CN113720825B - 光学即时检测器及检测方法和应用 - Google Patents

光学即时检测器及检测方法和应用 Download PDF

Info

Publication number
CN113720825B
CN113720825B CN202111297412.2A CN202111297412A CN113720825B CN 113720825 B CN113720825 B CN 113720825B CN 202111297412 A CN202111297412 A CN 202111297412A CN 113720825 B CN113720825 B CN 113720825B
Authority
CN
China
Prior art keywords
sample
fluorescence
detector
optical fiber
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111297412.2A
Other languages
English (en)
Other versions
CN113720825A (zh
Inventor
杨源
俞翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Danuodi Technology Co ltd
Original Assignee
Sichuan Danuodi Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Danuodi Technology Co ltd filed Critical Sichuan Danuodi Technology Co ltd
Priority to CN202111297412.2A priority Critical patent/CN113720825B/zh
Publication of CN113720825A publication Critical patent/CN113720825A/zh
Application granted granted Critical
Publication of CN113720825B publication Critical patent/CN113720825B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明的实施例提供了光学即时检测器及检测方法和应用,检测器包括:光源发射器、Y型光纤束、荧光强度探测器以及反射镜;Y型光纤束具有入射光纤段、出射光纤段和同时与入射光纤段及出射光纤段连接的公共段,入射光纤段具有入射端面,光源发射器朝向入射端面,出射光纤段具有出射端面,出射端面朝向荧光强度探测器,公共段具有用于传递出光源发射器发出的光线且能接收荧光的荧光接收端面。光强校准时,反射镜与荧光接收端面相对设置。检测方法,包括:采用本申请提供的光学即时检测器检测样本浓度。该检测器利用反射镜就可实现光强校准,不需要如现有技术那样增设光路,其光学元件少,结构简单,检测方法快捷、方便,非常适合应用于医学检验中。

Description

光学即时检测器及检测方法和应用
技术领域
本发明涉及即时检测技术领域,具体而言,涉及光学即时检测器及检测方法和应用。
背景技术
即时检测(Point of care Testing, POCT),从空间上在患者现场进行的“床旁检验”;从时间上理解在患者发病时刻进行的“即时检验”。POCT是一种可以省去标本在实验室检验时的复杂处理程序,快速得到检验结果的新方法;或是在中心实验室之外,靠近检测对象并能及时报告结果的一种“可移动的微型”检测***。
当前的POCT产品虽然基本都可以满足即时、即地使用的需求,但是与“便携式”和“微型”的特性还有很大的差距,这就大大限制了它的应用场景。当前产品无法做到便携式的一个主要原因在于:使用了自由空间式的光学***。
传统的用于POCT的光学***如图1所示:
1为待测样本容器,由底板11和盖板12组成,其中盖板12对照射光谱具有一定的光学透过率,在样本容器1中的某个固定位置含有待测样本101。2为光学传感器的光学***,光源201发射出来的照射光依次经过入射透镜202、分光镜203、二向色反射镜206、收集透镜207、样本容器盖板12,照射到待测样本101上。待测样本101中有一种荧光物质,在光的照射下激发出荧光,荧光经过收集透镜207、二向色反射镜206、第一聚光透镜208收集到第一光电探测器209上,根据第一光电探测器209上的强度大小来判断待测样本中被激发的荧光量的多少,从而判读出与荧光物质相连接的目标物质的多少。由于被激发出的荧光与照射光之间有不一样的光谱范围,所以二向色镜的作用在于将从光源发射而来的照射光反射至收集透镜207上,并且允许从待测样本发出的荧光通过它至第一聚光透镜208。为了实时校正照射光强的偏差,在照射端增加一个参考光路,由分光镜203、第二聚光透镜204和第二光电探测器205组成,在每次测量的时候第二光电探测器205上探测到照射光的一部分,用这部分光强实时监测光源201发出的光强,如果出现偏差则对光源201强度进行调节,或者用一个系数对整个***进行校正。
上述光路结构虽然可以有效探测出待测样本中目标物质的多少,但是其缺点是:1)结构复杂,对实现POCT检测设备的便携是一个巨大障碍;2)光学器件较多,成本高。
发明内容
本发明的目的在于提供一种光学即时检测器及检测方法和应用,旨在改善背景技术提到的至少一种问题。
本发明的实施例可以这样实现:
第一方面,本发明提供一种光学即时检测器,包括:
光源发射器、Y型光纤束、荧光强度探测器以及反射镜。
Y型光纤束具有入射光纤段、出射光纤段和同时与入射光纤段及出射光纤段连接的公共段,入射光纤段具有入射端面,光源发射器朝向入射端面,出射光纤段具有出射端面,出射端面朝向荧光强度探测器,公共段具有用于传递出光源发射器发出的光线且能接收荧光的荧光接收端面。
光强校准时,反射镜与荧光接收端面相对设置。
在可选的实施方式中,光源发射器与Y型光纤束之间设置有用于将发射光线耦合入Y型光纤束的光纤耦合透镜。
在可选的实施方式中,Y型光纤束与荧光强度探测器之间设置有用于将出射荧光聚集以被荧光强度探测器捕获的聚焦透镜。
在可选的实施方式中,还包括使用时与荧光接收端面相对设置的样本容器,样本容器包括底板和具有透光性的盖板。
第二方面,本发明提供一种样本即时检测方法,采用如前述任一种的光学即时检测器进行样本检测,包括:
光强校准:将反射镜置于与荧光接收端面相对的位置进行光强校准,通过荧光强度探测器测量参考光强度
Figure P_211104101549051_051122001
,根据公式
Figure P_211104101549097_097949002
计算光强校准系数,
Figure P_211104101549144_144849003
为光源发射器的出厂设置光强值,α为光强校准系数;
样本检测:将样本置于与荧光接收端面相对的位置进行样本荧光强度检测,根据测得的荧光强度、光强校准系数以及荧光强度与待测样本浓度的标准曲线关系计算得到样本实际浓度。
在可选的实施方式中,样本检测步骤具体包括:
将待测样本置于与荧光接收端面相对的位置,通过荧光强度探测器测量待测样本中荧光物质被光源照射从而受激发发射出的荧光强度
Figure P_211104101549178_178481001
,根据标准曲线计算得到目标物测试浓度
Figure P_211104101549210_210281002
,根据公式
Figure P_211104101549225_225905003
得出实际浓度
Figure P_211104101549257_257151004
在可选的实施方式中,检测之前还包括:采用光学即时检测器检测多个已知浓度的标准样本,得到多个荧光强度值,根据该多个已知浓度以及对应的多个荧光强度值确定荧光强度与待测样本浓度的标准曲线。
第三方面,本发明提供前述实施方式的样本即时检测方法在医学检验中的应用。
本发明实施例的有益效果包括,例如:
本申请提供的光学即时检测器,由于合理的结构设置,将反射镜设置在与荧光接收端面相对的位置即可进行光路校准,不需要如背景技术中提到的现有检测器那样单独设置一条光路。其结构简单,零件明显少于现有的检测器,其可集成为体积小、拿取使用便捷的器材;由于其光学零件少,因此其制造成本更低。
采用光学即时检测器实施的样本即时检测方法,操作简单、快捷、方便,非常适合应用于医学检验中。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为现有的样本检测装置的光学***图;
图2为本实施例提供的光学即时检测器的光学***图;
图3为光学即时检测器校正时的示意图;
图4为光学即时检测器测试时的示意图。
图标:1-样本容器;11-底板;12-盖板;101-待测样本;4-载物台;401-工作位;201-光源;202-入射透镜;203-分光镜;204-第二聚光透镜;205-第二光电探测器;206-二向色反射镜;207-收集透镜;208-第一聚光透镜;209-第一光电探测器;3-光学即时检测器;301-光源发射器;302-光纤耦合透镜;305-Y型光纤束;303-聚焦透镜;304-荧光强度探测器;306-光纤入射段;307-光纤出射段;308-公共段;309-反射镜;310-入射端面;312-出射端面;311-荧光接收端面;2-光学传感器的光学***。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明的描述中,需要说明的是,若出现术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,若出现术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
需要说明的是,在不冲突的情况下,本发明的实施例中的特征可以相互结合。
请参考图2,本实施例提供了一种光学即时检测器3,包括:
光源发射器301、Y型光纤束305、荧光强度探测器304以及反射镜309。
Y型光纤束305具有入射光纤段、出射光纤段和同时与入射光纤段及出射光纤段连接的公共段308,入射光纤段具有入射端面310,光源发射器301朝向入射端面310,出射光纤段具有出射端面312,出射端面312朝向荧光强度探测器304,公共段308具有用于传递出光源发射器301发出的光线且能接收荧光的荧光接收端面311。光强校准时,反射镜309与荧光接收端面311相对设置。
优选地,光源发射器301与Y型光纤束305之间设置有用于将发射光线耦合入Y型光纤束305的光纤耦合透镜302。
若不设光纤耦合透镜302,要使光线更好入射至光纤内,则对入射角度,光纤束的数量及粗细度等有较高要求。设置光纤耦合透镜302,便于使光源发射器301发出的光线聚集耦合至Y型光纤束305内,降低了检测器的装配难度和零件要求。
优选地,Y型光纤束305与荧光强度探测器304之间设置有用于将出射荧光聚集以被荧光强度探测器304捕获的聚焦透镜303。
与设置光纤耦合透镜302的目的相似,设置聚焦透镜303的目的是为了将从出射光纤段出射的荧光通过聚焦透镜303聚集被荧光强度探测器304捕获,从而获得准确的荧光强度数据。
在本实施例中,具体地,光源发射器301、光纤耦合透镜302、入射端面310、出射端面312、聚焦透镜303以及荧光强度探测器304同轴设置。
优选地,光学即时检测器3还包括使用时与荧光接收端面311相对设置的样本容器1,样本容器1包括底板11和具有透光性的盖板12。
样本容器1用于盛装待测样本101,测试时,将待测样本101置于底板11之上,盖上盖板12,将样本容器1置于载物台4上,使荧光接收端面311朝下正对待测样本101。光强校准时,将反射镜309置于载物台4上,使荧光接收端面311朝下正对反射镜309。
本实施例提供的光学即时检测器3的两个工作状态:光强校准态和测试态。以荧光接收端面311朝下正对位置为工作位401。
光强校准态:当反射镜309位于载物台4上的工作位401时,检测***处于光强校准状态,如图3所示。此时光源发射器301发出的照射光经过光纤入射段306之后照射到反射镜309的反射面上,反射镜309将一部分照射光反射至Y型光纤束305的光纤出射段307,经过聚焦透镜303收集到荧光强度探测器304上。在***稳定的情况下此时光电传感器探测到的参考光强正比于照射光:I ref =kI in k<1)。I ref 为荧光强度传感器上探测到参考光强;I in 为光源发射器301的发射光强。
当待测样本101位于工作位401时,如图4所示,光学即时检测器3处于测量状态。此时光源发射器301发出的照射光经过Y型光纤束305的光纤入射段306之后,通过出射端面312出射,照射至待测样本101上,待测样本101中含有荧光物质,当收到照射光的照射之后,激发出荧光。荧光通过荧光接收端面311进入Y型光纤束305的光纤出射段307,从出射端面312出射后被聚焦透镜303收集到荧光强度探测器304上。此时荧光强度探测器304探测到的荧光光强为I fl ,I fl 正比于被测物质的含量或浓度:
Figure P_211104101549303_303978001
在实际测量过程中,照射光I in 可能会存在一定的波动,由于I in 的偏差导致I fl 出现偏差,从而导致测量结果Ctarget偏差,所以在样本测量的时候需要对照射光强I in 进行校准。本申请对光强校准的过程发生在本次样本测量之前进行,由于光强的变化是一个缓变过程,而光强校准状态和测量状态之间的时间间隔很小,这样设置是合适的。当光学传感器处于光强校准状态的时候,反射镜309置于工作位401置,荧光强度探测器304上探测到的参考光强为
Figure P_211104101549335_335221001
。当照射光强为初始光强
Figure P_211104101549366_366520002
时,参考光的强度为
Figure P_211104101549400_400661003
。当照射光出现偏移的时候,每次测量的参考光强
Figure P_211104101549431_431904004
,如果
Figure P_211104101549463_463149005
,则实际照射光强
Figure P_211104101549510_510033006
,在此实际光强的照射下得到的被测物质浓度
Figure P_211104101549556_556911007
换算成原始光强下的浓度则为
Figure P_211104101549590_590608008
基于以上装置及原理,本申请还提供了一种样本即时检测方法,包括:采用本实施例提供的光学即时检测器3对样本进行检测得到样本实际浓度。
具体包括:
S1、确定标准曲线
在***稳定的情况下,采用光学即时检测器3检测多个已知浓度的标准样本,得到多个荧光强度值,根据该多个已知浓度以及对应的多个荧光强度值确定荧光强度与待测样本101浓度的标准曲线
Figure P_211104101549637_637484001
S2、装置光强校准
i. 打开光源201,收到检测指令后打开光源201;
ii. 光源201打开后,将反射镜309置于工作位401上;
iii. 在反射镜309置于工作位401之后,荧光强度探测器304探测到参考光强度
Figure P_211104101549731_731232001
;
iv. 计算光强校准系数
Figure P_211104101549820_820620001
Figure P_211104101549898_898729002
为光源发射器301的出场设置值;
S3、样本检测
v. 将反射镜309移出工作位401;
vi. 将待测样本101置于工作位401;
vii. 在待测样本101置于工作位401之后,样本中的荧光物质被光源201照射到从而受激发射出荧光,荧光强度探测器304测量出荧光强度值
Figure P_211104101549945_945609001
viii. 通过荧光强度值结合标准曲线
Figure P_211104101550026_026182001
计算出目标物质的浓度;
ix. 根据iv步骤得出的光强校准系数将测量浓度校准到实际浓度:
Figure P_211104101550135_135500001
x. 将实际浓度值输出;
xi. 待测样本101移出工作位401,等待下次测量时反射镜309进入工作位401;
在执行步骤v至步骤xi,光学即时检测器3处于样本检测状态。
本申请提供的样本即时检测方法,非常适合应用于医学检验中,可便捷、快速检测病患的生物样本。
综上,本申请提供的光学即时检测器,由于合理的结构设置,将反射镜设置在与荧光接收端面相对的位置即可进行光路校准,不需要如背景技术中提到的现有检测器那样单独设置一条光路。其结构简单,零件明显少于现有的检测器,其可集成为体积小、拿取使用便捷的器材;由于其光学零件少,因此其制造成本更低。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (7)

1.一种样本即时检测方法,其特征在于,采用光学即时检测器进行样本检测,所述光学即时检测器包括:光源发射器、Y型光纤束、荧光强度探测器以及反射镜;所述Y型光纤束具有入射光纤段、出射光纤段和同时与所述入射光纤段及所述出射光纤段连接的公共段,所述入射光纤段具有入射端面,所述光源发射器朝向所述入射端面,所述出射光纤段具有出射端面,所述出射端面朝向所述荧光强度探测器,所述公共段具有用于传递出所述光源发射器发出的光线且能接收荧光的荧光接收端面;
检测方法包括:
光强校准:将所述反射镜置于与所述荧光接收端面相对的位置进行光强校准,通过所述荧光强度探测器测量参考光强度
Figure 527813DEST_PATH_IMAGE001
,根据公式
Figure 404502DEST_PATH_IMAGE002
计算光强校准系数,
Figure 226965DEST_PATH_IMAGE003
为所述光源发射器的出厂设置光强值,α为光强校准系数;
样本检测:将样本置于与所述荧光接收端面相对的位置进行样本荧光强度检测,根据测得的荧光强度、所述光强校准系数以及荧光强度与待测样本浓度的标准曲线关系计算得到样本实际浓度。
2.根据权利要求1所述的样本即时检测方法,其特征在于,所述光源发射器与所述Y型光纤束之间设置有用于将发射光线耦合入所述Y型光纤束的光纤耦合透镜。
3.根据权利要求1所述的样本即时检测方法,其特征在于,所述Y型光纤束与所述荧光强度探测器之间设置有用于将出射荧光聚集以被所述荧光强度探测器捕获的聚焦透镜。
4.根据权利要求1所述的样本即时检测方法,其特征在于,所述光学即时检测器还包括使用时与所述荧光接收端面相对设置的样本容器,所述样本容器包括底板和具有透光性的盖板。
5.根据权利要求1所述的样本即时检测方法,其特征在于,样本检测步骤具体包括:
将待测样本置于与所述荧光接收端面相对的位置,通过所述荧光强度探测器测量所述待测样本中荧光物质被光源照射从而受激发发射出的荧光强度
Figure 808512DEST_PATH_IMAGE004
,根据所述标准曲线计算得到目标物测试浓度
Figure 7412DEST_PATH_IMAGE005
,根据公式
Figure 738608DEST_PATH_IMAGE006
得出实际浓度
Figure 731972DEST_PATH_IMAGE007
6.根据权利要求1所述的样本即时检测方法,其特征在于,检测之前还包括:采用所述光学即时检测器检测多个已知浓度的标准样本,得到多个荧光强度值,根据该多个已知浓度以及对应的多个荧光强度值确定所述荧光强度与待测样本浓度的标准曲线。
7.权利要求1~6任一项所述的样本即时检测方法在医学检验中的应用。
CN202111297412.2A 2021-11-04 2021-11-04 光学即时检测器及检测方法和应用 Active CN113720825B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111297412.2A CN113720825B (zh) 2021-11-04 2021-11-04 光学即时检测器及检测方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111297412.2A CN113720825B (zh) 2021-11-04 2021-11-04 光学即时检测器及检测方法和应用

Publications (2)

Publication Number Publication Date
CN113720825A CN113720825A (zh) 2021-11-30
CN113720825B true CN113720825B (zh) 2022-02-08

Family

ID=78686564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111297412.2A Active CN113720825B (zh) 2021-11-04 2021-11-04 光学即时检测器及检测方法和应用

Country Status (1)

Country Link
CN (1) CN113720825B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117348224A (zh) * 2023-12-04 2024-01-05 成都丹诺迪医疗科技有限公司 显微装置

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043285A (en) * 1987-07-09 1991-08-27 Allied-Signal Inc. Optical detection of oxygen
EP1002227A1 (en) * 1997-07-25 2000-05-24 University of Washington Simultaneous analyte determination and reference balancing in reference t-sensor devices
KR20060089104A (ko) * 2005-02-03 2006-08-08 삼성전자주식회사 다채널 형광 측정용 광학계 및 이를 채용한 다채널 형광시료 분석 장치
EP1746410A1 (en) * 2005-07-21 2007-01-24 CSEM Centre Suisse d'Electronique et de Microtechnique SA Apparatus and method for fluorescence lifetime imaging
JP2011013167A (ja) * 2009-07-06 2011-01-20 Hitachi High-Technologies Corp 分光蛍光光度計及び試料セル
WO2013035738A1 (ja) * 2011-09-07 2013-03-14 オリンパス株式会社 蛍光観察装置
CN103140750A (zh) * 2010-09-17 2013-06-05 浜松光子学株式会社 反射率测定装置、反射率测定方法、膜厚测定装置及膜厚测定方法
JP2013190211A (ja) * 2012-03-12 2013-09-26 Dkk Toa Corp 蛍光分析装置
EP3070458A1 (en) * 2015-03-19 2016-09-21 Olympus Corporation Fluorescence observation unit and fluorescence observation apparatus
EP3078989A1 (en) * 2015-04-09 2016-10-12 Harbin Yiaomi Technology and Development Co., Ltd. Rediation dose detector with embedded optical fibers
CN106596613A (zh) * 2017-02-16 2017-04-26 武汉泛洲中越合金有限公司 一种利用x射线荧光光谱仪扫描道检测元素含量的方法
CN107407632A (zh) * 2015-02-06 2017-11-28 生命技术公司 用于生物仪器校准的方法和***
WO2018014013A1 (en) * 2016-07-15 2018-01-18 Acea Biosciences, Inc. Optical detection system for flow cytometer, flow cytometer system and methods of use
CN108535471A (zh) * 2017-03-06 2018-09-14 广州万孚生物技术股份有限公司 免疫荧光检测光路机构、免疫荧光检测仪及其校准方法
CN109470662A (zh) * 2018-09-13 2019-03-15 西北核技术研究所 一种煤油燃烧场oh-plif测量中消除煤油干扰的装置及方法
CN110520035A (zh) * 2017-01-30 2019-11-29 麦迪贝肯有限公司 利用漫反射校正的荧光示踪剂的非入侵监测方法
WO2021087626A1 (en) * 2019-11-06 2021-05-14 Uster Technologies Ag Apparatus and method for optically characterizing a textile sample.

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002010717A2 (en) * 2000-07-28 2002-02-07 Otsuka Electronics Co., Ltd. Automatic optical measurement method
US7280207B2 (en) * 2001-07-25 2007-10-09 Applera Corporation Time-delay integration in a flow cytometry system
US6999173B2 (en) * 2003-09-25 2006-02-14 Ffa Sciences Llc Method and apparatus for ratio fluorometry
CN100573106C (zh) * 2007-06-28 2009-12-23 大连海事大学 一种光纤荧光生物传感器
CN101354287B (zh) * 2007-07-24 2010-12-22 杭州远方光电信息有限公司 一种光谱仪及其校正方法
WO2009067626A1 (en) * 2007-11-21 2009-05-28 Glumetrics, Inc. Use of an equilibrium intravascular sensor to achieve tight glycemic control
US20100032582A1 (en) * 2008-08-07 2010-02-11 General Electric Company Fluorescence detection system and method
JP5393216B2 (ja) * 2009-03-24 2014-01-22 オリンパス株式会社 蛍光観察システムおよび蛍光観察システムの作動方法
CN101566580B (zh) * 2009-05-13 2011-06-15 南京航空航天大学 混凝土中钢筋锈蚀状态的分阶段监测方法及传感器
CN101566567B (zh) * 2009-05-31 2010-12-29 武汉理工大学 一种光纤生物传感器探头薄膜材料及其制备方法
CN101644601A (zh) * 2009-07-16 2010-02-10 广州市丰华生物工程有限公司 应用光纤耦合器的荧光测量***
CN101701855A (zh) * 2009-11-06 2010-05-05 南昌航空大学 一种荧光温度传感器探针及其制作方法
CN101716069A (zh) * 2009-11-17 2010-06-02 中国科学院安徽光学精密机械研究所 人体氧化应激无创荧光检测装置与方法
US8352207B2 (en) * 2010-03-31 2013-01-08 Ecolab Usa Inc. Methods for calibrating a fluorometer
CN202057580U (zh) * 2011-04-23 2011-11-30 浙江大学 用于定量pcr仪荧光检测的光学***
FR2980577B1 (fr) * 2011-09-26 2013-09-20 Biomerieux Sa Systeme de detection et/ou de quantification in vitro par fluorimetrie
CN104251848A (zh) * 2013-06-28 2014-12-31 天津奇谱光电技术有限公司 一种荧光法光纤传感仪器
US10359414B2 (en) * 2015-03-09 2019-07-23 The Regents Of The University Of Michigan Frequency domain discrimination of tissue proteins
CN205038162U (zh) * 2015-10-26 2016-02-17 肯维捷斯(武汉)科技有限公司 一种荧光检测装置
EP3614128B1 (en) * 2018-08-22 2023-04-26 F. Hoffmann-La Roche AG A method to correct signal light intensities measured by a detector of a detection unit in a laboratory instrument
CN110186894A (zh) * 2019-05-10 2019-08-30 无锡瑞生医疗科技有限公司 实时原位生物样本检测仪
US11525782B2 (en) * 2019-09-03 2022-12-13 Tianma Japan, Ltd. Fluorescent image analyzer
CN112304915B (zh) * 2020-10-29 2021-05-04 苏州雅睿生物技术有限公司 一种实时荧光检测光学***、实时荧光定量pcr仪
CN113189065B (zh) * 2021-04-23 2023-10-03 广东顺德工业设计研究院(广东顺德创新设计研究院) 光学检测方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043285A (en) * 1987-07-09 1991-08-27 Allied-Signal Inc. Optical detection of oxygen
EP1002227A1 (en) * 1997-07-25 2000-05-24 University of Washington Simultaneous analyte determination and reference balancing in reference t-sensor devices
KR20060089104A (ko) * 2005-02-03 2006-08-08 삼성전자주식회사 다채널 형광 측정용 광학계 및 이를 채용한 다채널 형광시료 분석 장치
EP1746410A1 (en) * 2005-07-21 2007-01-24 CSEM Centre Suisse d'Electronique et de Microtechnique SA Apparatus and method for fluorescence lifetime imaging
JP2011013167A (ja) * 2009-07-06 2011-01-20 Hitachi High-Technologies Corp 分光蛍光光度計及び試料セル
CN103140750A (zh) * 2010-09-17 2013-06-05 浜松光子学株式会社 反射率测定装置、反射率测定方法、膜厚测定装置及膜厚测定方法
WO2013035738A1 (ja) * 2011-09-07 2013-03-14 オリンパス株式会社 蛍光観察装置
JP2013190211A (ja) * 2012-03-12 2013-09-26 Dkk Toa Corp 蛍光分析装置
CN107407632A (zh) * 2015-02-06 2017-11-28 生命技术公司 用于生物仪器校准的方法和***
EP3070458A1 (en) * 2015-03-19 2016-09-21 Olympus Corporation Fluorescence observation unit and fluorescence observation apparatus
EP3078989A1 (en) * 2015-04-09 2016-10-12 Harbin Yiaomi Technology and Development Co., Ltd. Rediation dose detector with embedded optical fibers
WO2018014013A1 (en) * 2016-07-15 2018-01-18 Acea Biosciences, Inc. Optical detection system for flow cytometer, flow cytometer system and methods of use
CN110520035A (zh) * 2017-01-30 2019-11-29 麦迪贝肯有限公司 利用漫反射校正的荧光示踪剂的非入侵监测方法
CN106596613A (zh) * 2017-02-16 2017-04-26 武汉泛洲中越合金有限公司 一种利用x射线荧光光谱仪扫描道检测元素含量的方法
CN108535471A (zh) * 2017-03-06 2018-09-14 广州万孚生物技术股份有限公司 免疫荧光检测光路机构、免疫荧光检测仪及其校准方法
CN109470662A (zh) * 2018-09-13 2019-03-15 西北核技术研究所 一种煤油燃烧场oh-plif测量中消除煤油干扰的装置及方法
WO2021087626A1 (en) * 2019-11-06 2021-05-14 Uster Technologies Ag Apparatus and method for optically characterizing a textile sample.

Also Published As

Publication number Publication date
CN113720825A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
JP4791625B2 (ja) 分光光度・比濁検出ユニット
US8207508B2 (en) Device and method for quantifying a surface&#39;s cleanliness
Proctor et al. NIST high accuracy reference reflectometer-spectrophotometer
US4945250A (en) Optical read head for immunoassay instrument
JP2013061244A (ja) 微小粒子測定装置
JPS6234039A (ja) 免疫反応測定に用いる蛍光検出装置
EP0438550B1 (en) Optical read system
CN113720825B (zh) 光学即时检测器及检测方法和应用
KR20170052256A (ko) 라만 산란을 이용한 물질의 농도 측정 장치 및 방법
JPH10253624A (ja) 粒子測定装置
CN107389644A (zh) 一种快速荧光定量装置
AU2016315424A1 (en) Apparatus and method for performing a light-absorption measurement on a test sample and a compliance measurement on a reference sample
JP2021514051A (ja) 分析装置
CN206146837U (zh) 一种用于多通道原子荧光光度计的光学和检测***
US11408825B2 (en) Forensic detector and the system thereof
EP3921627B1 (en) Method of analyzing samples, analyzing device and computer program
JPH0486546A (ja) 検体検査装置
JP2004354346A (ja) 測定装置
Kinjo et al. Basic fluorescence correlation spectroscopy setup and measurement
JPS62278436A (ja) 蛍光測定法及び装置
CN116106247B (zh) 一种紫外可见分光光度计的校准方法
CN115607110B (zh) 一种基于自体荧光的乳腺肿瘤检测***
JP2004045096A (ja) 生体成分の定量装置
CN111826422B (zh) 检测荧光偏振的光学***以及偏振度测量单元
JP2011214858A (ja) クロマトグラフ測定方法、並びにそれに用いる不溶性担体および測定装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Optical instant detector and detection method and application

Effective date of registration: 20220831

Granted publication date: 20220208

Pledgee: Bank of Chengdu science and technology branch of Limited by Share Ltd.

Pledgor: Sichuan danuodi Technology Co.,Ltd.

Registration number: Y2022510000258

PE01 Entry into force of the registration of the contract for pledge of patent right