement light source, the reference optical waveguide, and the first measurement optical waveguide.
  • 21A shows still another modification of the configuration of the measurement light source, the reference optical waveguide, and the first measurement optical waveguide
  • FIG. 21B shows the measurement light source, the reference optical waveguide, and the first optical waveguide.
  • It is a block diagram which shows the further another modification of a structure with the optical waveguide for a measurement.
  • FIG. 22 is a configuration diagram showing still another modification of the configuration of the measurement light source, the reference optical waveguide, and the first measurement optical waveguide.
  • a semiconductor film 13 formed on the substrate 2 is shown as an example of a film-like measurement object.
  • Supply irradiation light L1 for film thickness measurement from the upper surface (first surface) 6 side of the semiconductor film 13 opposite to the substrate 2 with respect to the sample 12 made of the substrate 2 and the semiconductor film 13.
  • interference light generated by interference between the reflected light L2 from the upper surface 6 and reflected light L3 to Lm from the lower surface (second surface, boundary surface between the substrate 2 and the semiconductor film 13) 7 is detected.
  • the film thickness d of the semiconductor film 13 is calculated.
  • FIG. 2 is a block diagram showing a configuration of one embodiment of the film thickness measuring apparatus 10.
  • FIG. 2 shows an example in which the semiconductor film 13 of the sample 12 installed in the processing chamber of the sample measurement unit 11 is a measurement object.
  • the film thickness measuring device 10 includes a reflectance measuring device 1 described later, a measuring optical system 14, and a film thickness calculating unit 19.
  • the film thickness calculation unit 19 is a film thickness calculation unit that calculates the film thickness of the semiconductor film 13 that is a measurement object, and reflects the reflectance for each wavelength (hereinafter referred to as “the reflectance for each wavelength” output from the reflectance measuring apparatus 1). "Is referred to as” spectral reflectance data "), and the film thickness is calculated.
  • the input end of the film thickness calculator 19 is connected to the output end of the reflectance measuring device 1.
  • such a film thickness calculation part 19 can be comprised by the computer by which a predetermined calculation program is run, for example.
  • the film thickness calculator 19 is connected to a measurement controller 20.
  • the measurement control unit 20 refers to the film thickness information output from the film thickness calculation unit 19 and controls each unit of the film thickness measurement device 10 such as the reflectance measurement device 1, so that Necessary control is performed for operations such as a film thickness measurement operation.
  • the measurement control unit 20 is connected with an input device 21 and a display device 22.
  • the input device 21 is used to input information, conditions, instructions, and the like necessary for the measurement operation in the reflectance measurement device 1 and the film thickness measurement device 10 by an operator.
  • the display device 22 is used to display necessary information about the above-described measurement operation to the operator.
  • the measurement optical system 14 irradiates the predetermined measurement position of the sample 12 with the irradiation light L ⁇ b> 1 supplied from the reflectance measuring device 1, and guides the reflected light L ⁇ b> 2 reflected by the surface of the sample 12 to the reflectance measuring device 1. To do.
  • the measurement optical system 14 reflects the first measurement optical waveguide (not shown for the purpose of description below) that guides the irradiation light L1 from the reflectance measurement device 1 and the reflection light L2 from the sample 12 described later.
  • a second measurement optical waveguide (not shown for later description) that guides light to the rate measuring device 1 is optically coupled.
  • the measurement optical system 14 is provided with a sample measurement unit 11 in which a sample 12 that is a measurement object is installed. This measurement object includes a reference measurement object whose reflectance for each wavelength is known and a measurement object that is an object of film thickness measurement.
  • the measurement optical system 14 is provided with an XY ⁇ stage 15.
  • the XY ⁇ stage 15 adjusts the position, angle, etc. of the measurement optical system 14 in the X direction, Y direction, and ⁇ direction, so that the film thickness measurement position and measurement conditions of the semiconductor film 13 by the film thickness measurement apparatus 10 can be adjusted. adjust. Further, the XY ⁇ stage 15 is driven and controlled by the stage controller 16.
  • the sample 12 in the sample measurement unit 11 and the measurement optical system 14 are further provided with an imaging device 17 and a measurement position setting unit 18.
  • the imaging device 17 is a position confirmation imaging device for confirming the measurement position of the film thickness in the semiconductor film 13 by the film thickness measurement device 10.
  • the measurement position setting unit 18 sets the film thickness measurement position for the sample 12 with reference to the image of the sample 12 including the semiconductor film 13 acquired by the imaging device 17 via the measurement optical system 14.
  • FIG. 3 shows an example of the configuration of the reflectance measuring apparatus 1 according to the first embodiment.
  • the reflectance measurement apparatus 1 includes a measurement light source 30, a reference optical waveguide 50, a first measurement optical waveguide 60, a second measurement optical waveguide 70, a spectral detection unit 80, and a processing unit 90. .
  • the reflectance measurement apparatus 1 is provided with a measurement light source 30 that supplies irradiation light L1 to the semiconductor film 13 of the sample 12 in the sample measurement unit 11 via the measurement optical system 14.
  • the measurement light source 30 supplies irradiation light L1 including at least a wavelength component over a predetermined band to the semiconductor film 13 that is a measurement object.
  • a measurement light source 30 for example, a fluorescent white light emitting diode (hereinafter referred to as “phosphor white LED”) that emits excitation light and light including fluorescence generated by the excitation light is preferably used. be able to.
  • a white LED is one in which long-wavelength region fluorescence is generated by irradiating phosphor with short-wave excitation light, and the excitation light and fluorescence are mixed to generate white light.
  • the measurement light source 30 may be a light source such as a xenon lamp or a halogen lamp, or a white LED using a three-color LED system in which a red LED, a green LED, a blue LED, or the like is combined.
  • the first measurement optical waveguide 60 guides the irradiation light L1 from the measurement light source 30 to the measurement optical system 14.
  • the first measurement optical waveguide 60 has an irradiation light receiving surface 61 that is irradiated with the irradiation light L1 from the measurement light source 30, and an irradiation light supply surface 62 that supplies the irradiation light L1 to the measurement object.
  • the irradiation light receiving surface 61 is optically coupled to the measurement light source 30, and the irradiation light supply surface 62 is optically coupled to the measurement optical system 14.
  • an optical fiber can be suitably used as the first measurement optical waveguide 60.
  • the second optical waveguide for measurement 70 guides the reflected light L2 from the sample 12 to the reflectance measuring device 1 through the measurement optical system.
  • the second measurement optical waveguide 70 has a reflected light receiving surface 71 that receives the reflected light L2 from the sample 12.
  • the reflected light receiving surface 71 is optically coupled to the measurement optical system 14.
  • the other end of the second measurement optical waveguide 70 is optically coupled to the spectroscopic detection unit 80.
  • an optical fiber can be suitably used as the second measurement optical waveguide 70.
  • a reference light receiving surface 51 to which the irradiation light L1 is irradiated from the measurement light source 30 is provided.
  • the reference light receiving surface 51 is optically coupled to the measurement light source 30.
  • the other end of the reference optical waveguide 50 is optically coupled to the spectroscopic detection unit 80.
  • an optical fiber can be suitably used as the reference optical waveguide 50.
  • the spectral detection unit 80 detects the intensity of the irradiation light L1 for each wavelength, and acquires a detection value of the intensity for each wavelength (hereinafter, “detection value of the intensity for each wavelength” is referred to as “spectrum waveform”). 81 and a second detector 84 that acquires the spectrum waveform of the reflected light L2.
  • the first detection unit 81 includes a spectroscopic optical system 82 and a photodetector 83.
  • the spectroscopic optical system 82 decomposes the light incident on the spectroscopic optical system 82 for each wavelength, and outputs the decomposed light for each wavelength to the photodetector 83.
  • the photodetector 83 acquires the spectral waveform of the light output from the spectroscopic optical system 82 and outputs the acquired spectral waveform to the processing unit 90.
  • the other end of the reference optical waveguide 50 is optically coupled to the input end of the spectroscopic optical system 82 of the first detection unit 81. Further, the output end of the photodetector 83 is connected to the input end of the processing unit 90.
  • the second detector 84 includes a spectroscopic optical system 82 and a photodetector 83.
  • the other end of the second measurement optical waveguide 70 is optically coupled to the input end of the spectroscopic optical system 82 of the second detector 84.
  • the output end of the photodetector 83 is connected to the other input end of the processing unit 90.
  • the processing unit 90 includes a coefficient calculation unit 91, a coefficient recording unit 92, and a reflectance calculation unit 93.
  • the coefficient calculation unit 91 calculates a conversion coefficient for converting the spectrum waveform of the irradiation light L1 into a value corresponding to the spectrum waveform of the reflected light L2 from the reference measurement object.
  • the coefficient recording unit 92 records the calculated conversion coefficient.
  • the reflectance calculation unit 93 calculates spectral reflectance data of the measurement object.
  • the input end of the processing unit 90 is connected to the output end of the photodetector 83 of the first detection unit 81.
  • the other input end of the processing unit 90 is connected to the output end of the photodetector 83 of the second detection unit 84. Further, the output end of the processing unit 90 is connected to the input end of the film thickness calculation unit 19 shown in FIG.
  • the coefficient calculation unit 91 calculates a conversion coefficient based on the spectrum waveform of the irradiation light L1 irradiated to the reference measurement object and the spectrum waveform of the reflected light L2 from the reference measurement object. Further, the coefficient calculation unit 91 outputs the calculated conversion coefficient to the coefficient recording unit 92. The output end of the coefficient calculation unit 91 is connected to the input end of the coefficient recording unit 92. Note that such a coefficient calculation unit 91 can be configured by a computer on which a predetermined calculation program is executed, for example.
  • the coefficient recording unit 92 records the above conversion coefficient and outputs the conversion coefficient to the reflectance calculation unit 93.
  • the input end of the coefficient recording unit 92 is connected to the output end of the coefficient calculation unit 91.
  • the reflectance calculation unit 93 includes a value corresponding to the spectrum waveform of the reflected light L2 from the reference measurement object obtained from the spectrum waveform of the irradiation light L1 irradiated to the measurement object and the conversion coefficient, and the reflected light from the measurement object. Based on the spectral waveform of L2, the spectral reflectance data of the measurement object is calculated, and the calculated spectral waveform is output to the film thickness calculator 19 (see FIG. 2).
  • the output end of the reflectance calculation unit 93 is connected to the input end of the film thickness calculation unit 19 (see FIG. 2).
  • such a reflectance calculation part 93 can be comprised by the computer by which a predetermined calculation program is performed, for example.
  • FIG. 4 shows the configuration of the measurement light source 30, the reference optical waveguide 50, and the first measurement optical waveguide 60 in the present embodiment.
  • the measurement light source 30 includes a phosphor-type white LED 31 and a light source main body 32.
  • the reference optical waveguide 50 and the first measurement optical waveguide 60 are held by an optical waveguide holding portion 96.
  • the reference optical waveguide 50 and the first measurement optical waveguide 60 are configured such that the central axis 50A of the reference optical waveguide 50 and the central axis 60A of the first measurement optical waveguide 60 are aligned with an axis 31A passing through the white LED 31. In contrast, they are arranged so as to be line-symmetric with each other.
  • FIG. 5 shows an example of the configuration of the spectroscopic optical system 82.
  • the spectroscopic optical system 82 decomposes the reflected light L2 from the measurement object of the irradiation light L1 and the irradiation light L1 so that they can be detected for each wavelength.
  • the spectroscopic optical system 82 includes an entrance slit 301, a collimating optical system 302, a diffraction grating 303 as a dispersion element, and a focusing optical system 304.
  • the light decomposed into the respective wavelengths by the diffraction grating 303 is imaged for each wavelength component on the output surface 305 of the wavelength spectrum via the focusing optical system 304, and is disposed on the output surface 305.
  • the detector 83 detects each wavelength component.
  • the spectroscopic optical system 82 that decomposes the reflected light L2 and the irradiation light L1 from the measurement object so as to be detectable for each wavelength by using a band filter, for example, is preferably configured. Can do.
  • a photodetector 83 is provided as a detecting means for detecting the intensity of each wavelength component with respect to the light decomposed for each wavelength component by the spectroscopic optical system 82.
  • the photodetector 83 detects the intensity of the output light decomposed by the spectroscopic optical system 82 for each wavelength component of several nanometers.
  • the photodetector 83 is arranged on the output surface 305 of the spectroscopic optical system 82 shown in FIG. 5, and detects a plurality of photodetecting elements that detect the intensity of each wavelength component decomposed by the spectroscopic optical system 82.
  • a weak signal is output from the first detection unit 81 illustrated in FIG. 3 even when the irradiation light L1 is not incident from the reference optical waveguide 50. Further, a weak signal is output from the second detection unit 84 even when the reflected light L2 is not incident from the second measurement optical waveguide 70. This weak signal is called dark current. This dark current needs to be handled as an element that requires calibration when the light intensity is acquired by the light detection element. In addition to the dark current, the signals output from the first detection unit 81 and the second detection unit 84 include signals due to disturbance light such as light emitted from the room illumination.
  • a combination of the above-described unnecessary signals such as dark current and disturbance light is referred to as a dark signal.
  • a dark signal A combination of the above-described unnecessary signals such as dark current and disturbance light is referred to as a dark signal.
  • the dark subtraction correction method will be described with reference to FIG.
  • a method of performing dark subtraction correction on the irradiation light L1 will be described.
  • the measurement light source 30 is turned off, and the spectral waveform of the dark signal is acquired by the spectral detection unit 80.
  • the spectral waveform of the dark signal includes a white noise component and a noise component having a peak in a specific wavelength region.
  • the white noise component is a noise component due to dark current (FIG. 6B).
  • a noise component having a peak intensity in a specific wavelength region is a noise component due to disturbance light or the like (FIG. 6C).
  • the measurement light source 30 is turned on, and the spectral waveform of the irradiation light L1 is acquired by the spectroscopic detection unit 80.
  • the spectral waveform of this light includes, in addition to the spectral waveform component of the irradiation light L1, for example, a spectral waveform component of a dark signal as shown in FIG. 6 (a). Yes.
  • the spectral waveform of the dark signal as shown in FIG. 6A is subtracted from the spectral waveform including the spectral waveform component of the irradiation light L1 and the spectral waveform component of the dark signal as shown in FIG. To do.
  • the spectral waveform of the irradiation light L1 as shown in FIG. 6E which does not include the spectral waveform component of the dark signal, can be obtained with high accuracy.
  • the spectral waveform of the reflected light L2 is obtained by subtracting the spectral waveform of the dark signal obtained by turning off the measuring light source 30 from the spectral waveform of the reflected light L2 obtained by turning on the measuring light source 30. It can be acquired with high accuracy.
  • 7 and 8 are flowcharts showing a film thickness measurement method including the reflectance measurement method according to the first embodiment.
  • means the wavelength or the wavelength resolution unit of the spectroscopic detector.
  • a reference measurement object whose spectral reflectance data Rref ( ⁇ ) is known is set in the sample measurement unit 11 (S10).
  • the measurement light source 30 is turned on, and the irradiation light L ⁇ b> 1 is irradiated from the measurement light source 30 to the reference light receiving surface 51 and the irradiation light receiving surface 61.
  • the irradiation light L1 irradiated from the measurement light source 30 is referred to as correction irradiation light.
  • the correction irradiation light irradiated to the irradiation light receiving surface 61 is supplied to the reference measurement object via the first measurement optical waveguide 60 and the measurement optical system 14. (Correction irradiation light supply step S12).
  • the correction irradiation light irradiated on the reference light receiving surface 51 is guided to the first detection unit 81 by the reference optical waveguide 50 and is decomposed for each wavelength component in the spectroscopic optical system 82. Thereafter, the spectral waveform Sref ( ⁇ ) of the correction irradiation light is acquired by the photodetector 83 (correction irradiation light detection step S14).
  • the correction irradiation light supplied to the reference measurement object is reflected by the surface of the reference measurement object and becomes reflected light L2.
  • the correction irradiation light reflected by the surface of the reference measurement object is referred to as correction reflection light.
  • the corrected reflected light is guided to the second detection unit 84 by the measurement optical system 14 and the second measurement optical waveguide 70, and is decomposed for each wavelength component in the spectroscopic optical system 82. Thereafter, the spectral waveform Ssig ( ⁇ ) of the reflected light for correction is acquired by the photodetector 83 (first reflected light detection step S16). Next, the measurement light source 30 is turned off (S18).
  • the spectral waveform Dref ( ⁇ ) of the dark signal output from the first detection unit 81 is acquired (S20). Further, the spectral waveform Dsig ( ⁇ ) of the dark signal output from the second detection unit 84 is acquired (S22).
  • the following formula (1) is a formula for calculating the conversion coefficient K ( ⁇ ).
  • the spectral reflectance data Rref ( ⁇ ) of the reference measurement object, the spectral waveform Sref ( ⁇ ) of the correction irradiation light, the spectral waveform Ssig ( ⁇ ) of the correction reflection light, and the dark signal output from the first detection unit 81 Based on the spectrum waveform Dref ( ⁇ ) and the spectrum waveform Dsig ( ⁇ ) of the dark signal output from the second detector 84, a conversion coefficient K ( ⁇ ) is calculated (coefficient calculation step S24).
  • the calculation of the conversion coefficient K ( ⁇ ) is executed by the coefficient calculation unit 91.
  • the conversion coefficient K ( ⁇ ) is recorded in the coefficient recording unit 92 (S26). Note that the above-described process of calculating the conversion coefficient K ( ⁇ ) may be performed at the time of shipping inspection or by periodic maintenance work.
  • a step of calculating spectral reflectance data Rsig ( ⁇ ) of the measurement object shown in FIG. 8 is performed.
  • a measurement object is installed in the sample measurement unit 11 (installation step S28).
  • the measurement light source 30 is turned on to irradiate the reference light receiving surface 51 and the irradiation light receiving surface 61 with the irradiation light L1.
  • the irradiation light L1 irradiated from the measurement light source 30 is referred to as measurement irradiation light.
  • the measurement irradiation light irradiated on the irradiation light receiving surface 61 is supplied to the measurement object via the first measurement optical waveguide 60 and the measurement optical system 14. (Measurement irradiation light supply step S30).
  • the measurement irradiation light irradiated on the reference light receiving surface 51 is guided to the first detection unit 81 by the reference optical waveguide 50 and is decomposed for each wavelength component in the spectroscopic optical system 82. Thereafter, the spectral waveform S′ref ( ⁇ ) of the measurement irradiation light is acquired by the photodetector 83 (measurement irradiation light detection step S32). At this time, the time for acquiring the spectral waveform S′ref ( ⁇ ) of the measurement irradiation light is set to an arbitrary time.
  • the measurement irradiation light supplied to the measurement object is reflected by the surface of the measurement object and becomes reflected light L2.
  • the reflected light L2 is referred to as measurement reflected light.
  • the reflected light for measurement is guided to the second detector 84 by the measurement optical system 14 and the second measurement optical waveguide 70, and is decomposed for each wavelength component in the spectroscopic optical system 82. Thereafter, the spectral waveform S'sig ( ⁇ ) of the reflected light for measurement is acquired by the photodetector 83 (second reflected light detection step S34). At this time, the time for acquiring the spectrum waveform of the reflected light for measurement is set to an arbitrary time.
  • the measurement light source 30 is turned off (S36). At this time, the time for turning off the measurement light source 30 is set to about 100 milliseconds. Thereafter, the spectral waveform D′ ref ( ⁇ ) of the dark signal output from the first detection unit 81 is acquired (S38). At this time, the time for acquiring the spectral waveform D′ ref ( ⁇ ) of the dark signal is set to an arbitrary time. Further, the spectral waveform D′ sig ( ⁇ ) of the dark signal output from the second detection unit 84 is acquired with the measurement light source 30 turned off (S40). At this time, the time for acquiring the spectral waveform D′ sig ( ⁇ ) of the dark signal is set to an arbitrary time.
  • the following formula (2) is a mathematical formula for calculating the spectral reflectance data Rsig ( ⁇ ).
  • the numerator of the formula (2) indicates the spectral waveform S′sig ( ⁇ ) of the reflected light for measurement not including the spectral waveform D′ sig ( ⁇ ) of the dark signal.
  • the denominator of Equation (2) indicates a value corresponding to the spectral waveform of the reflected light for measurement from the reference measurement object.
  • the denominator of equation (2) is obtained by multiplying the waveform obtained by subtracting the spectral waveform D′ ref ( ⁇ ) of the dark signal from the spectral waveform S′ref ( ⁇ ) of the measurement irradiation light by the conversion coefficient K ( ⁇ ).
  • a value corresponding to the spectrum waveform of the reflected light for measurement from the reference measurement object corresponding to is calculated.
  • a value obtained by subtracting the spectral waveform D′ sig ( ⁇ ) of the dark signal from the spectral waveform S′sig ( ⁇ ) of the reflected light for measurement is a value corresponding to the spectral waveform of the reflected light for measurement from the reference measurement object.
  • the spectral reflectance data Rsig ( ⁇ ) of the measurement object is calculated by dividing by (reflectance calculation step S42).
  • the calculation of the spectral reflectance data Rsig ( ⁇ ) is executed by the reflectance calculation unit 93.
  • the spectral reflectance data Rsig ( ⁇ ) measured by the reflectance measuring device 1 in the present embodiment is output to the film thickness calculation unit 19.
  • the film thickness calculator 19 calculates the film thickness of the measurement object based on the spectral reflectance data Rsig ( ⁇ ) (S44).
  • the reflectance measuring apparatus 1 includes a phosphor-type white LED 31 as a light source of the irradiation light L1, as shown in FIG.
  • a phosphor-type white LED 31 as a light source of the irradiation light L1, as shown in FIG.
  • the white LED 31 it is known that the amount of excitation light varies due to an external factor such as heat given from the surrounding environment.
  • FIG. 9 is a graph showing an example of the relationship between the wavelength of white light generated from the white LED 31 under different temperature environments and the relative intensity for each wavelength.
  • a region B1 having a wavelength of 400 nm or more and 800 nm or less is a wavelength region to be measured.
  • a region B2 having a wavelength of 400 nm or more and 500 nm or less is a wavelength region of excitation light
  • a region B3 having a wavelength of 500 nm or more and 800 nm or less is a wavelength region of fluorescence.
  • a curve G1 in FIG. 9 shows the relative intensity for each wavelength of white light when the white LED 31 emits light in a temperature environment at room temperature
  • a curve G2 causes the white LED 31 to emit light in a temperature environment of 0 ° C. The relative intensity for each wavelength of white light is shown.
  • the peak values of the curve G1 and the curve G2 are different in the region B2, which is the wavelength region of the excitation light. That is, when the white LED 31 emits light under different temperature environments, the relative intensities in the wavelength region of the excitation light are different.
  • the spectral waveform of the irradiation light L1 emitted from the white LED 31 included in the measurement light source 30 varies depending on external factors such as ambient temperature. For example, when the temperature of the white LED 31 when acquiring the spectrum waveform of the reflected light L2 from the reference measurement object is different from the temperature of the white LED 31 when acquiring the spectrum waveform of the reflected light L2 from the measurement object Is different in relative intensity for each wavelength in the wavelength region of the excitation light between the irradiation light for correction irradiated to the reference measurement object and the irradiation light for measurement irradiated to the measurement object. Therefore, the spectral reflectance data Rsig ( ⁇ ) of the measurement object cannot be measured with high accuracy.
  • a value corresponding to the spectrum waveform of the reflected light for measurement from the reference measurement object is obtained by using the reference measurement object when measuring the measurement object. Without being used, it can be calculated for each measurement from the spectral waveform S′ref ( ⁇ ) of the measurement irradiation light irradiated to the measurement object and the conversion coefficient K ( ⁇ ). Thereby, when calculating the spectral reflectance data Rsig ( ⁇ ) of the measurement object, a value corresponding to the spectral waveform of the reflected light for measurement including the influence of the fluctuation of the irradiation light L1 can be used.
  • the spectrum waveform S′ref ( ⁇ ) of the measurement irradiation light varies, the spectrum waveform S′ref of the measurement irradiation light included in the spectrum waveform S′sig ( ⁇ ) of the measurement reflection light. It becomes possible to cancel the fluctuation of ( ⁇ ). Therefore, the spectral reflectance data Rsig ( ⁇ ) of the measurement object can always be measured with high accuracy. Note that the conversion coefficient K ( ⁇ ) is not affected even if the spectrum waveform S′ref ( ⁇ ) varies.
  • the spectral reflectance data Rsig ( ⁇ ) of the measurement object is obtained. Since it is possible to calculate with high accuracy, the film thickness of the measurement object obtained from the spectral reflectance data Rsig ( ⁇ ) can be calculated with high accuracy.
  • the spectrum waveform of the reflected light for measurement from the reference measurement object is acquired for each measurement using the reference measurement object, and acquired.
  • the spectrum waveform was set again. In this method, it is necessary to pause the production line in order to acquire and set the spectral waveform of the reflected light for measurement from the reference measurement object. For this reason, it has been a factor of reducing the production efficiency in the production line.
  • a value corresponding to the spectrum waveform of the measurement reflected light from the reference measurement object is obtained as the spectrum waveform S′ref ( ⁇ ) of the measurement irradiation light and Calculated from the conversion coefficient K ( ⁇ ). Therefore, it is possible to calculate the spectral reflectance data Rsig ( ⁇ ) without acquiring the spectral waveform of the reflected light for measurement from the reference measurement object for each measurement. Thereby, even if there is a change in the spectrum waveform of the irradiation light L1, the step of obtaining a value corresponding to the spectrum waveform of the reflected light for measurement from the reference measurement object is not performed for each measurement.
  • the spectral reflectance data Rsig ( ⁇ ) can be measured with high accuracy. Furthermore, since work processes can be reduced, it is possible to prevent a reduction in production efficiency and to reduce costs.
  • FIG. 10A shows a form in which the optical waveguide P1 is arranged at a position where the white LED 31 and the optical waveguide P1 are opposed to each other with the axis 31A passing through the white LED 31 and the central axis P1A of the optical waveguide P1 being coincident with each other. Yes.
  • FIG. 10A shows a form in which the optical waveguide P1 is arranged at a position where the white LED 31 and the optical waveguide P1 are opposed to each other with the axis 31A passing through the white LED 31 and the central axis P1A of the optical waveguide P1 being coincident with each other.
  • FIG. 10B shows a form in which the optical waveguide P2 is arranged at a position where the axis 31A passing through the white LED 31 and the central axis P2A of the optical waveguide P2 are separated from each other.
  • FIG. 10C shows a form in which the optical waveguide P2 is arranged at a position where the axis 31A passing through the white LED 31 and the central axis P3A of the optical waveguide P3 are further separated.
  • FIG. 11 is a graph showing the relative intensity for each wavelength of the irradiation light L1 incident on the optical waveguides P1 to P3 shown in FIG.
  • B1 is a wavelength region to be measured
  • B2 is a wavelength region of excitation light
  • B3 is a wavelength region of fluorescence.
  • the curve G3 is the relative intensity for each wavelength of the irradiation light L1 incident on the optical waveguide P1
  • the curve G4 is the relative intensity for each wavelength of the irradiation light L1 incident on the optical waveguide P2
  • the curve G5 is the light intensity. It is the relative intensity for each wavelength of the irradiation light L1 incident on the waveguide P3.
  • the relative intensity for each wavelength of the irradiation light L1 incident on each of the optical waveguides P1 to P3 is substantially the same in the fluorescence wavelength region (B3).
  • the peak values are different in the wavelength region (B2) of the excitation light. That is, the spectral waveform differs in the wavelength region of the excitation light depending on the positional relationship between the reference optical waveguide 50 and the first measurement optical waveguide 60 and the white LED 31.
  • FIG. 12 is a conceptual diagram showing a cross section of the irradiation range of the irradiation light L1. Since the excitation light has directivity, the central portion T1 in the cross section of the irradiation range of the irradiation light L1 is a region where the influence of the excitation light is strong. Further, since the fluorescence has a wide range, the peripheral portion T2 in the cross section of the irradiation range of the irradiation light L1 is a region where the influence of the fluorescence is strong. Therefore, it is considered that the spectrum waveform of the irradiation light L1 incident on the optical waveguides P1 to P3 differs depending on the positional relationship between the measurement light source 30 and the optical waveguides P1 to P3.
  • the reference optical waveguide 50 and the first measurement optical waveguide 60 are arranged with the central axis 50A of the reference optical waveguide 50 and the reference optical waveguide 50 as shown in FIG.
  • the central axes 60A of the first measurement optical waveguides 60 are arranged so as to be symmetrical with respect to the axis 31A passing through the white LED 31.
  • FIG. 13 shows the relative intensity for each wavelength of the irradiation light L1 irradiated to the reference optical waveguide 50 and the first measurement optical waveguide 60 when arranged in this way.
  • B1 is a wavelength region to be measured
  • B2 is a wavelength region of excitation light
  • B3 is a wavelength region of fluorescence.
  • a curve G6 represents the relative intensity for each wavelength of the incident light L1 irradiated to the reference optical waveguide 50
  • a curve G7 represents the relative intensity for each wavelength of the incident light L1 irradiated to the first measurement optical waveguide 60.
  • the central axis 50A of the reference optical waveguide 50 and the central axis 60A of the first measurement optical waveguide 60 are arranged so as to be symmetrical with respect to the axis 31A passing through the white LED 31, the reference optical waveguide 50 and the difference in the spectrum waveform of the irradiation light L1 irradiated to the first measurement optical waveguide 60 is suppressed. Therefore, according to the film thickness measurement device 10 using the reflectance measurement device 1 according to the present embodiment, the spectral waveform of the irradiation light L1 irradiated to the reference optical waveguide 50 and the first measurement optical waveguide 60 are irradiated.
  • the spectral reflectance data Rsig ( ⁇ ) can be measured with high accuracy by suppressing the difference from the spectral waveform of the irradiation light L1.
  • the reflectance measuring apparatus 1 includes a white LED 31 as the measurement light source 30.
  • the lifetime of the white LED 31 is longer than that of a lamp-type light source such as a xenon lamp or a halogen lamp that has been used for about 1000 hours. Thereby, the frequency
  • the reflectance measuring apparatus 1 includes a reference optical waveguide 50 and a first measurement optical waveguide 60. According to such a configuration, it is possible to adjust the arrangement of the respective optical waveguides. Thereby, the intensity
  • the spectral detection unit 80 includes a first detection unit 81 and a second detection unit 84.
  • the detection unit that acquires the spectral waveform of the irradiation light L1 and the detection unit that acquires the spectral waveform of the reflected light L2 from the measurement target can be made independent of each other. Therefore, it is possible to simultaneously acquire the spectrum waveform of the irradiation light L1 and the spectrum waveform of the reflected light L2 from the measurement object, and further to accurately measure the spectral reflectance data Rsig ( ⁇ ) of the measurement object. . Furthermore, the time required for measuring the reflectance for each wavelength can be shortened.
  • the reflectance measuring apparatus 1 calculates the spectral reflectance data Rsig ( ⁇ ) by the above equation (2).
  • the spectral reflectance data Rsig ( ⁇ ) can be easily calculated.
  • the spectral reflectance data Rsig ( ⁇ ) can be calculated without using the spectral reflectance data Rref ( ⁇ ) of the reference measurement object. Therefore, the reflectance measuring apparatus 1 can be configured without including an apparatus for recording the spectral reflectance data Rref ( ⁇ ) of the reference measurement object.
  • FIG. 14 shows an example of the configuration of the reflectance measuring apparatus 1A according to the second embodiment.
  • the reflectance measurement apparatus 1A according to the present embodiment is configured to include a plurality of first measurement optical waveguides 60, measurement optical systems 14, second measurement optical waveguides 70, and second detection units 84.
  • the respective spectral reflectance data Rsig (n, ⁇ ) is calculated for two samples 12 will be described as an example.
  • the number of samples 12 may be two or more.
  • the reflectance measurement apparatus 1A includes a measurement light source 30, a reference optical waveguide 50, two first measurement optical waveguides 60, two second measurement optical waveguides 70, a spectroscopic detection unit 80A, and a processing unit 90. It is configured.
  • the spectroscopic detection unit 80A includes a first detection unit 81 that acquires the spectrum waveform of the irradiation light L1, and two second detection units 84 that acquire the spectrum waveform of the reflected light L2 from the samples 12A and 12B. It is prepared for.
  • the other end of the second measurement optical waveguide 70 that guides the reflected light L2 from one of the samples 12A and 12B is optically coupled to the spectroscopic optical system 82 of one second detection unit 84.
  • the other end of the second measurement optical waveguide 70 that guides the reflected light L2 from the other of the samples 12A and 12B is optically coupled to the spectroscopic optical system 82 of the other second detection unit 84.
  • the irradiation light L1 emitted from the measurement light source 30 is supplied to the samples 12A and 12B via the first measurement optical waveguide 60 and the measurement optical system 14.
  • the irradiation light L1 supplied to the samples 12A and 12B is reflected by the surfaces of the samples 12A and 12B, and becomes reflected light L2.
  • the reflected light L ⁇ b> 2 is supplied to the spectroscopic optical system 82 of the second detection unit 84 via the measurement optical system 14 and the second measurement optical waveguide 70.
  • the reflected light L2 supplied to the spectroscopic optical system 82 is decomposed so that it can be detected for each wavelength. Thereafter, the spectral waveform of the reflected light L2 is acquired by the photodetector 83.
  • the reflectance measurement method according to this embodiment using dark subtraction correction will be described.
  • the principle of dark subtraction correction is the same as that described in the first embodiment.
  • the difference between this embodiment and the first embodiment is that one conversion coefficient K ( ⁇ ) is calculated in the first embodiment, but in this embodiment, the conversion coefficient K (n, The difference is that ⁇ ) is calculated.
  • the present embodiment is different from the first embodiment in that the spectral reflectance data Rsig (n, ⁇ ) is calculated for each of the plurality of samples 12.
  • the procedures other than the differences described above are the same as those in the first embodiment.
  • the conversion coefficient K (n, ⁇ ) is calculated for each of the two second detection units 84.
  • the following formula (3) is a formula for calculating the conversion coefficient K (n, ⁇ ).
  • Spectral waveform Ssin (n, ⁇ ) of reflected light for correction from the reference measurement object Spectral waveform Ssin (n, ⁇ ) of reflected light for correction from the reference measurement object, spectral waveform Sref ( ⁇ ) of irradiation light for correction, spectral waveform Dsig (n, ⁇ ), Dref ( ⁇ ) of dark signal, and
  • a conversion coefficient K (n, ⁇ ) is calculated based on the known spectral reflectance Rref ( ⁇ ) of the reference measurement object.
  • spectral reflectance data Rsig (n, ⁇ ) of the samples 12A and 12B is calculated.
  • the following formula (4) is a formula for calculating the spectral reflectance data Rsig (n, ⁇ ).
  • Spectral waveform S'sin (n, ⁇ ) of reflected light for measurement from the measurement object spectral waveform S'ref ( ⁇ ) of irradiation light for measurement, spectral waveform D'sig (n, ⁇ ), D of dark signal
  • spectral reflectance data Rsig (n, ⁇ ) of the samples 12A and 12B is calculated.
  • the spectral reflectance data Rsig (n, ⁇ ) of a plurality of measurement objects can be measured. Further, the spectral reflectance data Rsig (n, ⁇ ) of a plurality of measurement objects can be measured simultaneously. Furthermore, according to the film thickness measuring apparatus 10 provided with the reflectance measuring apparatus 1A of the present embodiment and the film thickness measuring method using the film thickness apparatus 10, the film thicknesses of a plurality of measurement objects can be simultaneously measured. .
  • FIG. 15 shows an example of the configuration of the reflectance measuring apparatus 1B according to the third embodiment.
  • the spectroscopic detection unit 80B is configured by a third detection unit 85 as shown in FIG. That is, in the present embodiment, the configuration in which the spectrum waveform of the irradiation light L1 and the spectrum waveform of the reflected light L2 are acquired by the third detection unit 85 is different from the first embodiment.
  • the reflectance measuring apparatus 1B according to the present embodiment includes an optical waveguide selection means 40.
  • the apparatus configuration other than the spectroscopic detection unit 80B and the optical waveguide selection unit 40 is the same as that of the first embodiment.
  • An optical waveguide selection means 40 is optically coupled to the measurement light source 30.
  • the optical waveguide selection means 40 includes a shutter 41. By the shutter 41, at least one of the reference optical waveguide 50 and the first measurement optical waveguide 60 can be selectively irradiated with the irradiation light L1. Further, it is possible to prevent both the reference optical waveguide 50 and the first measurement optical waveguide 60 from being irradiated.
  • one end where the reference light receiving surface 51 is provided is optically coupled to the optical waveguide selection unit 40, and the other end is optically coupled to the spectroscopic optical system 82 in the third detection unit 85.
  • the first measurement optical waveguide 60 one end where the irradiation light receiving surface 61 is provided is optically coupled to the optical waveguide selection means 40.
  • the other end of the second measurement optical waveguide 70 is optically coupled to the spectroscopic optical system 82 in the third detection unit 85.
  • 16 and 17 are flowcharts showing a film thickness measuring method including the reflectance measuring method according to the present embodiment.
  • the principle of dark subtraction correction is the same as that described in the first embodiment.
  • the step of calculating the conversion coefficient K ( ⁇ ) shown in FIG. 16 is performed.
  • a method for calculating the conversion coefficient K ( ⁇ ) a method for calculating the conversion coefficient K ( ⁇ ) by controlling the measurement light source 30 and acquiring a spectral waveform of a dark signal will be described.
  • a reference measurement object whose spectral reflectance data Rref ( ⁇ ) is known is set in the sample measurement unit 11 (S50).
  • the optical waveguide selection means 40 is controlled to operate the shutter 41 so that the irradiation light L1 is not irradiated on the irradiation light receiving surface 61 and the irradiation light L1 is incident only on the reference light receiving surface 51 (S52). ).
  • the time for operating the shutter 41 takes about 100 milliseconds.
  • the measurement light source 30 is turned on to irradiate the reference light receiving surface 51 from the measurement light source 30 with the irradiation light L1. (S54).
  • the irradiation light L1 irradiated from the measurement light source 30 in the step of calculating the conversion coefficient K ( ⁇ ) will be referred to as correction irradiation light.
  • the correction irradiation light irradiated on the reference light receiving surface 51 is guided to the third detection unit 85 by the reference optical waveguide 50.
  • the correction irradiation light guided to the third detection unit 85 is decomposed for each wavelength component in the spectroscopic optical system 82.
  • the spectral waveform Sref ( ⁇ ) of the correction irradiation light is acquired by the photodetector 83 (correction irradiation light detection step S56).
  • the time for acquiring the spectral waveform Sref ( ⁇ ) of the correction irradiation light is set to an arbitrary time.
  • the measurement light source 30 is turned off (S58).
  • the time for turning off the measurement light source 30 is set to a time comparable to the time for acquiring the spectrum waveform Sref ( ⁇ ) of the correction irradiation light. Thereafter, the spectral waveform Dref ( ⁇ ) of the dark signal output from the third detection unit 85 is acquired (S60).
  • the optical waveguide selection means 40 is controlled to block the irradiation of the correction irradiation light on the reference light receiving surface 51 and the shutter 41 so that only the irradiation light receiving surface 61 is irradiated with the correction irradiation light.
  • the time for operating the shutter 41 takes about 100 milliseconds.
  • the spectral waveform Dsig ( ⁇ ) of the dark signal output from the third detection unit 85 is acquired (S64).
  • the time for acquiring the spectral waveform Dsig ( ⁇ ) of the dark signal is set to a time comparable to the time for acquiring the spectral waveform Ssig ( ⁇ ) of the reflected light for correction.
  • Dref ( ⁇ ) described above may be used as Dsig ( ⁇ ).
  • the measurement light source 30 is turned on.
  • the correction irradiation light applied to the irradiation light receiving surface 61 is supplied to the reference measurement object via the first measurement optical waveguide 60 and the measurement optical system 14 (correction irradiation light supply step S66).
  • the correction irradiation light supplied to the reference measurement object is reflected by the surface of the reference measurement object and becomes reflected light L2.
  • the reflected light L2 is referred to as correction reflected light.
  • the corrected reflected light is guided to the third detection unit 85 by the measurement optical system 14 and the second measurement optical waveguide 70 and is decomposed for each wavelength component in the spectroscopic optical system 82.
  • the spectral waveform Ssig ( ⁇ ) of the reflected light for correction is acquired by the photodetector 83 (first reflected light detection step S68).
  • the time for acquiring the spectrum waveform Ssig ( ⁇ ) of the reflected light for correction is set to a predetermined time.
  • the following formula (5) is a formula for calculating the conversion coefficient K ( ⁇ ).
  • a conversion coefficient K ( ⁇ ) is calculated based on the spectrum waveforms Dref ( ⁇ ) and Dsig ( ⁇ ) (coefficient calculation step S70).
  • the calculation of the conversion coefficient K ( ⁇ ) is executed by the coefficient calculation unit 91.
  • the conversion coefficient K ( ⁇ ) is recorded in the coefficient recording unit 92 (S72). Note that the above-described process of calculating the conversion coefficient K ( ⁇ ) may be performed at the time of shipping inspection or by periodic maintenance work.
  • the step of calculating spectral reflectance data Rsig ( ⁇ ) of the measurement object shown in FIG. 17 is performed.
  • a measurement object is installed in the sample measurement unit 11 (installation step S74).
  • the optical waveguide selection means 40 is controlled to operate the shutter 41 so that the irradiation light L1 from the measurement light source 30 is incident on the reference light receiving surface 51 (S76).
  • the measurement light source 30 is turned on to irradiate the reference light receiving surface 51 with the irradiation light L1.
  • the irradiation light L1 irradiated from the measurement light source 30 is referred to as measurement irradiation light.
  • the measurement irradiation light irradiated on the reference light receiving surface 51 is supplied to the third detection unit 85 via the reference optical waveguide 50.
  • the measurement irradiation light supplied to the third detection unit 85 is decomposed for each wavelength component in the spectroscopic optical system 82. Thereafter, the spectral waveform S′ref ( ⁇ ) of the measurement irradiation light is acquired by the photodetector 83 (measurement irradiation light detection step S80).
  • the measurement light source 30 is turned off (S82).
  • the spectral waveform D′ ref ( ⁇ ) of the dark signal output from the third detection unit 85 is acquired (S84).
  • the spectral waveform D′ sig ( ⁇ ) of the dark signal output from the third detection unit 85 is acquired (S86). It should be noted that only D′ ref ( ⁇ ) is acquired from the above D′ ref ( ⁇ ) and D′ sig ( ⁇ ), and the acquired D′ ref ( ⁇ ) is used as D′ sig ( ⁇ ). Good. Conversely, it is possible to acquire only D'sig ( ⁇ ) out of the above D'ref ( ⁇ ) and D'sig ( ⁇ ) and use the acquired D'sig ( ⁇ ) as D'ref ( ⁇ ). Good.
  • the optical waveguide selection means 40 is controlled to operate the shutter 41 so that the measurement light is not irradiated on the reference light receiving surface 51 and only the irradiation light receiving surface 61 is irradiated with the measurement light. (S88).
  • the measurement light source 30 is turned on. The measurement irradiation light irradiated on the irradiation light receiving surface 61 is supplied to the measurement object via the first measurement optical waveguide 60 and the measurement optical system 14 (measurement irradiation light supply step S90).
  • the measurement irradiation light supplied to the measurement object is reflected by the surface of the measurement object and becomes reflected light L2.
  • the reflected light L2 is referred to as measurement reflected light.
  • the reflected light for measurement is guided to the third detector 85 by the measurement optical system 14 and the second optical waveguide for measurement 70, and is decomposed for each wavelength component in the spectroscopic optical system 82. Thereafter, the spectral waveform S'sig ( ⁇ ) of the reflected light for measurement is acquired by the photodetector 83 (second reflected light detection step S92).
  • the following formula (6) is a formula for calculating the spectral reflectance data Rsig ( ⁇ ).
  • a reference measurement object corresponding to the denominator of Equation (6) based on the spectral waveform S′ref ( ⁇ ) of the measurement irradiation light, the spectral waveform D′ ref ( ⁇ ) of the dark signal, and the conversion coefficient K ( ⁇ ).
  • a value corresponding to the spectral waveform of the reflected light for measurement from is calculated.
  • the spectrum of the reflected light for measurement from the reference measurement object corresponding to the spectral waveform S′sig ( ⁇ ) of the reflected light for measurement, the spectral waveform D′ sig ( ⁇ ) of the dark signal, and the denominator of Equation (6) Based on the value corresponding to the waveform, spectral reflectance data Rsig ( ⁇ ) of the measurement object is calculated (reflectance calculation step S94).
  • the calculation of the spectral reflectance data Rsig ( ⁇ ) is executed by the reflectance calculation unit 93.
  • the spectral reflectance data Rsig ( ⁇ ) measured by the reflectance measuring device 1B in the present embodiment is output to the film thickness calculation unit 19.
  • the film thickness calculator 19 calculates the film thickness of the measurement object based on the spectral reflectance data Rsig ( ⁇ ) (S96).
  • this corresponds to the spectral waveform S′sig ( ⁇ ) of the reflected light for measurement from the reference measurement object.
  • the value can be calculated for each measurement from the spectrum waveform S′ref ( ⁇ ) of the measurement irradiation light irradiated to the measurement object and the conversion coefficient K ( ⁇ ) recorded in the coefficient recording unit 92.
  • the spectroscopic detection unit 80B can be configured by one photodetector 83.
  • the configuration of the reflectance measurement apparatus 1B can be simplified and downsized. Further, by simplifying the configuration of the reflectance measuring apparatus 1B, it is possible to reduce the members and manufacturing steps necessary for manufacturing, and thus the manufacturing cost of the reflectance measuring apparatus 1B can be suppressed.
  • the conversion coefficient K ( ⁇ ) is calculated by controlling the measurement light source 30, but in this embodiment, the measurement light source 30 is turned on, and the conversion is performed by controlling the optical waveguide selection means 40.
  • the coefficient K ( ⁇ ) is calculated.
  • the reflectance measuring apparatus 1B used for this embodiment is equipped with the structure similar to the reflectance measuring apparatus 1B used for 3rd Embodiment.
  • the process shown in FIG. 17 for calculating the film thickness of the measurement object based on the spectral reflectance data Rsig ( ⁇ ) is the same as the process of the third embodiment.
  • a reference measurement object whose spectral reflectance data Rref ( ⁇ ) is known is set in the sample measurement unit 11 (S100).
  • the optical waveguide selection means 40 is controlled to operate the shutter 41 so that the irradiation light L1 is not irradiated on the irradiation light receiving surface 61 and only the reference light receiving surface 51 is irradiated with the irradiation light L1 (S102). ).
  • the measurement light source 30 is turned on (S104).
  • the irradiation light L1 irradiated from the measurement light source 30 in the step of calculating the conversion coefficient K ( ⁇ ) will be referred to as correction irradiation light.
  • the correction irradiation light irradiated on the reference light receiving surface 51 is guided to the third detection unit 85 by the reference optical waveguide 50.
  • the correction irradiation light guided to the third detection unit 85 is decomposed for each wavelength component in the spectroscopic optical system 82.
  • the spectral waveform Sref ( ⁇ ) of the correction irradiation light is acquired by the photodetector 83 (correction irradiation light detection step S106).
  • the time for acquiring the spectral waveform Sref ( ⁇ ) of the correction irradiation light is set to an arbitrary time.
  • the optical waveguide selection means 40 is controlled to operate the shutter 41 so that the reference light receiving surface 51 and the irradiation light receiving surface 61 are not irradiated with the correction irradiation light (S108).
  • the spectral waveform Dref ( ⁇ ) of the dark signal output from the third detection unit 85 is acquired (S110).
  • the time for acquiring the spectral waveform Dref ( ⁇ ) of the dark signal is set to be approximately the same as the time for acquiring the spectral waveform Sref ( ⁇ ) of the irradiation light for correction.
  • the spectral waveform Dsig ( ⁇ ) of the dark signal output from the third detection unit 85 is acquired (S112).
  • Dref ( ⁇ ) and Dsig ( ⁇ ) may be measured simultaneously.
  • the optical waveguide selection means 40 is controlled to operate the shutter 41 so that the irradiation light receiving surface 61 is irradiated with the correction irradiation light.
  • the correction irradiation light irradiated on the irradiation light receiving surface 61 is supplied to the reference measurement object via the first measurement optical waveguide 60 and the measurement optical system 14 (correction irradiation light supply step S114).
  • the correction irradiation light supplied to the reference measurement object is reflected by the surface of the reference measurement object and becomes reflected light L2.
  • the reflected light L2 is referred to as correction reflected light.
  • the corrected reflected light is guided to the third detection unit 85 by the measurement optical system 14 and the second measurement optical waveguide 70.
  • the correction reflected light guided to the third detection unit 85 is decomposed for each wavelength component in the spectroscopic optical system 82.
  • the spectral waveform Ssig ( ⁇ ) of the reflected light for correction is acquired by the photodetector 83 (first reflection detection step S116).
  • the time for acquiring the reflected light spectrum waveform for correction is set to an arbitrary time.
  • the following formula (7) is a formula for calculating the conversion coefficient K ( ⁇ ).
  • a conversion coefficient K ( ⁇ ) is calculated based on the spectrum waveforms Dref ( ⁇ ) and Dsig ( ⁇ ) (coefficient calculation step S118).
  • the calculation of the conversion coefficient K ( ⁇ ) is executed by the coefficient calculation unit 91.
  • the conversion coefficient K ( ⁇ ) is recorded in the coefficient recording unit 92 (S120). Note that the above-described process of calculating the conversion coefficient K ( ⁇ ) may be performed at the time of shipping inspection or by periodic maintenance work.
  • the conversion coefficient K ( ⁇ ) by controlling the optical waveguide selection means 40, the spectral reflectance data Rref ( ⁇ of the reference measurement object with the measurement light source 30 continuously turned on. ), The spectral waveform Sref ( ⁇ ) of the irradiation light for correction, the spectral waveform Ssig ( ⁇ ) of the reflected light for correction, and the spectral waveforms Dref ( ⁇ ) and Dsig ( ⁇ ) of the dark signal output from the third detector 85. It is possible to obtain. Therefore, the conversion coefficient K ( ⁇ ) can be calculated with the measurement light source 30 continuously turned on. Therefore, the measurement light source 30 can be kept lit during the measurement, and the spectrum waveform of the irradiation light L1 emitted from the measurement light source 30 can be stabilized.
  • the reflectance measuring apparatus and the reflectance measuring method according to the present invention are not limited to the above-described embodiments, and various modifications are possible.
  • the reference optical waveguide 50 and the first measurement optical waveguide 60 are optically coupled to the measurement light source 30 via the bundle fiber 95 as shown in FIG. May be.
  • the reference optical waveguide 50 and the first measurement optical waveguide 60 are optically coupled to one end of the bundle fiber 95 via the reference light receiving surface 51 and the irradiation light receiving surface 61.
  • the central axis 50 ⁇ / b> A of the reference optical waveguide 50 and the central axis 60 ⁇ / b> A of the first measurement optical waveguide 60 are arranged so as to be symmetrical with respect to the central axis 95 ⁇ / b> A of the bundle fiber 95.
  • the bundle fiber 95 is held by an optical waveguide holding unit 96 and optically coupled so that an axis passing through the center of the white LED 31 and a center axis 95A of the bundle fiber 95 substantially coincide with each other.
  • the reflectance measuring apparatus 1 can be configured without using the bundle fiber 95. By using a configuration that does not use the bundle fiber 95, the manufacturing cost of the reflectance measuring apparatus 1 can be suppressed.
  • the bundle fiber 95 is used.
  • the reflectance measuring apparatus 1 can be configured without any problem. By adopting a configuration in which the bundle fiber 95 is not used, it is possible to adjust the amount of light of the irradiation light L1 incident on the reference optical waveguide 50 and the irradiation light L1 incident on the first measurement optical waveguide 60. it can.
  • FIG. 20 shows a configuration of another modification of the reflectance measuring apparatus 1 including the bundle fiber 95.
  • an optical waveguide selection means 40 is provided. By including the optical waveguide selection means 40, it is possible to selectively irradiate the irradiation light L1 emitted from the white LED 31 with respect to at least one of the reference optical waveguide 50 and the first measurement optical waveguide 60. Further, it is possible to prevent both the reference optical waveguide 50 and the first measurement optical waveguide 60 from being irradiated.
  • the configuration of the reflectance measuring apparatus 1 may be complicated.
  • the reflectance measuring apparatus 1 having a simple configuration the reflectance measuring apparatus 1 can be configured without using the bundle fiber 95.
  • the configuration including the measurement light source 30 and the optical waveguide selection unit 40 can be simplified.
  • the measurement light source 30 and the optical waveguide selection unit 40 can be easily integrated.
  • the configuration including the measurement light source 30 and the optical waveguide selection unit 40 can be easily downsized.
  • the reference optical waveguide 50 and the first measurement optical waveguide 60 are the central axis 50 A of the reference optical waveguide 50 and the central axis of the first measurement optical waveguide 60.
  • 60A is arranged so as to be line-symmetric with respect to an axis 31A passing through the white LED 31, but as shown in FIG. 21A, the white LED 31 and the first measurement optical waveguide 60 face each other. It may be arranged. According to this, the light quantity of the irradiation light L1 supplied to the sample 12 can be increased.
  • an optical waveguide selection means 40 may be provided.
  • the reflection rate measuring device 1 shown in the first embodiment and the reflection rate measuring device 1A shown in the second embodiment do not include the optical waveguide selection means 40, but as shown in FIG. Selection means 40 may be provided.
  • the spectral waveform Sref ( ⁇ ) of the irradiation light L1 and Dsig ( ⁇ ) and Dref ( ⁇ ) that are correction data for dark subtraction correction are measured for each measurement. Need to get.
  • the reflectance measuring apparatus and the reflectance measuring method according to the present invention are not limited to this.
  • the spectral waveform Sref ( ⁇ ) of the irradiation light L1 and the spectral waveform Dsig ( ⁇ ) of the dark signal within a series of measurement times.
  • the spectral waveform Sref ( ⁇ ) of the irradiation light L1 and the spectral waveforms Dsig ( ⁇ ) and Dref ( ⁇ ) of the dark signal are acquired immediately after the start of measurement.
  • the data may be stored only once, and the stored data may be used thereafter. Thereby, the tact time can be shortened.
  • the reflectance measuring device 1 is used for the film thickness measuring device 10 that calculates the film thickness based on the calculated value of the spectral reflectance data.
  • the reflectance measuring device 1 according to the present invention is not limited to this, and a color measuring device that measures color, a reflectance measuring device that measures reflectance, or a transmittance based on a calculated value of spectral reflectance data. You may use for the transmittance
  • the conversion coefficient K ( ⁇ ) is calculated using the following equation (8), and the spectral reflection is further calculated using the equation (9). Rate data Rsig ( ⁇ ) is calculated.
  • the reflectance measuring apparatus 1 according to the present invention is not limited to this, and the conversion coefficient K ( ⁇ ) is calculated using the following equation (10), and the spectral reflectance data Rsig is further calculated using the equation (11). ( ⁇ ) may be calculated.
  • the present invention relates to a reflectance measuring device and a reflectance measuring method that can accurately measure the reflectance of each wavelength of a measuring object, and a film thickness measuring device that can accurately measure the film thickness of the measuring object. And can be used as a film thickness measuring method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 反射率測定装置1は、照射光L1を測定対象物へ供給する測定光源30と、照射光L1の強度及び測定対象物からの反射光L2の強度を波長毎に検出する分光検出部80と、照射光L1の波長毎の強度の検出値を、基準測定対象物からの反射光L2の波長毎の強度の検出値に相当する値に変換する変換係数K(λ)を記録する係数記録部92と、照射光L1の波長毎の強度の検出値及び変換係数K(λ)より求まる、基準測定対象物からの反射光L2の波長毎の強度に相当する値に基づいて、波長毎の反射率を算出する反射率算出部93とを備える。これにより、測定対象物の波長毎の反射率を精度良く測定することができる。

Description

反射率測定装置、反射率測定方法、膜厚測定装置及び膜厚測定方法
 本発明は、反射率測定装置、反射率測定方法、膜厚測定装置及び膜厚測定方法に関する。
 特許文献1には、液晶表示器用基板の表面処理の終点を検出する装置が記載されている。この装置は、キセノンランプやハロゲンランプ等の光源からの光を液晶表示器用基板に照射し、液晶表示器用基板からの反射光を検出して、反射光の波長毎の反射率から表面処理の終点を検出する。
 また、特許文献2には、被エッチング基板のエッチング深さを求める装置が記載されている。この装置は、キセノンランプ等の白色光源からの光を被エッチング基板に照射し、被エッチング基板からの反射光を検出することにより、被エッチング基板のエッチング深さを求める。
特開平05-322515号公報 特開2001-267300号公報
 測定対象物の膜厚の測定方法として、測定対象物からの反射干渉光を検出して波長毎の反射率を算出することにより、測定対象物の膜厚を求める方法が知られている。これは、薄膜の表面と裏面とにおける反射光による干渉を利用するものである。裏面からの反射光は表面からの反射光に対し膜厚の2倍の厚さ分だけ光路が長くなり、位相が変化する。これらの表面からの反射光と裏面からの反射光とが干渉することにより干渉光が得られる。この干渉光を波長毎に分解すると、波長毎に強弱が変化しており、その変化の様子から膜厚を算出することができる。
 干渉光の波長毎の強度の変動から膜厚を算出する場合には、光源から照射される光の波長毎の強度の影響を除去するために波長毎の反射率を求めることが一般的である。この波長毎の反射率を求める際には、基準測定対象物からの反射光の波長毎の強度と、測定対象物からの反射光の波長毎の強度とをそれぞれ取得する必要がある。通常は、測定装置の工場出荷時等に基準測定対象物からの反射光の波長毎の強度を取得して測定装置の記録部等に記録しておく。そして、測定対象物の膜厚を算出する際に、記録された基準測定対象物からの反射光の波長毎の強度を読み出して使用している。
 上記した装置によれば、測定に用いる光源の波長毎の強度が経年変化や周囲環境により変動すると、基準測定対象物からの反射光の波長毎の強度を取得する際に測定光源から基準測定対象物へと供給された照射光の強度と、測定対象物の膜厚を算出する際に測定光源から測定対象物へと供給された照射光の強度とが相違することとなり、波長毎の反射率を精度良く測定できない。
 本発明は、測定対象物の波長毎の反射率を精度良く測定することができる反射率測定装置及び反射率測定方法、並びに測定対象物の膜厚を精度良く測定することができる膜厚測定装置及び膜厚測定方法を提供することを目的とする。
 本発明の一実施形態に係る反射率測定装置は、照射光を測定対象物へ供給する測定光源と、照射光の強度及び測定対象物からの反射光の強度を波長毎に検出する分光検出部と、照射光の波長毎の強度の検出値を、基準測定対象物からの反射光の波長毎の強度に相当する値に変換するための変換係数を記録する係数記録部と、照射光の波長毎の強度の検出値及び変換係数より求まる基準測定対象物からの反射光の波長毎の強度に相当する値に基づいて、測定対象物の波長毎の反射率を算出する反射率算出部とを備えることを特徴とする。
 また、本発明の一実施形態に係る反射率測定方法は、基準測定対象物へと供給される補正用照射光の強度を波長毎に検出する補正用照射光検出ステップと、補正用照射光を測定光源から基準測定対象物へと供給する補正用照射光供給ステップと、基準測定対象物からの補正用照射光の反射光の強度を波長毎に検出する第1の反射光検出ステップと、補正用照射光検出ステップにより得られる補正用照射光の波長毎の強度の検出値と、第1の反射光検出ステップにより得られる補正用照射光の反射光の波長毎の強度の検出値とに基づいて、測定対象物へと供給される測定用照射光の波長毎の強度の検出値を、基準測定対象物からの測定用照射光の反射光の波長毎の強度に相当する値に変換するための変換係数を算出する係数算出ステップと、測定対象物を設置する設置ステップと、励起光及び励起光により生じた蛍光を含む測定用照射光の強度を波長毎に検出する測定用照射光検出ステップと、測定用照射光を測定光源から測定対象物へと供給する測定用照射光供給ステップと、測定対象物からの測定用照射光の反射光の強度を波長毎に検出する第2の反射光検出ステップと、測定用照射光検出ステップにより得られる測定用照射光のスペクトルの検出値及び変換係数により求まる基準測定対象物からの測定用照射光の反射光の波長毎の強度に相当する値と、第2の反射光検出ステップにより得られる測定対象物からの測定用照射光の反射光の波長毎の強度の検出値とに基づいて、測定対象物の波長毎の反射率を算出する反射率算出ステップとを備えることを特徴とする。
 上記した反射率測定装置及び反射率測定方法によれば、基準測定対象物からの反射光の波長毎の強度に相当する値を、測定対象物の測定の際に基準測定対象物を用いることなく、測定対象物に照射される照射光の波長毎の強度の検出値と、係数記録部に記録された変換係数とから測定毎に算出することができる。これにより、照射光の波長毎の強度が変動する場合であっても、測定対象物の波長毎の反射率を精度良く測定することができる。
 また、測定光源は、励起光及び励起光により生じた蛍光を含む照射光を供給する蛍光体方式の白色発光ダイオードであってもよい。発光ダイオードの寿命はハロゲンランプ等よりも長いため、測定光源の交換回数を減少させることができる。
 また、上記した反射率測定装置は、測定光源から照射光が照射されるリファレンス光受光面を一端に有し、他端が分光検出部に光学的に結合されているリファレンス用光導波路と、測定光源から照射光が照射される照射光受光面を一端に有し、測定対象物へ照射光を供給する照射光供給面を他端に有する第1測定用光導波路と、測定対象物からの反射光を受光する反射光受光面を一端に有し、他端が分光検出部に光学的に結合されている第2測定用光導波路とをさらに備えてもよい。この構成によれば、リファレンス用光導波路と第1測定用光導波路との配置により照射光の波長毎の強度を調整することができる。
 また、分光検出部は、照射光の強度を波長毎に検出する第1検出部、及び測定対象物からの反射光の強度を波長毎に検出する第2検出部を有し、リファレンス用光導波路の他端は、第1検出部に光学的に結合され、第2測定用光導波路の他端は、第2検出部に光学的に結合されていてもよい。このような構成では、照射光の強度を波長毎に検出する検出部と、測定対象物からの反射光の強度を波長毎に検出する検出部とが互いに独立している。従って、照射光の波長毎の強度と反射光の波長毎の強度とを同時に検出することが可能となり、測定対象物の波長毎の反射率を精度良く測定することができる。さらに、波長毎の反射率の測定に要する時間を短縮することができる。
 また、測定光源から照射された照射光をリファレンス光受光面及び照射光受光面のいずれか一方に選択的に入射させる光導波路選択手段をさらに備え、分光検出部は、照射光の強度を波長毎に検出し且つ反射光の強度を波長毎に検出する第3検出部を有し、リファレンス用光導波路の他端と第2測定用光導波路の他端とは、第3検出部に光学的に結合されていてもよい。このような構成によれば、分光検出部は1つの検出部で構成することが可能となり、簡易な構成により反射率測定装置を製造することができる。
 また、照射光受光面に照射される照射光の光量は、リファレンス光受光面に照射される照射光の光量よりも大きいことを特徴としてもよい。従って、照射光、反射光が光導波路等を通過することにより減衰した場合であっても、波長毎の反射率を精度良く測定するために必要な光量を確保することができる。また、第1測定用光導波路は、照射光受光面と測定光源とが対向するように配置されてもよい。このような配置によれば、第1測定用光導波路に照射される照射光の光量を大きくすることが可能となる。
 また、第1測定用光導波路及びリファレンス用光導波路は、第1測定用光導波路の中心軸とリファレンス用光導波路の中心軸とが、測定光源を通る軸に対して互いに線対称となるように配置されていてもよい。例えば、発光ダイオードから照射される光のように指向性を有する光を照射光として用いた場合には、測定光源と光導波路との位置関係により、光導波路に入射される照射光の波長毎の強度の検出値が異なる場合がある。このような配置によれば、リファレンス用光導波路に照射される照射光の波長毎の強度の検出値と、第1測定用光導波路に照射される照射光の波長毎の強度の検出値との差異を抑制し、波長毎の反射率を精度良く測定することができる。
 さらに、膜厚測定装置は上記した反射率測定装置を備えることを特徴とする。また、膜厚測定方法は上記した反射率測定方法を含み反射率測定方法により得られる波長毎の反射率に基づいて測定対象物の膜厚を算出することを特徴とする。これにより、膜厚の測定に必要な、測定対象物の波長毎の反射率を精度良く算出することが可能となり、測定対象物の膜厚を精度良く測定することができる。
 本発明による反射率測定装置及び反射率測定方法によれば、測定対象物の波長毎の反射率を精度良く測定することができる。また、本発明による膜厚測定装置及び膜厚測定方法によれば、測定対象物の膜厚を精度良く測定することができる。
図1は、測定対象物の膜厚の測定方法について模式的に示す図である。 図2は、膜厚測定装置の構成を示すブロック図である。 図3は、反射率測定装置の第1実施形態の構成を示すブロック図である。 図4は、測定光源と、リファレンス用光導波路及び第1測定用光導波路との構成の一例を示す構成図である。 図5は、分光光学系の構成の一例を示す図である。 図6(a)はダーク信号の波長毎の強度を示すグラフであり、図6(b)はダーク信号に含まれる暗電流成分の波長毎の強度を示すグラフであり、図6(c)はダーク信号に含まれる外乱光に起因する信号の波長毎の強度を示すグラフであり、図6(d)はダーク信号を含む照射光の波長毎の強度を示すグラフであり、図6(e)はダーク減算補正を行った後の照射光の波長毎の強度を示すグラフである。 図7は、第1実施形態に係る変換係数を算出する手順を示すフローチャートである。 図8は、第1実施形態に係る膜厚等を算出する手順を示すフローチャートである。 図9は、異なる温度環境下で蛍光体方式の白色発光ダイオードを発光させた場合の波長と波長毎の相対強度との関係を示すグラフである。 図10(a)は蛍光体方式の白色発光ダイオードと光導波路の配置の一例を示し、図10(b)は蛍光体方式の白色発光ダイオードと光導波路の配置の他の例を示し、図10(c)は蛍光体方式の白色発光ダイオードと光導波路の配置のさらに他の例を示す図である。 図11は、図10に示す光導波路に入射された照射光の波長と波長毎の相対強度との関係を示すグラフである。 図12は、照射光の照射範囲の断面を模式的に示す概念図である。 図13は、リファレンス用光導波路及び第1測定用光導波路に入射された照射光の波長と波長毎の相対強度との関係を示すグラフである。 図14は、反射率測定装置の第2実施形態の構成を示すブロック図である。 図15は、反射率測定装置の第3実施形態の構成を示すブロック図である。 図16は、第3実施形態に係る変換係数を算出する手順を示すフローチャートである。 図17は、第3実施形態に係る膜厚等を算出する手順を示すフローチャートである。 図18は、第4実施形態に係る変換係数を算出する手順を示すフローチャートである。 図19は、測定光源と、リファレンス用光導波路及び第1測定用光導波路との構成の変形例を示す構成図である。 図20は、測定光源と、リファレンス用光導波路及び第1測定用光導波路との構成の他の変形例を示す構成図である。 図21(a)は測定光源と、リファレンス用光導波路及び第1測定用光導波路との構成のさらに他の変形例を示し、図21(b)は測定光源と、リファレンス用光導波路及び第1測定用光導波路との構成のさらに他の変形例を示す構成図である。 図22は、測定光源と、リファレンス用光導波路及び第1測定用光導波路との構成のさらに他の変形例を示す構成図である。
 以下、添付図面を参照しながら本発明による反射率測定装置及び反射率測定方法の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
(第1実施形態)
 最初に、反射光による干渉を利用した膜厚測定の原理について説明する。図1に示す例では、膜状の測定対象物の一例として、基板2上に形成された半導体膜13を示している。このような膜厚dについて、基板2及び半導体膜13からなる試料12に対し、基板2とは反対側となる半導体膜13の上面(第1面)6側から膜厚測定用の照射光L1を供給する。そして、その上面6からの反射光L2と、下面(第2面、基板2と半導体膜13との境界面)7からの反射光L3~Lmとが干渉して生成される干渉光を検出することで、半導体膜13の膜厚dを算出する。
 次に、本実施形態に係る反射率測定装置を備えた膜厚測定装置の構成について説明する。図2は膜厚測定装置10の一実施形態の構成を示すブロック図である。図2では、試料測定部11の処理チャンバ内に設置された試料12の半導体膜13を測定対象物とした例を示している。膜厚測定装置10は、後述する反射率測定装置1と、測定光学系14と、膜厚算出部19とを備えている。
 膜厚算出部19は、測定対象物である半導体膜13の膜厚を算出する膜厚算出手段であり、反射率測定装置1から出力された波長毎の反射率(以下「波長毎の反射率」を「分光反射率データ」という)の算出値に基づいて膜厚を算出する。この膜厚算出部19の入力端は、反射率測定装置1の出力端と接続されている。なお、このような膜厚算出部19は、例えば所定の算出プログラムが実行されるコンピュータにより構成されることができる。
 この膜厚算出部19には、測定制御部20が接続されている。測定制御部20は、膜厚算出部19から出力される膜厚情報等を参照し、反射率測定装置1などの膜厚測定装置10の装置各部を制御することで、膜厚測定装置10における膜厚測定動作等の動作について必要な制御を行う。
 この測定制御部20には、入力装置21及び表示装置22が接続されている。入力装置21は、反射率測定装置1及び膜厚測定装置10における測定動作に必要な情報、条件、指示等の操作者による入力に用いられる。また、表示装置22は、上記した測定動作についての必要な情報の操作者への表示に用いられる。
 測定光学系14は、反射率測定装置1から供給される照射光L1を試料12の所定の測定位置に照射するとともに、試料12の表面で反射した反射光L2を反射率測定装置1に導光する。この測定光学系14に対して、反射率測定装置1からの照射光L1を導光する第1測定用光導波路(後述のため図示せず)、及び後述する試料12からの反射光L2を反射率測定装置1へと導光する第2測定用光導波路(後述のため図示せず)が光学的に結合されている。また測定光学系14には、内部に測定対象物である試料12が設置される試料測定部11が設けられている。この測定対象物には、波長毎の反射率が既知である基準測定対象物と、膜厚測定の対象となる測定対象物とがある。
 この測定光学系14には、XYθステージ15が設けられている。このXYθステージ15は、測定光学系14の位置、角度等をX方向、Y方向、θ方向に調整することで、膜厚測定装置10による半導体膜13での膜厚の測定位置、測定条件を調整する。また、XYθステージ15は、ステージ制御部16によって駆動制御されている。
 また、試料測定部11内の試料12、及び測定光学系14には、さらに撮像装置17、及び測定位置設定部18が設けられている。撮像装置17は、膜厚測定装置10による半導体膜13での膜厚の測定位置を確認するための位置確認用撮像装置である。また、測定位置設定部18は、撮像装置17によって測定光学系14を介して取得された半導体膜13を含む試料12の画像を参照して、試料12に対する膜厚測定位置を設定する。
 次に、第1実施形態に係る反射率測定装置1の構成について説明する。図3は、第1実施形態に係る反射率測定装置1の構成の一例を示す。この反射率測定装置1は、測定光源30、リファレンス用光導波路50、第1測定用光導波路60、第2測定用光導波路70、分光検出部80、及び処理部90を備えて構成されている。
 この反射率測定装置1には、試料測定部11内の試料12の半導体膜13に対し、測定光学系14を介して照射光L1を供給する測定光源30が設けられている。この測定光源30は、所定帯域に亘る波長成分を少なくとも含む照射光L1を測定対象物である半導体膜13へと供給する。このような測定光源30としては、例えば、励起光及び励起光により生じた蛍光を含む光を照射する蛍光方式の白色発光ダイオード(LightEmittingDiode、以下「蛍光体方式の白色LED」という)を好適に用いることができる。白色LEDは、短波長の励起光が蛍光体に照射されることで長波長領域の蛍光が生成され、励起光と蛍光とが混合されて白色光を発生させるものである。なお、測定光源30としては、キセノンランプやハロゲンランプ等の光源や、赤色LED、緑色LED及び青色LEDなどを組み合わせた3色LED方式による白色LEDを用いてもよい。
 第1測定用光導波路60は、測定光源30から測定光学系14へと照射光L1を導光する。この第1測定用光導波路60は、測定光源30から照射光L1が照射される照射光受光面61、及び測定対象物に照射光L1を供給する照射光供給面62を有している。照射光受光面61は測定光源30に光学的に結合され、照射光供給面62は測定光学系14に光学的に結合されている。この第1測定用光導波路60としては、例えば、光ファイバを好適に用いることができる。
 第2測定用光導波路70は、試料12からの反射光L2を測定光学系14を介して反射率測定装置1へと導光する。この第2測定用光導波路70は、試料12からの反射光L2を受光する反射光受光面71を有している。反射光受光面71は、測定光学系14に光学的に結合されている。また、第2測定用光導波路70の他端は分光検出部80に光学的に結合されている。この第2測定用光導波路70としては、例えば、光ファイバを好適に用いることができる。
 リファレンス用光導波路50の一端には、測定光源30から照射光L1が照射されるリファレンス光受光面51が設けられている。このリファレンス光受光面51は、測定光源30に光学的に結合されている。また、リファレンス用光導波路50の他端は分光検出部80に光学的に結合されている。このリファレンス用光導波路50としては、例えば、光ファイバを好適に用いることができる。
 分光検出部80は、照射光L1の強度を波長毎に検出し、波長毎の強度の検出値(以下「波長毎の強度の検出値」を「スペクトル波形」という)を取得する第1検出部81、及び反射光L2のスペクトル波形を取得する第2検出部84を備えて構成されている。この第1検出部81は、分光光学系82及び光検出器83を備えて構成されている。分光光学系82は、分光光学系82に入射された光を波長毎に分解し、波長毎に分解した光を光検出器83に出力する。光検出器83は、分光光学系82から出力された光のスペクトル波形を取得し、取得したスペクトル波形を処理部90へ出力する。第1検出部81の分光光学系82の入力端には、リファレンス用光導波路50の他端が光学的に結合されている。また、光検出器83の出力端は処理部90の入力端に接続されている。また、第2検出部84も第1検出部81と同様に、分光光学系82及び光検出器83を備えて構成されている。第2検出部84の分光光学系82の入力端には第2測定用光導波路70の他端が光学的に結合されている。また、光検出器83の出力端は処理部90の他の入力端に接続されている。
 処理部90は、係数算出部91、係数記録部92及び反射率算出部93を備えて構成されている。係数算出部91は、照射光L1のスペクトル波形を、基準測定対象物からの反射光L2のスペクトル波形に相当する値に変換する変換係数を算出する。係数記録部92は算出した変換係数を記録する。反射率算出部93は測定対象物の分光反射率データを算出する。処理部90の入力端は、第1検出部81の光検出器83の出力端と接続されている。また、処理部90の他の入力端は、第2検出部84の光検出器83の出力端と接続されている。さらに、処理部90の出力端は、図2に示す膜厚算出部19の入力端に接続されている。
 係数算出部91は、基準測定対象物に照射される照射光L1のスペクトル波形と、基準測定対象物からの反射光L2のスペクトル波形とに基づいて変換係数を算出する。さらに、係数算出部91は、算出した変換係数を係数記録部92に出力する。この係数算出部91の出力端は、係数記録部92の入力端と接続されている。なお、このような係数算出部91は、例えば所定の算出プログラムが実行されるコンピュータにより構成されることができる。
 係数記録部92は、上記した変換係数を記録し、該変換係数を反射率算出部93に出力する。この係数記録部92の入力端は、係数算出部91の出力端と接続されている。
 反射率算出部93は、測定対象物に照射される照射光L1のスペクトル波形及び変換係数により求まる基準測定対象物からの反射光L2のスペクトル波形に相当する値と、測定対象物からの反射光L2のスペクトル波形とに基づいて、測定対象物の分光反射率データを算出し、算出したスペクトル波形を膜厚算出部19(図2参照)に出力する。この反射率算出部93の出力端は、膜厚算出部19(図2参照)の入力端と接続されている。なお、このような反射率算出部93は、例えば所定の算出プログラムが実行されるコンピュータにより構成されることができる。
 図4は、本実施形態における測定光源30、リファレンス用光導波路50、及び第1測定用光導波路60の構成を示す。この測定光源30は、蛍光体方式の白色LED31及び光源本体部32を備えて構成されている。また、リファレンス用光導波路50及び第1測定用光導波路60は光導波路保持部96により保持されている。本実施形態において、リファレンス用光導波路50及び第1測定用光導波路60は、リファレンス用光導波路50の中心軸50A及び第1測定用光導波路60の中心軸60Aが、白色LED31を通る軸31Aに対して互いに線対称となるように配置されている。
 図5は、分光光学系82の構成の一例を示す。具体的には、分光光学系82は、照射光L1の測定対象物からの反射光L2と照射光L1とを、波長毎に検出可能なように分解する。この分光光学系82は、入射スリット301、コリメーティング光学系302、分散素子である回折格子303、及びフォーカシング光学系304を備えて構成されている。このような構成において、回折格子303で各波長へと分解された光は、フォーカシング光学系304を介して波長スペクトルの出力面305において波長成分毎に結像され、出力面305に配置された光検出器83によって波長成分毎に検出される。なお、本例以外にも、例えば帯域フィルタを用いることによって、測定対象物からの反射光L2と照射光L1とを波長毎に検出可能なように分解する分光光学系82を好適に構成することができる。
 図5に示すように、分光光学系82によって波長成分毎に分解された光に対し、各波長成分の強度を検出する検出手段として、光検出器83が設けられている。具体的には、この光検出器83は、分光光学系82によって分解された出力光の強度を数nm単位の波長成分毎に検出する。光検出器83は、例えば、図5に示した分光光学系82に対し、その出力面305に配置されて、分光光学系82によって分解された各波長成分の強度を検出する複数の光検出素子が配列されたマルチチャンネル光検出器により構成されている。
 次に、第1実施形態に係る反射率測定方法について説明する。説明の前に、ダーク減算補正について説明する。図3に示す第1検出部81からは、リファレンス用光導波路50から照射光L1の入射がない場合であっても微弱な信号が出力される。また、第2検出部84からは、第2測定用光導波路70から反射光L2の入射がない場合であっても微弱な信号が出力される。この微弱な信号は、暗電流と呼ばれるものである。この暗電流は、光検出素子により光の強度を取得する場合には校正を要する要素として扱う必要がある。この暗電流の他に、第1検出部81及び第2検出部84から出力される信号には、室内照明から照射される光等の外乱光に起因する信号が含まれている。上記した暗電流及び外乱光等の不要な信号を合わせたものをダーク信号と呼ぶことにする。照射光L1のスペクトル波形及び反射光L2のスペクトル波形を精度良く取得するためには、照射光L1のスペクトル波形及び反射光L2のスペクトル波形からダーク信号のスペクトル波形を減算する必要がある。
 図6を参照しながら、ダーク減算補正の方法を説明する。ここでは、例として照射光L1についてダーク減算補正を行う方法について説明する。まず、測定光源30を消灯させて、分光検出部80によりダーク信号のスペクトル波形を取得する。図6(a)に示すように、ダーク信号のスペクトル波形は、白色雑音成分と特定の波長領域にピークを有する雑音成分とを含んでいる。白色雑音成分は、暗電流による雑音成分である(図6(b))。また、特定の波長領域において強度がピークを有する雑音成分は、外乱光等による雑音成分である(図6(c))。
 次に、測定光源30を点灯させて、分光検出部80により照射光L1のスペクトル波形を取得する。図6(d)に示すように、この光のスペクトル波形には照射光L1のスペクトル波形の成分のほかに、例えば図6(a)に示すようなダーク信号のスペクトル波形の成分が含まれている。そして、図6(d)に示すような照射光L1のスペクトル波形の成分及びダーク信号のスペクトル波形の成分を含んだスペクトル波形から、図6(a)に示すようなダーク信号のスペクトル波形を減算する。これにより、ダーク信号のスペクトル波形の成分を含まない、図6(e)に示すような照射光L1のスペクトル波形を精度良く取得することができる。反射光L2についても、測定光源30を点灯させて得た反射光L2のスペクトル波形から、測定光源30を消灯させて得たダーク信号のスペクトル波形を減算することにより、反射光L2のスペクトル波形を精度良く取得することができる。
 次に、ダーク減算補正を用いた本実施形態に係る反射率測定方法を説明する。図7及び図8は、第1実施形態に係る反射率測定方法を含む膜厚測定方法を示すフローチャートである。
 まず、図7に示す変換係数K(λ)を算出する工程を実施する。ここでλは波長または分光検出部の波長分解単位を意味する。分光反射率データRref(λ)が既知である基準測定対象物を試料測定部11に設置する(S10)。次に、測定光源30を点灯させて、照射光L1を測定光源30からリファレンス光受光面51及び照射光受光面61へと照射させる。ここで、この変換係数K(λ)を算出する工程において、測定光源30から照射される照射光L1を補正用照射光と呼ぶことにする。照射光受光面61に照射された補正用照射光は、第1測定用光導波路60及び測定光学系14を介して、基準測定対象物へと供給される。(補正用照射光供給ステップS12)。
 リファレンス光受光面51に照射された補正用照射光は、リファレンス用光導波路50により第1検出部81に導光され、分光光学系82において波長成分毎に分解される。その後、光検出器83により補正用照射光のスペクトル波形Sref(λ)を取得する(補正用照射光検出ステップS14)。
 一方、基準測定対象物に供給された補正用照射光は、基準測定対象物の表面で反射し、反射光L2となる。ここで、基準測定対象物の表面で反射した補正用照射光を補正用反射光と呼ぶことにする。補正用反射光は、測定光学系14及び第2測定用光導波路70により第2検出部84に導光され、分光光学系82において波長成分毎に分解される。その後、光検出器83により補正用反射光のスペクトル波形Ssig(λ)を取得する(第1の反射光検出ステップS16)。次に、測定光源30を消灯させる(S18)。この状態において、第1検出部81から出力されるダーク信号のスペクトル波形Dref(λ)を取得する(S20)。さらに、第2検出部84から出力されるダーク信号のスペクトル波形Dsig(λ)を取得する(S22)。
 下記の式(1)は変換係数K(λ)を算出する式である。基準測定対象物の分光反射率データRref(λ)、補正用照射光のスペクトル波形Sref(λ)、補正用反射光のスペクトル波形Ssig(λ)、第1検出部81から出力されるダーク信号のスペクトル波形Dref(λ)及び第2検出部84から出力されるダーク信号のスペクトル波形Dsig(λ)に基づいて、変換係数K(λ)を、算出する(係数算出ステップS24)。変換係数K(λ)の算出は、係数算出部91において実行される。変換係数K(λ)は係数記録部92に記録される(S26)。なお、上記した変換係数K(λ)を算出する工程は、出荷検査時若しくは定期的な保守作業で実施すれば足りる。
Figure JPOXMLDOC01-appb-M000001
 次に、図8に示す測定対象物の分光反射率データRsig(λ)を算出する工程を実施する。まず、測定対象物を試料測定部11に設置する(設置ステップS28)。次に、測定光源30を点灯させて、照射光L1をリファレンス光受光面51及び照射光受光面61に照射させる。ここで、この測定対象物の分光反射率データRsig(λ)を算出する場合において、測定光源30から照射される照射光L1を測定用照射光と呼ぶことにする。照射光受光面61に照射された測定用照射光は、第1測定用光導波路60及び測定光学系14を介して、測定対象物に供給される。(測定用照射光供給ステップS30)。
 リファレンス光受光面51に照射された測定用照射光は、リファレンス用光導波路50により第1検出部81に導光され、分光光学系82において波長成分毎に分解される。その後、光検出器83により測定用照射光のスペクトル波形S’ref(λ)を取得する(測定用照射光検出ステップS32)。このとき、測定用照射光のスペクトル波形S’ref(λ)を取得する時間を任意の時間に設定する。
 一方、測定対象物に供給された測定用照射光は、測定対象物の表面で反射し、反射光L2となる。ここでは、反射光L2を測定用反射光と呼ぶことにする。測定用反射光は、測定光学系14及び第2測定用光導波路70により第2検出部84に導光され、分光光学系82において波長成分毎に分解される。その後、光検出器83により測定用反射光のスペクトル波形S’sig(λ)を取得する(第2の反射光検出ステップS34)。このとき、測定用反射光のスペクトル波形を取得する時間を任意の時間に設定する。
 次に、測定光源30を消灯させる(S36)。このとき、測定光源30を消灯させる時間を100ミリ秒程度に設定する。その後、第1検出部81から出力されるダーク信号のスペクトル波形D’ref(λ)を取得する(S38)。このとき、ダーク信号のスペクトル波形D’ref(λ)を取得する時間を任意の時間に設定する。また、測定光源30を消灯させた状態で、第2検出部84から出力されるダーク信号のスペクトル波形D’sig(λ)を取得する(S40)。このとき、ダーク信号のスペクトル波形D’sig(λ)を取得する時間を任意の時間に設定する。
 下記の式(2)は、分光反射率データRsig(λ)を算出する数式である。式(2)の分子は、ダーク信号のスペクトル波形D’sig(λ)を含まない測定用反射光のスペクトル波形S’sig(λ)を示す。式(2)の分母は、基準測定対象物からの測定用反射光のスペクトル波形に相当する値を示す。測定用照射光のスペクトル波形S’ref(λ)からダーク信号のスペクトル波形D’ref(λ)を減算した波形と、変換係数K(λ)とを乗算することにより、式(2)の分母に該当する基準測定対象物からの測定用反射光のスペクトル波形に相当する値を算出する。そして、測定用反射光のスペクトル波形S’sig(λ)からダーク信号のスペクトル波形D’sig(λ)を減算した波形を、基準測定対象物からの測定用反射光のスペクトル波形に相当する値で除算することにより、測定対象物の分光反射率データRsig(λ)を算出する(反射率算出ステップS42)。分光反射率データRsig(λ)の算出は、反射率算出部93において実行される。
Figure JPOXMLDOC01-appb-M000002
 本実施形態における反射率測定装置1により測定された分光反射率データRsig(λ)は、膜厚算出部19に出力される。膜厚算出部19では、分光反射率データRsig(λ)に基づいて測定対象物の膜厚を算出する(S44)。
 本実施形態による反射率測定装置1を用いた膜厚測定装置10、及び反射率測定方法を用いた膜厚測定方法ついて、はじめに測定光源30のスペクトル波形の変動に関する課題を説明しその後に作用効果を説明する。
 本実施形態による反射率測定装置1は、図4に示すように照射光L1の光源として蛍光体方式の白色LED31を備えている。一般的に、白色LED31では、周囲環境から与えられる熱のような外的要因により、励起光の光量が変動することが知られている。図9は、異なる温度環境下における白色LED31から発生させた白色光の波長と波長毎の相対強度との関係の一例を示すグラフである。この白色光が有する波長領域のうち、例えば、波長が400nm以上800nm以下である領域B1が、測定対象となる波長領域である。領域B1のうち例えば波長が400nm以上500nm以下である領域B2が励起光の波長領域であり、例えば波長が500nm以上800nm以下である領域B3が蛍光の波長領域である。また、図9の曲線G1は、室温の温度環境下で白色LED31を発光させた場合の白色光の波長毎の相対強度を示し、曲線G2は、0℃の温度環境下で白色LED31を発光させた場合の白色光の波長毎の相対強度を示す。図9の曲線G1と曲線G2とを比較すると、励起光の波長領域である領域B2において曲線G1と曲線G2とのピーク値が異なっている。すなわち、異なる温度環境下で白色LED31を発光させた場合には、励起光の波長領域における相対強度が相違する。
 この励起光の波長領域の強度の相違は、白色LED31を照明器具に用いる場合には問題とならない。一方、白色LED31を、測定光の波長領域に励起光の波長領域が含まれるような測定に用いる場合には問題となる。なお、蛍光の波長領域である領域B3において曲線G1と曲線G2とでは、相対強度の相違は殆どない。これは、蛍光体が飽和状態になるように、蛍光体に励起光を供給しているためである。
 上記に例示したように、測定光源30が備える白色LED31から照射される照射光L1のスペクトル波形は、周囲温度等の外的要因により変動する。例えば、基準測定対象物からの反射光L2のスペクトル波形を取得する際の白色LED31の温度と、測定対象物からの反射光L2のスペクトル波形を取得する際の白色LED31の温度とが相違した場合は、基準測定対象物に照射された補正用照射光と、測定対象物に照射された測定用照射光との励起光の波長領域における波長毎の相対強度が相違する。そのために、測定対象物の分光反射率データRsig(λ)を精度良く測定できない。
 本実施形態による反射率測定装置1及び反射率測定方法によれば、基準測定対象物からの測定用反射光のスペクトル波形に相当する値を、測定対象物の測定の際に基準測定対象物を用いることなく、測定対象物に照射される測定用照射光のスペクトル波形S’ref(λ)と、変換係数K(λ)とから測定毎に算出することができる。これにより、測定対象物の分光反射率データRsig(λ)を算出する際には、照射光L1の変動の影響を含んだ測定用反射光のスペクトル波形に相当する値を用いることができる。すなわち、測定用照射光のスペクトル波形S’ref(λ)が変動する場合であっても、測定用反射光のスペクトル波形S’sig(λ)に含まれる測定用照射光のスペクトル波形S’ref(λ)の変動をキャンセルすることが可能となる。従って、測定対象物の分光反射率データRsig(λ)を常に精度良く測定することができる。なお、変換係数K(λ)は、スペクトル波形S’ref(λ)が変動しても影響を受けることはない。
 さらに、本実施形態による反射率測定装置を備える膜厚測定装置10、及び本実施形態による反射率測定方法を含む膜厚測定方法によれば、測定対象物の分光反射率データRsig(λ)を精度良く算出することが可能となるため、分光反射率データRsig(λ)から求まる測定対象物の膜厚を精度良く算出することができる。
 また、精度の良い分光反射率データRsig(λ)が得られることにより、同一の測定対象物について複数回の反射率測定をした場合に得られる分光反射率データRsig(λ)のばらつきを抑えることができる。従って、分光反射率データRsig(λ)から算出される測定対象物の膜厚の測定値のばらつきを抑えることができる。
 また、照射光L1のスペクトル波形の変動があるような場合、生産現場においては、基準測定対象物を用いて基準測定対象物からの測定用反射光のスペクトル波形を測定毎に取得し、取得したスペクトル波形を再度設定していた。この方法では、基準測定対象物からの測定用反射光のスペクトル波形を取得し、再度設定するために、生産ラインを一時停止させる必要がある。そのために、生産ラインにおける生産効率を低下させる要因となっていた。
 本実施形態による反射率測定装置1及び反射率測定方法によれば、基準測定対象物からの測定用反射光のスペクトル波形に相当する値を測定用照射光のスペクトル波形S’ref(λ)及び変換係数K(λ)から算出する。従って、基準測定対象物からの測定用反射光のスペクトル波形を測定毎に取得することなく、分光反射率データRsig(λ)を算出することが可能となる。これにより、照射光L1のスペクトル波形の変動があるような場合であっても、基準測定対象物からの測定用反射光のスペクトル波形に相当する値を取得する工程を測定毎に実施することなく、分光反射率データRsig(λ)を精度良く測定することができる。さらに、作業工程を削減することができるため、生産効率の低下を防ぐことができ、コストダウンが可能となる。
 次に、図10及び図11を参照しながら、リファレンス用光導波路50及び第1測定用光導波路60と、白色LED31を含む測定光源30との位置関係によりスペクトル波形が異なる課題について述べ、その後、本実施形態による作用効果として、この課題の解決について説明する。図10(a)は、白色LED31を通る軸31Aと光導波路P1の中心軸P1Aとを一致させて、白色LED31と光導波路P1とを対向させた位置に光導波路P1を配置した形態を示している。図10(b)は、白色LED31を通る軸31Aと光導波路P2の中心軸P2Aとを離間させた位置に光導波路P2を配置した形態を示している。図10(c)は、白色LED31を通る軸31Aと光導波路P3の中心軸P3Aとをさらに離間させた位置に光導波路P2を配置した形態を示している。
 図11は、図10に示す光導波路P1~P3に入射された照射光L1の波長毎の相対強度を示すグラフである。図9と同様に、B1は測定対象となる波長領域であり、B2は励起光の波長領域であり、B3は蛍光の波長領域である。また、曲線G3は光導波路P1に入射された照射光L1の波長毎の相対強度であり、曲線G4は光導波路P2に入射された照射光L1の波長毎の相対強度であり、曲線G5は光導波路P3に入射された照射光L1の波長毎の相対強度である。
 図11に示すように、それぞれの光導波路P1~P3に入射された照射光L1の波長毎の相対強度は、蛍光の波長領域(B3)では略同じである。一方、励起光の波長領域(B2)ではピーク値が相違する。すなわち、リファレンス用光導波路50及び第1測定用光導波路60と、白色LED31との位置関係により、励起光の波長領域においてスペクトル波形が相違する。
 蛍光体方式の白色LED31の場合、発光素子からの光が励起光となり蛍光体に照射されることで蛍光が生じる。図12は、照射光L1の照射範囲の断面を示す概念図である。励起光は指向性があるために、照射光L1の照射範囲の断面における中心部T1は励起光の影響が強い領域となる。また、蛍光は広域性があるため、照射光L1の照射範囲の断面における周辺部T2は蛍光の影響が強い領域となる。そのため、測定光源30と光導波路P1~P3との位置関係により、光導波路P1~P3に入射させた照射光L1のスペクトル波形が異なると考えられる。
 本実施形態による反射率測定装置1を用いた膜厚測定装置10では、図4に示すようにリファレンス用光導波路50及び第1測定用光導波路60は、リファレンス用光導波路50の中心軸50A及び第1測定用光導波路60の中心軸60Aが、白色LED31を通る軸31Aに対して互いに線対称となるように配置されている。
 図13は、このように配置した場合に、リファレンス用光導波路50及び第1測定用光導波路60に照射される照射光L1の波長毎の相対強度を示す。図9と同様に、B1は測定対象となる波長領域であり、B2は励起光の波長領域であり、B3は蛍光の波長領域である。曲線G6はリファレンス用光導波路50に照射された射光L1の波長毎の相対強度を示し、曲線G7は第1測定用光導波路60に照射された射光L1の波長毎の相対強度を示す。リファレンス用光導波路50の中心軸50A及び第1測定用光導波路60の中心軸60Aが、白色LED31を通る軸31Aに対して互いに線対称となるように配置された場合には、リファレンス用光導波路50及び第1測定用光導波路60に照射される照射光L1のスペクトル波形の違いが抑制されている。従って、本実施形態による反射率測定装置1を用いた膜厚測定装置10によれば、リファレンス用光導波路50に照射される照射光L1のスペクトル波形と、第1測定用光導波路60に照射される照射光L1のスペクトル波形との違いを抑制し、分光反射率データRsig(λ)を精度良く測定することができる。
 また、本実施形態による反射率測定装置1は、測定光源30として白色LED31を備えている。白色LED31の寿命は、従来に使用されていた寿命が1000時間程度であるキセノンランプやハロゲンランプ等のランプ系光源よりも長い。これにより、測定光源30が備えている光源の交換回数を減少させることができる。
 また、本実施形態による反射率測定装置1は、リファレンス用光導波路50及び第1測定用光導波路60を備える。このような構成によれば、それぞれの光導波路の配置を調整することが可能となる。これにより、リファレンス用光導波路50及び第1測定用光導波路60に照射される照射光L1の波長毎の強度を調整することができる。
 また、本実施形態による反射率測定装置1は、分光検出部80が第1検出部81及び第2検出部84を備えている。このような構成によれば、照射光L1のスペクトル波形を取得する検出部及び測定対象物からの反射光L2のスペクトル波形を取得する検出部を互いに独立させることができる。従って、照射光L1のスペクトル波形及び測定対象物からの反射光L2のスペクトル波形を同時に取得することが可能となり、さらに測定対象物の分光反射率データRsig(λ)を精度良く測定することができる。さらに、波長毎の反射率の測定に要する時間を短縮することができる。
 また、本実施形態による反射率測定装置1は、上記した式(2)により分光反射率データRsig(λ)を算出する。式(2)を用いることにより、分光反射率データRsig(λ)を容易に算出することができる。さらに、式(2)によれば基準測定対象物の分光反射率データRref(λ)を用いることなく分光反射率データRsig(λ)を算出できる。従って、基準測定対象物の分光反射率データRref(λ)を記録する装置を備えることなく、反射率測定装置1を構成することができる。
(第2実施形態)
 続いて、第2実施形態について説明する。図14は、第2実施形態に係る反射率測定装置1Aの構成の一例を示す。図14に示される本実施形態と、上記した第1実施形態とで異なる点は、複数の試料12を同時に測定することができるように構成されている点である。すなわち、本実施形態による反射率測定装置1Aは、第1測定用光導波路60、測定光学系14、第2測定用光導波路70、第2検出部84をそれぞれ複数備えて構成されている。ここで、本実施形態では2つの試料12についてそれぞれの分光反射率データRsig(n、λ)を算出する場合を例に説明する。なお、本実施形態による反射率測定装置1Aによれば試料12は2つ以上であってもよい。
 次に、本実施形態に係る反射率測定装置1Aの構成について説明する。なお、ここでは第1実施形態と異なる構成となる点についてのみ説明をする。この反射率測定装置1Aは、測定光源30、リファレンス用光導波路50、2つの第1測定用光導波路60、2つの第2測定用光導波路70、分光検出部80A、及び処理部90を備えて構成されている。
 本実施形態に係る分光検出部80Aは、照射光L1のスペクトル波形を取得する第1検出部81、及び試料12A、12Bからの反射光L2のスペクトル波形を取得する2つの第2検出部84を備えて構成されている。一方の第2検出部84の分光光学系82には、試料12A、12Bのいずれか一方からの反射光L2を導光する第2測定用光導波路70の他端が光学的に結合されている。また、他方の第2検出部84の分光光学系82には、試料12A、12Bの他方からの反射光L2を導光する第2測定用光導波路70の他端が光学的に結合されている。
 測定光源30から照射された照射光L1は、第1測定用光導波路60及び測定光学系14を介して試料12A、12Bに供給される。試料12A、12Bに供給された照射光L1は試料12A、12Bの表面で反射し、反射光L2となる。反射光L2は測定光学系14及び第2測定用光導波路70を介して第2の検出部84の分光光学系82に供給される。分光光学系82に供給された反射光L2は、波長毎に検出可能なように分解される。その後、光検出器83により反射光L2のスペクトル波形を取得する。
 次に、ダーク減算補正を用いた本実施形態に係る反射率測定方法について説明する。なお、ダーク減算補正の原理は、第1実施形態で説明した原理と同じである。本実施形態と第1実施形態とで相違する点は、第1実施形態では1つの変換係数K(λ)を算出したが、本実施形態では第2検出部84毎に変換係数K(n、λ)を算出する点が相違する。ここでnは、本実施形態ではn=1~2の整数である。また、本実施形態では複数の試料12毎に分光反射率データRsig(n、λ)を算出する点が第1実施形態と相違する。本実施形態に係る反射率測定方法の手順において上記した相違点以外の手順は、第1実施形態と同様である。
 まず、本実施形態では、2つの第2検出部84のそれぞれについて変換係数K(n、λ)を算出する。下記の式(3)は変換係数K(n、λ)を算出する式である。基準測定対象物からの補正用反射光のスペクトル波形Ssin(n、λ)、補正用照射光のスペクトル波形Sref(λ)、ダーク信号のスペクトル波形Dsig(n、λ)、Dref(λ)、及び基準測定対象物の既知の分光反射率Rref(λ)に基づいて、変換係数K(n、λ)を算出する。
 次に、試料12A、12Bの分光反射率データRsig(n、λ)を算出する。下記の式(4)は分光反射率データRsig(n、λ)を算出する式である。測定対象物からの測定用反射光のスペクトル波形S’sin(n、λ)、測定用照射光のスペクトル波形S’ref(λ)、ダーク信号のスペクトル波形D’sig(n、λ)、D’ref(λ)、及び変換係数K(n、λ)に基づいて、試料12A、12Bの分光反射率データRsig(n、λ)を算出する。
Figure JPOXMLDOC01-appb-M000004
 本実施形態の反射率測定装置1A及び反射率測定装置1Aを用いた反射率測定方法によれば、複数の測定対象物の分光反射率データRsig(n、λ)を測定することができる。また、複数の測定対象物の分光反射率データRsig(n、λ)を同時に測定することもできる。さらに、本実施形態の反射率測定装置1Aを備える膜厚測定装置10、及び膜厚装置10を用いた膜厚測定方法によれば、複数の測定対象物の膜厚を同時に測定することができる。
(第3実施形態)
 続いて、第3実施形態について説明する。図15は、第3実施形態に係る反射率測定装置1Bの構成の一例を示す。上記した第1実施形態と本実施形態とで異なる点は、図15に示すように、分光検出部80Bが第3の検出部85により構成されている点である。すなわち、本実施形態においては、第3検出部85により照射光L1のスペクトル波形及び反射光L2のスペクトル波形が取得される構成が第1実施形態と異なっている。さらに、上記した第1実施形態と本実施形態とで異なる点は、本実施形態に係る反射率測定装置1Bが光導波路選択手段40を備えている点である。なお、分光検出部80B及び光導波路選択手段40以外の装置構成については、第1実施形態と同様である。
 まず、図15に示すような本実施形態に用いられる反射率測定装置1Bの構成について説明する。なお、ここでは第1実施形態と異なる構成となる点についてのみ説明をする。測定光源30には光導波路選択手段40が光学的に結合されている。この光導波路選択手段40は、シャッタ41を含んで構成されている。シャッタ41により、リファレンス用光導波路50及び第1測定用光導波路60の少なくとも一方に、選択的に照射光L1を照射することができる。また、リファレンス用光導波路50及び第1測定用光導波路60の双方に照射しないようにすることもできる。
 リファレンス用光導波路50において、リファレンス光受光面51が設けられた一端は光導波路選択手段40と光学的に結合されており、他端は第3検出部85における分光光学系82に光学的に結合されている。第1測定用光導波路60において、照射光受光面61が設けられた一端は光導波路選択手段40と光学的に結合されている。また、第2測定用光導波路70において他端は第3検出部85における分光光学系82に光学的に結合されている。
 次に、ダーク減算補正を用いた第3実施形態に係る反射率測定方法について説明する。図16及び図17は本実施形態に係る反射率測定方法を含む膜厚測定方法を示すフローチャートである。なお、ダーク減算補正の原理は、第1実施形態で説明した原理と同じである。
 まず、図16に示す変換係数K(λ)を算出する工程を実施する。本実施形態では変換係数K(λ)を算出する方法として、測定光源30を制御してダーク信号のスペクトル波形を取得することにより変換係数K(λ)を算出する方法を説明する。
 分光反射率データRref(λ)が既知である基準測定対象物を試料測定部11に設置する(S50)。次に、光導波路選択手段40を制御して、照射光受光面61への照射光L1の照射を遮断しリファレンス光受光面51のみに照射光L1を入射させるようにシャッタ41を操作する(S52)。シャッタ41を操作する時間は100ミリ秒程度かかる。次に、測定光源30を点灯させて、照射光L1を測定光源30からリファレンス光受光面51へと照射させる。(S54)。ここで、この変換係数K(λ)を算出する工程において測定光源30から照射される照射光L1を補正用照射光と呼ぶことにする。
 リファレンス光受光面51に照射された補正用照射光は、リファレンス用光導波路50により第3検出部85に導光される。第3検出部85に導光された補正用照射光は、分光光学系82において波長成分毎に分解される。その後、光検出器83により補正用照射光のスペクトル波形Sref(λ)を取得する(補正用照射光検出ステップS56)。なお、補正用照射光のスペクトル波形Sref(λ)を取得する時間は任意の時間に設定される。次に、測定光源30を消灯させる(S58)。測定光源30を消灯させる時間は補正用照射光のスペクトル波形Sref(λ)を取得する時間と同程度の時間に設定される。その後、第3検出部85から出力されるダーク信号のスペクトル波形Dref(λ)を取得する(S60)。
 次に、光導波路選択手段40を制御して、リファレンス光受光面51への補正用照射光の照射を遮断し、照射光受光面61のみに補正用照射光が照射されるようにシャッタ41を操作する(S62)。シャッタ41を操作する時間は100ミリ秒程度かかる。この状態において、第3検出部85から出力されるダーク信号のスペクトル波形Dsig(λ)を取得する(S64)。このとき、ダーク信号のスペクトル波形Dsig(λ)を取得する時間は、補正用反射光のスペクトル波形Ssig(λ)を取得する時間と同程度の時間に設定される。なお、ここでは上記したDref(λ)をDsig(λ)として用いてもよい。
 次に、測定光源30を点灯させる。照射光受光面61に照射される補正用照射光は、第1測定用光導波路60及び測定光学系14を介して、基準測定対象物に供給される(補正用照射光供給ステップS66)。基準測定対象物に供給された補正用照射光は、基準測定対象物の表面で反射し、反射光L2となる。ここで、反射光L2を補正用反射光と呼ぶことにする。補正用反射光は、測定光学系14及び第2測定用光導波路70により第3検出部85に導光され、分光光学系82において波長成分毎に分解される。その後、光検出器83により補正用反射光のスペクトル波形Ssig(λ)を取得する(第1の反射光検出ステップS68)。このとき、補正用反射光のスペクトル波形Ssig(λ)を取得する時間は、所定の時間に設定される。
 下記の式(5)は変換係数K(λ)を算出する式である。基準測定対象物の分光反射率データRref(λ)、補正用照射光のスペクトル波形Sref(λ)、補正用反射光のスペクトル波形Ssig(λ)、第3検出部85から出力されるダーク信号のスペクトル波形Dref(λ)、Dsig(λ)に基づいて、変換係数K(λ)を算出する(係数算出ステップS70)。変換係数K(λ)の算出は、係数算出部91において実行される。変換係数K(λ)は係数記録部92に記録される(S72)。なお、上記した変換係数K(λ)を算出する工程は、出荷検査時若しくは定期的な保守作業で実施すれば足りる。
Figure JPOXMLDOC01-appb-M000005
 次に、図17に示す測定対象物の分光反射率データRsig(λ)を算出する工程を実施する。まず、測定対象物を試料測定部11に設置する(設置ステップS74)。次に、光導波路選択手段40を制御して、リファレンス光受光面51に測定光源30からの照射光L1を入射させるように、シャッタ41を操作する(S76)。次に、測定光源30を点灯させて、照射光L1をリファレンス光受光面51に照射させる。(S78)。ここで、この測定対象物の分光反射率データRsig(λ)を算出する場合において、測定光源30から照射される照射光L1を測定用照射光と呼ぶことにする。
 リファレンス光受光面51に照射された測定用照射光は、リファレンス用光導波路50を介して第3検出部85に供給される。第3検出部85に供給された測定用照射光は、分光光学系82において波長成分毎に分解される。その後、光検出器83により測定用照射光のスペクトル波形S’ref(λ)を取得する(測定用照射光検出ステップS80)。
 次に、測定光源30を消灯させる(S82)。この状態において、第3検出部85から出力されるダーク信号のスペクトル波形D’ref(λ)を取得する(S84)。次に、第3検出部85から出力されるダーク信号のスペクトル波形D’sig(λ)を取得する(S86)。なお、上記したD’ref(λ)及びD’sig(λ)のうちD’ref(λ)のみを取得し、取得されたD’ref(λ)をD’sig(λ)として用いてもよい。逆に、上記したD’ref(λ)及びD’sig(λ)のうちD’sig(λ)のみを取得し、取得したD’sig(λ)をD’ref(λ)として用いてもよい。
 次に、光導波路選択手段40を制御して、リファレンス光受光面51への測定用照射光の照射を遮断し照射光受光面61のみに測定用照射光が照射されるようにシャッタ41を操作する(S88)。次に、測定光源30を点灯させる。照射光受光面61に照射された測定用照射光は、第1測定用光導波路60及び測定光学系14を介して、測定対象物に供給される(測定用照射光供給ステップS90)。
 測定用対象物に供給された測定用照射光は、測定対象物の表面で反射し、反射光L2となる。ここでは、反射光L2を測定用反射光と呼ぶことにする。測定用反射光は、測定光学系14及び第2測定用光導波路70により第3検出部85に導光され、分光光学系82において波長成分毎に分解される。その後、光検出器83により測定用反射光のスペクトル波形S’sig(λ)を取得する(第2の反射光検出ステップS92)。
 下記の式(6)は、分光反射率データRsig(λ)を算出する数式である。測定用照射光のスペクトル波形S’ref(λ)、ダーク信号のスペクトル波形D’ref(λ)、及び変換係数K(λ)に基づいて、式(6)の分母に該当する基準測定対象物からの測定用反射光のスペクトル波形に相当する値を算出する。そして、測定用反射光のスペクトル波形S’sig(λ)、ダーク信号のスペクトル波形D’sig(λ)、及び式(6)の分母に該当する基準測定対象物からの測定用反射光のスペクトル波形に相当する値に基づいて、測定対象物の分光反射率データRsig(λ)を算出する(反射率算出ステップS94)。分光反射率データRsig(λ)の算出は、反射率算出部93において実行される。
Figure JPOXMLDOC01-appb-M000006
 本実施形態における反射率測定装置1Bにより測定された分光反射率データRsig(λ)は、膜厚算出部19に出力される。膜厚算出部19では、分光反射率データRsig(λ)に基づいて測定対象物の膜厚を算出する(S96)。
 本実施形態による反射率測定装置1及び反射率測定方法によれば、上記した第1実施形態と同様に、基準測定対象物からの測定用反射光のスペクトル波形S’sig(λ)に相当する値を、測定対象物に照射される測定用照射光のスペクトル波形S’ref(λ)と、係数記録部92に記録された変換係数K(λ)とから測定毎に算出することができる。これにより、測定用照射光のスペクトル波形S’ref(λ)が変動する場合であっても、測定対象物からの測定用反射光のスペクトル波形S’sig(λ)に含まれる測定用照射光のスペクトル波形S’ref(λ)の変動の影響をキャンセルすることが可能となる。従って、測定対象物の分光反射率データRsig(λ)を精度良く測定することができる。
 本実施形態による反射率測定装置1Bによれば、分光検出部80Bは1つの光検出器83により構成されることが可能となる。この構成により、反射率測定装置1Bの構成を簡素にし、小型化することができる。さらに、反射率測定装置1Bの構成を簡素にすることにより製造に必要な部材及び製造工程を削減することが可能となるため、反射率測定装置1Bの製造コストを抑制することができる。
(第4実施形態)
 続いて、第3実施形態の変形例である第4実施形態について説明する。上記した第3実施形態と本実施形態とで異なる点は、変換係数K(λ)を算出する方法である。第3実施形態では、測定光源30を制御することにより変換係数K(λ)を算出したが、本実施形態では測定光源30は点灯させた状態にし、光導波路選択手段40を制御することにより変換係数K(λ)を算出している。なお、本実施形態に使用する反射率測定装置1Bは、第3実施形態に使用する反射率測定装置1Bと同様の構成を備える。また、分光反射率データRsig(λ)に基づいて測定対象物の膜厚等を算出する図17に示す工程は、第3実施形態の工程と同様である。
 図18に示す変換係数K(λ)を算出する工程について説明する。本実施形態では、変換係数K(λ)を算出する方法として、光導波路選択手段40を制御してダーク信号のスペクトル波形を取得することにより変換係数K(λ)を算出する方法を説明する。
 分光反射率データRref(λ)が既知である基準測定対象物を試料測定部11に設置する(S100)。次に、光導波路選択手段40を制御して、照射光受光面61への照射光L1の照射を遮断しリファレンス光受光面51のみに照射光L1を照射するようにシャッタ41を操作する(S102)。次に、測定光源30を点灯させる(S104)。ここで、この変換係数K(λ)を算出する工程において測定光源30から照射される照射光L1を補正用照射光と呼ぶことにする。
 リファレンス光受光面51に照射された補正用照射光は、リファレンス用光導波路50により第3検出部85に導光される。第3検出部85に導光された補正用照射光は、分光光学系82において波長成分毎に分解される。その後、光検出器83により補正用照射光のスペクトル波形Sref(λ)を取得する(補正用照射光検出ステップS106)。このとき、補正用照射光のスペクトル波形Sref(λ)を取得する時間を任意の時間に設定する。
 次に、光導波路選択手段40を制御して、リファレンス光受光面51及び照射光受光面61に補正用照射光が照射されないようにシャッタ41を操作する(S108)。その後、第3検出部85から出力されるダーク信号のスペクトル波形Dref(λ)を取得する(S110)。ダーク信号のスペクトル波形Dref(λ)を取得する時間を補正用照射光のスペクトル波形Sref(λ)を取得する時間と同程度に設定する。さらに、第3検出部85から出力されるダーク信号のスペクトル波形Dsig(λ)を取得する(S112)。なお、Dref(λ)及びDsig(λ)は同時に測定してもよい。次に、光導波路選択手段40を制御して、照射光受光面61に補正用照射光が照射されるようにシャッタ41を操作する。照射光受光面61に照射された補正用照射光は、第1測定用光導波路60及び測定光学系14を介して、基準測定対象物に供給される(補正用照射光供給ステップS114)。
 基準測定対象物に供給された補正用照射光は、基準測定対象物の表面で反射し、反射光L2となる。ここでは、反射光L2を補正用反射光と呼ぶことにする。補正用反射光は、測定光学系14及び第2測定用光導波路70により第3検出部85に導光される。第3検出部85に導光された補正用反射光は、分光光学系82において波長成分毎に分解される。その後、光検出器83により補正用反射光のスペクトル波形Ssig(λ)を取得する(第1の反射検出ステップS116)。このとき、補正用反射光スペクトル波形を取得する時間を任意の時間に設定する。
 下記の式(7)は変換係数K(λ)を算出する式である。基準測定対象物の分光反射率データRref(λ)、補正用照射光のスペクトル波形Sref(λ)、補正用反射光のスペクトル波形Ssig(λ)、第3検出部85から出力されるダーク信号のスペクトル波形Dref(λ)、Dsig(λ)に基づいて、変換係数K(λ)を算出する(係数算出ステップS118)。変換係数K(λ)の算出は、係数算出部91において実行される。変換係数K(λ)は係数記録部92に記録される(S120)。なお、上記した変換係数K(λ)を算出する工程は、出荷検査時若しくは定期的な保守作業で実施すれば足りる。
Figure JPOXMLDOC01-appb-M000007
 光導波路選択手段40を制御することにより変換係数K(λ)を算出する上記した方法によれば、測定光源30を連続して点灯させた状態で基準測定対象物の分光反射率データRref(λ)、補正用照射光のスペクトル波形Sref(λ)、補正用反射光のスペクトル波形Ssig(λ)、第3検出部85から出力されるダーク信号のスペクトル波形Dref(λ)、Dsig(λ)を取得することが可能である。そのため、測定光源30を連続して点灯させた状態で変換係数K(λ)を算出することができる。従って、測定の間は測定光源30を点灯させた状態を維持することが可能となり、測定光源30から照射される照射光L1のスペクトル波形を安定させることができる。
 本発明による反射率測定装置及び反射率測定方法は、上記実施形態に限られるものではなく、様々な変形が可能である。例えば、上記した第1実施形態及び第2実施形態では、図19に示すように、リファレンス用光導波路50及び第1測定用光導波路60はバンドルファイバ95を介して測定光源30と光学的に結合されていてもよい。リファレンス用光導波路50及び第1測定用光導波路60は、リファレンス光受光面51及び照射光受光面61を介してバンドルファイバ95の一端に光学的に結合されている。リファレンス用光導波路50の中心軸50Aと第1測定用光導波路60の中心軸60Aとは、バンドルファイバ95の中心軸95Aに対して互いに線対称となるように配置されている。このバンドルファイバ95は光導波路保持部96により保持され、白色LED31の中心を通る軸と、バンドルファイバ95の中心軸95Aとが略一致するように光学的に結合されている。
 図19に示す構成を備えた反射率測定装置1によれば、白色LED31を通る軸31Aと、リファレンス用光導波路50の中心軸50A及び第1測定用光導波路60の中心軸60Aとの位置の調整を容易に行うことができる。
 また、バンドルファイバ95により光導波路を分岐させる場合は、バンドルファイバ95を構成するファイバを理想的なランダム配置にすることが望まれる。バンドルファイバ95を構成するファイバを理想的なランダム配置にすることが製造上の問題により困難である場合には、バンドルファイバ95を用いることなく反射率測定装置1を構成することもできる。バンドルファイバ95を用いない構成にすることにより、反射率測定装置1の製造コストを抑制することができる。
 また、リファレンス用光導波路50に入射される照射光L1、及び第1測定用光導波路60に入射される照射光L1の光量の大きさを調整する必要がある場合は、バンドルファイバ95を用いることなく反射率測定装置1を構成することもできる。バンドルファイバ95を用いない構成にすることにより、リファレンス用光導波路50に入射される照射光L1、及び第1測定用光導波路60に入射される照射光L1の光量の大きさを調整することができる。
 さらに、図20はバンドルファイバ95を備えた反射率測定装置1の他の変形例の構成を示す。図19の変形例と相違する点は、光導波路選択手段40を備えている点である。光導波路選択手段40を備えていることにより、リファレンス用光導波路50及び第1測定用光導波路60の少なくとも一方について選択的に、白色LED31から照射された照射光L1を照射することができる。また、リファレンス用光導波路50及び第1測定用光導波路60の双方に照射しないようにすることもできる。
 また、図20に示す構成を備えた反射率測定装置1では、反射率測定装置1の構成が煩雑になる場合がある。簡易な構成による反射率測定装置1を望む場合には、バンドルファイバ95を用いることなく反射率測定装置1を構成することもできる。バンドルファイバ95を用いない構成にすることにより、測定光源30と光導波路選択手段40とを備える構成を簡素にすることができる。さらに簡素な構成にすることにより、測定光源30と光導波路選択手段40とを容易に一体化することができる。さらに、測定光源30と光導波路選択手段40とを備える構成を容易に小型化することができる。
 また、上記した第1実施形態~第4実施形態では、リファレンス用光導波路50及び第1測定用光導波路60は、リファレンス用光導波路50の中心軸50A及び第1測定用光導波路60の中心軸60Aが、白色LED31を通る軸31Aに対して互いに線対称となるように配置されているが、図21(a)に示すように白色LED31と第1測定用光導波路60とが対向するように配置されていてもよい。これによれば、試料12に供給される照射光L1の光量を大きくすることができる。従って、照射光L1、反射光L2が光導波路等を通過することにより減衰した場合であっても、分光反射率データRsig(λ)を精度良く測定するために必要な光量を確保することができる。また、図21(b)のように、光導波路選択手段40を備えていてもよい。
 また、上記した第1実施形態に示した反射利率測定装置1及び第2実施形態に示した反射利率測定装置1Aでは、光導波路選択手段40を備えていないが、図22に示すように光導波路選択手段40を備えていても良い。
 また、上記した第1実施形態~第4実施形態では、照射光L1のスペクトル波形Sref(λ)と、ダーク減算補正用の補正データであるDsig(λ)、Dref(λ)とを測定毎に取得する必要がある。本発明による反射率測定装置及び反射率測定方法はこれに限られるものではなく、例えば、一連の測定時間内において照射光L1のスペクトル波形Sref(λ)及びダーク信号のスペクトル波形Dsig(λ)、Dref(λ)の変動が測定結果に影響を及ぼさない程度であれば、照射光L1のスペクトル波形Sref(λ)及びダーク信号のスペクトル波形Dsig(λ)、Dref(λ)の取得は測定開始直後に1回のみ実施して該データを保存しておき、それ以降は保存されたデータを使用してもよい。これにより、タクトタイムを短縮することができる。
 また、上記した第1実施形態~第4実施形態では、反射率測定装置1を、分光反射率データの算出値に基づいて膜厚を算出する膜厚測定装置10に用いている。本発明による反射率測定装置1はこれに限られるものではなく、分光反射率データの算出値に基づいて、色を測定する色測定装置、反射率を測定する反射率測定装置、または透過率を測定する透過率測定装置に用いてもよい。
 また、上記した第1実施形態、第3実施形態、及び第4実施形態では下記に示す式(8)を用いて変換係数K(λ)を算出し、さらに式(9)を用いて分光反射率データRsig(λ)を算出している。本発明による反射率測定装置1はこれに限られるものではなく、下記に示す式(10)を用いて変換係数K(λ)を算出し、さらに式(11)を用いて分光反射率データRsig(λ)を算出してもよい。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 本発明は、測定対象物の波長毎の反射率を精度良く測定することができる反射率測定装置及び反射率測定方法、並びに測定対象物の膜厚を精度良く測定することができる膜厚測定装置及び膜厚測定方法として利用可能である。
 1…反射率測定装置、30…測定光源、80…分光検出部、92…係数記録部、93…反射率算出部、L1…照射光、L2…反射光、K(λ)…変換係数。

Claims (11)

  1.  照射光を測定対象物へ供給する測定光源と、
     前記照射光の強度及び前記測定対象物からの反射光の強度を波長毎に検出する分光検出部と、
     前記照射光の波長毎の強度の検出値を、基準測定対象物からの反射光の波長毎の強度に相当する値に変換するための変換係数を記録する係数記録部と、
     前記照射光の波長毎の強度の検出値及び前記変換係数より求まる前記基準測定対象物からの前記反射光の波長毎の強度に相当する値に基づいて、前記測定対象物の波長毎の反射率を算出する反射率算出部と、を備えることを特徴とする反射率測定装置。
  2.  前記測定光源は、励起光及び前記励起光により生じた蛍光を含む前記照射光を供給する蛍光体方式の白色発光ダイオードであることを特徴とする請求項1に記載の反射率測定装置。
  3.  前記測定光源から前記照射光が照射されるリファレンス光受光面を一端に有し、他端が前記分光検出部に光学的に結合されているリファレンス用光導波路と、
     前記測定光源から前記照射光が照射される照射光受光面を一端に有し、前記測定対象物へ前記照射光を供給する照射光供給面を他端に有する第1測定用光導波路と、
     前記測定対象物からの前記反射光を受光する反射光受光面を一端に有し、他端が前記分光検出部に光学的に結合されている第2測定用光導波路と、をさらに備えることを特徴とする請求項1又は2のいずれか一項に記載の反射率測定装置。
  4.  前記分光検出部は、前記照射光の強度を波長毎に検出する第1検出部、及び前記測定対象物からの前記反射光の強度を波長毎に検出する第2検出部を有し、
     前記リファレンス用光導波路の他端は、前記第1検出部に光学的に結合され、前記第2測定用光導波路の他端は、前記第2検出部に光学的に結合されていることを特徴とする請求項3に記載の反射率測定装置。
  5.  前記測定光源から照射された前記照射光を前記リファレンス光受光面及び前記照射光受光面のいずれか一方に選択的に入射させる光導波路選択手段をさらに備え、
     前記分光検出部は、前記照射光の強度を波長毎に検出し且つ前記反射光の強度を波長毎に検出する第3検出部を有し、
     前記リファレンス用光導波路の他端と前記第2測定用光導波路の他端とは、前記第3検出部に光学的に結合されていることを特徴とする請求項3に記載の反射率測定装置。
  6.  前記照射光受光面に照射される前記照射光の光量は、前記リファレンス光受光面に照射される前記照射光の光量よりも大きいことを特徴とする請求項3~5のいずれか一項に記載の反射率測定装置。
  7.  前記第1測定用光導波路は、前記照射光受光面と前記測定光源とが対向するように配置されていることを特徴とする請求項6に記載の反射率測定装置。
  8.  前記第1測定用光導波路及び前記リファレンス用光導波路は、前記第1測定用光導波路の中心軸と前記リファレンス用光導波路の中心軸とが、前記測定光源を通る軸に対して互いに線対称となるように配置されていることを特徴とする請求項3~5のいずれか一項に記載の反射率測定装置。
  9.  請求項1~8のいずれか一項に記載の反射率測定装置を備えることを特徴とする膜厚測定装置。
  10.  基準測定対象物へと供給される補正用照射光の強度を波長毎に検出する補正用照射光検出ステップと、
     前記補正用照射光を測定光源から前記基準測定対象物へと供給する補正用照射光供給ステップと、
     前記基準測定対象物からの前記補正用照射光の反射光の強度を波長毎に検出する第1の反射光検出ステップと、
     前記補正用照射光検出ステップにより得られる前記補正用照射光の波長毎の強度の検出値と、前記第1の反射光検出ステップにより得られる前記補正用照射光の反射光の波長毎の強度の検出値とに基づいて、測定対象物へと供給される測定用照射光の波長毎の強度の検出値を、前記基準測定対象物からの前記測定用照射光の反射光の波長毎の強度に相当する値に変換するための変換係数を算出する係数算出ステップと、
     前記測定対象物を設置する設置ステップと、
     励起光及び前記励起光により生じた蛍光を含む前記測定用照射光の強度を波長毎に検出する測定用照射光検出ステップと、
     前記測定用照射光を前記測定光源から前記測定対象物へと供給する測定用照射光供給ステップと、
     前記測定対象物からの前記測定用照射光の反射光の強度を波長毎に検出する第2の反射光検出ステップと、
     前記測定用照射光検出ステップにより得られる前記測定用照射光の波長毎の強度の検出値及び前記変換係数により求まる前記基準測定対象物からの前記測定用照射光の反射光の波長毎の強度に相当する値と、前記第2の反射光検出ステップにより得られる前記測定対象物からの前記測定用照射光の反射光の波長毎の強度の検出値とに基づいて、前記測定対象物の波長毎の反射率を算出する反射率算出ステップとを備えることを特徴とする反射率測定方法。
  11.  請求項10に記載の反射率測定方法を含み、前記反射率測定方法により得られる波長毎の反射率に基づいて前記測定対象物の膜厚を算出することを特徴とする膜厚測定方法。
PCT/JP2011/071020 2010-09-17 2011-09-14 反射率測定装置、反射率測定方法、膜厚測定装置及び膜厚測定方法 WO2012036213A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/822,741 US8699023B2 (en) 2010-09-17 2011-09-14 Reflectivity measuring device, reflectivity measuring method, membrane thickness measuring device, and membrane thickness measuring method
KR1020137003557A KR20130106810A (ko) 2010-09-17 2011-09-14 반사율 측정 장치, 반사율 측정 방법, 막두께 측정 장치 및 막두께 측정 방법
DE112011103113.0T DE112011103113B4 (de) 2010-09-17 2011-09-14 Reflektivitätsmessverfahren, Membrandickenmessvorrichtung und Membrandickenmessverfahren
CN201180044880.7A CN103140750B (zh) 2010-09-17 2011-09-14 反射率测定装置、反射率测定方法、膜厚测定装置及膜厚测定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-209668 2010-09-17
JP2010209668A JP2012063321A (ja) 2010-09-17 2010-09-17 反射率測定装置、反射率測定方法、膜厚測定装置及び膜厚測定方法

Publications (1)

Publication Number Publication Date
WO2012036213A1 true WO2012036213A1 (ja) 2012-03-22

Family

ID=45831669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071020 WO2012036213A1 (ja) 2010-09-17 2011-09-14 反射率測定装置、反射率測定方法、膜厚測定装置及び膜厚測定方法

Country Status (7)

Country Link
US (1) US8699023B2 (ja)
JP (1) JP2012063321A (ja)
KR (1) KR20130106810A (ja)
CN (1) CN103140750B (ja)
DE (1) DE112011103113B4 (ja)
TW (1) TWI513972B (ja)
WO (1) WO2012036213A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205743A (ja) * 2012-03-29 2013-10-07 Sumitomo Chemical Co Ltd 偏光板の製造方法および製造装置
WO2014038090A1 (ja) * 2012-09-10 2014-03-13 株式会社シンクロン 測定装置及び成膜装置
JP6392785B2 (ja) 2013-01-31 2018-09-19 ベンタナ メディカル システムズ, インコーポレイテッド 多重組織検定用の撮像デバイスまたはシステムを較正、構成、および有効性判断するためのシステムおよび方法
CN105745526B (zh) * 2014-01-09 2018-11-30 夏普株式会社 光强度检测装置以及检测方法
WO2016181743A1 (ja) * 2015-05-12 2016-11-17 コニカミノルタ株式会社 植物生育指標測定装置および該方法ならびに植物生育指標測定システム
JP6248244B1 (ja) * 2016-08-09 2017-12-20 ナルックス株式会社 位置測定部を備えた部品
JP6533770B2 (ja) * 2016-11-10 2019-06-19 日東電工株式会社 基準器、分光干渉式計測装置、塗布装置、分光干渉式計測装置の計測精度保証方法、及び、塗布膜の製造方法。
JP7076951B2 (ja) * 2017-05-23 2022-05-30 株式会社ディスコ 反射率検出装置
WO2019087848A1 (ja) * 2017-11-01 2019-05-09 コニカミノルタ株式会社 膜厚測定方法、膜厚測定システム、光反射フィルムの製造方法及び光反射フィルムの製造システム
JP7341849B2 (ja) * 2019-10-24 2023-09-11 大塚電子株式会社 光学測定装置および光学測定方法
JP6875489B2 (ja) * 2019-11-06 2021-05-26 株式会社キーエンス 共焦点変位計
CN110806388B (zh) * 2019-11-20 2022-05-27 河南牧业经济学院 柱状镭射纸的暗光柱定位装置、定位方法及颜色测量方法
WO2021181545A1 (ja) * 2020-03-11 2021-09-16 株式会社日立ハイテク プラズマ処理装置及びプラズマ処理方法
GB202009640D0 (en) 2020-06-24 2020-08-05 Ams Sensors Singapore Pte Ltd Optical detection system calibration
JP7264134B2 (ja) * 2020-08-26 2023-04-25 横河電機株式会社 分光分析装置、光学系、及び方法
KR20230125053A (ko) * 2020-12-30 2023-08-28 주식회사 씨젠 분광분석기반 샘플 내 타겟 분석물질 검출 방법 및장치
JP7379442B2 (ja) 2021-11-01 2023-11-14 キヤノントッキ株式会社 反射率測定装置、成膜装置
CN113720825B (zh) * 2021-11-04 2022-02-08 四川丹诺迪科技有限公司 光学即时检测器及检测方法和应用
WO2024122132A1 (ja) * 2022-12-06 2024-06-13 浜松ホトニクス株式会社 膜厚計測装置及び膜厚計測方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269306A (ja) * 1990-03-20 1991-11-29 Japan Aviation Electron Ind Ltd 膜厚・屈折率測定方法および装置
JPH0771924A (ja) * 1993-09-01 1995-03-17 Hitachi Ltd 薄膜特性値測定方法及び装置
JP2000193424A (ja) * 1998-12-24 2000-07-14 Sharp Corp 薄膜の膜厚測定装置およびその方法
JP2009074866A (ja) * 2007-09-19 2009-04-09 Hamamatsu Photonics Kk 分光測定装置、分光測定方法、及び分光測定プログラム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073365B2 (ja) * 1988-06-08 1995-01-18 大日本クスリーン製造株式会社 顕微分光装置
JP2698286B2 (ja) 1992-05-22 1998-01-19 大日本スクリーン製造株式会社 表面処理終点検出装置
FR2693565B1 (fr) 1992-07-10 1994-09-23 France Telecom Procédé de réglage d'une machine d'exposition photolithographique et dispositif associé.
JP3219223B2 (ja) 1993-08-12 2001-10-15 株式会社日立製作所 特性値測定方法及び装置
JPH10123250A (ja) 1996-10-24 1998-05-15 Nec Corp 光波測距システムおよび光波測距方法
JPH1196333A (ja) * 1997-09-16 1999-04-09 Olympus Optical Co Ltd カラー画像処理装置
JP2000212773A (ja) * 1999-01-20 2000-08-02 Hamamatsu Photonics Kk ウエットエッチング終点検出装置
US6504301B1 (en) * 1999-09-03 2003-01-07 Lumileds Lighting, U.S., Llc Non-incandescent lightbulb package using light emitting diodes
JP2001267300A (ja) 2000-03-21 2001-09-28 Olympus Optical Co Ltd エッチング深さ測定装置および測定方法
JP3995579B2 (ja) * 2002-10-18 2007-10-24 大日本スクリーン製造株式会社 膜厚測定装置および反射率測定装置
JP2005084019A (ja) * 2003-09-11 2005-03-31 Akifumi Ito 基板の温度測定方法
JP4216209B2 (ja) * 2004-03-04 2009-01-28 大日本スクリーン製造株式会社 膜厚測定方法および装置
JP2006132986A (ja) * 2004-11-02 2006-05-25 Olympus Corp 光学式生体情報測定装置および測定方法
JP2007212260A (ja) * 2006-02-09 2007-08-23 Mitsubishi Electric Corp 反射率測定装置、反射率測定方法及び表示パネルの製造方法
JP4687644B2 (ja) * 2006-12-22 2011-05-25 富士ゼロックス株式会社 画像処理装置、画像読取装置及び画像形成装置
KR100947464B1 (ko) * 2008-02-13 2010-03-17 에스엔유 프리시젼 주식회사 두께 측정장치
JP5274862B2 (ja) 2008-03-10 2013-08-28 東京エレクトロン株式会社 温度測定装置及び温度測定方法
JP5410806B2 (ja) 2009-03-27 2014-02-05 浜松ホトニクス株式会社 膜厚測定装置及び測定方法
KR101653854B1 (ko) 2009-10-13 2016-09-02 하마마츠 포토닉스 가부시키가이샤 막두께 측정 장치 및 막두께 측정 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269306A (ja) * 1990-03-20 1991-11-29 Japan Aviation Electron Ind Ltd 膜厚・屈折率測定方法および装置
JPH0771924A (ja) * 1993-09-01 1995-03-17 Hitachi Ltd 薄膜特性値測定方法及び装置
JP2000193424A (ja) * 1998-12-24 2000-07-14 Sharp Corp 薄膜の膜厚測定装置およびその方法
JP2009074866A (ja) * 2007-09-19 2009-04-09 Hamamatsu Photonics Kk 分光測定装置、分光測定方法、及び分光測定プログラム

Also Published As

Publication number Publication date
JP2012063321A (ja) 2012-03-29
TWI513972B (zh) 2015-12-21
US8699023B2 (en) 2014-04-15
CN103140750A (zh) 2013-06-05
DE112011103113B4 (de) 2022-11-10
KR20130106810A (ko) 2013-09-30
US20130169968A1 (en) 2013-07-04
DE112011103113T5 (de) 2013-08-08
TW201224430A (en) 2012-06-16
CN103140750B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2012036213A1 (ja) 反射率測定装置、反射率測定方法、膜厚測定装置及び膜厚測定方法
TWI480501B (zh) Displacement measurement method and displacement measuring device
US10267621B2 (en) Confocal displacement sensor
JP4924288B2 (ja) 校正用基準光源およびそれを用いる校正システム
KR101548017B1 (ko) 광학 특성 측정 장치
US8144322B2 (en) Spectral characteristic measuring apparatus, method for calibrating spectral characteristic measuring apparatus, and spectral characteristic measuring system
US8049882B2 (en) Spectrometric optical method and system providing required signal-to-noise of measurements
JP2011089961A (ja) 分光器およびそれを備えた測光装置
KR101890944B1 (ko) 분광 특성 측정 방법 및 분광 특성 측정 장치
US20100260643A1 (en) Portable measurement system having biophotonic sensor
CN115104000A (zh) 膜厚测定装置及膜厚测定方法
JP2010133833A (ja) 測光装置
US9885612B2 (en) Optical temperature sensor and method of controlling same
JP2007139632A (ja) 反射率測定機及び反射率測定方法。
JP5338467B2 (ja) プラズマ測定装置
JP2015052531A (ja) 分光器の波長校正方法
JP2017207354A (ja) 光源装置
US7154607B2 (en) Flat spectrum illumination source for optical metrology
JPH11153416A (ja) 膜厚測定装置および膜厚測定方法
JP2012018118A (ja) 測色装置、及び測色方法
JP5216657B2 (ja) 光学式膜厚測定装置およびこれを備える真空成膜装置
JP7136136B2 (ja) 光学センサの受光特性評価装置及び受光特性評価方法
JP2017203722A (ja) 光源装置
JP2006078409A (ja) 分光光度計及び分光方法
JP2005321199A (ja) 干渉フィルタの透過波長調整方法及び透過波長調整用装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044880.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825213

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137003557

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13822741

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011103113

Country of ref document: DE

Ref document number: 1120111031130

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825213

Country of ref document: EP

Kind code of ref document: A1