WO2012032838A1 - β型サイアロンの製造方法 - Google Patents

β型サイアロンの製造方法 Download PDF

Info

Publication number
WO2012032838A1
WO2012032838A1 PCT/JP2011/065281 JP2011065281W WO2012032838A1 WO 2012032838 A1 WO2012032838 A1 WO 2012032838A1 JP 2011065281 W JP2011065281 W JP 2011065281W WO 2012032838 A1 WO2012032838 A1 WO 2012032838A1
Authority
WO
WIPO (PCT)
Prior art keywords
sialon
raw material
material powder
content
mass
Prior art date
Application number
PCT/JP2011/065281
Other languages
English (en)
French (fr)
Inventor
豪 竹田
久之 橋本
秀幸 江本
山田 鈴弥
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to EP11823317.0A priority Critical patent/EP2615154B1/en
Priority to US13/577,401 priority patent/US20120298919A1/en
Priority to CN201180027981.3A priority patent/CN102933683B/zh
Priority to KR1020127020286A priority patent/KR101449820B1/ko
Publication of WO2012032838A1 publication Critical patent/WO2012032838A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium

Definitions

  • the present invention relates to a method for producing ⁇ -sialon that can be used in a light-emitting device such as a white light-emitting diode using a blue light-emitting diode chip or an ultraviolet light-emitting diode chip.
  • Patent Document 1 the ⁇ -sialon produced in the first heating step is subjected to acid treatment through the second heating step, thereby improving crystallinity and increasing the brightness.
  • Patent Document 2 discloses that the fluorescence spectrum of ⁇ -sialon can be shortened or narrowed by reducing the amount of solid solution of oxygen in ⁇ -sialon.
  • an object of the present invention is to provide a method for producing ⁇ -sialon capable of realizing high luminous efficiency even when the wavelength of the fluorescence spectrum of ⁇ -sialon is shortened or narrowed.
  • the composition of the raw material powder, the average particle size, the optical characteristics, and the properties of the obtained ⁇ -sialon as a phosphor Based on the results of the analysis of the relationship between the raw material powder and the production of ⁇ -sialon with high emission efficiency, short wavelength and narrow band by controlling the physical properties of the raw powder to a specific range It is.
  • the present invention has a firing step of firing raw material powder, and is a method for producing ⁇ -sialon represented by the general formula: Si 6-z Al z O z N 8-z : Eu, Al content 0.3 to 1.2% by mass, O content 0.15 to 1% by mass, O / Al molar ratio 0.9 to 1.3, Si content 58 to 60% by mass, N content The amount is 37 to 40% by mass, the N / Si molar ratio is 1.25 to 1.45, and the Eu content is 0.3 to 0.7% by mass.
  • the raw material powder is heated to a temperature of 1850 to 2050 ° C. in a nitriding atmosphere.
  • part or all of the raw material powder is ⁇ -sialon.
  • the light absorptivity of the raw material powder with respect to the excitation wavelength of 455 nm is preferably 40% or more, and the particle size of the raw material powder is preferably 1 ⁇ m to 12 ⁇ m at D50 and 20 ⁇ m or less at D90.
  • This annealing process is an annealing process in which heat treatment is performed in a temperature range of 1200 ° C. or higher and 1550 ° C. or lower in vacuum, or in an inert atmosphere mainly containing a gas other than nitrogen having a nitrogen partial pressure of 10 kPa or lower. It is preferable that it is one or both of the annealing process heat-processed by temperature.
  • An acid treatment step can be provided after the firing step or after the annealing step.
  • ⁇ -sialon is impregnated in an aqueous solution containing HF and HNO 3 at 65 ° C. or higher.
  • the present invention is a ⁇ -type sialon represented by the general formula: Si 6-z Al z O z N 8-z : Eu and having a firing step of firing raw material powder (hereinafter simply referred to as “ ⁇ -type sialon”).
  • a raw material powder having an Al content of 0.3 to 1.2% by mass, an O content of 0.15 to 1% by mass, an O / Al molar ratio of 0.9 to 1.3, and an Si content 58-60 mass%, N content 37-40 mass%, N / Si molar ratio 1.25-1.45 and Eu content 0.3-0.7 mass%. Is fired in a temperature range of 1850 to 2050 ° C.
  • the produced ⁇ -type sialon has a CIExy chromaticity coordinate of 0.280 ⁇ x ⁇ 0.340 and 0.630 ⁇ y ⁇ 0.675. It is a manufacturing method of type sialon.
  • the raw material powder of the present invention has an Al content of 0.3 to 1.2% by mass, an O content of 0.15 to 1% by mass, an O / Al molar ratio of 0.9 to 1.3, and an Si content.
  • an amount of 58 to 60% by mass an N content of 37 to 40% by mass, an N / Si molar ratio of 1.25 to 1.45 and an Eu content of 0.3 to 0.7% by mass. The proportion is adjusted.
  • the content of Al in the raw material powder is 0.3 to 1.2% by mass. If the content of Al in the raw material powder is small, the light emission efficiency of ⁇ -sialon tends to be reduced, and if it is large, the wavelength is not reduced and the band is not narrowed.
  • the content of O in the raw material powder is 0.15 to 1% by mass.
  • the oxygen content is low, grain growth during firing does not occur sufficiently, crystal defects increase, the emission efficiency of ⁇ -sialon decreases, and shortening of the wavelength and narrowing of the bandwidth cannot be sufficiently achieved.
  • the oxygen content increases, phosphor particles having a large aspect ratio and a narrow minor axis are formed during grain growth during firing, resulting in a decrease in absorptance, and from the excitation light of Eu as the emission center to fluorescence.
  • the conversion ability of the ⁇ -sialon decreases, and the luminous efficiency of ⁇ -sialon decreases.
  • the O / Al molar ratio of the raw material powder is 0.9 to 1.30.
  • the content of Si in the raw material powder is 58 to 60% by mass. If the Si content is low, the weight during the firing process tends to decrease and the yield tends to decrease. If the Si content is high, the transparency of the crystal is impaired, the internal quantum efficiency decreases, and the light emission efficiency decreases.
  • the content of N in the raw material powder is 37 to 40% by mass.
  • the N / Si molar ratio is 1.25 to 1.45. Even if the N / Si molar ratio is high or low, ⁇ -sialon close to the stoichiometric ratio cannot be formed, so that sufficient luminous efficiency cannot be obtained.
  • the content of Eu in the raw material powder is 0.3 to 0.7% by weight. If the Eu content is low, the excitation light cannot be sufficiently converted to green light, and the light emission efficiency decreases. On the other hand, when the content of Eu is large, excess Eu atoms that cannot be dissolved are precipitated between the particles, and a part of the excitation light and fluorescence are absorbed to reduce the light emission efficiency.
  • the raw material powder is fired in a temperature range of 1850 to 2050 ° C. in a nitriding atmosphere.
  • the ⁇ -sialon obtained in the baking step exhibits fluorescence characteristics, and the fluorescence characteristics of CIExy chromaticity coordinates of 0.280 ⁇ x ⁇ 0.340 and 0.630 ⁇ y ⁇ 0.675 are obtained.
  • the raw material powder is filled into a container such as a crucible having at least a surface part in contact with the raw material powder made of boron nitride, and fired in a temperature range of 1850 to 2050 ° C. in a nitrogen atmosphere.
  • a container such as a crucible having at least a surface part in contact with the raw material powder made of boron nitride, and fired in a temperature range of 1850 to 2050 ° C. in a nitrogen atmosphere.
  • grain growth occurs, resulting in grain coarsening and further improvement in crystallinity.
  • Eu efficiently emits fluorescent light, so that the emission efficiency is improved, and ⁇ -sialon with a shorter wavelength and a narrower band is synthesized.
  • the raw material powder may be ⁇ -sialon.
  • the light absorption rate with respect to the excitation wavelength of 455 nm of the raw material powder is 40% or more.
  • the ⁇ -sialon contained in the raw material powder is a powder of a metal or compound containing the elements constituting the ⁇ -sialon, and after adjusting the composition and crystallinity by a heat treatment step, the particle size is adjusted by a pulverization process, etc. What is necessary is just to produce by this method.
  • the particle size of the raw material powder is preferably 1 ⁇ m or more and 12 ⁇ m or less at D50 and 20 ⁇ m or less at D90.
  • D50 and D90 are 50% particle size and 90% particle size, respectively, in the volume-based integrated fraction. If the grain size of D50 is too small, grain growth occurs rapidly during firing and crystal defects increase, resulting in a decrease in the luminous efficiency of the obtained ⁇ -sialon. On the contrary, when the particle size of D50 is large, sufficient grain growth does not occur, and the luminous efficiency of the fired ⁇ -sialon is not improved. When the particle size of D90 is large, coarse particles that cannot be used as a product increase in the fired ⁇ -sialon, and the yield decreases.
  • the raw material powder of the present invention Since the raw material powder of the present invention has a larger particle size than the powder used in the conventional production method, the abundance ratio of particles that do not participate in grain growth is increased in the firing process. Moreover, if the crystallinity of the raw material powder itself is poor, the crystallinity of ⁇ -sialon synthesized by firing also deteriorates, and the transparency and fluorescence characteristics of the crystal deteriorate. However, if the raw material is made of ⁇ -sialon powder, which is polycrystalline, rather than a single crystal powder such as metal or compound powder, the crystallinity of ⁇ -sialon obtained by firing is improved.
  • ⁇ -sialon powder which is polycrystalline
  • An annealing step may be provided after the firing step.
  • heat treatment is performed in a temperature range of 1200 ° C. or higher and 1550 ° C. or lower in a vacuum, or in an inert atmosphere mainly containing a gas other than nitrogen gas having a nitrogen partial pressure of 10 kPa or lower. You may heat-process at temperature.
  • the annealing process may be performed in two stages. Heat treatment in an inert atmosphere may be performed before and after the heat treatment step in vacuum.
  • the acid treatment step is preferably a step of impregnating ⁇ -sialon into an aqueous solution containing HF and HNO 3 at 65 ° C. or higher.
  • acid treatment is performed at a temperature of 65 ° C. or higher in an aqueous solution composed of HF and HNO 3 .
  • the acid treatment removes impurities made of crystals such as amorphous and Si other than the ⁇ -type sialon crystal phase generated in the firing step and annealing step, and further improves the luminous efficiency.
  • Example 1 In the method for producing ⁇ -sialon of Example 1 according to the present invention, a raw material powder containing ⁇ -sialon in the raw material powder and having a z value calculated from the amount of Al of 0.1 is calcined, and the general formula: A ⁇ -sialon represented by Si 6-z Al z O z N 8-z : Eu was produced.
  • the raw material powder according to Example 1 has an Al content of 0.50 mass%, an O content of 0.91 mass%, an O / Al molar ratio of 1.15, an Si content of 59.1 mass%, N The content was adjusted to 38.8% by mass, the N / Si molar ratio was 1.32 and the Eu content was adjusted to 0.50% by mass.
  • the raw material powder is filled in a boron nitride container (“N-1” grade manufactured by Denki Kagaku Kogyo Co., Ltd.) and fired at a temperature of 2000 ° C. for 10 hours in a 0.9 MPa pressurized nitriding atmosphere.
  • ⁇ -sialons having 0.280 ⁇ x ⁇ 0.340 and 0.630 ⁇ y ⁇ 0.675 were synthesized.
  • D50 of the raw material powder was 6.0 ⁇ m, and D90 was 16.6 ⁇ m.
  • D50 and D90 were measured by a laser diffraction scattering method.
  • This measurement was performed as follows. 50 mg of the raw material powder for phosphor synthesis of Example 1 was put in an ESR sample tube, and ESR measurement was performed at 25 ° C.
  • an ESR measuring device JES-FE2XG type manufactured by JEOL Ltd. was used. The measurement conditions were as follows.
  • Magnetic field sweep range 3200-3400gauss (320-340mT) Magnetic field modulation: 100kHz, 5gauss Irradiation microwave: frequency 9.25 GHz, output 10 mW Sweep time: 240 seconds Number of data points: 2056 points Standard sample: and the Mn 2+ was measured at the same time as the sample of Example 1 which was thermally diffused to MgO.
  • the ESR spectrum is usually observed as a first-order differential curve because the unevenness of the absorption spectrum of electromagnetic waves is sensitively observed. Since the absorption intensity is proportional to the number of spins, the ESR spectrum was integrated twice, the differential curve was corrected to an integral curve, and quantified from the area ratio with the standard sample.
  • the spin number of the standard sample is 1,1-diphenyl-2-picrylhydrazyl ((C 6 H 5 ) 2 NNC 6 H 2 (NO 2 ) 3 , hereinafter referred to as DPPH) whose spin number is known.
  • ESR measurement was performed on 0.5 mL (3.0 ⁇ 10 15 spins) of a 1.0 ⁇ 10 ⁇ 5 mol / L benzene solution, and was determined from the peak area ratio of the standard sample and the DPPH solution.
  • the sintered product obtained in the above baking process was loosely agglomerated and could be loosely loosened manually by wearing clean rubber gloves. After mild crushing, ⁇ -sialon sintered powder was produced through a sieve having an opening of 45 ⁇ m.
  • the obtained powder did not shrink due to sintering, had almost the same properties as before heating, and passed through a sieve having an opening of 45 ⁇ m.
  • a trace amount of Si was detected.
  • This powder was treated at a temperature of 70 ° C. in a 1: 1 mixed acid of 50% hydrofluoric acid and 70% nitric acid. Then, it washed with water and dried and obtained the beta type sialon powder of Example 1. As a result of XRD measurement again, no diffraction peaks other than ⁇ -sialon were detected.
  • Table 1 shows the conditions in the method for producing ⁇ -sialon according to Examples and Comparative Examples, and the evaluation results of ⁇ -sialon produced by the production method.
  • the light absorptance for the excitation wavelength of 455 nm was 50.9%.
  • the light absorptance was measured with an instantaneous multi-photometry system (manufactured by Otsuka Electronics Co., Ltd., MCPD-7000).
  • the emission peak intensity of ⁇ -sialon produced by the production method of Example 1 was 196%.
  • the fluorescence spectrum was measured using a spectrofluorometer (manufactured by Hitachi High-Technologies Corporation, F4500).
  • the height of the peak wavelength of the fluorescence spectrum when 455 nm blue light was used as the excitation light was measured, and the peak wavelength measured from YAG: Ce: phosphor (P46-Y3, manufactured by Kasei Opto) measured under the same conditions.
  • the relative value with respect to the height was determined as the emission peak intensity.
  • a spectral xenon lamp light source was used as the excitation light.
  • the CIE chromaticity x of the fluorescence spectrum was 0.336, and the CIE chromaticity y was 0.637.
  • the fluorescence spectrum was determined by measuring the fluorescence spectrum of the total luminous flux using an instantaneous multi-photometry system (MCPD-7000, manufactured by Otsuka Electronics Co., Ltd.) and collecting the fluorescence for excitation at 455 nm using an integrating sphere (Non-patent Document 1). reference).
  • the z value calculated from the Al content in the raw material powder is 0.1, and the Eu content, Al content, O content, Si content, and N content are each 0.00%. 56, 0.91, 0.52, 58.8, 39.1% by mass, the O / Al molar ratio was 0.96, and the N / Si molar ratio was 1.33.
  • the particle size and crystallinity of the raw material powder were evaluated by the same method as in Example 1.
  • the particle size of the raw material powder was 6.2 ⁇ m for D50 and 14.2 ⁇ m for D90.
  • the light absorptivity of the raw material powder with respect to the excitation wavelength of 455 nm was 58.0%.
  • the z value calculated from the Al amount in the raw material powder was 0.08, and as a result of measuring the Eu content, Al content, O content, Si content, N content, They were 0.55, 0.76, 0.47, 58.7, and 39.4 mass%, respectively, the O / Al molar ratio was 1.04, and the N / Si molar ratio was 1.35.
  • the particle size and crystallinity of the raw material powder were evaluated by the same method as in Example 1.
  • the particle size of the raw material powder was 6.0 ⁇ m for D50 and 15.1 ⁇ m for D90.
  • the light absorptivity of the raw material powder with respect to the excitation wavelength of 455 nm was 48.7%.
  • the z value calculated from the amount of Al in the raw material powder of the raw material powder of Example 4 is 0.06.
  • Eu content, Al content, O content, Si content, and N content they were 0.41, 0.59, 0.43, 59.1, and 39.3 mass%, respectively.
  • the / Al molar ratio was 1.23 and the N / Si molar ratio was 1.33.
  • the particle size and crystallinity of the raw material powder were evaluated by the same method as in Example 1.
  • D50 was 5.1 ⁇ m
  • D90 was 16.3 ⁇ m.
  • the light absorption rate of the raw material powder with respect to the excitation wavelength of 455 nm was 45.2%.
  • Comparative Example 1 The raw material powder of Comparative Example 1 is ⁇ -type silicon nitride powder (Ube Industries, E10 grade, O content 1.17% by mass), aluminum nitride powder (Tokuyama, F grade, O content 0.84 mass) %), Aluminum oxide powder (manufactured by Daimei Chemical Co., Ltd., TM-DAR ", grade), and europium oxide powder (manufactured by Shin-Etsu Chemical Co., Ltd., RU grade).
  • ⁇ -type silicon nitride powder Ube Industries, E10 grade, O content 1.17% by mass
  • aluminum nitride powder Tokuyama, F grade, O content 0.84 mass
  • Aluminum oxide powder manufactured by Daimei Chemical Co., Ltd., TM-DAR ", grade
  • europium oxide powder manufactured by Shin-Etsu Chemical Co., Ltd., RU grade.
  • the z value calculated from the amount of Al in the raw material powder is 0.25, and 95.50 mass% silicon nitride powder, 3.32 mass% aluminum nitride powder so that the europium oxide powder is 0.29 mol%, Compounding 0.39% by mass of aluminum oxide powder and 0.79% by mass of europium oxide powder, mixing these raw material powders so as to have a particle size different from that of Example 1, did.
  • the ⁇ -sialon of Comparative Example 1 was produced under the same conditions as in Example 1 except for these conditions.
  • the particle size and crystallinity of the raw material powder were evaluated.
  • the particle size of the raw material powder was D50 of 0.65 ⁇ m and D90 of 2.0 ⁇ m.
  • the light absorptance with respect to the excitation wavelength of 455 nm was 22.6%.
  • Example 1 Evaluation as a phosphor was performed in the same manner as in Example 1.
  • the ⁇ -sialon of Comparative Example 1 has high emission intensity, it has a high CIE chromaticity x value and a low CIE chromaticity y value because of the high content of Al and O in the raw material powder. Met. Therefore, the ⁇ type sialon of Comparative Example 1 could not achieve a shorter fluorescence wavelength or a narrower band than the ⁇ type sialon of Examples 1 to 4.
  • Comparative Example 2 The raw material powder of Comparative Example 2 has a silicon nitride powder of 97.8% by mass and an aluminum nitride powder so that the z value calculated from the amount of Al in the raw material powder is 0.1 and the europium oxide powder is 0.29 mol%. 1.5% by mass and 0.77% by mass of europium oxide powder were blended. This was used as a raw material powder for phosphor synthesis so as to have a particle size different from that of Example 1. The ⁇ -sialon of Comparative Example 2 was prepared under the same conditions as in Example 1 except for these conditions.
  • the particle size and crystallinity of the raw material powder of Comparative Example 2 were evaluated.
  • the particle size of the raw material powder of Comparative Example 2 was D50 of 0.62 ⁇ m and D90 of 1.9 ⁇ m.
  • the light absorptance with respect to the excitation wavelength of 455 nm was 23.5%.
  • the ⁇ -sialon of Comparative Example 2 has a low Al content in the raw material powder, the value of chromaticity x is low and the value of chromaticity y is high, that is, the wavelength is shortened and the band is narrowed. It is necessary for the charge balance of the crystal that the molar ratio of Al and O in ⁇ -sialon is 1: 1. In order to reduce the wavelength and narrow the band, in Examples 1 to 4, the amount of O and the amount of Al are reduced to reduce the z value.
  • the molar ratio of O to Al in the raw material powder is significantly larger than 1 due to the impurity oxygen of the silicon nitride powder and the aluminum nitride powder and the oxygen contained in the europium oxide.
  • the luminous efficiency decreased.
  • the average particle size of the raw material powder was small and the crystal defects were large, the emission peak intensity was extremely low.
  • the ⁇ -sialons of Examples 1 to 4 all had high emission intensity.
  • the light emission of the ⁇ -sialons of Examples 1 to 4 is 0.319 ⁇ x ⁇ 0.336 and 0.637 ⁇ y ⁇ 0.650 in CIExy chromaticity, and a shorter wavelength and a narrower band are achieved. I found out.
  • the ⁇ -sialons of Examples 1 to 10 of the present invention can emit high-intensity green light using an ultraviolet LED or a blue LED emitting light having a wavelength of 350 to 500 nm as excitation light. For this reason, in addition to the phosphor of the experimental example described above, a white LED having good light emission characteristics can be realized by using another phosphor that emits light of another color.
  • the phosphor using the ⁇ -sialon of the present invention is excited in a wide wavelength range from ultraviolet to blue light, and exhibits high emission efficiency, short wavelength and narrow band green emission. For this reason, the phosphor using the ⁇ -sialon of the present invention can be suitably used as a phosphor of a white LED using blue light or ultraviolet light as a light source, and a color reproduction range for a backlight of a liquid crystal display panel. Can be suitably used for a wide range of white LEDs and the like.
  • the phosphor using the ⁇ -sialon of the present invention has little decrease in luminance at high temperature, and is excellent in heat resistance and moisture resistance. Therefore, when the phosphor of the present invention is applied to the lighting equipment and image display device fields described above, changes in luminance and emission color with respect to changes in the operating environment temperature are small, and excellent long-term stability characteristics are exhibited. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

原料粉末を焼成する焼成工程を有し、一般式:Si6-zAl8-z:Euで表されるβ型サイアロンの製造方法であって、原料粉末が、Al含有量0.3~1.2質量%、O含有量0.15~1質量%、O/Alモル比0.9~1.3、Si含有量58~60質量%、N含有量37~40質量%、N/Siモル比1.25~1.45及びEu含有量0.3~0.7質量%を有し、焼成工程が、原料粉末を窒化雰囲気中1850~2050℃の温度範囲で焼成する焼成工程であり、製造されるβ型サイアロンが、CIExy色度座標で0.280≦x≦0.340、0.630≦y≦0.675を示す。

Description

β型サイアロンの製造方法
 本発明は、青色発光ダイオードチップ又は紫外発光ダイオードチップを用いた白色発光ダイオード等の発光装置に利用可能なβ型サイアロンの製造方法に関する。
 特許文献1では、第一の加熱工程で生成したβ型サイアロンを、第二の加熱工程を経て酸処理することにより、結晶性を向上させて高輝度化している。
 特許文献2では、β型サイアロンの酸素の固溶量を低減させることによってβ型サイアロンの蛍光スペクトルの短波長化や狭域化ができることが開示されている。
国際公開第2008/062781号パンフレット 国際公開第2007/066733号パンフレット
久保和明他著、「NBS標準蛍光体の量子効率の測定」、照明学会誌、平成11年、第83巻、第2号、p87-p93
 従来のEuを固溶したβ型サイアロンは、蛍光スペクトルの短波長化及び狭帯域化を行った場合、発光効率が著しく低くなり、同じ条件で繰り返し製造しても発光特性の再現性に乏しかった。
 本発明は、上記課題に鑑み、β型サイアロンの蛍光スペクトルの短波長化や狭帯域化を行った場合でも、高い発光効率を実現できるβ型サイアロンの製造方法を提供することを目的としている。
 本発明は、Euを固溶するβ型サイアロンを短波長化及び狭帯域化させる際に、原料粉末の組成、平均粒径、光学特性等と、得られたβ型サイアロンの蛍光体としての特性との関係を解析した結果にもとづくものであって、原料粉末の物性を特定の範囲に制御することによって高い発光効率を有し、短波長化や狭帯域化させたβ型サイアロンを製造するものである。
 すなわち、本発明は、原料粉末を焼成する焼成工程を有し、一般式:Si6-zAl8-z:Euで表されるβ型サイアロンの製造方法であって、原料粉末を、Al含有量0.3~1.2質量%、O含有量0.15~1質量%、O/Alモル比0.9~1.3、Si含有量58~60質量%、N含有量37~40質量%、N/Siモル比1.25~1.45及びEu含有量0.3~0.7質量%とし、焼成工程において、原料粉末を窒化雰囲気中1850~2050℃の温度範囲で焼成するものであり、製造されるβ型サイアロンが、CIExy色度座標で0.280≦x≦0.340、0.630≦y≦0.675を示すβ型サイアロンの製造方法である。
 本発明にあっては、原料粉末の一部又は全部がβ型サイアロンである。原料粉末の455nmの励起波長に対する光吸収率は40%以上であるのが好ましく、原料粉末の粒度は、D50で1μm以上12μm以下、D90で20μm以下であるのが好ましい。
 原料粉末の電子スピン共鳴スペクトルの計測における25℃でのg=2.00±0.02の吸収に対応するスピン密度は、好ましくは9.0×1017個/g以下である。
 焼成工程後にアニール工程を有してもよい。このアニール工程は、真空中1200℃以上1550℃以下の温度範囲で熱処理するアニール工程、又は、窒素分圧10kPa以下の窒素以外のガスを主成分とした不活性雰囲気中1300℃以上1600℃以下の温度で熱処理するアニール工程の一方又は双方であるのが好ましい。
 焼成工程の後、又は、アニール工程後に酸処理工程を設けることができる。この酸処理工程では、好ましくは、β型サイアロンを65℃以上のHFとHNOを含有させた水溶液に含浸させる。
 本発明の製造方法によれば、β型サイアロンの蛍光体としての短波長化や狭帯域化を行った場合でも、高い発光効率をよく実現できる。
 以下、本発明の実施の形態について詳細に説明する。
 本発明は、一般式:Si6-zAl8-z:Euで表され、原料粉末を焼成する焼成工程を有するβ型サイアロン(以下、単に「β型サイアロン」と呼ぶ)の製造方法であって、原料粉末が、Al含有量0.3~1.2質量%、O含有量0.15~1質量%、O/Alモル比0.9~1.3、Si含有量58~60質量%、N含有量37~40質量%、N/Siモル比1.25~1.45及びEu含有量0.3~0.7質量%を有し、焼成工程において、原料粉末を窒化雰囲気中1850~2050℃の温度範囲で焼成し、製造されるβ型サイアロンが、CIExy色度座標で0.280≦x≦0.340、0.630≦y≦0.675を示すβ型サイアロンの製造方法である。
 本発明の原料粉末は、Al含有量が0.3~1.2質量%、O含有量が0.15~1質量%、O/Alモル比が0.9~1.3、Si含有量が58~60質量%、N含有量が37~40質量%、N/Siモル比が1.25~1.45及びEu含有量が0.3~0.7質量%となるように、成分割合が調整される。
 原料粉末のAlの含有量は0.3~1.2質量%である。原料粉末のAlの含有量は、少ないとβ型サイアロンの発光効率の低下の傾向にあり、多いと短波長化や狭帯域化がなされない傾向にある。
 原料粉末のOの含有量は0.15~1質量%である。酸素の含有量が少ないと焼成時の粒成長が十分に起きず、結晶欠陥が増加し、β型サイアロンの発光効率が低下し、短波長化や狭帯域化が十分できなくなる。酸素の含有量が多くなると、焼成時の粒成長においてアスペクト比が大きく、短径が細い形態の蛍光体粒子が生成して吸収率が低下すると共に、発光中心であるEuの励起光から蛍光への変換能力が低下し、β型サイアロンの発光効率が低くなる。原料粉末のO/Alモル比は、0.9~1.30である。
 原料粉末のSiの含有量は58~60質量%である。Siの含有量が少ないと焼成工程中の重量が減少し歩留りが低下する傾向にあり、多いと結晶の透明性が損なわれ、内部量子効率が低下して発光効率が低くなる。
 原料粉末のNの含有量は37~40質量%である。N/Siモル比は、1.25~1.45である。N/Siモル比は、高くても低くても、化学量論比に近いβ型サイアロンが形成できないため、十分な発光効率が得られない。
 原料粉末のEuの含有量は、0.3~0.7重量%である。Euの含有量が少ないと励起光を十分に緑色光に変換することができず、発光効率が低下する。逆に、Euの含有量が多い場合には、固溶できない過剰のEu原子が粒子間に析出し、励起光や蛍光を一部吸収して発光効率が低下する。
 本発明のβ型サイアロンの製造方法における焼成工程では、原料粉末を窒化雰囲気中において1850~2050℃の温度範囲で焼成する。
 前記焼成工程で得られたβ型サイアロンは蛍光特性を示し、CIExy色度座標で0.280≦x≦0.340、0.630≦y≦0.675の蛍光特性が得られる。
 焼成工程では、原料粉末を、少なくともこの原料粉末と当接する表面部分が窒化ホウ素でなる坩堝等の容器内に充填し、窒素雰囲気中で1850~2050℃の温度範囲で焼成する。これにより、粒成長が生じて粒子の粗大化と、さらなる結晶性の改善が生じる。その結果、Euが効率的に蛍光発光を示すことから、発光効率が向上し、かつ、短波長化及び狭帯域化させたβ型サイアロンが合成される。
 原料粉末の一部又は全部をβ型サイアロンとしてもよい。この場合、原料粉末の455nmの励起波長に対する光吸収率が40%以上であることが好ましい。
 原料粉末に含まれるβ型サイアロンは、β型サイアロンを構成する元素を含む金属又は化合物の粉末を、熱処理工程により組成の調整と結晶性の改善を行った後に、粉砕処理によって粒度を調整する等の方法により作製すればよい。
 原料粉末の粒度は、D50で1μm以上12μm以下、D90で20μm以下であるのが好ましい。ここで、D50、D90は、それぞれ体積基準の積算分率における50%粒径、90%粒径である。D50の粒径があまりに小さいと焼成時に粒成長が急速に起き、結晶欠陥が増加するため、得られるβ型サイアロンの発光効率が低下する。逆に、D50の粒径が大きいと十分な粒成長が起こらず、焼成したβ型サイアロンの発光効率が向上しない。D90の粒径が大きい場合には、焼成したβ型サイアロン中に製品として使用できない粗大粒子が多くなり、歩留りが低下する。
 本発明の原料粉末は、従来の製造法で用いられる粉末より粒度が大きいため、焼成過程において粒成長に関与しない粒子の存在比率が高くなる。また、原料粉末自体の結晶性が悪いと、焼成によって合成されるβ型サイアロンの結晶性も悪くなり、結晶の透明性と蛍光特性が低下する。しかし、原料を金属又は化合物の粉末のような単結晶の粉末だけにするより、多結晶であるβ型サイアロンの粉末を原料に混在させると、焼成によって得られるβ型サイアロンの結晶性が改善される。
 原料粉末の電子スピン共鳴(Electron Spin Resonance、ESRと略記する。)スペクトルの計測における25℃でのg=2.00±0.02の吸収に対応するスピン密度は、9.0×1017個/g(グラム)以下であるのが好ましい。原料粉末のスピン密度が高いと、得られるβ型サイアロンの光吸収が大きくなり、蛍光の発生が妨げられる。
 焼成工程後にアニール工程を設けてもよい。このアニール工程では、真空中1200℃以上1550℃以下の温度範囲で熱処理するか、或いは、窒素分圧10kPa以下の窒素ガス以外のガスを主成分とした不活性雰囲気中1300℃以上1600℃以下の温度で熱処理してもよい。アニール工程は二段階で行ってもよい。真空中の熱処理工程の前後で不活性雰囲気中の熱処理を行ってもよい。
 焼成工程後又はアニール工程後に酸処理する工程を有していてもよい。酸処理工程は、β型サイアロンを65℃以上のHFとHNOを含有させた水溶液に含浸させる工程であるのが好ましい。例えば、HFとHNOとからなる水溶液中において65℃以上の温度で酸処理を行う。酸処理によって焼成工程やアニール工程で生じるβ型サイアロン結晶相以外の非晶質やSi等の結晶からなる不純物が除去され、さらに発光効率が改善される。
 次に、本発明の実施例について、表1を参照しつつ詳細に説明する。
 本発明に係る実施例1のβ型サイアロンの製造方法では、原料粉末中にβ型サイアロンを含有し、Al量から計算したz値が0.1となる原料粉末を焼成して、一般式:Si6-zAl8-z:Euで表されるβ型サイアロンを製造した。実施例1に係る原料粉末は、Al含有量が0.50質量%、O含有量が0.91質量%、O/Alモル比が1.15、Si含有量が59.1質量%、N含有量が38.8質量%、N/Siモル比が1.32、及びEu含有量が0.50質量%となるように調整した。焼成工程では、原料粉末を窒化ホウ素製容器(電気化学工業社製「N-1」グレード)に充填し、0.9MPa加圧窒化雰囲気中2000℃の温度で10時間焼成し、CIExy色度座標で0.280≦x≦0.340、0.630≦y≦0.675を示すβ型サイアロンを合成した。
 原料粉末のD50は6.0μm、D90は16.6μmであった。D50、D90の測定は、レーザー回折散乱法で行った。
 実施例1の原料粉末の電子スピン共鳴スペクトルの計測における25℃でのg=2.00±0.02の吸収に対応するスピン密度は、6.5×1017個/gであった。この測定は次のように行った。
 実施例1の蛍光体合成用の原料粉末50mgをESR用の試料管に入れ、25℃でESR測定を行った。測定には、日本電子株式会社製のESR測定装置(JES-FE2XG型)を使用した。測定条件は、以下の通りであった。
   磁場掃引範囲:3200~3400gauss(320~340mT)
   磁場変調:100kHz、5gauss
   照射マイクロ波:周波数9.25GHz、出力10mW
   掃引時間:240秒
   データポイント数:2056ポイント
   標準試料:MgOにMn2+を熱拡散させたものを実施例1の試料と同時に測定した。
 ESRスペクトルは、電磁波の吸収スペクトルの凹凸を鋭敏に観測するため、通常、一次微分曲線として観測される。その吸収強度がスピン数に比例するので、ESRスペクトルを2回積分して微分曲線を積分曲線に直し、標準試料との面積比から定量した。
 標準試料のスピン数は、スピン数が既知である1,1-ジフェニル-2-ピクリルヒドラジル((CNNC(NO、以下、DPPHという。)の1.0×10-5mol/Lベンゼン溶液0.5mL(3.0×1015spins)についてESR測定を行い、標準試料とDPPH溶液のピーク面積比から求めた。
 上記焼成工程で得られた焼結物は、緩く凝集した塊状であり、清浄なゴム手袋を着用して人手で軽くほぐすことができた。こうして、軽度の解砕を行った後、目開き45μmの篩を通してβ型サイアロンの焼結粉末を製造した。
 製造した焼結粉末に対して、CuのKα線を用いた粉末X線回折測定(XRD)を行い、結晶相の同定を行った結果、結晶相としてβ型サイアロンと第二相として2θ=33~38°付近に複数の微小な回折線が観察された。第二相の中で最も高い回折線強度はβ型サイアロンの(101)面の回折線強度に対して、1%以下であった。
 円筒型窒化ホウ素製容器に上記の焼結粉末を充填し、大気圧のAr雰囲気中、1450℃で8時間の加熱処理を行った。得られた粉末は、焼結に伴う収縮がなく、加熱前とほとんど同じ性状であり、目開き45μmの篩を全て通過した。XRD測定の結果、微量のSiが検出された。この粉末を50%フッ化水素酸と70%硝酸の1:1混酸中、70℃の温度で処理した。その後、水洗及び乾燥して実施例1のβ型サイアロン粉末を得た。再びXRD測定を行った結果、β型サイアロン以外の回折ピークは検出されなかった。
 表1に実施例と比較例に係るβ型サイアロンの製造方法における条件と、その製造方法によって製造されたβ型サイアロンの評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1の製造方法で用いた原料粉末では、455nmの励起波長に対する光吸収率が、50.9%であった。光吸収率の測定は、瞬間マルチ測光システム(大塚電子社製、MCPD-7000)で行った。
 実施例1の製造方法で製造されたβ型サイアロンにおける発光ピーク強度は、196%であった。発光特性の測定にあっては、分光蛍光光度計(日立ハイテクノロジーズ社製、F4500)を用いて、蛍光スペクトルの測定を行った。455nmの青色光を励起光とした場合における蛍光スペクトルのピーク波長の高さを測定し、同条件にて測定したYAG:Ce:蛍光体(化成オプト社製、P46-Y3)から測定したピーク波長の高さに対する相対値を発光ピーク強度として求めた。励起光には、分光したキセノンランプ光源を使用した。
 実施例1の製造方法で製造されたβ型サイアロンでは、蛍光スペクトルのCIE色度xは、0.336、CIE色度yは0.637であった。蛍光スペクトルは、瞬間マルチ測光システム(大塚電子社製、MCPD-7000)を使用し、積分球を用いて455nmの励起に対する蛍光を集光した全光束の蛍光スペクトル測定で求めた(非特許文献1参照)。
 実施例2の原料粉末は、原料粉末中のAl量から計算したz値が0.1であり、Eu含有量、Al含有量、O含有量、Si含有量、N含有量は、それぞれ0.56、0.91、0.52、58.8、39.1質量%であり、O/Alモル比は、0.96、N/Siモル比は1.33であった。
 実施例1と同じ方法で原料粉末の粒度及び結晶性の評価を行った。原料粉末の粒度は、D50が6.2μm、D90が14.2μmであった。原料粉末のESR測定において、g=2.00±0.02の吸収に対応するスピン密度は、2.1×1017個/gであった。原料粉末の455nmの励起波長に対する光吸収率は、58.0%であった。
 上記原料粉末を用いて、実施例1と同じ条件にてβ型サイアロンを製造した。
 次に、実施例1と同様の方法で蛍光体の評価を行った。実施例2のβ型サイアロンの発光ピーク強度は201%であり、CIE色度は、x=0.332、y=0.640であった。
 実施例3の原料粉末は、原料粉末中のAl量から計算したz値が0.08であり、Eu含有量、Al含有量、O含有量、Si含有量、N含有量を測定した結果、それぞれ0.55、0.76、0.47、58.7、39.4質量%であり、O/Alモル比は、1.04、N/Siモル比は1.35であった。
 実施例1と同じ方法で原料粉末の粒度及び結晶性の評価を行った。原料粉末の粒度は、D50が6.0μm、D90が15.1μmであった。原料粉末のESR測定において、g=2.00±0.02の吸収に対応するスピン密度は、2.0×1017個/gであった。原料粉末の455nmの励起波長に対する光吸収率は、48.7%であった。
 上記原料粉末を用いて、実施例1と同じ条件にてβ型サイアロンを製造した。
 次に、実施例1と同じ方法で、蛍光体の評価を行った。
 実施例3のβ型サイアロンを用いた蛍光体の発光ピーク強度は195%であり、CIE色度は、x=0.327、y=0.645であった。
 実施例4の原料粉末は、原料粉末中のAl量から計算したz値が0.06である。Eu含有量、Al含有量、O含有量、Si含有量、N含有量を測定した結果、それぞれ0.41、0.59、0.43、59.1、39.3質量%であり、O/Alモル比は、1.23、N/Siモル比は1.33であった。
 実施例1と同じ方法で原料粉末の粒度及び結晶性の評価を行った。原料粉末の粒度は、D50が5.1μm、D90が16.3μmであった。原料粉末のESR測定において、g=2.00±0.02の吸収に対応するスピン密度は、2.4×1017個/gであった。原料粉末の455nmの励起波長に対する光吸収率は、45.2%であった。
 上記原料粉末を用いて、実施例1と同じ条件にてβ型サイアロンを製造した。
 次に、実施例1と同じ方法で蛍光体としての評価を行った。実施例4のβ型サイアロンの発光ピーク強度は183%であり、CIE色度は、x=0.319、y=0.650であった。
 次に、比較例について説明する。
 (比較例1)
 比較例1の原料粉末は、α型窒化ケイ素粉末(宇部興産社製、E10グレード、O含有量1.17質量%)、窒化アルミニウム粉末(トクヤマ社製、Fグレード、O含有量0.84質量%)、酸化アルミニウム粉末(大明化学社製、TM-DAR」、グレード)、酸化ユーロピウム粉末(信越化学工業社製、RUグレード)の混合粉を用いた。原料粉末中のAl量から計算したz値が0.25であり、酸化ユーロピウム粉末を0.29モル%となるように、窒化ケイ素粉末95.50質量%、窒化アルミニウム粉末3.32質量%、酸化アルミニウム粉末0.39質量%及び酸化ユーロピウム粉末0.79質量%を配合し、これらの原料粉末を混合し、実施例1とは異なる粒度になるようにしてβ型サイアロン合成用の原料粉末とした。これら以外の条件は、実施例1と同じ条件で比較例1のβ型サイアロンを作製した。
 比較例1の原料粉末のEu含有量、Al含有量、O含有量、Si含有量、N含有量を測定した結果、それぞれ0.68、2.39、1.44、57.4、37.9質量%であり、O/Alモル比は、1.32、N/Siモル比は1.32であった。
 原料粉末の粒度及び結晶性の評価を行った。原料粉末の粒度は、D50が0.65μm、D90が2.0μmであった。原料粉末のESR測定において、g=2.00±0.02の吸収に対応するスピン密度は、2.6×1018個/gとなった。455nmの励起波長に対する光吸収率は、22.6%であった。
 次に、実施例1と同じ方法で、蛍光体としての評価を行った。
 比較例1のβ型サイアロンの発光ピーク強度は206%であり、CIE色度は、x=0.356、y=0.623であった。これにより、比較例1のβ型サイアロンは、発光強度は高いものの、原料粉末のAlとOの含有量が高いことから、CIE色度xの値が大きく、CIE色度yの値が小さいものであった。従って、比較例1のβ型サイアロンは、実施例1~4のβ型サイアロンと比較して、蛍光波長の短波長化や狭帯域化が実現できなかった。
(比較例2)
 比較例2の原料粉末は、原料粉中のAl量から計算したz値が0.1、酸化ユーロピウム粉末が0.29モル%となるように、窒化ケイ素粉末97.8質量%、窒化アルミニウム粉末1.5質量%、酸化ユーロピウム粉末0.77質量%を配合した。これを実施例1とは異なる粒度となるようにして蛍光体合成用の原料粉末とした。これら以外の条件は、実施例1と同じ条件で、比較例2のβ型サイアロンを作製した。
 原料粉末のEu含有量、Al含有量、O含有量、Si含有量、N含有量を測定した結果、それぞれ0.70、0.95、1.27、58.5、38.5質量%であり、O/Alモル比は、2.25、N/Siモル比は1.32であった。
 比較例2の原料粉末の粒度及び結晶性の評価を行った。比較例2の原料粉末の粒度は、D50が0.62μm、D90が1.9μmであった。比較例2の原料粉末のESR測定において、g=2.00±0.02の吸収に対応するスピン密度は、2.5×1018個/gとなった。比較例2の原料粉末では455nmの励起波長に対する光吸収率は、23.5%であった。
 次に、実施例1と同じ方法で蛍光体としての評価を行った。比較例2のβ型サイアロンの発光ピーク強度は73%であり、CIE色度は、x=0.308、y=0.649であった。
 比較例2のβ型サイアロンは、原料粉末のAl含有量が低いことから、色度xの値が低く、色度yの値が高く、つまり、短波長化や狭帯域化されている。β型サイアロンのAlとOのモル比率は、1対1であることが結晶の電荷バランス上必要である。短波長化や狭帯域化を行うために、実施例1~4ではO量とAl量を低減させてz値を小さくしている。しかしながら、比較例2のβ型サイアロンは、窒化ケイ素粉末と窒化アルミニウム粉末の不純物酸素と酸化ユーロピウムに含まれる酸素により、原料粉末中のAlに対するOのモル比率が、1よりも著しく大きな2.25であることから、発光効率が低下した。さらに、原料粉末の平均粒径が小さく、結晶欠陥が大きいことから、発光ピーク強度は著しく低い値となった。
 実施例1~4のβ型サイアロンは、何れも発光強度が高くなった。実施例1~4のβ型サイアロンの発光は、CIExy色度において、0.319<x<0.336、0.637<y<0.650であり、短波長化と狭帯域化が図られていることが分かった。
 本発明の実施例1乃至10のβ型サイアロンは、350~500nmの波長の光を発する紫外LED又は青色LEDを励起光として、強度の高い緑色を発光させることができる。このため、上述の実験例の蛍光体に加えて他色発光する別の蛍光体を組み合わせて用いることで、発光特性の良好な白色LEDを実現できる。
 本発明のβ型サイアロンを用いた蛍光体は、紫外から青色光の幅広い波長で励起され、高発光効率で短波長化や狭帯域化された緑色発光を示す。このため、本発明のβ型サイアロンを用いた蛍光体は、青色光又は紫外光を光源とする白色LEDの蛍光体として好適に使用できるものであり、液晶ディスプレイパネルのバックライト用の色再現域が広範囲な白色LEDなどに好適に使用できる。
 さらに、本発明のβ型サイアロンを用いた蛍光体は、高温での輝度低下が少なく、また耐熱性や耐湿性に優れる。従って、本発目の蛍光体を上記の照明器具や画像表示装置分野に適用すれば、使用環境温度の変化に対する輝度及び発光色の変化が小さく、長期間の安定性にも優れた特性を発揮できる。

Claims (7)

  1.  原料粉末を焼成する焼成工程を有する、一般式:Si6-zAl8-z:Euで表されるβ型サイアロンの製造方法であって、
     前記原料粉末が、Al含有量0.3~1.2質量%、O含有量0.15~1質量%、O/Alモル比0.9~1.3、Si含有量58~60質量%、N含有量37~40質量%、N/Siモル比1.25~1.45、及びEu含有量0.3~0.7質量%を有し、
     前記焼成工程が、前記原料粉末を窒化雰囲気中1850~2050℃の温度範囲で焼成する焼成工程であり、
     製造されるβ型サイアロンが、CIExy色度座標で0.280≦x≦0.340、0.630≦y≦0.675を示すβ型サイアロンの製造方法。
  2.  前記原料粉末の一部又は全部がβ型サイアロンであり、該原料粉末の455nmの励起波長に対する光吸収率が40%以上である請求項1に記載のβ型サイアロンの製造方法。
  3.  前記原料粉末の粒度が、D50で1μm以上12μm以下、D90で20μm以下である請求項1又は2に記載のβ型サイアロンの製造方法。
  4.  前記原料粉末の電子スピン共鳴スペクトルの計測における25℃でのg=2.00±0.02の吸収に対応するスピン密度が、9.0×1017個/g以下である請求項1又は2に記載のβ型サイアロンの製造方法。
  5.  前記焼成工程後にアニール工程を有し、該アニール工程が、真空中1200℃以上1550℃以下の温度範囲で熱処理するアニール工程、又は、窒素分圧10kPa以下の窒素以外のガスを主成分とした不活性雰囲気中1300℃以上1600℃以下の温度範囲で熱処理するアニール工程の一方又は双方である請求項1又は2に記載のβ型サイアロンの製造方法。
  6.  前記焼成工程の後又は前記アニール工程の後に酸処理工程を設け、該酸処理工程において、前記β型サイアロンを65℃以上のHFとHNOを含有させた水溶液に含浸させる請求項1又は2に記載のβ型サイアロンの製造方法。
  7.  前記原料粉末の電子スピン共鳴スペクトルの計測における25℃でのg=2.00±0.02の吸収に対応するスピン密度が、9.0×1017個/g以下である請求項3に記載のβ型サイアロンの製造方法。
PCT/JP2011/065281 2010-09-09 2011-07-04 β型サイアロンの製造方法 WO2012032838A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11823317.0A EP2615154B1 (en) 2010-09-09 2011-07-04 METHOD FOR PRODUCING TYPE ß-SIALON
US13/577,401 US20120298919A1 (en) 2010-09-09 2011-07-04 Method of manufacturing beta-sialon
CN201180027981.3A CN102933683B (zh) 2010-09-09 2011-07-04 β 型赛隆的制备方法
KR1020127020286A KR101449820B1 (ko) 2010-09-09 2011-07-04 β형 사이알론의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010202512A JP2012057071A (ja) 2010-09-09 2010-09-09 β型サイアロンの製造方法
JP2010-202512 2010-09-09

Publications (1)

Publication Number Publication Date
WO2012032838A1 true WO2012032838A1 (ja) 2012-03-15

Family

ID=45810443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065281 WO2012032838A1 (ja) 2010-09-09 2011-07-04 β型サイアロンの製造方法

Country Status (7)

Country Link
US (1) US20120298919A1 (ja)
EP (1) EP2615154B1 (ja)
JP (1) JP2012057071A (ja)
KR (1) KR101449820B1 (ja)
CN (1) CN102933683B (ja)
TW (1) TWI447209B (ja)
WO (1) WO2012032838A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103420678B (zh) * 2013-07-23 2014-11-12 株洲钻石切削刀具股份有限公司 采用非均相沉淀法制备SiAlON陶瓷材料的方法
CN106753346B (zh) * 2015-11-24 2019-05-31 有研稀土新材料股份有限公司 氮氧化物荧光体及其发光器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255895A (ja) * 2004-03-12 2005-09-22 National Institute For Materials Science 蛍光体とその製造方法
WO2007066733A1 (ja) 2005-12-08 2007-06-14 National Institute For Materials Science 蛍光体とその製造方法および発光器具
WO2008062781A1 (fr) 2006-11-20 2008-05-29 Denki Kagaku Kogyo Kabushiki Kaisha Substance fluorescente et son procédé de fabrication, et dispositif électroluminescent
JP2008127547A (ja) * 2006-11-24 2008-06-05 Sharp Corp 蛍光体およびその製造方法、ならびに発光装置
WO2011058919A1 (ja) * 2009-11-10 2011-05-19 電気化学工業株式会社 β型サイアロン、その製造方法及びそれを用いた発光装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10335466B4 (de) * 2003-08-02 2005-09-01 Leica Microsystems Heidelberg Gmbh Rastermikroskop
DE602006015175D1 (de) * 2005-03-22 2010-08-12 Nat Inst For Materials Science Leuchtstoff und herstellungsverfahren dafür
US8003011B2 (en) * 2005-05-12 2011-08-23 National Institute For Materials Science β type sialon fluorescent substance
JP5122765B2 (ja) * 2006-06-09 2013-01-16 電気化学工業株式会社 蛍光体の製造方法、蛍光体と照明器具
US8518300B2 (en) * 2007-10-10 2013-08-27 Ube Industries, Ltd. β-sialon phosphor powder and production method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255895A (ja) * 2004-03-12 2005-09-22 National Institute For Materials Science 蛍光体とその製造方法
WO2007066733A1 (ja) 2005-12-08 2007-06-14 National Institute For Materials Science 蛍光体とその製造方法および発光器具
WO2008062781A1 (fr) 2006-11-20 2008-05-29 Denki Kagaku Kogyo Kabushiki Kaisha Substance fluorescente et son procédé de fabrication, et dispositif électroluminescent
JP2008127547A (ja) * 2006-11-24 2008-06-05 Sharp Corp 蛍光体およびその製造方法、ならびに発光装置
WO2011058919A1 (ja) * 2009-11-10 2011-05-19 電気化学工業株式会社 β型サイアロン、その製造方法及びそれを用いた発光装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAZUAKI OKUBO ET AL.: "Measurement of quantum efficiency of NBS standard phosphors", JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN, vol. 83, no. 2, 1999, pages 87 - 93
See also references of EP2615154A4

Also Published As

Publication number Publication date
TWI447209B (zh) 2014-08-01
KR20120112702A (ko) 2012-10-11
CN102933683A (zh) 2013-02-13
JP2012057071A (ja) 2012-03-22
US20120298919A1 (en) 2012-11-29
CN102933683B (zh) 2015-01-07
TW201211211A (en) 2012-03-16
EP2615154A4 (en) 2016-06-22
EP2615154B1 (en) 2017-04-26
EP2615154A1 (en) 2013-07-17
KR101449820B1 (ko) 2014-10-13

Similar Documents

Publication Publication Date Title
JP4891336B2 (ja) 蛍光体及びその製造方法、並びに発光装置
TWI373507B (ja)
JP5676653B2 (ja) 半導体発光装置
JP5835469B2 (ja) 酸窒化物蛍光体粉末
JP5450625B2 (ja) 発光装置
JP5741177B2 (ja) Ca含有α型サイアロン蛍光体およびその製造方法
JP5854051B2 (ja) 酸窒化物蛍光体粉末及びその製造方法
TWI588117B (zh) Oxynitride phosphor powder and method of manufacturing the same
JP5758903B2 (ja) β型サイアロン及びその製造方法並びに発光装置
JP2014503605A (ja) 窒素化合物発光材料及びその調製方法並びにそれによって製造された照明光源
JPWO2014148571A1 (ja) 酸窒化物蛍光体粉末およびその製造方法
JP5443597B2 (ja) β型サイアロン、発光装置及びその用途
EP2615154B1 (en) METHOD FOR PRODUCING TYPE ß-SIALON
KR101863548B1 (ko) 산질화물계 형광체 및 이를 포함하는 발광장치
TW201502246A (zh) 氮氧化物螢光體粉末
TWI443868B (zh) β型矽鋁氮氧化物之製造方法
WO2012032824A1 (ja) β型サイアロン、発光装置及びβ型サイアロンの製造方法
JP2016060891A (ja) 蛍光体、蛍光体の製造方法、およびそれを用いた発光装置
CN104479673A (zh) 氮氧化物荧光粉及其制备方法和发光装置
CN110791283A (zh) 照明显示用近紫外或蓝光激发的氮氧化物荧光粉及其制备
JP2019116615A (ja) 酸窒化物蛍光体、発光装置及び酸窒化物蛍光体の製造方法
JP2019011428A (ja) Eu付活β型サイアロン蛍光体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180027981.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127020286

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13577401

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011823317

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011823317

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE